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Abstract

In this paper, we propose several results about trajec-
tory generation by visual servoing. The approach con-
sists in defining a specific task function which allows us
to take into account the time varying aspect of the refer-
ence feature and we synthesize a control law in the sen-
sor space. This control law ensures the trajectory con-
trol in the image space and reduces the tracking error.
Under specific conditions, the trajectory of the camera
can be ensured in the robot workspace. The main goal
of this work 1s to demonstrate the effectiveness of this
approach through experimental results. During experi-
ments, we have used a cartesian robot and a real time
vision system. A CCD camera is mounted on the end
effector of the robot. We present two types of trajectory.
The first is an helical trajectory parallel to a cube side.
The second experiments consists in passing around a
cube. This last trajectory is built by linking several el-
ementary trajectories (rotation and translation).

1 Introduction

This paper shows the use of a visual servoing in
order to control the trajectory of a camera. The
originality of this work is based on the trajectory
tracking in image space.  The “visual servoing”
approach allows to introduce the sensor information
directly in the control loop [3] [4]. Samson et al in [11]
developed the formalism of the fask function where
the control is directly specified in terms of regulation
in the sensor space. The robotic task to achieve is a
positioning task in relation with a fixed or a moving
target. Many works were done using a moving target
object [2]. In this case, the use of a predictive filter
(i.e Kalman filter) is absolutely essential to ensure

an accurate object tracking. For motionless objects,
in visual servoing approach, we find many works [3],
[12], [6] and [8]. The use of the task function concept
defined in sensor space allows to introduce the notion
of hybrid task. This task is made of a combination
of a primary task, which realizes the visual servoing,
and a secondary task. The secondary task can be
considered as a minimization of a cost function. The
main applications of a secondary task are wvisual
tracking [10], singularities and joints limits avoidance
[7]. The secondary task uses the unconstrained d.o.f.
The velocities used in the secondary task are in open
loop, under the constraint of a perfect achievement of
the primary task.

For the last couple of years, researches in the field of
motion control with a visual sensor proposed different
approaches. Tsuji et al. in [14], use a stereo vision
system to navigate in an indoor environment. A stereo
image analyzer determines vertical projections of edge
points on the floor in the image and a path planner
guides the robot with local maps. Recently Swain in
[13] proposed a method based on visual servoing and
on potential field. These results concern a linkage of
four visual servoing tasks applied to a mobile robot.
To solve the problem of camera motion generation, a
first approach consists in expressing the control law in
the workspace. Some papers [15] [5] [9] have presented
different 3D approaches using a monocular camera as
the main sensor. The problem in these approaches is
to implement the reconstruction algorithms. To avoid
these difficulties, we propose to control the camera
motion directly in image space.

In the first part of this paper, we remind of the
fundamental basis of the trajectory tracking developed
in [1]. In a second part, several kind of trajectories
controlled by visual servoing are generated and suc-



cessfully implemented with our experimental platform.
The problem of linkage between the trajectories is tack-

led.

2 Theoretical basis

In a previous work [1], we have proposed the the-
oretical development in order to perform a trajectory
tracking. The original contribution of this approach
i1s to control the trajectory directly in the visual sen-
sor space. Two main points have been considered: the
control law which ensures the tracking along the tra-
jectory and the generation of the reference trajectory.
Next, we just remind the main results concerning both
points.

Control law For the control law, we have used the
task function formalism [11] and we have defined the
following task function:

e(s(r,t),t) = Cls(r,t) — s7(t)] (1)

where s(r,t) is the vector of measured features in
image space, s*(t) is the desired trajectory expressed
in image space and C is a constant matrix which allows
to take into account more visual information than the
d.o.f. to control. Visual information s(r,t) depend on
the situation (noted r) between the sensor (camera)
end the observed scene. They may also depend on the
time, if the target object is in motion. In our case, we
consider a motionless environment so we have 6—% =0
and the variations of s(r,t) are given by the following
differential relation:

ds(r(t),t) 0Os dr
Ta o dl @

where %:T:(v, ﬁ) is the kinematic screw.

T represents the relative velocity between the cam-
era and its environment. The term % = L7 called
interaction matrix or image jacobian, characterizes the
interaction between the sensor and its environment.

In considering an exponential decay of é(r,t):

e(r,t) = =Xe(r, 1) (3)

(A is a positive scalar constant) and with the choice of
C = LT+ (estimate of LT* compute for s = s*) the
expression of the control law becomes:

T = B (s(r0) - 57 (0) + DD

The first term ensures the visual servoing to main-
tain a rigid link between sensor and target. The second
term expresses the influence of the trajectory genera-
tion. It allows to compensate the tracking error with a
high efficiency.

Trajectory generation The visual reference feature
s*(t) corresponding to the desired trajectory can be
built from two transformations presented on the figure

1.

