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Abstract

The main goal of this paper is the study of image-based

stereo visual servoing. A pair of cameras is mounted on

the end-effector of the manipulator arm. The visual fea-

tures are the pair of images of an unknown object. The

developed control laws use either the raw image points,

or the estimated 3D coordinates. The experimental setup

is challenging: large rotations are involved, images are

noisy, and cameras are coarsely calibrated. In this setup,

the trajectory of the end-effector differs notably, some-

times leading the arm near its joint range limits. Experi-

mental results demonstrate that using pixel coordinates is

disadvantageous, compared with 3D coordinates estimated

from the same pixel data.

1 Introduction

Usually, stereo visual features have been considered as
an alternative way to recover the depth, in the modeling
phase of a vision system. The application of stereo vi-
sion in visual servoing was pioneered by Maru et al. [9],
and recently adressed in [1] [5] [6] [7]. Works proposed
in [8] have awaken new interests, considering mainly the
robustness and precision aspects. In [2], a compara-
tive study of a stereo visual servoing system was initial-
ized. Stereo visual servoing offers some advantages over
the classical monocular 2D and 3D visual servoing ap-
proaches.

Depth information can be recovered without need of any
geometrical model of the observed object. It should be
noted that even in 2D visual servoing, this information is
needed for the computation of the image jacobian.

As pointed out in [8], a number of singularities exists in
monocular visual servoing, making visual control impos-
sible near those configurations. These singularities can
be avoided by using a stereo rig, thus requiring less strict
camera calibration.

This paper presents a visual servoing approach based on
stereo vision. We experimentally show that using 3D

coordinates (estimated from the stereo images) in the
feature vector performs better than using raw 2D im-
age coordinates. In our experimental setup, the stereo
rig is mounted on the end-effector of the arm. The pro-
grammed manipulation task is quite challenging: large
rotations are involved, pixel noise is high, and camera
calibration is coarse.

The rest of this paper is organized as follows: first, we
consider the modeling of two stereo images of a set of
points, both in the general case, and in the simplified
case where cameras are aligned.

Next, we develop visual control with three different fea-
tures: in the first one, raw pixel coordinates are used.
This is the so-called image based approach [4]. Care must
be taken with the definition of the coordinates frame of
the cameras and the end-effector.

Image-based 3D features are then introduced: estimated
coordinates, and a combination of pixel data and stereo
disparity. We show that this third approach exhibits the
same nice properties as using coordinates, with regard to
the end-effector trajectory.

Finally, we present experimental results of the presented
approaches, with a comparison of image feature errors,
the velocity screw, and the trajectory of the end-effector.

It should be noted that, in all of the approaches, the
only source of information is the stereo rig. Thus, all the
3D information is estimated from these measurements, as
well as from the intrinsic and extrinsic camera parameters
(which are roughly known). Our interest is to compare
the approaches to test whether there exists an advantage
in using either the raw signals or the computed 3D fea-
tures.

2 Stereo Observation of a Set of Points

Our setup consists of a stereo rig mounted on the end-
effector of the manipulator. Let us define Fe as the con-
trol frame attached to the end-effector, Fl as the frame
attached to the left camera, and Fr as the frame attached
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to the right camera.

Figure 1: Configuration of a general stereo vision system.

In this work, a segmented target defined by 5 points is
considered. The corresponding raw feature vector is de-
fined by
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T are the image
coordinates of the ith point, observed by the left and right
cameras respectively and si is the ith subvector of s such
si = (Ul

i Ur
i ).

In a general case, the cameras are not aligned with the
control frame Fe (Fig. 1). Coordinates of spatial points
Pi (i=1· · ·5) in frame Fe can be computed from visual
data si. From this visual feature, we propose several con-
trol laws with a comparative study. At first, let us express
coordinates of Pi in function of si. To compute the lo-
cation of Pi, we define two homogenous transformation
matrices Ql and Qr such as

Ql: Fe → Fl

Qr: Fe → Fr

These homogenous transformations are supposed to be
known (or evaluated) and can be written as follow

Ql or r =

(

R T

0 0 0 1

)

where R and T is the rotation and the translation of the
transformation respectively.

