
Simultaneous Object Pose and Velocity
Computation Using a Single View from a

Rolling Shutter Camera

Omar Ait-Aider, Nicolas Andreff, Jean Marc Lavest, and Philippe Martinet

Université Blaise Pascal Clermont Ferrand,
LASMEA UMR 6602 CNRS

Omar.AIT-AIDER@univ-bpclermont.fr
http://www.lasmea.fr

Abstract. An original concept for computing instantaneous 3D pose
and 3D velocity of fast moving objects using a single view is proposed,
implemented and validated. It takes advantage of the image deforma-
tions induced by rolling shutter in CMOS image sensors. First of all,
after analysing the rolling shutter phenomenon, we introduce an origi-
nal model of the image formation when using such a camera, based on
a general model of moving rigid sets of 3D points. Using 2D-3D point
correspondences, we derive two complementary methods, compensating
for the rolling shutter deformations to deliver an accurate 3D pose and
exploiting them to also estimate the full 3D velocity. The first solution
is a general one based on non-linear optimization and bundle adjust-
ment, usable for any object, while the second one is a closed-form linear
solution valid for planar objects. The resulting algorithms enable us to
transform a CMOS low cost and low power camera into an innovative
and powerful velocity sensor. Finally, experimental results with real data
confirm the relevance and accuracy of the approach.

1 Introduction

In many fields such as robotics, automatic inspection, road traffic, or metrology,
it is necessary to capture clear images of objects undergoing high velocity mo-
tion without any distortion, blur nor smear. To achieve this task, there is a need
to image sensors which allow very short exposure time of all the matrix pixels
simultaneously. This functionality requires a particular electronic design that is
not included in all camera devices. Full Frame CCD sensors, without storage
memory areas, require mechanical obturator or stroboscopic light source, intro-
ducing more complexity in the vision system. Frame Transfer CCD sensors may
not reach the desired frame rate or may be costly because of additional sillicium
in storage areas [9].

Standard CMOS Rolling Shutter sensors are considered as low cost and low
power sensors. They are becoming more frequently used in cameras. They en-
able adequate exposure time without reducing frame rate thanks to overlapping
exposure and readout. Their drawback is that they distort images of moving

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 56–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Simultaneous Object Pose and Velocity Computation 57

Fig. 1. An example of distortion of a rotating ventilator observed with a Rolling Shutter
camera: static object (right image) and moving object (left image)

objects because the pixels are not all exposed simultaneously but row by row
with a time delay defined by the sensor technology (figure 1). This distortion
may represent a major obstacle in tasks such as localization, reconstruction or
default detection (the system may see an ellipse where in fact there is a circular
hole). Therefore, CMOS Rolling Shutter cameras could offer a good compro-
mise between cost and frame rate performances if the problem of deformations
is taken into account.

2 Related Works and Contributions

This work, is related to our previous one presented in [1], which focused on
the development of a method which maintains accuracy in pose recovery and
structure from motion algorithms without sacrificing low cost and power char-
acteristics of the sensor. This was achieved by integrating, in the perspective
projection model, kinematic and technological parameters which are both causes
of image deformations. The resulting algorithm, not only enables accurate pose
recovery, but also provides the instantaneous angular and translational veloc-
ity of observed moving objects. Rolling shutter effects which are considered as
drawbacks are transformed into an advantage ! This approach may be consid-
ered as an alternative to methods which uses image sequences to estimate the
kinematic between views since it reduces the amount of data and the computa-
tional cost (one image is processed rather than several ones). In a parallel work
by Meingast [7] (published after the submission of this paper), the projection in
rolling shutter cameras is modelled in the case of fronto-parallel motion obtain-
ing equations which are similar to those of Crossed-Slits cameras [13]. To our
knowledge, there is no work in the vision community literature on taking into
account effects of rolling shutter in pose recovery algorithms nor on computing
velocity parameters using a single view. Indeed, all pose recovery methods ([6],
[8], [2], [3], [10]) make the assumption that all image sensor pixels are exposed
simultaneously. The work done by Wilburn et al. [11] concerned the correction
of image deformation due to rolling shutter by constructing a single image us-
ing several images from a dense camera array. Using the knowledge of the time
delay due to rolling shutter and the chronograms of release of the cameras, one
complete image is constructed by combining lines exposed at the same instant
in each image from the different cameras.

