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Abstract

In this paper, we provide a comprehensive method to perform the physical model identification of parallel mechanisms. This

includes both the kinematic identification using vision and the identification of the dynamic parameters. A careful attention is given

to the issues of identifiability and excitation. Experimental results obtained on a H4 parallel robot show that kinematic identification

yields an improvement in the static positioning accuracy from some 1 cm down to 1mm, and that dynamic parameters are globally

estimated with less than 10% relative error yielding a similar error on the control torque estimation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel mechanisms are emerging in the industry
(machine-tools, high-speed pick-and-place robots, flight
simulators, medical robots, for instance). Indeed, these
mechanisms have for main property their end-effector
connected with several kinematic chains to their base,
rather than one for the standard serial mechanisms. This
allows parallel mechanisms to bear higher loads, at
higher speed and often with a higher repeatability
(Merlet, 2000). However, their large number of links
e front matter r 2005 Elsevier Ltd. All rights reserved.
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and passive joints often limit their performance in terms
of accuracy (Wang & Masory, 1993). Therefore, the
kinematic parameters of such mechanisms have to be
identified by the so-called kinematic identification (or
kinematic calibration).

Moreover, in order to achieve high speed and
acceleration for pick-and-place applications or precise
motion in machining tasks, an accurate dynamic
modeling is usually required. This will also increase
the quality of their simulation in order to improve their
design and/or to compute advanced model-based robust
controllers such as moving horizon control schemes.
After completing the kinematic calibration, the second
difficulty is then to estimate the physical parameters
including mass, inertia and frictions of the dynamic
model.

1.1. State of the art

1.1.1. Kinematic identification

There exist several classes of methods to perform
kinematic identification of parallel mechanisms (Fig. 1).
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Fig. 1. A typical set-up for vision-based identification of a parallel

mechanism: the H4 mechanism (Pierrot et al., 2001) and the vision-

based measuring device.
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The first one relies on the application of mechanical
constraints on the end-effector or the mechanism legs
(Daney, 1999; Khalil & Besnard, 1999). This class of
methods only needs joint measurements, but is hard to
use in practice since applying mechanical constraints
requires an accurate extra mechanism. Moreover, such
methods reduce the workspace size and therefore the
identification efficiency (Besnard & Khalil, 2001). A
second class of methods (Khalil & Murareci, 1997;
Wampler & Arai, 1992; Zhuang, 1997), known as self-
calibration, relies on the notion of redundant metrology:
adding extra proprioceptive sensors at the usually
uninstrumented joints of the mechanism allows for
identification in the whole available workspace and only
requires joint measurements. However, it is hard in
practice to add these extra sensors on an existing
mechanism and sometimes almost impossible (think of a
spherical joint).

The third class of methods is based on the forward
kinematic model and comes directly from the methods
developed for serial mechanisms. Such methods mini-
mize a non-linear error between a measure of the end-
effector pose and its estimation from the measured joint
values through the forward kinematic model (Masory et
al., 1993; Visher, 1996). However, in general, parallel
mechanisms only have a numerical evaluation of the
latter, which may lead to numerical unstabilities of the
identification (Daney, 1999).

On the opposite, for parallel mechanisms, the inverse
kinematic model can usually be easily derived (Merlet,
2000). Therefore, the most natural method to perform
identification of a parallel mechanism is to minimize an
error between the measured joint variables and their
corresponding values, estimated from the measured end-
effector pose through the inverse kinematic model
(Zhuang et al., 1995; Zhuang et al., 1998). This method
seems indeed to be the most numerically efficient among
the identification algorithms for parallel structures
(Besnard & Khalil, 2001). Nevertheless, it is constrained
by the need for accurate measurement of the full end-
effector pose (i.e. both its position and its orientation).
Some adapted measuring devices have been proposed
(e.g. laser tracking systems (Koseki et al., 1998; Vincze
et al., 1994) or mechanical devices, Geng & Haynes,
1994; Jeong et al., 1999) that are either expensive or
limitative as workspace is concerned. Vision could
constitute an adequate sensor (Zhuang & Roth, 1996;
Zou & Notash, 2001), that we hence propose to use in
this article.
1.1.2. Dynamic parameters identification

The experimental identification of serial mechanisms
dynamic parameters has been extensively investigated
within a statistical framework (Gautier & Poignet, 2001;
Olsen & Petersen, 2001). Assuming random measure-
ment errors with known statistical characteristics, the
maximum likelihood (ML) estimator makes possible to
derive reliable parameter estimates with confidence
intervals. Usually the inverse model expressing the
motor torque input as a function of the state variables
is used to estimate the parameter vector through a
weighted least squares (WLS) solution (Gautier &
Poignet, 2001) since this model can be linearly written
with respect to the parameters to be estimated.

