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Abstract: In this article, we propose a vision-based kinematic 
calibration algorithm for Stewart-Gough parallel structures. 
Information on the position and orientation of the mechanism 
legs is extracted from the observation of these kinematic 
elements with a standard camera. No workspace limitation, nor 
installation of additional proprioceptive sensors are required. 
The algorithm is composed of two steps: the first one enables us 
to calibrate the position of the joint centers linked to the base and 
possibly evaluate the presence of joint clearances. The kinematic 
parameters associated to the moving elements of the platform are 
calibrated in a second step. The algorithm is first detailed, then 
an experimental evaluation of the measurement noise is 
performed, before giving simulation results. The algorithm 
performance is then discussed.  
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1   Introduction  
Compared to serial mechanisms, parallel structures exhibit 
a much better repeatability [1], but not better accuracy [2]. A 
kinematic calibration is thus also needed. The algorithms 
proposed to conduct calibration for these structures can be 
classified in three categories: methods based on the direct 
use of a kinematic model, on the use of kinematic 
constraints on mechanism parts, and methods relying on 
the use of redundant proprioceptive sensors. 
 The direct kinematic model can rarely be expressed 
analytically [1]. The use of numerical models to achieve 
kinematic calibration may consequently lead to numerical 
difficulties [3]. On the other hand, the inverse kinematic 
model can usually easily be derived analytically. 
Calibration can then be performed by comparing the 
measured joint variables and their corresponding values 
estimated from an end-effector pose measurement and the 
inverse kinematic model. The main limitation is the 
necessary full-pose measurement. Among the proposed 
measuring devices [7-10], only a few have been used to 
conduct parallel structure calibration [11-14]. The systems 
are either very expensive, tedious to use or have a low 
working volume. The use of an exteroceptive sensor may 
also lead to identifiability problems during the calibration 
process [15]. 
 Methods based on kinematic constraints of the end-
effector [3] or legs of the mechanism [3-6] are interesting 
because no additional measurement device is needed. 
However, the methods based on kinematic constraints of 
the end-effector are not numerically efficient [3], because 

of the workspace restriction, and kinematic constraints of 
the legs of the mechanism in position or orientation seem 
difficult to achieve experimentally on large structures. 
 The use of additional proprioceptive sensors on the 
passive joints of the mechanism enables one to have a 
unique solution to the direct kinematic model [16], and then 
use a criterion based on this model. An alternate way is to 
use the additional sensors on some legs to express a direct 
or inverse kinematic model as a function of the parameters 
of these legs and the redundant information. Calibration 
can then be achieved in a single process [17-18] or in two 
steps [3]. The main advantages of these methods are the 
absence of workspace limitation and the analytical 
expression of the identification criterion. However, 
practically speaking, the design of the mechanism has to 
take into account the use of these sensors. Furthermore, 
for some mechanisms, the passive joints can not be 
equipped with additional sensors, for instance spherical 
joints. Consequently, we propose a method that combines 
the advantage of information redundancy on the legs with 
non-contact measurements to perform the kinematic 
calibration. 
 The parallel mechanisms are designed with slim, often 
cylindrical, legs that link the end-effector and the base. 
The kinematic behavior of the mechanism is closely 
bound to the movement of these legs. Hence the study of 
their geometry has already led to singularity analysis 
based on line geometry [19]. For such geometrical entities, 
the image obtained with a camera can be bound to their 
position and orientation. By observing simultaneously 
several legs, it is then possible to get information on the 
relative position of the legs. Calibration can then be 
achieved by deriving an identification algorithm adapted 
to this information. No workspace limitation is introduced, 
nor modification of the mechanism. 
 In this article, we introduce an algorithm for vision-
based kinematic calibration of parallel mechanisms that 
uses observation of the mechanism legs. The method is 
developed in the context of the Sewart-Gough platform [20] 
calibration. The method is composed of two steps: the first 
one consists of determining the location of the joints 
between the base and the legs, with the ability to analyze 
presence of joint clearances. The second step enables one 
to perform the identification of the actuator offsets and the 
location of the joints between the legs and the end-effector. 

The first section presents the mechanism modelling. 
The identification algorithm is then detailed, recalling first 



the relation between position and orientation of a 
cylindrical axis and its image projection. The two steps of 
the identification are then detailed. In the third section, an 
evaluation of the proposed method is achieved by an 
experimental estimation of the measurement accuracy and 
a simulation of the identification of a Deltalab Stewart-
Gough platform. In order to discuss the calibration method, 
the results are analysed in terms of kinematic parameter 
knowledge improvement and accuracy improvement. 
Conclusions are then finally given on the performance and 
further developments of this method. 