58 O. Ait-Aider et al.

Two main contributions are presented in this paper. First, the perspective
projection model of rolling shutter cameras presented in [1] is improved by re-
moving the assumption of small motion during image acquisition. This makes
the model more accurate for very fast moving objects. A novel non-linear al-
gorithm for pose and velocity computation is then described. It generalizes the
bundle adjustment method to the case of moving points. Indeed, it is based on
non-linear least-square optimization of an error function defined in image met-
ric and expressed with respect to both pose and velocity parameters (rather
than to only pose parameters in classical approaches). Second, a linear al-
gorithm for pose and instantaneous velocity computation is developed in the
particular case of planar objects. This linear solution provides an initial esti-
mate of the pose and velocity parameters and serves to initialize the non-linear
algorithm.

Section 3 of this paper describes the process of image acquisition using a
CMOS Rolling Shutter imager. In section 4, a general geometric model for
the perspective projection of 3D point on a solid moving object is presented.
Image coordinates of the point projections are expressed with respect to ob-
ject pose and velocity parameters and to the time delay due to image scanning.
Section 5 deals with the problem of computing pose and velocity parameters
of a moving object, imaged by a Rolling Shutter camera, using point corre-
spondences. Finally, experiments with real data are presented and analyzed in
section 6.

3 What is Rolling Shutter ?

In digital cameras, an image is captured by converting the light from an object
into an electronic signal at the photosensitive area (photodiode) of a solid state
CCD or CMOS image sensor. The amount of signal generated by the image sen-
sor depends on the amount of light that falls on the imager, in terms of both
intensity and duration. Therefore, an on-chip electronic shutter is required to
control exposure. The pixels are allowed to accumulate charge during the inte-
gration time. With global shutter image sensors, the entire imager is reset before
integration. The accumulated charge in each pixel is simultaneously transferred
to storage area. Since all the pixels are reset at the same time and integrate
over the same interval there is no motion artifacts in the resulting image. With
a CMOS image sensor with rolling shutter, the rows of pixels in the image are
reset in sequence starting at the top and proceeding row by row to the bot-
tom. The readout process proceeds in exactly the same fashion and the same
speed with a time delay after the reset (exposure time). The benefit of rolling
shutter mode is that exposure and readout are overlapping, enabling full frame
exposures without reducing the frame rate. Each line in the image has the same
amount of integration, however the start and end time of integration is shifted in
time as the image is scanned (rolled) out of the sensor array as shown in Fig.2.
In this case, if the object is moving during the integration time, some artifacts
may appear. The faster the object moves the larger is the distortion.

Simultaneous Object Pose and Velocity Computation 59

Fig. 2. Reset and reading chronograms in rolling shutter sensor (SILICON IMAGING
documentation)

4 Projecting a Point with Rolling Shutter Camera

Let us consider a classical camera with a pinhole projection model defined by
its intrinsic parameter matrix [10]

K =

⎡
⎣

αu 0 u0
0 αv v0
0 0 1

⎤
⎦

Let P = [X, Y, Z]T be a 3D point defined in the object frame. Let R and T be
the rotation matrix and the translation vector between the object frame and the
camera frame. Let m = [u, v]T be the perspective projection of P on the image.
Noting m̃ =

[
mT, 1

]T and P̃ =
[
P T, 1

]T, the relationship between P and m
is:

sm̃ = K [R T] P̃ (1)

where s is an arbitrary scale factor. Note that the lens distortion parameters
which do not appear here are obtained by calibration [5] and are taken into
account by correcting image data before using them in the algorithm.

Assume now that an object of known geometry, modelled by a set of n points
Pi = [Xi, Yi, Zi]

T, undergoing a motion with instantaneous angular velocity Ω

around an instantaneous axis of unit vector a = [ax, ay, az]
T, and instantaneous

linear velocity V = [Vx, Vy, Vz]
T, is snapped with a rolling shutter camera at an

instant t0. In fact, t0 corresponds to the instant when the top line of the sensor
is exposed to light. Thus, the light from the point Pi will be collected with a
delay τi proportional to the image line number on which Pi is projected. As
illustrated in figure 3, τi is the time delay necessary to expose all the lines above
the line which collects the light from Pi. Therefore, to obtain the projection
mi = [ui, vi]

