
Stereo Visual Servoing with Oriented Blobs

E. Cervera F. Berry, P. Martinet

Robotic Intelligence Lab LASMEA - GRAVIR

Jaume-I University Blaise Pascal University

12071 Castelló, Spain 63177 Aubière - Cedex, France

ecervera@icc.uji.es berry, martinet@lasmea.univ-bpclermont.fr

Abstract

In this paper, points and orientations are used in
a stereo visual servoing scheme to guide a robot end-
effector in a positioning task. Visual features are ob-
tained from segmented images of objects, or blobs.
From each blob, its center of gravity and the orien-
tation of its major axis of inertia is computed. Stereo
data and camera calibration allows to estimate 3D po-
sition and orientation, and to compute their interac-
tion matrices, or Jacobians. The presented approach
is validated with real experiments, using a coarsely cal-
ibrated stereo rig, in a eye-in-hand configuration, and
2D or 3D features. The target object is a pair of pli-
ers, a real life object, and the presented positioning
task is targeted to perform a future grasping task.

1 Introduction

Visual servoing has been traditionally applied to
points [7] though the ability to use any geometrical
feature has been thoroughly established [4]. Though
successful approaches using lines have been reported
[5, 6, 1], they are still rare in the literature with re-
spect to those devoted to point features, one possible
reason being the difficulty posed by line representa-
tions.

The authors have previously used the center of
gravity of a color-segmented object [8, 2, 3]. In this
paper, an extension of this work is presented using ori-
ented blobs: the center of gravity and the orientation
of the major axis of inertia of the segmented region.

Stereo vision is used to recover the depth of the
features. 3D coordinates of points can be recovered
from calibrated stereo images, and 3D orientation of
lines is estimated in a similar way.

The paper is organized as follows: Section 2 de-
scribes what an oriented blob is, and how its data
is first processed, for later computing the interaction
matrix (Section 3) associated to either 2D or 3D fea-
tures. The approach is validated by experimental re-
sults in Section 4, and finally there is the conclusion
and possible extensions (Section 5). Though image-

based visual servoing with points and lines was for-
malized in [4], the main contribution of this paper is
the integration of points and line orientations obtained
from blobs, not physical points nor lines.

2 Oriented blobs representation

An object can be segmented from an image by its
color, pattern, motion, or, if stereo is used, depth.
In any case, what is obtained is a 2D region in the
plane, a blob, where some statistics can be computed,
namely the center of gravity and the major axis of
inertia, among others. A blob is oriented if this axis
can be computed reliably.

In this work, the center of gravity is used as if it
were a physical point, and the orientation of the iner-
tia axis is used as if it were a physical line. One should
be cautious, though, about the 3D shape of the ob-
ject. The approach should work best if the object is
symmetric along its axis so the interpretation is valid
regardless the point of view.

Let (u, v, φ) be the features extracted from the im-
age. Image coordinates can be obtained from pixel co-
ordinates if the camera intrinsic parameters are known
(see Fig. 1).

(,)u v

(,)u v
0 0

f

u

v (,)x y

q

x

y

r

Figure 1: Relationships between raw image data
(left) and image coordinates and line parameters
(right) of an oriented blob.

Thus, image coordinates are computed as:

x =
u − u0

Fu

(1)

Proceedings of ICAR 2003
The 11th International Conference on Advanced Robotics
Coimbra, Portugal, June 30 - July 3, 2003

977

y =
v − v0

Fv

(2)

The angle needs to be converted to the correct
frame convention:

θ =
π

2
− φ (3)

The line parameter ρ can be readily obtained.
Though being redundant and not utilized in the fea-
ture vector, it is needed to compute the interaction
matrix of θ. It is given by:

ρ = x cos θ + y sin θ (4)

The ambiguity of the line representation (ρ, θ) is
overcome by fixing the sign of ρ and modulating to
2π the angle difference, as stated in [4]. The process
is done in the same way for both the left and right
cameras.

3 Computing the interaction matrix

In this section the interaction matrix or Jacobian
is computed. First, it is computed for 2D features,
namely (u, v, θ), the position and orientation of a blob.
Second, the result is presented for 3D features, i.e.
the position and orientation of the blob in 3D space
estimated from stereo images. Finally, the extension
to multiple blobs is shown, and how the interaction
matrix is used in the control law is recalled.

3.1 Using 2D features

The first proposed scheme uses a feature vector con-
taining 2D stereo image data, namely

s = (uL, vL, θL, ur, vR, θR)T

However, 3D information is needed to compute the
interaction matrix. In the case of the 2D point, its
depth is needed. For the 2D line orientation, one of
the planes containing the line, not passing through
the origin, is needed.

Though 3D information can be recovered from
other sources (object models, range data), in this work
stereo vision information is used to compute 3D data.
Fig. 2 (top of next page) depicts the configuration of
a stereo vision system.

