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Abstract— In automatic guidance of agriculture vehicles,
lateral control is not the only requirement. Lots of research
works have been focused on trajectory tracking control
which can provide high longitudinal-lateral control accuracy.
Satisfactory results have been reported as soon as vehicles
move without sliding. But unfortunately pure rolling con-
straints are not always satisfied especially in agriculture
applications where working conditions are rough and not
expectable. In this paper the problem of trajectory tracking
control of autonomous farm vehicles in presence of sliding is
addressed. To take sliding effects into account, two variables
which characterize sliding effects are introduced into the
kinematic model based on geometric and velocity constrains
in presence of sliding. With linearization approximation a
refined kinematic model is obtained in which sliding appears
as additive unknown parameters to the ideal kinematic model.
By integrating parameter adaptation technique with backstep-
ping method, a stepwise procedure is proposed to design a
robust adaptive controller. It is theoretically proven that for
the farm vehicles subjected to sliding, the longitudinal-lateral
deviations can be stabilized near zero and the orientation
errors converge into a neighborhood near the origin. To be
more realistic for agriculture applications, an adaptive con-
troller with projection mapping is also proposed. Simulation
results show that the proposed (robust) adaptive controllers
can guarantee high trajectory tracking accuracy regardless
of sliding.

Index Terms— Trajectory tracing control, nonholonomic
systems, backstepping

I. INTRODUCTION

Automatic guidance of farm vehicles develops with the
requirement of modern agriculture. High-precision agri-
culture becomes a reality especially thanks to new lo-
calization technologies such as GPS, laser range scans,
sonar. In agriculture fields it is quite common that several
vehicles (including cropping, threshing, cleaning, seeding
and spraying machines) compose a platoon for combined
harvesting. In this case driving safety requiring constant
longitudinal distances between the leading vehicle and fol-
lowing vehicles is an additional requirement along with the
effort of improving lateral path-following performances.
Since longitudinal-lateral control becomes more and more
important, many research teams have paid their attention
to trajectory tracking control, satisfactory results have been
reported as soon as vehicles satisfy pure rolling constraints
[1]-[4].

However due to various factors such as slipping of tires,
deformability or flexibility of wheels, pure rolling con-

straints are never strictly satisfied. Especially in agriculture
applications when farm vehicles are required to move on
all-terrain grounds including slippery slopes, sloppy grass
grounds, sandy and stony grounds, sliding inevitably occurs
which deteriorates performances of automatic guidance and
even system stability.

Until now there are very few papers dealing with sliding.
[5] prevents cars from skidding by robust decoupling of
car steering dynamics, but acceleration measurements are
necessary and the steering angle is assumed small. [6]
copes with the control of WMR (Wheeled Mobile Robot)
not satisfying the ideal kinematic constraints by using slow
manifold methods, but the parameter characterizing the
sliding effects is assumed to be exactly known. Therefore
[5][6] are not realistic for agriculture applications. In [7]
a controller is designed based on the averaged model
allowing the tracking errors to converge to a limit cycle
near the origin. In [11] a general singular perturbation
formulation is developed which leads to robust results for
linearizing feedback laws ensuring trajectory tracking. But
above two schemes only take into account sufficiently small
skidding effects and they are too complicated for real-
time practical implementation. In [8] [9] Variable Structure
Control (VSC) is used to eliminate the harmful sliding
effects when the bounds of the sliding effects have been
known. The trajectory tracking problem of mobile robots in
the presence of sliding is solved in [10] by using discrete-
time sliding mode control. But the controllers [8]-[10]
counteract sliding effects only relying on high-gain con-
trollers which is not realistic because of limited bandwidth
and low level delay introduced by steering systems of
farm vehicles. In [12] sliding effects are rejected by re-
scheming desired paths adaptively based on steady control
errors which are mainly caused by modeled sliding effects.
Moreover a robust adaptive controller is designed in [13]
which can compensate sliding by parameter adaptation and
VSC. But [12] [13] only care about lateral control.

