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1 Introduction

Many guiding applications :

Figure 1: Green space environment (Mower)

Figure 2: Harvesting context (Combine harvester)
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Many guiding applications (next) :

Figure 3: Tillage and Baler applications (Tractor)

Figure 4: Machine for multi-applications (Articulated

tractor)
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Environment considerations :

e structured (generally indoor)

e unstructured (generally outdoor)

In theses applications the environment is partially

structured and characterised by :
e initial path

e guiding/following path

Figure 5: Mowing environment
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Sensing the environment :

Depending on the application, we have to detect :

e a furrow in the ground (Till work)

e a reap limit between mowed and unmowed part

(Harvest work)

e a haycock, a strawcock ...(Forage work)

Many sensors has been used :
e video camera
e ultrasonic sensor
o laser telemeter sensor

e mechanical sensor

We have been interested on the reap limit detection by

vision to guide :
e a lawn mower

e a combine harvester
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2 About the vision aspect

2.1 Introduction

Some applications has been done in agricutural field (not

exhaustive) :

e harvesting : Debain in [Deb96], Ollis in [OS96]

mowing the lawn : Derras in [DBB93] and
[DBBI1], Debain in [DDB194], Nobutaka in [Nob90],

collecting tree fruits : Amat in [ABFM93|, Sevila in
[SCZD94],

tomato cultivation : Sandini in [SBMZ90]

many others ...

In our applications, the aim of the perception part is to

detect the reap limit between cut and uncut crop.
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Some pictures about cereal

Figure 7: Cereals: corn and sunflowers
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2.2 Ouwur Approach

Image Segmentation based on 4 parameters
(Derras [DBBI1))

e two parameters of texture (homogeneity, entropy)

were chosen using the cooccurrence matrices (texel:
region of size 16 x 16 pixels (Harlow [HTC86]).

e two parameters are computed from local grey-level
histograms (the maximum, and the second order of

moment of grey-level histograms).

The algorithm:

e unsupervised segmentation method (Markov field
modelling) (Genam [GGGDYO0], Sullins [Sul90],
Amat [ABFM93]).

e extraction of lines candidates for the reap limit

e selection of the line which represents the situation
between the vehicle and the reap limit ((6, p)

parameters)

For more details of this algorithm: Derras

[DVBBY5] [DBB* 93] [Der93].
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Figure 8: Reap limit detection (Markov Segmentation)
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Figure 9: Reap limit estimation
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3 AGYV in green space

environment

Figure 10: Some sample of Machine in green space envi-

ronment
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Figure 11: Mower
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Figure 12: The prototype
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3.1 Introduction

The application is to guide the lawn mower by vision

in regard to cut and uncut limit.

Two main aspects for this application :

e the vision/perception aspect (Derras in [Der93])

e the control aspect (Debain in [Deb96])

The mower is a professional lawn mower built by

Guerin Courde

Figure 13: The lawn mower
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3.2 Modelling of the Scene

Modelling considerations

To model the scene we use two parameters in image

space :
e d represents the distance

e 0 represents the orientation

Reference line

N

Detected line

Figure 14: Modelling the scene in image space
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Modelling the Mower

We use a machine with :
e four driven wheels.
e the gap is insured the difference Vo — V;

e non-holonomous

Figure 15: Modelling with a virtual axle

We model the mower with :

e a virtual fixed axle (with 2 wheels).

e cach point of this axle move on a circle
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GROUND

Figure 16: Kinematic modelling

Kinematic equations are :

581N

5 COSQ

We observe :

We can write :
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Theses relations show :

o v =V, 1s constant and represents the velocity of

the center of the axle

e the trajectory of O depends only of the orientation ¢

If V1 and V5 are constant, O describes a circle with a

radius R as :

v bW+Vi bt aqr

6 2Ve-WVi 24 —q

R —

It is the same case, for all point attached to the axle.

So, we retain the following relation to characterize the

kinematic of the virtual axle :

(g1 + ¢2)
(g2 — q1)
b g2+q1
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In our application, the control variables of the mower

which represents the average of the
speed of both wheels

e Av = (V5 — V) which represents the difference of
the speed of both wheels

V1 and V5 represents the speed of the center of both

wheels.