Similarly, the dynamic model of parallel mechanisms
can also be expressed in a linear relation with respect to
the dynamic parameters. Therefore, in this paper, we
focus on the estimation of the dynamic parameters of
the rigid multibody closed loop structure: the para-
meters are estimated by a classical WLS technique. The
main difficulty of approach lies in the estimation of the
end-effector dynamics.
1.2. Contribution and outline

The main contribution of this paper is to provide the
reader with a comprehensive method for identifying the
complete physical model of a parallel robot. Hence, we
identify the kinematic parameters, describing the geo-
metry of the robot, and the dynamic physical para-
meters, describing the effects of masses, inertias and
friction on the dynamical behavior of the robot.

Two algorithms are given for the vision-based
kinematic identification, depending on which of the
implicit or the inverse kinematic models is available for
a given parallel robot. Using vision allows for unexpen-
sive and accurate measurement of the end-effector
position and orientation. A method is also pro-
vided for the identification of the dynamic physical
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parameters. In both cases, the algorithms can be
extended to every parallel robot and we pay a great
attention to the issues of identifiability and excitation.
These contributions are validated through extensive
experimental results, obtained with the H4 robot.

The remainder of this paper is the following. Section 2
is devoted to the modeling of the H4 robot. Then,
Section 3 presents the kinematic identification algo-
rithms while Section 4 presents the dynamic identifica-
tion method. Finally, before concluding, Section 5
displays the experimental results.
2. Modeling

The H4 robot has 4 degrees of mobility (3 translations
plus 1 rotation around the vertical axis) provided that
the four-bar mechanisms in the arms are articulated
parallelograms. We assume in the following that this is
true.
2.1. Kinematic models

One can define several models of the H4, whether one
stays at CAD level or introduces additional parameters
to take into account possible violations of the associated
hypotheses.

The CAD model of the H4 robot (Pierrot et al., 2001),
gives the following so-called implicit model (Wampler et
al., 1995) expressing the closure of the kinematic chain
around each leg, under the hypothesis of the existence of
some symmetries in the mechanism (Fig. 2)

L2 � l2 � kPjAj

��!
k2

¼ �2

PjAj

��!
x:l cosðajÞ cosðqj � qj0

Þ

� � � þ PjAj

��!
y:l sinðajÞ cosðqj � qj0

Þ

� � � � PjAj

��!
z
:l sinðqj � qj0

Þ

0
BBBBB@

1
CCCCCA ð1Þ
Fig. 2. CAD model of the H4 robot (viewed from the top): joint

placement (left) and nacelle (right).
with L the arm length, l the forearm length (both the
same for each leg), q the joint value vector, qj0

the
encoder offsets, Pj the motor position on the base, Aj

are the attachment points of the parallelograms on the
nacelle and other notation given in Fig. 2. Notice that
the Aj’s depend on the end-effector pose, denoted by
x ¼ ½X ;Y ;Z; y
T and that the nacelle dimension d does
not appear in this model. This implicit kinematic model
is parameterized by 12 scalars: ðR; l;L; h; aj ; qj0

Þ; j 2 ½1; 4

and will be referred to as the implicit-12 model in the
sequel.

From this model, one can derive rather easily its
inverse kinematic model (the so-called inverse-12 model):

qj ¼ qj0
þ 2A tan

Nþ�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2þM2�G2

p

GþM

	 

; j 2 ½1; 4
 (2)

with M ¼ �2lðPjAj

��!
x cos aj þ PjAj

��!
y sin ajÞ, N ¼ 2lPjAj

��!
z,

G ¼ L2 � l2 � kPjAj

��!
k2 and �j ¼ 1 depending on the

assembly.
A more general implicit kinematic model can be used.

