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Abstract— In this paper, we present how the 2 1/2 D visual
servoing scheme can be used with omnidirectional cameras.
Motivated by the growing interest for omnidirectional sensors on
robotic applications and particularly on vision-based control, we
extend this framework to the entire class of central catadioptric
systems. Indeed, conventional cameras suffer from restricted
field of view. Central catadioptric systems have larger fields of
view thus overcoming the visibility problem encountered when
using conventional cameras. The 2 1/2 D visual servoing is
based on the estimation of the partial camera displacement
between two views, given by the current and desired images.
Geometrical relationships are exploited to enable a partial
Euclidean reconstruction by decoupling the interaction between
translation and rotation components of a homography matrix.
First we describe how to obtain a generic homagraphy matrix
for central catadioptric cameras from the projection model of
an entire class of camera. Then the information obtained from
the homography is used to develop a 2 1/2 D visual servoing
scheme.

Index Terms— Visual Servoing, Catadioptric cameras, Ho-
mography.

I. INTRODUCTION

Vision-based servoing schemes are flexible and effective
methods to control robot motions from cameras observations
[15]. They are traditionally classified into three groups,
namely position-based, image-based and hybrid-based con-
trol [10], [15], [19]. These three schemes make assumptions
on the link between the initial, current and desired images
since they require correspondences between the visual fea-
tures extracted from the initial image with those obtained
from the desired one. These features are then tracked during
the camera (and/or the object) motion. If these steps fail
the visually based robotic task can not be achieved [7].
Typical cases of failure arise when matching joint images
features is impossible (for example when no joint features
belongs to initial and desired images) or when some parts
of the visual features get out of the field of view during
the servoing. Some methods have been investigated to re-
solve this deficiency based on path planning [20], switching
control [8], zoom adjustment [23], geometrical and topolog-
ical considerations [9], [25]. However, such strategies are
sometimes delicate to adapt to generic setup. Conventional
cameras suffer thus from restricted field of view. There
is thus significant motivation for increasing the field of
view of the cameras [4]. Many applications in vision-based

robotics, such as mobile robot localization [5] and navigation
[28], can benefit from panoramic field of view provided by
omnidirectional cameras. In the literature, there have been
several methods proposed for increasing the field of view
of cameras systems [4]. One effective way is to combine
mirrors with conventional imaging system. The obtained
sensors are referred as catadioptric imaging systems. The
resulting imaging systems have been termed central cata-
dioptric when a single projection center describes the world-
image mapping. From a theoretical and practical view point,
a single center of projection is a desirable property for an
imaging system [1]. Baker and Nayar in [1] derive the entire
class of catadioptric systems with a single viewpoint. Clearly,
visual servoing applications can also benefit from such sen-
sors since they naturally overcome the visibility constraint.
Vision-based control of robotic arms, single mobile robot
or formation of mobile robots appear thus in the literature
with omnidirectional cameras (refer for example to [3], [6],
[22], [27], [21]). Image-based visual servoing with central
catadioptric cameras using points has been studied by in [3].
The use of straight lines has also been investigated in [21].

This paper is concerned with homography-based visual
servo control techniques with central catadioptric cameras.
This framework (called 2 1/2 D visual servoing) has been
first proposed by Malis and Chaumette in [16], [19], [17].
The 2 1/2 D visual servoing scheme exploits a combination
of reconstructed Euclidean information and image-space in-
formation in the control design. The 3D informations are
extracted from an homography matrix relating two views
of a reference plane. As a consequence, the 2 1/2 D visual
servoing scheme does not require any 3D model of the target.
The resulting interaction matrix is triangular with interesting
decoupling properties and it has no singularity in the whole
task space. Unfortunately, in such approach the image of the
target is not guaranteed to remain in the camera field of
view. Motivated by the desire to overcome this deficiency, we
extend in this paper homography-based visual servo control
techniques to an entire class of omnidirectional cameras. We
describe how to obtain a generic homagraphy matrix related
to a reference plane for central catadioptric cameras from a
generic projection model. Then the 3D informations obtained
from the homography is used to develop a 2 1/2 D visual
servoing scheme.



