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Forword

The purpose of this workshop is to discuss topics related to the challenging problems of
autonomous navigation in open and dynamic environments. Technologies related to
application fields such as unmanned outdoor vehicles or intelligent road vehicles will be
considered from both the theoretical and technological point of views. Several research
questions located on the cutting edge of the state of the art will be addressed. Among the
many application areas that robotics is addressing, transportation of people and goods seem to
be a domain that will dramatically benefit from intelligent automation. Such new technologies
can also be efficiently applied to other application field such as unmanned vehicles, intelligent
wheelchair, service robots, or more generally to human assistance. Technical contributions
related to this area, such as autonomous outdoor vehicles, achievements, challenges and open
questions will be presented and discussed. Five technical areas, with a focus to their
instantiation to dynamic environments, will particularly be addressed: Vision-Based
Perception, Multi-sensors Perception & Localisation, SLAM & 3D Reconstruction, Path
Planning & Navigation Systems, and Motion Planning.

Previously, two workshops were organized in the same field. The 1% edition of this workshop
was held in Roma during ICRA’07 (around 60 attendees), and the second in Nice during
IROS’08 (more than 90 registered people). A special issue of IEEE Transactions on ITS will
be published at the beginning of 2009 following these two workshops mainly focused on Car
and ITS applications. This workshop will be more focused on vision based perception, robust
sensor-based navigation, and human robot interaction.

This workshop is composed with 6 invited talks and 12 selected papers. Four sessions has
been organized:

1. Session 1: Vision based perception & Visual SLAM

2. Session Il: Multi-sensor perception & navigation
3. Session I1l: SLAM, Localization, Reconstruction
4. Session IV: Motion planning

Intended Audience concerns researchers and PhD students interested in mobile robotics,
motion and action planning, robust perception, sensor fusion, SLAM, autonomous vehicles,
human-robot interaction, and intelligent transportation systems. Some peoples from the
mobile robot industry and car industry are also welcome.

This workshop is made in relation with IEEE RAS: RAS Technical Committee on
“Autonomous Ground Vehicles and Intelligent Transportation Systems” (http://tab.ieee-

ras.org/).

Christian Laugier, Philippe Martinet and Urbano Nunes
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Comparing appearance-based controllers for
nonholonomic navigation from a visual memory

Andrea Cherubini, Manuel Colafrancesco, Giuseppe Oriolo, Luigi Freda and Frangois Chaumette

Abstract— In recent research, autonomous vehicle navigation
has been often done by processing visual information. This
approach is useful in urban environments, where tall buildings
can disturb satellite receiving and GPS localization, while
offering numerous and useful visual features. Our vehicle uses
a monocular camera, and the path is represented as a series
of reference images. Since the robot is equipped with only
one camera, it is difficult to guarantee vehicle pose accuracy
during navigation. The main contribution of this article is the
evaluation and comparison (both in the image and in the 3D
pose state space) of six appearance-based controllers (one pose-
based controller, and five image-based) for replaying the ref-
erence path. Experimental results, in a simulated environment,
as well as on a real robot, are presented. The experiments
show that the two image jacobian controllers, that exploit the
epipolar geometry to estimate feature depth, outperform the
four other controllers, both in the pose and in the image space.
We also show that image jacobian controllers, that use uniform
feature depths, prove to be effective alternatives, whenever
sensor calibration or depth estimation are inaccurate.

[. INTRODUCTION

In recent research, mobile robot navigation has been often
done by processing visual information [1]. This approach can
be useful for navigation in urban environments, where tall
buildings can disturb satellite receiving and GPS localization,
while offering numerous and useful visual features. The
most widespread approaches to visual navigation are the
model-based, and the appearance-based approaches, which
we shall briefly recall. Model-based approaches rely on the
knowledge of a 3D model of the navigation space. The model
utilizes perceived features (e.g., lines, planes, or points), and
a learning step can be used for estimating it. Conversely, the
appearance-based approach does not require a 3D model of
the environment, and works directly in the sensor space. The
environment is described by a topological graph, where each
node corresponds to the description of a position, and a link
between two nodes defines the possibility for the robot to
move autonomously between the two positions.

In this work, we focus on appearance-based navigation,
with a single vision sensor. The environment descriptors
correspond to images stored in an image database. A sim-
ilarity score between the view acquired by the camera and
the database images, is used as input for the controller that
leads the robot to its final destination (which corresponds to
a goal image in the database). Various strategies can be used
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to control the robot during navigation. An effective method
is visual servoing [2], which was originally developed for
manipulator arms, but has also been used for controlling
nonholonomic robots (see, for instance, [3]).

The main contribution of this paper is the comparison
between six controllers for nonholonomic appearance-based
navigation using monocular vision. In particular we investi-
gate the performance of this controllers both in the image,
and in the 3D pose state spaces. The paper is organized as
follows. In Sect. II, a survey of related works is carried out.
In Sect. III, the problem of appearance-based nonholonomic
navigation from a visual memory is defined. Although the
scope of this paper is the discussion of the control strategies,
in Sect. IV, we outline the image processing and the 3D
reconstruction algorithms used in our navigation framework.
In Sect. V, we present and illustrate the six controllers. The
simulated and experimental results are presented in Sect. VI.

II. RELATED WORK

Recent works in the field of appearance-based autonomous
vehicle navigation are surveyed hereby. Most of these works
[3 — 13] present a framework with these characteristics:

¢ a wheeled robot with an on-board camera is considered;

e during a preliminary phase, the feaching phase, the
robot motion is controlled by a human operator, and
a set of images is acquired and stored in a database;

e an image path to track is then described by an ordered
set of reference images, extracted from the database;

e during the replaying phase, the robot (starting 'near’ the
teaching phase initial position) is required to repeat the
same path;

« the replaying phase relies on a matching procedure (usu-
ally based on correlation) that compares the currently
observed image with the reference images;

« although the control strategy enabling the robot to track
the learned path varies from one work to the other,
it relies, in all cases, on the comparison between the
current and reference images.

The methods presented hereby can be subdivided in two
main areas. In some works, a three dimensional recon-
struction of the workspace is used. The other navigation
frameworks, instead, rely uniquely on image information.

We firstly survey the works where 3D reconstruction
is utilized. In 1996, Ohno and others [4] propose to use
the image database to reconstruct the robot pose in the
workspace (i.e., position and orientation) which is utilized
for control. In [5], a three dimensional representation of the
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Fig. 1. Relevant variables utilized in this work. Top: mobile robot (orange),
equipped with fixed pinhole camera (blue), and applied control variables (v,
w). Bottom: two different views (distinct camera placements) of the same
3-D point p, i.e., in the current (left) and reference (right) images.

taught path is built from the image sequence, and a classic
path following controller is used for navigation. Similarly,
in [6], pairs of neighboring reference images are associated
to a straight line in the 3D workspace, that the robot must
track. The epipolar geometry and a planar floor constraint are
used to compute the robot heading used for control in [7].
Similarly, in [8], 3D reconstruction is used to improve an
omnidirectional vision-based navigation framework.

In general, 3D reconstruction is unnecessary, since moving
from one reference image to the next, can also be done by
relying uniquely on visual information, as shown in many
papers. For instance, in [3], the vehicle velocity commands
and the camera pan angle are determined using an image-
based visual servoing scheme. In [9], a particular motion
(e.g., 'go forward’, ’turn left’) is associated to each image,
in order to move from the current to the next image in the
database. In [10], a proportional control on the position of
the feature centroid in current and reference images drives
the robot steering angle, while the translational velocity is
set to a constant value. The controller presented in [11]
exploits angular information regarding the features matched
in panoramic images. Energy normalized cross correlation is
used to control the robot heading in [12]. In [13], a specific
image jacobian, relating the change of some image features
with the changes in motion in the plane, is used for control.

In summary, a large variety of control schemes has been
applied for achieving nonholonomic navigation from a vi-
sual memory. However, a comparison between the various
approaches has never been carried out. Moreover, in most of
the cited articles, the focus has been the qualitative evaluation
of the proposed navigation framework in real, complex,
environments, without a quantitative assessment of the con-
troller performance. In this paper, we shall compare the
performance of six approaches to nonholonomic navigation
from a visual memory. The controllers will be assessed using
various metrics, both in simulations, and in real experiments.
In particular, we will compare the controller accuracy both
in the image and in the pose state space, since both are
fundamental for precise unmanned navigation.

III. PROBLEM DEFINITION
A. System characteristics

In this work, we focus on a nonholonomic mobile robot
of unicycle type, equipped with a fixed pinhole camera. The
workspace where the robot moves is planar: W = IR?. With
reference to Fig. 1, let us define the reference frames: world
frame Fyy (W, 2, 2’), and image frame F7(O, X,Y") (point
O is the image plane center). The robot configuration is:
q =[x 2 0]", where [/ 2/]" is the Cartesian position of the
robot center in Fyy, and 6 € |—m, 4] is the robot heading
(positive counterclockwise) with respect to the world frame
2’ axis. We choose u = [vw]”" as the pair of control variables
for our system; these represent respectively the linear and
angular velocities (positive counterclockwise) of the robot.
The state equation of the robot is:

cost O
g=| sinf 0 |u
0 1

We also define the camera frame F¢(C, z,vy, z), shown in
Fig. 1 (C is the optical center). The distance between the y
axis and the robot rotation axis is denoted by J. A pinhole
camera model is considered; radial distortion is neglected.
Hence, the camera intrinsic parameters are the principal
point coordinates and the focal lengths in horizontal and
vertical pixel size: fx, and fy. In the following, we consider
that the camera parameters have been determined through
a preliminary calibration phase, although we shall partially
relax this assumption later in the paper. Image processing is
based on the grey-level intensity of the image, called I(P)
for pixel P = (X,Y).

As outlined in Sect. II, our navigation framework relies
on a teaching and on a replaying phases. These phases will
be described in the rest of this section.

B. Teaching phase

During the teaching phase, an operator guides the robot
stepwise along a continuous path. Each of the N feaching
steps starts at time ¢;_; andends att; > t;_1 (¢ =1,...,N).
At each step 7, the control input w is assigned arbitrarily
by the operator. In this work, we assume that throughout
teaching, the robot moves forward, i.e., v > 0. At the end
of each teaching step, the robot acquires a reference image,
that we call I;, and stores it in a database. Visual features
are detected in each I;. We call F¢;(Cy,x;,v;,2;) and
F1,(0;, X;,Y;) (see Fig. 1) the N camera and corresponding
N image frames associated to the reference configurations
q; reached at the end of each teaching step.

C. Replaying phase

At the beginning of the replaying phase, the robot is placed
at the starting position of the teaching phase. During the
replaying phase, the robot must autonomously track the path
executed during the teaching phase. The task of replaying
the taught path is divided into N subtasks, each consisting of
zeroing the visual error between the currently acquired image
(called I) and the next reference image (I, I2,...,In) in



the database. In practice, as soon as the visual error between
I and goal image I; is ’small enough’, the subtask becomes
that of reaching image I, ;. Both the visual error and the
switching condition will be detailed in Sect. V. Throughout
replaying, the linear velocity is fixed to a constant value v >
0, while the angular velocity w is derived with a feedback
law dependent on the visual features. In all six feedback
controllers that we have tested, at each iteration of subtask ¢,
w is based on the feature points matched between the current
image I and the reference image I;.

IV. VISION ISSUES
A. Image processing

During both teaching and replaying, the images acquired
by the robot camera must be processed in order to detect
feature points. Besides, during the replaying phase, corre-
spondences between feature points in images / and I; are
required to generate the set of matched points which is used
to control the robot. In both teaching and replaying phases,
we detect feature points with the well known Harris corner
detector [14]. Every iteration of the replaying phase relies on
image matching between Harris corners in the current image
I and in the nearest next reference image in the database I;.
For each feature point P in image I, we use a correlation
technique to select the most similar corresponding point P;
in image I;. For each pair of images ([, I;), the algorithm
returns the n pairs of matched points (P, P;);, j =1,...,n.

B. Deriving 3D information

In one the control schemes used in this work (i.e., the robot
heading controller), it is necessary to estimate the camera
pose variation (rotation R and translation t, see Fig. 1)
between the current view I and the next reference view I;
during replay. Moreover, in two of the five image jacobian
controllers used, the z coordinates in F¢ (i.e., the depths) of
the retroperspective projection p of feature points must be
estimated. The depths can also be derived from the camera
pose variation. The problem of estimating the camera pose
variation (R, t) is a typical structure from motion problem.

In some works (see, for instance, [5]), the camera pose
is estimated by using bundle adjustment methods, which
result in long computation processing, unsuitable for on-
line use. Here, we have decided to perform on-line 3D
reconstruction, by using only the pair of images (I,I;),
instead of I with the whole database. This choice inevitably
implies lower computational time to the detriment of the
3D reconstruction accuracy. The technique that we used for
camera pose estimation is epipolar geometry (see [15], for
further details). Using an estimate of the distance from ¢ to
g; for ||t||, four alternative solutions (R,t) can be derived.
For each of the four possible pose variations, we use the
technique described in [16] to derive the feature point 3D
position p, as the midpoint on the perpendicular to the
projecting rays in the two camera frames (see Fig. 1). Finally,
we select the pose variation (R, t) with the greatest number
of positive depths in both camera frames F¢ and F¢;, since
feature points must lie in front of both image planes.

V. CONTROL SCHEMES

In this section, we describe the characteristics of the six
controllers on w that we have tested in the replaying phase
(v 1s fixed to constant value v, see Sect. III). In all cases, we
consider that subtask ¢ (i.e., reaching image I;) is achieved,
and we consequently switch to reaching image I, ;, as soon
as the average feature error:

n
SR - Pyl
j=1

€; =
n
is below a threshold 7., and starts to rise.

The first feedback law that we will describe, is pose-based:
the feedback law is expressed in the robot workspace, by
using the 3D data derived from image matching as described
in Sect. IV-B. The 5 other feedback laws, instead, are
image-based: both the control task, and the control law are
expressed in the image space, by using the well known image
jacobian paradigm. In practice, an error signal measured
directly in the image is mapped to actuator commands. Two
of the 5 image jacobian controllers require camera pose
estimation to derive the depth of feature points. For the 3
others, some approximations on the feature depths are used,
as will be shown below.

We hereby recall the image jacobian paradigm which is
used by the five image-based controllers. The image jacobian
is a well known tool in image-based visual servo control [2],
which is used to drive a vector of k£ visual features s to a
desired value s*. It has been previously applied for solving
the problem of nonholonomic appearance-based navigation
from a visual memory (see, e.g., [3] and [13]). Let us define:

T
Ue = (Vg Ve,y Ve,z We,z We,y We,z]

the camera velocity expressed in F¢. The matrix Lg relates
the velocity of feature s to u.:

§=Lsuc (D

For the robot model that we are considering, the camera
velocity u,. can be expressed in function of u = [vw]” by
using the homogeneous transformation:

Ue =C Tru 2)
with:

0 —¢

0 O

C {10

TR=19 o

0 -1

0 O

In the following, we will call T}, and T, the first and second
columns of CTR. Injecting (2) in (1), we obtain:

s = LS(U’U + Ls)ww



where Lg , = LsT,, and Ls , = LT, are k£ x 1 column
vectors. In order to drive s to the desired value s*, we set
v = v and we select as control law on w:

w = _LS,w+ ()\e + Lsﬂ)@) (3)

where )\ is a given positive gain, e is the error s — s*, and
L S,w+ € R'™* is the Moore-Penrose matrix pseudoinverse

. T -1 T
Of stw, 1.€., Lva"r = (Ls7w LS,w) LS,w .

A. Robot heading controller

The first controller that we tested in this work, the robot
heading controller (called RH), is based on the 3D informa-
tion, derived as described in Sect. IV-B. Since the y-axis is
parallel to the robot rotation axis, from the matrix R defining
the rotation between the two camera frames, it is trivial to
derive the relative heading variation between the two robot
configurations Af = 6 — 6;. Then, we apply the control law:

w = —A\Af

with A a given positive gain. A similar controller has been
used in [7]. In contrast with that work, however, we do not
use the planar constraint to derive the 3D pose variation, and
we use R, instead of t (which is usually more affected by
noise), to derive the heading value.
B. Image jacobian points controller

In the image jacobian points controller (1JP), the visual
features used for achieving subtask ¢ are the current image
I coordinates of the n matched points:

s=[X1.Y1,.... Y, e R
Each subtask ¢ will consists of zeroing error:
e=[X1 - Xi1,Y1 = Yiy,.... Yo — Vi)' € R™

For a normalized perspective camera, the expression of Lp
for a single image point P (X,Y’) seen in I is:

XY —1-X2 Y
14+Y?

1 X
-1 0 X

0 —

Lp = 1 XY X

w =

where z is derived with the method described in Sect. IV-B.
By applying the transformation CTR, we obtain:

9414 X2
Llew=17 xy

ke [

Lp, = {

If we consider all n matched points between I and I;, by
merely stacking n times vectors Lp , and Lp ,,, we obtain
the two 2n x 1 column vectors Lg ,, and Ls , to be used in

1
3"
'Ls,w+ is always defined, since:

n 2
)
Ls,w Lsw = <+1+X2> +(X;Y)2]| >0

j=1

because g +1+ X2 >0 forall P.

C. Image jacobian points controller with uniform depths

The image jacobian points controller with uniform depths
(IJPU) is based on an approximation of the model used by
the IJP controller. The only difference between the IJPU
controller and the IJP controller, is that the depths of all
points P; (which are required for calculating Ls ,, and Ls ;)
are assumed identical and set to a fixed value:

Z; =1z Vi=1,...,n

Although this approximation requires z to be tuned by
the user, depending on the workspace characteristics, and
although it can lead to imprecision in the case of sparse 3D
points, setting z; = z avoids the need for 3D reconstruction,
and consequently spares computational resources. In prac-
tice, the IJPU uses an approximation of the interaction matrix
similar to the ones commonly used in the visual servoing
literature, when pose estimation should be avoided. In fact,
it has been shown in many works that a coarse approximation
of the image jacobian, without depth estimation, is often
sufficient to achieve visual servoing tasks [2], and uniform
depths have been successfully used in [17].

D. Image jacobian centroid controller

In the Image jacobian centroid controller (1JC), the visual
features used for achieving subtask ¢ are the current image
I coordinates of the centroid of the n matched points:

s =[Xa, Y }T—lzn:[x v;]" € R
- G, 1Ga - n 4 VEE]
Jj=1
Each subtask ¢ will consists of zeroing error:
e=[Xg—Xig Yo —Yigl € R

For a normalized perspective camera, the expression of Lg
related to the centroid of a discrete set of n image points has
been derived in [18] by using image moments:

L 0 XY, A+X} Y
1< n
Ls=-— 1Y 2
n; 0 —= 3 14+Y? =Xy —lej
iz

where the z;s are derived with the method described in
Sect. IV-B. By applying the transformation CTR, we obtain:

Lo 23 n [ Z4+14+X7
J Zj
Ls,=— _ Ls.,=—- 4
s nz Y; S nz Xy, “)
j=1 2z Jj=1

These two vectors are used in the control law (3)2.

’Lg,,, T is always defined, since:

1 é
T _ 2 v
Lsw'Lsw = — [(Z%Jrurxj) + (ZXJY]> ] >0
j=1 Jj=1

n 5
becauseZ—+1+X?>0.

z
=17



Fig. 2. Robot path in Fyy during Webots navigation, with N = 17 reference configurations g; (black dots), using controllers: RH, IJP, IJPU, 1JC, 1JCU,
AIICA (left to right), in the experiments with correct (full curves) and coarse (dashed curves) camera calibration.

E. Image jacobian centroid controller with uniform depths

The image jacobian centroid controller with uniform
depths (IJICU) is based on an approximation of the model
used by the IJC controller. The approximation is identical to
the one used in IJPU to avoid 3D reconstruction:

zj =2z Vi=1,...,n

with Z to be tuned according to the workspace characteristics.

F. Approximated image jacobian centroid abscissa controller

From a control viewpoint, since in (3) we control only one
degree of freedom (w), one feature is sufficient for control.
In the approximated image jacobian centroid abscissa con-
troller (AIJCA), the only visual feature that we use is the
abscissa of the centroid of the n matched points in I:

s=Xg€RR

This choice is reasonable, since the camera optical axis is
orthogonal to the robot rotation axis. Each subtask ¢ will then
consist of zeroing error:

GZXG—Xiyc;GB

The relationship between s and wu. is here characterized only
by the first lines of Ls , and Lg ., in (4). By neglecting
0 with respect to the point depths, and assuming that the
centroid stays 'near’ the image plane center, we assume that:

1~ X;
*E <1
7l_7 Zj

j=1

which leads to Ls, = 0 and Ls,, = 1. Replacing in (3)
leads to the same control law used in [10]:

)

> —+ X<«
n_gﬁ Zj

j=1

w=-Xe

where A is a given positive gain. With this method, no
metrical knowledge of the 3-D scene is needed, since the
controller relies uniquely on the image features. However,
we will show that not taking into account 3D information,
is a limitation for this control strategy.

VI. SIMULATIONS AND EXPERIMENTS

The simulations and experiments have been carried out
on a MagellanPro robot. This is a differential-drive robot
with a caster wheel added for stability. The on-board camera
is a 30 Hz Sony EVI-D31, with a resolution of 640 x 480
pixels. For preliminary simulations, we have made use of
Webots®, where a simulated robot with the same kinematic
and sensorial characteristics as MagellanPro has been de-
signed. Video clips of the experiments are available at:
www.dis.uniromal.it/~labrob/research/VisNav.html.

In Webots, the six controllers have been compared by
replaying a taught path of approximately 4.8 m composed of
N = 17 reference images; we set 7. = 4. Using the Webots
GPS sensor, we can derive the 3D paths tracked by the sim-
ulated robot in the 6 cases (full curves in Fig. 2). Note that,
although with all controllers the robot is able to reach the
final goal image I;7, path tracking is less accurate with RH
and AIJCA than with the 4 other controllers. This result is
confirmed by the metrics reported in Table I: both the image
error €; with respect to I;, and the position error with respect
to q;, averaged over the 17 reference images/configurations,
are higher for RH and AIJCA, than for the other controllers.
The smaller value of the third metric (average number of
matched points n on each image) for RH and AIJCA, is both
a cause and an effect of lower accuracy: less points provide
less information for control, while, inprecise path tracking
worsens feature tracking. Although the performances of the
4 other controllers are comparable, slightly better results are
obtained when the depth is estimated using 3D reconstruction
(IJP and 1JC), than when it is fixed (IJPU and IJCU). The
importance of the — mainly longitudinal — position error in
RH and AIJCA is due to the fundamental role played by the
point depths (which are not used by the latter controllers) in
the pose accuracy associated to an image-based task: with
RH and AIJCA, the robot stops much after configuration
q17. To further investigate the controller performances, we
have plotted, in Fig. 3 (left), the typical evolution of w and
€; during a path step. Here, we focus on the step from I
to I, although the trends are similar for the other 16 steps.
The curves show that with RH, which is merely position-
based, the value of w is strongly conditioned by the 3D

3www.cyberbotics.com



TABLE I
CONTROLLERS PERFORMANCE IN WEBOTS - CORRECT CALIBRATION

TABLE I
CONTROLLERS PERFORMANCE IN WEBOTS - COARSE CALIBRATION

-0,2 -

15 4
1o 10 H
5 —_— 51

0 10 20 30 0 10 20 30
Fig. 3. Evolution of w (top, in rad/s) and €7 (bottom, in pixels) at successive
iterations while the simulated robot moves from I to I7 using: RH (grey),
1JP (red), IJPU (orange), IJC (blue), IICU (cyan), and AIJCA (green), with
correct (left) and coarse (right) camera calibration.

reconstruction error, and oscillates, leading to later conver-
gence of ¢; (hence to the late robot stop). The inaccuracy
in Af (£6° average estimation error over a total heading
variation, throughout the path, of —110°) is due to our choice
of estimating on-line the camera pose by using only pairs
of images, instead of performing a computationally costly
global bundle adjustment. This is consistent with the choice
of processing the same sensor input for all controllers, i.e.,
simply data from the current and from the next reference
images. Late convergence of ¢; also occurs with AIJCA
(green in Fig. 3). Smoother curves are obtained with the
other 4 image jacobian controllers, which take into account
the feature point image positions, as well as their 3D depths.

To verify the controllers’ robustness, the 6 simulations
have been repeated with a random calibration error of either
+10% or —10% on each of the camera parameters: fx, fy,
0. For the uniform depth controllers (IJPU and 1JCU), we
have also included a random calibration error of +10% or
—10% on Z, simulating imprecise tuning of this parameter.
For the coarsely calibrated simulations, the replayed paths
are represented by the dashed curves in Fig. 2, while the
relevant metrics, and the evolution of w and ¢; during the
seventh step are shown respectively in Table II, and Fig. 3
(right). For AIJCA, which is independent from the camera
parameters, the results are identical to those of the calibrated
case. Fig. 2 shows that the robot is able to successfully
follow the path in all 6 cases, although path tracking is
obviously less precise than in the calibrated camera case.
Again, the 4 image jacobian controllers that utilize feature
depth, outperform RH (where camera parameters are crucial
for control) and AIJCA.

To evaluate the effect of the choice of the parameter z used
by the two uniform depth controllers, we have repeated the
calibrated camera simulations by varying the value of z for
a fixed gain A. Since in our workspace the feature points
are very sparse (with average depth 1.9 m, and standard
deviation 1.5 m), the uniform depth assumption is quite
strong. Nevertheless, all the simulations that we have run
using Z € [0.8,500] m were successful, and provided good
performances: average €; < 3.5, n > 80 and position error
< 25 cm. In fact, for Z — oo, both IJPU and IJCU rely
uniquely on image features, since Ls, — 0, and Lg,

controller | RH | IJP | IJPU | IIC | IICU | AIJCA controller | RH | IJP | IJPU | IIC | IICU | AIJCA
average €; w.r.t. I; (pixels) 2.9 1.9 2.4 2.2 2.6 3.1 average €; w.r.t. I; (pixels) 3.5 2.7 2.7 2.3 2.5 3.1
average position error (cm) 14 4 5 4 6 21 average position error (cm) 19 7 7 5 9 21
average m 77 94 92 93 92 73 average m 57 94 96 93 90 73
0 10 20 30

depends only on the image coordinates of the P; points;
hence, in this case, inappropriate tuning of z does not worsen
the controllers’ performance. On the other hand, for z < 0.8
m, the simulations fail, due to the large modeling error in the
choice of z, which should be closer to the average value 1.9
m. Therefore, the simulations show that IJPU and IJCU are
robust to large z modeling errors, and that overestimating z
is preferable.

