
Indoor Navigation of a Wheeled Mobile Robot
along Visual Routes

Guillaume Blanc, Youcef Mezouar and Philippe Martinet
LASMEA

UBP Clermont II, CNRS - UMR6602
24 Avenue des Landais, 63177 AUBIERE, FRANCE

firstname.lastname@lasmea.univ-bpclermont.fr

Abstract— When navigating in an unknown environment
for the first time, a natural behavior consists in memorizing
some key views along the performed path, in order to use
these references as checkpoints for a future navigation mission
taking a similar path. This assumption is used in this paper as
the basis of a navigation framework for wheeled mobile robots
in indoor environments. During a human-guided teleoperated
learning step, the robot performs paths which are sampled
and stored as a set of ordered key images, acquired by a
standard embedded camera. The set of these obtained visual
paths is topologically organized and provides a visual memory
of the environment. Given an image of one of the visual
paths as a target, the robot navigation mission is defined as a
concatenation of visual path subsets, called visual route. When
running autonomously, the robot is controlled by a visual
servoing law adapted to its nonholonomic constraint. Based on
the regulation of successive homographies, this control guides
the robot along the reference visual route without explicitly
planning any trajectory. Real experiment results illustrate the
validity of the presented framework.

Index Terms— Visual Navigation, Visual Memory, Visual
Servoing for Mobile Robots

I. INTRODUCTION

Vision is a central clue of most of recent mobile robots
navigation frameworks. The authors of [4] accounts of
twenty years of works at the meeting point of mobile
robotics and computer vision communities. Often used
among more ”traditional” embedded sensors - proprio-
ceptive sensors like odometers as exteroceptive ones like
sonars - it provides accurate localization methods. In many
works, and especially those dealing with indoor naviga-
tion as in [8], computer vision techniques are used in
a landmark-based framework. Identifying extracted land-
marks to known references allows to update the results
of the localization algorithm. These methods are based on
some knowledges about the environment, such as a given
3D model or a map built online. They generally rely on
a complete or partial 3D reconstruction of the observed
environment through the analysis of data collected from
disparate sensors. The mobile robot can thus be localized
in an absolute reference frame. Both motion planning and
robot control can then be designed in this space. The
results obtained by the authors of [15] leave to be forcasted
that such a framework will be reachable using a single
camera. However, although an accurate global localization
is unquestionably useful, our aim is to build a complete
vision-based framework without recovering a the position

of the mobile robot with respect to a reference frame. The
authors of [4] call this kind of framework a qualitative
approach of navigation.
The principle of this approach is to represent the robot
environment with a bounded quantity of images gathered
in a set called visual memory. In [14], this concept is
exploited to control the 6 dof of a robotic arm under
large displacements. A set of images is extracted from
a previously learnt database which describes successive
targets for a global visual servoing task. The authors do
not consider the kinematic constraints of a mobile robot.
In the context of mobile robotics, [12] also proposes to
use a sequence of images, but recorded during a human
teleoperated motion, and called View-Sequenced Route
Reference. This concept underlines the close link between
a human-guided learning and the performed paths during
an autonomous run. However, the automatic control of the
robot in [12] is not formulated as a visual servoing task.
In this paper, we propose a complete image-based frame-
work (i.e from environment learning to control) for mobile
robots navigation. A sequence of images, acquired during
a human-guided learning, allows to derive paths driving
the robot from its initial to its goal locations. In order to
reduce the complexity of the image sequences, only key
views are stored and indexed on a visual path. The set of
visual paths can be interpreted as a visual memory of the
environment. The visual memory is structured as a graph
which takes into account the environment topology. A
navigation task consists then in performing autonomously a
visual route which is a concatenation of visual paths. The
visual route connects thus in the sensor space the initial
and goal configurations. Section II details more precisely
this point.
The Section III deals with the vision-based control scheme
designed to control the robot motions along a visual route.
The nonholonomic constraints of most current wheeled
mobile robots makes the classical visual servoing methods
unexploitable since the camera is fixed on the robot [18].
However, motivated by the development of 2D 1/2 visual-
servoing method proposed by Malis et al (see [11]), some
authors have investigated the use of homography and
epipolar geometry to stabilize mobile robots [5], [3]. In
this paper, because the notions of visual route and path
are very closed, we turn the nonholonomic visual-servoing
issue into a path following one. The designed control law
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Fig. 1. Building a visual memory: Into the rooms (a) and (b) and the
corridor (c), the paths rΨp have been learnt by teleoperating the robot.
As a result, the graph (d) represents the topological organization of the
visual memory. The blue circles show the vertices

does not need any explicit off-line path planning step.
In Section IV, experiments on a small indoor wheeled
mobile robot illustrate the implementation of the proposed
framework.