Its base frame is attached to first joint center P1, and its
axis ~zb parallel to the end-effector rotation axis. The
other joints can be placed at any point Pj0 ¼ ðxj0 ;
yj0 ; zj0 Þ; j0 2 ½2; 4
. Each joint may have any orientation
ðbj ;cjÞ; j 2 ½1; 4
 and the legs have independent arm and
forearm lengths ðLj ; ljÞ; j 2 ½1; 4
. Thus, this implicit-31
model involves a total of 31 parameters
ðxj0 ; yj0 ; zj0 ; bj ;cj ; qj0

; lj ;Lj ; h; dÞ; j0 2 ½2; 4
; j 2 ½1; 4
 and
becomes rather complicated:

kLj Vj

�!
þ W j

�!
k2 ¼ l2j (3)

with

Vj

�!
¼

sinðqj þ qj0
Þ cosðbjÞ sinðcjÞ � cosðqj þ qj0

Þ cosðcjÞ

� sinðqj þ qj0
Þ cosðbjÞ cosðcjÞ � cosðqj þ qj0

Þ sinðcjÞ

� sinðqj þ qj0
Þ sinðbjÞ

2
664

3
775

and

W j

�!
¼

X � xj þ ð1þ �1j � �1j cosðyÞÞh

Y � yj þ d � �1jh sinðyÞ

Z � zj

2
64

3
75.

In this case, it becomes cumbersome to find an inverse
kinematic model, hence, we will restrict ourselves in the
sequel to the use of the above three models.
2.2. Dynamic model

In first approximation, the dynamic model is com-
puted by considering physical dynamics. Assuming that
the drive torques are mainly used to move the motor
inertia, the forearms, the arms and the nacelle, it is
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written as follows:

Cmot ¼ Imot €qþ JTðx;qÞMð €x� gÞ þ Fv _qþ Fc signð_qÞ, (4)

where Imot represents the motor inertia matrix (thanks to
the design, the forearm inertia can be included as a part
of the motor inertia and the inertial effects of the arms,
manufactured in carbon materials, are neglected,
Company & Pierrot, 1999; Pierrot et al., 2001), M

contains the mass of the nacelle and its inertia, Jðx;qÞ is
the Jacobian matrix of the inverse kinematic model, g is
the gravity vector, Fv are the viscous friction coefficients
and Fc are the Coulomb friction and the ‘�’ notation
represents the time derivation.

The matrix Imot and M are given by

Imot ¼ D Imot1 Imot2 Imot3 Imot4

� �T� �
, (5)

where DðÞ is the diagonal matrix formed by its argument
and

M ¼
MnacI3 03�1

01�3 Inac

" #
. (6)

It is assumed that the joint positions q, the nacelle
acceleration €x along the x, y and z directions and its
orientation y are measured.

Introducing JTðx;qÞ ¼ J43 j4
� �

, where J43 is a matrix
containing the first three columns of JTðx;qÞ and j4 is its
last column, the dynamic equation can be rewritten in a
relation linear with respect to the dynamic parameters:

Cmot ¼ Dð€qÞ J43

€x

€y

€z� g

2
64

3
75 j4

€y Dð_qÞ Dðsignð_qÞÞ

2
64

3
75xd ,

(7)

where xd is the vector of the dynamic parameters to be
estimated:

xd ¼ ½Imot1 Imot2 Imot3 Imot4 Mnac Inac . . .

. . . f v1 f v2 f v3 f v4 f c1 f c2 f c3 f c4

T. ð8Þ
3. Kinematic identification

In this section, we give two alternate methods for
calibrating a parallel mechanism using an exteroceptive
measuring device (with immediate application to
the case of vision). One is the classical method based
on the inverse kinematic model and the other is based
on the implicit kinematic model. In both cases, we show
that one must introduce additional parameters owing
to the use of an exteroceptive measurement of the end-
effector pose.
3.1. Identification using the inverse kinematic model

The inverse kinematic model computes the joint
variables qc as a function of the end-effector pose bTe ¼

ð
bRe;bteÞ with respect to the base frame and
the kinematic parameter vector xk. Zhuang et al.
(1998) proposed to form, for any pose bTei