To assess the convergence domain, in a fourth series of
simulations, the 6 controllers have been tested starting from
an initial configuration ’distant’ from the teaching phase
initial configuration. The distance is evaluated by considering
the ratio p obtained by dividing the initial image error €;
(with respect to 1) in the presence of initial pose error, by
the initial €; in the ideal case (i.e., when replay starts at
the teaching initial configuration). For each controller, we
assess the convergence domain by verifying the maximum p
tolerated. For IJP and IJC, a maximum p of 4.1 is tolerated
(i.e., these controllers converge from an initial view with
€1 4.1 times larger than the initial teaching view). For
IJPU and IUCU, p = 2.6 is tolerated; for AIJCA and RH,
respectively p = 2.1 and p = 1.9. Clearly, a complete
stability analysis would be required to precisely assess the
convergence domain. Nevertheless, these simulation results
are useful to confirm the properties of the 6 controllers, and
show that IJP and IJC can converge even in the presence of
a large initial error.

After the simulation results, we ported the navigation
framework on the real MagellanPro for further validation.
Since the image jacobian points and centroid controllers have
behaved similarly in Webots, we have not tested the centroid
controllers IJC and IJCU on the real robot. A taught path
of approximately 2.0 m, composed of N = 4 reference
images, has been replayed using the other 4 controllers,
with 7. = 5. Since the robustness of the image processing
algorithms is not crucial in this work, the environment was
lightly structured, by adding artificial visual textures. With
RH, the experiment failed after having reached image /5. The
reason is the large position error with respect to the taught
path, which causes feature point loss. The replayed paths, are
shown, along with the taught path (white) in Fig. 4. Values of
the main metrics are reported in Table III, and the evolution
of w and ¢; while the robot approaches I; are shown in Fig. 5.
The experiments confirm the controllers’ characteristics seen
in Webots. Indeed, both the attempt of accomplishing an
image-based task by using merely 3D features (RH), and that
of tracking accurately the 3D path by using merely image
features (AIJCA) are unfruitful, while the two complete
image jacobian controllers provide the best performances
both in the image and in the 3D state space. Again, IJP,
which utilizes computed depths, outperforms IJPU, which
utilizes an approximation of the depths. This result is even



RH control

Fig. 4. Replaying a taught path (white) using controllers: RH (grey),
IJP (red), IJPU (orange), and AIJCA (green). Robot key positions during
navigation are also shown: initial, intermediate and, for the 3 successful
controllers, final positions.

more evident in a real environment than in simulations. Fig. 4
also confirms that in all cases, the predominant component
of the position error is in the longitudinal direction (i.e.,
in the z direction), as outlined in the simulations. This is
not a surprise, since it is well known that for nonholonomic
systems, set-point regulation (which cannot be achieved via
smooth time-invariant feedback) is more difficult to achieve
than trajectory tracking. Besides, the importance of the
longitudinal position error is due to the utilization of scale-
dependent Harris points, which are hard to track when the
motion in the optical axis direction is important. However,
since the object of this study is the control, rather than the
sensing technique, this is not crucial: using scale-invariant
features will improve navigation, without modifying the
controllers’ characteristics.

VII. CONCLUSIONS AND FUTURE WORK

We have compared 6 appearance-based controllers for
nonholonomic navigation from a visual memory. The simula-
tions and experiments have shown that the 4 complete image
jacobian controllers, which combine both image data and
feature depth, outperform the 2 controllers which utilize only
3D data, or only image data. Besides, although 3 controllers

TABLE III
COMPARING FOUR CONTROLLERS ON THE REAL ROBOT
controller | RHY | IJP | JPU | ALICA
average ¢; w.r.t. I; (pixels) | 4.2 3.0 3.8 4.5
average position error (cm)? 40 30 33 44
average n 42 63 57 32

“Since RH failed after I, these are averaged over 2 replay steps.

bEstimated from the videos of the experiments.
0 5 10 15

0+ . : —
0,08 0 5 10 15

Fig. 5. Evolution of w (left, in rad/s) and ¢ (right, in pixels) while the robot
moves towards I; using controllers: RH (grey), IJP (red), IJPU (orange),
and AIJCA (green).

necessitate 3D reconstruction, for the image jacobian con-
trollers (IJP and 1IJC), a large 3D reconstruction error (e.g.,
due to coarse camera calibration) can be allowed without
jeopardizing performance. Indeed, in the IJP and IJC experi-
ments, as opposed to the RH experiments, 3D reconstruction
performed on-line by using only pairs of subsequent images
gave excellent results. Moreover, since 3D reconstruction
introduces computational delay at run time, and increases
sensitivity to image noise, a valid alternative is to use the
uniform depth controllers IJPU and IJCU. We hope that the
results of this study can be useful for the researchers working
on similar visual navigation frameworks worldwide. Future
work will be devoted to taking into account environment
modifications between the teaching and replaying phases.
We also plan to implement and integrate obstacle avoidance,
by considering cases where the robot must deviate from the
taught path in order to avoid an obstacle, while maintaining
localization accuracy.
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Abstract—In this paper, we present a generic framework for Using visual sensors, appearance-based or “visual memory-
urban vehicle navigation using a topological map. This maps pased” navigation approaches are emerging. The main idea
built by taking into account the non-holonomic behaviour of the is to represent the mobile robot environment with a bounded

vehicle. After a localization step, a sensory route is exti@ed to . . . .
reach a goal. This route is followed using a sensor-based dool quantity of images gathered in a database (visual memory).

strategy, based on the vehicle model and computed from the FOr e€xample, [2] proposes to use a sequence of images
state extracted from the current and the desired sensory imges. recorded during a human teleoperated motion, and called
In that aim, a generic model is proposed for visual sensors. \View-Sequenced Route Reference. Such a strategy is called
Experiments with an urban electn_c vehlcle_ navigating in an “mapless” (refer to [3]). Indeed, any notion of map nor
outdoor environment have been carried out with a fisheye cama . . )
using a single camera and natural landmarks. A navigation ang topology of the (_enVIronment appears, nelther to .bund the
a 1700-meter-long trajectory validates our approach. reference set of images, nor for the automatic guidance of
Index Terms—Urban vehicle navigation, topological map, the mobile robot. Similar approaches have been proposed for
generic camera model, autonomous navigation, non-holondm yrban vehicles in [4]. In practise, a topological orgarizat
mobile vehicle, real-time application decreases the computational cost and is more intuitive.
In this paper, we present a generic framework for urban Vehic
navigation using a topological map. This topological map
Saturation of vehicles traffic in large cities is a majodirectly takes into account the control constraints duritsg
concern. Improvements can be gained from the developméntlding (refer to Section II). Before the beginning of the
of alternative public transportation systems. In order ®etm motion the localization of the robotic system is performed.
public expectation, such systems should be very flexible, @iven an image of one of the paths as a target, the vehicle
order to be suitable answer to many different individualdsge navigation mission is defined as a concatenation of path
and as nuisance free as possible (with respect to polluti@ubsets, called sensory route. A navigation task then stsrigi
noise, urban scenery, ...). Individual vehicles, avadall autonomously executing this route. The path-followingtooin
a car-sharing concept, meet clearly both requirementsy THaw adapted to the nhonholonomic constraints of the vehgle i
appear to be very suitable in specific areas where the public first defined (Section IlI-B). This control guides the vehicl
mand is properly structured, as in airport terminals, attoa along the reference route without explicitly planning any
resorts, university campus, or inner-cities pedestrianego trajectory. This step requires also a model of the sensor to
In order to spread such a transportation system, automat@npute the state needed by the control law. In the case of
navigation of those vehicles has to be addressed: passeng&ual sensors, we propose a generic model valid for a large
could then move from any point to any other point at theset of cameras (including perspective, catadioptric, Sphle
convenience in an automatic way, and vehicles could laed fisheye cameras). Those elements are presented inrSectio
brought back autonomously to stations for refilling and esuslll-C. Experiments have been carried out with an electrical
Automatic navigation is generally divided in four steps : 10irban vehicle, navigating in outdoor environment along a
map building, 2) localisation onto the map, 3) path plannint00-meter-long trajectory. Results are presented in dke |
and 4) control to actually achieve the navigation task. Mar8§ection.
works deal with the problems of fuzzing steps 1) and 2)
on a single stage (Simultaneous Localization And Mapping;
SLAM). Unfortunately, even if computers are more and more |I. TOPOLOGICAL MAP WITH CONTROL CONSTRAINTS
powerfull, those strategies are restricted to small emvirents
since the computational cost highly increases with the rermb In the sequel, we define an images the representation of
of features integrated onto the map. An alternative satytiothe environment given by an embedded sensor. This sensor is
suitable for large scale environment, consists on usingsapposed to be rigidly fixed to the vehicle. The environment
Geographical Information System (GIS) as proposed in [1]is represented by a set of images, topologically organized.

|. INTRODUCTION



Fig. 1: The memory of the robot, composed of 5 ordered pths
Each square represents an image of the memory. Fig. 2: A sensory route, from the current and goal locatianstt{e
sensory memory) of the robot.

A. Representation of the environment

Let consider a sensory path® composed oh key sensory
images:

along a path performed betweBgi; andR# ;1 and which are
sufficient to compute the full control law.

WP = {Iip|i ={1,2,...,n}} This Hypothesis 2.2 has three effects. Firstly, it limite get
. . _ of possible sensors. In fact, some sensors may not provide
SUCh. a path IS a directed graph composed of images SEﬁ'ough information to compute the control law. Secondly, fo
cessively acquired. In practise, su.ch a path can re_m_ese%@ same reason, the position of the sensor is important as
street between two crossroads. This representation ifigdst it must provide the needed information. Finally, during the

beca_use, when following the given path it is nc_>t necessaryégquisition of a sensory path, this hypothesis constrdies t
take into account the other elements of the envwonmerinsPaE oice of the key images
are then linked. The choice of the key images and the paffi, yer o connect two sensory paths, the terminal extsemit

linking is explained in Section II-C. The environment is $hu0¥ one of them and the initial extremity of the other one must

represented by a topological map which is a multigraph Be constrained as two consecutive key images of a sensory
sensory paths (refer to Fig. 1). path

B. Paths acquisition
. . ) D. Sensory route

The learning stage relies on the human experience. The user ) o
guides the vehicle along one or several paths of its workspac A Sensory route desc_rlbes the vehicle’s mission in the senso
During this stage, the motions are assumed to be limited $82c€- Given two key images of the sensory memirgnd
those of a car-like vehicle, which only goes forward. Imagels: Corresponding respectively to the current and goal looati
are acquired by the embedded sensor and then, a selecBbi€ robot, a sensory routg is a set of key images which
process occurs in order to keep only some images callégScribes a path fromt to Iy (refer to Fig.2).
“key images”. As noticed in [2], the number of key imagesThe sensory route describes a set of consecutive states that

of a visual path is directly linked to the human-guided paﬁlpe sensor has to reach in order that the robot joins the goal

complexity. configuration from the initial one. The robot motions are
. . . controlled along the sensory route using the data provided
C. Control constraints during map building by the embedded sensor. In that aim, the sensor has to be

For control purpose (refer to Section Ill), the authorizetnodelled as well as the vehicle. A control law is then designe
motions are assumed to be limited to those of a car-likd computable by the state given by the sensor's relative
vehicle, which only goes forward. The following Hypothesighformation. The next section deals with those issues.

2.1 formalizes these constraints.
) ) 1. M ODELLING AND CONTROL
Hypothesis 2.1:Given two frame*F and RF .1, respec-

tively associated to the vehicle when two successive ke¥Whe” starting the autonomous navigation task, the output
images] and f.1 of a sensory path¥ were acquired, there © the chf’;\_llza_non step pr0y|des the closest imalgeto the
exists an admissible path from R% to R#,, for a car-like current initial imagel. A visual routeW connectingl; to

vehicle whose turn radius is bounded, and which only movi 9oal image is then extracted from the visual memory. As
forward. previously explained, the sensory route is composed of afset

key images. The next step is to automatically follow thisteou

Moreover, because the controller is sensor-based, the b, qjny 5 sensor-based technique. The principle is presémted
controllable fromf to ;1 only if the hereunder HypotheS|sFig_ 3

2.2 is respected. To design the controller, described in the sequel, the key

Hypothesis 2.2:Two successive key sensory imagesand images of the reference route are considered as consecutive
L1 contain a sef} of matched features, which can be trackedheckpoints to reach in the sensor space. The control proble



Current Image Desired Image
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SENSOR SPACE

Model of the sensor

Fig. 4: Images’]; and i1 are two consecutive key images of the
visual routeW. [; is the current imagd. is the path to follow.

ROBOT SPACE

respect to that path, rather than with respect to an absolute
frame. To meet this objective, the following notations are
introduced (see Figure 4).

Model of the robot

Fig. 3: Route following process with a visual sensor. _ )
« Oc is the center of the vehicle rear axle,

o« M is the point of which is the closest td¢. This

is formulated as a path following to guide the nonholonomic  point is assumed to be unique which is realistic when the
vehicle along the sensory route. vehicle remains close fror.
« sis the curvilinear coordinate of poim/ alongl and

c(s) denotes the curvature 6f at that point.

1) Control objective: Let I, and ;1 be two consecu- . yand6 are respectively the lateral and angular deviation
tive key images of a given route to follow ang be the of the vehicle with respect to reference péth
current image. Let us not¢ = (O, X;,Y,Z;i) and %1 = « dis the virtual front wheel steering angle
(Giy1,Xi41,Yi11,Ziy1) the frames attached to the vehicle . V is the linear velocity along the axM. of %
when [ and fi;1 were stored andfc = (Oc,Xc,Ye,Zc) @ o | is the vehicle wheelbase.
frame attached to the vehicle in its current location. Fegdir
illustrates this setup. The origi@. of %; is on the center rear
axle of a car-like vehicle, which moves on a perfect grou
plane. The hand-eye parameteits( the rigid transformation considered as a parameter, the only control variable dtaila
betweenf; and the frame attached to the camera) are suppo%gd

to be known. According to Hypothesis 2.2, the state of a set 85 r?ctﬂlaexebg?jtri?élgvglng\llvlr:i?i'nTht?]z;/te\t]éﬁl)iilt(ln\?g?ct)lrcs r;to d(ce)lint
features?; is known in the imaged; and i 1. The state ofR y 9 y P

. . . . . Oc and at center of the front wheel are directed along wheel
is also assumed available Ip. The task to achieve is to drive . . . :

. : . planes and that the vehicle motion is, at each instant, daota
the state ofZ from its current value to its value ifi.1. Let

us notel” a path from#; to %1. The control strategy c:onsistsflorO(lrjenfillra,?olr[ISS]t)a_1 ntaneous rotation center. Such calcusaltiai
in guiding I to 11 by regulating asymptotically the axh. '
on I'. The control objective is achieved ¥ is regulated to

A. Model and assumptions

Vehicle configuration can be described without ambiguity by
r@e state vectofs , y, 0): the two first variables provide point
c location and the last one the vehicle heading. Siicis

I before the origin off. reaches the origin off, 1. g:\/ﬂ
2) Vehicle Modelling:Our experimental vehicle is devoted 1-c(s)y
to urban transportation, i.e. it moves on asphalt even gisah y=Vsinf (1)
rather slow speeds. Therefore, it appears quite naturalyo r . tand  c(s)cosd
on a kinematic model, and to assume pure rolling and non 6=V (T_m)

slipping at wheel-ground contact. In such cases, the wehicl

modelling is commonly achieved for instance relying on the _ . 1 . )
Ackermann’s model, also hamed the bicycle model: the t§0de! (1) is clearly singular whep= e i.e.when pointOc
front wheels located at the mid-distance between actual fras superposed with the path curvature center at abscissa
wheels and actual rear wheels. As seen previously, our@ontdowever, this configuration is never encountered in prattic
problem has as objective that the vehicle follows a refezensituations: on one hand, the path curvature is small and®n th
path ', we propose to describe here, its configuration witbther, the vehicle is expected to remain closé to



B. Control Design projection model consists on a projection onto a virtuatanyi
The control objective is to ensure the convergencey of SPhere, followed by a perspective projection onto an image
and 6 toward 0 before the origin off. reaches the origin Plane [8]. This virtual unitary sphere is centered in the
of %.1. The vehicle model (1) is clearly nonlinear. HoweveiRrincipal effective view point and the image plane is ateth
it has been established in [6] that mobile robot models ci the perspective camera. _
generally be converted in an exact way into almost linekft Jc and m be the frames attached to the conventional
models, named chained forms. This property offers two vefgMmera and to the unitary sphere respectively. In the sequel
attractive features: on one hand, path following contrel¢an We suppose thafc and 7m are related by a simple translation
be designed and tuned according to celebrated Linear Sys@find theZ-axis (%c and #m have the same orientationThe
Theory, while controlling nevertheless the actual nondmne©rigins € and M of %. and #m will be termed optical center
vehicle model. Control law convergence and performanaes &nd Principal projection center respectively. The optziter
then guaranteed whatever the vehicle initial configuration C has coordinatef® 0 —&]T with respect toffy and the image
On the other hand, chained form enables to specify, in a Vé}gane is orthogonal to th#-axis and it is located at a distance
natural way, control law in term of distance covered by thé = fe from C. o _ _
vehicle, rather than in term of time. Vehicle spacial trajeies L€t X be a 3D point with coordinateX = [X'Y Z" with

can then easily be controlled, whatever the vehicle veldsit "€SPect 107m. The point on the normalized image plane
7] is of homogeneous coordinates= [x' 1]T = f(X) (where

Conversio_n of the vehicle model (1) into chained form=[x yT):
can be achieved thanks to the following state and control
transformation: X Y T

os y 8)2[s y (1-c(sytand) | @) x=1X) &Z+&p  &Z+Ep

The parametegs allows to integrate the spherical projection
The expression of the actual control l@can be obtained into this model by settings =0 and¢ = 1. In the general case

®)

by inverting the chained transformation: and in the sequel, this parameter is equal to 1. Note théinget
B § & =0 (andes = 1), the general projection model becomes the
o(y,0) = arctar‘(—l {%2 (%ytane well known pinhole modeE can be seen as a parameter which
—Kg(1—c(s)y)tand (3) allows to control the amount of radial distortions for fiskey
_ _ c(s) cosh lenses.
Koy +e(s)(1—c(s)y) tar?e) * 1*°(S>VD Finally the point of homogeneous coordinatesn the image

The gains(Kg, Kp) impose a settling distance and set thelane is obtained after a plane-to-plane collineatonf the
desired control performances. Consequently, for a givitiain 2D projective point of coordinates
error, the vehicle trajectory will be identical, whatevéret m— Kx ©6)
value ofV is, and even iV is time-varying ¥ # 0). Control =
law performances are therefore velocity independent. In oWhe matrixK can be written a¥ = K,M where the matrix
experiments the path to follow is simply defined as the siifaigk , contains the perspective camera intrinsic parameters, and
line I" = (Oi+1,Yit1) (refer to Figure 4). In this casgs) =0  the diagonal matriM links the frame attached to the unitary
and the control law (3) can be simplified as follows: sphere to the camera frang,. For a central catadioptric

camera, this matrix depends on the shape of the mirror.
3(y,8) = arctan(—I [co$8(—Kqtand —Kpy)])  (4)
. . . T.
The implementation of control law (4) requires the on-line LetX be a 3D point with coordinateég = [X: Yo Z¢]" inthe

x Y . T -
estimation of the lateral deviatignand the angular deviation /"""t framef; andX* =[Xi11¥+1Z11]  in the framefi, 1.

0 of F. with respecttd . In the next Section, we describe hovJ‘et Xm andXp, be the coordinates of those points, projected
! . -{H’IIO the unit sphere (refer to Fig. 5). LBt (respectivelyt)
a camera under the generic projection model (conventionﬁ*ﬁ?resem the rotational matrix (resp. the translatiomator)

catadioptric and fisheye cameras) are exploited to enablgeéwein Fhﬁ (l:urren(; eImSh the Qesllred framets. ls'”(‘;'a['X to the
partial Euclidean reconstruction from whi¢ 6) are derived. case of pinhole model, the epipoiar geometry feads to-

T *T _
C. State estimation from a visual sensor X' EXm™ =0 @)

Different sensors are suitable for our application. Thehere E = R]t], is the essential matrix [9]. The essential
method consists on two steps: 1/ sensor modeling, 2/ eidractmatrix E between two images is estimated using five couples
of the state of the robot in the sensor space. In the sequalmatched points as proposed in [10] if the camera calibnati
visual cameras are used to extract the state required by thmeatrix K) is known. Outliers are rejected using a random
control law but our framework is not limited to those sensorsample consensus (RANSAC) algorithm. From the essential
We consider a camera modeled by the generic projectioratrix, the camera motion parameters (that is the rotaon
on the sphere and the image of points features. The unifod the translation up to a scale) can be determined. Finally,



Fig. 5: Geometry of two views.
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Robosoft Company. Currently, RobuCab serves as experimen-
Fig. 6: Architecture of our software for visual navigatioo\8N tal testbed in several French laboratories. The 4 DC moters a
powered by lead-acid batteries, providing 2 hours autonomy
Vision and guidance algorithms are implemente€in” lan-
the estimation of the input of the control law (3)e the guage on a laptop using RTAI-Linux OS with a 2GHz Centrino
angular deviatior® and the lateral deviatioy, are computed processor. The Fujinon fisheye lens, mounted onto a Marlin

Fig. 8: Large-scale environment: large loop

Robot Controller

1

straightforwardly fromR andt. F131B camera, has a field-of-view of 185deg. The image
resolution in the experiments was 80600 pixels. It has been
IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS calibrated using the Matlab toolbox presented in [12]. The

camera, looking forward, is situated at approximately 80cm
from the ground. The parameters of the rigid transformation
We have proposed a software platform called SoViN tgetween the camera and the robot control frames are roughly

efficiently manage visual memory for autonomous vehiclgstimated. Grey level images are acquired at a rate of 15fps.
navigation in large scale environments [11]. An overview of

SoViN is shown in Fig. 6. The software platform is dividedC. Experimentations
into three different modules: a module for processing (ienag 1) Learning stage: The robot has been manually driven

pfF’CeS_Si”Qv compu'Fer vision an_d control); a module for HIVflzllong a 1200 meter-long loop (refer to Fig. 8) at the begignin
(visualization and high-level actions cont_rol) and a medor of July, with a very sunny weather. The fisheye lens camera
data storage and access (low-level functions). For datageo was rigidly fixed at approximately 1 m from the ground, 1 m

our software uses a conventional database software. HMI all%he left of the middle of the car. The camera was looking
processing modules communicate with the database thank?n“?he direction of the vehicle. It has been calibrated using

this onv—level modu!e. ) ) . the unified model on the sphere. An importation step occurred

Du,r|ng both localization and path following stages, key imsn resyit to 35 edges after having cut some edges in function
ages’ elements (image points with their descriptors, magch o he context (straight lines, huge turns). A longitudinal
between successive image points ...) are loaded on-lime fr9elocity has been given for each edge (0.4 m/s for huge
the database. turns, 0.8 m/s in small turns, 1 m/s for straight parts). The
DGPS data has also been acquired. For each node, the position
given by interpolation of the DGPS data have been saved

Our experimental vehicle is depicted in Figure 7. It is atoo (interpolation in function of the time when data where
urban electric vehicle, named RobuCab, manufactured by thequired).

A. Map management

B. Experimental set-up
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3) Autonomous navigationThe experiment lasts 26 min- [g]
utes for a path of 1700 meters (refer to Fig. 9) which resolts t
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Errors in the images (pixels) versus time (s).

trajectories are similar. The lateral error measured byRIHi€-
GPS has a mean of 23 cm and a standard deviation of around
30 cm.

V. CONCLUSION

We have presented a complete framework for autonomous
navigation which enables a vehicle to follow a sensory path
obtained during a learning stage. The robot environment is
modeled as a topological map from which a sensory route
connecting the initial and goal images can be extracted. The
robotic vehicle can then be driven along the route thanks to
a sensor based control law which takes into account non-
holonomic constraints. Furthermore, the state of the rabot
estimated using a generic camera model valid for a persgecti
catadioptric as well as a large class of fisheye cameras. Our
approach has been validated on an urban vehicle navigating

along a long trajectory. At our knowledge, it reports it i th
first time that a 1700-meter-long trajectory is done using a

single camera and natural landmarks.
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Use a Single Camera for Simultaneous Localization And Mappig with
Mobile Object Tracking in dynamic environments

Davide Migliore, Roberto Rigamonti, Daniele Marzorati, fté@ Matteucci, Domenico G. Sorrenti

Abstract— The aim of this work is to demonstrate that itis to solve the problem of Simultaneous Localization And
possible to use a single camera to solve the problem of Simul- Mapping and Moving Objects Tracking (SLAMMOT), that
taneous Localization And Mapping in dynamic environments .50 pbe considered the intersection between SLAM and

obtaining, at the same time, the estimation of the moving olgicts . . . . . .
trajectories. Specifically, we show that it is possible to ggnent moving object fracking. The authors investigate theoaijic

the features belonging to independently moving objects fim a  the SLAMMOT problem, demonstrating that it is possible
moving camera using a MonoSLAM algorithm together with  to solve it maintaining separate posteriors for statiorzargt
a Bearing-Only Tracker. The idea is to exchange between two moving objects, and validating the algorithm empirically b

parallel working systems, i.e. the SLAM filter and the bearirg-  5n41y7ing data acquired with a laser rangefinder in realrurba
only tracker, information about the pose of the camera and environment

the motion of the feature to improve the robustness of the 8 . .
SLAM algorithm and maintain a consistent estimation of both A different approach was presented by Bibby and Reid [8],
the pose, the map, and the features trajectories. Experimgain  introducing a technique called SLAMIDE, to combine the
simulated and real environments substantiate that the propsed  |east-squares formulation of SLAM and sliding window opti-
technique is able to maintain consistent estimations in a & jation, together with a generalized expectation maximiz
and robust way suitable for a real-time application, even in fi thod. Their idea is 1o i te both d . d
situations where classical MonoSLAM algorithms are deemed |on_me od. . e'r_' eaisto InCO_rporf_i € 0_ ynam!c_an
to fail. stationary objects into SLAM estimation, without splitin
the problem in two and considering the possibility of a

. INTRODUCTION reversible data association. Simulated experiments demon

The key prerequisite for a complete autonomous navigggrated the.capabilities_of the proposed solution, which is
tion system is a deep understanding of the surrounding Worﬁple to estimate, cons_lstently, the_pose a_nd the map also
as perceived by robot sensors. In Simultaneous Localizati(lf{; presence of dynamic feaiures in a unique framew_ork.
And Mapping (SLAM) literature it is possible to find many owever, as already demonstrated by Wang [7], the idea
solutions using different kind of sensors (i.e. lasers, e, of including all the features in the SLAM state reduces the

sonars) [1], but most of these algorithms assume a Staﬁ@rformance of the filter in terms of speed, highlighting the

environment or filter out the dynamic elements perceived iHrincip_aI drawback of SLAMIDE: the complexity.
the scene [2]. A different approach was proposed by Ess et al. [9],

Although the proposed approaches are effective, they apho presented a mobile system based on a stereo camera

often expensive or complex and not usable for real applicé{\fit;]d;r mﬁgraées dC(t)nt't?ur?utS \gsuill oddomter;[na C(i)r:npu.tfatlon
tions. For this reason, in this paper, we focus on solutio acking-by-detection, 1o track pedesirians in syte

based on a single camera, a small and inexpensive dev ggauent occl_usiqns and_ egomotion_ of the camera Tig- This
that allows to have rich information about the environmen ethod obtains interesting results in very challenging sce

perceived. In the last years we assisted the proliferapn [narios, put it is_not a 93’?9”° SOIUti.On. since it conside_ﬂs on
of systems based on a single camera that are able to sim ﬁdgstrlan/vehlcle_trackmg, gnd It 1s not computayqna_ll
taneously localize themselves in real-time [4], buildifg 3 ga3|ble fora rObO.t'CS appllcat|on._ Moreover, no map 'éftpu'
maps of huge environments [5] and placing virtual elementince the system is based on a visual odometry, thus it is not

in the scene [6]. However, as their precursors, they assurﬁgsfl'bletto_hatve enlough |nfformat|ontabout the enr\]/_lr?nment
again a static environment. o allow trajectory planning for an autonomous vehicle.