The remainder of this paper is organized as follows.
In Section II, the model of the central catadioptric image
formation is presented. In Section III, we describe how the
homography related to a reference plane can be obtained and
exploited to estimate the partial motion of the camera. Section
IV is devoted to the 2 1/2 D visual servoing control scheme.
Simulated results are presented in Section V.

II. CENTRAL CATADIOPTRIC IMAGING MODEL

A vision system has a single viewpoint if all rays joining
a world point and its projection in the image plane pass
through a single point called principal projection center.
Conventional perspective camera is a typical example of
single viewpoint vision sensor. The well known pin-hole
model assumes that the mapping of world points into points
in the image plane is linear in homogeneous coordinates.
There are single viewpoint systems whose geometry can not
be modeled using the conventional pin-hole model. Baker and
Nayar in [1] derive the entire class of catadioptric systems
with a single viewpoint. They show that a central catadioptric
system with a wide field of view can be built by combining
an hyperbolic, elliptical or planar mirror with a perspective
camera and a parabolic mirror with an orthographic camera.
However the mapping between world points and points in the
image plane is no longer linear. In [13], Geyer and Daniilidis
introduce an unifying model for all central catadioptric imag-
ing system where conventional perspective camera appears as
a particular case.

Let Fc and Fm be the frames attached to the conventional
camera and to the mirror respectively. In the sequel, we
suppose that Fc and Fm are related by a translation along
the Z-axis (Fc and Fm have the same orientation, refer to
Figure 1). The origins C and M of Fc and Fm will be termed
optical center and principal projection center respectively.
The optical center C has coordinates [0 0 −ξ]T with respect
to Fm and the image plane Z = ψ−2ξ is orthogonal to the Z-
axis. ξ and ψ describe the type of sensor and the shape of the
mirror. They are function of mirror parameters d and p (see
Tab.I and refer to [2]). Consider the unitary sphere centered in
M as shown in Fig.1 and let X be a 3D point with coordinates
X = [X Y Z]T with respect to Fm. The world point X is
projected in the image plane into the point of homogeneous
coordinates xi = [xi yi 1]T . The image formation process
can be split in three steps as:

Step 1: The 3D world point X is first projected on the
unit sphere surface into a point of coordinates in Fm:

Xm =
1
ρ

⎡⎣ X
Y
Z

⎤⎦
where ρ = ‖X‖ =

√
X2 + Y 2 + Z2. The projective ray

Xm pass through the principal projection center M and the
world point X .
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TABLE I

CENTRAL CATADIOPTRIC CAMERAS DESCRIPTION:
ap , ah, bh, ae, be depend only of the mirror intrinsic parameters d and p

Step 2: The point Xm lying on the unitary sphere is
then perspectively projected on the plane Z = 1 − ξ into
a point of homogeneous coordinates x = [xT 1]T = f(X)
(where x = [x y]T ) from the optical center C:

x = f(X) =

⎡⎢⎢⎢⎣
X

Z + ξρ
Y

Z + ξρ
1

⎤⎥⎥⎥⎦ (1)

Step 3: Finally the points of homogeneous coordinates
xi in the image plane are obtained after a plane-to-plane
collineation K of the 2D projective point x:

xi = Kx

The matrix K can be written as K = KcM where the
upper triangular matrix Kc contains the camera intrinsic
parameters, and the diagonal matrix M the mirror intrinsic
parameters:

M =

⎡⎣ ψ − ξ 0 0
0 ψ − ξ 0
0 0 1

⎤⎦
Note that, setting ξ = 0, the general projection model
becomes the well known perspective projection model. In
the sequel, the camera and mirror intrinsic parameters are
supposed known (i.e the collineation matrix K is known).



To estimate these parameters one of the algorithms proposed
in [12], [2], or in [29] can be used.

