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Abstract

Neither of the classical visual servoing approaches, position-based
and image-based, are completely satisfactory. In position-based vi-
sual servoing the trajectory of the robot is well stated, but the ap-
proach suffers mainly from the image features going out of the visual
field of the cameras. On the other hand, image-based visual servoing
has been found generally satisfactory and robust in the presence of
camera and hand–eye calibration errors. However, in some cases,
singularities and local minima may arise, and the robot can go fur-
ther from its joint limits. This paper is a step towards the synthesis of
both approaches with their particular advantages, i.e., the trajectory
of the camera motion is predictable and the image features remain
in the field of view of the camera. The basis is the introduction of
three-dimensional information in the feature vector. Point depth and
object pose produce useful behavior in the control of the camera.
Using the task-function approach, we demonstrate the relationship
between the velocity screw of the camera and the current and de-
sired poses of the object in the camera frame. Camera calibration
is assumed, at least coarsely. Experimental results on real robotic
platforms illustrate the presented approach.
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1. Introduction

This work aims to improve the behavior of image-based visual
servoing. As pointed out in Chaumette (1998) and Hutchin-
son, Hager, and Corke (1996), in some cases, convergence
and stability problems may occur. Singularities in the Jaco-
bian or interaction matrix, or local minima, can spoil down
the servoing task. Position-based visual servoing is not free
of drawbacks either; image features are not controlled, thus
the target may go out from the field of view of the camera.
Generally, it is very important to study the behavior of the
control loop along the followed trajectory regarding all of
these drawbacks (singularities, local minima, keeping the tar-
get in the field of view of the camera). During the last decade,
many works have been done in this way, in order to solve such
problems.

In image-based control approach, the ideal case is to find
a particular visual feature where the interaction matrix has no
local minima nor singularities, and where the exponential de-
crease of the corresponding error function involves a straight
three-dimensional (3D) trajectory between the initial and final
camera poses. Most of time people use the interaction matrix
computed at the equilibrium; this may help to avoid singular-
ities and the need for 3D depth estimation, but it affects the
trajectory of the camera.

Previous works using image point features present an ex-
plicit trajectory generation expressed in image space (Berry,
Martinet, and Gallice 1997, 1999). In this case, the motion
is controlled only in such image space. Furthermore, they
all rely on metric knowledge. Other alternatives for improv-
ing image-based visual servoing have been proposed, such
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as combining the regulation of the vision task with the min-
imization of a secondary cost function, to avoid joint limits
and kinematic singularities (Marchand, Chaumette, and Rizzo
1996). In the case of complex objects, several works based on
geometrical features (Berry, Martinet, and Gallice 2000) or
an automatic selection of visual features (Janabi-Sharifi and
Wilson 1997) coupled to an SSD optical flow technique (Pa-
panikolopoulos 1995) have been developed. Another method
for tracking complex objects based on the estimation of the
two-dimensional (2D) object image motion along with the
computation of its 3D pose is presented in Marchand et al.
(1999).

More recent improvements have been presented in Corke
and Hutchinson (2000) and Mezouar and Chaumette (2001).
The authors use potential fields in image space in order to
keep the object in the field of view of the camera. In addition,
Mezouar (2001) has extended the local property of conver-
gence in the whole operating space by proposing an image
trajectory generation and control under constraint (in order to
avoid singularities, keep the object in the field of view of the
camera, and obtain 3D straight line behavior of the camera
pose). Hashimoto and Noritsugu (2000) have used interme-
diate reference images obtained by interpolation. One of the
main problems of such techniques is to assume that the mo-
tion between each generated images is compatible and smooth
enough for a robot. In particular, if the robot is a nonholomous
one, then the generated images have to take into account such
a constraint. Another choice is to use a robust control tech-
nique such as robust quadratic stabilization (Tarbouriech and
Soueres 2000) or dissipation theory (Maruyama, Fujita, and
Kanitani 1999). Generally, these techniques are very complex
and time-consuming, and the result is a conservative system
with very low performances.

In the position-based control approach (Wilson, Williams
Hulls, and Bell 1996; Martinet, Gallice, and Khadraoui 1996),
most of representations avoid the problems of local minima
or singularities of the corresponding interaction matrices, and
very often a straight 3D line between the initial and final em-
bedded camera pose is obtained. Unfortunately, the problem
of the features going out of the camera view is not directly
solved. Zanne, Morel, and Piestan (2000) have used sliding
model control theory to design a 3D vision-based controller
that is robust to bounded parametric estimation errors. In Mar-
tinet and Gallice (1999) and Thuilot et al. (2002), new 3D ori-
entation features are used in the control loop with a nonlinear
approach, in order to keep the target in the field of view.

A mixed 2D–3D approach can be used in order to take
advantage of both approaches. This is done in the so-called
21

2
D visual servoing (Malis, Chaumette, and Boudet 1999;

Chaumette and Malis 2000). This approach consists of com-
bining visual features obtained from the image, and features
expressed in the Euclidean space. The 3D information can
be retrieved either by a pose estimation algorithm (if a CAD
model of the target is known), or by a projective reconstruc-

tion, obtained from the current and desired images. In either
case, the rotationR of the camera and a depth ratio need to be
computed. In Morel et al. (1999) the size of the shape in the
image space is taken into account in order to keep the object
in the field of view of the camera. An ellipsis is defined which
includes all the features used in the reconstruction algorithm,
and a control law is designed to keep such ellipsis within the
image bounds. Another natural way to mix 2D and 3D is to
use a binocular system. Since pioneer works by Maru et al.
(1993), binocular vision has often been used to provide bet-
ter robustness to calibration errors. Grosso et al. (1996) have
compared a continuous measure of the end-effector motion
field with the actual position of the target. Lamiroy, Puget,
and Horaud (2000a) have described a number of geometric
tools to obtain a very robust visual stereo servoing platform.