In this paper we want to demonstrate that it is possible to .An a.pproach requiring less compl_JtatlonaI resources, but
relax the world motionless hypothesis, proposing a methosciIII using a stereo camera, was introduced by Sola et
' . [10], who described a system based on a framework called

to estimate online the 6 DoF of a camera and the 3D ma@z .
ICamSLAM, that combines the advantages of the monoc-

in presence of generic dynamic objects. . . -
. o ular reconstruction with the advantages of stereo visian. |
A first remarkable work on this direction was done by,

: is proposal, Sola tries to solve the SLAMMOT problem
Wang et al. [7], who proposed a mathematical frameworltgstimating, at the same time, the position of the robot, the

D. Marzorati and D. G. Sorrenti are with Universita di Mi@n S_tatic map and the trajectory of the moving ObjeCt.S. In par-
Bicocca, Building U14, v.le Sarca 336, 20126, Milano, Italgr zorati,  ticular, Sola proposes to separate the SLAM algorithm from
sorrenti}@isco.unimb.it . _ _ the tracking one, adopting a camera-centric representatio

M. Matteucci, R. Rigamonti and D. Migliore are with Politec- . . . .

of the world and using a different filter for each moving

nico di Milano, via Ponzio 34/5, 20133, Milano, ltglyatteucci, ) g™ h ) ) i
mgliore}@let.polim.it object, dropping in this way objects crosscorrelationshwit
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dynamic, avoiding in this way inconsistencies in the SLAM
process.
The system we propose relies on two main assumptions.

Since we do not have any odometry measurement (i.e., we
do not have an IMU), we need an absolute reference to
7 understand how the camera and the feature are moving.
Therefore, before perceiving dynamic features, we il
the SLAM filter with a set of static features in known position
(to estimate the scale), obtaining a first estimation of the
camera pose w.r.t. the world frame. Moreover, to ensure con-
sistent estimation and correct features classificationndur
the whole execution of this system, it is important to have in
the image and in the SLAM filter state enough static features
to maintain an estimation of the absolute reference frame.
Under these assumptions, that could be easily relaxed
by the use of an Inertial Measurement Unit (IMU), new
features are initialized in the Shadow filter only. To avdid t
Fig. 1. Schema of the proposed SLAMBOT system. On the left aeh  corryption of the SLAM filter, these features are retaineit in
the SLAM filter that, as explained in [11], estimates the campose and the S . L .
position of the static elements in the scene by means of tHe fikdiction, until it is not possible to mark them as static, in which case
data association and update steps. The last pose estimatére ISLAM  they are passed to the SLAM filter, or dynamic, in which
filter is then used by the the Shadow filter to identify dynaife&tures and ¢gge they are kept in the Shadow filter and tracked along
estimate their trajectories. Once a feature is classifiesta®, it is added .
to the SLAM filter. their movements.
The MonoSLAM algorithm used in this work is the same
proposed by Marzorati et al. [11], thus we avoid to explain
the robot’s pose. here how this algorithm works, focusing, instead, on the
In this paper, starting from the Sola idea, a viable sofutiodescription of the Shadow Filter side of the system and its
to the online monocular SLAM with moving objects trackinginteraction with the SLAM filter. However, it is simple to
is proposed. The goal of our method is to obtain a consistefgtice that the method proposed is independent of the SLAM
map of the static environment, discriminating betweericstatalgorithm used, since the only information exchanged age th
and dynamic objects and being able at the meantime €&mera pose and the feature positions.

roxim he traj ri f the moving f res.
approximate the trajectories of the moving features IIl. DYNAMIC FEATURES TRACKING

As explained before, we propose to use a Bearing Only
Tracker, the “Shadow Filter”, to estimate and classify then

Simultaneous estimation of pose and map based on th&ytures perceived. Once we know the camera pose from the
analysis of images perceived by a moving observer is n@jj AM filter, to estimate the position and the velocity of a

contains dynamic elements that might affect the consigtengnaracterized by the following state:

of the estimates, leading to failure in the traditional SLAM

algorithm. In the monocular case, this hindrance is wordene

by the reconstruction procedure that is often unable toctlete

the dynamic behavior of a feature because of the high initial c T

uncertainty associated with it [4]. wherex* = (vy,yy, 2r, wy)" are the feature homogeneous
A possible solution was proposed by Wang et al. [7], undeoordinates at timé w.r.t. the camera framé’, andvy: =

the assumption that moving objects do not carry informatiof?’s.  vs, vs.)" is its velocity w.r.t. the feature framej.

about the map and the robot pose: he did not considerAt each step we have to maintain the reference of the

them as references for localization because of their imttereShadow filter always w.r.t. the camera frame, thus we need

instability [10]. Exploiting this insight, we decided tolgp !0 roto-translate the feature position and rotate the vigloc

the estimation process over two filters reciprocally relatevector before the update step. Assuming constant velocity,

(see Figure 1): the SLAM filter based on monocular camefé€e can write the motion equation as:

(MonoSLAM), that uses static features to estimate map and l Cri1 ] l Crs1

Data Association

/ \

*
/ !

Add Feature

MonoSLAM Shadow Filter

[I. MONOSLAM WITH MOVING OBJECTS

xCk
xkz[ Ey } 1)

VFk

Ch Fy
camera pose, and the tracker, named in this paper “Shadow, ,, = ?};fl Xo, OXp @ (ka+1At)

Filter”, that, by knowing the camera pose, deals with the Fri1
moving features in the environment. The role of the Shadow  Char _ )

Filter is twofold: on one side, it tracks the behavior of theVhere: x¢, ™" is the roto-translation between the camera
moving features, on the other, it retains the new featurd®sesCy and Cy11, x5 is the feature position w.rt. the

detected by the camera until it can tag them as static 6rmera pose at time, vi*  is the velocity of the feature



at time k + 1 w.r.t. the feature framéd, v§: the velocity camera poses. If these intersections are not the same during
of the feature at time: w.r.t. the feature frame, x?m the camera motion or it does not exist, then the feature can

is the rotation from the frame reference at tirheto the be classified as dynamic.

frame reference at timé - 1 and @ is the transformation However, in real world, where the moving sensor returns
composition operator. Notice that the state of the featuténcertain bearing-only measurements, the previous task is
is somehow represented in a mixed frame of reference ot trivial to solve, since the presence of the uncertainty
simplify the motion model: its position is in the cameracould affect all the geometric reasoning. To take into aatou
frame, while its velocity is in the feature frame (i.e., thethe uncertainty associated with each measurement and each

camera reference translated in the feature point). estimate, we need to introduce a probabilistic framewoak th
The measurement equation in homogeneous coordina@$Wws us to check the relationships between the viewing ray
can be written as: in an uncertain world: Uncertain Projective Geometry [15].
Iy psing thig framework we can_describe, combing, and
hy, = h;: _ ngk, 3) gstlmate various types of _geo_metrlc e_Iements;_ (3D points, 3_D
hky k lines and 3D planes) maintaing the information about their
? uncertainty. By the use of Uncertain Projective Geometry,
whereM is the calibration matrix: these elements are represented using homogeneous vectors
feo 0 cey (using the Pluicker coordinates for lines) with their cdsmace
M = 0 fe, ccy |, (4) matrices, and simple bilinear expressions to represent joi
0 0 1 and intersection operators are used. This result can be

tained by using two construction matric&3(-) (for 3D
es) andII(-) (for 3D points and 3D planes).
To join two 3D pointsX = (X1,Yy, 21, Wi)T, Y =
hy = { hie, } [ P, [Tk } i (5) (Xo,Ys, Zo,Wo)T into a 3D line L expressed in Pliicker
hy, Bk, [ k. coordinates [15], we can write:
For the experiments shown in this paper we used a camera
with a wide-angle lens, to improve the performance of single
camera SLAM [12], thus the measurement equation shouftking
be modified accordingly to take into account the radial
distortion, as exposed in [11]. Finally, to estimate itmely
the current positiohof the feature, we just need to compute 0 Wi 0 -
the Jacobian of these models and apply the classical steps Qi(X) — IX NIY - 0 0 Wi -z
the Extedend Kalman Filter. oY 0 -z N 0
This approach allows us to have an approximated estima- Z 0 —X 0
tion of the feature pose and, in this way, make inference X 0 0

and the pixel coordinates on the image plane can be simq
obtained as !

L=XAY =IX)Y, (6)

Wi 0 0 -Xi

. @)
about its movements. Again we can join a 3D poinK = (X1, Y1, Z1, W1)T with
A. Detecting moving features a 3D lineL = (Ly, Lo, L3, Ly, L5, Lg) into a 3D planeA:

To guarantee the correct functioning of the SLAM algo- A=XAL=0(L)X ®)
rithm, we need to classify new features as dynamic or static ’
before using them to estimate the camera pose and the map. 0 Ly —Lo —14
The first time we perceive a feature, we do not know where (L) = OXANOL | =Lz 0 Ly —Ls
it is located in the 3D scene, thus we initialize it with a T9xX Ly —1I4 0 —Lg
huge uncertainty in the depth. In the next frame, once the Ly Ly Lg 0
feature is associated with a measurement and then updated, 9)

its position changes, moving along the projection ray anihese construction matrices are useful tools to derive new
possibly causing the estimate of false motion. For thisaras geometric entities from known ones, e.g. a 3D line from
we can not rely the velocities estimated in the Shadow Filtéwo 3D points, a 3D point from the intersection of two 3D
and we need a more robust classifier. lines, etc.; at the same time, being bilinear equationsethe
Referring to the viewing ray as a straight line and to th@perators directly represent the Jacobian of the trangtorm
position from where the feature was viewed the first timetjion which is used for the uncertainty propagation in the
we can make a geometric reasoning, based on an appro&emstruction process.
that resembles the epipolar constraint. The basic idea is toA new entity z can be estimated from two entitiesand
check continuously the intersections between three vigwiry, with a simple matrix multiplication:

rays belonging to the same feature viewed in three different
z=[f(z,y) =Ulx)y =V(y)z, (10)
INotice that this filter can estimate the trajectories of thavimg points . -
up to a scale factor [13], however it is possible to overcohig drawback where U(x) and V(y) ar_e’ at the same t_lme’ the t_)'l'near
initializing the correct scale in the first frame, as showed1i4]. operators and the Jacobian of thandy entity respectively.



Assuming the entities to be uncertain, the p&irs>,,) and

(y, Xyy), and possibly the covariancés,, betweenz and l
y, are required for computing the error propagation as: ' T
(Z, Zzz) — (11) ‘ Camera

(vem oo (3 5 )| bl )

Ty vy

and in case of independence between x and y we obtain:
(2:822) = (U(@)y, U() Sy, UT (2) + V(1) S0V () - (12)

To check the geometric relationship between two geometric
entities it is then possible to use a statistical test on tke d
tance vectot defined using the previous bilinear equation. In

particular a relation can be assumed to hold if the hypaghesfig. 2. In this image we show the trajectory of the camera (#eg) and
of the feature (in red), simulated to test the capabilitiethe Shadow filter.
Hy:d= U(;p)y = V(y)x =0 (13) Inblue itis possible to see the accuracy of the estimatedipogthe small

image represents the projection of the same scene on the até)pl

cannot be rejected. Notice that the hypotheSis can be

rejected with a significance level of if Ertor estimates for X.Y and Z
101
T=d"Syd>cn=Xi_an (4 L
’ s oF
To perform the test, we need to fix the probabilitythat sf
we rejectH, although it is actually true and this situation 0 100 200 30 400 S0 GO 700 GO0 900 1000
is called Type-I error. The probability is usually a small 02p
number such as% or 5% and it is called significance level of g UL
the test. The critical valuey such thatP(T" > ey |Hp) = « s e
is given by the(1 — «)-quantile of they? distribution. It is B T S S e
crucial to note that a successful hypothesis Tést ¢ does Time

not validate thatf is true, it merely states that there is not

enough evidence to rejeéi,. h s
. . . . . " /M/\/\/
The covariance matrix. of d is given by first order ~" T N

error propagation as 01, 00 20 300 400 500 600 700 800 900 1000

Time

N ‘/U\
v N e TN

~

Error
)

Sag = U(2)Sy, UT (@) + V() Sea VT (1)

In general¥,, may be singular, ifd is an X 1 vector,r  Fig. 3. Consistency test for the Shadow filter. In the plots shew
is is the degree of freedom of the relatidhandr < n. the estimation error (in green) for the, y, » coordinates of the feature

The singularity Causes a problem, as we have to invert UEEPECtey. 1 s peser g fhssnor r e coants e
covariance matrix. But, at least for projective relatiahsan  emains consistent.
be guaranteed that the rank Bfj; is not less than (see
Heuel [15] for more details).
unfeasible for accurate tracking. This drawback is prialtyp
IV. EXPERIMENTAL RESULTS due to consecutive violations of the observability coraig.

In this section we want to test the capabilities of outn fact the displacements between two consecutive steps
system, verifying the result of dynamic classification amel t are so small to cause the partial unobservability of the
consistence of the estimated position and map. Beforegryimomogenous part of the feature and a consequent increase
the algorithm with real data, we verified the consistencef the uncertainty associated to the depth component. This
of the Shadow filter, testing it in a simulated frameworksimple analysis gives us information about the quality and
in which a moving camera was put inside an environmerthe accuracy of the estimates, but also provides an imgortan
where another dynamic element is moving in the scene (s@®sight: the observability condition can be easily viothte
Figure 2 for a reference). At each time the correct camemn online MonoSLAM application.
position is passed to the Shadow filter and the trajectory Although we can not localize accurately the moving
of the feature is estimated. As it is possible to notice fronobject, the consistency of the filter demonstrates the ilid
Figure 3, the estimate remains consistent during the whotd the reasoning based on the uncertainty geometry approach
process. The uncertainty associated to the depth cooedinétotice that the errors is always included in th8c uncer-

(in the case of the experiment this can be identified witkainty interval) and it proves that, taking into account the
the X coordinate) is higher than the uncertainties associategtimate uncertainty, we can robustly classify a feature as
to the other coordinates, making the Shadow filter estimatagatic or dynamic.
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Fig. 4. Static/Dynamic classifier results. In the first rovisipossible to see an example of dynamic (in green), statibl(ie) classification. The features
in the Shadow filter that are waiting for a classification dreveed in red. In the last row we can see a feature erroneoiaggified as moving. This kind
of error is expected since the classification is based on bapitistic test with a threshold ¢f5%.

This statement can be validated by testing the classifiéne resulting map obtained introducing the Shadow filter. It
algorithm on real datasets. In Figure 4 it is possible t@s also possible to see how a traditional SLAM filter, that
see two examples representing both a correct and a wrodges not identify and exclude from estimation the dynamic
classification. We have tested the algorithm using many refdatures, introduces a set of errors that lead to failure. If
datasets and we noticed that, if the feature is correctlye correctly identify the dynamic features, we can avoid
matched, the algorithm always distinguish between movin initialize them inside the SLAM filter, maintaining the
and static features. Sometimes it is possible to have & statame accuracy of a SLAM system operating in a purely-
feature classified as dynamic (see again Figure 4(c) 4(dptatic environment. In Figure 6 it is possible to see the
but it never happened to confuse a moving feature as statiesults obtained using the real dataset. Despite the presen
Albeit the probabilistic test has an expected failure rdte af dynamic features that could affect the SLAM algorithm,
the 5%, this contingency happened rarely in our experimenthe estimated map remains consistent and, when the camera
(see again Figure 4(c) 4(d) for an example) and, since it dopsrceives again the checkerboard, the features are rérethtc
not corrupt the SLAM filter, it can be tolerated. correctly, closing the loop.

Finally we were interested in verifying that our system V. CONCLUSIONS AND FUTURE WORKS

is able to improve the estimates quality when there are In this paper we have proposed a novel solution for the
dynamic features in the environment. For this purpose wgroblem of Simultaneous Localization, Mapping and Moving
set up a simulated 3D environment characterized by featur@bject Tracking, when using a single camera as a sensor.
both static and dynamic. Data association was performd&@ avoid errors in the SLAM estimates, we demonstrated
manually to avoid possible errors due to mismatches antat it is possible to identify online the static and dynamic
to evaluate the quality of the pose and of the estimated mdgatures, using an approach based on the Uncertain Geometry
against a ground truth. In Figure 5 it is possible to see theroposed by Heuel [15], that allows to detect the moving
improvements carried by the use of the Shadow Filter. In thieatures with a simple statistical test. The experimental
first plot (Figure 5(a)) it is possible to see the map resgltinresults confirmed the capabilities of this approach that can
from the use of the classic MonoSLAM algorithm using onlybe used online in real application and, potentially, with
the static features. In Figure 5(b) it is shown the resulisgis any MonoSLAM algorithm with performances that allow
always the classic MonoSLAM, but this time introducingonline execution, since it does not require any particular
the dynamic elements, and in the last image (Figure 5(ciodification of the original SLAM algorithm.
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Abstract— In this paper we present a 6DOF metric
SLAM system for outdoor enviroments using a stereo
camera, mounted next to the rear view mirror, as the
only sensor. By means of SLAM the vehicle motion
trajectory and a sparse map of natural landmarks
are both estimated at the same time. The system
combines both bearing and depth information using
two different types of feature parametrization: inverse
depth and 3D. Through this approach near and far
features can be mapped, providing orientation and
depth information respectively. Natural landmarks
are extracted from the image and are stored as 3D or
inverse depth points, depending on a depth thresh-
old. At the moment each landmark is initialized, the
normal of the patch surface is computed using the
information of the stereo pair. In order to improve
long-term tracking a 2D warping is done considering
the normal vector information of each patch. This
Visual SLAM system is focused on the localization of
a vehicle in outdoor urban environments and can be
fused with other cheap sensors such as GPS, so as to
produce accurate estimations of vehicle’s localization
in a road. Some experimental results under outdoor
environments and conclusions are presented.

I. INTRODUCTION

Real-time Simultaneous Localization and Mapping has
an important key role in robotics. In recent times, SLAM
has captured the attention of computer vision researchers
and the interest of using cameras as sensors has grown
considerably due to mainly three reasons. Cameras are
cheaper than commonly used scan-lasers, they provide
rich visual information about scene elements and are easy
to adapt for wearable systems. According to that, the
range of SLAM based applications has spread to non
typical robotic environments such as augmented reality
[1], non-invasive surgery [2] and vehicle localization [3].

In this work a 6DOF Stereo SLAM system is proposed
in order to develop a robust localization system, using
only a cheap stereo camera mounted next to the rear view
mirror, able to complement a standard GPS sensor for
autonomous vehicle navigation where GPS signal does
not exist or it is not reliable (tunnels, urban areas...). At
the same time, a sparse map of high quality features is
computed. This optimized map contributes to a better
localization estimate and prevents the system from drift-
ing in situations where the vehicle visits some areas that
were previously visited, i.e. loop closing situations. The
main advantages of using a stereo system instead of a
monocular one were described in [4].

The traditional approach in in the literature for solving
the SLAM problem, is using an extended Kalman Filter
(EKF) with the vehicle pose and static landmarks as
the evolving filter state. This EKF approach has some
drawbacks as it is explained in [5]. The main drawback
of the EKF implementation is that the computational
requirement for the filter update increases quadratically
in large-scale maps as a function of the landmarks intro-
duced into the filter O(n?). A typical solution to cope
with this problem is submapping, where the global map
is obtained fusing the information from local submaps
3], [6].

Our system follows a Davison’s SLAM approach [7].
That is, a few high quality features are tracked and
used to compute the position of the camera creating a
sparse map of high quality textured landmarks using an
Extended Kalman Filter (EKF). Paz et al. proposed in
[8] a 6DOF Stereo EKF-SLAM system with stereo in
hand for large indoor and outdoor environments. The
inverse depth parametrization proposed by Civera et
al. [9] for the MonoSLAM approach is adapted to the
StereoSLAM version so as to provide distance and orien-
tation information. Point features are extracted from the
images and are classified as 3D features if the disparity
is enough, or stored as inverse depth features otherwise.
Their Visual SLAM algorithm generates conditionally in-
dependent local maps and finally, the full map is obtained
using the Conditionally Independent Divide and Conquer
algorithm, which allows constant time operation most
of the time [6]. Although results are good considering
large maps in indoor/outdoor environments, the range of
camera movements is limited, since no patch adaptation
is done and only 2D image templates correlations are
carried out in the matching process. By means of an
empirical analysis, they suggest choosing a threshold of
depth 5 m, for switching between inverse depth and 3D
features. Besides, our sequences are more suitable to
show the benefits of an inverse depth parametrization
for far features.

The accuracy of the stereo sensor is limited up to
a certain depth, depending mainly on the baseline of
the sensor. In typical outdoor road vehicles sequences,
is common to have very far landmarks. If we try to
measure the 3D position of a far feature, which is located
beyond the limits of our sensor, the uncertainty in the
measurement will be very high. On the contrary we can



reduce the uncertainty of far features if we just measure
the orientation of the feature.

The two key contributions of our work, are the use of
inverse depth and 3D features for providing both depth
and angular information, and a 2D homography warping
method considering information from both cameras of
the stereo pair. This paper is organized as follows: the
general structure of the system is explained in section
II. In section III we deal with the problem of how to
switch between inverse depth or 3D parametrization.
In The 2D homography warping for patch adaptation
is described in section IV. Finally, some experimental
results are presented in section V. Main conclusions and
future works are discussed in section VI.

II. SYSTEM STRUCTURE

Our system is based on a stereo camera mounted on
a mobile vehicle close to the rear view mirror. Fig. 1
depicts the common type of sequences in outdoor road
vehicle navigation. As it can be observed, some features
are very far with respect to the camera, whereas we can
have some features close to the camera. Both far and
close features are displayed in orange (weak) and red
(dark) respectively in Fig. 1.

Fig. 1. Typical outdoor road navigation sequences

The global state vector X incorporates the information
for the left camera and for the features. The camera state
is composed of its 3D position using cartesian coordi-
nates, the camera orientation in terms of a quaternion,
and the linear and angular speed, which are necessary
for the impulse motion model used for modelling the
camera movement. The motion model that is assumed is
a constant velocity and constant angular velocity model
explained in [7].

Xv [13,1] = (Xcama Gecamy Vcam, wcam)t (1)

Two types of feature parametrization are used pro-
viding orientation and depth information respectively.
Depending on the depth of the feature as described in
section III, features are initialized as inverse depth or
3D and are incorporated to the EKF SLAM algorithm.

X = (Xo,Yi3p-Ynsp, Yiinv - Ym nv)' (2)

Interesting points are extracted from the image using
the Harris corner detector [10] and a subsequent subpixel
refinement. When the camera moves, these features are
tracked over the time to update the filter. In order
to track a feature, image position is predicted in both
cameras. Then, the feature appearance is transformed
using a 2D homography according to section IV, and
a correlation search is performed inside a search area
of high probability which is defined by the uncertain-
ties of the feature and the camera. ZMCC (Zero Mean
Cross Correlation) is used since its robustness against
lighting changes. An intelligent feature management is
implemented, so low-quality features are deleted from the
state vector.

Due to the use of a wide-angle lens, it is necessary
to use a distortion model correcting distorted images.
Unlike other SLAM systems [4], [7] radial and tangential
distortion are corrected using LUT (Look up tables), so
images are corrected previous to processing. Two main
advantages are obtained from using LUTs: firstly, this
method is faster than working with the distorted images
and then correcting the distorted projection coordinates,
and secondly, the matching process is less critical if
undistorted images are used.

A. 3D Features

For 3D features, the feature’s state vector encodes the
information about the 3D position of the feature in the
global map reference system.

Y3D 38,1 = (l'v Y, Z)t (3)
B. Inverse depth Features

For inverse depth features, the feature’s state vector
encodes the information of the 3D optical center pose
from which the feature was first seen X,,;, the orientation
of the ray passing through the image point (angles of
azimuth 6 and elevation ¢) and the inverse of its depth,
p. Fig. 2 depicts the inverse depth point coding:

~0
l ///-’///"‘u‘
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Y . ““hr:RCW[(XORJ*XCM)Jr*'m(H:#j)]
Y1y Ao I
(@ xr_ ' _
x : c
W\“ T w
Xori RCW Xecam
Fig. 2. Inverse depth point coding
t
Yinvy 61 = (Xori, 0, ¢, p) (4)

In Fig. 2, m(0, ¢) is the unitary ray directional vector
from the camera to the feature. This unitary vector is
defined according to eq. 5:



m(0,$) [3,1] = (sin¢cosb, —cos ¢,sin ¢ sin H)t (5)

The angles of azimuth and elevation are defined as

follows: ;
_ —1(%

6 = tan (m) (6)

¢ = tan™! (W) (7)

III. SWITCHING BETWEEN INVERSE DEPTH AND 3D
FEATURES

Harris corners are extracted from the images and
are classified as 3D features or stored as inverse depth
features, depending on a depth threshold. This depth
threshold is empirically set to 30 m. The value of
this threshold is chosen as a compromise between non-
linearity measurements, features uncertainty and the
overhead introduced by the inverse depth parametriza-
tion. After some experimental tests we found the value
of 30 m as a good threshold for our application.

Once the features are predicted in the EKF predic-
tion step, it is necessary to determine if the original
parametrization of the features has to be changed (i.e. if
an inverse depth feature is now below the depth threshold
and should adapt a 3D parametrization or viceversa).
Besides, a constraint is imposed: the feature has to
remain at least m frames (typically 15 frames) in its
new parametrization state before the switching. This is
done in order to avoid unnecessary switchings in case that
the depth estimate is above and below the threshold in
consecutive frames.

