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Abstract— Autonomous robots conception has to face develop-
ing efficient localization and control algorithms which could be
implemented in a small electronic system, embedded on a robot.
The WACIF project, supported by the French government, takes
up this challenge. It aims to design algorithms and electronics
for an autonomous surveillance robot at home. Thanks to an
original image-based framework, the developed prototype is able
to navigate autonomously into an indoor environment. All the
navigation algorithms are running on a programmable on-board
hardware system controlling a two wheeled nonholonomic mobile
robot, which is equipped with an embedded monocular vision
system.
The proposed framework includes the concept of visual memory
of the environment. In an unknown environment, this memory
results from a supervised learning step. A reference path, to
be performed later in an autonomous way, is recorded as a set
of ordered key images of the environment, called visual path.
The robot performs the learnt path thanks to recently developed
approaches of vision-based localization and visual servoing for
nonholonomic mobile robots.

I. I NTRODUCTION

Mobile robots are entering consumers houses. Industrial
products are yet available for household, like "companion"
toys, or vacuum cleaners, but whose navigation capabilities
are limited because of industrial constraints on electronics
performances since the production prices are hoped as low
as possible. We have dealt with this issue since we have been
developing a small mobile robot which aim is to navigate au-
tonomously in an indoor environment, to achieve surveillance
tasks. Although our developments have been constrained by in-
dustrial requirements, our navigation framework is exclusively
vision-based, even if associated algorithms are renowned to be
time consuming.
Implementing navigation algorithms for an autonomous mo-
bile robot onto a small dedicated device is a great challenge.
Algorithms efficiency and robustness must be guaranteed
while the implementation support performances are limited.
A good adequation between navigation approaches and algo-
rithms development on one hand, and flexible but powerfull
computation electronics devices on the other hand appears
vital.

Fig. 1. The developed prototype

Classically, the three main subtasks of a navigation framework
are environment learning, robot localization onto a model of
its environment, and robot control along a planned path in
order to reach a given goal. Looked at from that point of view,
approaches based on simultaneous localization and mapping
of the environment (SLAM) have been extensively studying
[1]. During an autonomous run, a mobile robot can follow a
planned path in the current map, which is updated thanks to the
sensor observations. Although such methods have already been
implemented on real autonomous plateforms [2], the resulting
robotic systems are far from an everyday life mobile robot,
either in terms of costs or device performances.
In indoor environments, telemeters and odometry are the most
classical used sensors. By merging their data using for instance
an extended Kalman filter, the robot location into its map
can be enough accurately estimated in order to achieve a
complete navigation task [3]. However, considering a low cost
mobile robot, whose either hardware structure and sensors data
are poorly accurate, other exteroceptive sensors have to be
used for better results. Because of their decreasing costs and
rich informations they can provide, vision systems are more
and more used to develop navigation frameworks. In such
approaches, landmarks recognition and tracking often holds
a central rule for precisely navigating within a map [4], [5],
[6], [7]. On one hand, this can provide an accurate positioning
of an embedded camera with respect to the landmarks which
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are in the camera field of view. On an other hand, sensor-
based approaches for trajectory planning and following can be
applied using this kind of visual data [8], in order to increase
the robustness of navigation processes [3].
The approach we propose is based on an original image-based
framework, whose theoretical bases are described in [9] and
[10]. Using low cost imaging CMOS sensor which is turned
to the ceiling, this framework includes unknown environment
learning, robot localization and control. During a learning
stage, the robot is teleoperated by the user, and describes paths
it should be able to perform during an autonomous run. That
human-guided learning is exploited to build a "mosaic" of the
ceiling. It is a plane where some interesting patterns of the
ceiling, acquired during the training phase, are projected into
[11]. The robot is located and controlled into the mosaic space,
where the robot’s mission is specified as a path to be performed
automatically, called visual route. This path is described by a
sequence of states of the robot in the mosaic, which results
from a selection of key images along human-guided paths
[9]. A key image corresponds to a robot configuration in
the mosaic space. A visual route is built according especially
to patterns visibility between two successive key images and
main characteristics of the control law. Key images are used
as successive references for the robot visual servoing. The
developed vision-based control law conciders that camera
motions suffer from the same nonholonomic constraint as the
mobile base, on which it is mounted.
Algorithms have been thought and developed with taking into
account integration objectives. Furthermore, electronics have
been designed to fit algorithms as well as possible. A prototype
supported by a PekeeTM robot platform results from this
cooperation, as presented by Figure 1.
The next Section presents backgrounds on vision-based lo-
calization principles and computer vision tools. Section III
details how we formalize the robot navigation mission and
the involved controller. Then Section IV describes the robot
prototype architecture. Experimental results, presented in Sec-
tion V, show the behavior of our prototype in non cooperative
environment.

