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Real Time Visual Servoing around a Complex Object

François BERRY†, Philippe MARTINET†, and Jean GALLICE†, Nonmembers

SUMMARY In visual servoing, most studies are concerned
with robotic application with known objects. In this paper, the
problem of controlling a motion by visual servoing around an
unknown object is addressed. In this case, the approach is in-
terpreted as an initial step towards a perception goal of an un-
modeled object. The main goal is to perform motion with regard
to the object in order to discover several viewpoint of the ob-
ject. An adaptive visual servoing scheme is proposed to perform
such task. The originality of our work is based on the choice
and extraction of visual features in accordance with motions to
be performed. The notion of invariant feature is introduced to
control the navigational task around the unknown object. Dur-
ing experimentation, a cartesian robot connected to a real time
vision system is used. A CCD camera is mounted on the end
effector of the robot. The experimental results present a linkage
of desired motion around different kind of objects.
key words: visual servoing, complex object, real time processing,
robot manipulator

1. Introduction

Most robotic vision works deal with the scenic percep-
tion of spatial geometry taken from a mobile camera.
These systems come within the framework of active
vision. However, the perception of an object may be
achieved at many different scales. The highest level of
perception is the recognition of the object, its relation
to the perceiver and the action to perform on the ob-
ject [1], [2]. Another approach consists in evaluating the
structure of the object during navigation. In this way,
most techniques are based on the “structure from mo-
tion” approach and the use of optical flow. But in these
methods, a choice has to be made between the complex-
ity of the scene [6] and time computing [20]. Our goal
is to perceive an unknown object in order to perform a
motion around it. Consequently, a coarse knowledge of
the object is required. Perception consists in evaluat-
ing the pose and the space filled by the object. Based
on this point of view, the main idea is to approximate
the object within a bounding box. This approximation
allows us to simplify the motions around the object.

In a previous work [4], [5], an approach to generat-
ing a motion around a known object (cube) was pre-
sented. This approach was based on a visual servoing
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technique applied to a time varying reference feature.
The reference in the sensor frame was computed ac-
cording to the desired trajectory in robot workspace.

For complex scenes, other works propose an au-
tomatic selection of visual features (edge, corner, . . .).
Papanikolopoulos in [17] used a method based on a
SSD optical flow technique. This technique may fail
however when the image contains a lot of repeated pat-
terns of the same intensity and is also sensitive to large
rotations and small changes in lighting. In [11], the
authors propose an approach based on geometric con-
straints. These are imposed by the feature extraction
(type of features, size, number, . . .) and the pose esti-
mation process (field of view, focus, . . .). In this strat-
egy, the trajectory should be approximately known in
order to perform a good selection of image features.

In most cases, an initial learning step is necessary
to obtain information characterizing the interaction be-
tween the apparatus sensor and the environment (Eigen
space method [7], [22], image jacobian [10], [21]). So, the
proposed method [3] is to perform automatically mo-
tions around an unmodeled object in order to learn this
interaction.

In the first part of the paper, the modeling aspect
is particularly developed: discussion on the use of dif-
ferent visual features and kinematic modeling for the
most important feature are presented. In the second
part, the control aspect is described from a theoretical
basis. Its application has been retained to complete mo-
tions around an unknown object. The visual servoing
process uses adaptive principles as the computation of
an invariant feature. Finally, results obtained at video
rate with our robotic platform and parallel vision sys-
tem show the validity of this approach.

2. Modeling

2.1 Visual Features

Generally speaking in Mechanics, it is usual to parame-
ter objects in order to apply the kinematics and the dy-
namics of rigid bodies. For static bodies, chosen param-
eters allow one to get a description of the objects such
as the mass, length, height, position, orientation, . . .
and with this data, answers can be given to questions
like:
“Is it a big object ?”
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“Is it large or long ? ”
“What is its disposition?,” etc . . .
In this way, the fact that a flower pot is red or blue
does not change its mechanical properties. If some-
body wants to grasp it, it is more important to know
the position and the size than the color. Consequently,
the texture and the shading are not taken into ac-
count in this study. Indeed, these kinds of measures
are very sensitive to the lighting conditions and what
imposes hypotheses of simplification (Lambertian sur-
face, constrained light, . . .). These hypotheses are not
realistic in real robotic application, whereas geometri-
cal descriptions of the object remain well adapted [8],
[13].

