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Abstract— This paper presents a novel approach for vision-
based control of the end-effector of parallel mechanisms. It is
based on the metrological redundancy paradigm, which simplifies
their kinematic models by introducing additional proprioceptive
sensors. By observing the mechanism legs, vision replaces ad-
vantageously these sensors by delivering, in a Cartesian frame,
an exteroceptive measurement of the internal state of the mech-
anism. Formally, the latter is expressed by an original concept
of vision-based kinematics for parallel mechanisms. Based on it,
control is derived that visually servoes the direction of the legs,
rather than the end-effector pose. The method is illustrated and
validated on a Gough-Stewart platform simulation.

I. INTRODUCTION

Parallel mechanism are such that there exist several kine-
matic chains (or legs) between their base and their end-
effector. Therefore, they may exhibit a better repeatability [1]
than serial mechanisms but not a better accuracy [2], because
of the large number of links and passive joints. There can
be two ways to compensate for the low accuracy. The first
way is to perform a kinematic calibration of the mechanism
and the second one is to use a control law which is robust to
calibration errors.

There exists a large amount of work on the control of
parallel mechanisms (see [3] for a long list of references). In
the focus of attention, Cartesian control is naturally achieved
through the use of the inverse Jacobian which transforms
Cartesian velocities into joint velocities. It is noticeable that
the inverse Jacobian of parallel mechanisms does not only
depend on the joint configuration (as for serial mechanisms)
but also on the end-effector pose.

Consequently, one needs to be able to estimate or measure
the latter. As far as we know, all the effort has been put on
the estimation of the end-effector pose through the forward
kinematic model and the joint measurements. However, this
yields much trouble, related to the fact that there is usually
no analytic formulation of the forward kinematic model of a
parallel mechanism. Hence, one numerically inverts the inverse
kinematic model, which is analytically defined for most of
the parallel mechanisms. However, it is known [4], [5] that
this numerical inversion requires high order polynomial root
determination, with several possible solutions (up to 24 real
solutions for a Gough-Stewart platform). Much of the work is

thus devoted to solving this problem accurately and in real-
time (see for instance [6]), or to designing parallel mechanisms
with analytical forward kinematic model [7], [8]. One of the
promising paths lies in the use of the so-called metrological
redundancy [9], which simplifies the kinematic models by
introducing additional sensors into the mechanism and thus
yields easier control [10].

Computer vision being an efficient way of estimating the
end-effector pose [11], [12], it is a good alternative to use it
for Cartesian control of parallel mechanisms. It can be done
in three ways.

a) Vision as a sensor: The first one consists in computing
the end-effector poses by vision, then in translating them into
joint configurations, through the inverse kinematic model, and
finally servoing in the joint space. This scheme is rather easy
to implement for serial mechanisms provided that inverting
the forward kinematic model can be done satisfactorily. The
latter is straightforward for parallel mechanisms since they
usually have an analytical inverse kinematic model. Similarly,
one can consider computer vision as a contact-less redundant
sensor, as already stated in the context of parallel mechanism
calibration [13], and use the simplified models based on the
redundant metrology paradigm.

However, such schemes should be used carefully for parallel
mechanisms, since joint control does not take into account
the kinematic closures and may therefore yield high internal
forces [14].

b) Visual servoing: Second, vision can be additionally
used to perform visual servoing [15]. Indeed, instead of mea-
suring the end-effector pose and convert it into joint values,
one could think of using this measure directly for control.
Recall that there exist many visual servoing techniques ranging
from position-based visual servoing (PBVS) [16] (when the
pose measurement is explicit) to image-based visual servoing
(IBVS) [15] (when it is made implicit by using only image
measurements). Most applications embed the vision system
onto the end-effector to position the latter with respect to a
rigid object whose accurate position is unknown, but one can
also find applications with a fixed camera observing the end-
effector [17]. The interested reader is referred to [18] for a
thorough and up-to-date state-of-the-art.

Visual servoing techniques are very effective since they



close the control loop on the vision sensor. This yields a high
robustness to perturbations and calibration errors. Thus, we
highly recommend to use them also for parallel mechanism
control.

Essentially, these techniques generate a Cartesian desired
velocity which is converted to joint actuation by the inverse
Jacobian. Hence, one can translate such techniques to parallel
mechanisms. It is even rather easier than in the serial case,
since the inverse Jacobian of a parallel mechanism is usually
analytical. The only difficulty comes from its dependency to
the Cartesian pose, which would need be estimated, but, as
stated above, vision can also do that ! Notice that this point
pleads for PBVS, which is effectively the choice made in [19],
[20], [21] for parallel robots with a reduced number of DOF.

c) A novel approach: However, these previous two ways
consist solely in a simple adaptation of now classical control
schemes, which, although probably very efficient, are not very
innovative. Therefore, we propose a novel third way to use
vision, which gathers the advantages of redundant metrology
and of visual servoing and avoids most of their drawbacks.

