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In this paper, it is recalled that computer vision, used as an exteroceptive re-
dundant metrology mean, simplifies the control of a Gough-Stewart parallel robot.
Indeed, contrary to the usual methodology where the robot is modeled independently
from the control law which will be implemented, we take, since the early modeling
stage, into account that vision will be used for control. Hence, kinematic model-
ing and projective geometry are fused into a control-devoted vision-based kinematic
model through the observation of its legs. Thus, this novel vision-based kinematic
modeling is extended to two other parallel manipulator families, namely Orthoglide
and I4L. Inspired by the geometry of lines, this kind of model unifies and simplifies
both identification and control. Indeed, it has a reduced parameter set and yields a
linear solution to calibration. Using the same models, visual servoing schemes are
presented, where the directions of the non-rigidly linked legs are servoed, rather than
the end-effector pose.

1 Introduction

Parallel mechanisms are such that there exist several kinematic chains (or legs) between their
base and their mobile platform (or end-effector). Therefore, they may exhibit a better re-
peatability (see Merlet (2000)) than serial mechanisms but not a better accuracy, as stated
in Wang and Masory (1993), because of the large number of links and passive joints. There
can be two ways to compensate for the low accuracy. The first way is to perform a kinematic
calibration of the mechanism and the second one is to use a control law which is robust to
calibration errors. The latter is the ultimate goal of the present work.

There exists a large amount of work on the control of parallel mechanisms1. Let us immediately
discard joint control, since it does not take into account the kinematic closures and may therefore
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1See http://www-sop.inria.fr/coprin/equipe/merlet for a long list of references.
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(a) Gough-Stewart platform (b) Orthoglide (c) I4L

Figure 1: The manipulators studied in this paper, here equipped with a visual target for cali-
bration purposes.

yield high internal forces (see Dasgupta and Mruthyunjaya (1998)). Moreover, since there may
exist several end-effector poses associated to a given joint configuration, a simple joint control
may converge to the wrong end-effector pose, even though it converges to the correct joint
configuration.

Alternately, Cartesian control consists in computing at each sample time the instantaneous
Cartesian velocities that drive an adequate error signal to zero. Actuation is then naturally
achieved through the use of the differential inverse kinematic model which transforms Cartesian
velocities into admissible joint velocities. Usually, the error signal is made of the current and
desired end-effector pose, which appears in the inverse differential kinematic model of parallel
mechanisms (while for serial mechanisms the latter only depends on the joint values).

Consequently, one needs be able to estimate or measure the end-effector pose. As far as we
know, all the effort has been put on the estimation of the end-effector pose through the forward
kinematic model and the joint measurements. However, this yields much trouble, related to the
fact that there is usually no closed-form expression of the forward kinematic model of a parallel
mechanism. Hence, one numerically inverts the inverse kinematic model, which has a closed-form
expression for most of the parallel mechanisms. However, it is known (see Merlet (1990) or Husty
(1996)) that this numerical inversion requires high order polynomial root determination, with
several possible solutions: Dietmaier (1998) identified up to 40 real solutions for a Gough-Stewart
platform (introduced by Gough and Whitehall (1962) and Stewart (1965)). Much of the work is
thus devoted to solving this problem accurately and in real-time (see for instance Zhao and Peng
(2000)) or to designing parallel mechanisms with algebraic forward kinematic model, such as
the ones by Kim and Tsai (2002) or Gogu (2004). Alternately, one of the promising paths lies
in the use of the so-called metrological redundancy introduced by Baron and Angeles (1998),
which simplifies the kinematic models by introducing additional sensors into the mechanism and
thus yields easier control as in Marquet (2002).

Computer vision being an efficient way of estimating the end-effector pose, it is a good al-
ternative to use it for Cartesian control of parallel mechanisms. It can be done in two correct
manners.

Visual servoing First, one can perform visual servoing (see Espiau et al. (1992)) by using
the measured end-effector pose directly in the error signal as in Martinet et al. (1996), thus
relieving oneself from the forward kinematic problem. This is the choice made by Koreichi et al.