T of Pi, the pose parameters of the object must be corrected in
equation 1 by integrating the motion during the time delay τi. Since all the
lines have the same exposure and integration time, we have τi = τvi where τ
is the time delay between two successive image line exposures. Thus τ = fp

vmax

where fp is the frame period and vmax is the image height. Assuming that τi

60 O. Ait-Aider et al.

Fig. 3. Perspective projection of a moving 3D object: due to the time delay, points P 0

and P 1 are not projected from the same object pose

is short enough to consider uniform (but not necessarily small) motion during
this interval, the object rotation during this interval is obtained thanks to the
Rodrigues formula:

δRi = aaT (1 − cos (τviΩ)) + Icos (τviΩ) + âsin (τviΩ)

where I is the 3×3 identity matrix and â the antisymetric matrix of a. The
translation during the same interval, expressed in the static camera frame, is:

δT i = τviV

Thus, equation 1 can be rewritten as follows:

sm̃i = K [δRiR T + δT i] P̃i (2)

where R and T represent now the instantaneous object pose at t0. Equation 2
is the expression of the projection of a 3D point from a moving solid object
using a rolling shutter camera with respect to object pose, object velocity and
the parameter τ . One can note that it contains the unknown vi in its two sides.
This is due to the fact that coordinates of the projected point on the image
depend on both the kinematics of the object and the imager sensor scanning
velocity.

5 Computing the Instantaneous Pose and Velocity of a
Moving Object

In this section, we assume that a set of rigidly linked 3D points Pi on a moving
object are matched with their respective projections mi measured on an image
taken with a calibrated rolling shutter camera. We want to use this list of 3D-2D
correspondences to compute the instantaneous pose and velocity of the object
at t0.

Simultaneous Object Pose and Velocity Computation 61

5.1 Non-linear Method for 3D Objects

In the general case, the scale factor of equation 2 can be removed as follows:

ui = αu
R

(1)
i P i+T

(x)
i

R
(3)
i P i+T

(z)
i

+ u0
∆= ξ

(u)
i (R, T , Ω, a, V)

vi = αv
R

(2)
i P i+T

(y)
i

R
(3)
i P i+T

(z)
i

+ v0
∆= ξ

(v)
i (R, T , Ω, a, V)

(3)

where T
(x,y,z)
i are the components of T i = T + δT i and R

(j)
i is the jth row of

Ri = δRiR. Subsiding the right term from the left term and substituting ui

and vi by image measurements, equation 3 can be seen as an error function with
respect to pose and velocity (and possibly τ) parameters:

ui − ξ
(u)
i (R, T , Ω, a, V) = ε

(u)
i

vi − ξ
(v)
i (R, T , Ω, a, V) = ε

(v)
i

We want to find (R, T , Ω, a, V) that minimize the following error function:

ε =
n∑

i=1

[
ui − ξ

(u)
i (R, T , Ω, a, V)

]2
+

[
vi − ξ

(v)
i (R, T , Ω, a, V)

]2
(4)

This problem with 12 unknowns can be solved using a non-linear least square
optimization if at least 6 correspondences are available. This can be seen as a
bundle adjustment with a calibrated camera. Note that, in our algorithm, the
rotation matrix R is expressed by a unit quaternion representation q(R). Thus,
an additional equation, which forces the norm of q(R) to 1, is added. It is obvious
that this non-linear algorithm requires an initial guess to converge towards an
accurate solution.

5.2 Linear Method for Planar Objects

In this section, a linear solution which may yield an initial guess of the pose and
velocity parameters that can initialize the non-linear algorithm is developed.
Assuming that τi is short enough to consider small and uniform motion during
this interval, equation 1 can be rewritten, as in [7], as follows:

sm̃i = K
[(

I + τviΩ̂
)

R T + τviV
]
p̃i (5)

where Ω̂ is the antisymetric matrix associated to Ω =
[
Ω(x), Ω(y), Ω(z)

]T
. When

points pi are all coplanar, the projection equation 1 becomes a projective ho-
mography. By choosing an adequate object frame, all points can be written
pi = [Xi, Yi, 0]T . Noting p̃i = [Xi, Yi, 1]T , the classical projection equation is
([12]):

sm̃i = Hp̃i (6)

where H = K [r1 r2 T] with rj the jth column of R. As for the 3D object
case, the velocity parameters are integrated in the projection equation as follows:

sm̃i = Hp̃i + τviDp̃i (7)

62 O. Ait-Aider et al.

where D = K [ω1 ω2 V] with ωj the jth column of ω = Ω̂R. From equation 7
one can derive a cross product which must be null:

m̃i × (Hp̃i + τviDp̃i) = 0

which yields the following equation:

Ax = 0 (8)

where

A =
[
p̃i

T 0T −uip̃i
T τvip̃i

T τvi0T −τviui
˜pi
T

0T p̃i
T −vip̃i

T τvi0T τvip̃i
T −τv2

i p̃i
T

]

is a 18 × 2n matrix and x =
[
h1

T h2
T h3

T d1
T d2

T d3
T
]T is the unknown vector

with hj , dj being the jth columns of respectively H and D. Equation 8 can be
solved for x using singular value decomposition (SVD) as explained in [4].