Indeed, adding redundant sensors is not always technically
feasible (think of a spherical joint) and always requires ei-
ther that the sensors are foreseen at design stage or that
the mechanism is physically modified to install them after
its building. Anyhow, there are then additional calibration
parameters in the kinematic model and one needs to estimate
them in order to convert redundant joint readings into a unit
vector expressed in the appropriate reference frame. Moreover,
observing the end-effector of a parallel mechanism by vision
may be incompatible with its application. For instance, it is
not wise to imagine observing the end-effector of a machining
tool. On the opposite, it should not be a problem to observe the
legs of the mechanism, even in such extreme cases. Thereby
one would turn vision from an exteroceptive sensor to a
somewhat more proprioceptive sensor. This brings us back to
the redundant metrology paradigm.

Consequently, the contribution of this paper is to present
an original vision-based control of parallel mechanisms by
observing their legs with a camera fixed with respect to the
base. It is introduced in the case of parallel mechanisms
of the hexapod type, with illustration on a Gough-Stewart
platform [22], [23] (Figure 1).

The remainder of the paper is the following. Section II is
devoted to vision-based kinematics of the hexapod and models
the leg observation. Then, section III addresses the differential
geometry aspect of the leg observation and the control derived
from it. Finally, simulation results and conclusion are given
respectively in section IV and section V.

II. VISION-BASED KINEMATICS

A. Preliminaries

Parallel mechanisms are most often designed with slim and
rectilinear legs. Thus, one is inclined to consider them as
straight lines as it was done for kinematic analysis [1] or
kinematic calibration [24].

Fig. 1. A Gough-Stewart platform observed by a camera with short focal
length.

Hence, we need a representation for lines suited to control.
Among the work on visual servoing from lines [15], [25],
[26], [27], [28], we prefer the so-called Binormalized Plücker
coordinates representation in [25] which turns out to be
coherent with kinematic modeling of parallel mechanisms.

In such a representation, a straight line in the oriented 3D
space [29] is modeled by the triplet (u, h, h) where:
• u is the unit vector, giving the orientation of the line ;
• h is also a unit vector and h is a non-negative scalar.

They are defined by hh = P× u where P is any point
on the line.

Notice that, using this notation, the well-known (normalized)
Plücker coordinates [30], [31] are the couple (u, hh) .

An interesting property of this representation, concerning
computer vision, is that h = (hx, hy, hz)

T represents the
image projection of the line, i.e. the equation of the image
line verifies

hxx+ hyy + hz = 0 (1)

where x and y are the coordinates of a point in the image.
The interpretation of the scalar h is the orthogonal distance of
the line to the center of projection.

B. Kinematics of an hexapod

Consider the hexapod in Figure 1. It has 6 legs of varying
length qi, i ∈ 1..6, attached to the base by spherical joints
located in points Ai and to the moving platform (end-effector)
by spherical joints located in points Bi. The inverse kinematic
model of such an hexapod is given by

∀i ∈ 1..6, q2
i =
−−−→
AiBi

T−−−→AiBi (2)

expressing that qi is the length of vector
−−−→
AiBi. This model

can be expressed in any Euclidean reference frame. Hence, it
can be expressed in the base frame Rb, in the end-effector
frame Re or in the camera frame Rc. In the remainder and
when needed, the reference frame used will be made explicit
by a left upper-script.

Let us consider (ui, hi, hi), the Binormalized Plücker coor-
dinates of the line passing through Ai and Bi, oriented from
Ai to Bi. Then, we trivially have

−−−→
AiBi = qiui (3)
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Fig. 2. Duality between the mobile end-effector mode and the fixed end-
effector mode.

From [1], we know that the inverse Jacobian of the hexapod,
relating the end-effector Cartesian velocity τe =

(
Ve
Ωe

)
to the

joint velocities is

Jinve =




uT1 (
−−−→
CB1×u1)T

...
...

uT6 (
−−−→
CB6×u6)T


 (4)

where C is the center of the end-effector reference frame.
Notice that we write the inverse Jacobian Jinve rather than J−1

to clearly state that it has an analytical expression, contrary to
the inverse Jacobian of a serial mechanism.