In the referred references most research works treated
sliding as disturbances, but alternatively sliding can be also
regarded specifically as time-varying parameters. On the
other hand backstepping methods which are used widely in
controller design have been proven powerful in controlling
nonholonomic systems with uncertain parameters [14][16].
In our previous work [13] we have applied backstepping
successfully to design a path following controller, so the



purpose of this paper is to extend our lateral controller to
design a practical longitudinal-lateral controller in presence
of sliding.

The main idea of this paper is to introduce sliding effects
as additive unknown parameters to the ideal kinematic
model. Based on backstepping method a robust adaptive
controller is designed. Furthermore to be of benefit to actual
applications the robust adaptive controller is simplified
into an adaptive controller with projection mapping. This
paper is organized as follows, in section 2 a kinematic
model considering sliding is constructed in the vehicle
body frame. In section 3 a robust adaptive controller is
designed by using backstepping methods. In section 4 the
robust adaptive controller is simplified into an adaptive
controller with projection mapping. In section 5, some
comparative simulation results are presented to validate the
proposed control laws.

II. KINEMATIC MODEL FOR TRAJECTORY TRACKING

CONTROL

A. Notation and Problem Description

In this paper the vehicle is simplified into a bicycle
model, the kinematic model is expressed in the vehicle
body frame (o, x′, y′) (see figure 1). Variables necessary in
the kinematic model are denoted as follows:

• o (or) is the center of the (reference) vehicle virtual
rear wheel.

• x′ is the vector corresponding to the vehicle body axis
• y′ is the vector vertical to x′

• (xr, yr) are the coordinates of the reference vehicle
or with respect to the inertia frame.

• (x, y) are the coordinates of the vehicle o with respect
to the inertia frame.

• (xe, ye) are the coordinates of the vector −→oor in the
frame (o, x′, y′)

• c(s) is the curvature of the path, s is the curvilinear
coordinates (arc-length) of the point or along the
reference path from an initial position.

• θ (θr) is the orientation of the (reference) vehicle
centerline with respect to the inertia frame.

• θe = θr − θ is the orientation error.
• l is the vehicle wheelbase.
• v (vr) is the linear velocity of the (reference) vehicle

with respect to the inertia frame.
• vx is the longitudinal velocity of the vehicle in the

direction of ox′ in the inertia frame. In this paper we
assume that only lateral sliding occurs between tires
and grounds, so vx always equals to the wheel rotating
velocity Vω .

• δ is the steering angle of the virtual front wheel

So the trajectory tracking errors can be described by
(xe, ye, θe). The aim of this paper is to design a controller
(vx, δ) which can guarantee the longitudinal-lateral errors
xe, ye approach to zero and the orientation error θe is
bounded in presence of sliding.
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x′ δ
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Fig. 1. Notations of the kinematic model

B. Kinematic Model

From figure 1, it is easy to obtain the following geomet-
ric relationship⎛

⎝ xe

ye

θe

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝ xr − x

yr − y
θr − θ

⎞
⎠ (1)

In this paper it is assumed that |θe| < π
2 . When vehicles

move without sliding, the angular velocity can be expressed
by

θ̇ = ω =
v

l
tan δ (2)

The angular velocity of the reference vehicle is

θ̇r =
vr
1

c(s)

(3)

The ideal kinematic model with respect to (o, x′, y′) can
be developed directly by differentiating (1)⎧⎪⎨

⎪⎩
ẋe = −v + vr cos θe + ωye

ẏe = vr sin θe − ωxe

θ̇e = vrc(s) − v

l
tan δ

(4)

But when vehicles move on a steep slope or the ground
is slippery, sliding occurs inevitably, (4) is no longer valid.
Since the longitudinal tire sliding is neglected, the violation
of the pure rolling constraints is described by introducing
the lateral sliding velocity vy and bias of the steering angle
δb. Therefore the velocity constraints become{