From the image of an object, it is possible to ex-
tract the following information in order to control robot
motion:
- Position,
- Orientation,
- Size.
For each of the above, geometrical features can be
brought together enabling action around the object. In
our case, the perception sensor is a gray scale level CCD
camera mounted on the end effector of a manipulator.
Thus, all measures are calculated in the image plane.
As explained above, neither the photogrametric varia-
tions nor the texture parameters need to be considered.
Consequently, the image of the object is reduced to a
binary image such:{

Pi,j = 1 if Pi,j ∈ object
Pi,j = 0 if Pi,j /∈ object

where Pi,j is a pixel in a column i and the row j.
In this context, there are three visual features se-

lected.

• Initially, one would think that an efficient way of
representing the position of an object in image
space would be to locate its centroid. However,
in several cases the shape is not necessarily convex
(Figs. 1 (b) and 1 (c)) or uniform (Fig. 1 (d)) and
thus the centroid would not be the best feature to
quantify the position of the object. For example,
the object in Fig. 1 (c) is very dissymetrical and a
centering task could not be well performed (Fig. 2).
For these reasons, the center of the bounding box
which frames the object in the image as a center-
ing position has been chosen. This approach has
three advantages: (i) the bounding box is quickly
extracted from the contour of the object, (ii) the
positioning of the bounding box is quite easy to
perform in image space, and (iii) there is no pre-
ponderance in function of the shape of the object
(Fig. 3).

• A second visual feature concerns the distance be-
tween the camera and the object. To control this
distance, a geometric feature varying in function

(a) (b) (c) (d)

Fig. 1 Centroid of different shape.

Fig. 2 Centering of a dissymetric shape.

Fig. 3 Centering of a dissymetric shape with a bounding box.

Fig. 4 Projection of a binary shape on an axis ∆.

of depth is necessary: this is the case for the pro-
jection L of the shape on an axis ∆ (Fig. 4) in
image space. This segment L represents the pro-
jection of a segment S (function of the object) on
∆†. From the length of the segment L, it is pos-
sible to control the distance between the camera
and the object. The projection axis ∆ is centered
in the image frame and makes an angle β with the
abscissa axis. So, the coordinates of the projected
shape on ∆ are given by:

xproj = (x · cosβ + y · sinβ) · cosβ
yproj = (x · cosβ + y · sinβ) · sinβ

†The choice of the axis orientation β will be discussed
in paragraph 3.2.
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where (x, y) represent the coordinates of binary
shape points and (xproj , yproj) are the coordinates
of their projection on ∆. In other words, (xproj ,
yproj) = Proj(x, y)|∆.

• In order to control orientation, the moment of in-
ertia applied to the shape in the image is well
adapted. If Ix, Iy represent respectively the x, y
moment of inertia and Ixy the product of inertia,
the orientation of the shape is deduced with the
well-known formula:

δ = −1
2

arctan
(

2Ixy

Ix − Iy

)
where δ is the angle between the principal axis and
the abscissa axis.

2.2 Kinematic Modeling

For each visual feature s described above, it is possible
to model their variation ṡ in function of the camera
motion T through the relation:

ṡ = MT
s .T

where T represents the kinematic screw applied to the
sensor and MT

s the jacobian matrix (called interaction
matrix) relative to the sensor feature s. In this sequel,
the development of each interaction matrix is then pre-
sented.