We have :
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3.3 Trajectory generation

We consider two positions characterized by :
e (dz,dy) the difference in position

o 0 the difference in orientation

Position

Figure 17: Initial and final position

To control the machine we generate a trajectory
composed with 2 circles (as Kelly has done in [KGL91])
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Final
Position

| Position

Figure 18: Trajectory generation
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The main relation used to defined the trajectory are the

following :

The equation of the line (D/) is :

Y = X.tanf + dy — dz.tanb

The point F = (dx'tane_dy, 0)T if tand # 0

tanf

and I — (—dx+\/4.?flgg2_|_3.dy2,0)T

F'is defined as: OF = O F = (Xf/,Yf/)T

So, we have :

(Xp —dz)® + (Yp —dy)? = OF? = dF?

Yf/ — a.Xf/ —I_ b

__ dx—a.bta.dy
)(f/__ 14+a2

n V (dz—a.b+dy)2—(1+a?)(dz?+(b—dy)2 —dF?)
\ 1—|—a2

with a = tanf and b = dy — dx.tanf

G is defined as :
GF = R, + Ry and GF = GF'
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Knowing the two angle and radius of the circle, we can

determine the velocities to apply on the lawn mower.

We have shown that :

b :
R__C]2+Q1 (11)

242 — Gy

In our applications, v = Viuoy = 5(¢2 + ¢1) = cste, then

we obtain :

Using relation 7, we deduce :

(13)

So, knowing the initial and final position, we decompose
the trajectory with two circles and deduce the radius of

curvature for both.

Slide 25



Remark :

As shown in the next figures, we can adapt the

trajectory in function of the type of error :

Figure 19: Lateral error

Figure 20: Orientation error
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3.4 Results

Simulation Results :

Simulation
Traectory

‘(d,e) Ny

Scene (d,8) 23 Noise (d.0) 24/ Model of
Reconstruction Z d the camera

(d,0) 34m q .
< "
Trajectory Kinematic Model

Computation of the vehicle

Figure 21: Functionalities of the simulator
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Lateral position

Lateral error ——

Error in meter

10 15 20
Timeins

Figure 22: Lateral position of the mower

Heading angle

T T T

Heading error —— |

Heading angle in radian

10 15 20 25
Timeins

Figure 23: Orientation of the mower

Slide 28



Simulation Results with noise:

Lateral position and Heading Angle (noise of 10 pixels)

- Lateral error
Heading error ——

Vv A%

Error in meter, radian

10 15 20 25
Timeins

Figure 24: Position and Orientation with noise (10 pixels)

Lateral position and Heading Angle (noise of 20 pixels)

Lateral error .
Heading error ——

Error in meter, radian

10 15 20 25
Timeins

Figure 25: Position and Orientation with noise (20 pixels)
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Experimental Results :

') Servomotor

. Thermical engine
(2 Hydraulic engine
7 Valve (variable rate)

Figure 26: Hydraulic actuators

L (d,8) oq .
Cadlibration < Image Processing

(d.9) gq

(Vo-V q)

| Trajectory

Computation [ Controler

Speed Sensors SE—

Servo control

Figure 27: Visual servoing scheme (servo control)
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Figure 28: Experimental conditions (step of 50 cm)

Lateral position and Heading Angle

Lateral error ——
Heading error —— |

Error in cm, degrees

10000 15000 20000 25000
Timeinms

Figure 29: Position and Orientation of the mower
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4 AGYV in agricultural field

4.1 Introduction

Application context: Harvesting

e use of a combine harvester
e use of vision sensor

e help the driver in vehicle guidance

Vision aspect:

e similar to those encountered in green space

environment

e use of the same algorithm

Control aspect:

e controller design in the sensor space
e evaluation of different control laws

e vehicle guidance on a slope ground (first results)
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Figure 30: CLASS and CASE

Figure 32: FORD NEW HOLLAND
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Figure 33: CLASS : dreschs and le}80s

Figure 34: CLASS: Cab and Control

Slide 34



Figure 35: CLASS: Our combine harvester
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4.2 Modelling of the Scene

Modelling considerations (Chaumette [Cha90], Hager
[HHC96))

interaction matrix or image jacobian
classical pinhole approximation of the camera
T. represents the camera velocity screw

s represents the visual informations

We can write :

where LT is the interaction matrix related to s.