The approach proposed in this paper defines alternative
feature vectors combining 2D and 3D information. It should
be noted that 3D information (depth) has been required in the
classic image-based approach for computing the interaction
matrix. Since this information is available, it makes sense to
use it not only in the interaction matrix but in other phases of
the servoing scheme.

Using thetask-function framework (Samson, Le Borgne,
and Espiau 1991; Espiau, Chaumette, and Rives 1992), the
velocity screw of the camera can be obtained from the task
error and the pseudo-inverse of the interaction matrix. We
will demonstrate that, for small changes of orientation, the
computed screw depends only on the current and desired poses
of the object in the camera frame, and consequently there
are no singularities nor local minima in the trajectory of the
camera.

As a further step, the use of 3D coordinates of points is
explored, which turns out to be a particular case of the previous
one. Nonetheless, stronger results for the velocity screw are
obtained for some particular geometric configurations of the
target object. Although 3D visual features have been studied
before (see, for example, Martinet, Gallice, and Khadraoui
1996), a new approach is proposed and analytical results are
presented for the velocity screw based on a set of feature
points.

Finally, object pose is used in the feature vector, as a natural
extension of 3D points. This approach is shown to best com-
bine the advantages of both position-based and image-based
visual servoing schemes, since the trajectory of the object in
the camera view is obtained, and the trajectory of the camera
in space can be estimated.

In Section 2 pixel information is used in combination with
depth, showing the resulting interaction matrix and the veloc-
ity screw of the camera. Theoretical results are presented for
a stereo system where depth is estimated from pixel disparity.
The same approach leads to the use of 3D point coordinates
in the feature vector. Next, in Section 3 we present a new
approach using 3D pose information of the object (position
and orientation) as a control feature. Theoretical results for
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the interaction matrix, the velocity screw, and the trajectories
are shown. Experimental results are described in Section 4.
Finally, in Section 5 we draw some conclusions and open is-
sues. At the end of the paper, an Appendix is provided with the
complete mathematical derivations of the results presented in
the paper.

2. Image Points and Depth

The main advantage of image-based visual servoing is the di-
rect utilization of image features, without the need to compute
the 3D pose of the target. However, in the original approach,
depth information corresponding to each image point must
be introduced in the interaction matrix, as well as the camera
calibration parameters. In fact, if this information is known,
the 3D coordinates of the points can be readily obtained, and
3D image features can be used.

In image-based visual servoing, a feature vectors has to
reach a desired values∗. Usually,s is composed of the image
coordinates of several points of the object. The key issue in vi-
sual servoing is to find the relationship between the derivative
of the feature vector and the velocity screw of the camera

v =
(

ν

ω

)
:

ṡ = Lsv. (1)

HereLs is theinteraction matrix or Jacobian matrix.
If the feature vectorsi is composed of the image coordi-

nates(ui, vi)t of a single 3D pointpi (Xi, Yi, Zi)
t , then the

interaction matrix is

Lsi (si , Zi,A) =
(
αu αuv
0 αv

)
 − 1

Zi
0

xi

Zi
xiyi −(1 + x2

i
) yi

0 − 1

Zi

yi

Zi
(1 + y2

i
) −xiyi −xi

 .
(2)

Here,Zi is thez-coordinate ofpi , A is the matrix of the camera
intrinsic parameters (see, for example, Faugeras (1993) for
more details)

A =
 αu αuv u0

0 αv v0

0 0 1

 (3)

and(xi, yi)t are obtained by perspective projection. When sev-
eral image points are used, the interaction matrix is obtained
by simply stacking the matrices for each elementary point.

In the following, 2D information (pixels) is combined with
3D data (depth) in order to improve the behavior of the servo-
ing task. In Section 2.1 we present a feature vector combining

pixels and depth (Z-coordinate) of points, and we describe
the properties of the interaction matrix, the velocity screw,
and the resulting motion of the object in the camera frame.
In Section 2.2 we present an alternative formulation of the
feature vector using stereo disparity, and show how the same
interesting properties are obtained.

2.1. Pixels and Depth

A requirement in image-based visual servoing with points is
the value ofZi for each feature point, in order to compute
the interaction matrix. Although some approaches only use
the value of the depth at the equilibrium, a better behavior is
obtained if it is estimated at each iteration. In this case, depth
can be included in the feature vector (Cervera and Martinet
1999a), as presented below, where the interaction matrix and
the velocity screw are derived.

2.1.1. Feature Vector

Assuming a camera model without distortion, the relationship
between the pixel coordinates(ui, vi)t and the image coordi-
nates(xi, yi)t is linear.

Since the image coordinates are obtained from the per-
spective projection of the coordinates of each pointpi in the
camera frame, the following relationship is readily obtained:

si =
 uiZi
viZi
Zi

 = Api . (4)

The advantage over pure 2D visual servoing is that the
feature vector is linearly dependent on the 3D coordinates. The
nonlinearity due to perspective projection has been removed.
This fact will lead to interesting dynamic properties of the
system, as shown in the following. Of course, we assume
thatZi can be estimated, but this assumption is present in 2D
visual servoing, since such values are needed in the interaction
matrix.

2.1.2. Interaction Matrix

Using the well-known relationships between the velocity of
point i of the object and the velocity screw of the camera, the
interaction matrixLs is

Ls =


...

−A A
[
pi
]
×

...

 (5)

=


...

−A A
[
A−1si

]
×

...

 (6)

whereA−1 always exists, since neitherαu norαv are null.
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Usually, the pseudo-inverse of the interaction matrix is
computed numerically at each iteration of the control algo-
rithm. However, it may be derived symbolically, as we show
in the next section. For that purpose, the expression of the
matrix in eq. (5) is utilized.