ẋ = v cos(θ + ϕ)
ẏ = v sin(θ + ϕ) (5)

where
v =

√
v2

x + v2
y (6)

and ϕ is the side sliding angle defined by

ϕ = arctan(
vy

vx
) (7)

By using the similar method the kinematic model when
sliding is taken into account is obtained⎧⎪⎨

⎪⎩
ẋe = −vx + vr cos θe + ωye

ẏe = −vy + vr sin θe − ωxe

θ̇e = vrc(s) − (
vx

l
tan(δ + δb) − vy

l
)

(8)



Remark that
vx = v cos ϕ (9)

equals to the wheel rotating velocity which is the control
law to be designed. In case no sliding occurs, vx = v.

C. Kinematic Model with Linearization Approximation

In actual agriculture applications farm vehicles always
move smoothly and most trajectories to be tracked are
straight lines and circles, so the lateral sliding velocity and
the steering bias vary not too greatly with time. Hence the
sliding effects can be described exactly by

vy = v̄y + ε1

δb = δ̄b + ε′2
(10)

where v̄y , δ̄b are time-invariant, ε1, ε′2 are time-varying
variables with zero mean value. Furthermore since the
steering bias δb is quite small, the orientation kinematic
equation in (8) can be linearized resulting in trivial errors.
Therefore the kinematic model (8) is rewritten as

ẋe = −vx + vr cos θe + ωye(11a)

ẏe = vr sin θe − ωxe − (v̄y + ε1)(11b)

θ̇e = c(s)vr − vx

l
tan δ +

v̄y + ε1

l
− vx

l
(tan δ̄b + ε2)(11c)

where ε2 = tan ε′2 + ε, ε is the error due to linearization
approximation.

III. BACKSTEPPING-BASED ROBUST ADAPTIVE

CONTROL DESIGN

A. Trajectory Tracking Control for Ideal Kinematic Model

Notice that (4) is a 2-3 nonholonomic system in which
ye is not directly controlled. To overcome this problem the
idea of backstepping is used: see [15] for details. Using
backstepping we propose a stepwise design procedure for
this 3-order nonholonomic system. Due to limited space,
we do not present a detailed description of the design
scheme. The resulting control law is

vx = vr cos θe + kxxe (12)

δ = arctan(
lω

vx
) (13)

where

ω =
yevr + cos θevrc(s) + ky sin θe + kuũ1

cos θe +
kyxe

vr

(14)

ũ1 = sin θe +
kyye

vr
(15)

We refer interested readers to [20] for details.

B. Robust Adaptive Control for Kinematic Model with
Sliding

Consider the kinematic model (11). It is a 2-3 nonholo-
nomic system with unknown constant parameters v̄y , δ̄b and
time-varying disturbances εi. In this paper it is assumed
that εi is bounded by

|εi| < ρi (16)

So we are in the place to design a controller which not only
can estimate and compensate unknown parameters but also
is robust to εi.

step 1: Consider the sub-kinematic equations (11a) and
(11b). The Lyapunov function candidate is chosen as

V1 =
1
2
x2

e +
1
2
y2

e +
1
2
(v̂y − v̄y)T Γ−1(v̂y − v̄y) (17)

where Γ is positive definite, v̂y indicates the estimation of
v̄y . The time derivative of V1 along the kinematic model is

V̇1 = xe(−vx + vr cos θe) + ye(vr sin θe − v̂y − ε1)
+(v̂y − v̄y)Γ−1( ˙̂vy + Γye)

(18)
Regard u1 = sin θe as the virtual control input of the first
step. If choose u1 as a variable structure controller

u1d =
−kyye + v̂y − ρ1sign(ye)

vr

(19)

and

vx = vr cos θe + kxxe (20)
˙̂vy = −Γye (21)

then we have

V̇1 = −kxx2
e − kyy2

e − (ρ1 − ε1)|ye| (22)

So u1d of (19) is the desired value of the virtual control
input u1 for the first step. If u1 tracks (19) precisely, then
the longitudinal and lateral deviations will converge to zero
asymptotically.

