A Versatile Parallel Architecture for Vision Based Control
Applications

* P. Rives, * J.J. Borrelly,

(*) INRIA - Centre de Sophia-Antipolis
2004 route des Lucioles,
BP 109, 06561 Valbonne Cédex

Abstract

In this paper, we discuss an hardware and software
architecture for implementing vision based control ap-
proaches applied to robotics. In such approaches, the
sampling rate of the robot’s closed loop control is di-
rectly given by the image processing time. That implies
strong lime constraints to the vision system. [n a pre-
vious paper (8], we have presented the design phase of
a new machine vision based on a parallel architecture
concepl and first simulation runs concerning its ez-
pected performances have been also shown. The com-
plete wmsion machine is now available and we detail
in this paper both its hardware and software aspects.
We also present the first results obtained for two real
vision based control applications.

1 Introduction

During the ten last years, many improvements was
done in the field of sensor based control applied to
robotics. A large framework is already existing [11]
and allows us to design closed loop control schemes
based on exteroceptive sensors like proximity, range
finder or force sensors. Applying such an approach to
more sophisticated sensors like vision is more recent
(9], [3]. This is mainly due to the large time consum-
ing of the image processing algorithms which are, until
recently, incompatible with the sampling rate of the
closed loop control schemes. These time constraints
involve the use of specific hardware and software ar-
chitectures having powerfull real time capabilities and
modularity. Presently, only a few available industrial
product may satisfy these requirements with relatively
low performancies with regard to their high cost. Con-
cerning research products, a new generation of image
processing systems appears using Transputer nets [2],
DSP processors, or dedicated processor like Sympati
(12]. Unfortunately, these systems are often designed
for general trends in image processing and do not take
Into account specificities of the vision based control
approach. Due to this fact, we developped a new ar-
chitecture (hardware and software) specially dedicated
to this kind of applications. In a previous paper [8],
we have presented the design phase of this new ma-
chine vision based on a parallel architecture concept

0-8186-5420-1/93 $03.00 © 1993 IEEE

** J. Gallice, ** P. Martinet

(**) Laboratoire d’Electronique,
Université Blaise Pascal de Clermont Ferrand,
U.R.A 830 du CNRS,

Les Cézeaux, 63177 Aubiere Cédex

and first simulation runs concerning its expected per-
formances have been also shown. The complete vision
machine is now available and we detail in this paper
both hardware and software aspects with a special em-
phasis on the use of VxWork real time operating sys-
tem at the system level. The paper is organized as
follows. In a first part, after having briefly recalled
the general problem of vision based control and em-
phasized the consequencies on the architecture of the
vision system, we present the details of the hardware
composed by three basic modules (corresponding to
three different VME boards). In the second part, we
discuss programming aspects of such a system. In the
last part, we present the performances obtained on two
real time vision based control experiments : a deep un-
derwater bore-hole reentry task and high speed vehicle

guidance task.

2 Hardware aspects:

Implementing efficiently a vision based control ap-
proach needs to solve several problems at the image
processing level. The major difficulties are induced

by real time constraints and the processing of lar
dataflow from the sequence of images. These pro
lems can be summarized as follows :

e Timing aspect

as the lower limit.

400

In a vision based control
scheme, the sampling rate of the closed loop con-
trol is directly given by the image processing time.
Thus, to ensure the performances of the control,
this sampling rate has to be sufficiently high. For
the most current applications in visual servoing,
a rate of 10 images per second can be considered

Image processing aspect : In a scene analy-
s1s approach, the main goal is to get high level
description of a scene by means of sophisticated
time consuming algorithms. By opposite, in a vi-
sion based control approach, we only want to ex-
tract from the image the necessary and sufficient
informations able to constitute a feeback vector
for the closed loop control scheme. Consequently,
we only request low or intermediate levels pro-
cessings providing contour based or region based

LOCAL SYSTEM BUS (VSB)

AD

SYSTEM BUS (VME)

Figure 1: Overview of the general system

features like points, lines, area, center of gravity
and so on. Moreover, in the most cases, these fea-
tures are located in some regions of interest and
then, the processing of the whole image is not
necessary.

e Tracking aspect : The features extracted from
the image have to be tracked along the sequence.
We have also to take into account appearing and
disappearing features due to the motions of the
camera and objects in the scene.

