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Gabriel Recatalá, Eris Chinellato and
Angel P. del Pobil

Robotic Intelligence Lab
Dept of Computer Science and Engineering

Jaume I University
8029AP Castellón, Spain

grecata,eris,pobil@icc.uji.es

Youcef Mezouar and Phillipe Martinet
LASMEA

Blaise Pascal University
63177 Aubière, France

mezouar,martinet@lasmea.univ-bpclermont.fr

Abstract— In this paper, the problem of object grasping
is considered from both a biological and an engineering
point of view. A model of information processing for the
grasp synthesis and execution is described based on recent
findings from neuroscience. Taking into account the differ-
ences between robotic and biological systems, this paper
proposes the adaptation of that model to the peculiarities of
a robotic system, instead of mimicking it. For this purpose,
an architecture is proposed that allows the scalability of this
model and its integration within more complex tasks. The
grasp synthesis is designed as integrated within the extraction
of a 3D object description, so that the object reconstruction
is driven by the needs of the grasp synthesis. The integration
is formulated as a framework where different grasp synthesis
strategies could be applied.

Index Terms— active perception, models of human mani-
pulation, models of human perceptual systems, neuroscience
models in robotics, perception and action

I. INTRODUCTION

The ability to manipulate every kind of objects in a
dexterous way has been widely analyzed from both a
robotic and a neurophisiological point of view. Neverthe-
less, there are still important differences between humans
and robots that influence the way robotic manipulation
applications can be defined. In the first place, human
hands are characterized for having five soft fingers and
a high degree of dexterity, whereas most robotic hands
feature a low level of dexterity, and have a more reduced
number of fingers, with a hard surface. In addition, the
human brain has a degree of parallelism much higher
than any ordinary current computer. Finally, the action
of manipulating objects in humans involves the control
of a number of elements –hand, arm, eyes, head– that
have, globaly, more degrees of freedom than current robotic
setups. Therefore, neuroscience models of the flow and
processing of information in the brain of humans and other
primates cannot be directly applied to a real robotic system,
but have to be adapted, or taylored, to it.

The problem of selecting the way to grasp an object with
a robotic hand has been widely analyzed in the literature.
In the case of considering a 3D object description, the
grasp search has been performed in many works on a
model of the object. Although many solutions exist for
the 3D reconstruction of objects and scenes from visual
data, the integration of this reconstruction with some task

oriented-processing, such as the grasp search, has not been
fully developed yet. In fact, many works regarding these
problems have not considered the integrability of their
solutions with other related procedures in order to build
a more complex task.

This paper approaches the grasp search problem from
a biological point of view. In particular, it proposes the
adaptation of a model of information processing for vision-
based grasping in the human brain to a robotic system.
An architecture is proposed for the development of the
above model, following behavior-based guidelines. This
architecture supports the nesting and the concatenation of
processing modules in a structured way. In addition, the
processing modules can have states, so that each module
behaves individually as an automata, and, thanks to the
nesting of modules, automatas can run at different levels
of abstraction within the whole system.

The grasp search we propose is formulated through the
integration of object reconstruction and grasp search proce-
dures. This search is based on the object exploration, with
active vision, for an incremental 3D object reconstruction,
driven by the search of features that characterize the grasp
configuration that has to be computed. This reconstruction
increases its level of detail on the regions of the object
where those features may be found. The proposed proce-
dure is defined as a framework where different grasp search
and analysis strategies can be used.

II. NEUROSCIENCE AND ROBOTICS BACKGROUND

One of the main concerns in neuroscience has been the
study of the areas of the brain involved in the different
stages of a manipulation task, as well as of the flow of
information through these areas [1]. This path of research
has been followed both on humans and other primates. In
our work, we mainly refer to the former, unless stated
otherwise. Visual data in humans flows from the retina
to the lateral geniculate nucleus (LGN) of the thalamus,
and then mainly (but not exclusively) to the primary visual
cortex (V1) in the occipital lobe. There are two main visual
pathways going from V1 to different association areas, the
posterior parietal cortex (PPC) and the inferior temporal
(IT) cortex (Figure 1).

The traditional distinction [2] talks about ventral ”what”
and dorsal ”where/how” visual pathways. Object informa-



Fig. 1. Dorsal and ventral visual pathways.

tion flowing through the ventral pathway passes through
V2 and V4 to the lateral occipital (LO) complex, which
is related with object recognition [3]. Through the dorsal
pathway, object-related visual information reaches area
AIP in the intraparietal sulcus, which is concerned with
analyzing visual features in order to organize grasping
actions. Area AIP projects mainly to area F5 of the
premotor cortex, which contains the motion primitives used
to compose grasping actions, and receives most of its
input, through other areas of the intraparietal sulcus (mainly
the lateral part LIP and the caudal part cIPS), from the
extrastriate cortex V3a, which seems to be responsive to
stimuli orientation as well as to motion and color.