II. VISUAL MEMORY AND ROUTES

In [4], approaches using a ”memorization” of images
of the environment taken from an embedded camera are
ranked among mapless navigation systems. Indeed, as
proposed in [12] or in [9], any notion of map nor topology
of the environment appears, neither to build the reference
set of images, nor for the automatic guidance of the robot.
The first step of our framework consists on a learning
stage to build the visual memory. The visual memory
is structured according to the environment topology to
reduce the computational cost. We assume that the features
observed by the camera are quasi-static. However, the
remainder of the environment is not restricted to staticity,
since both perception and control algorithms are robust to
dynamic constraints such as occlusions.

A. Structure of the visual memory

The learning stage relies on the human experience. The
user guides the mobile robot into its workspace. In the case
of an urban vehicle for instance, as proposed in [15], the
user manually drives the robot along all the streets where
it will go down in an autonomous way. To each street is

associated a visual path, which is a set of key images
ordered from the beginning to the end of the street. We
use a similar learning approach in an indoor environment.
The user guides the mobile robot along one or several paths
into each room where the robot is authorized to go (see
Figure 1 (a),(b) and (c)). A visual path rΨp is then stored
and indexed as the pth learnt path in the rth room.

1) Visual paths: A visual path rΨp is composed of n
key images:

rΨp = {rIp
i |i = {1, 2, . . . , n}}

For control purpose (refer to Section III), the authorized
motions during the learning stage are assumed to be limited
to those of a car-like vehicle, which only goes forward. The
following Hypothesis 2.1 formalizes these constraints.

Hypothesis 2.1: Given two frames RFi and RFi+1, re-
spectively associated to the mobile robot when two suc-
cessive key images Ii and Ii+1 of a visual path Ψ were
acquired, there exists an admissible path ψ from RFi to
RFi+1 for a car-like vehicle whose turn radius is bounded,
and which only moves forward.

Moreover, because the controller is vision-based, the robot
is controllable from rIp

i to rIp
i+1 only if the hereunder

Hypothesis 2.2 is respected.

Hypothesis 2.2: Two successive key images Ii and Ii+1

contain a set Pi of matched visual features, which can be
tracked along a path performed between RFi and RFi+1.

During the acquisition of a visual path, the Hypothesis
2.2 constrains the choice of the key images. Two main
approaches have been implemented in our laboratory. The
first one, described in [1], uses planar patterns tracking.
A new key image Ii+1 is stored when a pattern, which
has been tracked since Ii was acquired, is likely to leave
the image. In the second approach, proposed in [15], Ii+1

is stored if the camera motion between Ii and Ii+1 is
sufficient to ensure a good 3D reconstruction of matched
interest points, and if the number of interest points is
upper than a fixed threshold. In this case, Pi is the set
of all correctly matched points between Ii and Ii+1. As
a consequence of Hypothesis 2.1 and 2.2, each visual
path rΨp corresponds to an oriented edge which connects
two configurations of the robot’s workspace. Moreover, the
number of key images of a visual path is directly linked
to the human-guided path complexity. According to this
parameter, we define the value of a visual path as its
cardinal.

2) Visual memory vertices: In order to connect two
visual paths, the terminal extremity of one of them and
the initial extremity of the other one must be constrained
as two consecutive key images of a visual path. The paths
are then connected by a vertex, and two adjacent vertices
of the visual memory are connected by a visual path (see
Figure 1 (d)).

Proposition 2.1: Given two visual paths
Ψp1 = {Ip1

i |i = {1, 2, . . . , n1}} and Ψp2 =
{Ip2

i |i = {1, 2, . . . , n2}}, if the two key images Ip1
n1
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image to reach by navigating onto the visual memory.

and Ip2
1 abide by both Hypothesis 2.1 and 2.2, then a

vertex connects Ψp1 to Ψp2 .

We also assume this Proposition 2.1 in the particular case
where the terminal extremity of a visual path Ψp1 is the
same key image as the initial extremity of another visual
path Ψp2 . This is useful in practice, when building the
visual memory.

3) A strongly connected digraph: According to Sections
II-A.1 and II-A.2, the visual memory structure is defined
as a digraph, whose arcs are the visual paths. It is yet nec-
essary that this digraph is strongly connected. Indeed, this
condition warrants that any vertex of the visual memory is
attainable from every others, through a set of visual path.