Once x is computed, the pose parameters are derived, following [12], as
follows:

r1 = λhK−1h1, r2 = λhK−1h2, r3 = r1 × r2, T = λhK−1h3 (9)

where λh = 1
||K−1h1|| .

The translational velocity vector is obtained by:

V = λK−1d3 (10)

and angular velocity parameters are obtained by first computing columns 1 and
2 of matrix ω:

ω1 = λdK
−1d1, ω2 = λdK

−1d2 (11)

where λd = 1
||K−1d1|| , and then extracting Ω as follows:

Ω(x) = ω12R12−ω22R11
R32R11−R31R12

, Ω(y) = ω11R22−ω21R21
R31R22−R32R21

, Ω(z) = ω11R32−ω21R31
R31R22−R32R21

(12)

6 Experiments

The aim of this experimental evaluation is first to illustrate our pose recovery
algorithm accuracy in comparison with classical algorithms under the same ac-
quisition conditions, and second, to show its performances as a velocity sensor.
The algorithm was tested on real image data. A reference 3D object with white
spots was used. Sequences of the moving object at high velocity were captured
with a Silicon Imaging CMOS Rolling Shutter camera SI1280M-CL, calibrated
using the method described in [5]. Acquisition was done with a 1280×1024 res-
olution and at a rate of 30 frames per second so that τ = 7.15 × 10−5 s. Image
point coordinates were accurately obtained by a sub-pixel accuracy estimation of
the white spot centers and corrected according to the lens distortion parameters.
Correspondences with model points were established with a supervised method.
The pose and velocity parameters were computed for each image using first our

Simultaneous Object Pose and Velocity Computation 63

Fig. 4. Image samples of pure translational motion

Table 1. RMS re-projection error (pixel)

Linear algorithm Classical algorithm Non linear algorithm
Image number RMS-u RMS-v RMS-u RMS-v RMS-u RMS-v

1 9.30 16.00 0.14 0.12 0.15 0.13
2 14.08 17.95 1.71 1.99 0.10 0.09
3 5.24 8.06 3.95 4.18 0.11 0.09
4 11.33 14.21 7.09 7.31 0.09 0.07
5 9.25 11.02 5.56 6.73 0.13 0.12
6 12.26 13.04 1.87 3.02 0.18 0.11
7 9.85 11.56 0.25 0.12 0.25 0.17

algorithm, and compared with results obtained using the classical pose recovery
algorithm described in [5]. In the latter, an initial guess is first computed by
the algorithm of Dementhon [2] and then the pose parameters are accurately
estimated using a bundle adjustment technique.

Figure 4 shows image samples from a sequence where the reference object was
moved following a straight rail, forcing its motion to be a pure translation. In
the first and last images of the sequence, the object was static. Pose parameters
corresponding to these two static views were computed accurately using the
classical algorithm. They serve as ground-truth values to validate our algorithm
when velocity is null. The reference object trajectory was then assumed to be the
3D straight line relating the two extremities. Table 1 shows the RMS pixel re-
projection error obtained using the pose computed with the classical algorithm
and a classical projection model from the one hand-side, and the pose computed
with our algorithms and the rolling shutter projection model from the other
hand-side. Column 2 shows results obtained with the linear algorithm using only
nine coplanar points of the pattern. Note that these results are obtained using
the minimum number of correspondences required from the linear algorithm
and can thus be improved. Anyhow, even under these conditions, the method
remains accurate enough to correctly initialize the non-linear algorithm. Results
in columns 3 and 4 show errors obtained using respectively a classical algorithm
and our non-linear algorithm. One can see that errors obtained with static object
views are similar. However, as the velocity increases, the error obtained with the
classical algorithm becomes too important while the error obtained with our
algorithm remains small.