• With the bounding box around the object (in
image space), the first robotic task consists in center-
ing the object within the image space. This means
performing a positioning task for a point feature m at
coordinates x = (x y z)T . The projection of m in the
image space is called M (X = (X Y )T ). The cor-
responding interaction matrix MT

M (with a unit focal
length) is well known [9]:

MT
M =


−1
z

0
X

z
XY −1 −X2 Y

0 −1
z

Y

z
1 + Y 2 −XY −X


(1)

• The second visual feature is the projection L of
a segment S of the object on one axis ∆. The segment
S can be represented with the vector PS , and L with
PL such as:

PS =


XS
YS
LS
α

 et PL =

 XL
YL
LL


where (XS , YS) (resp. (XL, YL)) is the middle of S
(resp. L), and LS (resp. LL) is the corresponding
length. The relations between (S) and (L) are easily

obtained: XL = (XS · cosβ + YS · sinβ) · cosβ
YL = (XS · cosβ + YS · sinβ) · sinβ
LL = LS · cos(α − β)

(2)

The expression of the interaction matrix MT
S for

the segment S is given in appendix. It is possible to
obtain the interaction matrix MT

L of the projection L
using the following relation:

MT
L =

∂PL
∂PS

·MT
S

where ∂PL
∂PS

is expressed by: cos2 β sinβ cosβ 0 0
sinβ cosβ sin2 β 0 0

0 0 cos(β−α) LS sin(β−α)


In the matrix MT

S , only the sub-matrix corresponding
to the length of the projection LL on ∆ is considered,
and then the related interaction sub-matrix MT

LL is
given by:

MT
LL [1, 1]=ν1 · cosβ

MT
LL [1, 2]=ν1 · sinβ

MT
LL [1, 3]=ν2 · LL−ν1 ·XS · cosβ−ν1 · YS · sinβ

MT
LL [1, 4]=LL(XS · cosα · sinα+ YS(1 + sin2 α)

+ tan(β − α) · (−XS · sin2 α

+ YS · cosα · sinα))

MT
LL [1, 5]=−LL(YS · cosα · sinα+ tan(β − α).

(−XS · cosα · sinα+ YS · cos2 α)

+XS(cos2 α+ 1))

MT
LL [1, 6]=−LL · tan(β − α) (3)

where ν1 = za−zb

zazb
and ν2 = za+zb

2zazb
(za and zb represents

the depth of the points a and b in Fig. 4).
• The last feature is the orientation of the binary

shape. This orientation can be modeled from the prin-
cipal axis of inertia. It corresponds to the axis of the
best fitting ellipse on the shape. So, for the interaction

Fig. 5 Orientation of an object.
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Fig. 6 δ and ρ parameters.

matrix, it is necessary to establish a relation between
the visual feature E and the corresponding tridimen-
sional feature e.

In our case, the feature E is considered as the pro-
jection of the section e of a truncated elliptic cone fitted
around the object (Fig. 5). The distance between this
section and the camera is noted Γ and the orientation
of the ellipse is noted δ. The principal axis of the ellipse
e is defined by the intersection of two orthogonal planes
(1 and 2). They can be defined by:{

Plane 1: c1 · z + d1 = 0
Plane 2: a2 · x+ b2 · y + c2 · z + d2 = 0 (4)

where plane 1 is always parallel to the image plane.
Thus the orientation of e is identical with the orienta-
tion of E. The projection of the principal axis can be
parameterized in image space by:

A ·X +B · Y + C = 0

where A = −a2d1
B = −b2d1
C = c1d2 − c2d1

Polar coordinates (δ, ρ) (Fig. 6) have been retained as
the parameters for this axis. Thus, the interaction ma-
trix MT

δ of the parameter δ is given by [12]:(
ν · sin δ −ν · cos δ ν · ρ −ρ · sin δ ρ · cos δ −1

)
with ν = (a2b1−a1b2)/

√
A2 +B2. In Eq. (4), the plane

1 is parallel to the image plane so a1 = b1 = 0 and so
ν = 0. The interaction matrix becomes:

MT
δ =

(
0 0 0 −ρ · sin δ ρ · cos δ −1

)
(5)

At the equilibrium, when the object is centered, the
parameter ρ is close to 0 (ρ ≈ 0).

