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Abstract— This paper presents a novel approach to dynamic
control of parallel robots based on the end-effector pose and
velocity visual measurement. We show that Computed Torque
Control in joint space is unsuitable for parallel robots and that
Computed Torque Control in Cartesian space requires the end-
effector pose and velocity estimation. Relying on a recent work
showing ability of camera to measure both the pose and the
velocity of a mobile object, we propose an original vision-based
Computed Torque Control scheme. Improvements are discussed
and simulation results show the expected performances.

I. INTRODUCTION

Defined as an end-effector linked to a fixed base by at least
two kinematics chains (also called legs), parallel robots offer
more stiffness than serial robots, and higher speed as several
actuators are used for one move [19]. Firstly used in tire
testing [10] and flight simulation [22], parallel robots are also
relevant for ’pick-and-place’ (ABB Flexpicker with maximal
acceleration of 100m.s~2 for a 2kg load, Figure 1) and High
Speed Machining (Urane SX, 50m.s—2, 100m.min"1, Figure
2), where the expected stiffness and precision are missmatched
[23]. Dynamic control of parallel robots is proposed to im-
prove accuracy at high speed.
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Merlet shows that parallel robots advantages (accuracy, stift-
ness and high-speed) are potential and can only be archieved
if structures and control are well designed [20]. Indeed,
dynamic phenomena, which occur with high acceleration

compensated for with a simple linear controller, especially for
parallel robots whose coupling between legs makes dynamic
behaviour strongly non-linear. It results in a lack of accuracy.
Computed Torque Control gives a solution by taking into
account dynamic phenomena in the torque computation, via
the Inverse Dynamic Model [12].

However, an important issue in parallel robots model-based
control exists. Actually, there is a duality between parallel
and serial robots (Figure 3). Whereas serial manipulators have
a closed-form Forward Kinematic Model (FKM) depending
on joint variables and numerical Inverse Kinematic Models
(IKM), parallel robots have only algebraic Inverse Kinematic
Models, function of the end-effector pose and numerical
Forward Kinematic Model. Hence in a parallel robot model-
based control such as Computed Torque Control, there is
an ambiguity since the end-effector pose is needed and can
not be obtained directly from only available joint variable
measurement. Indeed, the end-effector pose is estimated via
the Forward Kinematic Model which is often based on non-
linear optimisation with many possible solutions [18], [11].
It decreases control speed and accuracy. A proposed solu-
tion consists in designing special mechanical structures to
have simple Forward Kinematic Model, with closed-form
expression such as Isoglide-4 T3R1 [9]. Other methods rely
on metrological redundancy, which allows to make the end-
effector pose computation easier and reduces the numbers of
possible solutions of the Forward Kinematrics problem, by
adding proprio or exteroceptives measurements [3].

Nevertheless, these solutions are based on an estimation of
the end-effector pose, limited by modeling and computation
errors. Rather than estimating the end-effector pose, a mea-
surement of it is preferable. In this way, computer vision
allows an easy measure of the end-effector pose [6], [16].
Largely used for the control of serial robots [24], [7], visual
servoing seems perfectly relevant for parallel robots [14].
However, in most cases, visual servoing consists of a kinematic
control, thus it reduces dynamic performances. That is why
Gangloff introduces a dynamic control of a serial robot using
high-speed vision [8]. However, since robot dynamics are
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for parallel robot. Indeed dynamics compensation requires an
estimation of the end-effector pose, which is not easy to obtain
from joint measurement. Including an end-effector pose visual
measure in a classical Computed Torque Control scheme
seems to be more interesting in the parallel robot case, but the
requirement for the end-effector velocity imposes numerical
derivation, with the associated stability and noise problems.
A recent work makes the end-effector velocity measurement
from a visual information possible [2]. Therefore, a Computed
Torque Control based on visual measurement of the end-
effector pose and velocity is conceivable. Great improvement
in accuracy, computation time and simplification of control
schemes are expected.

