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Abstract: The use of centrifugal spreaders for application of granular fertilizers
raises concern about application accuracy. These spreaders enable to distribute
almost uniform deposits with regularly spaced parallel tramlines but lead over
and under fertilizer application when distances separating the successive tractor
trajectories are not constant or if paths are not parallel between them. The
aim of this study is to propose an optimization-based method to compute
optimal variables for uniform fertilizer application. Mechanical constraints are also
introduced so that the calculated parameters can be afterwards used as reference
variables for the control of the spreader. The resulting improvements are illustrated
by numerical examples for a field with geometrical singularities.
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1. INTRODUCTION

Fertilization practice is one of the most important
operations in agricultural production. Indeed, this
task is necessary to apply nutrients satisfying the
demands of the plants according to yield objec-
tives. To carry out inputs application, centrifu-
gal spreaders are very popular thanks to their
low cost and simplicity of use. Unfortunately, be-
cause of an inappropriate strategy, they lead to
application errors. These errors involve negative
consequences such as fertilizers waste, dramatic
drop in production and harmful environmental ef-
fects like eutrophication phenomenon for example
(Isherwood, 1998). Faced with these statements,
american and european governments decided to
impose strict rules concerning the fertilization
practice. These economic and environmental pres-

sure cause then a significant increase in investi-
gations for better nutrients applications. In this
paper, we develop a new approach to improve
fertization accuracy. The method is based on an
optimization strategy where the cost function is
formalized from a spatial distribution model pre-
viously studied in (Colin, 1997; Olieslagers, 1997).
In order to not untimely solicit actuators and
respect mechanical limits of the spreader, we are
led to consider an optimization problem subject
to constraints. Furthermore, thanks to this ap-
proach, optimal parameters should be used as
reference variables for the future control of the
machine.
This document is organized as follows. The next
section deals with centrifugal spreading principles
and drawbacks. In section 3, the criterion function



is formalized from the existing fertilizers spatial
distribution model. Faced with a large scale prob-
lem, a decomposition of this one is proposed in
section 4. The last section illustrates simulation
results obtained after optimization algorithm ex-
ecution in the main field body with parallel and
non parallel tractor paths.

2. CENTRIFUGAL SPREADING CONTEXT

According to the soil and crops characteristics,
agricultural engineers specify precise application
rate to permit a correct growth of plants. These
recommended doses often take the form of pre-
scribed dose maps. These ones depicts the con-
sidered field which is virtually gridded and where
each mesh corresponds to the previously specified
doses. The operation consisting in applying nu-
trients with respect to the map represents fertil-
ization itself. To get the distributed doses close
to the desired ones, centrifugal spreaders with
dual spinning discs are the most used applicators.
During the spreading process, while the tractor
progresses, fertilizers granulars contained in the
hopper pour onto each disc and are ejected by
centrifugal effect. With precision farming tech-
nologies, in order to apply inputs according to
the machine location and a prescribed dose map,
tractor-implement combination is equipped with a
GPS antenna, a radar speed sensor and an actua-
tor. The two first tools enable to know the tractor
position and speed. Concerning the actuator, it
permits to control the fertilizer mass flow rate.
The actual amount of applied fertilizers currently
called spread pattern has an irregular distribution
which is often underlined by the transverse distri-
bution curve obtained by summing the amounts
along each travel direction. An example of spread
pattern and its related transverse distribution for
only one disc are illustrated in Fig.1. As depicted
in Fig.2, this spatial distribution heterogeneous-
ness lead then the tractor driver to follow outward