2



N. Andreff and P. Martinet.: Vision-based Kinematic Modelling . . . for Control Purposes

(1998), Kino et al. (1999) and Kallio et al. (2000) (for parallel robots with a reduced number of
degrees of freedom), by observation of the robot end-effector and the use of standard kinematic
models.

A novel approach However, the previous approach consists solely in a simple adaptation of
now classical control schemes, which, although very efficient, are not very innovative. Moreover,
the direct application of visual servoing techniques assumes implicitly that the robot inverse
differential kinematic model is given and that it is calibrated. Therefore, modeling, identification
and control have small interaction with each other. Indeed, the model is usually defined for
control using proprioceptive sensing only and does not foresee the use of vision for control,
then identification and control are defined later on with the constraints imposed by the model.
This is useful for modularity but this might not be efficient in terms of accuracy as well as of
experimental set-up time.

On the opposite, a unified framework for modeling, identification and control, apart from being
definitely more satisfying for the mind, would certainly open a path to higher efficiency. Indeed,
instead of having identification and control being driven by the initial modeling stage, one could
have a model taking into account the use of vision for control and hence for identification. To do
so, it is necessary to fuse robot kinematics and projective geometry into a projective kinematic
model. Thus, we propose a novel third way to use vision, which gathers the advantages of
redundant metrology and visual servoing while avoiding most of their drawbacks.

Moreover, observing the end-effector of a parallel mechanism by vision may be incompatible
with its application. For instance, it is not wise to imagine observing the end-effector of a
machining tool. On the opposite, it should not be a problem to observe the legs of the mechanism,
even in such extreme cases. Thereby, vision would be turned from an exteroceptive sensor
to a somewhat more proprioceptive sensor. This brings us back to the redundant metrology
paradigm.

Parallel mechanisms are most often designed with slim and rectilinear legs. Therefore, the
line geometry (described in Plücker (1865); Semple and Kneebone (1952)) is certainly the heart
of the unification, all the more as line geometry is also widely used in computer vision as
in Faugeras (1993) and has already been used for visual servoing as in Andreff et al. (2002);
Mahony and Hamel (2005).

Previous work on kinematic calibration by Renaud et al. (2005) already considered vision as a
way to deliver contact-less metrological redundancy. However, to the exception of Renaud et al.
(2004), the models that were calibrated remain classical. Indeed, vision was only used for sensing
and neither modeling nor control was questioned from the vision point of view. A first step in
this direction was made in Andreff et al. (2005) were vision was used already at the modeling
stage in order to derive a visual servoing scheme based on the observation of the leg directions
of a Gough-Stewart parallel robot.

Consequently, the contribution of this paper is to present an additional step towards an
original and unifying vision-based modeling and identification and control framework of parallel
mechanisms by observing their legs with a camera fixed with respect to the base. Vision-based
modeling of a Gough-Stewart platform is recalled then extended to two other classes of parallel
mechanisms: the Orthoglide from Wenger and Chablat (2002) and the I4L from Krut et al.
(2003) (Figure 1).
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2 Preliminaries

The present work assumes that the vision system is calibrated, which is not anymore a strong
hypothesis, since accurate and easy-to-use camera calibration software can easily be found on
the Web2.

Since we plan to use line geometry as a central element for modeling, a representation for
lines suited to control and identification is needed. Among the work on visual servoing from
lines found in Espiau et al. (1992); Andreff et al. (2002); Mahony and Hamel (2005); Malis et al.
(2002), we prefer the so-called Bi-normalized Plücker coordinates representation in Andreff et al.
(2002) which turns out to be coherent with kinematic modeling of parallel mechanisms.

In such a representation, a straight line in the 3D space, being oriented according to Stolfi
(1991), is modeled by the triplet (u, h, h) where u is the unit vector giving the spatial direction
of the line, h is also a unit vector and h is a non-negative scalar. They are defined by hh =
−−→
OP × u where O is the center of projection and P is any point on the line. Notice that,
using this notation, the well-known (normalized) Plücker coordinates used in Plücker (1865);
Pottmann et al. (1998) are the couple (u, hh) .