We do not intend to use the symbolic result in the control
loop, but it will be useful to calculate the velocity screw of
the camera.

We will demonstrate that, for small rotations of the cam-
era, such a velocity screw can be approximated by a compact
expression whichonly depends on the current and desired
poses of the object in the camera frame.

2.1.3. Pseudo-Inverse of the Interaction Matrix

In general, matrixLs is not square, thus it is not invertible.
However, a pseudo-inverse matrixL+

s
can be calculated as

L+
s

= (
Lt
s
Ls

)−1
Lt
s

(7)

so thatL+
s

Ls = I.
As derived in the Appendix, the resulting pseudo-inverse

matrix is

L+
s

=
(

· · · − 1
n
(AtA)−1At + [

p
]
× Ti

Ti

· · ·
)

(8)

where

Ti = RM−1
[
bpi
]
× RtAt. (9)

Such an expression involves the camera parametersA, the
pose of the object in the camera frame, expressed byp and
R, and the 3D model of the object, given by the relative coor-
dinates of each point with respect to the origin of the object[
bpi
]
×.

There are no obvious conclusions from this expression; in
fact, the usual choice is to compute numerically the pseudo-
inverse in the control loop. However, it allows the computation
of the velocity screw, with some interesting results.

2.1.4. Velocity Screw

The velocity screw is calculated by means of the classical
task function approach (Samson, Le Borgne, and Espiau 1991;
Espiau, Chaumette, and Rives 1992). The complete derivation
is shown in the Appendix. Although no simple expression is
obtained in the general case, if the rotation between the current
and desired pose of the objectθ is small, then the velocity
screw is

v ≈ −λ
(
(p∗ − p)+ [

p
]
× Ruθ

Ruθ

)
(10)

i.e., it only depends on the pose of the object, no longer de-
pending on the particular 3D model of such an object. We

could say that this approach isinvariant to the 3D character-
istics of the object.

In addition, the trajectory of the camera is not a straight
line. This could be surprising, since this approach uses 3D
information, andtraditional position-based visual servoing
is meant to produce such a straight trajectory. The reason is
that the feature vector consists of the pose of the object (as
obtained indirectly from the 3D coordinates of its points), not
the pose of the camera.

2.1.5. Motion of the Object in the Camera Frame

Since the motion of the camera cannot be easily described, let
us calculate the velocity of the center of gravity of the object
ṗ, with respect to the camera frame. Given the velocity screw
of the camera in the general case (45):

ṗ = −λ
(
−(p∗ − p)− [

p
]
× RW + [

p
]
× RW

)
= λ(p∗ − p). (11)

Thus, the center of gravity of the object moves along a
straight-line trajectory from its initial to its final position in
the camera frame. Consequently, the object is most likely to
remain in the camera field of view during the whole task.

Let us remark that this expression is an equality, not an
approximation. Thus, the center of gravity of the object de-
scribes a straight-line trajectory forany rotation between the
current and desired poses, small or large. Consequently, our
approach does not suffer as much as traditional position-based
ones from the problem of getting the object out of the field of
view of the camera.

Of course, the method relies on the estimation of the depth
of points, and the camera focal parameters, which are needed
for the interaction matrix. The better the estimation, the more
likely the object will remain in the field of view. Unfortunately,
it is not possible to derive a quantitative measure of such
probability, as in other position-based approaches.

2.2. Using Disparity for Depth

The presented approach can be directly applied to a stereo sys-
tem, where depth is estimated from pixel disparity (Cervera,
Berry, and Martinet 2002). For simplicity, a parallel stereo
configuration, with equal focal lengths is assumed. Thus, dis-
parity values can be used in the feature vector, defined as

si =



uil + uir

uil − uir
vil + vir

uil − uir
1

uil − uir

 (12)

where subscriptsl and r refer to the left and right camera
pixels, respectively.
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It can be shown that this feature vector results from a linear
combination of the coordinates of the corresponding 3D point:

si = Api . (13)

The matrixA depends on the camera parameters as before,
and also the camera baselineb, i.e., the distance between left
and right cameras:

A =



2

b

2αuv
bαu

2u0

bαu

0
2αv
bαu

2v0

bαu

0 0
1

bαu

 . (14)

The resulting interaction matrix is defined as previously

Ls =


...

−A A
[
A−1si

]
×

...

 (15)

which certainly exists since matrixA has an inverse too, since
none of its elements is null.

In this way, 3D coordinates need not be estimated, and the
interaction matrix is kept linear with respect tos.

Previous theoretical results still hold. Although the velocity
screw (10) is valid for small angles only, the trajectory of the
center of gravity of the set of points (11) still translates along
a straight path during the task.

2.3. Using 3D Point Coordinates

In addition to the previous results, theoretical developments
can be further obtained if the feature vector is composed of
the 3D coordinates of the points of the object, i.e.,si = pi
(Martinet, Gallice, and Khadraoui 1996).

We should note that no additional information is needed
for the computation of such coordinates, which are easily ob-
tained from pixels and depth estimates, assuming the camera
intrinsic calibration parameters also.

2.3.1. Interaction Matrix

Instead of repeating the development, all of the previous the-
oretical results can be used by means of simply replacingA
by the identity matrix. Thus, the new interaction matrix is

Ls =


...

−I
[
pi
]
×

...

 (16)

and its pseudo-inverse is

L+
s =

(
· · · − 1

n I + [
p
]
× Ti

Ti
· · ·

)
(17)

where

Ti = RM−1
[
bpi
]
× Rt (18)

M =
n∑
i=1

[
bpi
]2

× . (19)

Let us note that these expressions do not depend on the
camera intrinsic parameters (although they are used in the
estimation of 3D points from pixel data). In addition, matrix
M is computed from the 3D model of the object, not depending
on its absolute spatial position nor orientation.