Fig. 1. Spread pattern (spatial distribution) and
transverse distribution

and return paths in order to obtain an uniform
deposit from transverse distributions summation
for each successive travels within the field. The
spreading regularity is achieved when the dis-
tance between two consecutive overlapping lines,
currently called working width, is equal to the
distance separating two successive tramlines. Be-
sides, these overlapping lines correspond to sym-
metry axis which make two successive paths co-
incide. So, it is clear that fertilization strategy is
today based above all on best overlappings of the
transverse distributions with respect to the dif-
ferent tractor paths. Most of the experiments and
simulations undertaken in order to assess fertilizer
application accuracy or study device settings are
only carried out by using this method as speci-
fied in test procedures defined by (ASAE, 2001).
Some studies relying on these tests are also led
to assess performance of applicators like in (Yule
et al., 2005). Unfortunately, this reasoning do not
take into account the actual phenomenon occur-
ring during the spreading process. Indeed, in fact,
the global deposit of nutrients in the farmland is
due to spread pattern overlappings and thus is
the result of the heterogeneous spatial distribu-
tion summation at each position of the spreader.
Then, though the application results are correct
for parallel paths, some local application errors
are unavoidable when geometrical singularities are
met in the field like non parallel tramlines, start
and end of spreading...Some errors examples are
illustrated in Fig.3 where results are obtained
by simulating spread patterns overlappings with
settings imposed by manufacturers rules. To min-
imize these issues, a solution could be to look for
optimal paths for the machine as in (Dillon et

al., 2003). However, this type of solution cannot

Fig. 2. Fertilization strategy based on transverse
distribution summation.



(a) Prescribed
dose map obtained
from agronomical
considerations.

(b) Actual dose map
obtained by applying
the fertilization method
based on adjustment of
transverse distribution.

(c) Application errors map cal-
culated from the difference be-
tween the prescribed dose map
and actual dose map.

Fig. 3. Application errors resulting from the reasoning based on the best transverse distribution
investigation and not on spread patterns overlappings.

be applied when tramlines are already fixed by
other agricultural operations like sowing. So, it is
obvious that some efforts must be done to achieve
better spread patterns arrangement according to
geometrical constraints met in farmland during
fertilization practice. The computed adjustments
should be continuously achieved for each position
of applicator by modifying its settings. In this
work, we study then a method which permits
to calculate optimal parameters to have the best
spread patterns arrangement within the arable
land in the presence of imposed tractor trajecto-
ries.

3. OPTIMIZATION CRITERION

Let us first precise some notations used to define
the spread pattern model. This model uses differ-
ent variables such as the time (t ∈ R), the spatial
domain, in other words the field, (Ω ∈ R

2), the
path (s(t) ∈ Ω), the coordinates of points (x ∈ Ω),
the distance between s(t) and x (r(x, t) ∈ R) and

the angle between
−−−→
s(t)x and s(t) (θ(x, t) ∈ R).

The spread pattern is currently defined by its
medium radius and medium angle. The first para-
meter, varying with the speed of disc, corresponds
to the distance between the disc centre and the
spread pattern one while the second, modifiable
with the fertilizers dropping point on the disc,
states the angle between the travel direction and
the straight line passing through the disc centre
and the spatial distribution one. The respective
mass flow rates for the right and left discs are
defined by m(t) and d(t). ρ(t) and ξ(t) stand
for the medium radius related to the right and
left discs respectively. At last, the right and left
discs medium angles are defined by ξ(t) and ψ(t).
Furthermore, if we assume σr and σθ to be the
respective constant standard deviations for the
medium radius and the medium angle, we can
calculate the right and left spatial distributions
qr and ql, according to (Colin, 1997), as:

qr(x,m(t), ρ(t), ϕ(t)) = τ · exp(−A(x, t)2/a)

· exp(−B(x, t)2/b) (1)

ql(x, d(t), ξ(t), ψ(t)) = κ · exp(−C(x, t)2/a)

· exp(−D(x, t)2/b) (2)

with A(x, t) = r(x, t) − ρ(t) (3)

B(x, t) = θ(x, t) − ϕ(t) (4)

C(x, t) = r(x, t) − ξ(t) (5)

