
Turning around an unknown object using visual servoing

Fran�cois Berry, Philippe Martinet and Jean Gallice

LASMEA, Universit�e Blaise Pascal, UMR 6602 du CNRS,

63177 Aubi�ere cedex, France

E-mail: berry,martinet,gallice@lasmea.univ-bpclermont.fr

Abstract

In this paper, the problem of controlling a motion

by visual servoing around an unknown object is ad-

dressed. These works can be interpreted as an initial

step towards a perception goal of an unmodeled object.

The main purpose is to perform motion with regard

to the object in order to discover several viewpoint of

the object. The originality of our work is based on the

choice and extraction of visual features in accordance

with motions to be performed. The notion of invari-

ant feature is introduced to control the navigational

task around the unknown object. A real-time experi-

mentation with a complex object is realized and shows

the generality of the proposed ideas.

Keywords:Visual servoing, Hybrid task, Naviga-

tion, Unknown object, Task function

1 Introduction

Over the last few years, there has been increasing

interest in object perception based on visual servoing.
Some approaches consist in evaluating the structure

of the object during navigation. In this way, most

techniques are based on the \structure from motion"
approach and the use of optical ow. But in these

methods, a choice has to be made between the com-
plexity of the scene [3] and time computing [9]. Our
purpose is to extract visual features of an unknown

object in order to perform a motion around it.
In a previous work [2], an approach to generating a

motion around a known object (cube) was presented.
This approach was based on a visual servoing tech-
nique applied to a time varying reference feature. The

reference in the sensor frame was computed accord-
ing to the desired trajectory in robot workspace. For
complex scenes, other works propose an automatic se-
lection of visual features (edge, corner, ...). Papani-
kolopoulos in [7] used a method based on a SSD op-

tical ow technique. This technique may fail however

when the image contains a lot of repeated patterns of

the same intensity and is also sensitive to large rota-
tions and small changes in lighting. In [6], the authors
propose an approach based on geometric constraints.
These are imposed by the feature extraction (type of

feature, size, number, ...) and the pose estimation
process (�eld of view, focus, ...). In this strategy, the
trajectory should be approximately known in order to
perform a good selection of image features. In most
cases, an initial learning step is necessary to obtain in-

formation characterizing the interaction between the
apparatus sensor and the environment (Eigen space

method [4], image jacobian estimation [5, 10]). So,

the proposed method (developed in [1]) is to perform
automatically motions around an unmodeled object.

The �rst section of this paper presents the choice
and the kinematic modeling of the visual features re-

tained to perform the navigational task . The follow-

ing part describes the control aspect from theoretical
basis. These basis are applied to complete motions

around an unknown object. Finally, results obtained

at video rate with our robotic platform and parallel
vision system show the validity of this approach.

2 Modeling

Our idea is to perform a navigational task around

an unknown object at a relative given distance, and to
center the object in image space during motion. So,
relative independent visual features of the object must

be de�ned.

2.1 Visual features

For the centering task, the center (X = (X Y )T )
of the bounding box which frames the object in the
image has been chosen (Fig. 1). In order to control the

navigational task at a relative distance, an invariant
feature has to be de�ned. To control this distance,
a geometric feature varying in function of depth is
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Figure 1: Use of a bounding box in image frame

necessary: this is the case for the projection L of the

shape on an axis � (Fig. 2) in image space. This

segment L represents the projection of a segment S
(function of the object) on �. From the length of

the segment L, it is possible to control the distance

between the camera and the object.

The projection axis � is centered in the image frame

and makes an angle � with the abscissa axis. So, the

coordinates of the projected shape on � are given by:

xproj = (x: cos� + y: sin�): cos�

yproj = (x: cos� + y: sin�): sin�

where (x; y) represent the coordinates of binary shape

points and (xproj ; yproj) are the coordinates of their

projection on �. In other words, (xproj ; yproj) =

Proj(x; y)j�. In addition, the length of the projected

Figure 2: Projection of a binary shape on an axis �

segment becomes an invariant feature for a particular

choice of the orientation � of the projection axis (see

paragraph 3.2).