In the following, a simplified stereo configuration
is assumed: both camera frames are equally oriented
(parallel optical axis), focals are equal for both cam-
eras too, b is the distance between their optical cen-
ters, and the end-effector frame is located in the mid-
dle of the camera frames, with the same orientation.
Depth of points is readily obtained from stereo dis-
parity:

ZL = ZR =
bFu

uL − uR

(5)

The interpretation plane can be recovered from one
point and line orientation. However, this plane con-
tains the origin too, thus it cannot be used in the
interaction matrix. The solution consists of using the
interpretation plane of the left image in the interac-
tion matrix of the right image features, and vice versa.
Let us compute the normal vector corresponding to
the left image plane:

nL = (xL, yL, 1)T × (− sin θL, cos θL, 0)T (6)

As a result, the coefficients of the interpretation
plane π1L equation are:

aL = − cos θL (7)

bL = − sin θL (8)

cL = ρL (9)

Since the plane contains both the image points
and the 3D points, the fourth coefficient of the plane
π1Lequation can be computed. As mentioned before,
these values are used in the interaction matrix of the
right image features, thus the substituted 3D point
coordinates (Eq. 5) should be located in the right
camera frame. There is no frame mismatch since both
frames are identically oriented in our setup, thus vec-
tors are invariant in both frames:

dL = −(aLxRZR + bLyRZR + cLZR) (10)

The interaction matrix for the 2D point and line
orientation of the right image is shown in Eq. 11 (next
page, below Fig. 2) where

λθR
= (aL sin θR − bL

Fu

Fv

cos θR)/dL (12)

The complete interaction matrix is made of the ma-
trices computed for both left and right image features.
These matrices should be properly combined [8], by
using the screw transformations from the end-effector
to the left and right cameras frame respectively:

L =

(

LLML
e

LRMR
e

)

(13)

where the matrices ML
e and MR

e are the transforma-
tions of the screw between the left and right camera
frames respectively and the end-effector frame:

Mi
e =

(

Ri
e

[

ti
e

]

×
Ri

e

O3 Ri
e

)

(14)

3.2 Using 3D features

The depth of a point (Z-coordinate) was computed
in (5). The rest of the 3D coordinates can easily be
computed, e.g. in the left camera frame:

XL = xLZL (15)

YL = yLZL (16)

978

Figure 2: Configuration of a stereo vision system.

LR =









− Fu

ZR
0 uR

ZR

uRvR

Fv
−Fu −

u2

L

Fu

vLFu

Fv

0 − Fv

ZR

vR

ZR
Fv +

v2

L

Fv
−uRvR

Fu

uLFv

Fu

λθR
cos θR

λθR
Fv sin θR

Fu
−

λθR
ρR

Fu
−ρR cos θR

Fv
−ρR sin θR

Fu
−

F 2

u
cos

2 θR+F 2

v
sin

2 θR

FuFv









(11)

where XL, YL and ZL is the estimated 3D coordinates
expressed in left frame (resp. in right frame). These
coordinates are written p = (X, Y, Z)T in the end-
effector frame and is directly obtained with the help
of the extrinsic camera parameters. This point is one
half of the feature vector, the other half being the vec-
tor of the 3D line corresponding to the orientation of
the object. Such orientation can be recovered without
much trouble: since this line is the intersection of both
left and right planes, its orientation (let us denote it
as d) is computed as the normalized cross product of
the normal vectors (6) of both planes:

d =
nL × nR

‖nL × nR‖
(17)

The feature vector is thus s = (pT ,dT)T and its
corresponding interaction matrix is:

L =

(

−I3

[

p
]

×

O3 [d]
×

)

(18)

3.3 Case of several blobs

One single blob is not sufficient to create a virtual
link, i.e. to control the 6 d.o.f. of the manipulator. In-
tuitively, it can be seen that there is a rotation around
the line corresponding to the axis of inertia which does
not affect the scene.

Several blobs can be easily managed by stacking
the interaction matrix corresponding to each blob, to
create a single matrix:

L =









...
Li

...









(19)

where Li is computed from stereo images of blob i
either by (13) or (18) depending on whether 2D or 3D
image features are used.

3.4 Control law

A basic manipulation tasks consists in a motion
between two locations. Image features recorded on
the destination position (s∗) are used to regulate the
control loop, [4], with a simple proportional control
law:

T = −λL+(s− s∗) (20)

where T = (vT , ωT)T is the kinematic screw applied
to the end-effector and L+ is the pseudo-inverse of the
interaction matrix.

4 Application

In this section, the presented framework is applied
to the special configuration of a pliers object. This
configuration appears in the image as two segmented
blobs, where the center of gravity and the angle of the
major axis of inertia are computed, on each image of
the stereo pair.