An interesting property of this representation is that h = (hx, hy, hz)
T represents the image

projection of the line, i.e. the equation of the image line verifies

hxx + hyy + hz = 0 (1)

where x and y are the coordinates of a point in the image. The interpretation of the scalar h is
the orthogonal distance of the line to the center of projection.

3 Vision-based kinematics of a Gough-Stewart platform

Consider the hexapod in Figure 1(a). It has 6 legs of varying length qi, i ∈ 1..6, attached to
the base by spherical joints located in points Ai and to the moving platform (end-effector) by
spherical joints located in points Bi. The inverse kinematic model of such an hexapod is given
by

∀i ∈ 1..6, q2
i =

−−−→
AiBi

T−−−→AiBi (2)

expressing that qi is the length of vector
−−−→
AiBi. This model can be expressed in any Euclidean

reference frame. Hence, it can be expressed in the base frame Rb, in the end-effector frame Re

or in the camera frame Rc.

Hereafter, the reference frame in which vectors and points are expressed will be denoted by
a left upper-script. Notice that, slightly abusively, cAi denotes both the coordinates in Rc of

point Ai and those of vector
−−−→
OcAi, where Oc is the origin of Rc. The Euclidean transformation

from frame i to frame j will be denoted by its rotation matrix iRj and its translation vector
itj . According to Andreff et al. (2005) and assuming a calibrated camera, one can express the
vision-based kinematics of the hexapod in the camera frame. To do so, instead of the inverse
kinematic model, we used the so-called implicit kinematic model, suggested by Wampler et al.
(1995), which relates the end-effector pose and the joint values in an invariant form expressing

2See for instance http://www.vision.caltech.edu/bouguetj/calib doc/.
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the kinematic closure constraints. However, rather than using a scalar invariant form as it is
usually done, we use a vector invariant form:

qi
cui = cRe

eBi + cte −
cAi (3)

where cui, i = 1..6 are the unit vectors giving the direction of each leg in the camera frame.
Differentiating it with respect to time and knowing that cui, i = 1..6 are unit vectors (i.e.
cu̇T

i
cui = 0) yields the vision-based differential inverse kinematic model

q̇ = cDinv
c

c
τc with cDinv

c = −




cuT
1 (cA1 ×

cu1)
T

...
...

cuT
6 (cA6 ×

cu6)
T


 (4)

˙cui = MT
i

c
τc with MT

i = −
1

qi

(
I3 −

cui
cuT

i

) [
I3 −[cAi + qi

cui]×
]

(5)

where c
τc is the Cartesian velocity of the camera frame, considered as attached to the base

frame and moving with respect to a fixed end-effector, expressed in itself and []
×

denotes the
antisymmetric matrix associated to the vector cross-product.

Then, assuming cylindrical legs and extracting their edges (che1
i and che2

i ) from the image,
one can reconstruct the direction of each leg by

cui =
che1

i × che2
i

‖che1
i × che2

i ‖
(6)

and use it together with (4) and (5) to derive a control law of the form:

q̇ = −λĉDinv
c N̂T

+

diag(q)E (7)

with E = (eT
1 , ..., eT

6 )T , ei = cui ×
cudi, NT = (N1, ...,N6)

T , NT
i = [cudi]×MT

i , and where the
hat means that only an estimate can be used. For instance, this estimate can be chosen as the
the matrix expressed at convergence or computed at each iteration from sensor information.

Discussion From (3), it is clearly easier to recover the end-effector pose knowing the direction
of the legs than their lengths, since more equations are available. Moreover, the solution to this
problem can be found using linear algebra as proved by Baron and Angeles (1998).

Hence, it is wiser to sense direction than the length. It can be done in two ways: the first
one is by using extra joint sensors together with either an accurate calibration step or a careful
mechanical design, the second one is to use vision which can directly measure the direction
in space. However, if one gets rid of length sensing, the length appearing in (5) is not any
more available at control time, but Andreff and Martinet (2005) showed that a constant average
length can be used instead without loss of accuracy.