B. Visual route

A visual route describes the robot’s mission in the sensor
space. Given two key images of the visual memory Ic

and Ig, corresponding respectively to the current and goal
locations of the robot, a visual route is a set of key images
which describes a path from Ic to Ig , as presented in
Figure 2. In practice, Ic is not exactly a key image. It is
then necessary to determine which stored key image is the
closest one to Ic. This can be done in an off-line stage,
as Remazeilles et al propose in [14], by comparing the
photometric invariants of the request image with those of
the images store onto the visual memory. Assuming that
the user is able to point out which is the room r where
the robot is staying, the search of the closest image is
bounded to the learnt visual paths in r. The visual route is
the minimum length path of the visual memory connecting
two vertices associated to Ic and Ig . According to the
definition of the value of a visual path, the length of a
path is the sum the values of its arcs. The minimum length
path is obtained in a very simple way, using Dijkstra’s
algorithm. Consequently, the visual route results from the
concatenation of indexed visual paths. Given two visual
paths Ψp1 and Ψp2 , respectively containing n1 and n2

indexed key images, the concatenation operation of Ψp1

and Ψp2 is defined as follows:

Ψp1 ⊕ Ψp2 ={Ip1,2
j |j = {1, . . . , n1, n1 + 1, . . . , n1 + n2}

}
Ip1,2

j =
{ Ip1

j if j � n1

Ip2
j−n1

if n1 � j � n1 + n2

The visual route describes a set of consecutive states that
the image has to reach in order that the robot joins the goal
configuration from the initial one. The robot motions are
controlled along the visual route using the data provided
by the embedded camera. The next section deals with this
issue.

III. VISUAL ROUTE FOLLOWING

Visual-servoing is often considered as a way to achieve
positioning tasks. Classical methods, based on the task
function formalism, are based on the existence of a dif-
feomorphism between the sensor space and the robot’s
configuration space. Due to the nonholomic constraints of
most of wheeled mobile robots, under the condition of
rolling without slipping, such a diffeomorphism does not
exist if the camera is rigidly fixed to the robot. In [18], the
authors add extra degrees of freedom to the camera. The
camera pose can then be regulated in a closed loop.
In the case of an embedded and fixed camera, the control
of the camera is generally based on wheeled mobile robots
control theory [16]. In [10], a car-like robot is controlled
with respect to the projection of a ground curve in the
image plane. The control law is formalized as a path
following problem. More recently, in [5] and [3], a partial
estimation of the camera displacement between the current
and desired views has been exploited to design vision-
based control laws. The camera displacement is estimated
by uncoupling translation and rotation components of an
homography matrix. In [5], a time-varying control allows
an asymptotical stabilization on a desired image. In [3],
a trajectory following task is achieved. The trajectory to
follow is defined by a prerecorded video and the control
law is proved stable using Lyapunov-based analysis. In our
case, unlike a whole video sequence, we deal with a set of
relay images which have been acquired from geometrically
spaced out points of view.
A visual route following can be considered as a sequence of
visual-servoing tasks. A stabilization approach could thus
be used to control the camera motions from a key image
to the next one. However, a visual route is fundamentally
a path. In [13], the authors propose to plan the trajectories
of image features directly in the sensor space from the first
image to the last one. These trajectories are then used as
references to control a robotic arm.
To design the controller, described in the sequel, the key
images of the reference visual route are considered as
consecutive checkpoints to reach in the sensor space. The
control problem is formulated as a path following to guide
the nonholonomic mobile robot along the visual route.
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A. Assumptions and models

Let Ii, Ii+1 be two consecutive key images of a
given visual route to follow and Ic be the current im-
age. Let us note Fi = (Oi,Xi,Yi,Zi) and Fi+1 =
(Oi+1,Xi+1,Yi+1,Zi+1) the frames attached to the robot
when Ii and Ii+1 were stored and Fc = (Oc,Xc,Yc,Zc)
a frame attached to the robot in its current location. Figure
3 illustrates this setup. The origin Oc of Fc is on the axle
midpoint of a cart-like robot, which evolutes on a perfect
ground plane.

The control vector of the considered cart-like robot is
u = [V, ω]T where V is the longitudinal velocity along
the axle Yc of Fc, and ω is the rotational velocity around
Zc. The hand-eye parameters (i. e. the rigid transformation
between Fc and the frame attached to the camera) are
supposed to be known.

According to Hypothesis 2.2, the state of a set of visual
features Pi is known in the images Ii and Ii+1. Moreover
Pi has been tracked during the learning step along the path
ψ between Fi and Fi+1. The state of Pi is also assumed
available in Ic (i.e Pi is in the camera field of view). The
task to achieve is to drive the state of Pi from its current
value to its value in Ii+1.