2.3 Limits of These Visual Features

In this paragraph, the validity of visual features is dis-
cussed. In our approach, the configuration of the object

Fig. 7 Evolution of the width during a positioning task.

Fig. 8 Variation of an axis of inertia around an elongated box.

is unknown, so the chosen parameterization of the fea-
ture is approximated.

For example, during a positioning task the cam-
era can “discover” other viewpoints of the object and
segment S has no physical reality. Considering the
width of a particular section of the object (Fig. 7), seg-
ment AB (in image) corresponds indifferently to seg-
ment a1b1 or a2b2 in function of the camera position.
It is important to know that in spite of the discontinu-
ities between points of view 1 and 2, evolution of AB is
smooth and continuous. The main reason is that each
extremity (A and B) has a limited position such:

xA =
xa1

za1
=
xa2

za2
and xB =

xb1

zb1
=
xb2

zb2

Another limit is important for the regulation of the
object orientation. As mentioned above, during a po-
sitioning task, the orientation of the axis of inertia can
vary from 0o to 90o! It is the case for an elongated
object (Fig. 8). However, during a positioning task the
variation of the axis of inertia is small in comparison to
a navigational task. For this reason, orientation is only
regulated during a positioning task.

3. Control and Visual Servoing Process

In this section, control law and the visual servoing pro-
cess are developed. First, the fundamental basis con-
cerning the Task function approach [19] is summarized,
then the development in relation to our application is
presented. Lastly, the visual servoing process is devel-
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oped.

3.1 The Task Function Approach

The control law used in this study is based on the Task
function formalism [19]. In this approach, the control
is directly specified in terms of regulation in the image.
It may be noted that this approach has the advantage
of avoiding the intermediate step of the 3D estimation
of the target with regard to the end effector [15], [24].
For a given robotics task, a target image is built, cor-
responding to the desired position of the end effector
with regard to the environment. It can be shown that
all servoing schemes may, in general, be expressed as
the regulation to zero of a function f(r, t) called the
task function. So, the use of a vision sensor allows us
to build up such a task function used in visual servoing.
It is expressed by the relation:

f(r, t) = C[s(r, t) − s�] (6)

where

• s� is considered as a reference target image to be
reached in the image frame.

• s(r, t) is the value of visual information currently
observed by the camera. This information depends
on the situation between the end effector of the
robot and the scene (noted r).

• C is a constant matrix, with which it is possible
to take into account more visual information than
the number of degrees of freedom of the robot, with
good conditions of stability and robustness.

The variations of f(r, t) are given by the following
differential relation:

df(r(t), t)
dt

=
∂f

∂r
· dr
dt

+
∂f

∂t
= C

∂s

∂r
· dr
dt

+
∂f

∂t
(7)

where dr
dt = T = (−→V ,−→Ω ) is the kinematic screw. T rep-

resents the relative velocity between the camera and its
environment and the term ∂s

∂r = MT called interaction
matrix or image jacobian, characterizes the interaction
between the sensor and its environment. The concept
of interaction matrix is fundamental for modeling sys-
tems using an exteroceptive sensor. It allows one to
take into account most information required to design
and analyze sensor based control schemes.

If the image jacobian is not full rank (number of
d.o.f > number of independent visual features), it is
possible to use an hybrid task. In an hybrid task, the
primary task e1† allows one to maintain a visual con-
straint during the trajectory, while the secondary task
e2 can be seen as representing a minimization of a sec-
ondary cost hs with the gradient gT

s
= (∂hs

∂r )T .
A global task function e takes the form:

e = W+e1 + γ · (In −W+W )gT
s

(8)

where W+ and (In − W+W ) are two projection op-
erators which guarantee that the camera motions due
to the secondary task are compatible with the regu-
lation of s to s∗. W is a full rank matrix such as
Ker(W ) = Ker(MT ). The parameter γ is used to
tune the preponderance between the primary and the
secondary task.