, the
following error

�i ¼ q̂i � qcð
^bTei
; xkÞ (9)

between the corresponding measured joint values q̂i and
the computed ones qcð

^bTei
; xkÞ, then to determine the

kinematic parameters by measuring, with an exterocep-
tive sensor, m different poses ^bTei

; i 2 ½1;m
, and finally
estimate xk by the non-linear minimization of the
following cost function with respect to xk:

w2ðxkÞ ¼ �T�; � ¼ ½�T1 ; . . . ; �
T
m


T. (10)

However, this suggests that the end-effector pose can be
measured in the base frame. Due to the use of an
exteroceptive measuring device, this, in fact, cannot be
achieved since one shall take into account the pose of
the measuring device with respect to the base frame bTc

and, which is not evident, the pose of the target of the
measuring device with respect to the end-effector eTt.
Indeed, any measuring device needs a target, which can
be a reflective cube for a laser tracker system, reflective
amers for a theodolite or a physical interface part for a
mechanical measuring machine. When using vision, the
measuring device is composed of a fixed CCD camera
and a target attached to the end-effector and gives the
pose of the target with respect to the camera as shown
by Lavest et al. (1998).

Formally, this implies that one measures poses of the
target with respect to the measuring device cTti

, which
are related to the end-effector poses with respect to the
base by the unknown above-mentioned constant rigid
transformations bTc and eTt¼

tT�1
e through

bTei
¼bTc

cTti

tTe 8i 2 ½1;m
. (11)

Therefore, instead of the error in (9) one should use the
following error:

�i ¼ q̂i � qcð
bTc

^cTti

t
Te; xkÞ. (12)

Noting xe the external parameters, i.e. the set of
parameters describing bTc and tTe, the problem of
parallel mechanism kinematic identification based on
the inverse kinematic model can be formally stated as
the following non-linear minimization problem:

min
xk ;xe

Xm

i¼1

kq̂i � qcð
^cTti
; xk; xeÞk

2. (13)
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3.2. Identification using the implicit kinematic model

Formally, the implicit kinematic model2 is an
equation relating the joint values, the end-effector pose
and the kinematic parameters. In the case we are dealing
with where the end-effector pose is measured, the
implicit kinematic model takes the following generic
expression:

Cðq;cTt; xk; xeÞ ¼ 0. (14)

Then, the problem of parallel mechanism kinematic
identification based on the implicit kinematic model can
be formally stated as the following non-linear mini-
mization problem:

min
xk ;xe

Xm

i¼1

kCðq̂i; ^cTti
; xk; xeÞk

2. (15)

3.3. Identifiability

Calibrating a robot is an identification process and
hence, one should take a careful look at the identifia-
bility of the model parameters, i.e. one should be able to
answer the following questions
�

2

ana

inv

the
Can we estimate all the parameters in the model?

�
 If so, how to optimize the estimation?

�
 If not, why? and What is the subset of the parameters
that can be estimated (identifiable parameters)?

The answers to those questions are related to the non-
linear minimization problem numerical solution. Most
of the time, people use iterative algorithms (such as
Newton, Gauss or Levenberg–Marquardt algorithms)
solving, at each iteration Z, a linear least-square
approximation of the cost function:

qw2ðxZÞ
qx

ðxZþ1 � xZÞ ¼ w2ðxZÞ, (16)

where xZ is the Zth estimation of the parameters x ¼

xk [ xe and w2ðxÞ is, in our case, given by (13) or (15).
It is easy to understand that the estimation update

step can only be done on the components of x that do
not lie in the kernel of the regressor qw2ðxZÞ=qx.
A parameter which is in the kernel of the regressor at
every iteration will hence not be identifiable, i.e. its value
will not be updated from the a priori estimate. There-
fore, much work was lead, in the case where all
parameters are identifiable, on finding the so-called
sufficient excitation (Daney, 2002; Gautier & Khalil,
1992; Swevers et al., 1997), that is, the experiment such
We do not know of a parallel mechanism which does not have an

lytical formulation of these closure equations. Note that usually the

erse kinematic model is extracted by algebraic manipulation from

implicit kinematic model.
that the regressor will have full rank and yield the best
minimization of the estimation error. In the case of
kinematic identification, this boils down to the selection
of an optimal set of robot configurations (Nahvi &
Hollerbach, 1996; Renaud et al., 2003).