From these requirements, we have developped an
original architecture characterized by its modularity
and its real time capabilities (figure 1). This archi-
tecture implements the concept of active window. An
active window is attached to a particular region of in-
terest in the image and has in charge to extract a de-
sired feature in this region of interest. At each active
window is associated a temporal filter able to perform
the tracking of the feature along the sequence. Sev-
eral active windows can be defined, at the same time,
in the image and different processings can be done in
each window. The functionnalities of such an archi-
tecture are presented at the figure 2.

As above mentionned, we deal with image process-
ing algorithms which only request low or intermediate
levels processings. This aspect is clearly taken into
account at the hardware level by using a mixed archi-
tecture :

¢ at the low level: We have to deal with repetitive
processings through the window like convolution
or filtering. Pipeline Architecture has been chosen

401

to perform efficiently such processings. In prac-
tice, that is done by means of VLSI convoluors
which admit until 5X5 mask size. This step can
be performed in real time with a delay directly
function of the size of the mask. The input of the
algorithm is the active window and the values of
the mask parameters corresponding to the desired
processing. The output will be constituted by a
list of pixels which potentialy belong to the geo-
metric features present in the window.

 at the intermediate level: We find merging-
like algorithms wich take in input the list of pix-
els of interest provided by the low level stage and
merge them to compute a more structured rep-
resentation of the geometric features present in
the window (for exemple, slope and distance to
the origin for a line or coordinates of center and
radius for a circle). In our hardware, this part is
done by using a MIMD Architecture and it is
practically implemented by means of multi DSP’s
boards.

The details of the hardware has been already de-
scribed in a previous paper [8], and we just recall the
principles. Three basic modules have been defined
corresponding, in practice to three different VME
boards). Dependant of the complexity of the appli-
cation, the system will be built around one or more of
these basic modules in such a way that we will be able
to attempt video rate performances.

The three basic modules are the following :

« WINDIS Window Dispatcher Subsystem
(figure 3): This module has in charge the win-

(

WINMAN)

- List of Windows Control
- Windis Control

- Winproc/Capri Control =
Control
/
. (WINDIS l RESULTS
ge Daca Control Winproc local
g “
R:."... Control i
'
\Q{/ ﬂ e [wmmocxmpm) 1
. DISBUS -
—————— -1 -
Cormt {;i}{ﬁ} {:‘n} .{@ (P1... Prm)
- [- :
Windows : Control :
R 11 2 1 B4 2
BEE | o B s
Lins of pixeis

Figure 2: Data flow through Windis/Winproc subsystem

dow extraction, the execution of low level pro-
cessings and the distribution of active windows
toward the Window Processing Subsystem. Af-
ter low level processing and thresholding, the list
of selected pixels and grey levels corresponding to
the different active windows are dispatched to the
intermediate level processing through a 20MHz
pixel bus.

WINPROC Window Processing Subsys-
tem (figure 4): We have associated one to
sixteen DSP 96002’s modules (CAPRI modules)
with one distributor module. DSP modules are
plugged on VME mother boards and execute in-
termediate level processings on the dataflow from
the window bus. Window processing modules
provide a geometric description of the searched
primitive in each window. At each VME mother
board can be associated four DSP modules.

WINMAN Window Manager Subsystem :
The window manager controls distributor and
DSP modules, and executes high level processing
of applications tasks. Moreover, it has in charge
the tracking of the active windows along the se-
quence. A 68040 based cpu board implements

this module.

For each level, we have introduced parallelism al-
lowing us to reach video rate for most of applications
tasks. All the modules satisfy to VME requirements
and accept in input MAXBUS video bus from Dat-
acube. The management of such a system is a tricky
Jjob and requests the use of a real time operating sys-
tem. For facility reasons, we have chosen to develop
all the system level under VxWorks O. S. We present
in the next section the different layers of the software
from the application level until the implementation as-
pects using the real time tasks scheduled by VxWorks.