The interaction matrix LI :

e depends on the nature of the visual information

contained in s

e is obtained by using the well known equation of

optical flow measurement to 3D structure and
motion in the scene (Faugeras [Fau93], Paul[Pau82)).
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Modelling the scene

The scene is represented by a straight line and modelled

by its projected line in the image frame.

-

reference
line

Figure 37: 2D camera frame

The position of the machine and its orientation is

expressed according to the set of visual features :

)T

s = (evp
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The equation of the plane containing the desired line is

expressed as :
y cosa—z sina+h =10 (17)

where a represents the angle of inclination of the camera.

Considering expression (14), at the equilibrium situation,

the interaction matrix LI becomes :

Apcos0  Ajsinf* —Ajp*

Ajcos0f  ATsinf*  —A7p*

—p* cos 0" —p* sin 0% —1
(14 p*?*)sind* —(1+ p**)cosf* 0

A —(cosacos0*)/h

A (p* cosa sinf* —sina)/h
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4.3 Control Aspect

0
=

" As i .
s %® Vehicle

S

Vison |[=-----

Camera
|
Motion |
|
|

,,,,,,

Figure 38: Servoing scheme

s* = a reference target image,

s = the current visual information |,

(G = the vector control gain,

i = the control variable of the machine (steering

angle of the machine),

o = a set of outputs characterizing the machine’s

position and orientation.

Two kinds of control law will be presented :

e task function approaches

e neural network approach.
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4.3.1 Task Function Approach

The task function approach was developed by FEspiau,
Samson et al ([ECR92], [SBEI1]).

This function can be thought of as representing a
virtual kinematic constraint between the camera and
the target. In this case, we explicitly use the modelling

of the vehicle in order to synthesize the control law.

(a) Vehicle Modelling

We use a machine with :
e two steerable wheels,

e two driven wheels.

At a constant steering angle, this machine describes a

circle. The model of the vehicle assumes the following :
e there are no flexible parts,
e the vehicle moves on plane surface,

e there is no translational slip between the wheels and

the surface,

e there is sufficient rotational friction between the

wheels and the surface.
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We consider the steering mechanism as the same as a

bicycle.
e the two rear wheels turn slightly differentially

e the instantaneous centre of rotation can be

determined purely by kinematic means

Let ¢ the angular velocity vector directed along the y

axis, and x the linear velocity directed along x axis.

Figure 39: Bicycle model

Using the bicycle model approximation (see Figure 39),
the steering angle § and the radius of curvature r are

related to the wheelbase L, as in (Kelly [Kel94]) by:

tan d = —£ (18)
r
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Figure 40: Vehicle trajectory

In Figure 40 we show a small portion of a circle AC
representing the trajectory to be followed by the
machine. We assume that it moves with small

displacements between an initial curvilinear abscissa C

and a final one named C; such that:

In fact, the rotational velocity is obtained as:

¢ _ _tand\/m

L
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The lateral position denoted by x can be computed by
assuming that the machine moves with small
displacements. In the case of longitudinal motion along

the z axis during a time interval At, we express:

Az = rsin Ay
Az = r(1 — cos Av)

Eliminating r from equations (21), we obtain:

1 — cos A
sin A

Az = Az (22)
Without loss of generality, we can consider that the
initial conditions are null since the frame is linked at the
position Cjy and then Ax =z, Az = z and Ay = ¢. We
compute the derivative over time of the lateral
coordinate x of the machine given by (22) which depends

on z and v, as follows:

. 1—cos¢[,+ z¢

rT=——"\2
sin sin

| (23)

Using the approximation to small angles (1) and ¢ are
less than 7?) and considering that the machine moves
with constant longitudinal speed z = V' and that

x <<V, we can write:

T =

Y
2

(2 + gw (24)
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Taking into account the approximations below, we have

~ = and ¥ &~ Z since the r is supposed to be constant.