D(x, t) = θ(x, t) − ψ(t) (6)

and where a = 2σ2
r , b = 2σ2

θ , τ = m(t)/(2πσrσθ)
and κ=d(t)/(2πσrσθ). To simplify notations, we
define M(t) = (m(t), d(t))∈R

2, R(t) = (ρ(t), ξ(t))
∈R

2 and Φ(t) = (ϕ(t), ψ(t))∈R
2. The global

distribution is then equal to the summation of
right and left contributions:

qtot(x,M(t), R(t),Φ(t)) = qr(x,m(t), ρ(t), ϕ(t))

+ql(x, d(t), ξ(t), ψ(t)) (7)

Therefore, the actual distributed dose Q ∈ R
2

during the interval of time (0, T ) for single tram-
line can be evaluated as:

Q(x,M,R,Φ)=

∫ T

0

qtot(x,M(t), R(t),Φ(t)) dt (8)

If Q∗ ∈R
2 stands for the prescribed dose, to

reduce harmful fertilization effects, the following
functional must be minimized:

F (M,R,Φ) =

∫

Ω

[Q(x,M,R,Φ) −Q∗]
2
dx (9)

Given that (9) cannot be calculated in an analyt-
ical way, discretization is carried out. Then, Ω is
gridded so that Q and Q∗ can be computed with
bilinear approximations. A temporal discretiza-
tion is also performed by dividing the interval
(0, T ) into n elements with equal length δ = T/n.
Thus, we can define tj = jδ with j = 0, 1, ..., n.
Consequently, we can assume Mj = M(tj), Rj =
R(tj) and Φj = Φ(tj). The corresponding vec-

tors are defined as M = [M0 · · ·Mn]
T
, R =

[R0 · · ·Rn]
T

and Φ = [Φ0 · · ·Φn]
T
. Moreover, me-



chanical limits are taken into account, by assum-
ing the functionsM ,R and Φ and their time deriv-
ative to be subject to bound constraints. The set
of solutions is then S =

{

(M ,R,Φ) ∈ R
6(n+1)

}

so that:






































Mmin ≤M ≤Mmax

Rmin ≤R≤Rmax

Φmin ≤Φ≤Φmax

|Mi+1 −Mi| ≤ αδ

|Ri+1 −Ri| ≤ βδ

|Φi+1 − Φi| ≤ γδ,

(10)

whith α, β and γ are known parameters fixed
according to the spreader characteristics. Con-
sequently, we are led to consider the nonlinear
programming problem given by:

(P) min
(M ,R,Φ)∈S

F (M ,R,Φ) (11)

Given that S is bounded closed, according to
the Weierstrass theorem, there exists at least one
solution to (P). The field mostly contains several
tramlines and thus the actual distributed dose is
the result of the summation of the applied dose
for each k-indexed tractor trajectory:

Q(x, U) =

w
∑

k=1

Qk(x, U) (12)

withQk(x, U) =

∫ tk
f

tk
i

qtot(x,M(t), R(t),Φ(t))dt(13)

and where U = (M,R,Φ). w is, here, the number
of paths and the trajectories sk(t) are assumed to
be defined in the interval (tki , t

k
f). By considering

the definitions of Mk
j = M(tkj ), Rk

j = R(tkj ), and

Φk
j = Φ(tkj ) we can also use the discretization

techniques as before. Therefore, from these defin-
itions, optimization in the whole field considering
all paths can be carried out by solving the problem
(P).

4. PROBLEM DECOMPOSITION

Like for the main prescribed dose map depicted in
Fig.3(a), farmland are virtually 1 m-gridded. By
applying the discretization method previously de-
tailed, we are led to consider a large scale problem.
Indeed,to lose informations as little as possible, 2
samples of parameters per elementary mesh are
computed. If we assume only 3 paths 100 m long
in the field, the number of parameters reaches
then 3600. So, it is clear that this large scale
problem cannot be solved directly by an optimiza-
tion algorithm in view of the high computational
time which would be involved. Consequently, a
problem decomposition is necessary. First of all,
let us define the following notations:

