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Abstract— To close the loop between motion and vision,
tracked visual features must remain in the camera field of
view (visibility constraint). To overcome the visibility con-
straint, visual servoing methods can benefit from panoramic
sensors such as catadioptric cameras (combining both mir-
rors and lenses). In this paper, we present a vision-based
framework to control a nonholonomic mobile robot using
a catadioptric imaging system. We particularly focus on
a suitable catadioptric image-based control strategy of a
nonholonomic robot in order to follow a 3D straight line.
Such strategy can be applied to navigate in indoor or urban
environment since the extraction and the tracking of straight
lines are natural. First the control objectives are formulated in
the catadioptric image space. The control law is then designed
according to a well suited chained system for a mobile robot
state vector directly expressed in the image space using a
generic camera model. Simulation results illustrate the control
strategy in the case of hypercatadioptric and paracatadioptric
cameras.

Index Terms— Omnidirectional vision, mobile robot con-
trol, visual servoing.

I. INTRODUCTION

In the last years, the use of visual observations to control
robot motions has been extensively studied. Indeed, com-
puter vision can provide a robotic system with the ability to
operate in circumstances and environments which can not
be accurately controlled. This approach is referred to in the
literature as visual servoing. Visual servoing schemes are
traditionally classified in three groups: position-based[8],
image-based [11] and hybrid-based control [15]. The first
one, based on the computation of a 3-D Cartesian error,
requires generally a perfect CAD model of the object and
a calibrated camera to obtain unbiased pose estimation. In
the second approach, the control loop is directly closed in
the image space and thus the full model of the object is
not to be known accurately. Hybrid-based visual servoing
methods combine image and 3-D informations to design
the input vector. In this paper, we will focus on image
based methods.

Conventional cameras suffer from restricted field of
view. Ambiguities and confusion between translation and
rotation may arise whenever the translation direction lies
outside the camera field of view. Omnidirectional cameras
overcome this problem since they provide a 360 degrees
field of view of the surroundings. Many applications in
vision-based robotics, such as mobile robot localisation [5]
and navigation [25], can benefit from panoramic field of
view provided by omnidirectional cameras. Visual servoing

applications can also benefit from cameras with a wide
field of view. Indeed, classical visual servoing techniques
make assumptions on the link between the initial, current
and desired images. They require correspondences between
the visual features extracted from the initial image with
those obtained from the desired one. These features are
then tracked during the camera (and/or the object) motion.
If these steps fail, the visually based robotic task can not be
achieved [6]. Typical cases of failure arise when matching
joint images features is impossible (for example when no
joint features belongs to initial and desired images) or when
some parts of the visual features get out of the field of view
during the servoing. Some methods have been proposed
to resolve this deficiency based on path planning [16],
switching control [7], zoom adjustment [18] or geometrical
and topological considerations [21]. However, such strate-
gies are sometimes delicate to adapt to a generic setup.
Omnidirectional cameras naturally overcome this problem.
As a consequence, such sensors have been successfully
integrated as part of a closed loop feedback control system
[24], [3].

In the literature, there have been several methods pro-
posed to increase the field of view of cameras systems [4].
One effective way is to combine mirrors with conventional
imaging system. The obtained sensors are referred to as
catadioptric imaging systems. The resulting imaging sys-
tems have been termed central catadioptric when a single
projection center describes the world-image mapping. From
a practical view point, a single center of projection is a
desirable property for an imaging system [1]. Baker and
Nayar in [1] derive the entire class of catadioptric systems
with a single viewpoint.

Image-based visual servoing methods have been firstly
developed for manipulators. In [22], Tsakiris et al point
out that image-based visual servoing techniques can be
extended to nonholonomic mobile robots by adding degrees
of freedom to the hand-eye system. This paper proposes
to embed the visual servoing control scheme in the task
function formalism [8]. Vision-based mobile robotic tasks
such as wall following or self positioning with respect
to landmarks is thus possible using this framework [12].
Without these extra degrees of freedom, the pose of the
camera with respect to the target can not be stabilized
involving only a state feedback. However, it is possible
to exploit work which aims to control a nonholonomic
wheeled mobile robot moving on a plane [13] in order
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to track a non-timed analytical path in the image space
without recovering any 3D parameters of the path. Yi Ma et
al in [14] propose a theoretical framework to track a ground
curve by approximating its projection in the image plane
of a conventional camera with piecewise analytic curves
with linear curvature. Usher et al [23] the authors propose
a switching controller to regulate the pose of a vehicle
using information provided by an omnidirectional camera.
In [24], the problem of formation control is addressed
by specifying the desired formation in the image plane
of an omnidirectional camera. The global control problem
is translated into separate visual servoing tasks for each
follower.