2.2 Kinematic modeling

For each visual feature s, it is possible to model

their variation _s in function of the camera motion T

through the relation:

_s = MT

s
:T

where T represents the kinematic screw applied to the

sensor and MT

s
the jacobian matrix (called interaction

matrix) relative to the sensor feature s. In this sequel,

the development of each elementary interaction matrix

is then presented.
For the centering task, the center of the bounding

box is used. So, the interaction can be described by
the image jacobianMT

M
of the pointM (X = (X Y )T )

(projection of m (x = (x y z)T ):
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The second visual feature is the projection L of a

segment S of the object on one axis �. The segment

S can be represented with the vector PS , and L with

PL such as:

PS =

0
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where (XS ; YS) (resp. (XL; YL)) is the middle of S
(resp. L), and LS (resp. LL) is the corresponding

length. The relations between (S) and (L) are easily

obtained:8<
:

XL = (XS : cos� + YS : sin�): cos�

YL = (XS : cos� + YS : sin�): sin�

LL = LS :cos(�� �)

(2)

The expression of the interaction matrix MT

S
for the

segment S is given in [1]. It is possible to obtain the

interaction matrix MT

L
of the projection L using the

following relation:

MT

L =
@PL

@PS
:MT

S

where
@PL

@PS
is expressed by:

0
@
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In the matrix MT

S
, only the sub-matrix corresponding

to the length of the projection LL on � is considered,
and then the related interaction sub-matrix MT

LL
is

given by:

MT

LL
[1; 1] = �1: cos �

MT

LL
[1; 2] = �1: sin �

MT

LL
[1; 3] = �2:LL � �1:XS : cos � � �1:YS : sin �

MT

LL
[1; 4] = LL(XS : cos�: sin�+ YS(1 + sin2 �)+

tan(� � �):(�XS : sin
2 �+ YS : cos�: sin�))

MT

LL
[1; 5] = �LL(YS : cos�: sin�+ tan(� � �):

(�XS : cos�: sin�+ YS : cos
2 �) +XS(cos

2 �+ 1))

MT

LL
[1; 6] = �LL: tan(� � �)

(3)



where �1 =
za�zb

zazb

and �2 =
za+zb
2zazb

(za and zb represent

the depth of the points a and b in �gure 2).

3 Control aspect

In this section, control law and the visual servoing

process are developed. First, the fundamental basis

concerning the task function approach [8] is summa-

rized, then the development in relation to our appli-

cation is presented.

3.1 The task function approach

The control law used in this study is based on the

task function formalism. In this approach, the control

is directly speci�ed in terms of regulation in the sensor

space (image space). For a given robotic task, a target

image is built, corresponding to the desired position

of the end e�ector with regard to the environment. In

general, it can be shown that all servoing schemes may

be expressed as the regulation to zero of a function

f(r; t) called the task function. So, the use of a vision

sensor allows us to build up such a task function used

in visual servoing. It is expressed by the relation:

f(r; t) = C[s(r; t)� s
?] (4)

where s? is considered as a reference target image to

be reached in the image frame, s(r; t) is the value of

visual information currently observed by the camera

(it depends on the situation between the end e�ector of

the robot and the scene (noted r)), and C is a constant

matrix, with which it is possible to take into account

more visual information than the number of degrees of

freedom of the robot, with good conditions of stability

and robustness.

The variations of f(r; t) are given by the following

di�erential relation:

df(r(t); t)

dt
=

@f

@r
�

dr

dt
+

@f

@t
= C

@s

@r
�

dr

dt
+

@f

@t
(5)

where
dr

dt
=T=(

�!

V ;
�!


) is the kinematic screw. T repre-

sents the relative velocity between the camera and its

environment and the term
@s

@r
= M

T called interaction

matrix or image jacobian, characterizes the interaction

between the sensor and its environment. The concept

of interaction matrix is fundamental for modeling sys-

tems using an exteroceptive sensor. It allows one to

take into account most information required to design

and analyze sensor based control schemes.