3 Programming aspects:

3.1 System Overview

Figure 5 shows the general software organization as
well as its relationships with the underlying hadrware.

The hardware is comprised of an image frame grab-
ber (DIG), the WINDIS and WINPRO%? subsystems.
Each of the hardware components have the capability
to generate interrupts to the HOST (WINMAN) in
the following conditions:

e DIG : Every 40 ms synchronized with video.

402

MAXBUS VSB BUS
Im? 25 VSB bus
Video VSB
interface interface
’.——-—k
Image Window Window
memory| memory| controller
Einmn.‘
Low level
processing
sel —»[_Mnx i Decision
I Puel pomsoaly
candaday
C.G.U.
XY
| 5
WINDIS Window bus »DISBUS

Figure 3: WINDIS subsystem

o WINDIS : either after completion of the input
image swapping (video) or at the end of a pending
distribution on DISBUS.

e WINPROC : The interrupts are generated by any
of the supported CAPRI module, either at the
end of processing of a window or at the end of
processing a list of windows or both.

In this context a real-time application can be defined
as a set of real time communicating tasks managed by
a real-time Kernel (VxWorks). Part of them are 'sys-
tem’ tasks, while the others are 'user’ tasks.

3.1.1 System software

To each of the hardware device correspond a driver
(digDrv, wdDrv, wpDrv/cpDrv) which catches the de-
vice interrupt and manages the device registers. In
the case of the WINPROC device, the driver has been
separated into two parts:

¢ wpDrv which manages the shared memory device
and board registers.

e cpDrv which manages the CAPRI modules (load
DSP program start/stop DSP activity, send in-
terrupt to DSP ..)

On top of these drivers and especially for the window
processing applications we find the window manage-
ment layer :

403

YME BUS
v
Losal Memory
256k 32}
1 ool
1
L a7] &7
Locad A bem
DSP 4
1 -
Dlsusj
WINPROCC APRI

Figure 4: WINPROC/CAPRI subsystem

e winDrv is the HOST part of the window driver
which manages individal windows by program-
ming the hardware through the appropriate
drivers.

» Windows is the DSP part of the window driver
and is in charge to run the user processing func-
tion for the requested window.

e winMgr deals with the temporal aspects of the
window processing,.

3.1.2 Application software
The application software is separated into five parts:

® Processing is the set of user defined processing
functions to be run on the DSP modules.

¢ hardConfig defines the involved hardware (ini-
tialize drivers)

e winDefine setup the processing characteristics of
all the windows of the application.

o timeSetup gives the temporal aspects of the win-
dow processing.

* Resulls is the set of the overall result processing
functions to be applied on the results of the in-
termediate level processing.

3.2 Building an application

To build an application the user must first de-
fine the DSP processing functions and assign them an
unique identifkl)er as weﬁ as the data structures for the
function parameters and results. These functions will
be called by the Windows driver and must respect the
following prototype:

int process_func(x,y,a,b,p,r)

int x,¥,a,b; /* window geometry */
param* p; /* pointer to parameters */
result* r; /*pointer to results */

HOST (WINMAN) DSP n
=
2
- winDefine
5 limeSetop Resulta Processing
- hardConfig
&
< = e
________ e p—— . —— ————t———
‘ winMgr winDry Windowa
5
&
digDrv { wdDry ‘
3 Real-Time OS (VxWorks)
T IT
]
=
-
§ DIG WINDIS
=
<
=
WINPROC

Figure 5: General Software Organization
The DSP programs can then be compiled and linked
with the Windows driver. The processing functions
need not exist on all the CAPRI modules provided
they have a unique identifier.

The parameters and results of each DSP function
will be located in the WINPROC shared memory, and
will be used by the DSP and the application (Results)
through pointers.

The winDrv driver provides functions to allocate dou-
ble banks of parameters or results for a window and
the associated DSP.