However, there can be a so-called structural loss of
rank (Besnard & Khalil, 2001; Khalil & Dombre, 2002).
Indeed, the model can be such that whatever the
excitation is, the regressor is always rank deficient. This
means that there exist linearly dependent combinations
between the columns of the regressor. Reminding that
there is a one-to-one correspondence between the
columns of the regressor and the parameters, one may
define the set of base parameters which is the largest set
of parameters (or combinations thereof) such that their
associated columns are linearly independent.

Now, let us come back to kinematic identification
with exteroceptive measurement of the end-effector pose
and try to find the base parameters. Omitting the
iteration subscript, the regressor is thus of the form

qw2ðxÞ
qx

¼
qw2ðxÞ
qxk

qw2ðxÞ
qxe

" #
. (17)

Loss of rank can occur in three cases:

3.3.1. Non-identifiable kinematic parameters

The kinematic parameters are identifiable if the model
used for identification is minimally parameterized. This
only depends on the mechanism itself and should have
been checked already at modeling stage.

Formally, if there exist non-identifiable kinematic
parameters, then there exists a full-rank matrix Ak, a
combination matrix Ck (possibly rank deficient) and a
permutation matrix Pk (i.e. P2

k ¼ I) such that

qw2ðxÞ
qxk

¼ Ak AkCk

� �
Pk. (18)

Hence, we can reorder the parameter vector xk with the
permutation matrix Pk and then split the result into two
parts: ðPkxkÞ

T
¼ ðxTk0 ; x

T
k

id
Þ, where xk0 corresponds to the

full-rank matrix Ak and xk
id

corresponds to
the dependent part AkCk. The vector xk

id
contains

the non-identifiable kinematic parameters. They do not
have any individual influence on the mechanism
behavior and generate columns in the regressor that
uselessly make the latter singular. Therefore, xk

id
can be

thrown away (i.e. set to an arbitrary value, which can be
zero or an a priori value) and the base parameters are to
be found in xk0 .

3.3.2. Non-identifiable external parameters

External parameters only appear in (11). Therefore,
non-identifiable external parameters are such that the
end-effector pose with respect to the base is left
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unchanged if we modify them. Hence, they do not have
any influence on the mechanism behavior. However, it is
of importance to detect such non-identifiable external
parameters to suppress the corresponding columns in
the regressor that also uselessly make the latter singular.
This can be done similarly as for the kinematic
parameters by writing

qw2ðxÞ
qxe

¼ ½Ae AeCe 
Pe (19)

and splitting the external parameters in the non-
identifiable external parameters xe

id
and the remainder

xe0 .
Note that the loss of external parameters identifia-

bility can be related to the number of degrees of
spatiality of the mechanism (Renaud, 2003).

3.3.3. Coupled kinematic and external parameters

From the previous two cases, we can rewrite (17) as

qw2ðxÞ
qx

¼ ½Ak Ae AkCk AeCe 
 (20)

associated to the reordered set ½xTk0 ; x
T
e0 ; x

T
k

id
; xTe

id

T of

parameters.
Now, although Ak and Ae have full rank, their

compound ðAk AeÞ may be rank deficient. Similarly as in
the above two cases, we can split it into two parts: one
full-rank matrix and one linearly dependent part.
Thereby, we also reorder and then split the vector
ðxTk0 ; x

T
e0 Þ

T into two parts: the vector containing the base
parameters xbase and a second part xcoupled which
contains the remaining parameters that cannot be
identified.

Note that both parts contain kinematic and external
parameters. Therefore, xcoupled contains a part defining
the mechanism behavior and a part related to the
measure of the end-effector pose, while, together, these
two parts do not appear in the error used for
identification. This means that if one removes the
exteroceptive measuring device at control time, then
there will be missing kinematic knowledge in the model
and therefore, the control will be inaccurate. A solution
would be to turn oneself to identification methods
without exteroceptive sensing or to keep the exterocep-
tive measure at control time (for instance, to use visual
servoing techniques, Andreff et al., 2002).
4. Dynamic identification

4.1. Algorithm

The parameter vector xd (8) is estimated as the
solution of the WLS of an over-determined system
obtained by sampling and filtering the dynamic model
(7) along an exciting trajectory ðq; _q; €qÞ at successive
sampled time ti; i ¼ 1; . . . ; r, r being the number of
samples:

y ¼ Wxd þ r, (21)

where y is the ðr � 1Þ motor torque measurement vector,
W is the ðr � pÞ observation matrix obtained by
sampling (7) along the exciting trajectory, p is the
number of parameters to be estimated, r is the vector of
errors.