C. Vision-based kinematics of an hexapod

It has been noticed [1] that the lines of the inverse Jacobian
are the Plücker coordinates of the legs. However, this is
only true if the reference frame where these coordinates are
expressed is centered on C. In such a case,

−−→
CBi, i = 1..6 are

constant and Jinve only depends on ui, i = 1..6. Consequently,
if one can measure or estimate ui, i = 1..6 in the end-
effector frame, one can easily convert eτe, the end-effector
Cartesian velocity expressed in the end-effector frame into
joint velocities.

This measure can be done with a camera embedded onto
the end-effector (i.e. Rc = Re) and observing the legs (see II-
D). In this case, the vision-based kinematics of the hexapod
expressed in the end-effector frame are very simple:

qi
eui = eBi − eRb

bAi − etb (5)
q̇ = eJinve

eτe (6)

with eJinve =



euT1

eh1
ehT1

...
...

euT6
eh6

ehT6


 (7)

ehi
ehi = eBi × eui, i = 1..6. (8)

This formulation can apply to a classical visual servoing
scheme with embedded camera. Indeed, such a scheme gener-
ates, without loss of generality, a desired eτe from the images
of an externally fixed target. In practice, it may be awkward
since the camera should observe both the external target and all
the legs. Alternately, several cameras could be used, but need
be synchronized and calibrated with respect to each other.

In practice, it may thus be more convenient if the camera
observing the legs is fixed to the base. Then, the reference
frame associated to it is, without loss of generality, the base
frame and the kinematics of the hexapod do not express as
simply as in the end-effector embedded camera case. Indeed,
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Fig. 3. Projection of a cylinder in the image.

expressed in the base frame, (4) becomes

bJinvb =



buT1 (

−−−−→
bCbB1×bu1)T

...
...

buT6 (
−−−−→
bCbB6×bu6)T


 (9)

where
−−−−→
bCbBi = bRe

eBi ∀i = 1..6. Hence, it is necessary
with this expression to estimate the end-effector orientation
with respect to the base frame.

An alternate formulation is possible, which is somewhat
less useful for standard Cartesian control. However, it is well
suited to the observation of the legs only and thereby to the
control scheme proposed in III. It consists in considering the
mechanism in its dual operating mode: the end-effector is fixed
and the base moves with respect to it. Thus, we are interested
in the inverse Jacobian relating the base Cartesian velocity
bτb =

(
bVb
bΩb

)
to the joint velocities expressed in the base

frame.
By analogy with (5-8), i.e. by permutation of the roles of

Bi and Ai and of Re and Rb (Figure 2), one obtains the
vision-based kinematics of the hexapod expressed in the base
frame:

qi
bui = bRe

eBi + bte − bAi (10)
q̇ = bJinvb

bτb (11)

with bJinvb = −



buT1

bh1
bhT1

...
...

buT6
bh6

bhT6


 (12)

bhi
bhi = bAi × bui = bBi × bui, i = 1..6. (13)

Notice the minus signs in (10) and (12), coming from the fact
that in the permutation the orientation of the legs has changed.
Notice also that now the inverse Jacobian is independent from
the relative pose of the end-effector and base.

D. Cylindrical leg observation

As seen above, one needs to estimate the leading vector ui
of each leg. Since the leading vector of a leg is essentially a
Cartesian feature, we chose to estimate it by vision. Indeed,



vision is an adequate tool for Cartesian sensing, and, follow-
ing [24], if vision is also chosen for calibration, this does not
add extra calibration parameter.

Now the problem is to recover ui from the leg observation.
It may be somehow tedious, although certainly feasible, in the
case of an arbitrary shape. Hopefully, for mechanical reasons
such as rigidity, most of the parallel mechanisms are not only
designed with slim and rectilinear legs, but, even better, with
cylindrical shapes.

Consequently, the leading vector ui of the leg is also
the leading vector of the cylinder edges. Thereby, simple
intuitive projective geometry states that this common direction
is the vanishing point of the two cylinder edges in the image
(Figure 3).

The edge of a cylinder being a straight line, it can be
represented by its Binormalized Plücker coordinates [32].
Let us note he1 and he2 the (adequately oriented) image
projections of the two edges of a cylinder. Then, it is easy
to show that the leading vector u of the cylinder axis writes

u =
he1 × he2

‖he1 × he2‖ (14)

III. CONTROL

In this section, we address the control problem: from a
given configuration of the hexapod legs observed by a camera
attached to the base, how to reach a desired configuration ?