If the image jacobian is not full rank (n, number of

d.o.f > number of independent visual features), it is

possible to use an hybrid task. In an hybrid task, the

primary task e1 maintains a visual constraint during

the trajectory, while the secondary task e2 can be seen

as representing a minimization of a secondary cost hs
with the gradient gT

s

= (@hs
@r

)T . A global task function

e takes the form:

e =W
+
e1 + :(In�W

+
W )gT

s

(6)

where W
+ and (In �W

+
W ) are two projection op-

erators which guarantee that the camera motions due

to the secondary task are compatible with the regu-

lation of s to s
�. W is a full rank matrix such as

Ker(W ) = Ker(MT ). The parameter  is used to

tune the preponderance between the primary and the

secondary task. Considering an exponential decay of

e(r; t):

_e(r; t) = ��e(r; t) (7)

with � a positive scalar constant and in applying re-

lation 5 to the global task function e, the kinematic

screw can be expressed with:

T = �

�
@e

@r

�
�1�

�e+
@e

@t

�
(8)

To ensure the stability of the system, the following

condition �
@e

@r

�
�

 c@e
@r

!
�1

> 0 (9)

must be veri�ed [8]. This is done when the combina-

tion matrix C is �xed to W:M
T+. In addition, the

previous condition is always veri�ed when choosing�
@e

@r

�
�1

= I6.

Considering a motionless environment, it gives
@s

@t
=

0 and
@e1

@t
= 0. Finally, from the relations 6 and 8, the

control law has the following expression:

T = ��e(r; t)� (In�W
+
W )

@g
T

s

@t
(10)

3.2 Moving around an unknown object

In this section, the general control law (Eq.10) is

adapted in order to move around an unknown object.

So, it is necessary to use an hybrid task composed of:

- a primary task, where the goal is to gaze at the

object, to center it in the sensor frame and to

hold a constant distance between the camera and

the object.



- a secondary task which generates the translation

along the X and Y axis .

As a result the visual feature is modeled by:

s(r; t) =

0
@ X

Y

LL

1
A

With such features, only 3 d.o.f can be controlled (i.e.

Rx ;Ry ;Tz ), and 2 d.o.f are needed for the naviga-

tional task (i.e. Tx ;Ty ). So, only the reduced system

to these d.o.f is considered, and then the interaction

matrix associated to s
�
(r; t) becomes:

M
T
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0
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From the kernel of M
T
js=s� , the motions allowed by

the interaction can be given by:

Ker(M
T
js=s�) =
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Considering a motion around the object such as T =�
A: cos �

A: sin �

�
, the general form of the allowed camera

motion is:

T =

0
BBBBB@

Tx = A: cos �

Ty = A: sin �

Tz = A:
���

1
:(cos�: cos �+sin�: sin �)

��
2
:L�
L

Rx = A:
sin �
z

Ry = �A:
sin �
z

1
CCCCCA

This motion is composed of a combination of transla-

tion and rotation along the x and y axis. However, the

translation along the optical axis (Tz) is not null. In

other words, the decoupling of Tz is only done when

cos�: cos �+sin�: sin � = 0. This condition is obtained

for � = � +
�
2
, so the orientation of the axis � must

be orthogonal to the motions around the object (pro-

jected in the image space) (Fig. 3). The task function

can be written like:

e =M
T+
js=s�

(s� s
�
) + (I5 �MT+

js=s�
MT

js=s�)g
T

s

where (I5�M
T+

js=s�
MT

js=s�) is an orthogonal projector.

Then, the control law is given by:

T = ��e� (I5 �MT+

js=s�
:MT

js=s�
)

@gT
s

@t
(11)
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Figure 3: Orientation of axis � in comparison to the

camera motions.

In our case, the secondary cost function hs is de�ned

by:

hs =
1

2

(x� xo � Vxt)
2
+

1

2

(y � yo � Vyt)
2

where (x; y) represents the position of the camera,

(x0; y0) is the initial position (in our case (x0; y0) =

(0; 0)) and (Vx; Vy) is the velocity of the camera used

for the navigation. In other words, the velocity (Vx; Vy)

allows one to describe the motion around the object.