Considering an exponential decay of ė(r, t):

ė(r, t) = −λe(r, t) (9)

with λ a positive scalar constant. In applying relation
7 to the global task function e, the kinematic screw can
be expressed with:

T = −
(
∂e

∂r

)−1(
λe+

∂e

∂t

)
(10)

To ensure the stability of the system, the following con-
dition(

∂e

∂r

)
·
(
∂̂e

∂r

)−1

> 0 (11)

must be verified [19]. This is done when the com-
bination matrix C is fixed to W.MT+. In addition,
the previous condition is always verified when choosing(

∂e
∂r

)−1

= I6.
Considering a motionless environment, it gives

∂s
∂t = 0 and ∂e1

∂t = 0. Finally, from the relations 8
and 10, the control law has the following expression:

T = −λe(r, t) − γ(In −W+W )
∂gT

s

∂t
(12)

3.2 Moving around an Unknown Object

In this subsection, the general control law (Eq. (12)) is
adapted in order to move around an unknown object.
The control laws for a positioning task and a naviga-
tional task are presented here.

• For the positioning task, the four visual fea-
tures (position, orientation and length of the projec-
tion) described in paragraph 2.2 can be used (s(r, t) =
(X Y LL δ)T ). The equilibrium configuration is
reached when the shape is centered in image, and when
the axis of inertia is aligned with the image frame. The
distance between the camera and the object is speci-
fied as an expression: “height of object = x% size of
image” or more generally “L∗

L = n pixels.” As a result,
the equilibrium position is characterized by:

X = Y = 0 ⇒ ρ ≈ 0

za =z∗a, zb = z∗b ⇒ ν∗1 =
z∗a − z∗b
z∗a · z∗b

, ν∗2 =
z∗a + z∗b

2 · z∗a · z∗b
z = z∗, δ = 0, LL = L∗

L
†The primary task is built from the visual information

as written in Eq. (6).
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For experimentation, z∗a and z∗b are approximated to z∗,
thus ν∗1 ≈ 0 and ν∗2 ≈ 1

z∗ .
The global interaction matrixMT

|s=s∗ is defined (at
equilibrium) by:

Vx Vy Vz Ωx Ωy Ωz
−1/z∗ 0 0 0 −1 0

0 −1/z∗ 0 1 0 0
ν1∗ · cosβ ν1∗ · sinβ ν∗2 · L∗

L L∗
L · Y ∗

S 0 L∗
L · tan(α∗)

0 0 0 0 0 −1


Near equilibrium only four d.o.f are necessary to per-
form this positioning task (dim(Ker(MT

|s=s∗)) = 2). In
our application, the rotations around x, y and z axis
and the translation along z axis have been retained. For
the following development, the corresponding reduced
matrix MT

R|s=s∗ is extracted from MT
|s=s∗ :

MT
R|s=s∗ =


0 0 −1 0
0 1 0 0

ν∗2 · L∗
L L∗

L · Y ∗
S 0 L∗

L · tan(α∗)
0 0 0 −1


In this expression, the terms α∗, Y ∗

S are func-
tions of the observed object and are not regulated,
so some approximations to simplify MT

R|s=s∗ are pro-
posed. First, from the orientation task, the object can
be considered nearly horizontal, so α ≈ 0. A second ap-
proximation concerns the term Y ∗

S . The centering task
brings the shape to the image center, so Y ∗

S ≈ 0. The
interaction matrix is square and full rank, thusW = I4.
From these approximations and with the convergence
condition (C = MT−1

R|s=s∗) (Eq. (11)), a control law can
be defined such as:

Tz

Rx

Ry

Rz

 = λ ·


− 1
ν∗2 · L∗

L
· (LL − L∗

L)

−Y
X
δ

 (13)

where λ is the gain of the exponential decay. Sev-
eral works [3], [4], [6], [8], [9], [13], [15] have shown that
the use of the interaction matrix computed at equi-
librium allows the regulation of the visual task. In ad-
dition, it avoids the singularities during servoing when
computing the inverse of the image jacobian.