P, M (x,y, z)

m (X,Y)

T(V,Q)

Figure 1: Simplified model of our configuration

The first tranformation noted Py, expresses the co-
ordinates of a point M linked rigidly to a fixed ob-
ject with coordinates (x,y,z) in the moving effector
frame R. The velocity screw T = (V,Q) is applied
to R. If we use the matrix notation (i.e p = (z,y, 2)7,
V =Wz, Vy V)T #=7 A.), the evolution of this
point is given by the well known kinematic equation:

d ~
7P= —V—-wrp (5)
where w 1s the rotation velocity, and 7 is the unitary
anti symmetric matrix of the rotation axis. As long
as V and w?, expressed in the camera frame I, are
constant, the general solution of equation 5 is given

by:

p(t) = (13 — sin(wAt) v +(1 — cos(wAt)) ;2) plto)—

wAt — sin(wAt) ;2) VAL

(6)

This relation expresses the position of the point M
(p= OM = (z,y,2)T) at time ¢ with the knowledge
of the position and the orientation of the point M at

I 1 — cos(wAl) o
3 wAl wAl



time t,, the velocity screw T' = (7, ﬁ) and the period
sampling At =¢ —t,.

The second transformation noted P,
to express the projection m(X,Y) of the point
M(x,y,z)(Pinhole Camera Model) in the centered im-
age frame:

allows

X(t) =24 and Y(t) =2 F, (7)

where F; and Fy are the focal lengths of the camera.

3 Experimental results

Our robotic platform is a cartesian robot with 6 de-
grees of freedom (built by the firm AFMA Robot). Tt
is composed by 3 axis of translation and 3 axis of ro-
tation. A CCD camera is mounted on the end effec-
tor of the robot and is connected to the vision system
WINDIS. This whole platform is controlled by a VME
system, and can be programmed in C language under
VxWorks real time operating system.

3.1 Experimental context

The target is composed of a cube (the length of the
edge is 25cm) and 8 LED (Fig.2). Two LED locate
each edge and we choose the object frame centred in
the cube. In this frame, the 8 LED have the following
coordinates: x = £12.5em,y = £7.5em, z = £12.5em.

Figure 2: Camera view of the target

The application runs at video rate (40 ms), but the
vision system introduces a data flow latency of 80 ms.
The vision process is based on the extraction of the
center of gravity of the illuminated points and a spe-
cific algorithm allows to sort the features used at each
step of the trajectory. A coarsely calibrated vision sys-
tem® has been used for all the experimentations and

L1Only Fy, Fy and wg, vo are known.

the estimation of the depth of the 8 LED used in vi-
sual servoing is not accurate.

3.2 Circular helix parallel to a cube side

In this experimentation, we perform a circular helix
parallel to a cube side using the sensor signal provided
by the camera. In a first step, we perform a position-
ing task with 67.5 cm between the side and the effector,
and then we execute the trajectory. It is composed by
a circular translation around the z axis and a trans-
lation along the same axis (Fig. 3). The velocities
in the robot workspace are: V, = —wRsin(wt),V, =

wRcos(wt), V.
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4

%) [

Y

X

Figure 3: Circular helix trajectory

We want to keep the orientation of the effector, so
we have w=0. The relation 6 allows us to calculate the
first transformation P; which expresses the coordinate
of the reference feature in the effector frame:

s =pt) - [ Vida

=t,

and we obtaln on each axis:

z(t + At) = 2(t) — Rcos(wt)At
y(t + At) = y(t) — Rsin(wt)At
z(t+ At) = z(t) — VL AL
We apply the transformation P in using the pinhole
camera model, and we have:

z(t) — Rsin(wt)At
2ty —V.At T
y(t) — Rcos(wt)At
2ty —v,Aat Y
The parameters of this experiment are:
- Radius of the helix R=3 cm

- Translation velocity V,=2 cm.s™
- Pulsation rate w= 4T”rad.s_1

X*(t) =

V(1) =

1



- Gain of the control loop A=0.2

On the graph 4 we present a view of the measured
trajectory and reference trajectory. For this experi-
mentation, we use a coarsely calibrated vision system
what explains the little deformations.
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Figure 4: Right View of the trajectory

In Fig. b, the translation velocities applied to the
effector are presented. These velocities are not sensi-
tive to the noise on the measurements, the comparison
between the desired parameters et the mesured values
shows that the trajectory tracking is well performed.
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Figure 5: Translation velocity of the effector

In the Table 1, we compare the desired value of each
velocity with the average error. This error is computed

as follows:
1 n
E=— T, —T*)2
n;\/( 7

where T; = {V,,Vy, Vs, Ry, Ry, R, } is the it* value
of the measured velocity and T} is the i’" value of the
desired velocity.