In this paper, we particularly focus on a suitable cata-
dioptric image-based control strategy of a nonholonomic
robot in order to follow a 3D straight line. Such a strategy
can be applied to navigation in indoor or urban environment
since the extraction and the tracking of straight lines are
natural. The first contribution is to formulate the control
objectives in the catadioptric image space. The second one
is to tightly couple catadioptric visual servoing and mobile
robot control. Indeed, the control law is designed according
to a well suited chained system with a state vector directly
expressed in the image space.

The remainder of this paper is organized as follows. In
Section II, following the description of the catadioptric
camera model, lines projections in the image plane is
studied. In Section III, the problem we address is described
and the models used through the paper are introduced.
Section IV is devoted to the control law design. In Section
V, simulated results are presented.

II. CAMERA MODEL AND IMAGE FORMATION OF LINES

In this section, we describe the projection model for cata-
dioptric cameras and then we focus on 3D lines features.

A. Catadioptric camera model

As noted in the introduction, a single center of projection
is a desirable property for an imaging system. A single
center implies that all lines passing through a 3D point and
its projection in the image plane pass through a single point
in 3D space. Conventional perspective cameras are single
view point sensors with limited field of view (typically 45
degrees). As shown in [1], a central catadioptric system
can be built by combining an hyperbolic, elliptical or
planar mirror with a perspective camera (see Fig. 1) and a
parabolic mirror with an orthographic camera.

Let Fc and Fm be the frames attached to the conven-
tional camera and to the mirror respectively (see Fig. 1).
In the sequel, we suppose that Fc and Fm are related by
a translation along the Z-axis. The centers C and M of
Fc and Fm will be termed optical center and principal
projection center respectively. Let X be a 3D point with
coordinates X = [X Y Z]T with respect to Fm. According
to the generic projection model [10], X is projected in the
image plane to a point x = [x y 1]T with:

x = Kf(X) (1)

where K denotes the triangular calibration matrix of the
catadioptric camera, containing mirror and lens intrinsic
parameters and:

f(X) =


X

Z+ξ
√

X2+Y 2+Z2

Y
Z+ξ

√
X2+Y 2+Z2

1


where ξ is a mirror intrinsic parameter.

In the sequel, we will assume that the K-matrix is
the identity (calibrated configuration [26]), the mapping
function describing central catadioptric projection is then
given by: x = f(X).

M

C

Fm

Fc

image plane

nP
Li u

Fig. 1. Projection of a 3D line onto a conic in the image plane

B. Catadioptric projection of Lines

Let P be a 3D point and u = (ux, uy, uz)T a unit
vector expressed in the mirror frame and L the 3-D line
they define (refer to Fig. 1). Define n =

−−→
MP × u =

(nx, ny, nz)T and remark that this vector is independent
of the point we choose on the line. Thus the Euclidean
Plücker coordinates are defined as L :

(
nT uT

)T
with

nT u = 0. The n-vector is orthogonal to the interpretation
plane Π defined by the line and the principal projection
center:

X = [X, Y, Z]T ∈ Π ⇐⇒ nxX + nyY + nzZ = 0 (2)

Let S be the intersection between the interpretation plane
and the mirror surface. S represents the line projection in
the mirror surface. Note that all 3D lines of Π are projected
onto S. The projection S of L in the catadioptric image
plane is then obtained using a conventional imaging system.
It can be shown using (1) and (2) (or following [17]) that
3D points lying on L are mapped into points in the image
x which verify:

xT Ωx = 0 (3)

with :