• For a navigational task around an unknown ob-
ject, it is necessary to use an hybrid task composed of:

- a primary task, where the goal is to gaze at the
object, to center it in the sensor frame and to hold
a constant distance between the camera and the
object.

- a secondary task which generates the translation
along the X and Y axis.

As explained in Sect. 2.3, it is impossible to regu-
late the orientation during a navigational task. For this
reason, the visual feature is modeled by:

s(r, t) =

 X
Y
LL


With such features, only 3 d.o.f can be controlled (i.e.
Rx ,Ry ,Tz ), and 2 d.o.f are needed for the navigational
task (i.e. Tx ,Ty). So, only the reduced system to these
d.o.f is considered, and then the interaction matrix as-
sociated to s∗(r, t) becomes:

MT
R|s=s∗ =


−1
z

0 0 0 −1

0 −1
z

0 1 0
ν∗1 · cosβ ν∗1 · sinβ ν∗2 · L∗

L 0 0


From the kernel of MR|sT =s∗ , the motions allowed

by the interaction can be given by:

Ker(MR|sT =s∗) =

{(
1 0

−ν∗1 · cosβ
ν∗2 · L∗

L
0 −1

z

)
,(

0 1
−ν∗1 · sinβ
ν∗2 · L∗

L

1
z

0
)}

Considering a motion around the object such as T =(
A · cos θ
A · sin θ

)
, the general form of the allowed camera

motion is:

T =



Tx =A · cos θ
Ty =A · sin θ

Tz =A · −ν
∗
1 · (cos β · cos θ + sinβ · sin θ)

ν∗2 · L∗
L

Rx =A · sin θ
z

Ry =−A · sin θ
z


This motion is composed of a combination of transla-
tion and rotation along the x and y axis. However, the
translation along the optical axis (Tz) is not null. In
other words, the decoupling of Tz is only done when
cosβ. cos θ+ sinβ. sin θ = 0. This condition is obtained
for θ = β + π

2 , so the orientation of the axis ∆ must be
orthogonal to the motions around the object (projected

Fig. 9 Orientation of axis ∆ in comparison to the camera mo-
tions.
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in the image space) (Fig. 9). The task function can be
written like:

e = MT+
R|s=s∗(s− s∗) + γ(I5 −MT+

R|s=s∗M
T
R|s=s∗)gT

s

where (I5 −MT+
R|s=s∗MT

R|s=s∗) is an orthogonal projec-
tor. Then, the control law is given by:

T = −λe− γ(I5 −MT+
R|s=s∗ .M

T
R|s=s∗)

∂gT
s

∂t
(14)

In our case, the secondary cost function hs is defined
by:

hs =
1
2

(x− xo − Vxt)
2 +

1
2

(y − yo − Vyt)
2

where (x, y) represents the position of the camera,
(x0, y0) is the initial position (in our case (x0, y0) =
(0, 0) and (Vx, Vy) is the velocity of the camera used for
the navigation. In other words, the velocity (Vx, Vy)
allows one to describe the motion around the object.
For example a vertical motion on top at 0.1 m.s−1 is
achieved for Vx = 0 and Vy = −0.1 m.s−1. The gradi-
ent of this cost function is given by gT

s
is:

gT
s

=


(x− xo − Vxt)
(y − yo − Vyt)

0
0
0
0


3.3 Visual Servoing Process

This subsection describes the visual servoing process
with regard to the positioning or navigational task to
perform. Figure 10 illustrates the visual servoing pro-
cess: actions, vision and control processes. In function
of the actions to be performed, both vision and control
processes have to be adapted. In the vision process,
this is the visual features extraction, and in the control
process this is the sensor vector and the corresponding
interaction matrix.

For all kinds of tasks, an area of interest is defined
to reduce the execution time. From this area of interest,
a bounding box which frames the unknown object is
built, and the coordinate of the center and the size of
this box is computed. In the case of a navigational
task, an invariant feature in the direction of the motion
has to be built. In our application, the length of a
particular segment is chosen (Sect. 2.1). First, knowing
the direction of the motion an axis of projection ∆ is
defined in image space as orthogonal to this direction of
motion. Second, the segment is obtained by projection
of the shape on this axis and the length is computed
(Fig. 11).