It is usually assumed that r is a zero mean additive
independent noise, with a standard deviation sr such that

Crr ¼ EðrTrÞ ¼ s2rIr, (22)

where E is the expectation operator, Ir the identity
matrix.

To compute the WLS solution of (21), the rj rows,
corresponding to joint j equation, are weighted by the
diagonal components of the error covariance matrix
defined as follows:

Crr ¼ ðGTGÞ
�1, (23)

where G is a ðr � rÞ diagonal matrix with the elements of
S on its diagonal:

S ¼ S1 . . .Sn
� �

; with Sj ¼
1

ŝj
r

� � �
1

ŝj
r

" #
, (24)

where Sj is a ð1� rjÞ row matrix and n is the number of
joints (here, n ¼ 4). An unbiased estimation ŝj

r is used
from the regression on each joint j subsystem:

ŝj2

r ¼
kyj �Wj x̂d

j
k2

ðrj � pjÞ
, (25)

where yj ;Wj ; x̂d

j
; rj ; pj are, respectively, the measurement

vector, the observation matrix, a prior estimated para-
meters vector, the number of equations and the number
of minimum parameters for each joint j subsystem.

The WLS vector solution x̂d w minimizes the Euclidean
norm of the vector of weighted errors r:

x̂d w ¼ min
xd

ðrTGTGrÞ, (26)

where x̂d w and the corresponding standard deviations
sx̂d w

are calculated as the LS solution of (21) weighted
by G. The new system is given by

yw ¼ Wwxd þ rw, (27)

where yw ¼ Gy, Ww ¼ GW and rw ¼ Gr.

4.2. Identifiability

The unicity of the solution depends on the rank of the
observation matrix. The loss of rank can come from two
origins:
�
 A structural rank deficiency which stands for any
samples in W. This problem of identifiability is
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resolved by using the basic parameters which supply a
minimal representation of the model (Gautier, 1991;
Gautier & Khalil, 1990).
�
 A data rank deficiency due to a bad choice of noisy
samples in W. This is the problem of optimal
measurement strategies which is solved using closed
loop identification to track exciting trajectories
(Gautier, 2000; Gautier & Khalil, 1992; Swevers et
al., 1997).

Calculating the WLS solution of (21) from noisy discrete
measurements or estimations of derivatives may lead to
bias because W and y are non-independent random
matrices. Then it is essential to filter data in y and W,
before computing the WLS solution. Data processing
will be briefly detailed in Section 5.2.
Fig. 3. Validation by linearity check.
5. Experiments

5.1. Kinematic identification

We now apply the comprehensive identification
method to the H4 robot with the experimental set-up
displayed in Fig. 1 and a 1024� 768 pixel 7.5Hz CCD
camera.

5.1.1. Identifiability

Analyzing the models shows that in the three models,
the transformations tTe and

bTc contain non-identifiable
external parameters. This is due to the fact that the end-
effector only has one degree of freedom in rotation and
can be related to results on hand-eye identification
(Andreff et al., 2001). Moreover, in the implicit-31
model, the kinematic parameter d is coupled with the
external parameter byc, translation component of bTc.
Thus, only the a priori value of d can be used when
needed. The consequence of this coupling between
external and kinematic parameter is here a constant
offset on the zero-reference point of the end-effector,
which hopefully can be easily compensated for.

5.1.2. Data collection

We collected in a first step eight images of the
identification target and used them for calibrating the
measuring device. Then, we moved the robot in 27
uniformly distributed position in the workspace and in
each position we rotated the nacelle in three different
orientations (�50�, 0�, 50�), thus gathering 81 poses.3

The computation of the condition number of the
regressor (16) shows that this set is an adequate
excitation. In each pose, we recorded an image and the
corresponding joint values. Finally, 71 out of these 81
An automated image detection algorithm is used to simplify the

erimental procedure.
poses were randomly chosen for the kinematic identifi-
cation.