 
2   Kinematic Modelling 
The Stewart-Gough platform is a six degree of freedom 
fully parallel mechanism, with six actuated legs 
positioning the end-effector (Fig. 1). The analysis 
influence of the manufacturing tolerances on the accuracy 
of such mechanisms has shown [2] that the most influential 
kinematic parameters are the position of each leg on the 
base and on the end-effector as well as the joint encoder 
offsets. Therefore 42 parameters define the kinematic 
model.  

For manipulators, the controlled pose is the 
transformation between the world frame Rw and the tool 
frame Rt (Fig. 1). Noting Rb the frame defined by the 
joints between the legs and the base and Re the frame 
defined by the joints between effector and legs, twelve 
parameters define the transformations wTb between world 
and base frames, and eTt between end-effector and tool 
frames. However these transformations are dependent on 
the application and must be identified for each tool and 
relocation of the mechanism. Therefore we only consider 
the thirty kinematic parameters that define relatively the 
joint locations on the base Aj and the end-effector Bj, and 
the joint offsets. The transformations wTb and eTt can be 
identified by other techniques [21-22]. 
 

 
Figure 1 Stewart-Gough platform and the camera, 

represented in three successive locations 
 

3   Algorithm 
3.1 Vision-based information extraction 
3.1.1 Projection of a cylinder 
We consider the relationship that can be expressed 
between the position and orientation of the legs of the 
mechanism, supposed to be cylindrical of known radius R, 
and their image. The image formation is represented by 
the pinhole model [23] and we assume that the camera is 
calibrated.  

In such a context, a cylinder image is composed of two 
lines (Fig. 2), generally intersecting except if the cylinder 
axis is going through the center of projection. Each 
corresponding generating line Di, ]2,1[∈i  can be defined 
in the camera frame Rc (C, xc, yc, zc) by its Plücker 
coordinates [24] ),( ii hu  with iu  the unit axis direction 

vector and ih defined by: 
 

CPuh ×= ii       (1) 
where P is an arbitrary point of Di , and ×  represents the 
vector cross product. 
 

 
Figure 2  Perspective projection of a cylinder and its outline 

in the sensor frame 
 

Each generating line image can be defined by a triplet 
(ai,bi,ci) such that this line is defined in the sensor frame 
Rs (O, xs, ys) by the relation: 
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Due to perspective geometry, (ai,bi,ci) and ih  are 
colinear, thus, provided that lines are oriented, one has: 
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3.1.2 Determining the cylinder axis direction from the 
image 
Since we now consider that the projection ),( 21 hh of the 
cylinder is known, the cylinder axis direction u  can be 
computed by: 
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3.1.3 Determining the cylinder axis position from the 
image 
Furthermore the distances between the cylinder axis and 
the generating lines are equal to the cylinder radius. Let 
M(xM,yM,zM) be a point of the cylinder axis. As ih is 
computed as a unit vector, we can express the belonging 
of M to the axis by the two equations: 
 

Ri
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i ε=Mh , ]2,1[∈i    (5) 
 

with ε1=±1, ε2=-ε1. The determination of ε1 is performed in 
the grayscale image by analyzing the position of the 
cylinder with respect to the generating line d1. As the lines 
are chosen with the same orientation, ε1 and ε2 are of 
opposite sign. 
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It can be easily proved that the kernel dimension of 
T

21 hh ][  is equal to one, by decomposing M on the 
orthogonal basis ),,( 11 huhu × . The system (5) is 
therefore under-determined. The position of M can be 
computed in two ways:  
- Since the matrix T

21 hh ][  is singular, a singular value 
decomposition (SVD) can be achieved, which allows the 
computation of the closest point to the camera frame 
center MSVD ),,( SVDMSVDMSVDM zyx  
- A particular point, for instance MLS ),0,( LSMLSM zx  can 
be computed, under condition of its existence, by solving 
the linear system (5). A comparison of these two methods 
is given with the experimental results. 

From the observation of one leg with a camera, it is 
thus possible to determine the position and orientation of 
its axis in the camera frame. 
 
3.2 Static part calibration  
In the following we use the information on the legs to 
achieve the kinematic calibration of the mechanism. The 
identification process is performed in two steps: in the 
first part, we calibrate the parameters related to the static 
part of the mechanism and in the second part to the 
moving part. 
 
3.2.1   Joint center estimation in the camera frame 
For each spherical joint j, T images of the corresponding 
leg are stored for different end-effector poses. The 
position of the joint center Aj in Rc can be computed by 
expressing its belonging to the axis for the T poses: 
 

],1[,, Tkkjkj ∈=× 0uMA     (6) 
 

with Mk the axis point computed from the leg image in 
section 3.1 and kj,u  the axis orientation.  