II. V ISION-BASED LOCALIZATION

The localization of the wheeled indoor mobile robot is
achieved into the mosaic. This modeling of the robot envi-
ronment is based on a geometrical arrangement of models
of natural landmarks projection into the embedded camera
image. These models result from an analysis of patterns
projection into reference images, taken during the environment
learning step. A tracking algorithm has been developed to track
patterns lying on the same 3D plane, which is the ceiling
hereafter, while the robot is navigating. This modelization
does not require any accurate 3D reconstruction of the robot
environment since it uses only 2D geometrical data which are
extracted from images.

A. A mosaic of planar patterns

From a visual point of view, indoor environment abounds in
planes. The geometrical structure of walls, the ceiling, doors or
furniture suggests using planes for an image based navigation
framework. Nevertheless the scene rigidity is strongly required
to localize the robot onto it. In a room, the most static elements
are generally in height. That is a reason why we choose to turn
the embedded camera facing the ceiling.
If two patterns are lying on a static planeΠ, their respective
configurations ontoΠ can be simplily linked through a con-
stant rigid transformation, which only consists of one rotation
around the normal vector toΠ and two translations along
two orthogonal vectors ofΠ. Unfortunately, the perspective
projection of these patterns onto the image affects the above
mentioned transformation with an homography, relative toΠ.
In a general case, this homography can be computed thanks to
existing algorithms, as in [12], based on multiviews geometry.
However, an interesting particular case is obtained since the
camera optical axis is colinear with the normal vector toΠ.
Indeed, the transformation in the image plane between the
projection of two landmarks consists of the same rotation as
the rigid transformation between these two landmarks inΠ,
and the same translations up to a constant scale factorα = f

d ,
where f denotes the focal length of the camera. Moreover,
when the Euclidean distanced between the camera optical
center andΠ remains constant while the camera is moving,
the motion of every planar patterns fromΠ in the image plane
is only characterized by a planar transformation with three
degrees of freedom.
This particular case can be considered in pratice whenΠ
is the ceiling plane, and the robot is constrained to move
onto a ground plane parallel to the ceiling. Then, since a
model of a pattern lying onΠ can be detected and tracked
in the current image, the transformation between current and
initial model’s attitude can be computed. The knowledge of
this transformation allows the localization of a frame attached
to the camera image in a plane where an observed pattern
projection is lying on. Moreover, when a new interesting
pattern is detected in the current image during the robot
navigation, it can be easily anchored in this plane with respect
to every other known pattern models, since one of them is
visible. The resulting set of models of planar patterns, which
are anchored in the same plane, constitutes the mosaicM of
Π [11], [9]. Figure 5 illustrates this mosaic building.
As a consequence, the robot is not localized in a absolute
Euclidean space. While the robot is navigating, the current
camera image is in fact localized in a 2D space thanks to
the observation of the attitude of known patterns in this
space. A central clue of the proposed approach thus lies in
the development of an efficient method to track models of
projected patterns from the ceiling.

B. Tracking of planar patterns

This section deals with the method used to track each local
pattern into a real time video sequence. The approach is based
on the method presented into [13].