Then,one must fill the window descriptor of each win-
dow, including :

¢ Geometry : The window geometry is defined by

the window position and size in the source image,
windows are rectangular areas.

* Low level processing : The low level processing
concerns the WINDIS attribute such as the filter
size and coefficients and the selection of the pixels
of interest.

¢ Intermediate level processing : The intermediate
level processing takes its input data from the low
level and is done by up to 4 CAPRI modules.
Each of the DSP module will run the appropriate
user defined function with standard parameters
and results.

® Global processing : This level is in charge to get
the DSP results for each window, update the win-
dow geometry and compute the control vector to
send to the robot.

An application supports three types of processing :

404

* maultiple-dsp is used when the same window 1S
sent to several CAPRI moduies after the low level
Frocessing. A maximum of four modules is al-
owed provided they lie on the same WINPROC
device,

¢ multiple-window is used when a list of windows
is send to a CAPRI module before starting the
processing. The multiple-window mode can be
used together with the multiple-dsp mode pro-
vided that all the windows of the list are sent to
the same set of CAPRI modules.

» multiple-rate is used when some windows are ac-
tivated less frequently than other. The window
rate is derived from the 40 ms video rate. All
windows running at a selected rate must be sent
to the same set of CAPRI modules.

The user also has to define the window distribution
policy by building the lists of windows and configure
the digDrv to generate appropriate events from the
video rate. One or more list of windows will be at.
tached to each generated event.

3.3 Running an Application

Figure 6 shows the data and control flow during
execution.
HOST (WINMAN) DSPn
3
B winDeflne
3] limeSetup Results Processing
= hardConfig
2 =) =
winMgr |- winDry Windows
3
é‘ ol NS
digDrv wdDrvy wabre
cpDrv
—————————— % Mp— —_—— — R el S—
a m-rmosmw‘-*)
rr/\/ rr/../ %l'/g/ ‘ m
E cp1|crz
z DIG WINDIS SH MEM
2 cr3|cra
=
WINPROC

Figure 6: Data Control flow
An application is comprised of two processes :

3.3.1 Distribution

The distribution process is a single real-time task (part
of winMgr) which reads the set of lists of windows from
a message queue and calls the wdDrv, ¢pDrv functions.
This message queue is filled by the digDrv depending

of the distribution policy previously setup. At the be-
ginning of a distribution, the WINDIS input image is
swapped in order to get the proper image. The winDrv
uses double banks of lists of windows to be processed.
At the end of the distribution of a list of windows,
each involved CAPRI module will receive an interrupt
to start processing, provided the previous list was fin-
ished. The CAPRI modules signal the end of process-
ing of a list by generating an interrupt, allowing the
distribution process to continue for that module.
Figure 7 shows the distribution of four lists of windows
for a total of nine windows and three CAPRI modules.
The lists {1 to {3 are sent every video sample while list
l4 is sent every two samples. In this example, the dis-
tribution of [3 will require the processing of list 1 to
be finished on ¢pl and ep2.

E¥Yn

— []

@@:

cpl opi
cp2

cpl

=@ @

ORS

E
(3 48

EV ns1

£

C
#3® 22®
O

29

op2

=Q @
=Q@

Figure 7: Distribution timings

3.3.2 Result processing

The result processing is done by a set of user
tasks which read messages from user defined message
queues. These message queues must be assigned to
the windows during the configuration phase. The mes-
sages contain the window and CAPRI module identi-
fiers, so that the user tasks can call the appropriate
result processing function. The user tasks are also in
charge of the swapping of the double bank of results.
At the end of a window processing, the CAPRI mod-
ules will generate an interrupt to wpDrv with the win-
dow and module identifiers. The wpDrv then write
this information to the window message queue, wak-
ing up the user task. It is not recommended to use the
same message queue for windows running at different
rates.

4056

4 Performance analysis:

To validate the machine vision above presented, we
have implemented two real time vision based control
applications. The first one concerns an underwater
robotics task and the second addresses the problem of
automatic road following.