Although recent studies confirm that the dorsal stream
is more oriented to action-based vision, whilst the ventral
one is more suitable to categorization [4], such distinction
is not completely sharp. New findings [5] suggest that both
streams are involved in most vision-related tasks, only in a
different way and degree according to the nature of the task.
It is also largely accepted that the two streams are strictly
related, but how they communicate is still mostly unknown.
One of the most complete models of the information flow
during grasping is the FARS model [6], which focuses
on the final part of the process, more related with action-
execution. Nevertheless, no robotic applications have been
yet developed following this path and the integration be-
tween both streams is nearly unexplored [7]. An additional
model is described in [8] that considers the integration of
the visual information processed along these pathways.

In the engineering literature, the grasp stability has
often been evaluated in terms of force and form closure
conditions, which ensure stability assuming point contacts
with friction [9]. Other authors have considered partially-
restraining grasps, which allow some degrees of freedom to
the object [10]. Alternatively, some authors use heuristics
to reduce the number of candidates during the grasp
synthesis and obtain a good grasp in short time [11]; others
approximate an object model with a set of shape primitives
–such as cylinders, boxes, or cones– and use rules, based on

Fig. 2. Block diagram of a grasping system based on human physiology.

those primitives, to generate grasp pre-shapes and starting
positions [12]. Among vision-based works, in many cases
there is a 2D grasp synthesis in one image, followed of a
3D reconstruction and/or validation. Nevertheless, in spite
of the number of grasp synthesis methods available, most
works on robot-to-object positioning for grasping have used
features other than the grasp points.

However, the 3D reconstruction of the model of an
object based of visual information is a relatively complex
task. Although the use of feature correspondences between
several images has been common in many works, such
correspondences are not always available, for instance,
when the objects have smooth surfaces, so procedures not
requiring them have also been developed. In general, the
3D reconstruction produces either a surface-based represen-
tation of the object [13] or a volumetric representation [14].

III. THE VISION-BASED GRASPING MODEL

In this section, a model of the processing of visual
information in human grasping is described, based on
recent studies from neuroscience. This model is developed
in further sections in order to taylor it to a robotic system.

In our framework, outlined in figure 2, the visual input
is processed in two parallel ways, one more concerned
with perceptive information about the object nature, the
other oriented to spatial analysis. The products of the
visual analysis are, from the dorsal elaboration, precise
information about position and geometry of the object, and,
from the ventral elaboration, data about expected weight,
friction, and previously experienced grasping actions on
such object. Blocks in this model have been labelled after
the name of the brain regions their behavior is associated
to. In the diagram of figure 2 there should be many more
connections, and all arrows should be bidirectional, but it
is not our purpose here to develop a full, distributed model
of the visual cortex. Instead, we only take into account the
main task of each area and its most probable connections to
nearby areas, in order to reconstruct a simplified, sequential
information flow related to grasping.

In our model, the visual blocks V1 and V2 provide
as output basic features, mainly edges, corners, or simple
contours. They are used by V3 to reconstruct more complex
ones. As it can be observed in figure 2, areas V3 and
V3a appear slightly separate, as their processing is not
exactly the same. In fact, the visual analysis is likely
to be performed in different ways by the two pathways
starting from V3. If on the one hand achieving a quick and



reliable object recognition is probably better done through
a volumetric analysis, it seems more plausible for the dorsal
stream to look for appropriate surfaces (and not volumes)
on which to put the fingers [15]. Thus, V3a can use the
basic features obtained by V1-V2 to reconstruct surfaces,
while V3 can search for volumetric features.

Surface information coming from V3a is the input of
areas MT, LIP and cIPS. In humans, MT is more concerned
about movements, while LIP seems to be responsible
of storing and remapping visual memory in eye-centered
coordinates [7]. Brain area cIPS is believed to code surface
orientations [16] and also object affordances, as it does not
recognize the same object seen from two different view
points [3]. In our model, cIPS is especially critical, as it
is the block in which the search for graspable surfaces is
carried out. The possible grasping regions found by cIPS
are used by AIP, the main grasping area, responsible for
finding the candidate grips joining appropriate surfaces.

On the ventral side, V4 uses the output of V3 to
build a viewpoint-invariant simple reconstruction of the
object, using volumetric primitives (see e.g. [12]). Then,
LO merges spatial and color data with stored information
about previously observed objects to recognize the target
and access its memory on how it has been grasped before.
Regarding the last point, it is still unknown if this is what
actually happens in our brain, and our solution so far is not
supported by neuroscience findings. Also, LO most likely
projects to F5 only indirectly, through the prefrontal cortex,
which surely plays a role in the process (also involving the
task which is to be performed through the action, an aspect
that we decided not to treat at this point of our study).