2.3.2. Velocity Screw

Besides obtaining the same approximation of the velocity
screw of the camera,an exact computation of the velocity
screw for any rotation can be obtained ifM is a diagonal ma-
trix (some objects forM as a diagonal matrix are, for example,
the tetrahedron, the square and the cube).

As derived in the Appendix, the velocity screw of the cam-
era is then

v = −λ
(
(p∗ − p)+ [

p
]
× Ru sinθ

Ru sinθ

)
(20)

which is valid for alluθ .
The motion of the camera is always the same regardless of

the 3D model of the object. An intuitive explanation is that the
property ofM being symmetric produces some compensation
among the motion of the points, leading to a camera motion
which only depends on the pose of the object, not its particular
points.

As shown in eq. (11), the object will follow a straight-line
path in the camera frame. However, care must be taken if
π

2
< θ ≤ π , since sinθ decreases. Consequently, the camera

accelerates during the first phase of the motion untilθ = π

2

then decelerates until convergence. This may cause unex-
pected behavior if the initial velocity of the camera is near
to the maximum limit in order to improve convergence times.

Finally, if θ = π (180◦) then the camera does not rotate at
all, which will produce inconsistent results if the translational
motion does not change the orientation of the object with
respect to the camera, e.g., if the object is positioned along
the straight line which joins the current and desired camera
positions. Since the object is somehow symmetric, a 180◦

rotation may leave the object unchanged, thus not producing
any rotational motion of the camera.

3. Object Pose

In the previous section, it has been theoretically shown how
3D information improves the behavior of image-based visual
servoing. Effectively, it allows us to compute the velocity
screw and predict the motion of the object in the camera frame.
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Fig. 1. Frames defined in the visual servoing task.

In this section, the feature vector consists of the pose of
the object (Cervera and Martinet 1999b). This is genuine 3D
information, but the approach differs from classic position-
based visual servoing in that the error is not measured in the
camera frame, but in a new frame defined in the following.

As a result, further advantages can be obtained, as the com-
plete knowledge of the trajectories of the object in the camera
frame, and the camera in the space.

3.1. Task Frames

LetFo be the coordinate frame attached to the observed object,
and letFc andFd be the coordinate frames associated to the
current and desired camera poses, respectively, as depicted in
Figure 1. LetcTo anddTo be the transformations between the
camera and object frames, for the current and desired camera
poses, respectively. Let us define a new frameFp, rigidly
attached to the current camera frame, as

cTp = dTo; (21)

that is, the transformation between the current camera frame
and the defined one is the same as that of the desired camera
frame and the object frame.

The key is to define the error vector in the new frame,
instead of defining it in the camera frame as usual. The pose
of the object is then

pTo = (
cTp

)−1 cTo

= (
dTo

)−1 cTo (22)

which can be calculated sincedTo is given, andcTo is recon-
structed from the current image and the model of the object.

Let

pTo =
(

pRo
ppo

0 1

)
(23)

be the decomposition of the transformation matrix in its rota-
tion and translation components. Then let us define the feature
vector as

s =
(

ppo
uθ

)
(24)

whereu andθ are the axis and angle of rotation corresponding
to matrixpRo. The error vector is

e = s − s∗ (25)

wheres∗ is the desired feature vector.
The interesting thing about this new frame is that, when

the camera achieves the desired pose, framesFp andFo are
coincident, thuss∗ = 0. In the next sections, we will demon-
strate how this property allows the computation of the exact
trajectory of the object in the camera frame, and the trajectory
of the camera in the world frame.

3.2. Trajectory of the Object in the Camera Frame

The importance of such a trajectorycpo(t) relies on the fact
that it determines whether the object remains within the vision
field of the camera or not.

As shown in the Appendix,

cpo(t) = (
cpo(0)− dpo

)
e−λt + dpo (26)

which is simply a straight-line trajectory from the initial posi-
tion cpo(0) to the desired onedpo, the exponential factor only
affecting the velocity along such a line.

The orientation of the object with respect to the camera
frame is also derived, giving

cRo(t) = dRoR
(
uθ(0)e−λt) (27)

which is a composition of the constant rotationdRo and
the variable rotation around the constant axisu, as given in
eq. (60).

As when using 3D point features, the center of the object
describes a straight path from its initial position to the desired
one, in the camera frame. Since both positions are within
the camera field of view, all the intermediate ones are within
this field too. However, there is no guarantee that the rest of
the points of the object will remain within the field of view,
although a partial result about this is presented in the next
section.

Theoretical demonstrations of robustness and stability are
also hard to obtain due to the iterative nature of pose estimation
algorithms.

3.3. Image Point Trajectories

In the proposed framework, image features (points) are not
directly controlled. However, since the trajectory of the ob-
ject in the camera frame is known, it is possible to calculate
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the trajectory of each point in the camera frame and even its
trajectory in the image plane.

If the angle of rotationθ between the current and desired
poses of the object with respect to the camera is small, then we
will demonstrate that each object point follows a straight-line
trajectory in 3D space from its initial to its final position (see
the Appendix). Thus, the projection of each point describes a
straight line from its initial to its final position in the image
plane too.

The trajectory of a pointi, which is rigidly attached to the
object, is then

cpi (t) ≈ dpi +
(
cpi (0)− dpi

)
e−λt (28)

which is effectively a straight line from its initial to its final
position in the camera frame. Consequently, its projection is a
straight line joining its initial and final positions in the image
plane.

From the point of view of the image, such behavior is the
same as that produced by classic image-based visual servoing,
where the task error is defined in terms of image points. In this
last approach, image points are constrained to follow straight
lines even in the presence of high orientation variations, thus
frequently causing inadequate camera motions (Chaumette
1998).