Last but not least, setting a Computed Torque Control
implies to be able to determine a model which describes the
robot dynamic behaviour. Numerous methods are proposed
mainly based on Lagrange multipliers or virtual works [1],
[15]. However, heavy computation needs make these methods
unsuitable for control and implies pre-processing simplifi-
cations. Alternately, dynamic models can be deduced from
Newton-Euler equations. Luh and al. propose an algorithm
composed of two recurrences [17], [21] , making Newton-
Euler method adapted for control. However, the parallel robots
case requires an adaptation for this method, as proposed by
Khalil [13].
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Fig. 3. The kinematic duality between serial and parallel robot

The main contribution of this work consists in a proposal of
an original Computed Torque Control schemes using computer
vision for the end-effector pose and velocity measurement.
After a discussion on classical Computed Torque Control
schemes, we show that a control in the Cartesian space is
the best solution for a parallel robot. Then, after pointing out
that vision is a relevant measurement mean, we propose a
vision-based Computed Torque Control scheme. Advantages
and expected improvements of this scheme over the previous
ones are discussed and simulation results are provided. Finally,
an application of recent dynamic modeling method to the
Isoglide-4 T3R1 [9] is presented. Advantages of both structure
and method are pointed out.

Section II deals with Computed Torque Control, whose
variant techniques are presented and discussed, and a visual
servoing solution is exposed. Section III is devoted to dynamic
modeling. Section IV provides simulation results. Finally,

perspectives.

II. CoOMPUTED TORQUE CONTROL
A. Joint space control

Computed Torque Control schemes have been initially de-
velopped for serial robots to improve tracking performances
at high speed [12]. The Inverse Dynamic Model (IDM) of a
serial robot is a function of the joint variables:

IDM(q,q,4) = Alq)§ + H(q, q) (1

In this way, Computed Torque Control is generally designed
in joint space (see Figure 4). Including the Inverse Dynamic
Model allows a non-linear decoupling. Indeed, when dynamic
modeling errors can be considered as negligible, replacing §
by an appropriate control input w in the Lagrange formulation
(Equation (1)) imposes a linear double integrator transfer func-
tion (1/s%) between the control input and the joint variables.

If w is generated by the addition of a simple PID controller
output and the acceleration reference, the tracking error be-
haviour is designed by the controller gains [12]:

é+Kdé+er+Ki/edt:O )

dq

| l
O—“iIDJ\/I(q,(j,r'j)}—F—{ Robot j 4

Xa[—= a4
s

Fig. 4. Computed Torque Control in the joint space for serial robots

In the serial robots case, the Computed Torque Control in
the joint space requires little computation when path gener-
ation, integrating a numerical Inverse Kinematic Model, is
done off-line. Thus, it seems highly satisfactory with regard
to its wide spreading in the industry. Therefore, this control
scheme was transposed to parallel robots (Figure 5), never-
theless it seems to be unsuitable in this case. Indeed, since
the Inverse Dynamic Model is expressed in the Cartesian
space (/DM (X, X, X)), transformations between joint and
Cartesian spaces are needed:

X = FEM(q) (3)
. X

X = dd—tor Dy (X)d “
X = DpL(X)i+DpL(X, X)q 5)

where D;,,, is the Inverse Instantaneous Kinematics matrix
of the parallel robot.

However, these transformations, including the Forward
Kinematics problem solving, should be computed in real-time.
In many cases this is implicitely done in dynamic modeling.
It may result in a decrease of control performance and lack
of accuracy. In addition, refering to Figure 5, the control
scheme is very complicated, contrary to serial robots case.

a conclusion comes back on the contribution and researclggsfurthermore, since reference tracking errors are different for
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Fig. 5.

Computed Torque Control in the joint space for parallel robot

each joint, parasite motions are created which are uncom-
patible with kinematics of the robot, thus generating internal
torques. It leads to mechanical structure damage. This default
was met for two-arm robots [5] but is generally forgotten
for parallel robots. Another drawback is due to the fact that
one joint configuration can lead to several end-effector poses
[11]. Hence a perturbation can shift the end-effector pose and
control will not care with it (Figure 6). These issues make
Computed Torque Control in the joint space unsuitable for
parallel robots.