In conclusion, observing the leg directions of the Gough-Stewart platform is enough to uniquely
define its end-effector pose and to perform Cartesian control. The purpose of the next two
sections is to establish, for two other parallel mechanisms, the equivalence between the end-
effector pose and adequate vision observation, as well as the differential models associated to
the latter, paving the way for their future control.
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4 Vision-based kinematics of the Orthoglide family

The Orthoglide, shown in Figure 1(b) and introduced by Wenger and Chablat (2002), is a par-
allel manipulator with 3 perpendicular linear joints. Each joint is linked to the end-effector by
an articulated parallelogram. From this mechanism, a whole family can be derived by relaxing
the orthogonality assumption.

To establish the inverse kinematic model of parallel mechanisms, one often expresses kinematic
chain closure around a given element of the mechanism. For instance, in the Gough-Stewart
case, it is done around the length-varying legs. In the case of the Orthoglide family, although
Wenger and Chablat (2002) obtain the kinematic model more easily when the joint axes are
orthogonal, one may apply the same methodology and close the kinematic chain around the
articulated parallelogram of each leg. As seen above in the Gough-Stewart case, it is preferable
to express the kinematic closure in vector form (rather than in scalar form, so that one keeps
the ability to choose the optimal sensing method). One can express this constraint:

−−−→
AiBi = Liui (8)

in any reference frame, where Ai is the attachment point of the parallelogram onto the ith
linear joint, Bi the attachment point onto the end-effector, L is the equivalent length of the
parallelogram and ui is the unit vector from Ai to Bi.

Using Ai = Oi +qizi where zi is the direction of the ith joint axis and Oi is its origin (defined
by the zero of the sensor), as well as the fact that Bi has a constant expression in the end-effector
frame, one can express (8) in any reference frame R∗ as:

∗Re
eBi + ∗te −

∗Oi − qi
∗zi = Li

∗ui (9)

where it shall be noticed that ∗Re is constant by design. Consequently, the terms ∗Re
eBi and

∗Oi merge into a single kinematic parameter ∗Ci = ∗Oi −
∗Re

eBi.
Since the parallelograms are made of two cylinders with square section, it is here again very

easy to measure ui directly in the camera frame and the above expression can be instantiated
in the camera frame, to obtain the vision-based implicit kinematic model of the Orthoglide:

cte −
cCi − qi

czi = Li
cui (10)

where {cCi,
czi, Li, i = 1..3} form the kinematic parameter set to be calibrated, here in the

camera frame rather than in the base frame. Note that calibration becomes a linear problem if
one measures cte, qi and cui.

Once again, one shall notice that it is easier to solve for the forward kinematic problem if
one measures the leg directions but not the joint displacements (intersection of 3 lines) than
if one measures the joint displacements but not the leg directions (intersection of 3 spheres).
Nevertheless, the main point in (10) is that knowing the leg directions is equivalent to knowing
the end-effector pose.

Time differentiating (10) yields:

cve − q̇i
czi = Li

cu̇i (11)

Since ui is a unit vector, it is orthogonal to its time derivative, thus:

cvT
e

cui − q̇i
czT

i
cui = 0 (12)
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The above two expressions yield the vision-based differential inverse kinematic model:

q̇i =
cuT

i

czT
i

cui

cve (13)

cu̇i =
1

Li

(
I3 −

czi
cuT

i

czT
i

cui

)
cve (14)

which is singular when the parallelogram of any leg is embedded in the orthogonal plane to the
same leg joint axis.

Discussion Recall that Cartesian control can be achieved in three ways. In the first standard
case, the control feedback consists of the end-effector pose obtained by solving the forward kine-
matic problem, thus requiring the calibration of the full kinematic parameter set. In the second
case known as 3D pose visual servoing Martinet et al. (1996), the control feedback consists of the
end-effector pose measured by vision, thus requiring to fix a visual target onto the end-effector as
well as camera calibration and end-effector to visual target calibration (also known as hand-eye
calibration) but reducing the set of kinematic parameters to be calibrated to {czi, i = 1..3} since
the only required kinematic knowledge lies in (13) to convert the end-effector velocity obtained
by the visual servoing control law into joint velocities.