We finally find the kinematic model of the machine
expressed by the following equations which are similar to
those obtained by another method (Khadraou:
[KMGI5)):

However, we only control the wheel angle 6. We can find

an equation linking  to the vector (V).

In our application, we consider that the velocity V is

constant, then we have (Murray [MS93], loos [IBT88)) :
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(b) State Space Controller Design

We treat here a single input linear system with output

parameters (6, p).

Figure 41: Considered system

We search a state model which integrates both the model

of the machine and that of the scene.

The mobile robot moves with limited degrees of freedom.
It has non-holonomic constraints since the number of
degrees of freedom of control, d in our case, is less than
the number of degrees of freedom of displacement :
translation along x and z axes and rotation around the y

axis.

In the case where the desired situation is represented by
a straight line centered in the image (6* = p* = 0) and
by considering equation (16), we can express the

kinematic screw T, as :

T.=L't & (26)

|s=s
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Determination of the kernel of the interaction matrix

(matrix of rank 2), permits us to constrain the lateral

translation of the vehicle and its orientation by

introducing a rank 2 matrix such as:

1 000 0 0
T. = Lit,.5 (27)
00001 0] =*

Consequently, the matrix Lj;is* is limited to the

components that correspond to the lateral and the

orientation movements :

li1 o Vi
o1 a2 Q,
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We remark that the velocities V, and {2, correspond to

those expressed in (25) for the machine. We write:

(29)

Vo =i
Q, =1

i :[111 112]_1 6
b [121 lzzJ p

By integrating (30) over time we have:

1 lao  —li2 0

Al —loy l11 P

Al = 111122 - l2lll2

Using (29) and (31), we can easily express the velocities

Vy and €, :

—l310 +1 + ko V
l( 21 11P) 2 (32)
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By considering equations (28) and (32), and developing,

the state representation of the system with initial

conditions null (ky = 0 if * = 0 and p*x = 0) is given by :
0 |% { —llar 13 -| 0 vV { l12 -|

p A [ —lgl l11l21 J P L [ l21 J ’
(33)

The state-space form of the model becomes:
s=As+Bo (34)
where:
e s = the current visual information vector,
e 0 = the control variable,
e A and B are constant matrices.

The control law is synthesized using a pole assignment
technique (second order system having ¢ as a damping
ratio and wy as its frequency). Finally, the gain matrix is

expressed as follows:

G = (91 92) (35)

= %(2 V€ lar —wo la2)

= —%(2 V&l —wolia)
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(c) Regulation of two Task Functions

We define a global task function e such as :

where
e ¢ is a six dimensional vector (6x1),
e s — s is a vector of two components (2x1),
e (' is the combination matrix (6x2).

The visual information used in our application is as

shown in Figure 42:

-

reference
line

Figure 42: Image space
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We can write:

C = (C1,05) (38)
From equation (37), we have :

e=C1(0—0")+Ca(p—p") =¢y+e, (39)

In the case where the object stays fixed on the camera

frame, a possible proportional control law is :

T.=—)Xe (40)

We choose a similar control law given by :

T.=—Xfes +e,) (41)

A and 3 two non-zero positive real values.

This amounts to introducing a supplementary gain on
one part of the error, the one concerning the heading

error. In fact, the different types of drive of a mobile

robot mean that we can give different degrees of

importance to the lateral error and the heading error.

A precise but abrupt drive requires a lot of energy,
favouring lateral error, whereas a smooth, non-precise

drive emphasizes heading error.
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Consequently, we first impose an exponential decay on eg4

and another on e, by writing:

(42)

By using the classical methods of the form of
vision-based control, we can calculate the control matrix.
We differentiate the equation (39) as follows :

e=Cs=C0+Cop (43)

where A and (3 are scalar and are in R*T and with (42),

we obtain :

Finally, (43) and (44) give :

Cs=—-ACB(s—s")
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As is given in [CRE91], a possible value of C' in order to
satisfy the conditions of convergence near the desired
position is

C =L~ (46)

Here, LT is the pseudo-inverse of the interaction screw

calculated for the equilibrium position s = s*.