Figure 3 shows the configuration of system. A Mit-
subishi PA-10 manipulator holds a stereo rig made of
two miniature color cameras, in a eye-in-hand config-
uration.

The vision system consists of two Cognachrome
boards, which deliver color segmentation data (center
of gravity, axis of inertia) at 30 Hz. These are off-
the-shelf rather inexpensive systems, well suited for
visual servoing, which have been used in the authors’
previous works [8, 2, 3].

The workplace is depicted in Fig. 4, where the pliers
lie on a black floor and the robot is observing the
object. Segmented regions are shown in Fig. 5 for both

979

left and right images. Pliers are orange-colored, thus
the blobs corresponding to both arms are segmented
based on color information. Blobs are not symmetric
along their inertia axes, but the system is expected to
be robust against minor deviations.

Figure 3: Robot end-effector, with stereo rig.

Figure 4: Workplace containing the target object
(pliers) and the end-effector.

Depth can be recovered from stereo images, as well
as the planes containing the lines. In this work a
coarse camera calibration is assumed, i.e. the param-
eters are roughly known, usually up to their nominal
values, but no explicit calibration procedure has been
undertaken. The target is to test the robustness of
visual servoing with the proposed features.

The task consists of moving the manipulator from
its initial position to a desired one, e.g. as a prior
location to grasping the object. In the following re-
sults, the desired position is obtained when the pliers
are centered with respect to the end-effector frame,
vertically oriented, in a normal plane with respect to
z-axis. The rotation between initial and final posi-
tions is quite significant, amounting to approximately
45 degrees.

Figure 5: Segmented images of the pliers, as seen by
the left and right cameras.

4.1 Using 2D features

The feature vector is made of the 2D pixel coordi-
nates and 2D line orientation extracted from each of
the two blobs (let them be numbered 1 and 2), on the
left and right images. The feature vector s is thus:

(u1L, v1L, θ1L, u2L, v2L, θ2L, u1R, v1R, θ1R, u2R, v2R, θ2R)T

(21)

The only parameter which remains to be fixed is the
gain λ in the control law (20), which was set to 0.1,
after several trials. In the experiments, the gain de-
termined heavily the dynamic behavior of the system,
and it was kept relatively low to avoid the robot going
out of its joint limits.

Figure 6 depicts the task behavior. Top plots show
feature errors, for pixel coordinates and line orienta-
tions. Linear and angular velocities are plotted in the
middle. At the bottom, there is the image trajectory
at the left (both images are represented in the same
figure) and the trajectory of the end-effector in 3D
space at the right.

4.2 Using 3D features

The feature vector consists of estimated 3D point
coordinates, and estimated orientations:

s = (pT

1
,dT

1 ,pT

2
,dT

2)T (22)

These 3D estimations should be expressed in the
end-effector frame, a step easily achieved with the help
of the camera extrinsic parameters.

The choice of the gain λ posed even more prob-
lems than before. Due to the different nature of point
and orientation features, a different gain was chosen
for translation and rotation velocities. This is easily
achieved replacing the scalar λ in (20) by a diagonal
matrix Λ, where the top three diagonal values were set
to 0.025, and the rest of the values were set to 0.0025.

Figure 7 depicts the task behavior. Top plots show
again the feature errors, which now refer to 3D coor-
dinates of the points and 3D orientation of the lines.
Pixel coordinates and line orientations errors follow,
just to compare with the 2D approach. Linear and
angular velocities are plotted just below, and at the
bottom, there is again the image trajectory and the
trajectory of the end-effector in 3D space.

980

0 200 400 600 800 1000 1200 1400 1600 1800
−30

−20

−10

0

10

20

30

40
u

1l
v

1l
u

1r
u

2l
v

2l
u

2r

0 200 400 600 800 1000 1200 1400 1600 1800
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
θ

1l
θ

1r
θ

2l
θ

2r

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

Pixel error Orientation error Image trajectory

0 200 400 600 800 1000 1200 1400 1600 1800
−0.02

0

0.02

0.04

0.06

0.08

0.1
v

x
v

y
v

z

0 200 400 600 800 1000 1200 1400 1600 1800
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
ω

x
ω

y
ω

z

−560

−540

−520

−500

−590
−580

−570
−560

−550
−540

−530
−520

−510
−500

490

500

510

520

530

540

X − mm

Y − mm

Z
−

m
m

Linear velocity Angular velocity End-effector trajectory

Figure 6: Task behavior when using 2D control features.

4.3 Discussion

Image trajectories are better when using 2D fea-
tures, but this is not surprising since the control
loop provides a exponential decrease of feature errors.
With 3D features, this decrease does not necessarily
correspond to straight image trajectories.

Though convergence is achieved with either 2D or
3D features, a better dynamic behavior appears in the
first case. This is due to the coupling between rotation
and translation. Though this coupling is present in
both cases, its influence seems to be greater in the
3D case. The choice of different gains for linear and
angular velocities provided a better behavior, but how
to obtain the optimal gain values remains to be solved.