4.1 TUnderwater robotics task:

In the near future, underwater robotics will cer-
tainly be one of the most exciting application fields
for autonomous vehicles. Nowadays, underwater op-
erations are performed directly by skin-divers or tele-
operated from an underwater manned vehicle. In all
cases, they are very expensive. Among the differ-
ent types of underwater missions which will be use-
ful to automatize, docking missions play a major role.
For these reasons, IFREMER (the French agency in
charge of oceanographic research) has started a pro-
gram aimed at designing an underwater autonomous
vehicle, NADIA, which will be able to perform auto-
matic docking missions. In this program, we are in
charge of validating sensor based control approaches
for this purpose. More precisely, The experiment pre-
sented here focuses on the problem of positioning a
mechanical structure with respect to a deep underwa-
ter bore-hole by using a visual servoing approach. In
opposite to classical robotics approaches, the visual
servoing approach [13],[5], does not require an explicit
3D reconstruction .of the scene. The basic idea is to
assume that a task can be fully specified in terms of
features in an image. The task is achieved when a
desired image of the scene is reached. In terms of con-
trol, this can be formulated as a problem of regulation
to zero of a certain output function directly defined in
the image frame. When imFlementing a visual servo-
ing application several problems need to be solved . In
(3], [10], the readers will find more details on the the-
oretical framework around this kind of approach, we
focus here on the critical problem of real time image
processing. For this particular experiment, we have to
compute the values of the parameters of two ellipses
corresponding to the projection onto the image of the
two circles bounding the bore-hole in the scene. From
the image processing point of view, we have to perform
the fitting and the tracking of the two ellipses at video
rate along the sequence. To reach these real-time per-
formances, one WINMAN board, one WINDIS board
and one WINPROC with two DSP modules are nec-
essary. Two active windows have been used, one for
each ellipse. The pixels belonging to contours of the el-
lipses are extracted ,in the WINDIS board, by an edge
operator using a 3X3 mask and flushed, via the D[%—
BUS to the WINPROC board. The WINPROC board
is configurated such that one DSP module estimates
the current values of the parameters of the ellipses by
using a moment representation while the second DSP
module has only in charge to display results in the im-
age framebuffer. Due to the relative motion between
the camera and the bore-hole, the size and the loca-
tion of the two ellipses have to be updated at video
rate. The tracking of the two ellipses along the se-
quence of images, is done by a very simple temporal
filter applied on the size and position of the two active

windows. This filter is implemented on the WINMAN
board. Figure 8 presents the points of interests which
have been selected by the low level processing module,
Figure 9 shows the two active windows and the two el.
lipses which have been computed by the DSP modules
from the points of interest. The Table | gives the com-
putation times versus the number of points of interest
selected in the active window by the low level and can
be interpreted as follows

* Distribution: The distribution time on the DIS-
BUS rated at 20 Mha, including low-level process-
ing and WINDIS/WINPROC register setup.

* Parameters: The computation time required to
determine the ellipse parameters on a single DSP.

* Equation: The computation time required to
determine the contour of the ellipse for display.

* Display: The computation time required to ac-
tually display the ellipse and the window geom-
etry through the VME bus towards the Image
frame buffer.

We have validated the whole experiment including
the control loop on our testbed constituted by a 6
degrees of freedom arm with a camera mounted on its
end effector. The performances reached at the image
processing level allow to ensure a 25Hz sampling rate
for the complete visual servoing loop.

Figure 8: Low level processing of the ellipses

4.2 Automatic road following:
The second experiment deals with automatic
vehicle guidance on highway. Le Laboratoire

406

Figure 9: Intermediate level processing of the ellipses

d’Electronique de Clermont-Ferrand has developped
an algorithm using data provided by an on board cam-
era which allows to estimate the current position of the
vehicle (lateral offset from the straight line, side slip-
ping angle) with respect to a normalized road [1].[4].
This estimation constitutes the vector measurement
of a state feedback controller driving the steering sys-
tem. Assuming the road model is such that be shown
in the figure 77, we want to extract the parameters
(28, 3=1,23 characterizing the three white lines
of the highway. Moreover, we want to track the lines
from one image to the next. In terms of image pro-
cessing, we have to :

e Compute the parameters (p,0); for each white
line.