Note that if the longitudinal sliding is not neglected, vx

can be designed easily by using variable structure control.
Then the following step is similar.

Indeed in the closed loop system u1 is not the actual
control input, tracking u1d with some errors, therefore ũ1

is defined as
ũ1 = u1 − u1d (23)

In backstepping schemes the derivative of u1d must appear
in the following steps, but sign() included in (19) is not
differentiable, so sign() is replaced by tanh() which is
continuously differentiable. Therefore u1d becomes

u1d =
−kyye + v̂y − ρ1 tanh(

ye

σ1
)

vr

(24)

where σ1 > 0. Substituting (24) into (23) and computing
time derivative yield to

˙̃u1 = cos θe

(
c(s)vr − vx

l
tan δ +

v̄y + ε1

l
− vx

l
(η + ε2)

)
+

1
vr

(
ẏe − ˙̂vy)
(25)

where

η = tan δ̄b (26)


 = ky +
(
1 − tanh2(

ye

σ1
)
)ρ1

σ1
(27)



Remark: For simplicity it is assumed that vr is con-
stant, in case vr is time-varying, only variation is adding
v̇r

v2
r

( − kyye + v̂y − ρ1 tanh
ye

σ1

)
in (25).

step 2: consider the Lyapunov function as

V2 = V1 +
1
2
ũ2

1 +
1
2
(η̂ − η)T γ−1(η̂ − η) (28)

where γ is positive definite, η̂ indicates the estimation of
η. Regard u2 = tan δ as the virtual control input of the
second step, then the time derivative of V2 along (18) is

V̇2 = xe(−vx + vr cos θe) + ye(vru1 − v̂y − ε1)
+(v̂y − v̄y)T Γ−1( ˙̂vy + Γye) + ũ1

˙̃u1 + (η̂ − η)T γ−1 ˙̂η
(29)

Substituting (20)(24)(25) into (29), we have the following
equation (see [20] for detail)

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − ε1)|ye| + yevrũ1

+(v̂y − v̄y)T Γ−1( ˙̂vy + Γye)

+ũ1

(
cos θe

(
c(s)vr − vx

l
tan δ +

v̄y + ε1

l
− vx

l
(η + ε2)

)
+

1
vr

(
ẏe − ˙̂vy)
)

+ (η̂ − η)T γ−1 ˙̂η + ζ1

(30)
where ζ1 is a trivial variation due to the replacement of
sign() by tanh() in (24). From (30) the following equation
can be obtained by algebraic transformation

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − ε1)|ye|
+ũ1(λ − βu2 + α − 
ε1

vr
− βη̂ + τε1 − βε2)

+(v̂y − v̄y)T Γ−1( ˙̂vy + Γye − Γũ1τ + Γ



vr
ũ1)

+(η̂ − η)T γ−1( ˙̂η + γũ1β) + ζ1

(31)

where

α =

(vr sin θe − v̂y) − ˙̂vy

vr
(32)

τ =
1
l
(cos θe +


xe

vr
) (33)

β = vxτ (34)

λ = yevr + cos θec(s)vr + τ v̂y (35)

In (31) let

˙̂η = −γũ1β
˙̂vy = −Γye + Γũ1τ − Γ




vr
ũ1

(36)

and choose u2 as

u2 =
1
β

(
kuũ1 + λ + α − βη̂

+ρ1

(cos θe

l
+




vr

∣∣∣xe − l

l

∣∣∣) tanh(
ũ1

σ2
) + |β|ρ2 tanh(

ũ1

σ3
)
)

(37)
where sign() has been substituted by tanh() and σi > 0,
then we get

V̇2 ≤ −kxx2
e − kyy2

e − kuũ2
1 − (ρ1 − ε1)|ye|

−(ρ2 − ε2)|β||ũ1|
−(ρ1 − ε1)(

cos θe

l
+




vr

∣∣∣xe − l

l

∣∣∣)|ũ1| + ζ

(38)

where ζ = ζ1 +ζ2, ζ2 is another trivial variation due to the
substitution of sign() by tanh() in (37). (38) implies that
the closed-loop system is uniformly bounded.