64 O. Ait-Aider et al.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
−0.2

−0.1
0

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

x

z

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
−0.2

−0.1
0

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

x

z

Fig. 5. Pose and velocity results: reconstructed trajectory (left image), translational
velocity vectors (right image)

Table 2. Distances from computed poses to reference trajectory (cm)

Image number 1 2 3 4 5 6 7

Classical algorithm 0.00 0.19 0.15 1.38 3.00 4.54 0.00
Our algorithm 0.28 0.34 0.26 0.32 0.32 0.11 0.10

Table 3. Angular deviation of computed poses from reference orientation (deg.)

Image number 1 2 3 4 5 6 7

Dementhon’s algorithm 0.00 2.05 4.52 6.93 6.69 3.39 0.30
our algorithm 0.17 0.13 0.17 0.34 1.09 0.91 0.40

Let us now analyze pose recovery results shown in figure 5. The left-hand side
of this figure shows 3D translational pose parameters obtained by our non-linear
algorithm and by the classical algorithm (respectively represented by square and
*-symbols). Results show that the two algorithms give appreciably the same re-
sults with static object views (first and last measurements). When the velocity
increases, a drift due to the distortions appears in the classical algorithm results
while our algorithm remains accurate (the 3D straight line is accurately recon-
structed by pose samples) as it is illustrated on Table 2 where are represented
distances between computed poses with each algorithm and the reference trajec-
tory. Table 3 presents computed rotational pose parameters. Results show the
deviation of computed rotational pose parameters from the reference orienta-
tion. Since the motion was a pure translation, orientation is expected to remain
constant. As one can see, a drift appears on classical algorithm results while our
algorithm results show a very small deviation due only to noise on data.

Another result analysis concerns the velocity parameters. Figure 5 shows that
the translational velocity vector is clearly parallel to the translational axis (up
to noise influence). Table 4 represents magnitude of computed velocity vectors

Simultaneous Object Pose and Velocity Computation 65

Table 4. Computed translational velocity magnitude in comparison with measured
velocity values (m/s)

Image number 1 2 3 4 5 6 7

Measured values 0.00 1.22 2.02 2.32 1.55 0.49 0.00
Computed values 0.06 1.10 1.92 2.23 1.54 0.50 0.02

Table 5. Computed rotational velocities (rad/s)

Image number 1 2 3 4 5 6 7

our algorithm 0.04 0.07 0.05 0.01 0.15 0.11 0.12

in comparison with measured values. These reference values were obtained by
dividing the distance covered between each two successive images by the frame
period. This gives estimates of the translational velocity mean value during each
frame period. Results show that the algorithm recovers correctly acceleration,
deceleration and static phases. Table 5 represents computed rotational velocity
parameters. As expected, the velocity parameter values are small and only due
to noise.

In the second experiment, the algorithm was tested on coupled rotational and
translational motions. The previously described reference object was mounted on
a rotating mechanism. Its circular trajectory was first reconstructed from a set
of static images. This reference circle belongs to a plan whose measured normal
vector is N = [0.05, 0.01, −0.98]T. Thus, N represents the reference rotation
axis. An image sequence of the moving object was then captured. Figure 6 shows
samples of images taken during the rotation, where rolling shutter effects appear
clearly. The left part of figure 7 represents the trajectory reconstructed with
a classical algorithm (*-symbol) and with our algorithm (square symbol). As
for the pure translation, results show that the circular trajectory was correctly
reconstructed by the poses computed with our algorithm, while a drift is observed
on the results of the classical algorithm as the object accelerates. The right part
of the figure shows that translational velocity vectors were correctly oriented
(tangent to the circle). Moreover, the manifold of instantaneous rotation axis
vectors was also correctly oriented. Indeed, the mean value of the angles between

Fig. 6. Image samples of coupled rotational and translational motions

66 O. Ait-Aider et al.

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

z

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

z

Fig. 7. Pose and velocity results for coupled rotational and translational motion: re-
constructed trajectory (left image), rotational and translational velocities (right image)

Table 6. Computed and measured rotational velocity magnitudes (rad/s)

Image number 1 2 3 4 5 6 7 8 9 10

Measured values 0.00 1.50 9.00 11.20 10.50 10.20 10.10 10.00 10.00 7.50
Computed values 0.06 1.20 8.55 10.38 10.32 10.30 9.80 9.90 9.73 8.01

the computed rotation axis and N is 0.50 degrees. Results in table 6 shows
a comparison of the computed rotational velocity magnitudes and the values
estimated from each two successive images.