Two others transformations are necessary to project the
point from the camera frame Fl and Fr to the image
space Il and Ir. These transformations denoted Cl and
Cr are defined as

Cl: Fl → Il

Cr: Fr → Ir

These transformations are composed by the intrinsic pa-
rameters of the cameras and can be written as follows

Cl or r =




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0 Fv u0
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
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Fu, Fv are the focal length along x and y, θuv takes into
account the angle between the axis x and y, and (u0 v0)

T

are the coordinates of the optical center. So, the image
point Ul

i can be easily computed from Pi expressed in Fe

Ul
i = Cl.Ql.Pi

This relationship can be rewritten under a global matrix
such as
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where α is the scale factor, and mij are the elements of
the transformation ClQl. For the right camera, the same
approach gives
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where m′

ij are the elements of the transformation CrQr.

A development of relationships (2) and (3) gives:
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and the resolution of this system of four equations allows
to solve the position of the ith point Pi = (Xi, Yi, Zi)

T .

In our case, we consider a simplified configuration where
the both cameras are parallel with identical focal lengths
(Fu, Fv) and the control frame Fe is located at the center
of the both frames (Fig 2). Both cameras are aligned
along the x-axis and the distance between them is b.

Thus, the system (4) becomes

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Figure 2: The simplified configuration of our system.

and the coordinates of the observed point can be easily
deduced as

P̂i =





X̂i

Ŷi
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These values are roughly estimated or are taken directly
from their nominal values. No explicit calibration proce-
dure has been undertaken.

3 Visual Features

The essence of visual servoing is the computation of the
matrix of derivatives (the jacobian) of the visual feature
vector with respect to the velocity screw. Using the raw
pixel data or the estimated 3D point coordinates is a
matter of choice. Both approaches require an estima-
tion of camera parameters. However, the resulting dy-
namic properties of the task may differ. In this section,
we present the theoretical bases of both approaches, and a
third feature vector which uses the stereo disparity, with-
out fully estimating the real 3D coordinates.

3.1 Stereo 2D point

The feature vector is the raw image information (Eq. 1)
and the jacobian matrix is
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where Ll
i and Lr

i are the interaction matrices for ith

point, relative to the left and right cameras respectively,
as defined by Espiau et al. [4]
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The dimension of the final image Jacobian L is 20×6.
Ml

e and Mr
e are the transformation matrices of the screw

between the left and right camera frames and the end-
effector frame. Given frames Fe and Fj , the relationship
between the kinematic screws v is

vj = Mj
ev

e (9)

where the transformation matrix Mj
e is
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e

)

(10)

It can be shown that the resulting interaction matrix (7)
is the same as that obtained by Maru et al. [9].

3.2 2D points and disparity

Since the 2D image features, and the stereo disparity of
the ithpoint (ul

i − ur
i ) can be computed from the image

data. In the following control law, the feature vector is
defined as
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It can be shown that this vector results from a linear
combination of the 3D coordinates of the corresponding
3D point:

s =
(

(AP̂1)
T
· · · (AP̂5)

T
)T

(12)

where
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and the resulting Jacobian matrix for one point is as
shown in Equation 13.

The interest in using this model is twofold: the 3D coor-
dinates need not to be estimated, and the jacobian matrix
is linear with respect to s. Effectively, as shown in [3],
the jacobian matrix (13) can be expressed as
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where si is the ith element of s such si = (AP̂i)
T . Addi-

tionally, some theoretical results from 3D points still hold
for any linear combination: though the velocity screw
(Eq. 16) is valid for small angles only, the trajectory of
the center of gravity of the set of points still translates
along a straight path during the task (see [3] for details).

3.3 Estimated 3D point

Instead of using the 2D coordinates of the observed point,
we have experimented with the estimated 3D coordinates.
Thus, the feature vector consists of the estimated coordi-
nates (eq. 6) and the jacobian matrix is

L =
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The main advantage of using 3D features is the linear-
ity of the jacobian matrix. As a result, some theoreti-
cal properties of the trajectory of the end-effector can be
obtained. Effectively, Cervera and Martinet [3] demon-
strated, for a feature vector composed of a rather general
set of 3D points, that the velocity screw of the camera is

v = −λ

[

(P∗

g −Pg) +
[

Pg

]

×
Ru sin θ

Ru sin θ

]

(16)

where Pg is the center of gravity of the set of points, R

is the rotation between a Cartesian frame defined by the
points and the end-effector frame, and uθ are the axis and
angle corresponding to the rotation matrix RT R∗, that is
the rotation between the current and desired orientation
of the set of points.