The output from AIP and LO is finally used by F5 to
choose the most appropriate grip for that object in that
situation. Although we do not know exactly in which way
the two pathways interact, our idea is that the ventral
information can intervene in the grip generation (AIP)
and selection (F5) process inhibiting unsuitable grips, or
families of grips (e.g. precision grips instead of power
ones). The power of the intervention can be modulated
according to the degree of confidence of the object recog-
nition process, leaving more or less influence on the dorsal
analysis. After the selection process is done, when AIP
receives feedback from F5 telling which grip will be finally
performed, it forwards the information to LO, in order to
memorize the selected action for future reference.

IV. THE FILTER-BASED ARCHITECTURE (FBA)

In this section, an architecture is proposed that supports
the development requirements of the model described in
the previous section. This architecture, however, is intended
for its application on a computer, so it has some intrinsic
limitations with respect to the biological model, which
influences aspects such as the degree of parallelism and the
flow of information. This architecture uses the following
basic types of components, shown in figure 3:

• Virtual sensors. Components that provide data ac-
quired from real sensors installed in the system (ca-
meras, infrared cells, etc.). They correspond more to

Virtual sensor

Output dataParameters

Virtual actuator

Input data Parameters

Virtual filter

Input data Parameters Output data

Data

Fig. 3. Basic components of the FBA architecture.

the primary sensory areas of the human cortex than to
the sensory organs. In our vision case, the output of
a camera is more similar to that of LGN or V1 than
that of the retina.

• Virtual actuators. These components receive com-
mands or data to be sent to physical/real actuators
installed in the system (robot arm, gripper, etc.). They
model the primary motor areas, as M1 in our case.

• Virtual filters. These components process the data they
receive from virtual sensors and/or other filters, and
produce some results, which are provided to other
filters or to virtual actuators. They handle operations
such as feature extraction or a control law. Each filter
can be seen as a specific associative cortical area. In
the brain, they are disposed more as a continuous than
as in a block diagram, but technological constraints
oblige to build a simpler model, in which areas are
separated from each others and connected through a
clear input-output flow.

• Data sets. They constitute groups of data that are
produced and processed by the above modules. It
represents an over-simplification of the information
flow connecting brain areas.

Virtual sensors and actuators are connected through a
chain of filters, in which the input/output data sets describe
the flow of information along the chain. A task will be
the set of all connected virtual sensors, filters and virtual
actuators that are simultaneously active within a system.
The data sets consitute an internal, non-centralized memory
spread along the chain.

Virtual sensors, actuators and filters have interfaces,
through which they are interconnected. As shown in fi-
gure 3, three types of interfaces are considered:

• Input interface. It indicates the set of data that a given
component requires as input.

• Output interface. Specification of the set of data that
a given component provides as output.

• Parameter interface. Set of parameters that can be
used to configure a component.

In addition to its functionality, it is the set of interfaces
of a component what characterizes it as a sensor, a filter
or an actuator. This allows to group a set of components
into a single unit that can be considered as a higher level
sensor, filter or actuator. Additionally, filters can be in
different states, performing a different processing in each
state. Transitions between states may depend on the input
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Fig. 4. Automata-based description of the grasp-synthesis task.

data, the filter output, or a combination of both. Figure 7
provides an outline of the model described in section III
developed using the FBA architecture.

V. THE GRASP-SYNTHESIS MODEL

A. The grasp-synthesis task

This section develops the model described in section III.
There are, however, some aspects of this model, such as the
processes of object reconstruction and grasp selection, that
have not been yet fully explained from a neuroscientific
point of view. Taking this into account, we develop the
grasp-synthesis strategy so that it is based on the visual
exploration of the object. This exploration is active, guided
by the need of searching or computing specific data that are
required for the grasp synthesis. This strategy is described
from a general point of view, since the purpose of this
paper is not to provide a detailed description of it; instead,
it is given as a framework within which different grasp
synthesis and analysis criteria could be tested.

Figure 4 provides a general description of this task,
which is composed of the following steps:

• Initial data extraction. Initial stage, in charge of
gathering a set of data to start the object exploration.

• Exploration planning. This is an explotation stage, in
which the actual grasp synthesis is performed, based
on the initial data set and, mainly, the data collected
during the exploratory movements. If additional infor-
mation is required to perform the grasp synthesis, a
plan is made for a new exploratory movement.

• Exploration movement. In this stage, the system per-
forms some planned exploratory movement in order
to extract new information about the object.

Due to the inherent complexity of the model described
in section III, we have restricted ourselves in this paper
to the components more related to the grasp synthesis that
would be more active in these stages. Therefore, some areas
of that model, such as MT and LIP, less involved in this
process, have not been considered in this development.