The goal of the tracking is to find the probability distribution
function (pdf) p(xk|Zk), from the pdfp(Zk|xk); where xk

is the state vector composed by the model parameters and
Zk is the observation vector composed by the history of the
measuresZk = {z1, ..., zk}. At time k, the state of each local
pattern is defined byxk = {Pck, sck, θk} ∈ R4 with Pck =
{xck, yck} the position of the pattern center,θk, a rotation
parameter andsck, a scale factor. Considering the canonical
camera configuration we are here interesting in,sck is not
supposed to vary.xk defines the transformation between the
pattern model and its projection into the image at timek.

Tracking is achieved by a particle filter based approach.
Details about particle filters can be find into [14], where a
general description of Monte-Carlo methods is done, and in
[15], where particle filters are used for visual tracking through
CONDENSATION algorithm. The main idea of the particle
filter is to estimate the pdfp(xk|Zk) with a finite set of
components, called particlesSk = {(s(n)

k , π
(n)
k )|n = 1...N} .

Each component consists of an hypothesis on the value of the
state vector(s) and a value of probability (π) associated with
this hypothesis. The evolution of the setSk is updated with
a propagation of each particle following an evolution model
(constant velocity for example). A weight is then affected to
each particle according to the observation (measures).

πn
k = p(Zk|xk = sn

k )
N∑

n=1

πn
k = 1

p(Zk|xk = sn
k ) is obtained from a criterion based on the

observation of image measurementsZk, associated toxk. For
each particle, this criterion quantifies the global adequation
between the tracked model and the prediction of its state in
the current image.

The set of particlesSk is then restored by a random draw
of N particles where each particle can be drawn with a
probability of π

(N)
k = p(zk|xk = s(N)

k ). Each particle can
be draw several times. An estimation of the state vector, for
each iteration is given by:

x̂k = E(S) =
N∑

n=1

π
(n)
k s(n)

k

The particle filter insures in its own ways a form of robus-
tification. However this robustness is linked to the number of
used particles and to the diffusion noise. It induces a cost in
terms of computations and precision. To deal with this issue,
a dedicated hardware has been designed to efficiently process
all the algorithm steps. The measurement function used to
compute observation criteria has particularly appeared as a
central clue (see Section IV).

Building the model of a local pattern consists in acquiring
in a reference image a set of points of interest which are
chosen by computing directional gradient extrema from a
specified center. Thus, local image data are associated with
each point of interest. These data are used to compute local
criteria for each predicted state of the model. The global
adequation above mentioned criterion results from these

local criteria, that increases the tracker robustness to partial
occlusions.

This tracker takes place in all steps of the proposed vision-
based navigation framework. It allows the localization of the
camera image intoM since it tracks an anchored model
to M. Of course it is usefull during the mosaic building,
but also when the robot is navigating autonomously. The
proposed navigation principle consists in acquiring reference
paths during a learning step in the view of performing them
during a posterior autonomous run. Thanks to the presented
vision-based localization module, these paths can be learnt
while the mosaic is under construction, or later, during a tele-
operated run of the robot. The next Section describes firstly
how these paths are referred into the mosaic and then explains
briefly the used control law to perform these paths according
to the robot nonholonomic constraint.

III. ROBOT CONTROL ALONG VISUAL ROUTE

The strategy of the proposed global navigation framework
consists in memorizing key images of the environment while
the robot is teleoperated. Thisvisual pathdescribes with a set
of key images a path the robot should autonomously be able
to reproduce thanks to an adequate control law.

A. A visual route

While the robot is teleoperated by the user, its location
into the mosaic is computed at each image acquisition, thanks
to tracking of known patterns models (cf Section II). Thus,
camera motion can be observed in the mosaic. Instead of
storing for each learnt path the whole camera trajectory, only
a set{Fi | i = 1, . . . , p} of p significative states of a frame
FI , (OI ,xI ,yI), which is attached to the image frame
in M, are memorized. EachFi is associated to a grabbed
key image of the environment while the robot is learning a
path. Two thresholds - one on the distance covered byOI

into M and the other one on the variation ofxI orientation
- triggers the acquisition of a new key image. The whole set
of all stored key images during learning phases constitutes the
visual memoryof the robot environment.
Therefore, a navigation mission is described by avisual route
into this visual memory as a set of key images. This visual
route results from the concatenation of pieces of visual paths,
and contains a sequence of reference images for the robot
vision-based control.