Near the the equilibrium position, the modelling of the

scene gives us the following :

§ = Liyeyy T (47)

T, is the kinematic screw represented by six degrees of

freedom of the camera. We can deduce from equations

(45), (46) and (47) :

T.=—AL(L, . B(s—s") (48)

T. gives us a velocity control of our camera and having
the expression of {2, we deduce the value of the control
input of our system expressed in the modelling of the

vehicle (eqn. 4.3.1). It is given by :

Sinli(}zl()Zsoz (9 _ 9*) . hZi_i%SZZ @ (P . p*)

(49)
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4.3.2 Neural Approach

(a) Introduction to the Neural Network

Figure 43: Cell of a neural network

(a-1) Neural network with one hidden level

connection matrix

INPUT HIDDEN LEVEL OUTPUT
| neurons L neurons J neurons

Figure 44: Neural network with one hidden level
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(a-2) The back-propagation algorithm

Notations:

o x5, k" stimulus vector (dim. I),
hi, k¢ ouput vector of the hidden level (dim. L),
o, k¢ ouput vector of neural network (dim. J),
ty k°"¢ desired ouput vector (dim. J),
e, k"¢ error vector (dim. J),

W connection matrix between input and hidden

level (dim. LxI),

Z connection matrix between hidden and output

level (dim. JxL),

f transfert function (i.e : f(z) = —=)

We have :

2

O = f(th)

| ex = (tx — ox)
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(a-3) The back-propagation algorithm (next)

We define the output error signal as:
dout.k = FAZ.h)® (er) =0, ® (1 —03) ® (), — 03,) (51)

(® represents the Hadamar product)

A the step t + 1, Zj;; becomes :
Z[t—l—l] = Z[t] + n50ut,k-h£ = Z[t] + A[t]Z (52)

with 1 a positive real number

For the hidden level, the error signal is back-propagated:

Onid.k = f/(W-xk)@(Z[%-dout,k) = hk@(l—hk)Q(Z[f]-csout,k)
(53)

A the step t + 1, W) becomes :

W[t-|—1] = W[t] + 775hid,k-33£ = W[t] + A[t]W (54)
with 1 a positive real number
This algorithm minimize the square of the error a each

step. This procedure corresponds to the minimum

research of a function using the gradient technique.
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(b) Application in agricultural field

(b-1) Neural Model

Using the lateral p; and heading 0; errors defined in the
image reference, the steering controller has to compute
steering commands to obtain the minimum difference

between the vehicle and the line followed.

We chose a multilayer neural network because it has been

used successfully in multiple areas such as classification,
modelling and automation (LeCun [Le 87]).

The learning algorithm is the classical gradient method

which aims at reducing the following error function

(Abbassi [AS91], Rumelhart [Ra86]) :
E,, =) E*
k=1

with

B = Y (0 - by

and
e n the number of sample,
m the number of ouputs,
§d” the expected output,

6r¥ the real output.
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(b-2) Neural Network architecture

For the choice of the size on the network, the risk is

double edged:

e a smaller number of neurons leads to insufficient

modelling.

e too many neurons leads to excessive modelling which

can reduce the performance of the network.

The final choice of network (see figure 45) has:

e two inputs (heading and lateral position of the line

detected in the image)

e one output (the steering angle)

e two hidden levels (two neurons, five neurons)

steering
@
direction

Figure 45: Choice of neural network architecture
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(b-3) Training the Network

— 0. P
Automatic Vision i+ P

: Neu
perception Module Negtwork
v
Scene

Human perception

Figure 46: Principle of neural network learning

r = radius of curvature

Figure 47: Creation of learning data
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The sets of datas (p;, 0i,d;) are available at a regular
rate. With the sampled data, the back-propagation
algorithm used in the gradient method can lead to local
minima (Dayhoff [Day90], McInerney [I[HBHNS89]). In
order to avoid them, the learning step is divided into two
parts (Figure 48 and 49) :

Storage

Vision
Module (po , 0, , 0dy )

Driver (pi , 0., 04, )

Figure 48: Data storage (step 1)

Storage

(P, ,69 0dg ) '\N'Z‘/A
; work

(P, e, 0d; ) 4 T

Figure 49: Learning set creation (step 2)
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Results of learning

10

angle of

wheel (°) o angle of

wheel (°)

-10

Figure 51: Off-line learning result
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4.4 Experimental Results

4.4.1 Implementation Considerations

In order to test our three control laws, we laid out a
trajectory composed of a bend, a step of one meter and a

straight line.