When an inverse depth feature is switched to a 3D
parametrization, it is necessary to adapt the feature’s
state and the covariances implied in the filtering process
by means of equations 8 for the feature’s state and 8§,
10 for the covariances. In the same way we can switch
between 3D features to inverse depth, although this is
not a common case in autonomous navigation.

1
Ysp 31 = Xorr+ p -m(0, ¢) (8)

AYap Ysp \'
PY¥so 53] = (6Y1Nv> ‘PYYINV'<8Ymv> ©)

OYinv '
PXYaD [13,3] — PXYINV : ( a}i?])VDV) (10)

IV. 2D HOMOGRAPHY WARPING

When a feature is going to be measured, the estimation
of the left camera position and orientation, which are
obtained both from the SLAM state vector, and the
normal surface patch vector are used for transforming
the initial image template appearance (due to changes
in viewpoint) by warping the initial template using a

2D homography. Our approach is related to the previous
works of [11], [12].

Considering two camera centered coordinate systems,
the transformation between two generic coordinate sys-
tems X; and X5 is defined by:

Xo = R- X4 +T (11)

where R and T are the rotation matrix and the
traslation vector encoding the relative position of the two
coordinate systems. If X7 is a point on the plane defined
by eq. 12:

mia-21+b-y1+c-z1+1=0 (12)

This is a plane which does not pass through the origin,
and n = (a,b, c) is the plane normal. According to this,
the following relationship can be found:

nt-X; = —1 (13)

Using the previous equation, eq. 11 can be expressed
as follows:

X2 = R'Xl—T'TLt'Xl = (R—T'?’lt)'Xl (14)

And therefore, image positions in the two camera
frames are related by the 2D homography:

U2 :C2~(R—T-nt)'C’f1~U1 (15)

Fig. 3 depicts the stereo geometry, and also the prob-
lems of obtaining the plane normal vector and the 2D
homography for warping the initial image template using
information from both cameras.

wia-x,+b-y +c-z, +1=0

v n X,

WZX H%®
X, S
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Fig. 3. Stereo geometry and locally planar surfaces
Eq. 16 denotes the relationship between the left camera
and the right camera coordinate systems:

Ur = Cr- (R*F —TRE .ty . Ccpt UL (16)

The previous equation depends on the rotation matrix
REL and the translation vector T7F between both cam-
eras. The values of these matrixes are known accurately,
since they are estimated in a previous stereo calibration
process. Supposing an affine transformation between left



and right image patches, the affine transformation HZ*
can be expressed as:
HRY =

Cr- (RRF —THL .0t . C? (17)

This affine transformation can be computed easily by
means of 3 correspondences of non collinear points and
with the assumption of locally planar patches. As it can
be observed, eq. 17 depends on the plane normal vector
n. From eq. 17 the product TR - nt can be isolated.

Denoting this product as X, it can be obtained as follows:

X = TR .pt = REE_Cpt HER . Cp (18)

All the parameters of eq. 18 are known, since the affine
transformation H X% has been previously computed, and
the rest of implied matrixes are known from the stereo
calibration process. According to this, a system of 9
equations and 3 unknowns, which are the components
of the plane normal vector, can be found:

Xll J— X21 J— X31

T T h Tk

p— 12 J— 22 J— 32
Ny = 77 ny =7, Ny = 7 (19)

X X Xa:

n, = Tis n, = Tis. n, = TZS

At the moment of a feature initialization, the plane
normal vector is computed in the way it has been
explained. Once this normal vector is estimated, the
2D homography between two different viewpoints can
be determined using the estimation of the current left
camera position and orientation and the left camera
position and orientation: from the feature initialization
viewpoint:

Ucamy = CL‘(RCO—TCO~nt)'C£1'UOR[ (20)

where R€© and TCC are the rotation and translation
matrixes between the current left camera position and
the reference position when the feature was initialized.

V. EXPERIMENTS IN OUTDOOR ENVIRONMENTS

In order to test the system performance, lots of out-
door sequences in urban environment under real traffic
condictions have been tested. In this work, we present
only the results of two of them. The cameras used were
the Unibrain Fire-i IEEE1394 modules with a baseline
of 30 em. Image resolution was 320 x 240 pixels and the
images were B&W sequences. The acquisition frame rate
was 30 frames per second. The sequences were processed
on a laptop with an Intel Core 2 Duo processor at
2.4GHz. Camera calibration is done in a previous setup
process. The Visual SLAM algorithm is implemented in
C/C++ and works in real-time as long as the number of
features doesn’t exceed 150 approximately.

Figures 5(a) and 5(b) illustrate the aerial views of the
trajectory done by the vehicle in each of the sequences.
For each of the sequences two different simulations were

done: without inverse depth parametrization (only 3D
parametrization) and considering both parametrizations
(inverse depth and 3D) with a depth threshold of 30 m.

The final map and trajectory for the first and second
sequences are displayed in Fig. 6 and Fig. 7 respectively,
considering the different cases. Table I shows the results
of the comparison between the different experiments. The
meaning of the parameters of this table are:

e % Inverse Features: Is the percentage of the total
number of features in the map that were initialized
with an inverse depth parametrization.

« Estimated Length (m): Is the estimate of the total
distance covered by the vehicle in the sequence.

e Mean Pyy Trace: Is the mean trace of the covariance
matrix Pyy for each of the features that compose
the final map. This parameter is indicative of the
uncertainty of the features, i.e. the quality of the
map.

In the first experiment, the car starts turning slightly
right and then left until the car reaches an almost straight
path for approximately 100 m. Then, the car turns right
until the end of the street. The estimated length run of
the first sequence is 166.07 m. In the second experiment
the car starts turning left and then approaches a straight
path for a while. After that, the car does a sharp right
turn and moves straight during some meters, yielding an
estimated length run of 216.33 m.

In figures 6(a) and 6(b) the two different trajectories
and maps for the first sequence are displayed in a 2D
view. In the same way, figures 7(a) and 7(b) depict
the two different trajectories and maps for the second
sequence.

The maps are composed of the 3D position of the
features with its respective covariance, which has an
elliptical shape. This covariance is an indicative of the
quality of the map and the uncertainty in the estimate
of the 3D position of the feature in the global map. The
main result that can be obtained from Tab. I or just
observing figures 6(b) and 7(b) is that the uncertainty in
the 3D position of the features is much lower in the cases
where an inverse depth parametrization is used. This is
because as mentioned previously, the uncertainty of a far
feature is much lower if it is parameterized as an inverse
depth feature.

The estimated trajectory reflects well the exact shape
of the real trajectory executed by the vehicle in both
experiments. The trajectory for the first sequence is
quite similar in both of the experiments. The estimated
length is also similar in both experiments, the estimated
length considering inverse depth parametrization is a
little bit lower than the other case. However, in the
second sequence the result considering an inverse depth
parametrization reflects better the shape of the real
trajectory and also the estimated length is closer to the
ground truth. At the end of each experiment it can be
observed that the quality of the trajectory is worst than
at the beginning of the sequence, which is also reflected



in the final estimated length of the trajectory. This is
because at the end of the sequences the number of land-
marks in the EKF filter is so high (more than 300) that
provokes inconsistency in the filter. This inconsistency
in the EKF is due to the errors in the approximation
of the observation model by a linearization, and also
because the representation of the uncertanties and 3D
feature position in a common global frame. Although
this is not the purpose of this work, this problem can
be solved by re-linearizing the filter after some error
has been accumulated creating a new submap with a
local coordinate frame, expressing the uncertainties and
relative 3D positions according to this new local frame.

The main drawback of the inverse depth parametriza-
tion is the computational overload of representing a
feature by 6 parameters instead of 3. This drawback
can be important if real-time constraints are needed
for the computation of each submap. Fig. 4 depicts the
state vector size during some frames of the sequence 1,
considering the two experiments. As it can be observed,
the difference in size due to the overload of using an
inverse depth parametrization is very significant as long
as new features are added to the map.
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Fig. 4. Comparison of state vector size

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a Visual SLAM ap-
proach that can estimate accurately the vehicle motion
trajectory in urban roads considering small environ-
ments. In the same way a sparse map of high quality
features is obtained. The system combines both bearing
and depth information by means of two different types
of feature parametrization: inverse depth and 3D. Inverse
depth features can be switched efficiently to 3D features
when its depth is below a depth threshold, reducing the
uncertainty of the 3D position of far features in the global
map, yielding a better localization.

We are very interested in studying the use of a dynamic
threshold as a function of the kind of environment,
instead of the static one that is currently used, so as
to mantain the same map quality keeping real time
constraints.

Considering 2D image templates and the normal vector
of the plane that contains the point in the space improves
the tracking considerably and it is better than using just
2D image templates. However, since the normal vector
is only estimated once per feature (at the moment each
feature is initialized), an update of the patch normals
estimation would likely be of benefit.

In further works, a high level SLAM will be developed
for mapping indoor and outdoor large environments
fusing the infromation from our metric submaps. In
addition, we are interested in fusing the stereo system
with a commercial GPS for outdoor experiments in order
to make the localization and mapping more robust, and
compare our results with an accurate ground truth. In
the same way, we will compare our Visual SLAM system
with another techniques such as stereo Visual Odometry.
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Seq. Case % Inverse Features | Estimated Length (m) | Mean Pyy Trace
1 Without Inverse Par. 0.00 133.97 2.4414
1 With Inverse Par., Z; = 30 m 12.25 129.08 0.7177
2 Without Inverse Par. 0.00 130.61 2.9729
2 With Inverse Par., Z; 14.85 177.87 0.2188
TABLE 1

INVERSE DEPTH AND 3D COMPARISON: ESTIMATED LENGTH RUN AND FEATURES UNCERTAINTY
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Abstract—1In this paper we describe a state lattice based
motion planning approach, which we have successfully applied
to large, cluttered, but quasi-static environments. Our approach
produces smooth and complex maneuvers through the use of
a multi-resolution state lattice, where the resolution is adapted
based on the environment, and distance from the robot.

We also describe a framework for detecting dynamic obsta-
cles such as pedestrians and cars using a multisensor laser-
camera detection and tracking method. Image detection is
based on several extensions to the Implicit Shape Model
technique; laser detection is instead achieved through the use of
a Conditional Random Fields reasoning. Objects are tracked
through the use of multiple motion model Kalman filters in
order to cope with several different motion dynamics.

Urban environments, are complex, cluttered, and dynamic
scenes, however. We therefore propose to extend our dynamic
obstacle detection and tracking method with a short-term
motion prediction functionality based on the same models used
for tracking, effectively generating time based cost or risk
maps. We further propose to implement these cost maps into
our high-dimensional (5D to 6D) lattice planner to generate
time-optimal trajectories in dynamic, cluttered environments.
A D* implementation is envisioned to speed up re-planning
dramatically.

I. INTRODUCTION

In urban environments, autonomous cars are required to
navigate through both structured (streets) and unstructured
(parking lots, off-road tracks) dynamic environments. Due
to various vehicle and environmental constraints, they often
need to plan complex maneuvers to perform this navigation.
In order to provide responsive vehicle behavior in environ-
ments cluttered with dynamic obstacles, planning (and re-
planning) needs to be performed in real-time (i.e. at 10Hz).

Until recently, these real-time objectives rendered the com-
putation of optimal and kinematically feasible trajectories
(i.e. to the next waypoint, several 100[m] away) infeasi-
ble. Instead, deterministic graph search algorithms such as
Dijkstra [1] or A* [2] have often been applied to lower
dimensional representations of the navigation problem (such
as 2D grids). Paths returned by these grid based algorithms,
although optimal on the grid, are not directly achievable
due to vehicle constraints. Time consuming post-processing
steps, such as path smoothing and the generation of a
velocity profile along the smoothed path are required. Even if
execution time is of no concern, in absence of (road) structure
or in highly cluttered and dynamic environments, path- and

Differential GPS @
: -

Fig. 1. SmartTer, the autonomous robotic car at the Autonomous Systems
Lab, ETH Zurich.

velocity planning cannot be separated in order to arrive at
truly time-optimal solutions, however.

A representation that addresses these issues comes in the
form of the state lattice, a construct that reformulates the
nonholonomic motion planning problem into graph search.
Via the use of lattice segments (motion primitives), the enor-
mous search space is reduced dramatically in an intelligent
way so as to comply with vehicle kinematic constraints and
retain all feasible vehicle motions (down to a discretization
limit) [3].

Lattices have been successfully applied in various contexts
of path planning, such as low-velocity rough-terrain naviga-
tion [3], and high-velocity navigation in urban environments
[4], [5] and [6]. Recently, Kushleyev et al. [7] introduced
the concept of the time-bounded lattice, which adds vehicle
velocity and time as separate search dimensions to the multi-
resolution lattice state space, thereby merging short-term
planning in time with long-term planning without time.

When incorporating time-based predictions into planning,
solutions generated can be vastly superior to non time-
parametrized paths, but also unsafe (a process running in
parallel could be implemented to ensure safety, if desired).
The fidelity of the predictions therefore plays a key role in
solution quality.
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A typical urban environment detection and tracking example: cars and pedestrian are correctly detected. Tracks are shown in the gray plot.

Fig. 2.

Urban environments feature many different types of dy-
namic obstacles, most importantly pedestrians and cars
(which exhibit very dissimilar dynamics). Pedestrians are
particularly difficult to detect because of their high vari-
ability in appearance due to clothing, illumination and self
occlusions. Cars are wide objects that dramatically change
their visual characteristics when the viewpoint changes. It is
thus advantageous to detect (label) and track these objects, in
order to generate a more informed prediction of their future
movement.

In the detection part we employ a multisensor laser-
camera detection and tracking method. Image detection is
based on several extensions to the Implicit Shape Model
technique [8]; laser detection is instead achieved through
the use of a Conditional Random Fields reasoning. Objects
are then tracked through the use of multiple motion model
Kalman filters in order to cope with several different motion
dynamics. These motion models could then further be used
to predict the near-future behavior of dynamic objects by
effectively generating time based cost or risk maps. We
propose to implement such time based cost maps into our
high-dimensional (5D to 6D) lattice planner and generate
time-optimal trajectories in dynamic, cluttered environments.

Several approaches can be found in the literature to iden-
tify a person in 2D laser data [9], [10], [11], [12] and [13]. In
the area of image-based people detection, there mainly exist
two kinds of approaches, one uses the analysis of a detection
window or templates [14], [15], the other performs a parts-
based detection [16], [17], [18]. Existing people detection
methods based on camera and laser rangefinder data either
use hard constrained approaches or hand tuned thresholding
[19], [20]. The only work present in literature that combines
images and laser by using Conditional Random Fields is the
work of Douillard [21] that uses image features in order to
enhance object detection but it does not explicitly handle
occlusions and separate image detection hypotheses.

In Section II, we describe our multi-sensor detection and
tracking method. Section III introduces our multi-resolution
state lattice. We also propose further steps on how to combine
these two frameworks in order to arrive at real-time planning
capability in cluttered and dynamic city environments. Sec-
tion IV concludes this paper and proposes further work.

II. DETECTION OF SENSITIVE URBAN OBJECTS:
PEDESTRIANS AND CARS

A. Overview of the method

Our system is composed of three main components: an
appearance based detector that uses the information from
camera images, a 2D-laser based detector providing struc-
tural information, and a tracking module that uses the com-
bined information from both sensor modalities and provides
an estimate of the motion vector for each tracked object. The
laser based detection applies a Conditional Random Field
(CRF) on a boosted set of geometrical and statistical features
of 2D scan points. The image based detection system extends
a multiclass version of the Implicit Shape Model (ISM) [22]
and uses Shape Context descriptors [23] computed at Harris-
Laplace and Hessian interest points. It also uses the laser
based detection result projected into the image to constrain
the position and scale of the detected objects. Then, the
tracking module applies an Extended Kalman Filter (EKF) to
the combined detection results where two different motion
models are implemented to account for a high variety of
possible object motions. In the following, we describe the
particular components.

B. Appearance Based Detection

Our image-based people detector is mostly inspired by
the work of Leibe et al. [18] on scale-invariant Implicit
Shape Models (ISM). Shortly, an ISM consists in a set of
local region descriptors, called the codebook, and a set of
displacements and scale factors, usually named votes, for
each descriptor. The idea of the votes is that each descriptor
can be found at different positions inside an object and at
different scales, and thus a vote points from the position of
the descriptor to the center of the object as it was found
in the training data set. To obtain an ISM from labeled
training data, all descriptors are first clustered, usually using
agglomerative clustering, and then the votes are computed by
adding the scale and the displacement of the objects’ center
to the descriptors in the codebook. For the detection, new
descriptors are computed on a given test image and matched
against the descriptors in the codebook. The votes that are
cast by each matched descriptor are collected in a 3D voting
space, and a maximum density estimator is used to find the
most likely position and scale of an object.



1) ISM Extensions: We introduce the following novelties
in the image detection part. Extensions in the Learning
Phase:

o Learning of Subparts: The aim of this procedure is to
enrich the information that is obtained from the voters
by distinguishing between different object subparts from
which the vote was cast.

o Learning a Template Mask: The idea here is to
build a probabilistic template map from the individual
segmentation masks in the training set in order to reject
early object hypotheses.

o Learning Superfeatures: We here propose a method to
drive the detection while still maintaining information
richness. The idea is to find good features in the image
space (namely (z,y, scale)) and descriptor space (n-d
space) that could vote for the object center with more
weight to ease the hypothesis selection.

Extensions in the Testing Phase:

o Using Superfeatures: Superfeatures and features vote
for object centers in the same voting space: the votes
generated by the first are bigger than the latter.

o Using subparts and prob. template in the cost
function: Each hypothesis is now defined by an angular
histogram in which the bins are defined by the subparts.
Moreover, the probabilistic template is used to prune
feature matches that lie far outside the probabilistic
shape (scaled according to the hypothesis). We employ
a maximum likelihood estimation method in order to
select the winning hypotheses.

o Discriminate between object classes: We employ a
common measure to do hypothesis selection by using
the probabilistic template area ratio: each assigned
feature for a certain hypothesis occupies a scaled square
area in the probabilistic template.

C. Structure Based Detection

We modeled the object detection problem in laser data as a
Conditional Random Field (CRFs) probability inference [24].
CRFs represent the conditional probability p(y | z) using an
undirected cyclic graph, in which each node is associated
with a hidden random variable y; and an observation z;. In
our case, the y; is a discrete label that ranges over 2 different
classes (pedestrian and car) and the observations z; are 2D
points in the laser scan.

For the likelihood minimization in the training phase we
use the L-BFGS gradient descent method [25]. Once the
weights are obtained, they are used in the inference phase to
find the labels y that maximize:

N
p(y|z) = % H@(Zi7yi) H (2zi, 25, Yi,y5), (1)
i=1 (i,4)€E
Here, we do not need to compute the partition function Z, as
it is not dependent on y. We use max-product loopy belief
propagation to find the distributions of each label y;. The
final labels are then obtained as those that are most likely
for each node.

1) Node, Edge Features and Connectivity: As node fea-
tures f,, we use a set of statistical and geometrical features
such as height, width, circularity, standard deviation, kurto-
sis, etc. (for a full list see [26]). We compute these features in
a local neighborhood around each point, which we determine
by jump distance clustering. We can then use these features
as an input to the CRF classification algorithm. However
as stated in [27], and also from our own observation, the
CRF is not able to handle non-linear relations between the
observations and the labels, which is a consequence of the
log-linear model described above. To overcome this problem,
we apply AdaBoost [28] to the node features and use the
outcome of AdaBoost as features for the CRF. Nodes are
connected using a Delaunay triangulation.

2) Tracking objects for sensor fusion: In order to fuse the
information coming from both sensors (camera and laser)
and to simultaneously keep track of the object we use an
EKF based tracking system, first introduced in [29]. Here,
each object is tracked with several motion models (in this
case: Brownian motion and linear velocity) in order to cope
with pedestrian and car movements. We perform tracking in
the laser data, therefore camera detections are projected and
assigned to segments in the laser data. In order to reliably
track wide objects, like cars, tracking single segments are
not enough. Single segments tend to be spatially very un-
stable due to the noise present in outdoor environments and
the scatter resulting from the distance with respect to the
observer. We therefore group segments with the same class
label using Delaunay triangulation and a trim distance rule.
The resulting cluster will have a more stable position and a
probability of being a class that is the average of its members.
Each Kalman filter state ((z, y, (v, vy))) is augmented with
N states where N is the number of classes present in the
detector. Indeed, the observation vector z fed to the tracking
system consists of the position of the cluster and the class
label probability. The matrix H that models the observations
to mapping in the Kalman Filter x+ = Hz is defined by
H = [Hjsp; Heam) in order to manage multiple inputs from
different sensors. Each track, with its relative prediction, can
be used for the planning navigation algorithm.

Quantitative fused detection and tracking results are shown
in Fig 4 in which a Recall/false positive per frame is depicted.
The test dataset is composed in total of 511 frames. The car
detection obtains superior results with respect to pedestrian
detection specially due to the non flexible shape which
guarantees more distinct descriptors in the codebook. Both
graphs clearly show the advantage of using a combined
laser-camera detection method with respect to single modal
techniques.

III. SEARCH IN DYNAMIC ENVIRONMENTS
A. Overview

Deterministic motion planning in dynamic environments
remains extremely challenging due to the increased dimen-
sionality in state space. Lattices allow for an intelligent
reduction in search space, thereby increasing solution speed
dramatially, without noticeably affecting solution quality.



0.6

0.4

0.2

/

m]

-0.2|

=}
©
/

ol oy
' E
-0.6[- \) 2 06+
| ]
[=)
0. I I . . 5
(] 05 1 [1m5] 2 S 04—
1 0.2
o8 0.5
o 0
z m
; [m]
204l

o 0‘5 1‘ ; é 1 5

15
path length [m]

3 4.5 6 75

9s]

Fig. 3. Example of a 16-directional multi-resolution lattice (one of the 16 initial headings shown), which was constructed for a diff-drive household robot.
We plan on generating a similar lattice for our autonomous car, albeit with velocities of up to 20[m/s], and the steering angle considered as an additional
dimension. Top Left: black segments denote the low-resolution part. Black and blue segments together denote the high-resolution part. Some of the short
straight segments are occluded. Bottom Left: velocity profiles as a function of path length. Right: full 4D (z,y, 6, v) view for one initial heading starting

at a velocity of 0.5[m/s].

They are thus well suited for deterministic high-dimensional
planning tasks.

Here, we describe a generic lattice generation process,
and detail our extension to a multi-resolution lattice, which
allows for further reduction in search space. We then describe
the search over the obtained lattice and how dynamic short-
term predictions of dynamic obstacles’ future movement
can be implemented into it. Finally, we sketch an approach
for speeding up re-planning times, once an initial plan is
available.

B. Lattice Generation

The base lattice is generated by forward simulating a
suitable vehicle model using a (uniform) sampling of desired
velocity and steering angle as model inputs to generate
a large set of motion primitives, followed by a careful
selection of a small subset of these primitives: the selection is
performed in such a way, that through combination of motion
primitives belonging to the subset, any and all original mo-
tions can be reconstructed down to a discretization limit (see
[3] for an automated approach). Compliance with vehicle
kinematic and dynamic constraints is inherently guaranteed,
given the above design iteration and a high-fidelity dynamic
model of the vehicle.

The state lattice is then constructed by starting with a
node in a desired configuration space (in the case of a car:
(z,y, heading, v, steeringangle)) and then creating edges
emanating from this node. From every node these edges
transition to, the process is repeated, resulting in a connected
graph consisting of all the nodes and edges generated.
Typically, a discretization is applied to the nodes so that

they all reside on some grid in the configuration space. By
choosing a variable discretization, search speed is further
increased.

Fig. 3 shows our currently implemented indoor
differential-drive lattice, operating at 16 directions on
a 0.1[m] grid and 4 discrete velocities up to 1[m/s]. In
the future, we plan on implementing a similar lattice
for Ackermann-like vehicles and increase the velocity
discretization substantially.

1) Multi-Resolution Lattice Extension [Partially Imple-
mented]: An important factor when designing a state lattice
is the resolution of the discretization used to represent the
nodes in the lattice in terms of the position, heading, and
velocity discretization. From a computational point of view,
the underlying position discretization should be chosen as
coarse as possible. From a completeness point of view, it
needs to be fine enough to generate feasible plans in narrow
areas. 0.25[m] position discretization allows for successful
parking maneuvers at low velocities [4]. State lattices have
been successfully employed with 8 to 64 (uniform) direc-
tions. We found that for smooth and natural looking paths,
generally 32 directions are required.

Expanding 32-directional lattice segments over a 0.25[m]
grid is computationally intensive, however, and in many cases
not necessary to achieve a smooth and feasible trajectory. A
recently proposed solution to this problem is to incorporate a
multi-resolution lattice, operating at two or more resolutions
based on task [4], and environmental characteristics [30].
The lower resolution is usually chosen as a subset of the
higher resolution lattice so that suboptimality guarantees can
be given with respect to the low-resolution lattice. In our
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Fig. 4. Recall/false positive per frame graph for cars and pedestrian in a
test dataset.

forthcoming lattice we plan on implementing the following
ideas:

1) Variable heading, position, and velocity discretization,
based on distance from the robot position. In combina-
tion with frequent replanning, the robot is guaranteed
to always remain on a high-fidelity trajectory, while
the trajectory assumes a lower quality further away,
although it remains feasible.

2) Variable position discretization based on vehicle ve-
locity. At higher velocities, safety margins around the
vehicle should be increased, hence a coarser discretiza-
tion is justified.

3) Addition of time into the state space, in conjunction
with short-term prediction of dynamic obstacles’ mo-
tion. By incorporating the ideas recently presented
by Kushleyev et al. [7], the time dimension can be
dropped at a variable time horizon. Unlike in their
approach, we do not believe in dropping all but the
position dimensions at that instant, as the trajectory
would loose its feasibility property.

These considerations are expected to have the effect of
generally producing trajectories close to the optimal one
(had only the high-resolution lattice been expanded) and
at the same time generating solutions much faster than by
expanding the high-resolution lattice alone [4].

C. Search over the Lattice

A state lattice can be considered a specific method for
constructing a directed graph. Thus, regular graph search
algorithms are applicable for searches along a state lattice.
The most popular and efficient deterministic graph search
algorithms belong to the family of ‘best-first’ searches. They
expand promising states first, making use of a heuristic
function to guide them, the original one being A* [2].
Subsequently, more efficient algorithms (particularly for re-
planning) have been devised (see i.e. [31] for an overview).
We currently use a forward planning Anytime A* extension
[32] over the presented multi-resolution state lattice, although
there are plans on implementing a backward planning algo-
rithm for more efficient replanning (see Section III-C.5).