B. Robot Control

A visual routeΥ = {Fi | i = 1, . . . , p} of p key images can
be considered as a global visual servoing task to perform by
splitting it intop successive subtasks. In [10], a visual servoing
control law to perform a visual path in a general case is pre-
sented. This control allows a nonholonomic robot to perform
a visual route under the hypothesis that an homography can
continuously be estimated along an admissible path for robot
between two consecutive key images. Here, as in [9], thep
framesFi refer the path intoM. Instead of interpolating all the



configurationsFi to create a global path to be tracked byFI ,
the adopted control strategy consists in regulating successively
FI on straight linesΓi = (Oi,yi). Assuming that the camera
frame is equivalent to the robot controlled frame, a nonholomic
kinematic model of a cart-like vehicle is associated toFI . This
non linear kinematic model is turned into an exact linear one
by using a chained form transformation. Therefore, thanks to
classical linear automatics, a stable control law

ωc(y, φ) = −V cos3 φ(Kpy + Kd tanφ)

is obtained, where(Kp,Kd) ∈ R2+ are two non null gains.
The rotational velocityωc of the camera around its optical axis
is computed to regulate to zero both the angular deviationφ
and a lateral deviationy with respect to the currentΓi to track.
Control performances are tuned byKp and Kd. These two
gains determines the theoretical settling distance covered by
OI when trackingΓI . Theoretically, the control performances
does not depend on the longitudinal velocityV of the camera.
V is let free for an eventual supervisor which could adapt it to
navigation context. In practice, suitable control performances
and efficiency of the pattern tracking relies on tuned values
for Kp, Kv andV .

IV. A LGORITHM/ARCHITECTURE ADEQUATION AND

PARTITIONING

The developed algorithms have been integrated and vali-
dated on a small mobile robot (cf Figure 1). The hardware
architecture should be able to interface easily with the already
existing system architecture of the PekeeTM robot from Wany
Robotics. It should cope with the computation requirements of
the navigation algorithms, while fitting in place in the robot
and having a reasonable power consumption. High integra-
tion constraints are usually solved by developing dedicated
System On Chip chipset such as those that can be found in
smartphones, PDA, etc. In this aim, we used a programmable
chip (FPGA) with an embedded hardware processor core. The
programmable logic allows the design of various interfaces,
of powerful data management and computation units, while
the processor allows flexibility for other tasks needed by the
navigation algorithms. Another determining factor was the
availability of a prototyping board for the targeted device.
Providing flash and dynamic memories, several expansion
connectors, this board allowed us to design, integrate and
validate at an early stage of the project all the navigation
algorithms directly on the robot in real situations. It was then
possible to design safely a smaller computational board fitting
more efficiently our needs.
An EPXA10 chip from ALTERA was used as the main part
of the navigation module. It associates a high density FPGA,
an embedded 32 bits RISC ARM9TM processor running at
200 MHz and several peripherals (interrupt controller, dynamic
memory controller, timer,UART, . . . ). The FPGA device
drives a CMOS image sensor (the ceiling camera), performs
all the navigation algorithms, and sends speed and steering
commands to the robot. The system is completed with a
WiFi wireless link already available on the robot essentially

Fig. 2. FPGA main functional hardware blocs

used during the learning stage for teleoperation. The main
functional blocs of the FPGA are shown in Figure 2.

A. The ceiling camera

The ceiling camera consists of a single chip 1/3" VGA
CMOS pixel sensor capturing gray scale still or motion images
and converting them to a digital raw data stream. While
storing this data stream on memory, the FPGA also performs
automatic gain and exposure control to adapt in real time for
illumination changes. The image sensor is associated with a
miniature glass lens offering a 87◦ diagonal field of view,
necessary for covering a wide ceiling area. Due to the statis-
tical nature of the particle filter used for the tracking, image
distortion does not need to be corrected and the navigation
algorithms have been found to work efficiently.