5.1.3. Validation

We validated the identification results with three
validation procedures. First, using the 10 unused poses
as independent validation data, we computed the mean
and RMS error between the measured joint variables
and their estimated value obtained with the identified
inverse kinematic model. Second, in order to validate
the results independently from the measuring device, we
proceeded to linearity check (Fig. 3):
�
 The end-effector was manually moved along a
straight ruler while recording the joint values in
several stations.
�
 We applied a numerical estimation of the forward
kinematic model to the joint values in each position
with the estimated kinematic parameters. This gave
us an estimation of each of the end-effector poses,
from which we computed a least-square estimate of
the straight line they are constrained to lie on.
�
 We computed the standard deviation with respect to
the latter estimated straight line.

Third, to validate the inverse-12 model, we even went as
far as control validation. Indeed, using the cartesian
control mode of the robot, we required the end-effector
to move to the four corners of a 100mmsquare, twice
with the CAD values of the parameters (to check the
robot repeatability) and once with the estimated
parameters.

5.1.4. Results

In Table 1, we give the a priori and identified values of
the kinematic parameters. The residual validation tests
are given in Table 2 and the linearity check along two
approximatively orthogonal directions in Table 3. For
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Table 1

A priori and identified kinematic parameters

Parameters A priori

values

Implicit-12

(CR) model

Inverse-12

(CR) model

Units

Lengths h 60 61 61 mm

L 480 488.6 487.2 mm

l 260 259.8 259.6 mm

Joint R 140 140.3 141.1 mm

positions a1 0 �0.05 �0.0015 rad

a2 3.1416 3.070 3.094 rad

a3 4.7124 4.678 4.675 rad

a4 4.7124 4.682 4.680 rad

Joint q10 0 �0.0654 �0.0692 rad

offsets q20 0 �0.0071 �0.0191 rad

q30 0 �0.0489 �0.0525 rad

q40 0 �0.0570 �0.0609 rad

Table 2

Residual test (in rad)

Joint variable q1 q2 q3 q4

CAD model

Mean error 9:0e� 10�2 3:5e� 10�3 7:3e� 10�2 8:3e� 10�2

RMS error 9:0e� 10�2 3:7e� 10�2 7:4e� 10�2 8:3e� 10�2

Implicit-12 model

Mean error �8e� 10�5 �5e� 10�5
�1e� 10�4 �2e� 10�5

RMS error 1:1e� 10�3 1:2e� 10�3 1:1e� 10�3 1:1e� 10�3

Inverse-12 model

Mean error 7:1e� 10�5 1:1e� 10�4 �7:7e� 10�4 �2:1e� 10�4

RMS error 1:4e� 10�3 1:3e� 10�3 1:4e� 10�3 2:6e� 10�3

Table 3

Linearity check (in mm)

Direction A priori Implicit-12 Inverse-12 Implicit-31

1 1.3 0.5 0.49 0.59

2 2.3 0.49 0.58 1.1

Fig. 4. Validation by control: set-up (left) and result (right).
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the implicit-31 model, we only display the linearity
check which shows that, as already stated in the
literature (Schroer, 1993; Visher, 1996), the increase of
the model complexity may reduce the identification
accuracy.

The kinematic parameter variations are significant
with length modification of several millimeters and
variation of the angles defining the joint positions and
joint offsets of the order of 21. However, the use of
inverse or implicit kinematic model does not, for that
experiment, induce sharp modification of the identifica-
tion efficiency. The linearity check is only slightly
improved by the use of the implicit model (Table 3).
One may note that the most important length
variation is the forearm length L, with a modification
of about 7mm. This 7mm modification seems rather
huge compared to the a priori knowledge on this
dimension. It has, however, been justified by better
identification results when identifying the parameter
rather than using its a priori value. It seems that the
identification of this parameter enables us to compen-
sate for the end-effector orientation modification,
evaluated with the vision-based pose measurement in
the order of 0:3�, that cannot be taken into account with
this model.

Fig. 4 shows the results of the validation by control.
One can see two trajectories (with super-imposed dashed
approximating squares) obtained before identification
for two different positions of the pen, which validate the
repeatability of the robot. One can more interestingly
see a third trajectory (with super-imposed dotted
approximating square) obtained after identification.
Note that the error reduces from about 1 cm down to
1mm. Note also that using the a priori parameters
rather than the identified ones yields an approximate
positioning error of the nacelle of 26mm and 0.022 rad.