Finally, as a navigational task imposes movement
around an object, the vision process can be affected

Fig. 10 Global scheme of our application.

Fig. 11 Invariant feature construction.

Fig. 12 Robotic platform.

by the different lighting conditions encountered during
this movement. So, it is necessary to adapt some char-
acteristics. Particularly, the low level extraction of the
bounding box needs to adapt the thresholds accord-
ing to the lighting conditions. So, at each iteration an
histogram is computed and all thresholds are modified
using the main results found in [23].

4. Results

4.1 Overview of the Robotic Platform

Our experimental cell is composed of a cartesian robot
with 6 d.o.f (Fig. 12). A CCD camera is embedded on
the end effector and is connected to the vision parallel
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architecture Windis [16], [18].
Windis architecture uses the concept of active win-

dows [14] and includes three basic modules.
WINDIS Window Distributor Subsystem is used

for window extraction, the execution of low level pro-
cessing and the distribution of active windows toward
the Window Processing Subsystem.

On WINPROC Window Processing Subsystem,
one to sixteen DSP 96002 modules with one distributor
module are associated. DSP modules are put together
on mother boards and execute medium level processing
on windows.

WINMAN Window Manager Subsystem controls
the distributor and DSP modules, and executes high
level processing of the application tasks. Moreover, it is
used for the tracking of the active windows throughout
the sequence and for the command of the robot. A
68040 based cpu board implements this module.

The management of the system is ensured under
VxWorks Real Time Operating System.

The vision process has been implemented on the
Windis architecture. On the low level board, the grey
levels and a list of selected pixels corresponding to the
highest gradient are extracted. Two DSP modules are
used in parallel: the first DSP computes the histogram
of grey levels and the adaptive thresholds, and the sec-
ond DSP extracts the bounding box of the object and
the invariant segment. The window manager manages
the visual tracking and the adaptive processes along the
sequence. All of this implementation is made at video
rate (40 ms).

4.2 Experimental Results

This subsection presents experimental results obtained
with our robotic platform. Both positioning naviga-
tional tasks have been tested.

• Positioning task

For this experiment, the object is a multicolor “toy
car.” The positioning task consists in centering the

Fig. 14 Translation and rotation velocities.

object with a null orientation at a given distance. The
latter is defined by an apparent height of the object in
image space (fixed to 20% of image size (102 pixels)).
The gain λ of the control law is tuned to 0.5 and the
parameter z∗ is arbitrarily fixed to 0.7 m. Figure 13
shows the different images obtained during the servo-
ing process. At the end, the object is centered and its
orientation decreases to zero†.

†It is important to remark that the natural axis (such

width, height, . . .) is different to the principal axis.

Fig. 13 Evolution of the object during servoing task.
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Figure 14 presents the velocities of the effector.
Every velocity (Tz, Rx, Ry, Rz) has an exponential de-
cay. Though, it is interesting to denote that the per-
turbations on the rotation axis z is due to the noisy
measure of orientation.

• Navigational task

For the navigational task, two motions are performed
around a little rubber giraffe. Considering the ob-
ject centered at a given distance (Height of object =
30% of image size (170 pixels)), the camera moves to
the left side while keeping the object centered and
then rises above the object (Fig. 15). For the con-
trol law, the parameters are λ = 0.8, γ = 1.0 and
z∗ = 0.7 m. These parameters are tuned experimen-
tally in accordance with the task to perform. The ve-
locities applied to the effector are Tx = −0.08 m.s−1

and Ty = −0.08 m.s−1. The rotation axis (in image)
is respectively the height and the width of the bound-
ing frame. The visual reference feature is chosen from
the last measure during the previous motion. Such
choice allows one to keep the same distance for both
motions. Figure 16 represents the evolution of the ob-
ject during the servoing and Fig. 17 presents the veloc-
ity of the kinematic screw. The servoing task is com-
posed of three steps. The first step concerns the posi-
tioning task, second and third steps – the navigational
tasks. Velocities become noisy during navigational task
and particularly noisier during the third step. In the

Fig. 15 Trajectory around the giraffe.