1) Heuristic generation: The more accurate a heuristic is,
the faster the following high-dimensional search will con-
verge to the optimal solution. To this end, we perform a 2D
Dijkstra search out from the goal location(s) so that the cost
values become the heuristic values for the high-dimensional
search. To ensure the admissibility of this heuristic, we
constrain the costs of actions to be upperbound by their
Euclidean distance. In particular, the obtained heuristic costs
are divided by 1.03 for the 16-neighborhood employed (see
[33] for details).

2) Planning with quasi-static obstacles: Let us define
quasi-static obstacles as obstacles with a low maximal ve-
locity compared to our vehicle’s dynamics. In such cases,
combined with frequent replanning, the obstacles’ current
(inflated) pose can be considered untraversable during both
the heuristic generation and the higher-dimensional planning
step. Quantitative results show, that in such cases, our 4D
(z,y,6,v) lattice planner is able to generate local, smooth
and feasible trajectories in real-time; our 3D (z, y, ) planner
is able to generate (global,) smooth, and feasible paths in
real-time (see Fig. 5, fig. 6 and [33] for more details).

3) Representation of dynamic obstacles [Planned]: Rep-
resenting dynamic obstacles during the planning stage re-
mains a challenging problem. For short-term predictions
of dynamic obstacles’ future trajectories, the same motion
models could be used as for tracking (see Section II). In
the case of pedestrians and vehicles, we hope to provide
meaningful predictions several seconds into the future. We
then plan on mapping these predictions into local time-
parametrized cost or risk maps: through a discretization in
time (i.e. 0.1[s]) a set of local maps is populated, where a
given space-time entry is assigned the sum of all detected
dynamic obstacles’ probabilities to occupy this location at
the given time (cost map), multiplied with a severity factor
corresponding to the associated objects’ types (risk map).

Further work in this direction may involve quantifying
prediction fidelity, extending the prediction horizon, and
modelling agent-agent interactions.

4) Planning with dynamic obstacles [Planned]: Planning
with dynamic obstacles by considering their predicted future
motion amounts to applying the same search algorithm as
in the static situation (Anytime A* in our case), albeit in
a higher-dimensional space with time added as a separate



Fig. 5. The ’long run’ encompasses a path of approximately 40[m] through
the Intel Research Pittsburgh lab. The 3D planner expands less than 100
states in 0.04[s] to arrive at a solution. The 4D planner takes 2.28[s] with
5900 expanded states (pictured). The large difference in performance lies
in the 2D heuristic, which does not well predict the influence, which areas
of reduced maximal velocity (i.e. in vicinity of doors and narrow hallways,

colored orange) have on the 4D planner.

I_\

Fig. 6. The ’short run” encompasses a path in the Intel Research Pittsburgh
kitchen area (approx. 10[m]). Both the 3D (less than 100 expansions in
0.01[s]) and the 4D planner (less than 100 expansions in 0.03[s], pictured)
show real-time capability in this scenario.

search dimension. Note that due to the probabilistic nature
of obstacles’ predicted motion, a generated trajectory is not
guaranteed collision free. In many situations it might be
useful to have such guarantees however. In such cases, a
collision avoidance algorithm could be run on the controller
level.

5) Speeding-up replanning [Planned]: Best-first searches,
starting their expansions at the goal location (i.e. D* [31]),
have been shown to be one to two orders of magnitude
faster than forward planning algorithms when replanning in
only slightly updated environments. Perceived changes in

the environment often appear close to the robot (due to
proprioceptive sensors). By planning from a distant goal,
large parts of the previously generated solution thus remain
valid. Despite these advantages, we currently do not use
backward searching algorithms:

1) Due to uncertainty in dynamic obstacles’ predicted
motion, large portions of the local map need to be
updated during every timestep, rendering repairing
algorithms ineffective.

2) When expanding states from the goal, the exact time
of arrival can only be induced once a solution is found.
During a given time of the search, however, it is
unclear which of the local time-parametrized cost/risk
maps needs to be called.

On the other hand, local high-dimensional plans are
typically generated over up to several hundred meters and
dramatic changes in costmaps are only perceivable in close
vicinity of the robot, where time-based planning is per-
formed. Further away, only slight changes are expected due
to newly perceived or updated static obstacles. Addition-
ally, we found a promising solution to the time-association
problem by producing an enormous look-up table, which
encodes all feasible motions up to a certain time horizon. It
grows exponentially with the branching factor of the lattice,
however, currently limiting it to a horizon below 5[s]. Further
tests will show, whether such a look-up table based backward
planning algorithm is able to outperform our current ARA*
implementation.

IV. CONCLUSIONS AND FURTHER WORK
A. Conclusions

In this paper we presented a multi-resolution state lattice
based path planning approach, which produces smooth ma-
neuvers in large and complex environments.

We also presented a framework for detecting dynamic
obstacles such as pedestrians and cars using a multisensor
camera-laser detection method based on several extensions
to the Implicit Shape Model technique, and Conditional Ran-
dom Fields reasoning. Tracking was demonstrated through
the use of multiple motion model Kalman filters.

Both of these methods have been extensively tested and
work well in isolation.

B. Further Work

Further work thus mainly lies in combining and extending
the two presented methods:

1) Tracked pedestrians’ and cars’ future motions need to
be estimated, possibly using the same motion models
used for tracking.

2) A multi-resolution state lattice for Ackermann-like
vehicles needs to be designed and implemented into
our SmartTer platform.

3) A look-up table based backward planning algorithm,
which potentially decreases search time substantially,
may be considered.
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Camera and Laser Scanner Co-detection of Pedestrians

Hao LI, Ming YANG, Huijia QIAN

ABSTRACT—Intelligent vehicle technology is a
promising technology for enhancing urban traffic safety and
efficiency. Pedestrian detection is an important issue for
applications of intelligent vehicles in urban environments.
The kind of most widely used method for pedestrian detection
is vision based method. One general problem for vision based
method is how to efficiently locate a proper ROI (region of
interests) which contains a candidate object. Another
problem is how to detect and segment features of candidate
objects out of ROI. In this paper, a camera and laser scanner
co-detection method is proposed. First, a method of camera
and laser scanner co-calibration is presented. Second, a
method of how to obtain proper ROI and the contours of
candidate objects using the co-calibration results is
introduced. Finally, a decision rule is induced from a set of
examples of contour shapes of both pedestrians and
landmarks (They are most likely to be confused with each
other because of their similarity in size). Some experimental
results are given for validating the camera and laser scanner
co-detection method.

1 Introduction

Intelligent vehicle technology is a promising technology
for enhancing urban traffic safety and efficiency. Since there
are lots of pedestrians in urban environments, the problem of
how to ensure the safety of pedestrians arises urgently in the
application of intelligent vehicles in urban environments. To
ensure the safety of pedestrians, the intelligent vehicle system
should detect pedestrians nearby correctly and in time.
Therefore, pedestrian detection is an important issue for
applications of intelligent vehicles in urban environments.

The problem of pedestrian detection is a considerable
challenge. For this problem, the kind of most widely used
method is vision based method. Broggi et al [1] proposes a
method mainly based on human shape features, especially the
vertical edge symmetry and binary model, which are used to
localize pedestrians’ heads through stereo-vision’s distance
refinement. Gavrila [2] uses a method of hierarchical
template matching (a lot of pedestrians’ templates are needed)
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based on contour figures and intensity features. Curio et al [3]
presents a hybrid method architecture which integrates
texture information, entropy, template matching results and
etc. Shashua et al [4] presents a two-steps detection method in
which the Adaboost training is used for the single-frame
detection step and a final decision is made by integrating
information of multi-frames. Besides vision based method,
laser scanner based method has also been reported [5].

The process of pedestrian detection can be mainly
divided into two steps: object localization and object
classification. In the first step, candidate objects are localized
(obtain ROI) and segmented out from sensor data space
(segment contours of candidate objects out of ROI). In the
second step, a decision on whether a candidate object is a
pedestrian is made based on the decision rule. The general
difficulties for vision based method are at the step of object
localization, while the general difficulties for laser scanner
based method are at the step of object classification.
Therefore, a more robust method might be realized if both
camera and laser scanner are used together and cooperate
with each other.

In this paper, a new camera and laser scanner
co-detection method is proposed. It mainly consists of three
parts: 1) a method of camera and laser scanner co-calibration;
2) a method of how to obtain proper ROI and the contours of
candidate objects using the co-calibration results; 3) a
decision rule induced from a set of examples of contour
shapes of both pedestrians and landmarks. The paper is
organized as follows: a method of camera and laser scanner
co-calibration is presented in section2; the co-detection
method is proposed in section3; experimental results on the
co-calibration method and co-detection method are given in
section4, followed by a conclusion in section5.

2 Co-calibration of camera and laser radar

The co-calibration is to determine the geometric
transform relationship between three coordinates, i.e. the
laser scanner coordinate, the image coordinate and the vehicle
coordinate.

2.1 The three coordinate systems

The image coordinate is a 2D rectangular coordinate,
denoted by a pair (u, V), where U, v mean the rows, columns of
a pixel point.

The laser scanner used is a 2D laser scanner. The laser
scanner coordinate mentioned here is a 3D rectangular
coordinate, denoted by a triplet (X,, Y, Zp), where the origin
point O, is at the emitting point of the laser scanner; the
Xp-axis and the Y,-axis are on the scanning plane of the laser



scanner; the Z;-axis satisfies right-hand rule with the X,-axis
and the Yp-axis.

The vehicle coordinate is a 3D rectangular coordinate,
denoted by a triplet (Xw, Yw, Zw), Where the X,-axis and the
Yw-axis are on the ground surface; the origin point O, is right
under the front center of the vehicle; the X,-axis is in the
longitudinal direction of the vehicle while the Y,-axis is in the
lateral direction; the Z,-axis satisfies right-hand rule with the
Xw-axis and the Y,-axis.

2.2 The calibration tool and the method of obtaining
control points

Some control points are needed for the co-calibration.
But the laser beam is invisible, so control points can not be
determined directly and they can only be determined
indirectly using certain calibration tool. The calibration tool
designed is shown in Figl(a). It is a rectangular frame with
one diagonal connected. A bracket on the frame bottom
corner is used to hold the rectangular frame perpendicular to
the ground surface where it is put.

“Y
Cy Ds C
L
D Py 1 Pr
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] >
Cy Dy C X
(a) (b)

Fig 1 the calibration tool and control points

Suppose the scanning plane of the laser scanner
intersects the rectangular frame at point Py, Py; and Pg; the
line D3;PyD; is perpendicular to C;C,; the line PyD, is
perpendicular to C,Cy; as shown in Figl(b). Although the
intersected point Py is invisible, its place can be revealed
indirectly by geometric knowledge:

PP
PMDzzchlzﬁ 1~2

L M+PMPR
R,D, =C,D, =—ulx

PP, +P,P, "

Where the lengths of C,C, and C,C4 are measured directly
and the lengths of P Py and PyPr are computed from the
coordinate information of P, Py, Pr in the laser scanner
coordinate.

If a 2D rectangular coordinate (called frame coordinate)
is established on the rectangular frame of the calibration tool,
as shown in Figl(b), then the coordinates of C,, C,, C;, C4 in
the frame coordinate are respectively (0,0), (C,Cy,0),
(C,Cy,C1Cy), (0,CCy). The image coordinates of C;, C,, Cs,
C, are obtained manually. The geometric transform
relationship between the frame coordinate and the image
coordinate can be described by a homography transform
which can be computed with the coordinate information of C;,
C,, C3, C4 [6].

The coordinates of Dy, Py;, D; in the frame coordinate
are respectively (C;Dy,0), (C,D;,C,D,), (C;D;, C,Cy). The
image coordinates of Dy, Py;, D; can be computed through the
homography transform.

The Z,, coordinate of D;, Py;, D5 in the vehicle
coordinate are respectively 0, C,D,, and C,C,. Their X, Y\,
coordinates in the vehicle coordinate are the same and are
measured directly.

In sum, at each place where the calibration tool is put,
the coordinates of Py, in the laser scanner coordinate, the
image coordinate and the vehicle coordinate are all known;
the coordinates of D, D; in the image coordinate and the
vehicle coordinate are known. Therefore, Py can be used as
control point for calibrating the geometric transform
relationship between the laser scanner coordinate and the
vehicle coordinate, while Py, D, D; can be used as control
point for calibrating the geometric transform relationship
between the vehicle coordinate and the image coordinate.

2.3 Computing the geometric transform relationship
between the three coordinate systems

(a) The geometric transform relationship between the
laser radar coordinate and the vehicle coordinate

Suppose there are N control points and their coordinates
in the laser scanner coordinate and the vehicle coordinate are
respectively (Xpi, Ypi> Zpi) and (Xwi, Ywi> Zui); =1, 2, ..., N. The
geometric transform between the laser scanner coordinate and
the vehicle coordinate can be described by a rotation and
translation transform:

Xpi Xwi
Rpw pr ypi _ ywi (1)
0 1]z, Zyi
1 1

Where Rpy is the rotation matrix and Tpy = [Ty, Ty, T, ]" is the
translation vector. Any rotation matrix can be expressed in
terms of 3 independent parameters (Ry, Ry, R,), i.e.
Rpw=exp(WR).

0 -R R,
W,=| R, 0 -R,
R, R0

Because of the nonlinearity of Ry, with respect to Ry, Ry, Ry, it
is not easy to compute Ry, Ry, R, and Ty, Ty, T, directly. An
iteration method is needed to compute Ry, Ry, R; along with T,
Ty, T.. Suppose the result of W after k rounds of iteration is
WHkg(K). The initial value WHRg(0) can be estimated
quantitatively. The basic idea is: regard Ry, as a matrix of 9
independent parameters; then a linear equation group of these
9 parameters and T, Ty, T, can be derived using Eq.(1) and the
coordinate information of control points; Ry is obtained by
solving this linear equation group; then WRr(0) can be
estimated as (exp'I(Rpw)-exp'l(Rpw)T)/Z Details are not
introduced here. In fact, since the requirement of the accuracy
of Wg(0) is not high, Wgr(0) can be just estimated
qualitatively according to the installation position of the laser
scanner.

The method of refining Wg with iterations is introduced
as follows. Denote Ry(k+l) = Ry(K+AR(K); Ry(k+1l) =
Ry(KH+ARy(K); Ry k+1) = RyK)*AR,(K); and Wrg(k+l) =
Wr(K)+AWR(K). Let exp (Wr(K+AWR(K)) =



(T+AWR(K))exp(Wg(K)), and substitute it into Eq.(1)

1 _ARz(k) ARy(k) Xpi(k) Tx Xwi
ARZ(k) 1 —ARX(k) ypi(k) + Ty =| Yai @)
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Where [X,i(K).Ypi(K).Zsi(K)]" = exp(Wr(K)) [Xpi.YpiZsi] - Then
from Eq.(2) it can be derived:

0z, -y, 10 0] [xi-x (0 5
2, k) 0 xu(k) 0 1 0|U=|y,—y,(k)
ypi(k) —xpi(k) 0 0 0 1 _Zwi_zpi(k)
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In Eq.(3), i=1, 2, ..., N, so there are a total number of 3N
equations which form a linear equation group with respect to
the vector [ARx(K), ARy(K), AR.(K), Ty, Ty, T,]" that can be
obtained by solving the linear equation with least-square rule.
Then Ry(k+1), Ry k+1), Ry(k+1) can be computed. After
several rounds of iteration, Ry, Ry, R, and Ty, T, T, will
converge; then the rotation matrix Rpy and the translation
vector Tp,, are obtained.
(b) The geometric transform relationship between the
vehicle coordinate and the image coordinate

Suppose there are N control points and their coordinates
in the vehicle coordinate and the image coordinate are
respectively (Xwi, Ywi> Zwi) and (Ui, vi); i=1, 2, ... , N. The
geometric transform between the vehicle coordinate and the
image coordinate can be described by a perspective transform
[6]:

wa[xwi Ywi  Zui I]T :ﬂ[ui Vi I]T 4

Where My is the perspective matrix which can be computed
by solving a linear equation group using the coordinate
information of the control points [6]. It is worth noting that
all the image coordinates mentioned in the paper are
distortion removed. So the perspective transform shown in
Eq.(4) works well.

3 Co-detection of pedestrians

The architecture of the co-detection method consists of
four parts: 1) cluster and sift; 2) obtaining ROI; 3) obtaining
contour edges; 4) decision. First, the range data are clustered
and those clusters which might represent pedestrians (the
object that such cluster represents is called candidate object)
are sifted out; then proper ROI is obtained using the range
data of candidate objects and the co-calibration results; after
that edge-extraction is carried out in ROI and contour edges
of candidate objects are obtained with the help of the range
data of candidate objects and the co-calibration results; finally,
decision on whether a candidate object is a pedestrian is made
according to the feature of its contour edges.

3.1 Cluster and sift

The cluster rule is generally described as [7]: if ||(Xp;,
Yoi)-(Xpiit1 > Ypit1)|[<Ding, then the i-th and (i+1)-th scanning
point of laser scanner are in the same cluster; otherwise they
are in different clusters. Here, Dyg = Kimin{||(Xpi, Ypi)ll,
1(Xp,i15> Ypir DI} > Ki = ksin(Aa/2); Ao is the angle resolution of

laser scanner, K is a constant chosen according to experience.
Suppose there are totally N clusters C;, C,, ..., Cy; for
any cluster Cii {(Xpni-1), Yoni-1)> Kon-iyrts Yoni-1y¢1)s <«
(Xpn(iy-1> Ypni)-1)}, its diameter d(C;) is defined as: d(C;) =
maX{H(XPJ’ yp»j)'(XPJ ’ yPJ)”: J:I = [n(i'l)a L] n(l)'l]}: i:1> 2: (RS
N. Since the size of a pedestrian’s body is limited, a range
[Dmin, Dmax] is set to sift the clusters according to their
diameter. If and only if the diameter of a cluster is in this
range, then this cluster is reserved, and the object that such
cluster represents is called candidate object; otherwise this
cluster is discarded. Above, set D,,;;=0.15m, Dy =1.2m.

3.2 Obtaining ROI

Given a candidate cluster Ci: {(Xpn(i-1) Yp.nii-1))> Xpnci-1y+15
Yoni-1)+1)s ++s Kpngir15 Ypn-1)} (270), its two end-points are
Ce(Xpnii-1)» Ypnii-1)» Zpingi-1)) and Cr(Xpnciy-15 Ypin(iy-15 Zpngiy-1)- The
coordinates of Cp and Cr can be computed using Eq.(1),
denote them as CLW(Xw,n(i-l)s Ywnii-1)» Zwnc-1y) and CRW(Xw,n(i)-ls
YwnG)y1> Zwniy1)- A pedestrian’s body could be roughly
represented by a vertical rectangular envelop, as shown in
Fig2(a); the four corners are denoted as BC;, BC,, TC; and
TC,. Suppose C." and Cy" are respectively on the left and
right side of the rectangular envelop; then the coordinates of
these four corners in the vehicle coordinate are BC;(Xuni-1),
Yuni-1» 0)s BCo(Xwngy-15 Ywniiy-15 0), TC1(Kwng-1)s Ywngi-1)» Himax)
and TCo(Xw n(iy-1> Ywn(i)-1, Hmax), where Hpax denotes the height
limit of human beings (set Hpax = 2.5m). The rectangular
envelop is expanded a bit (for example 30 cm) on both left
side and right side.

The coordinates of the corresponding points of C. ", Cg",
BC,, BC,, TC,, TC, in the image coordinate can be computed
using Eq.(4); their image coordinates are denoted respectively
as Ct'(Uct, Ver), Cr'(Ucr, Ver), BCi'(Ugci, Vacr), BCy'(Usca,
VBCZ); TC]I(UTCI, VTCl), TCZI(UTcz, VTC2)~ The ROI should at
least contain BC,', BC,', TC,!, TC,"; if a smallest vertical
rectangle is chosen as the ROI, then its four corners are (Upin,
Viin), (Umin, Vmax)> (Umaxs Vmin)s (Umaxs Vmax); where Upin =
min{Ugc, Ugca, Urct, Urca}s Umax = max{Usci, Ugca, Urci, Urca ),
Vimin = Min{Vgc1, Vaca, V1ci, Vrea)s Vmax = Max {Veci, Vaca, Vrci,
Vrca}. As shown in Fig2, (b) shows the original image while
(c) shows the extracted ROI of several candidate objects
using above method.

TC, TC, ..’
-

R "

.' i..‘-'

b

(@) (b) (©)

Fig 2 the rectangular envelope and the region of interest (ROI)

3.3 Obtaining contour edges

Edge-extraction is carried out in ROI using Canny
method [8]. In ideal condition, C; (UL, Vcr) and Cg'(Ucr, Vcr)
should be exactly on the left and right contour edge of
candidate object. Actually, there will always be a slight
deviation because of all kinds of errors. {(Uc, VcL), (Ucr, Vcr)}



are matched with edge points in ROI using closest point or
iterative closest point method, and two edge points on the left
and right contour edges of candidate object are obtained.
Then carry out edge point connection from these two edge
points until discontinuity appears or the edge direction begins
to deviate largely from vertical direction (on the consideration
that the contour edges of a pedestrian are generally vertical).
The extracted contour edges of several candidate objects are

show_n in Fig3.
T
o

[ =
B

Fig 3 the contour edges of candidate objects

3.4 Decision

In this section, a decision rule is induced from a set of
examples of contour shapes of candidate objects. Besides
pedestrians themselves, the most likely candidate objects
sifted from range data are landmarks, because of their
similarity in size to pedestrians; as shown in Fig3. Therefore,
the decision rule in some sense is a rule of how to distinguish
pedestrians from landmarks.

A noticeable feature of landmarks is that their contour
edges are almost straight on image, while the contour edges of
pedestrians are irregular curved lines. A contour curve
measure Fgyne is defined as follows to describe the curved
extent of contour edges of a candidate object.

Suppose the set of edge points on the left and on the
right contour edge of the candidate object are respectively the
set CL: {(U])L, V],L), (Uqu, v2,L)7 ceey (Uqu, Vm,L)} and the set CR:
{(Ur, Vir), (Uzr, Var), ...y (Unr, Vagr)}. Line lei:
aCLu+bC|_V+CC|_:O and line ICRZaCRU+bCRV+CCR:O are the
straight lines fitted respectively to the edge points in set CL
and in set CR with least square rule. The contour curve
measure Fgne 1s defined as:

Zm:d((ui,LsVi,L)s ICL)2 +Zn:d((uj,R’vj,R)’ ICR)2
s

FCUI'VG = = m+n (5)

Where d((Uir, Vip), lcL) denotes the distance between point
(Uir, Vi) and line lc;; d((Ujr, Vjr), lcr) denotes the distance
between point (Ujg, Vjr) and line Icg.

A number of 500 samples of pedestrians and landmarks

are chosen; the contour edges of each object are extracted and
the contour curve measure is computed using Eq.(5). The
statistic result of Fgye is shown in Fig4. It shows the
probability distribution of the contour curve measure of
sample pedestrians and landmarks. As it can be seen from
Fig4 that there is an apparent dividing line (F¢e=1) between
the distribution of pedestrians and landmarks. So the decision
is induced as: if Fgyne>1, then the candidate object is regarded
as a pedestrian; otherwise, it is regarded as a landmark.
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Fcurve
Fig 4 the probability distribution of the contour curve measure

4 Experiment

4.1 Experiment on the co-calibration method

Choose an arbitrary flat ground as the calibration field,
as Fig5; put the calibration tool at several places in the
calibration field and obtain the coordinate information of
control points using the method introduced in section 2.2;
compute the rotation matrix Ryy and the translation vector
Tpw in Eq.(1) and the perspective matrix My in Eq.(4) using
the method introduced in section 2.3. Although the frame
showed here happens to be roughly perpendicular to vehicle
axis, it is not necessary to put the frame this way.

" . “

L=
Fig 5 the calibration field

In order to examine the effect of the co-calibration
method, each scanning point and part of laser beams are
projected onto the image using the range data and the
co-calibration results, thus forming a kind of augmented
reality effect, as shown in Fig6. As it can be seen from Figo6,
the projection matches well with the scenario, especially note
that at each boundary of two neighboring objects, there is a



corresponding discontinuity in the projection of laser beam.
Fig6 displays a kind of lifelikeness as if one can really see the
laser beams and how they scan the scenario. Such lifelikeness
indirectly testifies the effectiveness and accuracy of the
proposed co-calibration method.
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e

Fig 6 the projection of laser beam on the images
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4.2 Experiment on the co-detection method

The intelligent vehicle used is the CyberC3 vehicle
developed by the IV Lab of SJTU, with a 2D laser scanner
SICK installed on the front of the vehicle and an off-the-shelf
Logitech camera installed on the top of the vehicle. The
camera and laser scanner are co-calibrated with the proposed
method introduced in section2. The experiment scenario for
pedestrian detection is shown in Fig7; the intelligent vehicle
is moving on a road and its detection area is within 20m ahead
and within 4m on two sides. Several pedestrians and
landmarks appear in the detection area early or late during the
experiment process. Every time the vision data and range data
are recorded at the same time and the sample interval is about
0.1 second; every frame of recorded data is processed using
the proposed co-detection method. Several images are
displayed as example, shown in Fig7. A detected pedestrian is
marked by bold yellow box while a detected landmark is
marked by thin blue box, as shown in Fig7; it can be seen that
the proposed method works well; the pedestrians as well as
landmarks are correctly detected. During the whole
experiment process, the omission detection ratio (omission
detection means all the cases when the pedestrian is not
detected or is detected as other object) and the false detection
ratio (false detection means all the cases when a
non-pedestrian is detected as a pedestrian) for pedestrians are
respectively 1% and 3%.

Fig 7 the result of co-detection of pedestrians

5 Conclusion

In this paper, a new co-detection method using camera
and laser scanner is proposed for pedestrian detection. First, a
method of camera and laser scanner co-calibration is
proposed, including how to obtain coordinate information of
control points and how to compute the geometric transform
relationship between the laser scanner coordinate, the vehicle
coordinate and the image coordinate. Then a laser scanner
and camera based pedestrian detection method using the
co-calibration result is proposed, including how to sift
candidate objects through range data, how to obtain proper
ROI and contour edges of candidate objects using range data
and co-calibration result, and how to make a decision on
candidate object according to its contour feature. Experiments
validate the efficiency of the proposed co-calibration method
and co-detection method. In future work, more sophisticated
image processing method such as SVM, NN, SIFT will
integrated into the architecture of the proposed co-detection
method.
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Abstract— Situational awareness is crucial for autonomous
driving in urban environments. We present the moving vehicle
tracking module we developed for our autonomous driving
robot Junior. The robot won second place in the Urban Grand
Challenge, an autonomous driving race organized by the U.S.
Government in 2007. The module provides reliable detection
and tracking of moving vehicles from a high-speed moving
platform using laser range finders. Our approach models both
dynamic and geometric properties of the tracked vehicles and (a)
estimates them using a single Bayes filter per vehicle. We
show how to build consistent and efficient 2D representations
out of 3D range data and how to detect poorly visible black
vehicles. Experimental validation includes the most challenging
conditions presented at the Urban Grand Challenge as well as
other urban settings.