Visual servoing is based on the so-called interaction matrix
LT [33] which relates the instantaneous relative motion Tc =
cτc − cτs between the camera and the scene, to the time
derivative of the vector s of all the visual primitives that are
used through:

ṡ = LT(s)Tc (15)

where cτc and cτs are respectively the kinematic screw of the
camera and the scene, both expressed in Rc.

Then, one achieves exponential decay of an error e(s, sd)
between the current primitive vector s and the desired one sd
using a proportional linearizing and decoupling control scheme
of the form:

Tc = λL̂T+
(s) e(s, sd) (16)

where Tc is used as a pseudo-control variable.
Here also, we will need to define a visual primitive, then

form an error between its current value and its desired one,
then relate in some way its time derivative to the actuation,
and finally find a control relation between the error and the
actuation.

A. Visual primitive and error

As foreseen above, we will use the unit vectors ui , i = 1..6
as visual primitives. Since these primitives are expressed in the
3D space, we are close to a PBVS scheme. However, since
the reconstruction step (14) is algebraic, it is nevertheless not
far away from IBVS.

The visual primitives being unit vectors, it is theoretically
more elegant to use the geodesic error rather than the stan-
dard vector difference. Consequently, the error grounding the
proposed control law will be

ei = bui × budi (17)

B. Interaction matrix

Here, we relate the time derivative of ui to the actuation.
From (3), we immediately obtain

b u̇i =
1

qi

d

dt

−−−−→
bAi

bBi −
q̇i
qi

bui (18)

Inserting the interaction matrix associated to a 3D point [16]
applied to the moving point cBi:

d

dt

−−−−→
bAi

bBi =
[
−I3

b̃Bi

]
bτb (19)

where ˜ is the antisymmetric matrix associated to the cross
product, into (18) yields

b u̇i = − 1

qi

[
I3 −b̃Bi

]
bτb −

q̇i
qi
bui (20)

It is interesting to see that both the base Cartesian velocity
and the joint velocity vector appear in this expression, while
also being linked to each other by the inverse Jacobian in (12).
This is certainly due to the existence of closed kinematic
chains.

Nevertheless, using precisely the linking inverse Jacobian,
one can exhibit a relationship between each b u̇i and bτb only.
Indeed, each line of the inverse Jacobian in (12) rewrites as

−
[
buTi

bh1
bhTi

]
= −buTi

[
I3 −b̃Bi

]
(21)

Hence, we get the following relationship
b u̇i = MT

i
bτb (22)

MT
i = − 1

qi

(
I3 − bui

buTi
) [

I3 −b̃Bi

]
(23)

where MT
i is obviously of rank 2.

Since cBi = cAi + qi
cui, one can rewrite the above

expression, using uniquely constant (cAi) or easily measurable
(qi and cui) quantities, as

MT
i = − 1

qi

(
I3 − cui

cuTi
) [

I3 −[cAi + qicui]×
]

(24)

Necessary condition 1: A minimum of 3 independent legs
is necessary to control the end-effector pose, provided that
there exists a diffeomorphism between the task space and the
Cartesian space se(3).

A interaction matrix MT can then obtained by stacking
MT

i , i = 1..6. However, it is, in our opinion, an open question
whether M shall or shall not be considered as an interaction
matrix. Indeed, in visual servoing the various visual primitives
are the image projections of objects in space that are rigidly
linked to each other, while, here, each of the legs is in relative
motion with respect to the other ones.

Nevertheless, effective control can be derived as shown in
the following section.



C. Control law

Let us choose a control such that E = (eT1 , ..., e
T
6 )T

decreases exponentially, i.e. such that

Ė = −λE (25)

Then, introducing NT
i = −b̃udiMT

i and NT =
(N1, ...,N6)T , the combination of (17), (22) and (25) gives

NT bτb = −λE (26)

The Cartesian control velocity is hence

bτb = −λNT+
E (27)

and can be transformed into the control joint velocities us-
ing (11)

q̇ = −λbJinvb NT+
E (28)

Notice that since the joint velocities are obtained through the
inverse Jacobian, they are admissible and do not generate any
internal force, provided that the inverse Jacobian is accurate
and the time sampling high enough.

IV. RESULTS

A. Simulating a parallel mechanism

Due to the kinematic closure constraints, it is not that
easy to simulate a parallel mechanism for control. Indeed, to
simulate the end-effector pose bTe, from which all the other
information on the mechanism can be obtained, one has two
options: either one integrates in the joint space and solves for
the forward kinematic problem at each time period, or one
integrates directly the end-effector velocity with respect to the
base bτe in the Cartesian space.