7 Conclusion and Perspectives

An original method for computing simultaneously the pose and instantaneous
velocity (both translational and rotational) of rigid objects was presented. It
profits from an inherent defect of rolling shutter CMOS cameras consisting in
exposing one after the other the rows of the image, yielding optical distortions
due to high object velocity. Consequently, a novel model of the perspective pro-
jection of a moving 3D point onto a rolling shutter camera image was introduced.
From this model, an error function equivalent to collinearity equations in cam-
era calibration was defined in the case of both planar and non-planar objects. In
the planar case, minimizing the error function takes the form of a linear system,
while in the non-planar case it is obtained through bundle adjustment techniques
and non-linear optimization. The approach was validated on real data showing
its relevance and feasibility. Hence, the proposed method in the non planar case
is not only as accurate as similar classical algorithms in the case of static objects,
but also preserves the accuracy of pose estimation when the object is moving.
However, in the planar case, the experimental results were only accurate enough
to initialize the non-planar method but these results were obtained with the
minimal number of points.

Simultaneous Object Pose and Velocity Computation 67

In addition to pose estimation, the proposed method gives the instantaneous
velocity using a single view. Thus, it avoids the use of finite differences between
successive images (and the associated constant velocity assumption) to estimate a
3D object velocity. Hence, carefully taking into account rolling shutter turns a low
cost imager into a powerful pose and velocity sensor. Indeed, such an original tool
can be useful for many research areas. For instance, instantaneous velocity infor-
mation may be used as evolution models in motion tracking to predict the state of
observed moving patterns. It may also have applications in robotics, either in vi-
sual servoing or dynamic identification. However, in the latter case, accuracy needs
to be quantified by independent means on accurate ground-truth values within an
evaluation framework, such as laser interferometry or accurate high-speed mech-
anisms, before the proposed method can serve as a metrological tool.

From a more theoretical point of view, several issues open. First, the pro-
posed method uses a rolling shutter camera model based on instantaneous row
exposure, but it should be easily extendable to more general models where each
pixel has a different exposure time. One could also imagine that an uncali-
brated version of this method could be derived for applications where Euclidean
information is not necessary (virtual/augmented reality or qualitative motion
reconstruction, for instance). Finally, another point of interest could be the cal-
ibration of the whole system (lens distortion + intrinsic parameters + rolling
shutter time) in a single procedure.

References

[1] O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet. Exploiting rolling shutter
distortions for simultaneous object pose and velocity computation using a single
view. In Proc. IEEE International Conference on Computer Vision Systems, New
York, USA, January 2006.

[2] D. Dementhon and L.S. Davis. Model-based object pose in 25 lines of code.
International Journal of Computer Vision, 15(1/2):123–141, June 1995.

[3] M. Dhome, M. Richetin, J. T. Lapreste, and G. Rives. Determination of the
attitude of 3-d objects from a single perspective view. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(12):1265–1278, December 1989.

[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[5] JM. Lavest, M. Viala, and M. Dhome. Do we really need an accurate calibration
pattern to achieve a reliable camera calibration. In Proceedings of ECCV98, pages
158–174, Freiburg, Germany, June 1998.

[6] D. G. Lowe. Fitting parameterized three-dimensional models to image. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):441–450, May
1991.

[7] M. Meingast, C. Geyer, and S. Sastry. Geometric models of rolling-shutter cam-
eras. In Proc. of the 6th Workshop on Omnidirectional Vision, Camera Networks
and Non-Classical Cameras, Beijing, China, October 2005.

[8] T. Q. Phong, R. Horaud, and P. D. Tao. Object pose from 2-d to 3-d point and
line correspondences. International Journal of Computer Vision, pages 225–243,
1995.

68 O. Ait-Aider et al.

[9] A. J. P. Theuwissen. Solid-state imaging with chargecoupled devices. Kluwer
Academic Publishers, 1995.

[10] R. Y. Tsai. An efficient and accurate camera calibration technique for 3d machine
vision. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 364–374, Miami Beach, 1986.

[11] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz. High-speed videog-
raphy using a dense camera array. In IEEE Society Conference on Pattern Recog-
nition (CVPR’04), 2004.

[12] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[13] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall. Mosaicing new views: The
crossed-slits projection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(6):741–754, 2003.

	Introduction
	Related Works and Contributions
	What is Rolling Shutter ?
	Projecting a Point with Rolling Shutter Camera
	Computing the Instantaneous Pose and Velocity of a Moving Object
	Non-linear Method for 3D Objects
	Linear Method for Planar Objects

	Experiments
	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