I. INTRODUCTION

Autonomously driving cars have been a long-lasting dream Applanic INS!  \RIoRyrie Lasel

of robotics researchers and enthusiasts. Self-driving car sioKkLusLaser | : prgsaes
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort
and convenience. In recent years the Defense Advanc
Research Projects Agency (DARPA) has taken a lead on
encouraging research in this area and organized a series of
competitions for autonomous vehicles. In 2005 autonomous
vehicles were able to complete a 131 mile course in the desert
[1]. In the 2007 competition, the Urban Grand Challenge, IBEO Laser
the robots were presented with an even more difficult task:

i atinn ; ig. 1. (@) Our robot Junior (blue) negotiates an intersection
autonomous safe navigation in urban environments. In this h human-driven vehicles at the qualification event for the Urban

competition the robots had to drive safely with respect t@rand Challenge in November 2007. (b) Junior, is equipped with
other robots, human-driven vehicles and the environmerfive different laser measurement systems, a multi-radar assembly,

They also had to obey the rules of the road as describd§d @ multi-signal inertial navigation system.
in the California rulebook (see [2] for a detailed descapti
of the rules). One of the most significant changes from the
previous competition is the need for situational awareness
of both static and dynamic parts of the environment. Oul
robot, Junior, won the second prize in the 2007 competition
An overview of Junior’s software and hardware architecture
is given in [3]. In this paper we describe the approach we
developed for detection and tracking of moving vehicles.
Vehicle tracking has been studied for several decade:
A number of approaches focused on the use of visior
exclusively [4], [5], [6]. Whereas others utilized laser gan

Bosch Radar

SICK LDLRS Laser

finders [7], [8], [9] sometimes in combination with vision o -
[10]. We give an overview of prior art in Sect. Il. o o
For our application we are concerned with laser basea _ i . .
(a) without geometric model (b) with geometric model

vehicle tracking from the autonomous robotic platform Ju-

ni_or’ to which we will a_lso refer as the ego-vehicle (segg 2. scans from vehicles are often split up into separhtstars by
Fig. 1). In contrast to prior art, we propose a model basegtclusion. Geometric vehicle model helps interpret the dedpeply. Purple
approach which encompasses both geometric and dynar{ﬂetangles group together points that have been assodi@gether. In (b)

€ purple rectangle also denotes the geometric vehicle mGdai areas

) . are objects. Gray dotted lines represent laser rays. Blatk denote laser
This work was in part supported by the Defense Advanced Refsea data points. (Best viewed in color.)

Projects Agency under contract number HR0011-06-C-0148. dfinions
expressed in the paper are ours and not endorsed by the WBrm@went.



actual motion actual motion

V observer v observer

(a) without shape estimation (b) with shape estimation

Fig. 3. Vehicles come in different sizes. Accurate estimatbryeometric shape helps obtain a more precise estimate of tiielevelynamics. Solid
arrows show the actual distance the vehicle moved. Dashedsshow the estimated motion. Purple rectangles denote thraajec vehicle models.
Black dots denote laser data points. (Best viewed in color.)

properties of the tracked vehicle in a single Bayes filtee Th
approach eliminates the need for separate data segmentati Vv
and association steps. We show how to properly mode y
the dependence between geometric and dynamic vehicl
properties usinganchor point coordinatesThe geometric

model allows us to naturally handle the disjoint point ctust Q(

that often result from partial occlusion of vehicles (see
Fig. 2). Moreover, the estimation of geometric shape lead:
to accurate prediction of dynamic parameters (see Fig. 3).
Further, we introduce an abstract sensor representatsn, v
call thevirtual scan which allows for efficient computation

and can be used for a wide variety of laser sensors. Wi /

present techniques for building consistent virtual scaosf

3D range data and show how to detect poorly visible black (7 7 @ @
vehicles in laser scans. Our approach runs in real time witt 1 2 3 t

an average update rate of 40Hz, which is 4 times faster tha

the common sensor frame rate of 10Hz. The results shawg. 4. Dynamic Bayesian network model of the tracked vehicle
that our approach is reliable and efficient even in challeggi PoseX:, forward velocityv;, geometryG;, and measurements;.
traffic situations presented at the Urban Grand Challenge.

1. BACKGROUND segmentation and association stages. Our approach estimat

Typically vehicle tracking approaches (e.g. [7], [8], [9],p03|t|0n, velocity and shape of tracked vehicles.

[10]) proceed in three stages: data segmentation, dataiasso 1. REPRESENTATION
ation, and Bayesian filter update. During data segmentation o ) ) ) o
the sensor data is divided into meaningful pieces (usually Our ego-vehicle is outfitted with the Applanix navigation
lines or clusters). During data association these pieces ayyStem that provides pose localization with 1m accuracy.
assigned to tracked vehicles. Next a Bayesian filter upday¥e further improved the localization module performance
is performed to fit targets to the data. by.observmg_ lane markm_gs [3]. AI;hoqgh global localipati
The second stage - data association - is generally copbifts may still occur, vehicle tracking is much more aféett
sidered the most challenging stage of the vehicle detectidly localization drift rather than global shifts. For thissen
and tracking problem because of the association ambiguiti@e implementesmooth coordinatesvhich provide a locally
of multiple hypothesis tracking (MHT) algorithm (e.g. [8], data from the inertial measurement unit (IMU). As a result
[9]). The filter update is usually carried out using varianthere is virtually no drift in the smooth coordinate system.
of Kalman filter (KF), which is augmented by interactingThus for the remainder of the paper we will assume that
multiple model method in some cases [7], [9]. a rgasonably precise pose of the ego-vehicle is always
Although vehicle tracking literature primarily relies onavailable. o . ]
variants of KF, there is a great body of multiple target Following the common practice in vehicle tracking, we
tracking literature for other applications (see [11] for awill represent each vehicle with a separate Bayesian filter,
summary) where parametric, sample-based, and hybridsfiltegnd represent dependencies between vehicles via a set of
are used. For example [12] uses a Rao-Blackwellized particiocal spatial constraints. Specifically we will assume thait
filter (RBPF) for multiple target tracking on simulated datatwo vehicles overlap, that all vehicles are spatially sefeat
A popular alternative to MHT for data association is the joinby some free space, and that all vehicles of interest are
probabilistic data association (JPDA) method. For exampl€cated on or near the road.
in [13] a JPDA particle filter is used to track multiple target I .
from an indoor mobile robot platform. A. Probabilistic Model and Notation
The work included in this paper has been presented atFor each vehicle we estimate its 2D position and orien-
two conferences: [14] and [15]. In contrast to prior vehitation X; = (z,y:,6;) at time ¢, its forward velocityv;
cle tracking literature, we utilize a model based approacland its geometryG (further defined in Sect. 1lI-B). Also
which uses RBPFs and eliminates the need for separate dataeach time step we obtain a new measurenigntSee



_ _ the local coordinates of the anchor point will also need to
Time step: t Time step: t+ 1 be revised accordingly t6' = (C,, C,). Thus the complete
set of geometric parameters@= (W, L, C,, C,).

x C. Vehicle Dynamics Model

Given a vehicle’s velocityv; _; at time stept — 1, the
P velocity evolves via addition of random bounded noise based
y ]’Cx on maximum allowed acceleratian, ., and the time delay

K At between time steps— 1 andt. Specifically, we sample
y X C=(0,0 Xe1 |C=(C, 0) Awv uniformly from [—a,;maz At, GmaeAt].

The pose evolves via linear motion - a motion law that
is often utilized when exact dynamics of the object are
unknown. The motion consists of perturbing orientation by
A6y, then moving forward according to the current velocity
by v;At, and making a final adjustment to orientation
Fig. 5. As we move to observe a different side of a stationanpy Afd,. Again we sampleAd; and Ad, uniformly from

car, our belief of its shape changes and so does the position of the i ; ;
car’s center point. To compensate for the effect, we introduce IocJéaﬁlI 0 mazAt; dbmar At] for @ maximum allowed orientation

anchor point coordinate§' = %C’Z,C’y) so that we can keep the changedty,q. .
anchor pointX; stationary in the world coordinates.

v Observer Observer Q

D. Sensor Data Representation

In this paper we focus on laser range finders for sensing
e environment. Recently these sensors have evolved to be
ore suitable for driving applications. For example IBEO
lasca sensors allow for easy ground filtering by collecting
our parallel horizontal scan lines and marking which of
he readings are likely to come from the ground. Velodyne
p(ve|ve—1). HDL-64E sensors do not provide ground filtering, however
. . . they take a 3D scan of the environment at high frame rates
The vehlcle_ moves based on the evolved velocity accord|r@OHz) thereby producing 1,000,000 readings per second.
to a dynamics model: Given such rich data, the challenge has become to process
(X Xi_1,v0). the readings in real time. Vehicle tracking at 10 - 20Hz is
desirable for driving decision making.
The measurements are governed by a measurement model:A number of factors make the use of raw sensor data
(Z:| X, G) inefficient_. As the sensor rotates to collect t_he data, each
plat]de, &) new reading is made from a new vantage point due to ego-
For convenience we will writeX? = (X1, X»,..., X;) for ~motion. Ignoring this effect leads to significant sensoiseoi
the vehicle’s trajectory up to time Similarly, ! and Z*  Taking this effect into account makes it difficult to quickly
will denote all velocities and all measurements up to time access data that pertains to a specific region of space. Much
i of the data comes from surfaces uninteresting for the perpos
B. Vehicle Geometry of vehicle tracking, e.g. ground readings, curbs and trps.to

The exact geometric shape of a vehicle can be compléinally, the raw 3D data wastes a lot of resources as vehicle
and difficult to model precisely. For simplicity we approx-tracking is a 2D application where the cars are restricted
imate it by a rectangular shape of widii and lengthL. to move on the ground surface. Therefore it is desirable to
The 2D representation is sufficient because the height of tipge-process the data to produce a representation tailored f
vehicles is not important for driving applications. vehicle tracking.

For vehicle tracking it is common to track the position To expedite computations, we construct a grid in polar
of a vehicle’s center within the state variab¥e. However, coordinates - airtual scan- which subdivides360° around
there is an interesting dependence between our belief ab@uthosen origin point into angular grids (see Fig. 6). In each
the vehicle’s shape and position (Fig. 5). As we observe thangular grid we record the range to the closest obstacle.
object from a different vantage point, we change not only oudence each angular grid contains information about free,
belief of its shape, but also our belief of the position of itsoccupied, and occluded space. We will often refer to the
center point. AllowingX; to denote the center point can leadcone of an angular grid from the origin until the recorded
to the undesired effect of obtaining a non-zero velocitydor range as aay due to its similarity to a laser ray.
stationary vehicle, simply because we refine our knowledge Virtual scans simplify data access by providing a single
of its shape. point of origin for the entire data set, which allows con-

To overcome this problem, we vieX; as the pose of stant time look-up for any given point in space. As we
an anchor pointwho’s position with respect to the vehicle’s mentioned earlier it is important to compute correct world
center can change over time. Initially we set the anchortpoicoordinates for the raw sensor readings. However, once the
to be the center of what we believe to be the car shape andrrect positions of obstacle points have been computed,
thus its coordinates in the vehicldscal coordinate system adjusting the origin of each ray to be at the common origin
areC = (0,0). We assume that the vehicle’s local coordinatdor the virtual scan produces an acceptable approximation.
system is tied to its center with theaxis pointing directly Constructed in this manner, a virtual scan provides a cotnpac
forward. As we revise our knowledge of the vehicle's shapagpresentation of the space around the ego-vehicle ckbsifi

Fig. 4 for a dynamic Bayes network representation of th
resulting probabilistic model. The dependencies betwe
the parameters involved are modeled via probabilistic la
discussed in detail in Sects. IlI-C and IlI-E. For now w
briefly note that the velocity evolves over time according t
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box to include all points within a predefined distans®

into free, occupied and occluded. The classification helg@yound the vehicle (see Fig. 7). For an actual vehicle in

us properly reason about what parts of an object should Bis configuration, we would expect the points within the

visible as we describe in Sect. IlI-E. rectangle to be occupied or occluded, and points in its
For the purpose of vehicle tracking it is crucial to deterYicinity to be free or occluded, because vehicles are dpatia

mine what changes take place in the environment over timgeParated from other objects in the environment.

With virtual scans these changes can be easily computed jnFollowing the common practice for modeling laser range

spite of the fact that ego-motion can cause two consecutiy@ders, we consider measurements obtained along each ray

virtual scans to have different origins. The changes are-corffdependent of each other. Thus if we have a totaVafays

puted by checking which obstacles in the old scan are clearBythe virtual scanz, the measurement likelihood factors as

by rays in the new scan and vice versa. This computatioR!/IOWs: N

takes time linear in the size of the virtual scan and only .

needs to be carried out once per frame. Fig. 6(b) shows p(Z]G, X) = Hp(zi|G’X)'

results of a virtual scan differencing operation with rechpo =1

denoting new obstacles, green points denoting obstaclg& model each ray’s likelihood as a zero-mean Gaussian of

that disappeared, and white points denoting obstacles thatriances; computed with respect to a castselected based

remained in place or appeared in previously occluded aream the relationship between the ray and the vehigleiq a
Virtual scans are a suitable representation for a wideormalization constant):

variety of laser range finders. While this representation is 9

easy to build for 2D sensors such as IBEO, for 3D range P(%]G,X) =n; exp 7% b

sensors additional considerations are required to produce o;

consistent 2D representations. We describe these teCElrmIq'°|'he costs and variances are set to constants that depend on

in Sect. V. the region in which the reading falls into (see Fig. 7 for

illustration). c,cc, oocc are the settings for range readings that
E. Measurement Model fall short of the bounding box and thus represent situations
when another object is occluding the vehialg.and oy, are
Given a vehicle’s pos&, geometryG and a virtual scan the settings for range readings that fall short of the vehicl
Z we compute the measurement likelihoptZ |G, X)) as but inside of the bounding box and o, are the settings
follows. We position a rectangular shape representing the
vehicle according taX and G. Then we build a bounding  !we used the setting of = 1m in our implementation.



for readings on the vehicle’s visible surface (that we assum
to be of non-zero depthy,,, o, are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
ranger,,;, and maximum range.,.. of the sensor. Since
the costs we select are piece-wise constant, it is easy to
integrate the unnormalized likelihoods to obtain the norgjg 5 e determine ground readings by comparing angles between
malization constants,. Note that for the rays that do not consecutive readings. Iff, B, C' are ground readings, them is
target the vehicle or the bounding box, the above logiglose to0 and thuscos o is close tol.
automatically yields uniform distributions as these raggan
hit the bounding box. ) , , ,

Note that the proposed measurement model naturalf’€ factorR; is approximated using a set of particles; the
handles partially occluded objects including objects trat factor S, is approximated using a Gaussian distribution (one
“split up” by occlusion into several point clusters (see.Rly ~ Gaussian per particle). _ )

In contrast these cases are often challenging for appreache Detailed derivations of the update equations are provided

that utilize separate data segmentation and correspoedefit [15]. Here we briefly note that the motion update of the
methods. particle filter is carried out using the vehicle dynamics eiod

described in Sect. llI-C. The measurement update is carried
IV. VEHICLE TRACKING out by computing the importance weights for all particles:
Most vehicle tracking methods described in the literature _E 721G X
apply separate methods for data segmentation and corre- we = Bs,_, [ p(Z:|G, Xe) |-

spondence matching before fitting model parameters via words, the importance weights are the expected value
extended Kalman filter (EKF). In contrast we use a singlewith respect to the vehicle geometry prior) of the mea-
Bayesian filter to fit model parameters from the start. Thisurement likelihood. Using Gaussian approximations of
is possible because our model includes both geometric agse geometry priorS;_; and the measurement likelihood
dynamic parameters of the vehicles and because we quyzt|G, X,), this expectation can be computed in closed
on efficient methods for parameter fitting. We chose thgyrm. We obtain a Gaussian approximation of the geometry
particle filter method for Bayesian estimation because it igrior recursively and apply Laplace’s method to approxanat
more suitable for multi-modal distributions than EKF. Weli the measurement likelihood by a Gaussian.
the multiple hypothesis tracking (MHT) method commonly — . o
used in the literature, the computational complexity for ouB. Initializing and Discontinuing Tracks
method grows linearly with the number of vehicles in the New tracks are initialized in areas where scan differencing
environment, because vehicle dynamics dictates that leshicdetects a change in data, that is not already explained
can only be matched to data points in their immediatey existing tracks. New tracks are fitted using the same
vicinity. The downside of course is that in our case twaneasurement and motion models (Sects. IlI-E and 1lI-C) that
targets can in principle merge into one. In practice we hawse use for vehicle tracking. The candidates are vetted for
found that it happens rarely and only in situations wheréhree frames before they can become “real tracks”. Detectio
one of the targets is lost due to complete occlusion. In thesg new vehicles is the most computationally expensive piart o
situations target merging is acceptable for our applicatio vehicle tracking. In order to achieve reliable vehicle déta
We have a total of eight parameters to estimate for eaéh real time, we developed a number of optimization tech-
vehicle: X = (z,v,6), v, G = (W,L,C,,C,). Computa- niques. Details of the detection algorithm and optimizztio
tional complexity grows exponentially with the number ofcan be found in [14].
parameters for particle filters. Thus to keep computational We discontinue tracks if the target vehicle gets out of
complexity low, we turn to RBPFs first introduced in [16].sensor range or moves too far away from the fodlde also
We estimateX and v by samples and keep Gaussian esdiscontinue tracks if the unnormalized weights have been
timates forG within each particle. Below we give a brief low for several turns. Low unnormalized weights signal that
derivation of the required update equations. the sensor data is insufficient to track the target, or that
A. Update Equations lour' estimate is too far away from the _actual vehicle. This
, i . logic keeps the resource cost of tracking occluded objects
At each time step we produce an estimate of a Bayesiangy, yet it still allows for a tracked vehicle to survive bad
belief about the tracked vehicle’s trajectory, velocitydan gata or complete occlusion for several turns. Since nevk trac
geometry based on a set of measurements: acquisition only takes three frames, it does not make sense t
Bel, = p(X*', 0!, G| ZY). continue tracking objects that are occluded for signifigant
longer periods of time.

We split up the belief into two conditional factors:
V. WORKING WITH 3D RANGE DATA

t t|r7t t .t t
Bely = p(X°,v|Z7) p(GIXT, 0, Z7). As we explained in Sect. llI-D, vehicle tracking is a 2D
The first factor encodes the vehicle’s motion posterior:  problem, for which compact 2D virtual scans are sufficient.
R, = p(X*,0'ZY) However fqr 3D sensors, suc;h as Velodyne, it is non-
t = PASLY ) trivial to build consistent 2D virtual scans. These sensors
The second factor encodes the vehicle’s geometry posteriprovide immense 3D data sets of the surroundings, making

conditioned on its motion:
P 2A digital street map was available for our application in theaR
Sy = p(G| X' v, Z°). Network Definition Format (RNDF).



computational efficiency a high priority when processing th
data. In our experience, the hard work pays off and th
resulting virtual scans carry more information than 2D sens
data.

A. Classification of 3D Points

To produce consistent 2D virtual scans, we need to u
derstand which of the 3D data points should be considerd
obstacles. From the perspective of driving applications
are interested in the slice of space directly above the grou
and about 2m high, as this is the space that a vehicle wo
actually have to drive through. Objects elevated more th
2m above ground - e.g. tree tops or overpasses - are
obstacles. The ground itself is not an obstacle (assum
the terrain is drivable). Moreover, for tracking appliceis
low obstacles such as curbs should be excluded from virtu
scans, because otherwise they can prevent us from seeing
more important obstacles beyond them. The remaining obig. 10. Detecting black vehicles in 3D range scans. Whitatsaepresent
jects in the 2m slice of space are obstacles for a vehiclgi! Yeochne Sae, Yelow Ines epresent i generaisaiscens. Top
even if these objects are not directly touching the ground.aser returns. Bottom left: virtual scan with black objeetettion. Bottom

In order to classify the data into the different types ofight: virtual scan without black object detection.
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a singlenpoi
of origin and stores actual world coordinates of the sens@resent a method for detecting black objects in 3D laser. data
readings. Just as in the 2D case, this grid is an approximati&igure 10 shows the returns obtained from a black car. The
of the sensor data set, because the actual laser readings inn#y readings obtained are from the license plate and wheels
scan have varying points of origin. In order to downsamplef the vehicle, all of which get filtered out as low obstacles.
and reject outliers, for each spherical grid cell we computistead of looking at the little data that is present, we can
the median range of the readings falling within it. This give detect the black obstacle by looking at the data that is absen
us a single obstacle point per grid cell. For each spheric#ino readings are obtained along a range of vertical angles i
grid cell we will refer to the cone from the grid origin to the a specific direction, we can conclude that the space must be
obstacle point as a virtual ray. occupied by a black obstacle. Otherwise the rays would have

The first classification step is to determine ground point$it some obstacle or the ground. To provide a conservative
For this purpose we select a single slice of vertical anglasstimate of the range to the black obstacle we place it at
from the spherical grid (i.e. rays that all have the samthe last reading obtained in the vertical angles just before
bearing angle). We cycle through the rays in the slice frorthe absent readings. We note that this method works well
the lowest vertical angle to the highest. For three consexut as long as the sensor is good at seeing the ground. For the
readings4, B, andC, the slope betweeA B and BC should Velodyne sensor the range within which the ground returns
be near zero if all three points lie on the ground (see Fig. &e reliable is about 25 - 30m, beyond this range the black
for illustration). If we normalizeAB and BC, their dot obstacle detection logic does not work.
product should be close b Hence a simple thresholding of
the dot product allows us to classify ground readings and to VI. EXPERIMENTAL VALIDATION
obtain estimates of local ground elevation. Thus one useful The most challenging traffic situation at the Urban Grand
piece of information we can obtain from 3D sensors is aChallenge was presented on course A during the qualifying
estimate of ground elevation. event (Fig. 11) . The test consisted of dense human driven

Using the elevation estimates we can classify the reraffic in both directions on a course with an outline resem-
maining non-ground readings into low, medium and higlpling the Greek lette. The robots had to merge repeatedly
obstacles, out of which we are only interested in the mediuinto the dense traffic. The merge was performed using a
ones (see Fig. 9). It turns out that there can be medium heidbft turn, so that the robots had to cross one lane of traffic
obstacles that are still worth filtering out: birds, inseat&l each time. In these conditions accurate estimates of positi
occasional readings from cat-eye reflectors. These obkstachnd velocities of the cars are very useful for determining
are easy to filter, because th’ vector tends to be very long a gap in traffic large enough to perform the merge safely.
(greater than 1m), which is not the case for normal verticalars passed in close proximity to each other and to station-
obstacles such as buildings and cars. After identifying thery obstacles (e.g. signs and guard rails) providing plenty
interesting obstacles we simply project them on the 2[Bf opportunity for false associations. Partial and congplet
horizontal plane to obtain a virtual scan. occlusions happened frequently due to the traffic density.
. Moreover these occlusions often happened near merge points
B. Detection of Black Obstacles which complicated decision making.

Laser range finders are widely known to have difficulty During extensive testing, the performance of our vehicle
seeing black objects. Since these objects absorb light, ttracking module has been very reliable and efficient (see
sensor never gets a return. Clearly it is desirable to “sed”ig. 11). Geometric shape of vehicles was properly estichate
black obstacles for driving applications. Other sensordcco (see Figs. 12 and 13), which increased tracking relialalitgt
be used, but they all have their own drawbacks. Here wieproved motion estimation. The tracking approach proved



(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 9. In (c) _Velod(?/ne data is colored by %pe: orange - ground, yellow - lowtatie, red - medium obstacle, green - high obstacle.
In (d) yellow lines denote the virtual scan. Note the truck crossing the ettos, the cars parked on a side of the road and the white
van pe:jrked on a driveway. On the virtual scan all of these vehiclesleagly marked as obstacles, but ground, curbs and tree tops are
ignored.

TABLE |
TRACKER PERFORMANCE ON DATA SETS FROM THREE URBAN ENVIRONMERS. MAX TP IS THE THEORETICALLY MAXIMUM POSSIBLE TRUE
POSITIVE PERCENT FOR EACH DATA SETTP AND FP ARE THE ACTUAL TRUE POSITIVE AND FALSE POSITIVE RATES ATTAINED BY THE ALGORITHM.

Total Total | Correctly Falsely | Max TP TP FP
Data Sets Frames | Vehicles | Identified | Identified (%) (%) | (%)
UGC Area A 1577 5,911 5,676 205 97.81 96.02 | 3.35
Stanford Campus| 2,140 3,581 3,530 150 99.22 | 98.58 | 4.02
Alameda Day 1 1,531 901 879 0 98.22 | 97.56 0
Overal | 5,248 10,393 10,085 355 98.33 97.04| 33
capable of handling complex traffic situations such as the VII. CONCLUSIONS

one presented on course A of the UGC. The computation \ye have presented the vehicle tracking module developed
time of our approach averages at 25ms per frame, which i§; Stanford’s autonomous driving robot Junior. Trackisg i
faster than real time for most modern laser range finders. performed from a high-speed moving platform and relies on

We also gathered empirical results of the tracking modull@Ser range finders for sensing. Our approach models both
performance on data sets from several urban environmenfnamic and geometric properties of the tracked vehicles
course A of the UGC, Stanford campus and a port town ignd estimates them with a single Bayes filter per yehlcle.
Alameda, CA. For each frame of data we counted how marl{} contrast to prior art, the common data segmentation and
vehicles a human is able to identify in the laser range dat ssociation steps are carried out as part of the filter itself
The vehicles had to be within 50m of the ego-vehicle, on of € approach has proved reliable, efficient and capable of
near the road, and moving with a speed of at least 5mph. ndling challenging traffic situations, such as the ones
summarize the tracker’s performance in Tbl. I. Note that thBresented at the Urban Grand Challenge.
maximum theoretically possible true positive rate is lower Clearly there is ample room for future work. The pre-
than 100% because three frames are required to detect 3gNted approach does not model pedestrians, bicyclists, or
new vehicle. On all three data sets the tracker performégotorcyclists, whichis a prerequisite for driving in pogigld
very close to the theoretical bound. Overall the true pasiti r€@S. Another promising direction for future work is fusio
rate was)7% compared to the theoretical maximumas%. of different sensors, including laser, radar and vision.