The coordinates (xAj, yAj, zAj) are therefore estimated 
from the over-determined system obtained by 
concatenation of the 3T equations expressed in (6). As the 
three equations provided by the cross product for each 
pose are not independent, the solution is obtained by a 
singular value decomposition, which enables us to 
compute the least-squares estimate. 

Notice that, with the estimated position of the joint 
centers Aj, the generating line images can be computed for 
each pose, and compared to the lines obtained by image 
detection. It is then possible to evaluate the presence of 
joint clearances, which is not possible with proprioceptive 
sensors, like rotary joint sensors. 
 
3.2.2   Joint center estimation in the base frame 
The base frame is defined by using three joint centers. The 
joint positions in the base frame are then given by twelve 
parameters. 

For a given camera position defined by the camera 
frame Rcα , mα legs can be observed for any end-effector 
pose. Let Qα be this leg set. Their corresponding position 
and orientation can therefore be computed in Rcα using (6). 
Using the distance invariance with frame transformation, 
we can compute mα(mα-1)/2 equations between joint 
positions in the camera frame and the base frame: 
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To perform the joint position determination in the base 
frame, two conditions have to be fulfilled: The number of 
equations has first to be greater or equal to the number of 
parameters to identify: 
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with L the number of camera positions.  
Secondly, all the legs which joint position location has 

to be determined have to be observed at least once. 
The joint center positions in the base frame Aj are 

computed by non-linear minimization of the criterion C1: 
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At the end of this first step, the relative positions of the 
joint centers between base and legs are determined, 
without any other assumption on the kinematics than the 
absence of joint clearance. This latter hypothesis can be 
checked during the computation of the joint centers.  

If the previously outlined identifiability conditions can 
not be fulfilled, the use of an additive calibration board 
linked to the base enables one to compute for each leg its 
position and orientation w.r.t the camera frame and also 
the pose of the camera w.r.t the calibration board [25]. The 
gathering of the data for the different camera positions is 
then possible.  
 
3.3   Moving part identification  
In this second step, the joint encoder offsets are identified, 
and consequently the relative positions of the joints 
between the legs and the end-effector.  

For each successive camera frame Rcα , the joint center 
positions on the base and the axis orientations are now 
known. The position of the leg end Bj can therefore be 
computed for the T poses as a function of only the offset 
q0j in the camera frame: 
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By expressing the conservation of the distances 
jgQgjgj >∈− ,),(, α BB , mα(mα-1)/2 equations can be 

written. Comparing the value of these distances between 
two consecutive positions, an error function C2 can then 
be expressed as a function of the six joint offsets 

]6,1[,0 ∈jq j : 
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with Bj,k the position of Bj for the k-th end-effector pose. 
The determination of the six joint offsets enables us to 

compute the average value of  BB gj −  and therefore the 
relative position of the joints on the end-effector in the 
end-effector frame. The computation is similar to the one 



achieved to compute the joint positions on the base using 
(6)-(9). 

Notice that an alternate way to determine the location 
of the joints between the end-effector and the legs could 
be to mount the camera on the end-effector and then 
follow the procedure used to calibrate the base. However, 
we could then not identify the joint offsets. 

 
4   Method Evaluation  
The proposed method is here validated for the Deltalab 
Stewart-Gough platform (Fig. 3). First the calibration 
conditions are detailed. Then the measurement accuracy is 
experimentally evaluated. The simulation of the 
identification process with the formerly evaluated 
measurement noise is then achieved. To estimate the 
calibration method performance, analysis of the identified 
parameters and accuracy improvement is eventually 
conducted. 

 

 
Figure 3  The Stewart-Gough platform 

 
4.1 Calibration conditions 
Because of the symmetry of the mechanism (Fig. 3), three 
different camera positions are considered (i.e. L=3). The 
simultaneous observation of four legs is then sufficient: 
mα=4. 

 
4.2 Measurement accuracy 
As the camera is an exteroceptive sensor, two consecutive 
measurements can be considered as independent. The 
measurement accuracy can therefore be evaluated from a 
set of consecutive measurements, for a constant leg 
position.  

A 1024 × 768 camera with a 6mm lens is used to 
acquire the images, connected to a PC via an IEEE1394 
bus. Ten images are stored and averaged for each pose, in 
order to suppress high-frequency noise. Cylinder outline 
detection is achieved by means of a Canny filter [26] (Fig. 
4). Lines are then computed by a least-squares method.  

Six equally-spaced leg orientations are considered 
within the extremal values. In Table 1, the upper-bound of 
the estimated standard deviations of the cylinder position 
and orientation are listed. The orientation is described 
with the Euler angles (ψ,θ). The position is obtained with 
the two methods presented in 3.1.3. 