K1 = {k ∈ N| 1 ≤ k ≤ w} ,
K2 = {k ∈ N| 1 ≤ k ≤ w − 1} ,
K3 = {k ∈ N| 2 ≤ k ≤ w} ,

L1 = {l ∈ N| ∀z ≥ 2 ∈ N, 1 ≤ l ≤ z} ,
L2 = {l ∈ N| ∀z ≥ 2 ∈ N, 2 ≤ l ≤ z} ,

Ω =
⋃

k∈K1

Ωk, Ωk =
⋃

l∈L1

Ωk
l ,

where Ωk∈R
2 the kth subdomain of Ω, and Ωk

l ∈R
2

the lth subdomain of Ωk. To deal with each path
sk(t) apart from the others, the subdomains Ωk

are defined so that:

∂Ωk ∩ Ωk+1 = sk+1(t), ∀(k, t)∈K2 × (tk+1
i , tk+1

f )

∂Ωk ∩ Ωk−1 = sk−1(t), ∀(k, t)∈K3 × (tk−1
i , tk−1

f )

In order to make easier to understand the spatial
decomposition, Fig.4 illustrates the example of
three parallel tramlines in a domain Ω with a
rectangular geometry. Furthermore, by assuming
the vectors M

k
l , R

k
l , Φk

l to be the respective
restrictions of M , R and Φ in the subdomain Ωk

l ,
we can also define the set Sk

l as the restriction
of S in the same subdomain. By considering the
symmetries conditions exposed in the first section,
(P) is naturally decomposed in the following way:

(P ′)











min
z

∑

l=1

w
∑

k=1

Jk
l (x,Mk

l ,R
k
l ,Φ

k
l)

(mk
l ,R

k
l ,Φ

k
l )∈Sk

l , (l, k) ∈ L1×K1

(14)

whith

Jk
l (x,Mk

l ,R
k
l ,Φ

k
l ) =

∫

Ωk
l

[Qk
l (x) −Q∗]2dx (15)

where Qk
l (x) is the actual applied dose within Ωk

l

taking into account not only the amounts already
distributed in Ωk−1

l and Ωk
l−1 but also the future

ejected dose along the path sk+1(t) which is pre-
dicted so that it respects the symmetries prop-
erties previously underlined. The problem (P ′)
is an optimization problem subject to inequality
constraints. For (l, k) ∈ L1 ×K1, to minimize the
functional Jk

l , the problem (Pineq) is considered
and defined as:

(Pineq)











min Jk
l (Mk

l ,R
k
l ,Φ

k
l )

uj ≤ hj(M
k
l ,R

k
l ,Φ

k
l ) ≤ vj ,

j = 1, 2, ...dim(Mk
l )

(16)

Fig. 4. Rectangular domain Ω divided into 9
subdomains Ωk

l , 1 ≤ l ≤ 3, 1 ≤ k ≤ 3.



where hj stands for the jth double inequality,
uj and vj its lower and upper bound. To ob-
tain an acceptable solution after algorithm exe-
cution and avoid solving the problem which con-
sists in determining saturated constraints, we de-
cide to apply an augmented lagrangian algorithm
(Bertsekas, 1982) which severely penalizes unac-
ceptable parameters. Moreover, we also use a l-
bfgs technique shown to be efficient with large
scale optimization problem (Byrd et al., 1994).