Several videos of vehicle detection and tracking using the VIIl. A CKNOWLEDGEMENTS
technigues presented in this paper are available at theitwebs This research has been conducted for the Stanford Racing
Team and would have been impossible without the whole
team’s efforts to build the hardware and software that makes
http://cs.stanford.edu/people/petrovsk/uc.html up the team's robot Junior. The authors thank all team



(a) without size estimation (b) with size estimation

Fig. 13. Size estimation improves accuracy of tracking as easelen on
the example of a passing bus taken from an Alameda data sebWiize

estimation (a) the tracking results are poor because the deomsodel

does not fit the data well. Not only is the velocity estimatezbmectly, but

the track is lost entirely when the bus is passing. With sitémation (b)

the bus is tracked successfully and the velocity is propestymated. (Best
viewed in color.)

members for their hard work. The Stanford Racing Team
is indebted to DARPA for creating the Urban Challenge,
and for its financial support under the Track A Program.
Further, Stanford University thanks its various sponsors.
Special thanks also to NASA Ames for permission to use
their air field.
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Connexity based fronto-parallel plane detection for stereovision
obstacle segmentation

Thomas Veit

Abstract— Progress in hardware makes it possi-
ble to compute dense disparity maps in real-time.
This work describes a suitable obstacle segmentation
method for these dense disparity maps. The method
analyses the connexity of the disparity map in or-
der to extract fronto-parallel planes by means of a
suitable depth constraint. This pragmatic geometrical
approach reduces the number of detection parame-
ters. As a consequence it is easy and intuitive without
requiring expert knowledge of the segmentation algo-
rithm. The target application field is Advanced Driv-
ing Assistance Systems (ADAS). The performance
of the method is illustrated by various results on
real image sequences in the context of pedestrian
detection.

I. INTRODUCTION

The development of Advance Driving Assistance Sys-
tems (ADAS) necessitates tools that are able to interpret
the surroundings of a vehicle. As an example, a path
planning algorithm needs to compute the free navigable
space in order to determine which direction the vehicle
should take. The issue addressed in this paper is part
of the process of analysing a road scene. The proposed
method intends to extract from the scene the objects that
are relevant for its interpretation.

The aim of this work is to segment the disparity
map obtained from a stereo-vision system. In the field
of intelligent vehicles, stereo-vision is backed up as an
alternative to high cost laser sensors by the real-time
computation of dense disparity maps [1]. Compared to
1D scanning sensors, stereo-vision not only provides
depth information but also height on top of the full
intensity information of the scene.

The outline of this paper is the following. Section II
presents some related work. The computation of the
disparity map is briefly described in Section III. The
obstacle segmentation process is detailed in Section IV.
Section V presents some experimental results in the
context of pedestrian detection. Finally, Section VI gives
some concluding remarks.

II. RELATED WORK

A large amount of literature discusses the issue of
stereo-vision obstacle detection. The problem is stud-
ied from different angles. In [2] a method is proposed
that extracts obstacles without computing a disparity
map. The system analyses polar histograms obtained

T. Veit is with LIVIC / INRETS, 14 route de la Miniére, F-78000
Versailles France, Thomas.VeitQinrets.fr

after compensating the perspective in the left and right
images. This work focuses more on free-space estimation
than on obstacle segmentation.

The authors of [3] present a framework for road plane
estimation, marker-less road segmentation and obstacle
segmentation. The obstacle segmentation step is based
on a split and merge technique in order to group pixels
with similar disparities.

The problem of obstacle detection is addressed in [4]
by projecting the 3-dimensional disparity data on a 2D
plane where obstacles appear as line segments. Thus,
the obstacles extraction problem is translated into a line
extraction problem making extensive use of the Hough
transform. Unfortunately, the line segment model for
obstacle is only an approximation and the line detection
in the 2D space still turns out to be complex due to low
contrast and discontinuities.

The work in [5] is the closest to the one proposed in
this paper. The authors rely on a watershed segmentation
in order to group disparity values into regions corre-
sponding to obstacles. This watershed segmentation is
applied on a multi-scale morphological gradient image of
the disparity map.

III. DISPARITY MAP COMPUTATIONS

The obstacle detection algorithm relies on a classical
stereo-vision framework. The images acquired by the left
and right camera are supposed to be rectified (i.e. epipo-
lar lines correspond in both images). The disparity map
is computed by applying a Sum of Absolute Difference
(SAD) matching cost on squared aggregation windows
and a winner-take-all strategy. The size of the windows
is chosen rather large (9 x 9 for 320 x 240 images). Indeed,
the foreground fattening effect is beneficial for obstacle
detection. The disparity map is computed after filtering
the input images with a Laplacian filter in order to be
robust against global illumination changes between both
cameras. In order to reduce the number of errors in the
disparity map due to false correspondences, a symmetry
constraint is enforced: pixels for which the disparity
values for left to right and right to left matching differ are
discarded. Finally, the disparity map is post-processed
with a 3 x 3 median filter in order to enhance spatial
coherence and reduce errors due to noise. An example of
the resulting disparity map is presented in Fig. 1.

IV. OBSTACLE SEGMENTATION

The proposed obstacle segmentation algorithm pro-
ceeds in three steps. First, the road plane is suppressed.



Fig. 1.

Then, connected components in the disparity map are ex-
tracted according to a specific depth constraint. Finally,
the connected components satisfying a set of geometri-
cal constraint on their height, width and position are
selected. Fig. 2 sums up the general flow of the algorithm.

Rectified Left Image

|

’ Laplacian Filter ‘ ’ Laplacian Filter ‘

\/

Disparity Map Computation

Median Filter
'

Rectified Right Image

Road plane subtraction

Y
’ Connected Components Extraction ‘

l

’ Geometrical Constraints ‘

Fig. 2. General flow of the algorithm

A. Road plane subtraction

The first step of the detection algorithm is to suppress
from the disparity map the values that correspond to the
road plane. Indeed the proposed detection method relies
on the classical assumption that the obstacle of interest
are above the ground plane. If the position of the camera
with respect to the road plane is assumed to be known
then the disparity dmax (v) of a pixel (u,v) belonging to the
road plane is easily related to its vertical image position:

e (v) = (v — vo)cose+asin9)%, (1)

where o is the focal length expressed in pixels, vg is
the vertical image position of the optical center, b is the

Left image, right image and corresponding disparity map

baseline distance of the stereo-system, & is the height of
the camera with respect to the road plane and 0 is the
angle between the optical axes and the road plane.

All pixels which, for a given vertical image position,
have a disparity that is lower than the road plane (in
other words all points below the road plane) are dis-
carded from further processing. In practice, a slightly
stronger constraint is enforced: all points that are below
a planar surface that is 0.3m above the road plane are
discarded. This margin enables to deal with situations
where a sidewalk is present or where the planar road
assumption is only partly verified.

Now, the position of the camera with respect to the
road plane can either be assumed constant or it can
be dynamically estimated. The first alternative is suit-
able for smooth urban driving conditions and situations
were acceleration and deceleration are reasonably low.
However, when the vehicle’s dynamics causes strong
variations of the camera pitch angle, it has to be rees-
timated using methods such as the Hough transform
[4], least-squares [3] or RANSAC [5]. More sophisticated
techniques estimating a non-planar road surface might
also be applied.

B. Connected component extraction

Once the values that correspond to the road surface
are removed it is possible to focus on obstacles. One
major characteristic of obstacles is that they can be
approximated as fronto-parallel surfaces with respect to
the image plane. In other words, obstacles are repre-
sented by approximately constant connected regions in a
disparity map. The simple idea of the proposed method
is to pick out these approximately constant connected
regions. One of the difficulties is that the disparity values
of an obstacle surface are only constant in the ideal
case. In practice, the depth of obstacles varies with their
shape. Therefore, a certain amount of disparity variation
needs to be tolerated. Of course, the disparity tolerance
needs to take into account the decrease of the distance
resolution for small disparity values.

The tolerance on the disparity difference within a
region Agisp(d) can be specified as a function of the
maximal depth variation of an obstacle surface Az. This
depth constraints can be translated to a corresponding



limit on the disparity variation within a region of the
disparity maps and depends on the current disparity d:

d*Ay 5
Cab+dAz @

Now that the disparity tolerance is specified, a simple
flood-fill algorithm is applied: given a starting point
p*, all neighboring pixels p that satisfy the disparity
difference constraint d(p) —d(p*) < Auisp(d(p*)) (2) are
grouped. A last question to answer is “which pixels should
be considered as starting points?”. The naive answer
would be to apply the flood-fill to a discrete grid of sub-
sampled image positions. A better strategy consists in
selecting the maximal disparity value of the disparity
map as a starting point. The pixel grouped with this seed
point are then suppressed and the next maximal value is
processed. The algorithm stops when the whole image is
processed or when the maximal disparity is zero. This
strategies enables to extract obstacle regions by starting
with the closest obstacle (maximal disparity).

Adisp (d)

C. Geometrical selection

Finally, since not all approximately fronto-parallel pla-
nar surfaces correspond to relevant obstacles, a geometri-
cal filtering step is applied. Based on the 3D geometrical
characteristics of the extracted surfaces (position in the
scene, width, height), it is possible to select only a
subset of objects of interest. This part of the algorithm
is of course application dependent. If the focus is on
pedestrian detection the constraints will be stronger than
for a general obstacle detection algorithm.

V. EXPERIMENTAL RESULTS

This section presents some results on real data in the
context of pedestrian detection but the algorithm can
be applied to general obstacle detection by relaxing the
geometrical constraints on the obstacles. The data of this
experiments was collected with the LOVe project.

The baseline of the stereo system is about 40cm and
the processed images are 320 x 240.

The geometrical constraints enforced on the extracted
connected components are the following:

o image surface: 50 pixels,

¢ height: Im to 2m,

e top: <2.5m,

e bottom: < 0.4m,

« width over height ratio: < 1.

A first series of results is presented in Fig. 3. Another
series of results on various urban scenarios is presented
in Fig. 4. These results show that the detection method
correctly picks out the obstacles verifying these geomet-
rical specifications and that the detected objects indeed
correspond to pedestrians.

A few false alarms appear on road scene objects that
do comply with the geometrical constraints but do not
correspond to pedestrians. This is the case of the back of
some partly occluded cars parked on the road side (see

i’ UL, 7
R AR e SNl

Fig. 3. Disparity maps (right) and corresponding extracted con-
nected components (left). The disparity values decrease from red,
over yellow, and green to blue. The red rectangles correspond to
the bounding boxes of the detected components. Pixels belonging
to a detected component are colored in the gray level images.



Fig. 4. Detection results for different urban scenes. The blue rect-
angles correspond to the bounding boxes of the selected connected
components.

Fig. 5) and of parcmeters as illustrated on Fig. 3 (last
line). A shape recognition step should be able to lift these
ambiguities.

Fig. 5.

cars.

Some false alarms on the back of partly occluded parked

The computation time on a 2Ghz Intel Xeon is about
70ms. The computation of the disparity map corresponds
to about 65% of this time. No SIMD optimization were
implemented.

Compared to other obstacle segmentation methods the
proposed method is simple and intuitive: it does not
require any expert knowledge of the segmentation algo-
rithm for tuning the parameters. The detection results
are really satisfying since objects verifying the geometric
constraints are accurately extracted. All detection re-
lated threshold are expressed in explicits units. Most of
them are expressed in meters and refer to the size in the
real scene.

VI. CONCLUSION

In this paper, a method for segmenting obstacles from
a disparity map was proposed. The method groups neigh-
boring disparity values according to a depth difference
constraint. Simple geometrical rules enable to select rel-
evant objects among the extracted components. Effective
results were obtained on various real image sequences in
an urban environment.

Of course analysing only the disparity map might not
be sufficient to obtain a highly robust obstacle detec-
tion algorithm. Two aspects might highly improve the
robustness : enforcing temporal coherence of successive
detections by tracking them and applying shape recogni-
tion in order to validate the detected region as relevant
obstacles.
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Safe and Dependable Operation of a Large Industrial Autonomous
Forklift

Ashley Tews

Abstract— For autonomous vehicles to operate in industrial
environments, they must demonstrate safe, reliable, predictabje
efficient and repeatable performance. To achieve this, two
important high level factors are situational awareness and
system dependability. The vehicle must be able to identify
objects and predict the trajectories of dynamic objects in order
to avoid unplanned interaction and to improve performance.
In many environments, the vehicle is also required to operate
for long periods of time over many days, weeks and months.
Towards this goal, the vehicle needs to self-monitor its hardware
and software systems, and have redundant primary systems.
We have incorporated many of these requirements into our
Autonomous Hot Metal Carrier which is a modified 20 tonne
forklift used in aluminium smelters for carrying a 10 tonne
payload between large sheds, in the presence of other vehicles
and people. Our HMC has successfully conducted 100’s of hours
of autonomous operation in our industrial worksite. The main
hardware and software systems will be discussed in this paper
with particular focus on the redundant localisation and obstacle
avoidance systems. Experiments are described to highlight the
performance of the HMC systems in the presence of dynamic
objects around a typical worksite.

Fig. 1. A Hot Metal Carrier in the process of picking up theable.
. INTRODUCTION

Vehicles operate constantly around industrial worksites, . . L
L - operation may be affected by the environmental conditions:

In many applications, they perform repetitive homogeneous . . .
tasks such as moving loads from one warehouse location. - fog, snow, and heat. Research into automating these
g o8 . -~ "vehicles and their operations needs to consider the vétyabi
to another. In the aluminium industry, Hot Metal Carriers . S .
) . . "In operating conditions to produce repeatable and reliable
(HMCs) perform the task of transporting molten aluminium

- . erformance of the task.
from the smelter (where the aluminium is made) to th .
. L . - At our worksite, we have fully automated a Hot Metal
casting shed where it is turned into block products. The-veh . . .
cles weigh approximately 20 tonnes unloaded and resembs. o+ and have demonstrated typical operations of a pro-
Weigh app y . . . duaction vehicle. Our vehicle is capable of autonomous start
forklifts except they have a dedicated hook for maniputatin

the load rather than fork tines (Figure 1). The molte#p’ shutdown, navigation, obstacle management, and geucib

aluminium is carried in large metal crucibles. The cruciblep'CkUD and drop off. It has conducted hundreds of hours

. ) f [ I i f
weigh approximately 2 tonnes and they can hold 8 tonn 0S autonomous operations and demonstrated long periods o

of molten aluminium usually superheated above 700 degree@h reliability and repeatibility. The vehicle also havel

) . . Safety systems incorporated into it to make its operati@ns a
Celcius. Therefore, HMC operations are considered heavg/ y sy P P

. . X - afe as possible. The remainder of this paper outlines our
ihsc'JstL,]eand repetitive, with safety of operation a significan esearch and results.

Our research is focused towards automating the opera- Il. MODULES

tions of Hot Metal Carrier-like vehicles. There are many Tq pe fully capable of conducting all tasks of a manned
challenges in their operating environment considering theenicle, the autonomous HMC needs to address the issues of
travel inside and outside of buildings. Inside, there is st vagafety, reliability and repeatability. We have considetesse
amount of infrastructure, other mobile machines and peopl@syes when automating the HMC's hardware and software

In various areas, there are strong magnetic fields and highstems. A block diagram of the major hardware components
temperatures near the molten aluminium vats. Outsider, theg shown in Figure 2.

_ _ o level and vehicle level. The high level modules provide
Ashley Tews is with the Commonwealth Scientific and . .
Industrial Research Organization, Queensland, Australiommands for controlling the vehicle based on the requested
Ashl ey. Tews@si ro. au tasks, vehicle state and observed state of the environment.
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Fig. 2. Overview of the hardware architecture.

The vehicle level modules provide vehicle state infornratio
and act as the interface to the vehicle’s control systems
They also take care of several low level safety interface!
including physical interlocks, heartbeat monitors betwee
critical systems, and e-stop control. jected 3D-edge-map

The vehicle has a light stack on the hood to provide a basjg; 3 gxamples of the vision-based localisation system. Talo-eye
visual indication of its state. The lights indicate wheta@er cameras are placed at the front of the vehicle facing sideayand b).
e-stop is active, user intervention is required, if the gkhis The blue hemispher(_es.represent the field of vie_W of th_e camimssveyed

L dge map of the buildings (c) can be tracked in the images (d).
operating in autonomous mode, as well as two programmabﬁe
status indicators that can be used to indicate if a monitored
system’s parameters exceed or drop below a threshold value
(e.g. pneumatic system pressure).

To allow the HMC to conduct autonomous operations
safely without the requirement of a safety supervisor to
be in the cabin, a RF safety remote is part of the low
level interface. This allows the supervisor to be outside
of the cabin to monitor operations. The unit has several
programmable switches and an e-stop switch to stop the
vehicle in an emergency.

The remainder of this section describes the main high level
modules.

o Fig. 4. The HMC's coverage from lasers mounted on the corners.
A. Redundant Localisation

A fundamental requirement for any autonomous vehicle
conducting reliable operations is localisation. It fornme t 3). The images are exposure compensated and edge-features
basis of any high level navigation, path planning and olbstacextracted. Edges consist of the outline of major pieces of
avoidance systems. To achieve high reliability, singlenfsoi infrastructure such as sheds and doorways. The resulting
of failure need to be reduced or removed completely. Mangdge-map is compared to arpriori map generated offline
localisation system use a single type of sensor or fuse sensérom surveyed coordinates. The matches are determined
into a single system. A hardware or sofware fault with thesprobabilistically using a particle filter. The laser-based
systems can render the localisation useless. Consequéetly system uses the four outer lasers on the HMC (see Figure 4)
vehicle may have little choice but to signal a fail and wait taand retro-reflective tape that forms artificial beacons lgigh
be rescued. Using redundant hardware and software systewsible on the lasers’ intensity channel. The beacons have
provides many benefits including the ability to continuehwit been placed at irregular intervals around the worksite with
the complete failure of a system as well as the ability ta maximum separation of 30m. Their locations have been
cross-reference systems for bootstrapping, validity kine¢  surveyed and recorded in a database that is stored on the
and can also be used for offline data fusion. HMC. The system compares a sensed beacon constellation

The HMC's localisation consists of independent vision anavith the database to triangulate the vehicle position. A
laser-based systems. The vision-based localisationrayiste particle filter is also used for this purpose. The accuracy
described in detail in [1]. It conists of a firewire fisheyeof this system is dependent on the density of sensed beacons
camera mounted on each of the front mudguards that provided around our site, it is sufficient to allow the large HMC to
colour images back to an onboard computer (see Figuravigate accurately through narrow doorways and roadways



object. It has two modes of operation depending on whether
the crucible is on or not. When the crucible is on, it is
detected in the rear laser scans and consequently, a shaped
detection envelope is used instead. In this mode, the \eehicl
has a blind spot behind the crucible. In typical operations
with the crucible on, the vehicle will only reverse when it

is dropping off which is less frequent than other operations
However, we are addressing the blind spot issue as part of
future work.

A second issue with using planar laser scans is that objects
are only detected within the laser plane. Any obstacle above
or below the scan is not detected. As a result, the main
Fig. 5. Entry to the storage shed where the crucible getspap purpose of this system is to detect people close to the eehicl

off. Note the clearance between the vehicle and the doonidgssis qr nearby infrastructure (e.g. buildings, bollards or eark
less than 20cm. The vehicle successfully traverses thronghdborway

using waypoints which demonstrates the accuracy and rdpkgtaf the Veh|CIeS)' In operation, the vehicle slows Wh_en it gppreach
localisation, navigation and control systems. the obstacle, or the obstacle approaches it until either the

object is close enough to warrant the vehicle to halt or it
passes. If the object is too close (approximately 50cm), the

(e.g. Figure 5), some of which have a clearance of 20cm.vehicle will remain stationary until the operator interesn

The combined localisation system works by use of afo remove the object, or drive the HMC around it manually.
arbitration mechanism that compares the output and confi-2) 3D Obstacle Detection: The 3D obstacle detection
dence of the vision and laser localisers. If the primaryeyst system’s primary purpose is to provide a more thorough
has a low confidence or fails, the arbitrator promotes thenalysis of the path in front of the vehicle. It consists
secondary system to the primary and continues to monitef a system using a laser mounted above the cabin. The
both for failure and recovery. The localisation output fromaser has a horizontal scan plane that intercepts the ground
the arbitrator is sent to the navigation module so any singlgoproximately 25m in front of the vehicle. This allows
system failure is transparent to vehicle operations. Morgpproximately eight seconds for the vehicle to come to a halt
details of this system are described in [2]. if travelling at high velocities around 3.0 m/s. An obstaisle
. determined as an object higher than approximately 5cm that
B. Obstacle Detection lies in the path of the vehicle. The path is determined from

The obstacle detection systems consist of one of the mabe vehicle’s current position past the next waypoint. The
important safety aspects for any autonomous vehicle. Wgstem works by accumulating scans as the vehicle travels.
define an 'obstacle’ as a significantly sized object that @mehe ground plane is extracted from these scans and any
close to, or intersects the vehicle’s volumetric trajegtdihe  object projecting from it identified as traversable or nét. |
volumetric trajectory consists of the bounding volume oft is not, the system sends a signal to the hardware interface
the vehicle projected along its planned path. This includa® stop the vehicle and signal that an obstacle has been
overhangs such as the top of a shed door opening, sidacountered. This signal consists of a flashing light on the
obstructions, and objects above a certain size on the grounghicle’s status light stack and sending a message through
It is very difficult or expensive to outfit a vehicle such thatthe software system. The vehicle remains halted until the
it is entirely shrouded by a protective sensor curtain tlaait ¢ object is removed and the status cleared by the operator via
detect any object approaching or too close to the vehicléhe safety remote. Manual, rather than automatic clearing
As a result, the HMC uses 2D and 3D obstacle detectioof the status is a safety issue since in general, the vesicle’
systems. These are supplementary systems that run ingdarafiath should be clear and any unexpected object detected may
and affect the vehicle’s operations in different ways. Ehesindicate a problem in that area of the worksite.
systems are described next. o

1) 2D Obstacle Detection: The role of the 2D Obstacle C- Mission Controller
Detection system is to provide a reactive protective epelo  The high level mission controller directs the navigation,
around the entire vehicle such that the vehicle will reductasking and path planning components as shown in Figure 6.
speed and stop as an object approaches. This systemThe Mission Controller is responsible for switching betwee
implemented using scanning laser rangefinders located tasks and monitoring their performance. A task may be “drive
each corner of the vehicle, mounted approximately 1.4 ralong a section of road”, “drop off the crucible”, “start up
from the ground as shown in Figure 4. the engine” or even “blow the horn”. Currently a mission

These lasers are mounted with a slight downward tilt sz a sequence of tasks with each task returning its status
they intersect the ground at around 25-30m. This modulduring execution. Once a task has finished, the Mission
interacts directly with the hardware interface layer medulController selects the next task. Contingencies occurring
(HMC Interface) to override any control commands andiuring task execution cause the Mission Controller to selec
reduce the vehicle’s velocity depending on the range of thae contingency sub-task for that task. For example, a mhisse




Mission Controller

execution Task Scheduler

request mission.py:
Task Executer try:
task 1: task 1
task 2: task 2
| task 1
task n: \—/ catch MissionError:

execution
status

task n

Fig. 7. The visual fiducials used to uniquely identify theaible in the

Fig. 6. Overview of the mission control architecture. environment.

crucible pick up will trigger a “missed approach” signal andyryms, the crucible is uniquely marked with self-similar
the HMC will move away from the crucible and retry thejandmarks as shown in Figure 7. Cameras are mounted on the
approach manoeuvre. mast of the vehicle looking rearwards for crucible detettio

The .mlssmn controll_er 'S @ generic componer_1t_ of our The system has different modes of operation depending on
system: only the task implementations are specific to the o, . S .
g o whether the crucible’s location is known or not. If it is, whi
HMC. For this reason, it is currently used on several of our . . .
. . . would be the case if the location was recorded when it was

platforms, including an autonomous submarine [3]. :
dropped off, the cameras are directed to locate the markers

D. Human-Robot Interface on the handle. Once positively identified, the relative tmra
The ultimate goal of an autonomous industrial vehicle ié’f the crucible is calculated with respect to the hook on the

for it to be dependable enough to conduct tasks out of sigHMC' The vehicle then visually servos to the pickup point

of an operator. To allow this, the vehicle needs to have sonfd! the crucible where the remainder of the pickup procedure
level of offboard control and the ability to report statusian is managed as a task in the mission controller. If the looatio

sensor data to a safety supervisor who may be monitoririg K10Wn only approximately within a 20 by 20 m area, the
several vehicles simultaneously. system will execute a distributed search plan for the casnera

The most basic level of offboard control consists of 4° locate it. Once they have, a normal visual servo ensues.

remote e-stop that can be manually or automatically trig-l-—hIS is known as a ’long range’ pickup.

gered. At more advanced levels, the vehicle may be fully The offboard system is in its preliminary stages at present

controlled offboard by either a computer or physical irdegf  and consists of a static webcam monitoring one of the

(manual control panel and joystick), with full sensor diggd, common areas for HMC operations. The purpose of this

allowing immersive tele-operation. system is to track and classify objects in the scene to
Our system consists of a small remote RF portable cofprovide the HMC with greater situational awareness and

trol unit that has an e-stop, several programmable functigifooard localisation ability. The system is based on [5],

switches and a range of approximately 150m. The unit sen#éth enhancements to the classification part of the system.

a heartbeat signal out periodically which is received by thBasically, the system consists of:

onboard RF receiver which is hardwired into the e-stop gafefl. Determining the background image

PLC circuitry on the vehicle. If a signal is not received virith 2. Performing background subtraction to highlight moving

several milliseconds, an e-stop is initiated on the vehisle  parts of the image

have programmed the switches to perform the functions & Merging proximally close moving parts into single blobs

halting the vehicle, sounding the horn, and resetting frorAnd tracking the blobs

a 'detected obstacle’ event. The halt function forces thé. Classifying the blobs as either 'vehicle’ or ’personigpb

vehicle to stop moving and freezes all controls. Upon réleas The system is capable of tracking and identifying multiple

the vehicle will continue from that state. This function isvarious dynamic objects in a scene, in sunlight and rain.

particularly useful when testing. It can handle objects being temporarily occluded or objects
The vehicle also outputs data from its internal sensorsrossing paths. Examples of classification are shown below

(e.g. engine parameters, mast information, brakes etd) aim Figure 8.

external sensors (lasers and cameras) for external viewing

Visualisation software allows the safety supervisor to itoon

all systems on the vehicle.