B. The particle filter coprocessor

Ceiling images are used by the particle filter for tracking
planar patterns. Computing requirements for this task are
quite heavy and would not fit on the processor alone with
the real time constraints of the robot navigation. So most
computational part of the particle filter has been implemented
in hardware (cf Figure 3), relieving the embedded ARM9
processor and insuring good real time performances for the
video tracker. Local memories are used to store the particle
state and the planar model to be tracked. A model is defined
during the supervised learning step with the polar coordinates
of characteristic points corresponding to an extremum of
image gradient. For each particle, the corresponding state
vector (xc, yc, sc, θ) is applied to the model and the new



Fig. 3. Block diagram of the particle filter coprocessor

Fig. 4. Top: definition of a planar model. Blue points correspond to local
extremum of image gradient. Bottom: particle criterion computation

coordinates of the points are computed (cf Figure 4). For
each predicted point, a radial exploration is performed in the
current image to extract the local extremum of the image
gradient. The position of this extremum along the radial axis
is compared with the considered particle point position. The
resulting error is squared and cumulated over each point,
providing a measurement criterion for the particle. This step
is repeated for all particles and the corresponding criteria are
then stored in local memory. All hardware computations are
done using fixed point binary representation. Operators are
pipelined, and NxPxV cycles are needed to fill the criteria
memory, where N is the number of particles, P is the number
of points defining a planar model and V is number of points
for neighborhood exploration. In this application the number
of particles is limited to 256 particles, the number of points for

a model definition is limited to 64 points, and neighborhood
exploration is set to 20 points. With the current logic gate array
clocked at 40 MHz, and for the above maximum conditions,
this leads to an execution time of 8.2ms which is compatible
with the real time video data processing. The time required for
the overall tracking task is 24ms. It includes image acquisition,
particle filter processing and tracker state estimation.
In addition to these specific tasks inherent in tracking al-
gorithm, the FPGA also manages interfaces communication
with the others parts of the system. It includes I2C controller
and video interface for the image sensor, specific robot com-
munication protocol controller, direct memory data transfer
management and jpeg compression. Indeed for monitoring and
debug purpose, a wireless link is established between the robot
and a remote PC running GUI software. It allows to download
configuration for the navigation module and to upload ceiling
image, tracker state in the image and robot state in the mosaic.
As image transfer could required a large amount of data, the
jpeg compression, implemented in hardware, is used to reduce
the needed bandwidth.
Finally, management of the navigation task is implemented
by the ARM9 processor. It consists of providing the particle
filter with models from the mosaic that are possibly visible
in the current image. Estimation of the model state in the
image is then transposed back to the mosaic plane to give an
estimation of the robot localization in the mosaic. From this
localization, speed and steering trajectory tracking controls
are computed and sent to the motor controller as to drive
the robot to the next key image. The cycle time for the
overall system is about 70ms, which is compatible with the
robot dynamic. The software program size is 92KB while
the hardware implementation uses 26% of the FPGA logic
resources, among the 38400 logic blocs available in this
device. For the FPGA and the associated memories, power
consumption measured during experiments was 2.5W.

V. EXPERIMENTS

A. The teleoperated learning step

The learning stage is characterized by a human guided
teleoperation of the robot. Starting from an initial point, an
image capture is performed by the FPGA and a planar model
is automatically generated. This first model will be the anchor
point for the mosaic (cf Figure 5). Then the particle filter is
initialized with this first pattern and the localization is started.
When the robot is moved, new models are generated and
added to the mosaic with reference to the current tracked
model to cover the newly explored space. Trajectories are
learnt at the same time than mosaic construction, or they
could be learnt later. While being localized in the mosaic, a
predefined threshold robot displacement triggers the recording
of current robot localization, corresponding to a key image.
Together with the mosaic, the collection of all these records
obtained during teleoperation of the robot are used to build the
navigation visual memory of the environment as a database.
This database is small as it consists only of model’s points
coordinates and robot tracked path coordinates.