$ 1 meter

BEGIN

Figure 52: Diagram of the test track

Surveilknce camena

Surveillance amen

Figure 53: Replacing the cut by a socket
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Camera which measures the distance
between the machine and the whte line.

|

ﬁ

Cattiera for the control

Figure 54: Camera positioning

e the first camera supplies an image of the white line

e the second camera measures the quality of our

control laws accuracy (of +5 cm)

For each control law, we carried out the same tests under

the same conditions :
e following the trajectory at several speeds

e adding noise to the visual informations (4 16 pixels

in p)
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Low level extraction

Image processing

Steermg angle

|

Electro-dluice

Figure 55: Parallel architecture

architecture composed of two VME microprocessor

boards

three parts : a low level module, a feature extraction

module and a control module
OS9 operating system

the image processing calculation time is about 200

ms (close to that encountered in a natural

environment)

a personal computer controls the steering angle

Slide 63



4.4.2 First Law

wo(rd/s)
0.14

0.2

=
o

0

-0.2

-04

-0.6

Position error inm

-0.8

Steering anglein deg

VI
[

| 1

oo & AN o N M O ©

-1.2
100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Iterations Iterations

:
f

Heading in deg.
Gap in pixel

/

idd " )/ -
MW K

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Iterations Iterations

Figure 56: Test at 4 km/h (£ = 0.9, wg = 0.14rd/s)

The control gains are ajusted the average speed V = 4

km/h. The results concern :
e the input ¢ and the lateral position x of the machine

e the features errors 6 and p
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Position error inm

R

100 200 300 400 500 600 700 ' 200 300 400 500 600
Iterations Iterations

Steering anglein deg

I

1

n

Gap in pixel

g
©
c
g
3
T

100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Iterations Iterations

Figure 57: Test at 4 km/h with 16 pixels of noise in p

e test of the robustness of the control law

e the servoing task is achieved with good stability and

robustness
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Position error inm

£
<
s
T
o
S
7
o

Mh\vn.ﬁ. A

Position error inm

-1 -
0 50 100 150 200 250 300 350 400 450 150 200 250 300 350
Iterations Iterations

0.2

B T

-04

-0.6

Position error inm

-0.8

-1

-1
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180 200
Iterations Iterations

Figure 58: Test with V= 6, 8, 10 and 13 km/h)

the gain control are evaluated for V.= 4 km/h

the machine is moved at different velocities (6, 8, 10

and 13 km/h)

increasing speed causes the controlled behaviour to

oscillate at steady-state
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4.4.3 Second Law

A
0.3

Steering anglein deg
Position error inm

0 100 200 300 400 500 600 200 300 400 500 600
Iterations Iterations

Heading in deg.
Gap in pixel

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iterations Iterations

Figure 59: Test at 4 km/h

e results shown are obtained at a speed of 4 km/h

e response time is about 20 s with no overshooting
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Figure 60: Test at 4 km/h with 16 pixels of noise in p

e noise has few consequence on our system
o the same remark as for the first law

In fact, the noise of the algorithm which is used to
control the quatity of our system has more consequences
than the effect of noise introduced in the result of the

image processing.
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Figure 61: Test with V= 6, 8, 10 and 13 km/h)

e the response of the machine is reduced (inverse of V)

e the same results when the speed V increases
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4.4.4 Third Law (neural approach)