Ω =

(
n2

x(1−ξ2)−nη
zξ2 nxny(1−ξ2) (2η−3)nxnη−1

z

nxny(1−ξ2) n2
y(1−ξ2)−nη

z ξ2 (2η−3)nynη−1
z

(2η−3)nxnη−1
z (2η−3)nynη−1

z nη
z

)
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Fig. 2. The task to be achieved

where η = 2 in the general case and η = 1 for the
combination parabolic mirror-orthographic camera. Note
that the projection of a line is fully defined by the vector n.
A line in space is thus mapped onto the image plane to a
conic curve. The relation (3) defines a quadratic equation:

A0x
2 + A1y

2 + 2A2xy + 2A3x + 2A4y + A5 = 0 (4)

with: 

A0 = s(n2
x(1 − ξ2) − nη

zξ2)
A1 = s(n2

y(1 − ξ2) − nη
zξ2)

A2 = snxny(1 − ξ2)
A3 = s(2η − 3)nxnη−1

z

A4 = s(2η − 3)nyn
η−1
z

A5 = snη
z

(5)

Let us note that the equation (4) is defined up to a
scale factor s. We thus normalize (4) using A5 to obtain
unambiguous representations. The quadratic equation is
thus rewritten as follows:

B0x
2 + B1y

2 + 2B2xy + 2B3x + 2B4y + 1 = 0 (6)

with Bi = Ai

A5
. The case nz = 0 corresponds to a

degenerate configuration of our representation where the
optical axis lies on the interpretation plane. In this case,
the projection of the 3D line in the image can be shown to
be a line passing through the image center. In the following,
we will only consider the non degenerated case.

III. PROBLEM FORMULATION

Throughout the paper, we consider a nonholonomic sys-
tem with car-like kinematics where the embedded catadiop-
tric system looks at the upwards from the ground. In the
first part of this section, the control objective is presented.
In the second part, the control objective is reformulated in
the catadioptric image space.

A. Control objective in the robot workspace

Let Fr be the frame attached to the robot control frame.
It is supposed confounded with Fm. In this configuration,
the camera optical axis coincides with the rotation axis
of the mobile robot and the camera optical center is
confounded with the axle midpoint of the mobile robot.
The camera frame and the mobile robot are thus subjected
to the same kinematic constraints. The kinematic screw is
only composed with a linear velocity along the X-axis of
the camera frame and an angular velocity about the optical
axis. This is still true if the optical center is not confounded
with the axle midpoint but lies on the Z-axis of Fm.

Consider a 3D straight line L parallel to the XY -plane
of Fr and parallel to the X-axis of the world frame. It
is projected onto the image plane according to (3). The
control objective is to drive the X-axis of the control frame
parallel to the line while keeping a constant distance to
the line (see Fig. 2). The state of the mobile robot can be
described by the vector Xr = [x y θ]T , where x and y are
the coordinates of the camera frame center with respect to
the world frame and θ is the angular deviation with respect
to the straight line (see Fig. 3). The task is achieved when
the lateral deviation y is equal to the desired one y∗ and
the angular deviation θ is null. Thanks to the properties of
chained system, we are able to decouple the lateral control
from the longitudinal deviation if v �= 0. The state vector
Xr can thus be reduced to [y θ]T . We now describe how
to translate the control objective in the catadioptric image
space.

B. Formulation of the control objective in the image space

The projection of a 3-D line L in the catadioptric image
is fully defined by the normal vector n to the interpretation
plane (refer to Section II). The direction of L is given by
the unit vector u of coordinates with respect to the control
frame given by:

u =

 cos θ
− sin θ

0


The previous relation defines the vector u as a function of
the angular deviation θ (see Fig. 3). It is thus independent
of the lateral deviation y of the mobile robot with respect
to the line. Since n =

−−→
MP × u = [nx ny nz]T is

independent of the point P we choose on the line, P can be
taken as the point of coordinates P = [y sin θ y cos θ h]T

with respect to the control frame (h denotes the height
of the line from the ground). The normal vector to the
interpretation plane n is thus given by:

n =

 −h sin θ
−h cos θ

y

 (7)

Note that when the X-axis of the control frame is parallel
to the line L (i.e when the angular deviation is null) only
its last component varies as the longitudinal deviation.
Conversely, the two first components of n depend only
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Fig. 3. Modelling the car-like vehicle

of the angular deviation. Let us now represent the angular
and longitudinal deviation as functions of image features.