3.4. Advantages of the Proposed Coordinate Frame

The key advantage of the proposed framework is that the tra-
jectory of the object in the camera frame is known, and the
object is likely to remain within the camera field (in the ab-
sence of high calibration and/or model errors).

However, we might wonder about the need to introduce a
new coordinate frameFp instead of using directly the current
camera frameFc. Effectively, if the error vector is defined in
Fc, then the trajectory of the object is exactly the same as
given in eq. (26).

The difference between choosing either of the two frames
concerns only the orientation of the object. If the error vector
is defined in the camera frame, thens∗ is no longer null, and

e =
(

cpo − dpo
ucθc − udθd

)
(29)

whereucθc and udθd are, respectively, the axes and angles
which correspond to the rotation matricescRo(0) anddRo.

Solving the differential equation leads to

uθ(t) = ucθce−λt + (1 − e−λt )udθd . (30)

The problem now is that, in the general case, the orientation
of the axis of rotation changes, since it is a linear combination
of the two not-necessarily-parallel vectors,uc andud . Only
if these vectors are parallel or either of them is null, then the
axis of rotation is constant.

This is clearly a disadvantage of the camera frame, which
motivates the introduction of frameFp. A constant rotation
axis not only produces simpler trajectories, but it also allows
the determination of the trajectories of object points, as de-
scribed before, and an easier calculation of the velocity screw,
as shown in the next section.

3.5. Velocity Screw

The velocity screw in the camera frame, using the task func-
tion approach (Samson, Le Borgne, and Espiau 1991)—see
the Appendix—is

cv = −λ
( −cpo + dpo − [

cpo
]
×
dRouθ

−dRouθ

)
(31)

whereu andθ are the axis and angle which correspond to the
rotation matrix

R(uθ) = (dRo)
−1cRo; (32)

that is, the pure rotation between the initial and desired ori-
entations of the object with respect to the camera.

The computation of the control law consists of three steps,
as follows.

1. Obtain cpo and cRo from the current image and the
model of the observed object with a reconstruction algo-
rithm; e.g., a fast algorithm is proposed in Dementhon
and Davis (1995).

2. Calculateuθ as shown in eq. (32).

3. Compute the velocity screw in the camera framecv as
given by eq. (31). This screw can be readily transformed
to the end-effector or base frame and, via the Jacobian
robot, to joint velocities.

As explained in the literature (Samson, Le Borgne, and Es-
piau 1991; Chaumette 1998), the system is globally asymptot-
ically stable if̂L

−1

s
Ls > 0 wherêL

−1

s
is an estimation based on

the current measurements. This condition is surely met since,
in the absence of calibration errors, L̂

−1

s
Ls = I6.

3.6. Trajectory of the Camera

Since the object is supposed static, then

pc(t) = Ro
opc(t)+ po (33)

wherepo andRo are, respectively, the position and orientation
of the object with respect to an absolute frame.

It follows immediately that

pc(t) = −Ro
oRc(t)

cpo(t)+ po (34)

which allows us to calculate the trajectory of the camera in
terms of the trajectory of the object in the camera frame and
the pose of the object on the absolute frame.
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Since the trajectory of the object in the camera frame is
described by eqs. (26) and (27), the trajectory of the camera
can be completely expressed in terms of the task parameters
(cTo(0), dTo,To)

pc(t) = −Rc(t)
((
cpo(0)− dpo

)
e−λt + dpo

)+ po
Rc(t) = RoR(uθe−λt )(dRo)

−1 (35)

whereu andθ are the axis and the angle which correspond to
the rotation matrix(cRo(0))−1dRo.

4. Experimental Results

The presented approaches have been tested on real robotic
platforms. Eye-in-hand configurations have been used, both in
mono and stereo cases. The monocular platform is a Cartesian
manipulator, and the stereo one is a Mitsubishi PA-10 arm,
although controlled in the Cartesian space.

4.1. Pixels and Depth

This scheme has been implemented on a robotic platform with
six degrees of freedom and an eye-in-hand configuration. 2D
visual features are extracted at video rate (25 Hz) and 3D
features at 12.5 Hz. The target object is composed of four
points which define a tetrahedron. 3D coordinates are obtained
from the pose of the object, which is extracted from the images
and an internal model with the algorithm of Dementhon and
Davis (1995).

Initial and desired poses of the camera are shown in Table 1.
As explained in Malis, Chaumette, and Boudet (1999), this is
a difficult task since the displacement is important and the
object moves towards the border of the image.

Figure 2 depicts the trajectories of the object in the image
plane, when three different features are used in the control
loop: pure 2D points, 2D points combined with depth, and
pure 3D points. Since the involved rotation is high, the points
of the object do not follow straight lines from the initial to the
final positions. Although trajectories are more curved in the
proposed approaches than in image-based visual servoing, the
object remains in the field of view of the camera during the
complete servoing task.

Camera trajectories in 3D space are depicted in Figure 3.
The trajectory of the camera when using depth or 3D points

Table 1. Initial and Desired Poses of the Camera
Translation Rotation

Pose (mm) uθ (deg)

Initial 0 0−500 0 0 0
Desired −225 249−408 7 37−70

is closer to a straight path than when using the classic image-
based scheme. As a consequence, the manipulator is better
kept from reaching its joint limits.

4.2. Pixels and Stereo Disparity

The stereo visual servoing platform consists of a Mitsubishi
PA-10 arm, controlled in the Cartesian space. Attached to
the end-effector of the arm is a stereo rig with two minia-
ture CMOS color cameras, linked to two video boards which
deliver the visual features at video rate (30 Hz).

We give the estimation of the parameters (intrinsic and
extrinsic) of both cameras, as used in the experiments:Fu is
300;Fv is 450; andb is 118 mm.