Let us denote φx = ρ/|Z| =
√

1 + X2/Z2 + Y 2/Z2, the
coordinates of the image point can be rewritten as:

x =
X/Z

1 + ξφx

y =
Y/Z

1 + ξφx

By combining the two previous equation, it is easy to show
that φx is the solution of the following second order equation:

−φ2
x + (x2 + y2)(1 + ξφx)2 + 1 = 0

with the following solutions:

φx =
±γx + ξ(x2 + y2)
1 − ξ2(x2 + y2)

(2)

where γx =
√

1 + (1 − ξ2)(x2 + y2). Equation (2) shows
that φx can be computed as a function of image coordinates
x and sensor parameter ξ. Note that, φx can be computed
without ambiguity since it is a positive scalar. Noticing that:

Xm = (φ−1
x + ξ)x (3)

where x = [xT φ2
x

1+ξφx
]T , we deduce that Xm can also be

computed as a function of image coordinates x and sensor
parameter ξ. The 2 1/2 D visual servoing is based on the
estimation of the partial camera displacement between two
views, given by the current and desired images. Geometrical
relationships are exploited to compute a partial Euclidean
reconstruction from a homography matrix. In the sequel, we
show how the homography related to a reference plane can
be obtained.

III. SCALED EUCLIDEAN RECONSTRUCTION USING

CATADIOPTRIC IMAGES

The Euclidean reconstruction from two views (structure
from motion problem) plays a central role in the 2 1/2
D visual servoing scheme. Several methods were proposed
to solve this problem [11]. They are generally based on
the estimation of the Essential matrix. However, for control
purposes, the methods based on the Essential matrix are not
well suited since degenerate configurations (such as pure
rotational motion) can induce unstable behavior of the control
scheme. The structure from motion problem can also be
solved using an homography matrix related to a virtual plane.
Homography matrix and Essential matrix based approaches
do not share the same degenerate configurations, for example
pure rotational motion is not a degenerate configuration when
using homography-based method. To design a control scheme
based on partial Euclidean reconstruction, it is thus preferable
to use Homography-based approaches. The epipolar geom-
etry of central catadioptric system has been more recently
investigated [14], [26]. The central catadioptric fundamental
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Fig. 2. Motion and structure parameters

and essential matrices share similar degenerate configurations
that those observed with conventional perspective cameras. In
the sequel, assuming that the sensor is calibrated, we derive
from the generic projection model geometrical homographic
relationships between two omnidirectional views of a virtual
plane.
Consider the camera motion defined by a rotation matrix

R, and a translation vector t between the mirror frames Fm

and F∗
m (see Figure 2). Consider a 3-D reference plane (π)

given in F∗
m by the vector π∗T = [n∗ − d∗], where n∗ is

its unitary normal in F∗
m and d∗ is the distance from (π)

to the origin of F∗
m. Let X be a 3-D point with coordinates

X = [X Y Z]T with respect to Fm and with coordinates
X = [X∗ Y ∗ Z∗]T with respect to F∗

m. Its projection in the
unit sphere for the two camera positions are:

Xm = (φ−1
x + ξ)x = 1

ρ

[
X Y Z

]T

X∗
m = (φ−1

x∗ + ξ)x∗ = 1
ρ∗

[
X∗ Y ∗ Z∗ ]T

(4)

Using the homogenous coordinates X = [X Y Z H ]T and
X∗ = [X∗ Y ∗ Z∗ H∗]T , we can write:

ρ(φ−1
x + ξ)x =

[
I3 0

]
X =

[
R t

]
X∗ (5)

The distance d(X , π) from the world point X to the plane
(π) is given by the scalar product π∗T ·X∗ and:

d(X , π) = ρ∗(φ−1
x∗ + ξ)n∗T x∗ − d∗H∗

As a consequence, the unknown homogenous component H∗

is given by:

H∗ =
ρ∗(φ−1

x∗ + ξ)
d∗

n∗T x∗ − d(X , π)
d∗

(6)



The homogeneous coordinates of X with respect to F∗
m can

be rewritten as:

X∗ = ρ∗(φ−1
x∗ + ξ)

[
I3 0

]T
x∗ +

[
01×3 H∗ ]T

(7)