Table 1  Upper-bound of the standard deviations 
 

Parameter ψ θ  LSMx  LSMz  
Est. st. dev. 0.05rad 0.06rad 0.05mm 0.1mm
Parameter SVDMx  SVDMy  SVDMz  
Est. st. dev 0.05mm 0.70mm. 0.26mm 

 

In this application, the position is apparently more 
accurately computed with the second method than with 
the SVD. It must be also stated that the image processing 
could be improved by the use of a subpixel detection filter 

[23-27] and now available higher CCD resolution sensor, 
since the accuracy is intrinsically bound to this resolution. 

 

 
Figure 4  Stewart-Gough platform image  

after edge detection 
 
4.3 Simulation  
4.3.1  Performance evaluation 
Simulation allows one to evaluate directly the knowledge 
improvement of the kinematic parameter values. Let 

igtξ  
be the ground-truth value of the i-th kinematic parameter 
( [1,30]i∈ ), iinξ  its a priori value, based on the CAD 
model of the mechanism, and iidξ  its identified value. We 
can then quantify the calibration gain by the ratio 
proposed in [3] between the error committed before and 
after calibration on each kinematic parameter: 
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A calibration gain equal to one should be obtained. 
In order to evaluate the influence of a parameter 
estimation error, we also compute for ten randomly 
chosen poses the displacement error ∆X: 
 

idgt
X ξ11ξ11 BABA −=∆     (13) 

 

and the orientation error ∆E: 
 

ϕθψ ∆∆∆=∆E      (14) 
 

where (∆ψ, ∆θ, ∆φ) are the Euler angles defining the 
difference between the end-effector orientation computed 
with the kinematic parameter sets gtξ  and the one 
computed with idξ . 
 
4.3.2 Simulation process 
Fifteen end-effector poses are generated by randomly 
selecting configurations with extreme leg lengths. These 
leg lengths are corrupted with noise to simulate 
proprioceptive sensor measurements (uniformly distrib-
uted noise, variance equal to 3µm). The leg orientation and 
axis points Mi are modified by addition of white noise 
with standard deviation equal to those previously 
estimated in Table 1. For each end-effector pose, three 
images are acquired with the camera to reduce the 
measurement noise. Initial kinematic parameter values are 
obtained by addition to the model values of a uniform 
noise with variance equal to 2mm. The base and end-
effector frames are defined using joint centers 1, 3 and 5. 
 
4.3.3 Results 
The average calibration gains, computed by 100 
simulations of the calibration, are indicated in Table 2. 



The figure 5 represents the ground-truth parameter values 
and the mean estimation errors 

ii gtid ξξ − .  
Table 2 Simulation results 

Kinematic parameters Mean(CGi) (%) 
xA2 ; xA3 ; xA4 ; xA5 ; xA6 88.8 ; 88.9 ; 92.2 ; 92.7 ; 93.9 

yA2 ; yA4 ; yA5 ; yA6 95.2 ; 91.7 ; 93.6 ; 83.8 
zA2 ; zA4 ; zA6 41.9 ; 65.2 ; 33.9 

xB2 ; xB3 ; xB4 ; xB5 ; xB6 89.7 ; 93.5 ; 93.5 ; 95.0 ; 93.2 
yB2 ; yB4 ; yB5 ; yB6 89.4 ; 91.4 ; 93.9 ; 94.4 

zB2 ; zB4 ; zB6 63.2 ; 63.8 ; -300 

i
q0 ]6,1[∈i  91.0 ; 97.1 ; 93.3 ; 56.3 ; 95.2 ; 83.6
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Figure 5 Mean estimations errors (bars) and ground-truth 

values (line) of the thirty parameters 
A sharp improvement of the knowledge of the 

kinematic parameters is observed, except for the z 
component of the joint locations. The negative calibration 
gain indicates that a priori  parameter value is closer to 
the reference value than the identified one. The parameter 
estimation errors are however low with an average error 
between 0.04mm and 1mm.  

It must also be underlined that the accuracy 
improvement is significant with an average displacement 
error reduced from 1mm for the initial kinematic 
parameters to 0.08mm, and an orientation error reduced 
from 0.12rad to 0.018rad.  

 
5   Conclusions  
In this article, a vision-based calibration method for 
Stewart-Gough parallel structures has been proposed. 
Using an exteroceptive sensor, the thirty kinematic 
parameters of the structure are identified. No mechanical 
constraint nor additional proprioceptive sensor are 
required. The method is low-cost as standard off-the-shelf 
cameras are used. The experimental evaluation of 
measurement accuracy and the simulation results show a 
significant accuracy improvement. The algorithm 
performance can be improved by using more accurate 
detection algorithms, and a better selection of the end-
effector poses for calibration, which will soon be 
implemented. 
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