The target object consists of four co-planar points located
at the vertices of an 11 cm square and the fifth point is located
at the center of the square.

The velocity screw is computed from the pseudo-inverse
of the interaction matrix (Espiau, Chaumette, and Rives 1992)

v = −λL+(s − s∗) (36)

with λ set to 0.5 in all the experiments.
Image measurements are noisy, since the experiments are

carried out in a standard office environment, without any spe-
cial illumination. As a result, there is an almost-uniform noise
whose magnitude is±1 for ul

i
andur

i
, and±2 for vl

i
andvr

i
.

Additionally, pixel coordinates are quantified to a resolution
of 200× 200.

Experimental results are depicted in Figures 4, 5, and 6.
Each figure consists of a set of plots (from top to bottom):
the image trajectories of the points, the errors of the visual
features, and the velocity screw. Convergence is better when
3D information is used, either stereo disparity, or estimated
coordinates.

Figure 7 depicts better this advantage, by showing the 3D
trajectory of the end-effector. Both approaches using 3D in-
formation in the feature vector accomplish a better trajectory
than the pure 2D image-based approach, although using stereo
features too.

Convergence to the desired images is always achieved, but
quality is worse with the stereo 2D features. As pointed out by
Lamiroy et al. (2000b), the stereo interaction matrix is largely
overconstrained, and the control datas ands∗ are redundant.
However, this is not sufficient to explain the curvy trajectory
of the end-effector (bottom of Figure 7), which almost leads
out of the range of robot joints.

Such a trajectory is neither caused by too high a gain; with
λ = 0.1 a smoother but similar trajectory is obtained, as de-
picted in Figure 8. This problem has not been addressed before
since very few experiments with image-based stereo visual
servoing have been carried outwith cameras mounted on the
end-effector. To our knowledge, only Maru et al. (1993) have
worked with this setup, but their tasks involved rather small
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Fig. 2. Object trajectory in the image: (a) 2D points, (b) 2D/depth, and (c) 3D points.
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Fig. 3. Trajectories of the camera.

rotations(φ, θ, ψ) = (10,10,10) (degrees). In our manipula-
tion task, the rotation between the initial and destination poses
is (φ, θ, ψ) = (72,57,50) (degrees). Translational distance
is 250 mm, as opposed to 173 mm in Maru et al. (1993).

Approaches based on 3D features work better due to the
linearity of the interaction matrix. As shown theoretically, not
only the image points but the center of gravity of 3D points
translates along a straight line. As a result, the trajectory of the
end-effector frame is closer to a straight line too, even with
large rotations between frames.

4.3. Object Pose

This scheme has been implemented on an eye-in-hand monoc-
ular configuration. The target object is composed of four
points which define a tetrahedron. The pose of the object is
extracted from the images and an internal model with the al-
gorithm of Dementhon and Davis (1995). Initial and desired
poses of the camera are shown in Table 2.

The proposed control law has been experimented together
with position-based and image-based ones. However, the clas-
sic approaches do not converge and simulated results are pro-

Table 2. Initial and Desired Poses of the Camera
Pose Translation Rotation
Pose (mm) uθ (deg)

Initial 0 0−500 0 0 0
Desired −304 251−366 −6 26 −50

vided. The position-based approach failed due to the object
going out of the camera field of view (see Figure 9). On the
other hand, in both image-based visual servoing and our ap-
proach, the object remained always in the camera field of view.
However, image-based visual servoing failed due to the im-
posed camera trajectory, which pushed the robot farther from
its physical joint limits.

Figure 10 depicts the trajectory of the camera in 3D space.
In position-based visual servoing, the trajectory is ideally a
straight line, but convergence is not achieved, as explained
before; thus only the result from simulation is shown. In
the image-based approach, the trajectory goes farther from
the joint limits, thus it fails too. In the figure, the complete
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Fig. 4. Stereo 2D points: (from top to bottom) image trajectories, pixel errors (u, v), and velocity screw.
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450

400

350

300

780
760

740
720

700
680

660
640

350

400

450

X  mm

Endeffector trajector y

Y  mm

Z
  m

m

Fig. 8. Trajectory of the end-effector, with stereo 2D features, andλ = 0.1.

300 200 100 0 100 200 300 400 500 600

300

200

100

0

100

200

300

400

500

600

150 200 250 300 350 400 450

150

200

250

300

350

400

450

150 200 250 300 350 400 450

150

200

250

300

350

400

450

(a) (b) (c)
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trajectory is obtained from simulation, and the real one stops
with the joint range error. Finally, with the proposed model
the trajectory is near to the straight path, and convergence
to the desired pose is achieved (both in simulation and real
experiment).

The differences between real and simulated trajectories are
due to the calibration errors of the real platform which cannot
be completely captured in the simulations.

5. Summary and Conclusions

The use of 3D features in image-based visual servoing has
been proposed. This extension does not require additional in-
formation, i.e., only the pixel coordinates and the estimated
depth of each point are used, as in classical 2D visual servoing.

Such new features result in a linear control law, from which
the computed screw can be obtained, resulting in a motion of
the object along a straight path in the camera frame; thus,
the object is most likely to remain in the field of view of the
camera during the visual servoing task.

The proposed scheme is applied to a stereo visual servoing
system, where disparity replaces the point depth in the feature
vector. Theoretical results show the similarities between this
and the previous approach.

We also propose the use of 3D coordinates of the points
of the object, obtained from the image features, the estimated
depth and the camera parameters. We demonstrate that it is a
particular case of the first proposed scheme. Nevertheless, an
exact value of the velocity screw is obtained, provided that an
additional geometric property of the target object is met.