B. Principle

Consider the straight line Γ = (Oi+1,Yi+1) (see Figure
4). The control strategy consists in guiding Ic to Ii+1 by
regulating asymptotically the axle Yc on Γ. The control
objective is achieved if Yc is regulated to Γ before the
origin of Fc reaches the origin of Fi+1. This can be done
using chained systems. Indeed in this case chained system
properties are very interesting. A chained system results
from a conversion of a mobile robot non linear model into
an almost linear one [16]. As long as the robot longitudinal
velocity V is non zero, the performances of path following
can be determined in terms of settling distance [17]. The
settling distance has to be chosen with respect to robot and
perception algorithm performances.
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Fig. 4. Control strategy

The lateral and angular deviations of Fc with respect to
Γ to regulate can be obtained through partial Euclidean
reconstructions as described in the next section.

C. Evaluating Euclidean state

In the sequel, we suppose that Pi = {pik, k = 1 · · ·n}
is a set of image points of Pi+1. These points are matched
with the set of image points Pc = {pck, k = 1 · · ·n}
of Ic. Let Π be a 3D reference plane defined by three 3D
points whose projections onto the image plane belong to Pi

(and Pc). The plane Π is given by the vector πT = [n∗ d∗]
in the frame Fi+1, where n∗ is the unitary normal of Π in
Fi+1 and d∗ is the distance from Π to the origin of Fi+1. It
is well known that there is a projective homography matrix
G, relating the image points of Pi and Pc [7]:

αkpik = Gpck + βke

where αk is a positive scaling factor and βk is a scaling
factor, null if the target point belongs to Π. Given at least
four matched points belonging to Π, G can be estimated
by solving a linear system. If the plane Π is defined by
3 points, at least five supplementary points are necessary
to estimate the homography matrix [7]. Assuming that the
camera calibration K is known, the Euclidean homography
of plane Π is estimated as H = K−1GK and it can be
decomposed into a rotation matrix and a rank 1 matrix:

H = Rc
i+1 + tc

i+1

n∗�

d∗
(1)

As exposed in [6], it is possible from H to determine the
camera motion parameters, that is Rc

i+1 and
tc

i+1
d∗ . The

normal vector n∗ can also be determined, but the results are
better if n∗ has been previously well estimated (note that
it is the case in indoor navigation with a camera looking
at the ceiling for instance). In our case, the mobile robot
is supposed to move on a perfect ground plane. Then an
estimation of the angular deviation θ between Fc and Fi+1

can be directly extracted from Rc
i+1. Furthermore, we can

get out from
tc

i+1
d∗ the lateral deviation y up to a scale factor

between the origin of Fc and a straight line Γ.
As a consequence, the control problem can be formulated
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as following Γ in regulating to zero y and θ before the
origin of Fc reaches the origin of Fi+1

D. Control law

Exact linearization of nonlinear models of wheeled mo-
bile robot under the assumption of rolling without slipping
is a well known theory, which has already been applied in
many vehicle guidance applications, as in [17] for a car-
like vehicle, and in our previous works (see [2]). The used
state vector of the robot is X =

[
s y θ

]�
, where

s is the curvilinear coordinate of a point M, which is
the orthogonal projection of the origin of Fc on Γ. The
derivative of this state give the following state space model:


ṡ = V cos θ
ẏ = V sin θ

θ̇ = ωc

(2)

The state space model (2) is converted into a chained
system of dimension 3

[
a1 a2 a3

]�
. Deriving this

system with respect to a1 gives an almost linear system.
By choosing a1 = s and a2 = y, and thanks to classical
linear automatics, it is then possible to design an asymptot-
ically stable guidance control law, which performances are
theoretically independent to the longitudinal velocity V :

ω(y, θ) = −V cos3 θKpy − |V cos3 θ|Kd tan θ (3)

Kp and Kd are gains which set the performances of the
control law. They must be positive for the control law
stability. Their choice determine a settling distance for the
control, i. e. the impulse response of y with respect to
the covered distance by the point M on Γ. However, as
y is estimated up to a scale factor 1

d∗ , this modifies the
performances of the control law (3). In practice, to alleviate
this difficulty, we choose Kp and Kd for a given d∗ that we
though maximum. As said before, the control performances
are independent to V . Then V can be fixed or tuned by a
supervisor. However, V has to be non-null to allow the
regulation. Then, in practice, V is controlled in an open
loop at the first and the last image of the visual route.