Fig. 5. Incremental building of the mosaic. Left: planar model to add to the
mosaic. Right: resulting mosaic plane, the new model is placed relating to the
current robot localization

Using a camera facing the ceiling for the navigation provides
the benefit that the robot can navigate a learnt path in the
reverse way easily. Theoretically if the camera is considered
to be ideal and placed at the robot’s rotation axis, key images
have only to be reversed. Practically the camera and the robot
are not ideal, experiments have shown that the main error
source comes from misalignment between the lens and the
image sensor, which is difficult to avoid on a low cost system.
Instead of following hard mechanical constraints, a rough self
calibration strategy, illustrated by Figure 6 has been developed
to compensate for this error:

• the particle filter is initialized with a planar model
• the model state(x1, y1, θ1) get from the particle filter is

memorized
• the robot spins around, until the particle filter exhibits a

180◦ rotation
• the new model state(x2, y2, θ1 + 180) is memorized

An estimation of the image center of rotation is obtained as the
middle point between(x1, y1)> and (x2, y2)>. Coordinates
for the learnt path (represented with light blue triangles in
Figure 7) and the robot localization (represented with red
triangle in Figure 7) are then corrected according to this
calibration. With this compensation, experiments show that
the robot is able to follow a trajectory in both way without
showing significant deviation.

B. Autonomous navigation

A GUI running on a remote PC was built to configure the
robot’s navigation module. It allows to display the mosaic, the
learnt visual paths and the current robot localization within
the mosaic. In Figure 7 the small black dots, linking the light

Fig. 6. Estimation for the image center of rotation

Fig. 7. GUI display for mosaic and trajectory

blue triangles, are samples of the robot localization during an
autonomous navigation. It gives a view of the performed path
within the mosaic while the robot is automatically driven to
follow a desired visual route (cf Section III), represented in
Figure 7 by the sequence of light blue triangles.

C. Control performances

There is a trade off to find between the accuracy of the
command and the behavioral of the robot. If controller’s gains
Kp and Kd are set too high, the robot will exhibit sudden
direction changes when switching from one key image to
the other. To decide whether the key image is reached or
not, the distance in the mosaic between the current robot
localization and the key image is computed. When the distance
is minimum, the robot is considered to have reach his target.
Figure 8 (a) shows the lateral error and the angular deviation
records between the robot localization and the path target
along a trajectory when switching from one key image to the
other. In spite of noise on the robot localization measurement,
it shows that the robot converges to the successive key images,
thus following the correct path.



(a) (b)

Fig. 8. (a): Lateral error and angular deviation for successive key images
during an autonomous navigation; (b): Evolution of the selected model (top)
and the criterion (bottom) during an autonomous navigation

D. Mosaic use during autonomous navigation

When the robot navigates in an autonomous way, localiza-
tion is possible if there is at least one model visible in the
ceiling image. To ensure this, the mosaic is parsed to select
the appropriate model for the particle filter by computing the
distance between the robot localization and the model in the
mosaic. If this distance is less than a predefined threshold
the model is said to be visible. This computation is very fast
and a mosaic of 100 models is parsed in less than 300µs.
If multiple models are candidates, the most centered in the
image is chosen to minimize optical distortion. This selection
step takes about 100µs per visible model. Usually, there is
less than 5 models visible together in the same image so this
computation is also costless.
The criterion of the selected model is also monitored. When
the criterion is high too many times, meaning that the tracking
is less reliable, the decision is taken to switch to another
model. Figure 8 (b) shows the evolution of criteria during
an autonomous run. Looking at the model index vs sample
records in Figure 8, we can see that around samples 84, 96
and 101, the system hesitates between model number 0 and
1 because both have bad criteria. As the robot go on, model
number 4 becomes the most centered and is selected because
of its best criterion.

VI. CONCLUSION

This paper presents developments and implementation of an
exclusively vision-based navigation framework for an indoor
wheeled mobile robot. An original mosaic of the ceiling is
used as visual memory of the environment. The robot is
located into this mosaic and is able to follow a predefined
path, described by a set of key images of the mosaic. The

development of a robust tracker of planar pattern into the
embedded camera image is a central clue of this approach,
as the automatic control of the camera motion with taking
into account the robot nonholonomic constraint. The challenge
of implementing the navigation algorithms on a dedicated
small device has been successfully taking up, in spite of hard
requirements due to industrial perspectives.
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