As a further step, a visual servoing model using object
pose has been presented, which inherits the advantages from
position-based and image-based approaches, namely the cam-
era trajectory is predictable and the image features remain in

the camera field of view. In addition, convergence is achieved
for any configuration of the camera and object provided that
the pose can be correctly reconstructed from the object image
and model.

The proposed approaches exhibit a better behavior than the
classic image-based one, since the trajectories of the camera
in the absolute frame are less elongated when the change of
orientation is high. Thus, the risk of the robot going out of its
joint limits is lowered.

Besides proper camera calibration, the main requirement
of the proposed approach is the acquisition of 3D informa-
tion either by a pose estimation algorithm (assuming a CAD
model of the target), or by a stereo visual system. A projective
reconstruction is used in 21

2
D visual servoing, which does not

have these requirements, at the expense of being less robust
with respect to image measurement errors, and more compu-
tationally expensive.

Experimental results on a robotic platform show the fea-
sibility of the proposed scheme in a real-world environment.
Future work includes the study of the efficiency and robust-
ness of the proposed schemes when compared to the classic
image-based and position-based visual servoing approaches,
particularly in face of camera calibration errors. The influence
of object geometry needs to be studied, since some control
properties depend on its symmetry, although the final target
is to find features to work without object models.

Appendix

Pseudo-Inverse of the Interaction Matrix for Image Points
and Depth

First, let us calculate the product of the interaction matrix by
its transpose
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Lt
s
Ls =

(
· · · −At

− [pi]× At · · ·
)

...

−A A
[
pi
]
×

...


=

(
nAtA −nAtA

[
p
]
×

n
[
p
]
× AtA −n [p]× AtA

[
p
]
× − S

)
(37)

where

S = RMRt (38)

M =
n∑
i=1

[
bpi
]
× RtAtAR

[
bpi
]
× . (39)

The inverse matrix of the above product is

(
Lt
s
Ls

)−1 =
( 1

n
(AtA)−1 + [

p
]
× S−1

[
p
]
× − [p]× S−1

S−1
[
p
]
× −S−1

)
(40)

which exists as long asM has an inverse, sinceS−1 =
RM−1Rt .

Finally, the pseudo-inverse matrix is

L+
s =

(
· · · − 1

n (A
tA)−1At + [

p
]
× Ti

Ti
· · ·

)
(41)

where

Ti = RM−1
[
bpi
]
× RtAt. (42)

Velocity Screw for Image Points and Depth

Prior to the calculation of the velocity screw, we must define
the error vectore between the current feature vectors and the
desired ones∗:

e = s − s∗

=


...

A
(
pi − p∗

i

)
...



=


...

A
(
(p − p∗)+ (R − R∗)bpi

)
...

 . (43)

The velocity screw is then calculated by means of the task-
function approach (Samson, Le Borgne, and Espiau 1991;
Espiau, Chaumette, and Rives 1992):

v = −λL+
s

e. (44)

From the above definitions,

v = −λ
( − 1

n

∑n

i=1(p − p∗)
0

)
− λ

( [
p
]
×
∑n

i=1 TiA(R − R∗)bpi∑n

i=1 Ti mA(R − R∗)bpi

)
= −λ

(
(p∗ − p)+ [

p
]
× RW

RW

)
(45)

where

W =
n∑
i=1

M−1
[
bpi
]
× RtAtA(R − R∗)bpi . (46)

According to the properties of rotation matrices, the above
difference is

R − R∗ = −R [u]2
× (1 − cosθ)− R [u]× sinθ (47)

whereu andθ are the axis and the angle which correspond to
the rotation matrix productRtR∗.

If θ is small, we can take the approximations sinθ ≈ θ

and cosθ ≈ 1. Then,

W ≈
n∑
i=1

M−1
[
bpi
]
× RtAtA

(−R [u]× θ
)
bpi

≈ M−1

n∑
i=1

[
bpi
]
× RtAtAR

[
bpi
]
× uθ (48)

which, according to the definition ofM in eq. (39), leads to

W ≈ uθ. (49)

Thus, the velocity screw is

v ≈ −λ
(
(p∗ − p)+ [

p
]
× Ruθ

Ruθ

)
. (50)

Velocity Screw for 3D Points

The velocity screw of the camera can be approximated in the
same way as when using image points and depth. Nonetheless,
an exact computation of the velocity screw for any rotation
can be obtained ifM is a diagonal matrix (some objects for
M as a diagonal matrix are, for example, the tetrahedron, the
square and the cube).

From the properties of skew-symmetric matrices,

M =
n∑
i=1

bpi bpi
t −

n∑
i=1

bpi
tbpiI. (51)

Since bothM and the second sum are diagonal, then the
first sum is diagonal too, i.e.,

n∑
i=1

bpi bpi
t = αI (52)
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whereα is a positive scalar.
Then, from eqs. (46), (47) and (52)

W = −M−1

n∑
i=1

[
bpi
]
× [u]2

×
bpi (1 − cosθ)

+ M−1

n∑
i=1

[
bpi
]2

× u sinθ

= −M−1

n∑
i=1

[
bpi
]
× uutbpi (1 − cosθ)+ u sinθ

= M−1 [u]×

n∑
i=1

bpi bpi
tu(1 − cosθ)+ u sinθ

= αM−1 [u]× u(1 − cosθ)+ u sinθ

= u sinθ. (53)

The velocity screw of the camera is

v = −λ
(
(p∗ − p)+ [

p
]
× Ru sinθ

Ru sinθ

)
(54)

which is valid for alluθ .

Trajectory of the Object for Object Pose

Let us compute the trajectory of the object in the camera frame
(cpo(t),cRo(t)). To begin with, we need to know the temporal
evolution of the feature vector, defined by the pose of the
object in the new frameFp, as presented in Section 3.1.