For example a vertical motion on top at 0:1m:s
�1

is

achieved for Vx = 0 and Vy = �0:1m:s
�1
. The gradi-

ent of this cost function is given by g
T

s
is:

g
T

s
=

0
BBBBBB@

(x� xo � Vxt)

(y � yo � Vyt)

0

0

0

0

1
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4 Results

4.1 Experimental context

Our experimental cell is composed of a cartesian

robot with 6 d.o.f. A CCD camera is embedded on

the end e�ector and is connected to the vision par-

allel architecture named Windis. In function of the

motion to be performed, both vision and control pro-

cesses have to be adapted. In the vision process, this is

the visual features extraction, and in the control pro-

cess this is the sensor vector and the corresponding

interaction matrix.

To reduce the execution time, an area of interest is

de�ned. From this area of interest, a bounding box

which frames the unknown object is built, and the co-

ordinates of the center of this box are computed. For

a particular navigational task, an invariant feature in

the direction of the motion has to be built (section



2.1). First, knowing the direction of the motion an

axis of projection � is de�ned in image space as or-

thogonal to this direction of motion. Second, the seg-

ment is obtained by projection of the shape on this

axis and the length is computed (Fig. 4). Finally, as

Direction of motion

Invariant segment

Bounding box

∆

Projection
axis

Figure 4: Invariant feature construction

a navigational task imposes movement around an ob-

ject, the vision process can be a�ected by the di�erent

lighting conditions encountered during this movement.

So, it is necessary to adapt some characteristics. Par-

ticularly, the low level extraction of the bounding box

needs to adapt the thresholds according to the light-

ing conditions. So, at each iteration an histogram is

computed and all thresholds are modi�ed. All of this

implementation is made at video rate (40 ms).

4.2 Experimental results

For the navigational task, two motions are per-

formed around a little rubber gira�e. Considering the

object centered at a given distance (Height of object=

30% of image size (170 pixels)), the camera moves to

the left side while keeping the object centered and

then rises above the object. (Fig. 5). For the con-

Figure 5: Trajectory around the gira�e.

trol law, the parameters are � = 0:8,  = 1:0 and

z� = 0:7m. These parameters are tuned experimen-

tally in accordance with the task to perform. The

velocities applied to the e�ector are Tx = �0:08m:s�1

and Ty = �0:08m:s�1. The rotation axis (in image)

is respectively the height and the width of the bound-

ing frame. The visual reference feature is chosen from

the last measure during the previous motion. Such

choice allows one to keep the same distance for both

motions. Figure 6 represents the evolution of the ob-

Figure 6: Evolution of the object during navigation.

ject during the servoing and �gure 7 presents the ve-

locity of the kinematic screw. The servoing task is

composed of three steps. The �rst step concerns the

positioning task, second and third steps - the naviga-

tional tasks. Velocities become noisy during naviga-

tional task and particularly noisier during the third

step. In the latter, the width of the object is used

instead of the height (used in the second step), and

in our implementation, the discretization in x and y

direction are not the same: in vertical direction, only

one frame is used. The image is "compressed" in this

direction and there is a �ltering e�ect along this di-

rection. The motions around the object are performed



(a) (b)

Figure 7: Translation and rotation velocities

after the positioning task (Fig. 8.b). The choice of the
desired distance z� between the camera and the object
is very important and determines the achievement of
the secondary task. Though this distance cannot be
measured and is set arbitrarily, thus the residual error
(Fig. 8.a) is mainly due to this estimation.

(a) (b)

Figure 8: (a)Error on features. (b) 3D Trajectory of

the e�ector.

5 Conclusion

Many studies in visual servoing concern known ob-
jects. The present study adresses the problem of "how
to move" in respect to an unknown object. One appli-
cation is the �rst step towards a recognition process
where it is necessary to perform known motion around
the object. The proposed method is based on the vi-
sual servoing techniques and is particularly robust. A
study of the di�erent interaction relations for the vi-
sual features has shown the allowed motions around an
object and the conditions of good achievement. All ex-
periments have been successfully implemented on our
robotic platform and have shown the validity of such
approach.
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