The following sections describe in more detail the ex-
ploration planning and the exploratory movement.

B. Exploration movement

Although a planned movement is executed in this stage,
the gathering of information along the dorsal pathway is
determined by a set of quality criteria [17]. These criteria
are associated to the selection of affordances, or grasp
surfaces, which are portions of the object surface that are
considered appropriate for grasping. The specification of
these criteria is part of the grasp synthesis strategy and is
left open in this paper, in order to allow the development
of different strategies and support different robotic setups.

Figure 5 provides a filter-based outline of this stage. The
overall behavior can be briefly described as follows:

• Regarding the primary visual perception. Extraction of
basic features for driving the exploratory movement,
as well as others that can be used later for building a
model of the object (V1-V2).

• Along the dorsal pathway. Reconstruction of portions
of the object surface (V3a) and search, within them, of
grasp surfaces (cIPS). Such surfaces may be priorized
according to the degree of fulfillment of the selected
quality criteria.

• Along the ventral pathway. Search of volumetric fea-
tures (V3) and 3D reconstruction based on volumetric
primitives (V4).

• Movement control. Control of the exploratory move-
ment (F5). The goals of this movement have been
stored during the planning stage in an internal memory
of this module.

C. Exploration planning

This is the stage in which the grasp synthesis is ac-
tually performed, using the initial data set and additional
information collected during the object exploration. It is
therefore a deliberative stage. In this stage, the grasp
surfaces are analyzed along the dorsal pathway in order
to select compatible surface sets, which are combinations
of such surfaces that are thought to be appropriate for
grasping. Using this information and the one provided
through the ventral pathway, a grasp is selected based on a
set of criteria. Like in the case of the exploratory stage, the
criteria used in these two selections are related to the grasp
synthesis strategy and the robotic setup. Their specification
is left open too, providing in this way a framework to the
use of different strategies and robotics setups.

Figure 6 provides a filter-based outline of this stage. The
overall behavior can be briefly described as follows:

• Along the dorsal pathway. Using the affordances se-
lected during the exploratory stage, recovered from
V3a, the AIP module looks for compatible surface
sets. Similarly to the selected grasp surfaces, they may
be ranked according to their degree of fulfillment of
some given quality criteria.

• Along the ventral pathway. The volumetric reconstruc-
tion obtained in the exploratory stage, provided by
V3 and V4, is used by LO to try to recognize the
object. The output of this module is thus a model
of the recognized object, an indication of the degree
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of confidence of the recognition and a set of grasps
associated to that model.

• Deliberation. Algorithm 1 provides an outline of the
behavior of this module (F5). Essentially, it analyzes
the object information stored and produced along
the dorsal and the ventral pathways. In case more
information about the object is required, a new ex-
ploratory movement is planned accordingly, based on
the available object data.
If the system decides that it has enough information
in order to select a grasp, it checks if it is possible to
perform such a selection. If so, then the system ana-
lyzes the grasp information produced along the dorsal
and ventral pathways in order to perform the grasp
selection. In addition to the grasp, a corresponding
motor action, out of a basic vocabulary of actions,
and a grasp preshape for the hand are selected [1].

VI. CONCLUSION

The goal of this paper has been to provide a frame-
work for the development of robotic applications on the
synthesis and execution of grasps. For this purpose, we
have considered a biological model of grasping in humans,
and a behavior-based architecture has been proposed as a
tool for developing it and adapting it to the limitations of
a robotic setup. Within this framework, a grasp synthesis
model, tightly integrated with a vision-based 3D object

Algorithm 1 Exploration planning
Analyze the object information
if more information is required then

Plan a new exploratory movement
Trigger event Planning performed

else
Analyze the grasp information
if it is possible to select a grasp then

Select a grasp
Select a motor action and a pregrasp
Trigger event Grasp selected

else
Trigger event Grasp synthesis failed

end if
end if

reconstruction, has been introduced that can be customized
to hold different synthesis strategies and robotic setups.

The proposed grasp synthesis can be extended within
this framework to obtain a more detailed development of
biological models. In addition, thanks to the support of task
coordination, it can be integrated not only within a more
complex manipulation task, but can also be coordinated
with modules controlling other parts of the robot or other
robots, such as in the case of the integrated control of a
robot arm and a mobile platform or of two arms.



Finally, although the models described in this paper have
been considered from a general point of view, they are
oriented to be used in a relatively autonomous system,
which would have to handle on its own the execution of
specified tasks of a certain degree of complexity. Such a
system would be able to act as an assistant, requiring only
high-level indications from a user.
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Fig. 7. Development of the grasping model from figure 2 using the FBA
architecture.