In this case, when the camera achieves the desired pose,
framesFp andFo are coincident, thuss∗ = 0 and

e = s

=
(

ppo
uθ

)
. (55)

If an exponential decoupled convergence of the task func-
tion is imposed then

ė = −λe (56)

which is a vectorial differential equation whose solution is

e(t) = e(0)e−λt . (57)

Following the definition of the error,

ppo(t) = ppo(0)e−λt

uθ(t) = uθ(0)e−λt (58)

where

ppo(0) = pRc
cpo(0)+ ppc

= (dRo)
−1cpo(0)+ opd

= (dRo)
−1cpo(0)− (dRo)

−1dpo
= (dRo)

−1
(
cpo(0)− dpo

)
(59)

and whereu andθ(0) are the axis and the angle which corre-
spond to the rotation matrix

pRo(0) = (cRp)
−1cRo(0)

= (dRo)
−1cRo(0). (60)

Now, let us proceed to compute the pose of the object in
the camera framecpo(t)

cpo(t) = cRp
ppo(t)+ cpp

= cRp
ppo(0)e−λt + cpp (61)

where it should be noted that bothcRp andcpp are constant
since the frameFp is rigidly attached to the camera frame.

Whent = 0,

ppo(0) = pRc

(
cpo(0)− cpp

)
. (62)

Then,

cpo(t) = cRp
pRc

(
cpo(0)− cpp

)
e−λt + cpp

= (
cpo(0)− dpo

)
e−λt + dpo (63)

which is simply a straight-line trajectory from the initial posi-
tion cpo(0) to the desired onedpo, the exponential factor only
affecting the velocity along such a line.

The orientation of the object with respect to the camera
frame can also be obtained. From eq. (58)

pRo(t) = R
(
uθ(0)e−λt) (64)

and, by changing the coordinate frame,

cRo(t) = cRp
pRo(t)

= dRoR
(
uθ(0)e−λt) , (65)

which is a composition of the constant rotationdRo and
the variable rotation around the constant axisu, as given in
eq. (60).

Image Point Trajectories for Object Pose

The trajectory of a pointi, which is rigidly attached to the
object, is

cpi (t) = cRo(t)
opi + cpo(t) (66)

whereopi is the position of such a point in the object frame.
Since the point is rigidly attached, this position is constant.

From eqs. (63) and (65)

cpi (t) = dRoR(uθ(0)e−λt )opi
+ (cpo(0)− dpo)e−λt + dpo. (67)

A rotation matrix with axisu and angleθ can be expressed
as

R(uθ) = I3 + [u]2
× (1 − cosθ)+ [u]× sinθ (68)
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which, if θ is small, leads to

R(uθ) ≈ I3 + [u]× θ. (69)

Assuming such an approximation, eq. (27) becomes

cRo(t) ≈ dRo + dRo [u]× θ(0)e
−λt . (70)

Thus, the trajectory of the object point is

cpi (t) ≈ dRo

(
I3 + [u]× θ(0)e

−λt) opi
+ (cpo(0)− dpo)e−λt + dpo

≈ dRo
opi + dpo

+ ((cRo(0)− dRo)
opi + cpo(0)− dpo

)
e−λt

≈ dpi +
(
cpi (0)− dpi

)
e−λt . (71)

Velocity Screw for Object Pose

Let us calculate the control law which achieves the desired
exponential decoupled convergence, as imposed in eq. (56).
Using the task-function approach (Samson, Le Borgne, and
Espiau 1991), the velocity screw is

v = −λL−1
s

e (72)

whereLs is theinteraction matrix (also known as theimage
interaction matrix) which relates the derivatives of the feature
vector and the velocity screw:

ṡ = Lsv. (73)

The interaction matrix for the defined feature vector is

Ls =
( −I3

[
ppo
]
×

0 −Lω

)
(74)

whereLω is the submatrix which relates the rotational com-
ponents:

d(uθ)
dt

= −Lωω. (75)

As presented in Malis, Chaumette, and Boudet (1999), this
matrix is

Lω = I − θ

2
[u]× + (1 − sinc(θ)

sinc2
( θ

2
)
) [u]2

× (76)

where the function sinc(θ), calledsinus cardinal, is defined
as

sinc(θ)= sinθ

θ
. (77)

The inverse of the interaction matrix is

L−1
s

=
( −I3 − [ppo

]
× L−1

ω

0 −L−1
ω

)
(78)

where

L−1
ω

= I + θ

2
sinc2

(
θ

2

)
[u]× + (1 − sinc(θ))[u]2

× . (79)

Originally, the error vector has been defined in frameFp,
thus the velocity screw is calculated in the same coordinate
frame:

pv = −λ
( −I3 − [ppo

]
× L−1

ω

0 −L−1
ω

)(
ppo
uθ

)
= −λ

( −ppo − [
ppo
]
× L−1

ω
uθ

−L−1
ω

uθ

)
. (80)

Sinceuu = 0 and after eq. (79),

L−1
ω

uθ = uθ (81)

and, consequently,

pv = −λ
( −ppo − [

ppo
]
× uθ

−uθ

)
. (82)

We should note that the precedent simplification cannot be
applied in the camera frameFc, as indicated in Section 3.4
since, in the general case,[uc]× ud is not null.

Let us calculate now the velocity screw in the camera frame

cv = −λ
(

cRp

(
−ppo − [

ppo
]
× uθ

)
− [

cpp
]
×
cRpuθ

−cRpuθ

)

= −λ
( −cpo + cpp − [

cpo − cpp + cpp
]
×
cRpuθ

−cRpuθ

)
= −λ

( −cpo + dpo − [
cpo
]
×
dRouθ

−dRouθ

)
(83)

whereu andθ are the axis and angle which correspond to the
rotation matrix

R(uθ) = pRc
cRo

= (dRo)
−1cRo. (84)
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