Perturbation can
shift the end-effector
pose
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Fig. 6. Joint space control can not care with effector pose shifting and does
not ensure correct tracking in the task space

B. Cartesian space control

A natural solution to previous problems is a Cartesian
control where the regulated error is the difference between
the Cartesian reference and the end-effector pose. This type
of control exists for serial robots [12] (See Figure 7), where the
control input w replaces X to ensure the pose error behaviour
of equation (2). However more on-line computation are needed
as a numerical transformation between cartesian and joint
spaces is used:

§=D""q)(X - D (g,9)q) (6)

where D is the Forward Instaneous Kinematics matrix of
the serial robot.

Consequently, the control scheme is more complicated (see
difference between Figures 4 and 7). Hence, a control in the
joint space with a correct path planning is usually prefered. In
parallel robots case, Computed Torque Control in the Cartesian
space is more relevant because the robot dynamics depend on
its end-effector pose:

IDM(X,X,X)=AX)X + H(X,X)

r .
-1 _ p
i O IDM(va,X)H Robot':a .

Thus, computation in equation (5) is useless, improving
control performances and making control scheme simpler (see
Figure 8). Then, internal torques are minimised since required
torques are computed with regard to end-effector pose error,
thus preventing from parasite motions. In addition, no pose
shift can be expected when perturbations occur (Figure 9).
However, the presence of the Forward Kinematics Model and
Forward Instantaneous Kinematics still limit performances and
accuracy.
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Fig. 7. Computed Torque Control for serial robot in cartesian space
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Fig. 8.  Computed Torque Control for parallel robot in cartesian space
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Fig. 9. Cartesian space control ensures correct tracking in the task space

C. Visual-based computed torque control

A solution to the above issues lies in measuring the end-
effector pose and velocity with exteroceptive sensors. This
operation is generally not easy and sensors able to do it are
very expensive and stringent to use, such as a laser-tracker.
By proposing a visual measure of the end-effector pose and
velocity [2], Ait-Aider lets us imagine an original solution
integrating this quite simple and cheap sensing method. Figure
10 shows a new approach for Computed Torque Control where
Forward Kinematic Model and Forward Instaneous Kine-
matics are replaced by visual exteroceptive measurements.
The control scheme is strongly simplified, and is identical
to the control scheme in Figure 4. The kinematic duality
between serial and parallel robots, also present in dynamics,

(7%8 sgan be realised in Computed Torque Control. There is only a



difference since path generation is easier in the parallel robots
case and can be done on-line.

Since control is still in the Cartesian space, advantages
given above are maintened. In addition, visual measurement
gives an unique pose with accuracy and reliability, contrary to
Forward Kinematic Model, improvement in control accuracy
is expected. Furthermore, since the end-effector pose is mea-
sured, geometrical errors and structure deformations can be
compensated for. Hence, proposed control scheme seems to be
perfectly relevant for parallel robot. Ideally, if a high sampling
rate can be achieved (15 H z is common for Computed Torque
Control to ensure high performances [12]), joint sensors would
be useless.

l

Xgq e A w r

- b'd
—:Q—~ PID - IDM(X,X,X) —= Robot <

Path

Fig. 10.  Proposed vision-based cartesian Computed Torque Control for
parallel robot where X and X are obtained by vision

III. DYNAMIC MODELING

Before setting up a Computed Torque Control, dynamic
modeling has to be achieved. Generally, used methods are
based on Lagrange multipliers, requiring heavy computation.
It is more relevant to use a Newton-Euler based method in a
control context. Hence, a general method for parallel robots
dynamic modeling is presented.