Finally, in the third case, the control feedback consists of the leg direction measurements, thus
yielding:

cve = −λ




M̂1

M̂2

M̂3




+



cu1 −
cu

ref
1

cu2 −
cu

ref
2

cu3 −
cu

ref
3


 , λ > 0 (15)

where M̂i, i = 1..4 are estimates of the matrices in equation (14). Actual joint actuation is then
obtained using (13).

In such a scheme, one needs to calibrate the camera and the kinematic parameters {czi, Li, i =
1..3} since both (13) and (14) are used for control, but one is relieved from adding a visual target
and from hand-eye calibration. Moreover, as the leg lengths Li act as gains in the control, they
can be replaced here also by their CAD value without any loss of accuracy.

Consequently, this third scheme is the one requiring minimal instrumentation and calibration
burden.

5 Vision-based kinematics of the I4L family

The I4L robot, shown in (Figure 1(c)) and introduced in Krut et al. (2003), is a parallel manip-
ulator composed of 4 parallel linear joints, aligned by pairs (Figure 2(a)). Each joint is linked
to the end-effector by an articulated parallelogram. Moreover, the moving nacelle is separated
into two parts (Figure 2(b)), whose relative translation T is transformed into a proportional
end-effector rotation θ = T/K. From this mechanism, a whole family can be derived by relaxing
the parallelism and alignment assumptions.

Here again, we express the closure of the kinematic chains around each parallelogram yielding
the same equation as (9), with the same notation transposed to the I4L. Here, we take into
account the articulated nacelle by:

Bi = E + (δiKθ + εiS)xb + σiDy
b

(16)
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Figure 2: I4L mechanism geometry

with E , the end-effector position, δ3 = δ4 = ε2 = ε4 = σ3 = σ4 = 1, δ1 = δ2 = 0, ε1 = ε3 =
σ1 = σ2 = −1 and the other notation defined in Figure 2. Then, the implicit kinematic model
in vector form is

Liui = E + δiKθxb + εiSxb + σiDy
b
− Oi︸ ︷︷ ︸

Ci=CST

−qizi (17)

for which exists a unique solution to (E , θ, qi, i = 1..4) when ui, i = 1..4 are measured and
adequate calibration of (K, S, D, Li, Ci, zi, i = 1..4), which is here again a linear problem, is
done. However, the above result is not true in the configuration presented in Krut et al. (2003)
where all joint axes are parallel, which yields a two dimensional solution subspace (shown in
Figure 2(c)) to (17).

Leaving that point for a short while, one comes back to almost the same point as for the
Orthoglide and one can derive the vision-based differential inverse kinematic model of the I4L,
expressed in the camera frame:

q̇i =
cuT

i

czT
i

cui

(
I3 δiK

cxb

)(cve

ω

)
(18)

cu̇i =
1

Li

(
I3 −

czi
cuT

i

czT
i

cui

)(
I3 δiK

cxb

)(cve

ω

)
(19)

where ω is the angular velocity of the end-effector frame around the constant zb axis. Using the
latter expression, one can use a control law similar to (15) provided that the set u

ref
i , i = 1..4 is

equivalent to the end-effector pose, i.e. that (17) admits a unique solution:

(
cve

ω

)
= −λ




M̂1

...