IV. EXPERIMENTS

Fig. 5. Following a visual route: the previously learnt visual path, about
10m long, is materialized on the ground. The pictures were taken during
an autonomous run

The proposed framework is implemented on a PekeeTM

robot which is controlled from an external PC. A small
1/3” CMOS camera is embedded on the robot and looks at

the ceiling. Ceiling images are used for two main purposes.
Firstly, extracted features from an image of the ceiling or
from the top of the walls during a visual path learning
ought to be recovered in an autonomous run under similar
conditions.
Secondly, the ceiling is generally a plane parallel to the
ground plane. Then, it is quite easy to give a good approx-
imation of the normal vector n∗ to the reference plane Π
in order to evaluate an homography. If the camera frame is
confounded with the robot frame Fc, we can assume that
n∗ =

[
0 0 1

]
. The Euclidean homography matrix

H has thus a very simple expression. Indeed, as the
displacement between Fi+1 and Fc only consists of one
rotation θZc and two translations tXcXc and tY cYc, H is
given by (refer to equation (1)):

H =


 cos θ − sin θ tXc

sin θ cos θ tY c

0 0 1


 (4)

Therefore, H has only three degrees of freedom. Only
two points lying on Π and matched in Ii+1 and Ic

are theoretically necessary to estimate H. The angular
deviation θ with respect to Γ can be estimated directly
from the computation of H. The lateral deviation y can
also be estimated since it is the Xi+1 coordinate of the
origin of Fc:

y = −tXc cos θ − tY c sin θ (5)

Thus, from the computation of the Euclidean homography
H, the state of Fc with respect to the straight line Γ can
easily be determined.
The Figure 6 illustrates the evolution of planar patterns

(1) (2) (3)

(4) [...] (5)

(6) (7) (8)

Fig. 6. Evolution of the image space when the robot is regulated between
two consecutive key image: in each image, the yellow square is the current
state of the tracker, the red one is the state to reach. At image (7), a new
reference state is given for the tracker. The image (6) is thus considered
close to the previous reference key image: the control has succeeded.

tracked during the robot motion along a given visual route.
These tracked planar patterns have been extracted while
the user was creating a visual path which is included
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into the visual route to be followed. They result from the
extraction of a set of interest points, regarding oriented
gradient maxima into a rectangular area selected by the
user in the current image. An algorithm, based on particle
filtering, provides a robust tracking of planar patterns with
respect to partial occlusion and to illumination changes.
Details on both pattern extraction and tracking can be found
in [1].
To create a visual path, the user specifies the beginning of
the learning. Then he teleoperates the robot and selects, into
the current image, areas which contain possible interesting
features. The remainder of the key image selection is then
automatic (see [1]). The user indicates when the path to
learn has been performed. Then, the new visual path is
stored.
At the first step of an autonomous run, the current camera
image has to be located into the visual memory. The
tracking of learnt planar pattern in this image is then
automatic. As a consequence, the user must have chosen
at least one reference attitude of the robot which has to
be associated with one key image. If the robot has ever
achieved a mission since it has been started up, the current
image is already supposed to be closed to a key image. At
each frame, the tracker provides the coordinates of a current
tracked planar pattern. H is then computed thanks to the
knowledge of this pattern in the key image to reach Ii+1.
A key image is assumed to be reached when a distance
between the current points coordinates and the desired one
goes under a fixed threshold. The reference path, which is
represented on the Figure 5 by the white squares which are
lying on the ground, has been acquired as a visual route of
fifteen key images. The corresponding path length is about
10m. The longitudinal velocity V was fixed to 0.2m.s−1.
When the robot stops at the end of the visual route, the
final errors in the image corresponds to a positioning error
around 5cm and an angular error about 3◦. Nevertheless,
note that the robot has been stopped roughly, by setting
V to zero since the last key image of the visual route
has been detected. Moreover, both camera intrinsic and
hand-eye parameters has been roughly determined. The
positioning accuracy depends above all on the threshold
which determines if a key image is reached. Our future
works will improve that point.

V. CONCLUSION

This paper presents an original image-based navigation
framework dedicated to nonholonomic mobile robots. The
approach is illustrated in the context of indoor navigation.
We propose to learn the environment as a graph of visual
paths, called visual memory. A navigation mission into
this visual memory is a visual route. A visual route is
made of a sequence of key images of the environment
which describes, in the sensor space, an admissible path
for the robot. This visual route can be performed thanks
to a visual-servoing control law, which is adapted to the
robot nonholonomy and does not require any absolute
geometrical localization of the robot.
Future works will be devoted to relax the staticity constraint

of the environment. We will try to analyse and to take
into account environment modifications, which may occur
between learning steps and autonomous runs, in both visual
route building and following.
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