A. Method outline

According to Newton-Euler equations, a robot dynamic
model can be obtained by separating each body and express-
ing their velocities, accelerations and generated torques. An
algorithm summarizes the method in two recurrences [17],
[21], making the method adapted for control. A recent work
proposes an adaptation for parallel robot taking into account
the closed structure [13]. By dissociating legs and end-effector,
the dynamic contribution in the active joint space of each parts
can be expressed easily. On the one hand, Newton-Euler algo-
rithm is used to compute the Inverse Dynamic Model of each
leg, seen as a serial robot (often simple). Resulting torques
in the link between a leg and the end-effector is expressed
using the Inverse Instantaneous Kinematics matrix J; of each
leg. Then, this force is calculated in the end-effector frame
with a Jacobian matrix linking terminal Cartesian variables of
a leg to Cartesian variables of the end-effector. Finally, the
robot Forward Instantaneous Kinematics matrix D;n%u projects
the contribution of a leg into active joint space. On the other
hand, the end-effector dynamics are obtained with Newton-
Euler equations and are also expressed in the active joint space
via Di_ni. To summarize, the Inverse Dynamic Model of a
parallel robot can be expressed as:

n
_ —-T =T 7T 7T 7.
= D, . F, + g Dy Jpidi Hi (3)
v i=1 v
Contribution of the Contribution of
end—effector each leg
where:

- D;,. is the Inverse Instantaneous Kinematics matrix of
the robot

- Fp represents the dynamics of the end-effector

- n is the number of legs

- Jp; is the Jacobian matrix linking the Cartesian coordi-
nates of the end-effector to the Cartesian coordinates of
the terminal point of leg ¢

- J; is the Inverse Instantaneous Kinematics matrix of the
leg i

- H; is the Inverse Dynamic Model of the leg %, considered
as a stand alone subsystem, computed with Newton-Euler
algorithms

B. Dynamic modeling of the Isoglide-4 T3RI

1) Presentation: The Isoglide-4 T3R1 is a fully-isotropic
4 DOF parallel robot with decoupled structure [9]. It is
composed of four identical legs, actuated by a linear joint
(see Figure 11). The first three actuators generate three inde-
pendant translations, and a different height of the two vertical
joints creates a rotation of the end-effector. This robot has
a closed-form Forward Kinematic Model and Instantaneous
Kinematics, contrary to most parallel robots.

Its main goal is High-Speed Machining with a desired
acceleration of 20m.s~2. The required stiffnes imposes this
robot a heavy structure (31kg per leg and 14kg for the end-
effector). Inertias of the leg are very important, contrary to
others parallel robots with very moving elements (H4[4],
Orthoglide[25]...). Consequently, the dynamics need be taken
into account in control to deal with the important dynamic
coupling between legs.

Fig. 11. Global view of the Isoglide-4 T3R1
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2) Kinematics: The Isoglide-4 T3R1 has a very simple
Inverse Kinematic Model, and algebraic Forward Kinematic
Model [9]:

Xe = q1+ Xo1 — bs
Ye = (2 + }/02 + H + b5
Ze = q3 + Zoz + bs ©
sinf = Q4+ZO4ZQ3—Z03
where :
- X Y. Z G]T are the Cartesian variables of the end-
effector

- g, is the active joint variable of leg ¢
- Xo1, Yo2, Zos, Zo4 are the initial position of the actuators
in the fixed frame (active joint offsets)
- H and L are dimensions of the effector
- by is the length of the link between a leg and the end-
effector
The Forward Instantaneous Kinematics matrix of the robot
has also a closed-form expression, obtained by differentiating
equation (9):

1 0 0 0
_ 0 1 0 0
Din%;: 0 0 1 0 (10)
s 0 5 6
0 0 oo s

3) Dynamics: The robot Inverse Dynamic Model is quite
big, but have a closed-form expression depending on the end-
effector pose. Therefore, each term can be interpretated and
a posteriori simplifications can be done instead of a priori in
the Lagrange approach. In each actuator, the main term is the
inertia force of the leg and the end-effector. Then, the other
influent terms concern centrifugal and Coriolis forces due to
the rotation of the end-effector, arms and forarms.