By combining the Equations (6) and (7), we obtain:

X∗ = ρ∗(φ−1
x∗ + ξ)A∗

πx∗ + b∗
π (8)

where

A∗
π =

[
I3 n∗

d∗

]T

and b∗
π =

[
01×3 − d(X ,π)

d∗

]
According to (8), the expression (5) can be rewritten as:

ρ(φ−1
x + ξ)x = ρ∗(φ−1

x∗ + ξ)Hπx∗ + αt (9)

with Hπ = R + t
d∗ n∗T and α = − d(X ,π)

d∗ .

Hπ is the Euclidean homography matrix written as a
function of the camera displacement and of the plane
coordinates with respect to F∗

m. It has the same form as in
the conventional perspective case (it is decomposed into a
rotation matrix and a rank 1 matrix). If the world point X
belongs to the reference plane (π) (i.e α = 0) then Equation
(9) becomes:

x = βx,x∗Hπx∗ (10)

where βx,x∗ = φ−1
x∗ +ξ

φ−1
x +ξ

. Note that the Equation (10) can be
turned into a linear homogeneous equation x ⊗ Hπx∗ = 0
(where ⊗ denotes the cross-product). As usual, the homog-
raphy matrix related to (π), can thus be estimated up to a
scale factor, using four couples of coordinates (xk;x∗

k), k =
1 · · · 4, corresponding to the projection in the image space
of world points Xk belonging to (π). If only three points
belonging to (π) are available then at least five supplementary
points are necessary to estimate the homography matrix by
using for example the linear algorithm proposed in [17].
From the estimated homography matrix, the camera motion
parameters (that is the rotation R and the scaled translation
td∗ = t

d∗ ) and the structure of the observed scene (for
example the vector n∗) can thus be determined (refer to [11],
[30]). It can also be shown that the ratio σ = ρ

ρ∗ can be
estimated as follow:

σ =
ρ

ρ∗
= (1 + n∗T RT td∗)

(φ−1
x∗ + ξ)n∗T x∗

(φ−1
x + ξ)n∗T RT x

(11)

This parameter is used in our 2 1/2 D visual servoing control
scheme.

IV. 2 1/2 D VISUAL SERVOING WITH CENTRAL

CATADIOPTRIC CAMERAS

As usual when designing a 2 1/2 D visual servoing, the
feature vector used as input of the control law combines 2-D
and 3-D informations [19]:

s = [sT
i θuT ]T and si = [x y �]T

where x and y are the current coordinates of a chosen
catadioptric image point given by Equation (1), � = log(ρ)
and, u and θ are respectively the axis and the rotation angle
obtained from R (rotation matrix between the mirror frame
when the camera is in these current and desired positions).
The task function e to regulate to 0 [24] is given by:

e = s− s∗ = [x − x∗, y − y∗, Γ, θuT ]T (12)

where s∗ is the desired value of s and Γ = log
(

ρ
ρ∗

)
=

log(σ). The first two components of si − s∗i are computed
from the normalized current and desired catadioptric images,
and its last components can be estimated using Equation (11).
The rotational part of e is estimated using partial Euclidean
reconstruction from the homography matrix derived in Sec-
tion III. The exponential decay of e toward 0 can be obtained
by imposing ė = −λe (λ being a proportional gain), the
corresponding control law is:

τ = −λL−1(s − s∗) (13)

where τ is a 6-dimensional vector denoting the velocity
screw of the central catadioptric camera. It contains the
instantaneous angular velocity ω and the instantaneous linear
velocity v. L is the interaction matrix related to s. It links
the variation of s to the camera velocity: ṡ = Lτ . It is
thus necessary to compute the interaction matrix in order
to derive the control law given by the Equation (13). The
time derivative of the rotation vector uθ can be expressed as
a function of the catadioptric camera velocity vector τ as:

d(uθ)
dt

= [03 Lω ] τ (14)

where Lω is given by [19]:

Lω(u, θ) = I3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2× (15)

with sinc(θ) = sin(θ)
θ and [u]× being the antisymmetric

matrix associated to vector u.
To control the 3 translational degrees of freedom (ddl), the

visual observations and the ratio σ expressed in (11) are used.
Consider a 3-D point X , lying on the the reference plane (π),
as the reference point. The time derivative of its coordinates,
with respect to the current catadioptric frame Fm, is given
by:

Ẋ = [−I3 [X]×] τ (16)

[X]× being the antisymmetric matrix associated to the vector
X. The time derivative of si can be written as:

ṡi =
∂si

∂X
Ẋ (17)

with:

∂si

∂X
=

1
ρ(Z + ξρ)2

⎡⎣ ρZ+ξ(Y 2+Z2) −ξXY −X(ρ+ξZ)

−ξXY ρZ+ξ(X2+Z2) −Y (ρ+ξZ)

X(Z+ξρ)2

ρ
Y (Z+ξρ)2

ρ
Z(Z+ξρ)2

ρ

⎤⎦



By combining the equations (16), (17) and (11), it can be
shown that:

ṡi = [A B] τ (18)

with

A =
1

σρ∗

⎡⎣− 1+x2(1−ξ(γx+ξ))+y2

γx+ξ ξxy xγx

ξxy − 1+x2+y2(1−ξ(γx+ξ))
γx+ξ yγx

ηxx ηxy (ηx−1)ξ

⎤⎦
and

B =

⎡⎣ xy − (1+x2)γx−ξy2

γx+ξ y

(1+y2)γx−ξx2

γx+ξ −xy −x

0 0 0

⎤⎦
where:

γx =
√

1 + (1 − ξ2)(x2 + y2)

ηx =
ξ2 +

√
(x2 + y2)(1 − ξ2) + ξ2

x2 + y2 + ξ2

The task function e (see Equation (12)) can thus be regulated
to 0 using the control law (Equation (13)) with the following
interaction matrix L:

L =
[

A B
03 Lω

]
(19)

In practice, an approximated interaction matrix L̂ is used.
The parameter ρ∗ can be estimated only once during a off-
line learning stage.

V. SIMULATION RESULTS

In this section, we present simulation results of 2 1/2 D
visual servoing with a catadioptric camera in eye-in-hand
configuration. The catadioptric camera used is an hyper-
bolic mirror combined with a perspective camera (similar
results are obtained with a catadioptric camera combining
a parabolic mirror and an orthographic lens, these results
are not presented in this paper). From an initial position
the catadioptric camera mounted on the robot has to reach
a desired position known as a desired 2 1/2 D observation
vector s∗. Image noise has been added (additive noise with
maximum amplitude of 2 pixels) to the coordinates of image
points. The normalized coordinates and the interaction matrix
are computed using erroneous internal camera parameters.

The initial and desired attitudes of the catadioptric camera
are plotted in the Figure 3. This figure also shows the 3-
D camera trajectory from its initial position to the desired
one. Figure 4(a) shows the initial (blue *) and desired (red
*) images of the observed target. It shows also the trajectory
of the point (green trace) in the image plane (the controlled
image point has a black trace trajectory). The norm of the
error vector is given in Figure 4(b). As can been seen in
the Figures 5(a) and 5(b) showing the errors between desired
and current observation vectors the task is correctly realized.

The translational and rotational camera velocities are given
in Figures 6(a) and 6(b) respectively.
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VI. CONCLUSION

In this paper, we have described how the 2 1/2 D visual
servoing scheme can be used with omnidirectional cam-
eras. Geometrical relationships have been derived from the
projection model of an entire class of camera (including
conventional perspective cameras). These relationships have
been exploited to obtain a homographic mapping between
two views of a reference plane which allows to estimate
structure and motion parameters. These parameters were then
used to develop a 2 1/2 D visual servoing scheme.

The robustness of 2 1/2 D visual servoing with respect to
calibration errors has been analyzed in [19] in the case of
conventional perspective camera. In the case of omnidirec-
tional cameras, this study is an important theoretical point
that has to be addressed.
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