VXma;E VYma:p Vz Rx Ry Rz
(mmys) (mm/s) (mm/s) (deg/s)| (des/s)| (deg/s)
Desired 75.4 75.4 20 0 0 0
Value
Average| 5.51 7.20 0.38 0.31 0.14 0.006
Error

Table 1: Error on Velocity

In this table, the error along the y axis is twice as
big than x axis. This difference is due to the focal fac-
tor (& 1.5). More, the extraction of features (points)
are realized in one frame (512x256 pixels), so the sub-
sampling on the y axis involves that the center of grav-
ity 1s more noisy in the y direction. This explains why
the average error on V; (resp. Ry) is bigger than the
one on V; (resp. Ry).

3.3 Complex trajectory

3.3.1 Description of the trajectory

We perform a complex trajectory by linking three sin-
gle trajectories. This task consists in passing around
an edge of a cube (Fig. 6).

Translation

along the side

Rotation around
the edge

Figure 6: Overview of the trajectory

For the transition step between the trajectories j
and j + 1, we used the following equation to combine
both the corresponding kinematic screws T'; and T 1:

T=~)T;+ (1 =~1)Tjn (9)

where y(t) is a sigmoid function such y(0) = 1 and

¥(7) = 0, (7 sets the transition speed between the both
trajectories (0 <t < 7)).

The three single trajectories are a translation along
the side 1, a rotation around the edge between the side
1 and 2 and a translation along the side 2. In the next
parts, we present how to compute the time varying
image feature for each element of the trajectory.

Translation
This task consists in sliding along the cube sides. For



this trajectory, we use the relation 6 which can be
rewritten as:

p(t) = p(ts) = V(t —1,) (10)

We consider Vy,=V,=0, so the first transformation
P1 which expresses the coordinates of the reference fea-
ture in the effector frame is:

et 4+ At) = 2(t) — Vo At
ot + A = ylt]
z(t+ At) = z(2)

We apply the transformation P, by using the pinhole
camera model and we obtain:

e x(t)y = Ve AL
X*(t) = TFx
Y*(t) = y(t) F,

Rotation
This task consists in rotating around the cube edge
between both sides.

In this case, if the radius of the rotation d is not
equal to zero, then our trajectory is composed by a
combination of a translation and a rotation and we
have V.= w 7 d. If d is constant in the frame (case
of angular motion), then from 6 we get:

(t) = plto) + (— sin(w(t —t,)) T+

I3

(1= cos(w(t =) 7 ) (p(ts) —d) (1)

The vector 7 defining the rotational axis is parallel
to the y axis, so 7 = [0, 7, 0]7 = [0, 1,0]%.
From 11, we get:

z(t + At) = x(t) cos(wAt) — (2(t) — d) sin(wA¥)
ot + A = ylt]
z(t + At) = 2 (1) sin(wAt) + (2(t) — d) cos(wAt) + d

We apply the transformation P, by using the pinhole
camera model and we obtain:

_ z(t) cos(wAt) — (z(t) — d) sin(wAt)
z(t) sin(wAt) + (2(t) — d) cos(wAt) +d’ ’

y(t) 7
— z(t)sin(wAt) + (2(t) — d) cos(wAt) +d’ Y

3.3.2 Results

In this part, we present the experimental results. We
use the following parameters:

Translation Rotation
Trans. vel. V, =+ 2cm.s— 1 Rot. vel. w = 7/5 rad.s~!
Dist. side/camera d=67.5cm Rad. of the rot. d=67.5cm
Gain A=0.1 Gain A=0.1

For the sigmoid parameter, we choose 7=40.

Real trajectory —
Reference trajectory —

Figure 7: 3D trajectory of the camera.

On Figure 7, we present the real trajectory followed
by the camera in the workspace and we can observe
that the real and desired trajectories are very closed
and smooth. The trajectory is realized with an accu-
racy of £1cm. To verify the control of the trajectories
we compare the desired and measured features in image
space. For instance, Figure 8 represents a comparison
between features X1 and X1*, X4 and X4*. These fea-
tures are respectively the upper right and lower left
points. The visual servoing i1s well performed and the
tracking error is reduced.

4 Discussion

In this paper, we have presented an approach to con-
trol the camera motion. In this way, we have expressed
the trajectory directly in image space and designed a
control law which takes into account the trajectory
tracking. We have successfully implemented an heli-
cal trajectory and a complex trajectory composed by
a sequence of elementary parts (Translation and Rota-
tion). For a well performed tracking the assumptions
are based on the existence of a rigid link between the
camera and the target. The rigid link is guaranted
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Figure 8: Reference features.

when the image jacobian LTt is a full rank matrix.
A necessary condition is the avoidance of visual singu-
larities (for instance a plane is projected in a line,...).
During experimentations, the estimation of the depth
became required to ensure a full ranking of the image
jacobian.

In the future, we plan to analyse the robustness in re-
gard with the calibration and the depth estimation er-
ror for this kind of tasks. Another important point
could be to study the singularity dues to the ambigu-
ity of the sensor information.
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