In addition, the center of gravity of the set of points trans-
lates along a straight line trajectory from its initial to its
final position in the camera frame. As a consequence, the
features are most likely to remain in the camera field of
view during the whole task.

4 Experimental results

The mobile manipulator of the Robotic Intelligence Lab
consists of a Nomad XR4000 platform and a Mitsubishi
PA-10 arm (Fig. 3). Attached to the end-effector of the
arm is a stereo rig with two miniature CMOS color cam-
eras, linked to two video boards which deliver the visual
features at video rate (30 Hz).

Figure 3: The stereo visual servoing manipulator setup.

The following table gives the estimation of the parameters
(intrinsic and extrinsic) of both cameras, as used in the
experiments.

Fu Fv b

300 450 118mm

The target object consists of four co-planar points located
at the vertices of an 11cm square and the fifth point is
located at the center of the square.

The velocity screw is computed from the pseudo-inverse
of the jacobian matrix [4]:

v = −λL+(s− s∗) (17)

with λ set to 0.5 in all the experiments.

Image measurements are noisy, since the experiments are
carried out in a standard office environment, without any
special illumination. As a result, there is an almost-
uniform noise whose magnitude is ±1 for ul

i and u
r
i , and

±2 for vl
i and vr

i . Additionally, pixel coordinates are
quantified to a resolution of 200× 200.

Experimental results are depicted in Figures 4. Each one
consists of a set of plots (from top to bottom): the left
image trajectories of the points, translation velocity, ro-
tation velocity, and the 3D trajectory of the end-effector.

Convergence to the desired images is always achieved, but
quality is worse with the stereo 2D features. As pointed
out by Lamiroy et al. [8], the stereo jacobian is largely
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overconstrained, and the control data s and s∗ are re-
dundant. But this is not sufficient to explain the curvy
trajectory of the end-effector (bottom of Fig. 4), which
almost leads out of the range of robot joints.

Such trajectory is neither caused by a too high gain:
with λ = 0.1 a smoother but similar trajectory is ob-
tained, as depicted in Fig. 4. This problem has not
been addressed before since very few experiments with
image-based stereo visual servoing have been carried
out with cameras mounted on the end-effector. To our
knowledge, only Maru et al. [9] have worked with this
setup, but their tasks involved rather small rotations
(φ, θ, ψ) = (10, 10, 10) (degree). In our manipulation
task, the rotation between the initial and destination
poses is: (φ, θ, ψ) = (72, 57, 50). Translational distance
is 250 mm, as opposed to 173 mm in Maru et al. [9].

It is interesting to note that the trajectory with 2D and
disparity is relatively close of the 3D trajectory. Ap-
proaches based on 3D features work better due to the
linearity of the jacobian matrix. As shown theoretically,
not only the image points but the center of gravity of 3D
points translates along a straight line. As a result, the
trajectory of the end-effector frame is closer to a straight
line too, even with large rotations between frames. In
summary, the use of 3D features allows the linearization
of the jacobian and so a better joint decoupling.

5 Conclusion

In this paper, several approaches to image-based stereo
visual servoing has been presented. Theoretical develop-
ments show how 3D control features are extracted from
stereo images, and the jacobian matrix is computed for
raw pixels, estimated 3D coordinates, and a new feature
vector which uses stereo disparity.

As a main result, it has been shown how the effective-
ness of the servoing task can be improved if estimated
3D features are used instead of raw image data. Real ex-
periments with adverse conditions (large rotation, noisy
images, coarse calibration) show that the trajectory of
the end-effector strongly relies on the features chosen for
the control loop.

Future work should state more precisely the robustness of
the different approaches, with respect to camera param-
eters and signal loss. Furthermore, others visual features
(i.e. lines) can be studying through the relationships be-
tween image data and estimated 3D features.
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Figure 4: (Results from top to bottom)
Visual features trajectories in left image, Translation velocity,

Rotation velocity and Trajectory of the end-effector.
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