Consider the observation vector s = [B3 B4]T extracted
from the projection of line L in the catadioptric image (B3

and B4 has been defined in Section II). The observation
vector s fully represents the line projection and it is
minimal. An important remark is that the observation vector
s is the perspective projection of the normal vector n.
Knowing that: {

B3 = β nx

nz

B4 = β
ny

nz

(8)

where β = 2η−3 (i.e. η = 2 in the general case and η = 1
for the combination of parabolic mirror with orthographic
camera), we get:

y =
h√

B2
3 + B2

4

(9)

B2
3 +B2

4 is null only if the 3D line lies on the XY plane of
the camera frame Fm (i.e. the center of the line projection
in the catadioptric image is confounded with the optical
center). The angular deviation can easily be rewritten as a
function of the observation vector by combining equations
(7) and (8): tan θ = B3

B4
and thus:

θ = tan−1 B3

B4
(10)

B4 is null only if the X-axis of the mirror frame is
perpendicular to the 3D line (i .e θ = π

2 [π]).
The reduced state vector of the mobile robot [y θ] can

thus be expressed directly in the sensor space according to
(9) and (10).

IV. CONTROL LAW DESIGN

The control objective is to drive the X-axis of the control
frame parallel to the line while keeping a constant distance
to the line (see Fig. 2). The task is achieved when the
lateral deviation y′ is equal to the desired one y′∗, (without
loss of generality, we define the lateral deviation by y =
y′ − y′∗) and the angular deviation θ is null. To achieve
this control objective, chained systems properties are very
interesting. A chained system results from a conversion of
a non linear model into an almost linear one [19] and [20].
As long as the robot longitudinal velocity v is non zero, the
performances of a path tracking can be determined in terms

of settling distance. We consider a nonholonomic system
with car-like kinematics. The car-like vehicle is supposed to
move on a perfect horizontal ground under the conditions of
pure rolling and non-slipping. The control vector is uc =
[v δ]T . The state and control vectors are related by the
following kinematics equations:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = v
L tan δ

(11)

Note that the previous kinematics equations can be trans-
lated in the image space using the so called interaction
matrix or image Jacobian [11]. In order to design the
control law as simply as possible, the kinematics equations
in Cartesian space will be exploited and the equations (9)
and (10) will be used to express the control law in the
image space.

Let us now convert the state space model (11) into
a 3 dimensional chained system [a1 a2 a3]T with a two
dimensional control vector [m1 m2]T . The derivative of
such a chained form with respect to time is:

ȧ1 = m1

ȧ2 = a3m1

ȧ3 = m2

(12)

In order to point out that a chained system is almost linear,
it is derivated with respect to the state variable a1:

á1 = 1
á2 = a3

á3 = m3

(13)

where m3 = m2
m1

. Choosing a1 = x, the linear system (11)
is independent from the longitudinal velocity v since it is
driven by a variable homogeneous to the distance covered
by the mobile robot. The input variable m1 is thus given
by (see equations (11) and (12)): m1 = ẋ = v cos θ. Let us
now define a2 = y. Then it comes: ȧ2 = v sin θ = a3m1.
Therefore a3 must be chosen as:

a3 =
ȧ2

m1
= tan θ

Consequently, a3 is not defined for θ = π
2 [π]. The control

m2 can be deduced from (12):

m2 =
v tan δ

L cos2 θ

Since the state space model (13) is linear, a natural and
simple expression for the control law is:

m3 = −Kda3 − Kpa2 (Kp, Kd) ∈ R2 (14)

Reporting (14) in (13) leads to: ´́a2 + Kdá2 + Kpa2 = 0.
This last equation implies that both a2 and a3 converge

to zero, independently of the longitudinal velocity of the
vehicle as long as v �= 0. Since a2 = y and a3 = tan θ, the
same conclusion holds for y and θ. The performance of the
proportional-derivative controller and the settling distance
for the regulation of y are determined by the gains Kp
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and Kd. Moreover by combining the following relations
a2 = y, a3 = tan θ and (14), we get:

δ = tan−1
[
L cos3 θ(−Kd tan θ − Kpy)

]
(15)

According to (9) and (10), the control law (15) can be
rewritten as:

δ = tan−1
[
L cos3(tan−1 B3

B4
)(−Kd

B3

B4
−Kp

h√
B2

3 + B2
4

)
]

(16)
The previous equation presents the control law as a function
of the image features B3, B4 and the constant parameters
h. In a real setup, h is estimated and taken as ĥ = h ·∆h.
However, the last part of the control law (16) can be written
as K ′

p
h√

B2
3+B2

4

with K ′
p = Kp∆h, this means that a bad

estimation of h acts as a factor on the gain Kp and thus
modifies the control law performances. In practice, ∆h is
over-estimated to tune the gains.