* Compute from image (k) to image (k + 1) a pre-
diction of the parameters (p, f); at time (k + 1).

For ensuring good performances at the control level,
all these computations must be done with a sampling
period the closest than possible to video rate. The
computation of the parameters (p, 6); is performed by
attaching a list of active windows at each white line
D;. The low level processing extracts in each window
the points of interest corresponding to the left edge of
the white line. That is done by a 3X3 Prewitt’s con-
volution mask following by an adaptative tresholding.
The selected points of interest are flushed to the DSP’s
modules in charge of the computation of the param-
eters (p,0);. We use for this computation a Hough
transform working on a reduced research space cen-
tered around the predicted values of the parameters
(p,0); computed at time (k= 1). Results are shown

Window 1 2
 Size 176x224 64x80
| Pix of interest 1533 502

Distribution 2.40 ms 0.70 ms
Parameters 10.40 ms 343 ms
Equation 4.64ms 332 ms

Display 28 ms 11.58 ms

Table 1:

on the figures 11 and 12. In the first one presents the
points of interest detected at the low level by the Pre-
witt operator. The second one shows the segments of
lines estimated at the intermediate level by the Hough
transform. The temporal tracking of the lines along
the sequence is done by a Kalman filtering. The pre-
diction step is used for updating the locations and sizes
of the active windows at time (k + 1).

We have validated both low level and intermediate
level processing on a benchmark using one up to ten
windows (Roig ... Roig) whose the characteristics are
given at Table 2.

Region of Size P1 P2

Intersat [xY] [min, max | [i, max | N
Rol0 & Rois [8080] [0405] [300,400] ™
Roi1 & Roié [50,40] [0203] (300,400] 0
Roi2 & Roi7 (50401 [0203] [300,400] 2
Roi3 & Roi8 [4684] [07,1] [200,300] 59
Aol & Rol® | [120,100] [09,0.8] (50,2001 100

Table 2:

For each active windows, we define :
o [size_X,size_Y] the size of the window.

e [PImin, PImaz] the research space for the pa-
rameter # expressed in radians.

e [P2min, P2maz] the research space for the pa-
rameter p expressed in pixels.

e N the number of points of interest selected by the
low level.

The size of the accumulator used in the Hough
transform has been fixed to 10X100 for all the exper-
iments.

407

Figure 10: Model of the road

The Table 3 shows the execution time versus the
number of windows for both the low and intermediate
level. This result corresponds to the case where only
one DSP is used. For pointing out the multiprocess-
ing aspect, we have done a second experiment with
two DSP. The first one is dedicated to the extraction
of the left edges of the white lines while the second
extracts right edges. The same benchmark that previ-
ously is used. The Table 4 gives the number of points
of interest selected by the low level for each side of the
line in a window. Table 5 summarizes the variation of
the execution time versus the number of windows. At
the present time, we can process until three windows
at video rate. These results have been obtained with
non optimized code and we expect, in a next future,
to be able to reach 4 or 5 windows by DSP at video

megionsot | o0 | RO | Rolo [Aol | Roio
interest Roi1 | Roi2 | Roi3 | Roi4
Execution
40 40 80 80
Time (ms) 0
Reglons of Rc_nio FII?IO Hc_:io Flgin nqio
interest Roi5 | Roi6 | Roi7 | Roi8 | Roi9
Execution | ., 120 120 160 160
Time (ms)
Table 3:

Figure 12: Segments of lines estimated by the Hough
transform

rate. We can also note as an important result, that
multiplying by two the number of DSP increases the
computing power by a factor two. That means that,
for a small number of DSP, the communication time
is neglected with regard to the computation time.