M̂4




+


cu1 −
cu

ref
1

...
cu4 −

cu
ref
4


 , λ > 0 (20)

where M̂i, i = 1..4 are estimates of the matrices in equation (19).
In the configuration introduced in Krut et al. (2003) where the actuator axes are all parallel

(i.e. zi = ±xb, ∀i), equation (18) becomes

q̇i =
(
1 ±

c
u

T
i

c
y

b
cu

T
i

cxb

±
c
u

T
i

c
zb

cu
T
i

cxb

δiK
)(cve

ω

)
(21)

This is the expression of the differential inverse kinematic model of the I4L which was reported
in Renaud et al. (2004), where the signs depend on the assembly direction of each actuator. In
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the same configuration, equation (19) becomes

cu̇i =
1

Li

(
I3 −

c
xb

c
u

T
i

cx
T
b

cui

0
)(cve

ω

)
(22)

which is coherent with the fact that only translations of the nacelle along y
b

and zb modify the
leg directions, while a translation of the nacelle along xb do not (see Figure 2(c)) and a rotation
of the end-effector corresponds to a relative translation of the two halves of the nacelle, obtained
by globally translating the planar sub-mechanism (A1A2B2B1), see Figure 2(a).

The control proposed in (20) was simulated in two configurations: when all the joints are
parallel and when joints 2 and 4 are lifted upwards in order to make a 5 degree angle with
respectively joints 1 and 3 (Figure 3(a)). The initial end-effector pose is defined by bE =
(0.5, 0.1,−1)T , T = −0.1 and the desired one by bE = (0, 0,−0.5)T , T = 0. Figure 5 displays
the time evolution of the error between the current end-effector pose and the desired one in the
two cases. In the non singular case, even though only the leg directions are controlled, the end-
effector pose converges to the desired one. However, in the parallel case, only the components
along by and bz converge, while the position along bx and the rotation around bz are not affected
by the control, as expected.
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Discussion Here again, the kinematic model was expressed in a vector invariant form

−−−−−−−−−→
Ai(q)Bi(

bTe) = Liui (23)

from which we exhibited a differential kinematic model relating the end-effector Cartesian ve-
locity to the time derivative of the leg directions and to the joint velocities, using a reduced set
of kinematic parameters. This control can be achieved without measuring the actuated joint
values, but rather the leg directions in space, which can easily be done by vision.

However, in the case where all joints are parallel, the equivalence between leg directions and
end-effector pose is lost. Does that mean that the vision-based modeling fails in the case where
all joint axes are parallel ? No, but we need to go a bit deeper into projective geometry and
consider the second component hi of the Bi-normalised Plücker coordinates of the lines Li
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passing through Ai and Bi. Indeed, to separate the various solutions in Figure 2(c) even though
the joint axes were hidden, the reader would use the image of the mechanism legs and more
specifically the image of Li, i = 1..4, which is exactly hi as stated in section 2. Similarly, a
camera placed above the mechanism will record the projection of each leg onto the image, from
which it is rather easy, under the cylindrical leg assumption, to extract both ui and hi. Then,
another step is required for control, which requires deriving a closed form expression for the time
derivative of the latter unit vectors, but not for the vectors themselves since such an expression
is complex and useless. However, this is the matter of a future paper.

6 Conclusions

In this paper, we have confirmed that it is not wise to measure the actuated joint values to
perform easy kinematic analysis and control of parallel mechanisms. Instead, it is wiser to
measure adequately chosen internal values, namely the direction of the legs. This corresponds
more or less to measuring passive joint values. However, since these directions are essentially
spatial quantities, it would require tedious mechanical design to measure them using standard
joint sensors, and we prefer to use vision, which is a tool perfectly suited to that task. Doing
so, we have also confirmed that implicit kinematic models in vector form should be preferred to
scalar inverse kinematic models.

Measuring by vision the leg directions, we thus can measure the differential kinematic model
rather than estimate it through solving for the forward kinematic problem. This reduces dras-
tically the computational cost as well as the size of the kinematic parameter set, although these
parameters are not intrinsically related to the mechanism but depend also on the relative location
of the camera with respect to the mechanism.

However, taking this global approach, we could express a vision-based kinematic model which
is suited to the control of parallel mechanisms, without needing any static kinematic model.
Moreover, this work shows not only that, as in the other fields of robotics, vision is efficient, but
even better that vision and parallel mechanisms form a natural couple.
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