Fig. 17 Translation and rotation velocities.

latter, the width of the object is used instead of the
height (used in the second step), and in our implemen-
tation, the discretization in x and y direction are not
the same: in vertical direction, only one frame is used.
The image is “compressed” in this direction and there
is a filtering effect along this direction. The motions
around the object are performed after the positioning
task (Fig. 18 (b)). The choice of the desired distance z∗

between the camera and the object is very important
and determines the achievement of the secondary task.

Fig. 16 Evolution of the objet during the navigation.
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Fig. 18 (a) Error on features. (b) 3D trajectory of the effector.

Though this distance cannot be measured and is set ar-
bitrarily, thus the residual error (Fig. 18 (a)) is mainly
due to this estimation.

5. Conclusion

Many studies in visual servoing concern known objects.
The present study adresses the problem of “how to
move” in respect to an unknown object. One applica-
tion is the first step towards a recognition process where
it is necessary to perform known motion around the ob-
ject. The proposed method is based on the visual ser-
voing techniques and is particularly robust. A study of
the different interaction relations for the visual features
has shown the allowed motions around an object and
the conditions of good achievement. All experiments
have been successfully implemented on our robotic plat-
form and have shown the validity of such approach.
However, the proposed methodology requires some im-
provement in respect to two points:
• It would be interesting to implement a depth estima-
tion to evaluate the distance z∗,
• better vision processing would allow one to reduce
the measured noise in the experimental results.
Also, other robotic tasks can be defined and new in-
variant features can be found in consequence.

References

[1] J. Aloimonos and A. Bandyopadhyay, “Active vision,”
ICCV87. Proc. First Int. Conf. Computer Vision, 1987.

[2] R. Bajcsy, “Active perception,” Proc. IEEE 76, pp.996–
1005, Aug. 1988.

[3] F. Berry, P. Martinet, and J. Gallice, “Visual servo-
ing around a complex object,” Proc. IAPR Workshop on
Machine Vision Applications, MVA ’98, pp.254–257, Nov.
1998.

[4] F. Berry, P. Martinet, and J. Gallice, “Trajectory gener-
ation by visual servoing,” Proc. IEEE International Con-
ference on Intelligent Robots and Systems, IROS ’97, vol.2,
pp.1065–1071, Grenoble, France, Sept. 1997.

[5] F. Berry, P. Martinet, and J. Gallice, “Visual feedback in
camera motion generation: Experimental results,” Proc.
IEEE International Conference on Intelligent Robots and

Systems, IROS ’99, vol.1, pp.513–518, Kyongju, Korea,
Oct. 1999.

[6] F. Chaumette, S. Boukir, P. Bouthemy, and D. Juvin,
“Structure from controlled motion,” IEEE Trans. Pattern
Anal. & Mach. Intell., vol.18, no.5, pp.492–504, May 1996.

[7] K. Deguchi and I. Takahashi, “Image based simultaneous
control of robot and target object motions by direct image
interpretation method,” Proc. IEEE International Confer-
ence on Intelligent Robots and Systems, IROS ’99, vol.1,
pp.375–380, Kyongju, Korea, Oct. 1999.

[8] B. Espiau, F. Chaumette, and P. Rives, “A new approach
to visual servoing in robotics,” IEEE Trans. Robotics and
Automation, ICRA92, vol.8, pp.313–326, Paris, June 1992.

[9] S. Hutchinson, G.D. Hager, and P.I. Corke, “A tutorial on
visual servo control,” IEEE Trans. Robotic and Automa-
tion, vol.12, no.5, pp.651–670, Oct. 1996.
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Appendix

Detail of the interaction matrix for the segment.
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[ ν1 cosα ν1 sinα
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−L(Xc(1 + cos2 α) + Yc cosα sinα) 0 ]
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