5. NUMERICAL RESULTS

In our case, we are only interested in applica-
tion optimization in the main field body. The
prescribed dose is fixed at 100 Kh/Ha. Indeed,
nowadays, even in the case of fixed desired dose,
farmers are unable to obtain satisfying results.
The speed of tractor is also constant and equal
to 10 Km/h. The studied field is illustrated in
Fig.5. The paths 2 to 6 are parallel. The default
working width is defined as being 24 m. However,
the distance between the 4th and 5th tramlines is
equal to 25 m. Besides, the 6th path is 19 m from
the 5th one. At last, the first path includes a travel
direction change causing a bottleneck at the head-
land. Nowadays, for this kind of farmland, the
settings imposed by manufacturers do not change
along the process and correspond to the rules
established for a 24 m working width. As shown
in Fig.6, these settings lead to over-application
between the 5th and 6th tramlines and also at the
end of the first trajectory. An under-dosage zone
appears slightly below the break-point marking
the beginning of the travel direction change for
the first path. Everywhere else, error is included
between -8% and +6% and are then acceptable.
Before applying our optimization algorithm, me-
chanical constraints are imposed by taking into
account the characteristics of the most used ap-
plicators. From these constraints, after algorithm
execution, we succeed in reducing fertilization er-
rors between -8.7% and +6.2% as illustrated in
Fig.7 which is very satisfying. We obtain little
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Fig. 5. Field with parallel and non parallel tram-
lines

Fig. 6. Application errors obtained with the man-
ufacturers settings

application errors for the first and second trav-
els. Here for successive parallel tramlines, optimal
parameters are computed so that they are time
independent. Thus for the trajectories 3 to 6, these
ones are gathered in Table 1. As expected, for
the path 5 the mass flow rate for the right disc
slumps because of the narrow pass occurring in
this case. The corresponding medium radius and
angle are also slightly modified to obtain uniform
overlappings. Unlike the parallel tramlines, the
optimal parameters are time dependent for the
two first trajectories. The optimal variables for
the first path are shown in Fig.8. For the left
disc, after the travel direction shift, the medium
radius slumps. Concerning the medium angle and
mass flow rate, slight variations occur around the
break-point marking the travel direction shift. Re-
garding the right disc, the medium angle increases
before the break-point and drops straight away
after this one. The mass flow rate displays the
same trends for this path. Considering the opti-
mal decision variables during the second path in
Fig.9, we can note that all parameters increase
at the beginning and stabilize after a while. This
phenomenon is inherent to the narrowing existing
when the tractor comes in the arable land and
the pass widening occurring after some distance.
Here, for the different studied cases, the computed
parameters, respecting the overall specified con-
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Table 1. Optimal values for successive
parallel tramlines (Mf: Mass Flow Rate
(Kg/min); Rm: Medium Radius; θm:

Medium Angle (◦))

Left Disc

Path 3 Path 4 Path 5 Path 6

Mf 20.17 22.99 24.94 21.11

Rm 15.33 16.45 16.63 15.11

θm -19.68 -19.13 -17.28 -19.48

Right Disc

Path 3 Path 4 Path 5 Path 6

Mf 19.84 18.67 11.74 13.89

Rm 15.24 15.18 12.51 12.72

θm 20.12 21 18.74 17.22

straints, can then used as reference variables in a
future control strategy. Thus, the machine settings
(speed of discs, fertilizers dropping point position
and mass flow rate) can be continuously modified
along each tramline as advised by (Olieslagers et

al., 1997).

6. CONCLUSION

A new method relying on optimization techniques
has been proposed in order to fulfill the economic
and environmental requirements inherent to fer-
tilization practice. From the spread pattern ana-
lytical model and the mechanical characteristics of
the spreader, a cost function subject to constraints
has been formalized. Faced with a large scale
problem after discretization, a decomposition of
this one has been proposed. In order to deal with
the constraints and the large size of the prob-
lem, an augmented lagrangian method associated
with a l-bfgs technique have been implemented.
Thanks to this strategy, fertilization errors have
been significantly reduced and the optimal para-
meters should be considered as reference values
to control the machine. In order to achieve a
spatial optimization within the whole farmland,
works are necessary to deal with the boundaries

Fig. 8. Optimal parameters for the first path

Fig. 9. Optimal parameters for the second path

where modified spread patterns are often applied.
Combined with the use of information technol-
ogy and recent advances in agricultural vehicle
guidance, these studies should efficiently improve
fertilization application for the future.
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