1’&:’;’; ° | Roio | Roit | Roi2 | Roi3 | Roi4
N
(left edge) 78 20 2 59 100
N
e oiee) 78 21 14 37 102
Table 4;

408

Reglonsof | o .o Roi0 | Roi0 | Roi0 | Roi0
S Roi1 | Roi2 | Roi3 | Roia
Execution
40 40
Time (ms) 40 80 80
Table 5:

5 Conclusion

We have presented, in this paper, a new machine vi-
sion system dedicated to vision based control applica-
tions in robotics. This kind of application is character-
ized by strong real time constraints and large dataflow
in input from the sequence of images. Our approach
consists to split the problem in two levels. The first
one is devoted to the tracking of features along the
sequence by means of active windows associated to
the regions of interest. The second one is to attach
to these windows some dedicated image processings
(hard and soft) which perform the extraction of the
desired feature into each window. To implement these
two levels, we use a mixed architecture :

¢ Pipeline Architecture based on VLSI chips, is
associated to the low level allowing to efficiently
perform processings like convolution which are
repetitive through the window.

¢ MIMD Architecture based on multi DSP’s
processors, has in charge the intermediate level.

We have validated this architecture on two vision
based control experiments. The first one was based
on an ellipse fitting algorithm while the second uses
Hough transform technique. The results obtained are
very promising and should be allowed us to implement
complex vision based control applications at video
rate.

References

(1] R. Chapuis: Suivi de primitives images, applica-
tion d@ la conduile automatique sur route, Ph-d
Thesis, University of Clermont-Ferrand, France,
Janvier 1991.

J.P Derutin, B. Besserer, T. Tixier, A. Klickel:
A Parallel Vision Machine: TRANSVISION,
CAMPY91, Computer and Machine Perception,
Paris, December 1991.

Espiau B., Chaumette F., Rives P. : A New
Approach to Visual Servoing in Robotics, IEEE
Transaction on Robotics and Automation, Vol. 8,
No. 3, June 1992

F. Jury, R. Chapuis, J. Gallice: Mobile posi-
tion estimation in a dynamic environment, RFIA-
AFCET Congress, Lyon, Novembre 1991.

(2]

(3]

(4]

(5] M. Kabuka, E. McVey, P. Shironoshita : An Adap-
tive Approach to Video Tracking, IEEE Journal
of Péobot.ics and Automation, 4(2):228-236, April
1988.

(6] H. Kubota, K. Fukui, M. Ishikawa, H. Mizogushi,
Y. Kuno: Advanced Vis ion Processor with an
Overall Image Processing Unit and Multiple Local
Processing Modules, MVA’90 IAPR Work-shop on
Machine Vision Applications, Tokyo, Japan, 1990.

[7] H. Kubota, Y. Okamoto, H. Mizogushi, Y. Kuno:
Vision Processor for Moving Object Analysis,
CAMP91, Computer and Machine Perception,
Paris, De cember 1991.

[8] Martinet P..Rives P. Fickinger P.Borrelly J.J :
Parallel Architecture for Visual Servoing Appli-
cations, Workshop on Computer Architecture for
Machine Perception, Paris, Dec. 1991

(9] P. Rives, F. Chaumette, B. Espiau: Visual Servo-
ing Based on a Task Function Approach, First In-
ternational Symposium on Experimental Robotics,
Montréal, Canada, June 1989.

[10] P. Rives, H.Michel: Visual Servoing Based on
Ellipse Features, SPIE: Intelligent Robots and
Computer Vision XI: Algorithms and Techniques,
Boston, MA, 7-10 Sept. 1993

[11] C. Samson, B. Espiau, M. Le Borgne: Robot Con-
trol- the Task Function Approach, Oxford Univer-
sity Press, 1991.

(12] SYMPATI 2: SYstéme Multiprocesseur Adapté
au Traitement d'Images Document Technique,
SIR/CEN de Saclay, 1991

(13] L. E. Weiss, A. C. Sanderson: Dynamic Sensor-
Based Control of Robots with Visual Feedback,
IEEE Journal of Robotics and Automation, Vol.
RA-3, n. 5, Oct. 1987.

409