C. Stability Analysis

From (38) it is known that the longitudinal deviation xe,
lateral deviation ye and ũ1 are all bounded. Indeed all of
them converge into a neighborhood of zero. The range of
the neighborhood is determined by ζ which is linked to σi.
The smaller σi is, the smaller the range of the neighborhood
is, yielding higher accuracy.

When ye and ũ1 vary around zero, from (23) and (24)
one gets that the orientation error θe converges into a
neighborhood of

θ̄e = arcsin
( v̂y

vr

)
(39)

IV. SIMPLIFIED ADAPTIVE CONTROLLER WITH

PROJECTION MAPPING

The robust adaptive controller (37) with VSC can guar-
antee high tracking accuracy from academic point of view.
But in actual applications due to limited bandwidth of
agriculture vehicles and lag of hydraulic-drive steering
systems, performances of the robust adaptive controller
(37) may be deteriorated by significant ”Chattering”.

To be of more benefit to actual applications, the robust
adaptive controller is simplified by setting ρi to zero, then
we get 
 = ky and the controller (37) is reduced into an
ordinary adaptive controller without VSC components.

u2 =
1
β

(
kuũ1 + λ + α − βη̂

)
(40)

By using the similar Lyapunov’s direct method, it is proven
that the adaptive controller (40) leads to the following result

V̇2 ≤ −kxx2
e − kyy2

e − kuũ2
1 + ε1(

ũ1 cos θe

l
− ũ1ky

vr
− ye)

−ũ1 cos θe
vx

l
ε2

(41)
(41) implies the closed-loop system is uniformly bounded.
But comparing with (38) in which only ζ is a negligible
disturbance, (41) is subjected to all the unmodeled sliding
effects. (see [20] for detail)

To make the adaptive controller (40) more robust to
the unmodelled sliding effects, projection mapping is used
for the parameter adaptation procedure. The projection
mapping Projξ(•) is defined by [17], [18]

Projξ(•) =

⎧⎨
⎩

0 if ξ̂ = ξmax and • > 0
0 if ξ̂ = ξmin and • < 0
• otherwise

(42)

By using projection mapping Projξ(•), the robust adaptive
laws become

˙̂vy = Projv̄y

( − Γye + Γũ1τ − Γ



vr
ũ1) (43)

˙̂η = Projη

( − γũ1β
)

(44)

The prior information on the bounds of the sliding
effects v̄y, η can be obtained off-line after performing



large number of absolute coordinates measurements under
different typical working conditions.

V. SIMULATION RESULTS

First a classical “U” path with a perfect circular arc
(path #1) is applied as the reference trajectory to test the
proposed controllers. In the simulations, the gains used in
(20) and (37) are set as kx = 0.6, ky = 0.15, ku = 1.14.
The gains of the adaptive laws (36) as set as Γ = 0.2,
γ = 0.05. In actual implementations these gains should be
tuned gradually to make an optimal compromise between
transient characteristic and limited bandwidth of the steer-
ing system. The reference velocity is set as vr = 8.4km/h
which is the normal velocity of agriculture vehicles in
agriculture applications.