The first option is troublesome because of the non analytic
forward kinematic problem. Thus, we prefer the second option,
which only requires to be very cautious (especially with the
integration step), since one integrates on a curved spaced in
place of a vector space.

Once the integration step is validated, then the simulation
is easy (Figure 4). Indeed, from (7), one has eτe from the
control joint velocities q̇. Using

bτe =
(
bRe 0

0 bRe

)
eτe, (29)

and noting bJinve =
(
bRe 0

0 bRe

)
eJinve , one finally has

bτe = bJinve
−1

q̇ (30)

which is integrated as above.
Consequently, the vision-based inverse kinematics of the

hexapod expressed in the end-effector frame are used for
simulation, while expressed in the base frame they are used
for control.

bJinve
−1

Simulated camera

Rud bTe
Control

Simulated mechanism

q̇ bτe

u

Fig. 4. Simulation scheme
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B. Control simulation

We simulated a commercial DeltaLab hexapod, such that
bA2k = Rb

(
cos(k π3 +α)

sin(k π3 +α)
0

)
, bA2k+1 = Rb

(
cos(k π3−α)

sin(k π3−α)
0

)
,

eB2k = Re

(
cos(k π3 +β)

sin(k π3 +β)
0

)
, eB2k+1 = Re

(
cos(k π3−β)

sin(k π3−β)
0

)
,

k ∈ {0, 1, 2} with Rb = 270mm, α = 4.25◦, Re = 195mm,
β = 5.885◦ and the legs range are [345mm, 485mm].

In all the simulations presented here, the initial configuration
of the platform is the reference configuration where all the legs
have minimal length. The goal configuration is obtained from
this reference configuration by a translation by 10cm along
the z axis of the platform (upward vertical) and a rotation of
15◦ around the x axis, thus reaching the workspace limit.

In a first simulation, all the legs are used for control. Fig-
ure 5 shows that the errors on each leg converge exponentially
to 0 and that the desired end-effector pose is reached.

We also added some noise to the simulation (Figure 6). To
do so, since it is hard to characterize the noise in the image,
we applied, as a first guess, a random rotation on the unit
vectors ui with maximal amplitude of 0.01, 0.05 and 0.1◦.
Results show a potentially good robustness.

In a second simulation, only the legs 2, 4 and 6 were
used for control, to show that 3 legs may be enough to reach
the desired configuration. Figure 7 shows that convergence is
ensured even if the error on legs 1, 3 and is not controlled.

In a third simulation, only the legs 1, 2 and 3 were
used. Figure 8 shows that the Necessary condition 1 is not
a sufficient condition: the controlled legs converge towards
their desired orientation, while neither the non-controlled
legs nor the end-effector reach their goal. Notice that we
deliberately removed in the simulation any joint limit to show
the theoretical behaviour of the control with only 3 legs.

In both the second and third simulations, the interaction
matrix is of full rank and does not yield degenerate control.
However, in both case, defining the orientation of 3 legs is
not enough to uniquely determine the end-effector pose. The
second simulation shall be considered as a lucky trial, which
can be explained by the fact that the motion of the 3 controlled
legs between the initial and desired configuration pulls the
other 3 legs towards their desired direction. Nevertheless, this
result is interesting since it suggests that self-occlusions of
the legs, when using a single fixed camera, should only have
a local impact on the occluded leg.

V. CONCLUSION

We proposed a novel method for controlling a parallel
mechanism using vision as a redundant sensor, adding a
proprioceptive nature to the usual exteroceptive nature of
vision. It was validated and illustrated on a Gough-Stewart
platform simulation, showing a probably large convergence
domain and potentially good robustness properties.

However, this paper is only the seed of a vast research
domain. Indeed, there are several points to be addressed before
a safe and satisfying implementation can be made on a real
platform. First, this control does not take into account joint

limit avoidance. This point is fundamental since these limits
can be easily be reached and their avoidance may not be as
trivial as for serial mechanisms. Second, this control assumes
a detection of cylinder edges, which is known to be delicate
in vision. Third, since the control is essentially based on the
direction of each leg, one may think of extracting it from
the image of a generally shaped leg. Fourth, the convergence
seems potentially global but has not been proven, nor robust-
ness and controllability have been thoroughly studied. Finally,
one would like to apply this control to any parallel mechanism.
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parallèle de type plateforme de Gough,” Master’s thesis, Univ. B. Pascal,
Clermont-Ferrand, 2004.

[33] F. Chaumette, La commande des robots manipulateurs, Traité IC2.
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