The learning phase was carried out at a velocity of 4 km
on a learning track different from the test track (in

particular, the radius of the bend is large).
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Figure 62: Test at 4 km/h

e close conditions as in learning

e the machine follows the track with good stability
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Figure 63: Test at 4 km/h with 16 pixels of noise in p

e no effect on the performance of the vehicle behavior

e the machine itself constitues a natural filter for the

turning orders
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Figure 64: Test with V= 6, 8 km/h)

a small performance degradation at the beginning of

the bend, when the speed increases

an overshoot of 18 cm at 4 km/h, 25 cm at 6 km/h
and 39 cm at 8 km/h.

test with a higher speed leads to oscillations and

divergence
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4.4.5 Conclusion

We have presented a system that provides the driving
assistance to an agricultural mobile machine in order to
help human beings in repetitive and difficult tasks in a

natural environment.

The system is based on a vision system using a single
camera. Three vision-based control laws were tested
successfully. For each law, the control is directly

specified in terms of regulation in the image space.

Law by Law...:

o First law
need of the interaction matrix (scene modelling)
need of the vehicle model (kinematic only)
adaptive control gains (V, and time response)
results show good convergence and the robustness

extension for any other steerable, mobile, wheeled
robot

not react correctly in the case of a sharp bend

the regulation is done in movement (-)
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e Second law:

— need of the interaction matrix (scene modelling)

need of the vehicle model (kinematic only)
need a phase of empirical gain research
results show good convergence and the robustness

extension for any other machines whose trajectory af

constant speed is a circle
not react correctly in the case of a sharp bend

the regulation is done in movement (-)

e Third law:
— “black-box modelling” method
need a phase learning
results show good convergence and the robustness

automatic guidance system rivals a human driver in

performance
react correctly in the case of a sharp bend
extension for any other machines

do not react correctly at increasing speed
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4.5 Guiding the vehicle on a slope

ground

The aim 1s :

e to guide the combine on a slope ground as well as on

a flat ground
e to use the task function approach (sensor space)

e to only use the vision sensor

For that, we propose:

e to analyse the effect of the slope ground :
— on the vehicle behavior

— on the sensor signal behavior

e to adapt the control law:
— using of a PI controller

— adding an adaptative module in the visual

servoing scheme
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Slope ground:

Reference line
{slope ground)

Figure 66: Steady state error in presence of slope ground
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Simulation results on a slope ground
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Figure 67: Simulation of slope (20%)
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An adaptative control strategy

Heading and Lateral error dependence

2D Heading Error in degrees

-20 -10 0 10 20
2D Latera Error in pixel

Figure 68: Adaptative reference signal graph
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Figure 69: Adaptative visual servoing scheme

Slide 78



Using the second control law with (68*, p*)" = (0,0)*, we

have :

2

h”+
ﬁsmli(;;soze . 1_3); ozp (56)

Using an integrator in the control law :

sin o cos « 3
— 3 B0 + k. fy Odu)—

2 COS2 [0 3
%(p + k2. [ pdu)]

According to the previous graph, we use:

(k1, ko)t = (0, ks)?.

Finally, the control law used on a slope ground becomes :

Sln X COS X
[ﬁ 1_|_h2 9

(58)

2 tcos® a t
hi_T(padapt + k2- fo padaptdu)]
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Simulation results on slope ground

Figure 70:
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Figure 71: Result of simulation
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Real experimentation on slope ground

Figure 72: Real experimentation
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5 Conclusion and Perspectives

e Conclusion:
— sensing in real environment remain difficult

a complete scene modeling in natural

environment is difficult

an alternative way is to generate trajectory in a
local environment (even if the experimental

results for the lawn mower are not so good)

another way is use the sensor space, and the task

function approach

another way is use the sensor space, and the

neural network approach

e Perspectives:

— develop the modeling of the slope ground and its

dynamic effects

— use of GPS/DGPS system apply in agricultural
field
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DGPS system apply in agricultural field

Figure 73: GPS/DGPS system (John Deere)
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Figure 74: GPS/DGPS system (Case)
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6 Video

Image Processing Architecture

The land mower (natural environment)

The combine harvester (test bed environment)

The combine harvester (slope ground)

The combine harvester (natural environment)
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