IV. RESULTS

Since the vision sensor is not yet integrated in the robot ar-
chitecture, only simulation results can be provided. A compari-
son between proposed vision-based Computed Torque Control
and classical Computed Torque Control in the cartesian space
is set up for the Isoglide-4 T3R1. The dynamic behaviour
of the robot is represented by the Forward Dynamic Model,
obtained with the same method as used for the Inverse
Dynamic Model. In the simulation, geometrical errors are
fixed to 50um according to manufacturing specifications and
dynamic parameter errors to 10%, as it is generally achieved
with classical identification. The sampling rate of the control
is 1kHz. The reference trajectory is a linear 100mm dis-
placement with 20m.5~2 maximal acceleration and 1.2m.s~!
maximal velocity along the three axes X, Y and Z, with a 30°
rotation around axe Y. A fifth degre interpolation is used to
obtain a smooth trajectory.

On the one hand, the vision sensor has an incertitude
of 100um and 0.1° on the end-effector pose and a 1%
error on velocity measurements. The camera is supposed to
allow a 1kHz sampling rate acquisition. With these sensor
performances, a maximal tracking error of 300m and 0.08°

a Computed Torque Control based on pose estimation, via
the Forward Kinematic Model, allows a precision of 200um
and 0.11°, with a joint sensor accuracy fixed to lum. But,
there is an important bias of Smm and 1.6° which has to
be compensated for. Hence, a better calibration is needed
contrary to vision-based control where geometrical errors are
compensated for. Furthermore, this simulation does not take
into account the structure defaults and deformations which
decrease the accuracy of the Computed Torque Control with a
Forward Kinematic Model. These defaults can be compensated
for with the visual measurement. In addition, in the Isoglide-
4 T3RI1 case, the Forward Kinematic Model has a closed
form expression, hence there are no computation problems.
However, it can be interresting to apply this simulation for a
robot with a numerical Forward Kinematic Model. Finally, it
can be noticed that the tracking error is three times the measure
error in the visual case, and two hundred times in the Forward
Kinematic Model case.
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Fig. 12. Cartesian position error for cartesian and 1k H z vision-based CTC
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Fig. 13.  Orientation error for cartesian and 1kH z vision-based CTC
Nevertheless, these good performances can only be
archieved if vision sensor has a 1kH z sampling rate. At the
moment, a 100H z sampling rate is possible. Using a simple
zero order hold between two images, the accuracy is reduced
and reaches: 3.6mm and 1° (Figures 14 and 15). However, it
can be noticed that controller gains have to be decreased. In
this case, interpolation techniques to estimate the end-effector
pose between two images can be used to improve accuracy.

V. CONCLUSION

In this article, we present a novel approach for the Com-

is archieved (See Figures 12 and 13). On the other hand385 guted Torque Control of parallel robots. We used a dynamic
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Fig. 14. Tracking error for cartesian position with a 100H z camera
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Fig. 15. Tracking error for rotation 6 with a 100H z camera

modeling method based on Newton-Euler equation allowing
easy computation of the Inverse Dynamic Model which de-
pends on the end-effector pose, velocity and acceleration. After
discussing the limits of Computed Torque Control in the joint
space and Computed Torque Control in the Cartesian space
based on the Forward Kinematic Model, we propose a control
scheme based on a visual measurement of the end-effector
pose and velocity. This results in a very simple control scheme,
where precise and reliable visual feedback for the end-effector
pose and velocity increases control performance and accuracy.
In addition, structure deformations and defaults can be easily
compensated for. Simulation results also show that even if used
vision sensor is not yet very competitive in term of precision
and sampling rate, tracking errors are not that important. So
with a performant visual sensor with great accuracy and high
sampling rate, great performance can be expected without joint
Sensor.

Future work will focus on experimental validation with
several parallel robots. In the current context, since vision
sensor is not yet as competitive as we may wish it, special
work could be done to care with downsampling issues. A
solution based on non-linear observer could be envisaged to
predict or estimate the end-effector between two images.
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