5.2. Dynamic identification

5.2.1. Data collection and filtering

Joint velocities and accelerations are estimated, as
well as the second-order derivative of the orientation y,
by a band-pass filtering of the position (or the
orientation) obtained by the product of a low-pass filter
in both the forward and the reverse direction (Butter-
worth) and from a derivative filter, obtained by a central
difference algorithm without phase shift. The cut-off
frequency oH of the low-pass filter should be chosen to
avoid any distortion of magnitude on the filtered signals
in the range ½0 odyn
, where odyn is the bandwidth of the
position closed loop. A second filtering is implemented
to eliminate the high-frequency noises in the motor
torque. The vector y and each column of W are filtered
(known as parallel filtering) by a low-pass filter and are
resampled at a lower rate, keeping one sample over nd
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Fig. 5. Estimated and measured torques for motor 1.
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because there is no more signal in the range ½oH ;os=2

(os is the sampling frequency). Because of the linearity
of (21), the WLS is not sensitive to the distortion
introduced by the parallel filtering. Here, we have
oH ¼ 130Hz, os ¼ 1 kHz and odynp15Hz.

Each component Gmoti
of the motor torques Gmot is

estimated using a linear relation between torque and
voltage applied to the amplifier:

Gmoti
¼ kiVi, (28)

where Vi is the current reference (the control input) of
the amplifier current loop and ki the gain of the ith joint
drive chain.

5.2.2. Results

Good identification results are obtained when good
exciting trajectories are imposed to the robot. The
quality of the exciting trajectories can be evaluated
through a good condition number of the regressor W

(Gautier & Poignet, 2001). Accordingly, we generate
exciting trajectories containing slow motions (in such a
case, friction will be preponderant) and high dynamic
motions (inertia phenomena become preponderant).
A concatenation of such trajectories is used.

In Table 4, the estimated parameters are presented
with their confidence interval given as the relative
standard deviation. The dynamic parameters are quite
well estimated with relative standard deviation lower
than 10%.

The validation of the identification results consists in
comparing the measured torques with those obtained by
computing the inverse dynamic model with the esti-
mated parameters. As indicated above the measured
torques are obtained from the current reference with
(28). Figs. 5–8 exhibit cross validations with new
trajectories that have not been previously used for the
Table 4

Estimated parameters using additional sensors

Parameters Estimated values Units %sX̂ w

Imot1 0.0167 Nm2 2.3695

Imot2 0.0164 Nm2 2.3590

Imot3 0.0176 Nm2 1.5776

Imot4 0.0234 Nm2 1.1579

Mnac 0.984 Kg 0.4666

Inac 0.0029 Nm2 3.7311

f v1 0.2112 Nms=rad 4.7212

f v2 0.1236 Nms=rad 7.5670

f v3 0.1266 Nms=rad 5.2000

f v4 0.1133 Nms=rad 5.6255

f c1 1.2186 Nm 2.0756

f c2 1.0252 Nm 2.3623

f c3 0.7902 Nm 2.7986

f c4 1.0394 Nm 2.1046

Fig. 6. Estimated and measured torques for motor 2.
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Fig. 7. Estimated and measured torques for motor 3.
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Fig. 8. Estimated and measured torques for motor 4.
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identification. Estimated torques and measurements are
very close.

6. Conclusion

In this paper, we present the comprehensive identifi-
cation of the complete physical model of a parallel
robot. In a first step, the kinematic parameters are
identified using vision as a sensor for the position and
orientation in space of the end-effector. Thus, static
accuracy is lowered from some 1 cm down to 1mm.
Then, using the identified kinematic parameters, dy-
namic parameters are identified yielding an estimation
of the input control torques within 10% of the
measured ones.

In the next future, we plan to extend the vision
measurements to higher frequencies (� 1 kHz), so that
we can use them in the dynamic identification. This
would then open the way to a method which would
simultaneously identify the kinematic and the dynamic
parameters, rather than in two steps as in the present
method. However, such a simultaneous method will
probably not be efficient if the associated tough
problems of identifiability and excitation cannot be
solved.
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