Another drawback of the 3D approach is the noisy
estimated 3D values, specially the orientation of the
line. Though such noise has a heavy influence in the
velocities, the image error (pixel and orientation) at
convergence is not much worse than in the 2D case.
However, in our implementation the sensor features
are noisy. In fact, the spatial discretization of the
features provided by the vision system are not precise
enough (i.e orientation ±1o).

5 Conclusion

A visual servoing approach using one point and the
orientation of a blob has been presented. A stereo rig
mounted in a eye-in-hand configuration is used. The
target object consisted of a pair of pliers which the

robot observed in a motion prior to grasping it, and
both 2D and 3D features were compared.

Though convegence is achieved, the trajectory of
the camera is not as smooth as desired, and control
gain must be kept small to ensure convergence. Fur-
ther experiments are needed to evaluate the approach,
e.g. by adding more features since two blobs is the
minimum required, but additional ones would proba-
bly add robustness to the task.

Experimentals results show the superiority of us-
ing 2D features in face of 3D ones. Convergence is
smoother, and the control gain is greater, thus pro-
viding a faster motion. However, further testing is
needed to thoroughly evaluate the influence of noise,
calibration and coupling in the trajectory and conver-
gence of the end-effector.

Future extensions include further connection with
the grasping phase, though an external camera is
needed to keep the target object in the field of view as
the end-effector approaches to it. The presented ap-
proach is suitable to external cameras too, e.g. mount-
ing the stereo rig on a pan-tilt head.

Acknowledgments

Support for this research is provided in part
by the Spanish Ministry of Science and Technol-
ogy under projects DPI2001-3801, and HF2001-0112,
and by the Generalitat Valenciana under project
CTIDIA/2002/195. The authors gratefully acknowl-
edge this support.

981

0 1000 2000 3000 4000 5000 6000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
p1

z
p2

z
p1

x
p2

x
p1

y
p2

y

0 1000 2000 3000 4000 5000 6000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
d1

z
d1

x
d1

y
d2

z
d2

x
d2

y

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

Point error Line vector error Image trajectory

0 1000 2000 3000 4000 5000 6000
−30

−20

−10

0

10

20

30

40

50
u

1l
v

1l
u

1r
u

2l
v

2l
u

2r

0 1000 2000 3000 4000 5000 6000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
θ

1l
θ

1r
θ

2l
θ

2r

−480
−460

−440
−420

−400
−380

−360

−580
−560

−540
−520

−500
−480

−460
−440

−420
−400

490

500

510

520

530

540

X − mm

Y − mm

Z
−

m
m

Pixel error Orientation error End-effector trajectory

0 1000 2000 3000 4000 5000 6000
−0.01

−0.005

0

0.005

0.01

0.015

0.02
v

x
v

y
v

z

0 1000 2000 3000 4000 5000 6000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
ω

x
ω

y
ω

z

Linear velocity Angular velocity

Figure 7: Task behavior when using 3D control features.

References

[1] N. Andreff, B. Espiau, and R. Horaud. Visual
servoing from lines. In Proc. IEEE Int. Conf. on
Robotics and Automation, 2000.

[2] E. Cervera, F. Berry, and P. Martinet. Stereo
visual servoing with a single point: a compar-
ative study. In Proc. of the Int. Conf. on Ad-
vanced Robotics, pages 213–218, Budapest, Hun-
gary, 2001.

[3] E. Cervera, F. Berry, and P. Martinet. Is 3D use-
ful in stereo visual servoing? In Proc. of the Int.
Conf. on Robotics and Automation, page To ap-
pear, Washington, USA, 11-15 May 2002.

[4] B. Espiau, F. Chaumette, and P. Rives. A new ap-
proach to visual servoing in robotics. IEEE Trans-
actions on Robotics and Automation, 8(3):313–
326, 1992.

[5] F.Chaumette. Visual servoing using image fea-
tures defined upon geometrical primitives. In Pro-
ceedings of the 33rd IEEE Conference on Decision
and Control, volume 4, pages 3782–3787, Florida,
USA, 1994. CDC’94.

[6] G. Hager. A modular system for robust positioning
using feedback from stereo vision. IEEE Transac-
tions on Robotics and Automation, 13(4):582–595,
August 1997.

[7] S. Hutchinson, G. Hager, and P. I. Corke. A tuto-
rial on visual servo control. IEEE Transactions on
Robotics and Automation, 12(5):651–670, October
1996.

[8] P. Martinet and E. Cervera. Stacking jacobians
properly in stereo visual servoing. In Proc. of
the Int. Conf. on Robotics and Automation, pages
717–722, Seoul, Korea, 21-26 May 2001.

982

	ICAR2003
	Return to Menu