V. SIMULATION RESULTS

In this section, we present simulation results of central
catadioptric vision-based control of a mobile robot using
the control law (16). In the first simulation, a paracata-
dioptric system (a parabolic mirror combined with an
orthographic lens) is used, and in the last one, an hyper-
catadioptric system (an hyperbolic mirror combined with a
perspective lens) is considered. We used a car-like vehicle
kinematics as model (refer to equation (11)). The gains
were set to (Kp, Kd) = (1, 2) for these simulations. The
initial and desired states of the mobile robot with respect
to the 3D line are the same in these simulations. Figure 4
shows the initial spatial configurations of the line and the
camera (or mobile robot). To be close to a real setup, an
estimated calibration matrix K̂ (with an error of ±10% on
the focal length and ±5 pixels on the coordinates of the
image center) is used. ĥ has been set to 1.2m whereas the
real value is 1m, and an image noise has been added when
extracting the observation vector s (maximum amplitude
of ±5 pixels) in the case of a paracatadioptric camera.
Unfortunately, when using an hypercatadioptric camera,
robust algorithm is necessary to extract a portion of conics.
For that reason, noise has been added directly to the normal
vector n.

The state of the mobile robot is derived from features
extracted from the catadioptric image of a line. In the
case of paracatadioptric cameras, the image of a line is
a portion of circle. The center of this circle is given by the
perspective projection of the normal vector n. This is not
true in the case of hypercatadioptric cameras. The image
of a line becomes a portion of a conic.

As shown in Figures 6 and 8, angular and lateral
deviations are well regulated to zero in both cases (para-
catadioptric and hypercatadioptric cameras). Note also that
these deviations are similar in the case of a paracatadioptric
camera or an hypercatadioptric camera. The projection of
the line in the paracatadioptric (resp. hypercatadioptric)
image at the initial position of the mobile robots is shown in

Figure 5 with blue color (resp. Figure 7). It joins its image
at the desired location given in Figure 5 with red color
(resp. Figure 7) when the task is achieved. The trajectory
of the line projection in the image is shown in Figure 5
with green color (resp. Figure 7) and confirm that the task
is correctly realized.

Note finally that fitting a conics to image measurements
is not a simple issue. Such process is sensitive to noise
measurements and unstable. Moreover, one will only see a
portion of the conic due to occlusions and camera motions.
This is particulary true when an hypercatadioptric camera
is used since the projection of a 3D line can potentially
be any conics. We are currently working on this issue.
Fortunately, the projection of 3D lines onto the image plane
of a paracatadioptric camera are circles. In this case, stable
and robust algorithms can be used (see [2] and [9]).
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Fig. 4. Line configuration and robot trajectory
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Fig. 5. Trajectories in the image plane of line projection with a
paracatadioptric camera
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Fig. 6. Simulation with a paracatadioptric camera
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Fig. 7. Trajectories in the image plane of line projection with an
hypercatadioptric camera
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Fig. 8. Simulation with an hypercatadioptric camera

VI. CONCLUSIONS

Visibility constraints are extremely important for visual
servoing applications. To overcome these constraints, the
wide field of view of central catadioptric cameras can be
exploited. We have addressed the problem of controlling
the motion of a nonholonomic mobile robot directly in
the image space, by incorporating observations from a
catadioptric camera to follow a 3D straight line. We have
detailed the establishment of a control law based on a
chained form for a state vector directly expressed in the
image space. The proposed approach can be used with
all central cameras (including the conventional ones). It
has been validated in simulation with paracatadioptric and
hypercatadioptric cameras. The simulations show that the
control law is robust with respect to noise measurements
and modelling errors. Future work will be devoted to study
the case of general path following using central catadioptric
cameras, and to validate it in a real experimental setup.
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