In the first simulation the constant sliding is introduced
with vy = −0.1, δb = −0.048. The control law (12)
without considering sliding is applied also with the same
controller gains. The simulation results of the longitudinal,
lateral and orientation errors are shown by figure 2-4. Since
the vehicle velocity is initialized to zero, obvious longitu-
dinal errors are noticed at the beginning of the simulations.
The initial orientation errors are also nonzero. Those initial
errors quite fit with the real working conditions. From
the simulations it is clear that all the controllers can
make the longitudinal-lateral errors approach to zero before
sliding occurs. But when sliding appears, because the
control law (12) does not take sliding effects into account,
the longitudinal-lateral deviations (dashed line) become
significant. While the robust adaptive controller (37) can
compensate sliding effects through estimating them on
line and counteract modeling inaccuracy by VSC, so the
longitudinal-lateral deviations can converge to zero with
a good transient response (solid line). Finally the adaptive
controller (40) is simulated also. (40) can compensate time-
invariant sliding, the effects of the time-varying sliding are
moderated by projection mapping, hence its longitudinal-
lateral deviations (dotted line) converge to zero with small
offsets (due to linearization approximation in (11c)). The
remarkable overshoots at the beginning and end of the
curve are caused by ”jump change” of the sliding effects
and low level delay. The bounded orientation errors are
shown by figure 4. As analyzed by section III-C the
proposed controllers cannot make the orientation errors
converge to zero, indeed they are bounded around (39).
It is normal when sliding occurs known as “crab sliding”.
The evolution of the sliding parameters v̂y (solid line), η̂
(dashed line) is displayed by figure 5. At the beginning
and end of the circle, v̂y varies greatly which explains
the overshoots of the lateral deviation, but as the vehicle
follows the circle, v̂y , η̂ evolve smoothly close to the real
values.

Since the real sliding vy and δb cannot be measured
precisely. To simulate the actual working conditions, a set
of real pre-measurement data is used to reconstruct the vy

and δb approximately. The longitudinal-lateral deviations
are shown by 6, 7. The (robust) adaptive controllers yield
small lateral deviations with zero mean value, while the
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lateral deviation of the controller (12) is significant and
has obvious bias. The longitudinal errors of the (robust)
adaptive controller are also less than it of (12). It is because
when the lateral sliding and steering bias are compensated
by (robust) adaptive controllers, the negative influences of
ye and θe (due to sliding) on the longitudinal tracking
accuracy is moderated.

In order to fully present the proposed controllers, another
realistic reference trajectory #2 which is sampled in an
actual agriculture application is tracked (see figure 8).
The longitudinal and lateral deviations are displayed by
figure 9, 10. The experimental data indicates that although
the trajectory #2 is more complex than trajectory #1, the
proposed controllers can still track it with high accuracy
in presence of sliding. Furthermore the robust adaptive
controller with VSC yields better transient performances
at the expense of non-smooth movements (solid line)
especially when low level delay is considered. While the
adaptive controller (40) with projection mapping yields a
movement with less oscillation (dotted line), but its bias is
larger than VSC’s. So in case when sliding is dominant,
the robust adaptive controller with VSC is favorable. But
for the vehicles whose bandwidth is limited, the adaptive
controller with projection mapping is preferred.

VI. CONCLUSION

The problem of trajectory tracking control of au-
tonomous agricultural vehicles in the presence of sliding
is investigated in this paper. A kinematic model which
integrates the sliding effects as additive unknown param-
eters is constructed. From this model, a robust adaptive
controller is designed based on backstepping methods
which can stabilize the longitudinal-lateral derivations into
a neighborhood of zero and guarantees the orientation error
converge into a neighborhood near the origin. In addition
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a reduced adaptive controller with projection mapping is
proposed for the purpose of smooth vehicle movements.
Experimental comparative results show the effectiveness of
the proposed control laws. The advantages of this scheme
are that

• When no sliding occurs, the proposed controller can
guarantee longitudinal-lateral deviations and orienta-
tion errors converge to zero.

• Integrating parameter adaptation with backstepping
schemes yields a practical trajectory tracking con-
troller for agriculture vehicles. Also it is applicable
for platoon control.

• Backstepping procedures can be extended easily to
high-order nonholonomic systems, for example trailer
control.

The prospective works include extending backstepping
methods to platoon control and using predictive control to
decrease overshoots of lateral deviations [19].
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