E. Object Detection

Object detection in the system consists of detecting the|
crucible for pickup operations, and offboard detection and |
classification of dynamic objects in the environment. The _ o
pickup system is based on visually recognising the crucibfe - T SRS C e e e e eesing & car
in the environment [4]. Due to the similarity of the crucikle
round profile with other objects in the worksite, such as
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Fig. 9. Traffic cones and chairs used to test the 3D obstadkectien ! I .
system. Fig. 10. A 2D visualisation of an 'obstacle detected’ evemtthe 3D

obstacle detection system. The HMC is the yellow object witd grey
crucible attached behind it (left). The HMC’s path is showmnthe black
line projected to the right. Environment features are showiblack and
E. Other Modules pink with the groundplane as the green dots. Along the vesigrojected
path is a red object (traffic cone). Since this object occutkimthe width

There are many other modules that complete the HMC¥ the vehicle along its path, it is considered an obstacle.
systems. These include the hardware interface, varioesysaf
systems including physical interlocks and heartbeat chec
navigation and crucible manipulation. The operation of th
low level interface and safety modules are beyond the The redundant localisation system was tested around our
scope of this paper. The navigation module is based dRain workarea as shown by the blue square in Figure 11. The
Waypoint traverses through pre_programmed path segmen@g_ea is surrounded by buiIdings which is well-suited to the
The segments are stored in a mission database file awgion-based localisation method described previoushe T
selected as part of the mission script. The inter-operatidnain experiment involved simulating a power failure in the
of the mission controller and navigation system is basiBrimary laser-based localisation system which reduced its
but effective. Picking up and dropping off the crucible areconfidence values ([1]). Upon detecting this, the arbitrato
also basic programmed operations that do not vary once tB@itched the primary localisation source to the visioneloas

parameters encoding the vehicle position versus the mdggaliser and the vehicle continued operations. The laser-
motion are tuned. beacon localisation system was then brought back online and

since it produces slightly higher accuracy and therefore is
considered as the primary localisation source, the atbitra
switched back to using its outputs.

. Redundant Localisation

Ill. EXPERIMENTS

A. Obstacle Detection C. Long Duration Experiments

systems. undertaken in the project to date. They consist of a two,
2D Obstacle Detection: The 2D tests consist of placing a tall five, and eight hour trial with the HMC conducting typical
object in the path of the vehicle during forward and reversgperations.

manoeuvres, for each corner laser. In each case, the vehicle

would slow to a stop as it approached the object. The syste
was also tested with people walking towards the HMC from
various peripheral locations. The HMC perfomed as expected
by slowing to a halt as the person approached.

3D Obstacle Detection: The 3D obstacle detection system
was tested with a variety of obstacle shapes and size
along different trajectories of the HMC. Example objects
are shown in Figure 9. These objects were placed in the
HMC'’s path during a prolonged experiment. The obstacle
detection system correctly determined that each object wa;
an obstacle which would then halt the vehicle when it was
within approximately 15 m. The safety supervisor removegig. 11. The path (yellow) of the 2 hour experiment. The criscipick
the object and reset the 'obstacle detected’ system viaua and drop off occurred in the open area at the end of the patheoleft
switch on the safely remote. The vehicle continued untitthef?®, e Shed speratons were conducted i e stetioupner
next object was found. A screenshot visualising the data @ buildings annotated by the blue box.

detection of a non-traversable object is shown in Figure 10.

Tests were also conducted with smaller objects consisting Five Hour Trial: the purpose of this trial was to test the
of chunks of concrete which were considered traversable tigtegrity of all hardware and software systems continupusl
a human operator. In these cases, the vehicle would continoperating over five hours. The experiment was conducted in
over them. the area indicated by the blue square shown in Figure 11.




until the last cycle where the crucible was placed in its
'home’ location and the HMC parked in its shed and shut
down. All phases of the trial were conducted successfully.
More details about the five and two hour experiments can be
found in [4].

TABLE |
KEY STATISTICS FROM THE5 AND 2 HOUR EXPERIMENTS

[ Experiment ][ Total Dist. ]| Cycle Dist. ]| Velocity Range[] Cruc. Ops. |
5 hr 8.5 km 0.3 km -1.1:1.6 m/s 58
Fig. 12. Transposition of hook path for 29 crucible pickupslertaken 2 hr 6.5 km 0.93 km -1.4:3.0 m/s 14
at one of the pickup locations during the five hour trial. Feference, the
width of the pickup point on the handle of the crucible is apgmately
20cm.

Eight Hour Trial: The purpose of this trial was to test
automated door control, 3D obstacle detection and vehicle

h , K ick dd  th ib| scheduling over a shift of normal vehicle operations. The
The HMC's task was to pick up and drop off the crucible afnicqion was written such that every hour, the vehicle would

opposite ends of that area with navigation 100ps in betWeey o) an operator to enable the physical safety interloaks

tasks. The vision-based crucible detection system was usggh, it to conduct a task sequence. The sequence consisted
for locating and servoing to the crucible during pickupseTh ¢ starting up in its shed and requesting the shed door to
vehicle undertook the five hour test with the only halt bein

%pen via wireless communication to a receiver on the door
when the battery on the safety remote had to be repIace&E

his tri q h hicle which h ilt specifically for the purpose. Once the door signalted i
This triggered an e-stop on the vehicle which was then resgh, open, the HMC would move out, request the door to

andllt_contlnued on from where it sFopped in the MISSIONense and conduct the crucible pickup - navigation - dropoff
Statistics from this test are shown in Table I. While it is

- X ; _“cycle described in the two hour trial. Upon completing the
dlfflcylt tp determine the accuracy of the vehlcle and crlecib 20 minute cycle, it would request the door to open, drive in
localisation systems due to the lack of a reliable grounthtru
(GPS is ineffective around built environments mainly due t
multi-pathing), upon analysing the log files recorded dyirin

the test showed a maximum path spread of 0.3m over all IV. DISCUSSION
paths with the average being less than 0.2m. The accuracy}; g important for autonomous vehicles operating in

of t_he crucible pickups occurring at one _ef‘d of the test ar8nvironments with large amounts of infrastructure and in
which _r(_epresent th(_e accuracy of_ the vision-based crumb[ﬁe presence of dynamic objects to be able to conduct
recognition sy;tem is shown in Figure 12. _repeatable, safe, predictable and reliable operations. Dy
Two Hour Trial: from the success of the systems tested ipgmic objects can manifest as people or vehicles moving
the five hour experiment, a trial was conducted with a longefhoyt the environment, sometimes within close proximity to
traverse path along a narrow road and a crucible dropofftpoighe ropot. To provide the required dependable operations,
inside a shed with a narrow entry and filled with equipmentne vehicle should have redundant self-monitoring systems
This main path is shown in yellow in Figure 11 and the sheghat are fault-tolerant and where possible have redundant
entry in Figure 5. backups. Outside the vehicle, it needs to be 'situationally
Three techniques for locating the crucible were testedware’ of its surroundings with respect to its task. Local
Two were vision-based as described in Section II-E. Thebservations taken from environment sensors such as lasers
third was based on servoing to the dropoff location of thenay be insufficient to determine potential collisions with
crucible recorded from the laser-beacon localisationesgst unseen dynamic objects. Offboard systems such as webcams
This provided a test of the accuracy of the laser-beacafiounted to infrastructure, or even the perception frommthe
localiser since any error in location would result in the HMCmobile bases can be used to augment this extra sensing.
trying to pick the crucible up from the wrong location. We are in the process of providing these functionalities
The mission script required the HMC to autonomouslyith the autonomous Hot Metal Carrier project. Many of the
start up, traverse to the crucible scan location and condusystems described in this paper have been designed to ac-
a 'long range’ visual pickup. It would then traverse to thecommodate these requirements. In particular, the localisa
storage shed, drop the crucible off inside, drive out andbstacle detection and object recognition systems. Whde th
conduct a laser-beacon localiser pickup in the shed. It dvoubbject recognition system is currently offboard the vehicl
then traverse back to the start location, drop the cruciffle oit is capable of tracking and localising dynamic objects
navigate around the area to a point where it would conductta report back to the HMC. We are currently undertaking
normal vision-based crucible pickup. This cycle to and fronexperiments to demonstrate this utility. While the HMC
the storage shed constituted the remainder of the missigonsists of several basic systems, it has been successfully

and park with a final request to close the door. All operations
Qere conducted successfully during the eight hours.



conducting autonomous operations over hundreds of hours
of demonstrations and tests. The fundamental systems have
proven reliable, but need to facilitate the redundancy and
situational awareness capbilities mentioned above.
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Motivation Motivation

@ Accurate map estimation is critical for safe and reliable @ Accurate map estimation is critical for safe and reliable
autonomous navigation autonomous navigation

@ Exteroceptive sensors can be noisy, stochastic methods @ Exteroceptive sensors can be noisy, stochastic methods
popular popular

@ As sensing noise increases, performance of current @ As sensing noise increases, performance of current
occupancy grid approaches deteriorate occupancy grid approaches deteriorate

v/ Examine mathematical foundation of standard occupancy v/ Examine mathematical foundation of standard occupancy
measurement likelihoods measurement likelihoods

v Improve accuracy of maps estimated, as sensor noise
increases
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v/ Provides real-time situational awareness
v/ Provides absolute correction data for real-time path
estimation

@ Measurement Uncertainty:

X Measurement noise X Detection uncertainty
X Spurious measurements X Data association uncertainty
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Figure: A General 2D Autonomous Navigation Scenario.
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Presentation Outline Dealing with Measurement Uncertainty

0 Introduction
v/ Environmental Estimation: Robotic Mapping

@ Stochastic Estimation v’ Bayesian approach, widely accepted in robotics

@ Assuming vehicle path is known (RM):

pk|k(Mk|Zk7 Xk7 uk_1 9 XO) =
Ik (ZkI M, Xi)Pr—1 (M| ZF=1, XK, Uk =1, Xo)
T 9k (ZkIMi, Xic)Prik—1 (M| ZK=1, uk=1, Xo) dM

Pik (M| Z¥, X¥, uk=1, X5): encapsulates all uncertainty
about the map at time k.
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The Measurement Likelihoods
@ Widely adopted in the GBRM literature.

o Grid Maps:

Gi(Z« = r|Mx = GRID, Xy) [Elfes, '89]

o

Occupancy

o How are the measurement likelihoods calculated ?
Gk(Zk = f‘Mk = E, Xk) ?
Gk(Zk = I"Mk = O, Xk) ?
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Motivation Summary

@ Safe autonomous navigation requires accurate map
estimates

X In challenging environments (landmarks of various shapes
and sizes) and noisy sensors (radar / sonar), incorporation
of uncertainty in to filter recursion is critical

X Occupancy mapping likelihoods appear to have some
inconsistencies

v/ Change the measurement space from range/bearing to
detection/non-detection

v Improve robustness of occupancy grid framework to noisy
environments and sensors

The GBRM Framework
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The GBRM Problem

Grid Mapping Example

Pr(Mc=[my, ..., myy ]| Z5, XK, uF 1, Xo) =
k(2K M Xie)Pii—1(Mi| 2K, X<, UK, Xo)
4 I 9k (ZkIMi, Xic)Prjk—1(Mi|ZK=1, uk=1, Xo ) dM

A

H W Bayesian recursive approach
B Measurement uncertainty
B Map occupancy uncertainty
v B Decompose map into W x H independent
estimation problems
i=WxH
Prk(MelZ, Xi) =TT Prgw(mil 2%, X¥)

i=1

GBRM requires the propagation of the map occupancy state. J

The GBRM Framework
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Current Approach: The Range-based Recursion

The Range-based GBRM Filter

Pr(Mc=[my, ..., my ]| Z5, XK, uF 71, Xo) =
Ik(Zk I Mic, Xi)Prii—1 (M| ZF=1, XK, Uk =1, Xo)

I 9k(Zk| M, Xic)Prk—1(Mi| 251, uk=T, Xo ) dMi

State is binary: M = [O, E]

Prediction: pyk—1(Mk|ZK=1, Xk, k=1, Xo)
Measurement: Z, =range/bearing

Form likelihood: gk (Zk| Mk, Xk)

Bayesian Update: py(Mi|ZX, Xk, uF=1, Xo)

e 6 6 ¢ ¢

Current Approach: The Range-based Recursion
The Range-based GBRM Filter
Pr(Mc=[my, ..., my ]| Z5, XK, uF 71, Xo) =

Ik(ZkI M, Xi)Pri—1 (M| 251, XK, ub =1, Xo)
I 9k(Zk| M, Xic) Pk k—1(Mi| 251, uk=1, Xo) dMi

State is binary: M = [O, E]

Prediction: pyk—1(Mk|ZK=1, Xk, uF=1, Xo)
Measurement: Z, =range/bearing
Form likelihood: gx(Zk| My, Xk)
Bayesian Update: py(Mi|ZX, Xk, uF=1, Xo)

|6 ¢ 6 ¢
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Gk(2k = rlmy,x) = O, Xk)
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Zk is range reading? J

The GBRM Framework

The Measurement Likelihood: State Dependency

@ The likelihood of a range measurement conditioned on the
occupancy state and vehicle pose

Q. What is the function that relates my () and Xj to z, where
Zi is range reading?

J

A. Use z;x = {Detection,No Detection} to get state dependant
measurement equation.

J

The GBRM Framework

The Measurement Likelihood: Uncertainty

Gk(zx = rlmy (x) = O, Xk)

@ Dealing with detection uncertainty and spurious
measurements.
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The Measurement Likelihood: Uncertainty

Gk(2zk = rimy (x) = O, Xk)

@ Dealing with detection uncertainty and spurious
measurements.

Q. For no range reading, how is Gy (2x = r|my xy = [O, E], Xk)
defined ?

J

The GBRM Framework
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The Measurement Likelihood: Uncertainty

@ Dealing with detection uncertainty and spurious
measurements.

Q. For no range reading, how is Gy (zx = r|my xy = [O, E], Xk)
defined ? J

A. Use zx = {Detection,No Detection} to have a well-defined
likelihood. J

Current approach: Drawbacks

@ Grid-based Framework

v/ Estimation state space: Occupancy
v/ Map representation
@ Measurement Likelihood:

v/ Measurement Noise

X State dependent

X Detection Uncertainty
X Spurious Measurements

The GBRM Framework
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9 The GBRM Framework

@ The Detection-based Recursion
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Proposed Approach: Advantages Proposed Approach: The Detection-based Recursion

@ Grid-based Framework The Detection-based GBRM Filter

v Estimation state space: Occupancy

v Map representation Pr(Mc=[my, ..., mw )| Z5, XK, uF 71, Xo) =
@ Measurement Likelihood: gk(Zk|Mk7Xk)pk|k—1(Mk|Zk71;Xk, uk—17X0)
v/ Measurement Noise fgk(Zk|Mk,Xk)Pk|k71(Mk|Zk71,qu,Xo)de

v/ State dependent
v/ Detection Uncertainty

v/ Spurious Measurements
State is binary: M = [O, E]

Prediction: pyk—1(Mk|Z5=1, Xk, k=1, Xo)
Measurement: Z, =Detection / Non-detection
Form likelihood: gk (Zk| Mk, Xk)

Bayesian Update: py(Mk|Z¥, X¥, uF=1, Xo)

e 6 6 ¢ ¢

The GBRM Framework The GBRM Framework

Proposed Approach: The Filtering State-Space Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

the measurement likelihood is state-dependant )

the measurement likelihood always exists )

New (state-dependent) -7

occupancy measurements .
p(z,=detection|m,)

p(z=range|my)

Occupancy State Space

Previous (state-independent)
occupancy measurements

dsdsd;did dndidisdis Spatial State Space
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Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

Py, | Ho,L20)

Frivr

POy [ HeS2) |

Probability

LR Signal Power
<+— Decide Hy »4——Decide Hy ——»

The GBRM Framework
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@ Verification: Ideal Likelihoods
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Simulation: Known Likelihoods
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Simulation: Known Likelihoods

Previous Approach

Proposed Approach
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Simulation: Known Likelihoods

Previous Approach

Cell Number

Estimated Landmark Number

| B[]
5

2 04 05 06 07 [

s 10 1
Measurement Number Actual Landmark Detection Probability

09

Previous Approach

Cell Number
Estimated Landmark Number

Proposed Approach

06 07 08 09
Measurement Number Actual Landmark Detection Probability

The GBRM Framework

Filter Implementation ?

v Likelihoods are landmark dependent
o Landmark properties affect its fluctuation model
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Filter Implementation ?

v Likelihoods are landmark dependent

o Landmark properties affect its fluctuation model
v Likelihoods are detector dependent

o Statistical detectors/parameters alter likelihoods

Filter Implementation ?

v Likelihoods are landmark dependent

o Landmark properties affect its fluctuation model
v Likelihoods are detector dependent

o Statistical detectors/parameters alter likelihoods
v Likelihoods are sensor dependent

o Detection theory may differ between sensor - MMWR, LMS,
Camera, Sonar etc. etc.

—_—
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Case Study: MMW Radar Map Estimation

Presentation Outline

The MMW Radar

@ Operates at 77GHz

@ Returns unprocessed data allowing for
custom detector design
e Case Study: MMW Radar Map Estimation
@ The Measurement Likelihoods

Case Study: MMW Radar Map Estimation

Case Study: MMW Radar Map Estimation

The Detection Problem: A Stochastic Approach

The Detection Problem: A Stochastic Approach

X Rarely considered in current navigation algorithms

v’ Stochastic detectors exploit statistics of underlying signals v/ Outperform classically adopted constant thresholds

v’ Detections (and non-detections) are statistically significant

Intensity
Intensity

Y

40 60
Range (m)

Spectrum at Bearing Angle 1 Spectrum at Bearing Angle 2

a0 60
Range (m)
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Case Study: MMW Radar Map Estimation

Detection Statistics

Py, | Hof2a)

=
2 \
3 N\
&=
Py,
e
S »
[T Signal Power
“ Decide Hy —»4——Decide g ————»

Detection Statistics

Plyrg, | Ho f2a)

Frobability

R
Decide My —»4—— Decide M,

P - /0 Plvaier > Tai Mol fu(1)dp

Signal Power
“

P, :/0 PlRivr < TriyrHElf(1)dp
Prng /O Plvair < TaidHolfu(w)dp
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Case Study: MMW Radar Map Estimation

MMWR: Stochastic Detection

@ Form a threshold: T = ¢

@ Popular approaches: OS,
CA, GO, SO, ...

Intensity

MY

40
Range (m)

@ At a given range, r, assuming Qg =pu then,
9k(2k=D|my ()= O, Xx) =/0 Plir > Ti[Holfu(2)df

Gk(2k=DImy = E. X) = /0 Plyr > ToHelf ()0

MMWR: OS-CFAR Likelihoods

@ Assume v(Qg) is D,

Intensity

Ik(zZk=D|my () =E, Xy) =K J

eyl

ARange(m)
@ Analgous to data association threshold

v x? test accepts a correct assignment with a fixed probability

v CFAR test accepts an incorrect assignment with a fixed
probability

v Both threshold give no information of the converse
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MMWR: OS-CFAR Likelihoods

gk(zk=D|mk,(r)=O, Xk)= (1 = 1-17-;,%

)|

71/}f+G+W])

where,
T, =7h,
. 2WN (kos — 1)I(7 + 2W — kos)!
T =arg min (kos(k > (Kos ()T(:— 2T 0s) _ Pfa>
T 0s :
,[Z, = Wos,kos
Wos = SO”(W’r—G—Wa SO wr—G] U [¢r+G+1 3o
%r _ Pr A_ for
Kr

Case Study: MMW Radar Map Estimation

MMWR: Evaluating the Likelihoods

Pk (M )= 0|2, X¥) =
k(2| My (x) = O, Xi)Pijie—1 (M (x) = O] 21, X¥)
Ptk (Zic M () X©)

Likelihood Filter

Discrete probabilistic Binary Bayes Filter

Discrete evidential Dempster-Shafer Evidential Filter

Continuous probabilistic | if Gaussian - Kalman Filter
if non-Gaussian - Particle Filter.

Case Study: MMW Radar Map Estimation

Case Study: MMW Radar Map Estimation

MMWR: Discrete Probabilistic GBRM Filter

Presentation Outline

© cCase Study: MMW Radar Map Estimation

@ Filter Implementations

Pxjk(Mk = O|zx () = D) =
Zp,Prjk—1(Mk = O|Z,_+)
Zp,Prjk—1(Mk = O|Zk—1) + Zp, Pijk—1(Mk = E|Z—1)

Pijk(Mk = Olzy sy = D) =
Zp,s Pkik—1(Mk = O|Z_4)
Zp, s Prik—1(Mk = O|Zk_1) + Zp, Pxijk—1(Mk = E|Zk_1)
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MMWR: Discrete Evidential GBRM Filter

> mz(A)mm(B)

_ AnB=C
mrlC) = T e Amn(B)
ANB=0
mz(mﬂZk - D) - Zp + Z,Dd + Zp

md n u

_ 7,
me(melz=D) = 77—
md n u

T

U — D) —
mz(mk |Zk a D) - med + ZP” + Zpu

m(md|zx) = 0

Case Study: MMW Radar Map Estimation

MMWR: Continuous Probabilistic GBRM Filter

N
k—1y ()
Pr—11k—1(0k—1,(n| 2 ) = 21: Wk_1,(,)5o<kf)71’(r)(0k_1,(r))
=

where,

Mi—1,(r) ]

o100 = [ Ak=1,(r)

O;(({)(r) ~ Q(Ok,(r)|0;((iz17(,)7zk7(r))
) _ ) P(2k1) |9k 1) P(OY 11|k 1)

(N 140
Q(ok,(r) |0k 4 () Zk (1))

Case Study: MMW Radar Map Estimation

MMWR: Continuous Probabilistic GBRM Filter

p(my_1(n|2(y ") ~ p(mi_1.y = 11265, 1. 1)
Prik—1 (M 01207 ) = Pr1ik—1 (k1,012 ")

() () _ () ()
q(okl,(r)|okl—1,(r)’ Zk(r) = p(okl,(r)lokl—1,(r))'

0\ Plrlme =1,90)
b4 o =
P(Zk (1|0 (1) p(¢r|mgy = 0, QF)

N

A _ (1 L)

Ok,(r) = E :Wk,(r)ok,(r)'
i—1

Case Study: MMW Radar Map Estimation

Presentation Outline

© cCase Study: MMW Radar Map Estimation

@ Filter Analysis
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Testing Environment
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Testing Environment
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Figure: Carpark binary ground-truth GB map.
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GBRM: Error Quantification

@ Vector Map Comparison
@ Sum of Squared Error (SSE) common [Martin, '96], [Collins 98],

[Rachlin, '05] .
> (m; — )
i

X Not applicable to outdoor environments
90
NASSE = 0.5 <ql > (P(mp |z m =1) - 1)%+
0o

1 a e
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(a9 —a0) =,
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Figure: Grid-based error metric comparison with localisation error.
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Discrete Probabilistic Implementation
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Discrete Probabilistic Implementation
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Figure: Discrete probabilistic detection vs range likelihood NASSE
comparison.
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Discrete Evidential Implementation
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Discrete evidential detection filter (left) and discrete range filter (right).
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Discrete Evidential Implementation

Continuous Probabilistic Implementation
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NASSE Comparisons NASSE Comparison vs. Detector Parameter

T \-2W
— DMy =0, Xe)= 1+ —"—
9k(Zk =D|my 1) k) < +1+§Rr>

Discrete Range-Likelihood = = =
Discrete Detection Likelihood ==--

Continuous Detection-Likelihood — 03
04 055
025 Vv Range-Likelihood = = =
L S e T e = : Detection-Likelihood
03s "
[
w02
0.45 ] )
2 03 o =y '
= £ o4 = o5 '
E E [} * J
w w = * - ———— ==
a 9 035 iT
2 oas 2
= =z .1
03 :
02 x10°
i Q.05
025 % sorg?
. . " . . 02 " . . . " N .
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 o o £ o 50 &0 70 B0 90
Update Number Update Number a 1 20 o 4

NASSE comparison. w

Figure: Continuous detection vs range likelihood NASSE vs sliding
window width.




Case Study: MMW Radar Map Estimation Case Study: MMW Radar Map Estimation

Campus Results Campus Results
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Q Conclusions & Future Directions
@ Conclusions & Future Directions

@ Autonomous safety is highly dependant on accurate
environmental representation

v’ Error of estimated grid maps can be reduced by
incorporating the measurement uncertainty directly into the
measurement likelihood

v/ Changing measurement space to detection/non-detection
makes the likelihoods physically intuitive

v Likelihoods derived and mapping filters implemented using
a MMWR sensor

v’ Improved mapping accuracy, particulary in situations of
high false alarm and missed detection probability

Conclusions & Future Directions

Future directions

Conclusions & Future Directions
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Abstract— Localizing a vehicle consists in estimat-
ing its state by merging data from proprioceptive sen-
sors (inertial measurement unit, gyrometer, odome-
ter, etc.) and exteroceptive sensors (GPS sensor). A
well known solution in state estimation is provided
by the Kalman filter. But, due to the presence of non-
linearities, the Kalman estimator is applicable only
through some alternatives among which the Extended
Kalman filter (EKF), the Unscented Kalman Filter
(UKF) and the Divided Differences of 1°* and 2" order
(DD1 and DD2). We have compared these filters using
the same experimental data. The results obtained aim
to rank these approaches by their performances in
terms of accuracy, confidence and consistency.

I. INTRODUCTION

In the intelligent vehicle applications, the extended
Kalman filter (EKF) has unquestionably been up to now,
the dominating state estimation technique [1], [2]. More
recently, some new methods have been developed in order
to improve the nonlinear estimation. They include some
other variants of the Kalman filter such as the Divided
Differences of first and second order (DD1 & DD2) [3],
[4] and the unscented Kalman filtering (UKF) [5]. The
principle of these new approaches is based on the lin-
earization of the process and measurement functions by
statistical linear regression functions, through sampling
points in the region around the state estimatee.

Up to now there is not much work related to the com-
parison of performances of the more recent filters. A
study carried out in [6] aims to evaluate some Kalman
filter variants (EKF, DD1, DD2, UKF) capacities to
linearize the process and measurement models. This work
theoretically compares the filters’ performance separately
for the prediction step and the correction step, but does
not analyze their overall performances. [7] shows the
performances of these estimators (EKF, DD1, DD2 and
UKF) in their predictive steps in road vehicles localiza-
tion. The objective of this paper is to complement the
work already carried out in [7] by taking into account
the overall localization process (both the predictive and
corrective steps). In order to ensure the comparison be-

tween these methods, two criteria of performance are set
and applied. The first criterion concerns the evaluation
of the accuracy of each method. We use a reference
trajectory provided by a centimetric RTK GPS. The
next studied criteria relate to the size of the 20 scaled
confidence envelops, the 20 uncertainty ellipse areas and
the Normalized Innovation Squared (NIS), from which
each filter consistency will be deduced. This paper is
organized as follows. Section 2 provides an overview of
the Kalman Filter approaches (EKF, UKF, DD1, DD2)
for nonlinear estimation. Section 3 presents the system
modeling and the comparison criteria that we use in
this work. In section 4, we describe the experimental
environment and analyse the results of the 4 filters.

II. REVIEW OF THE KALMAN FILTER APPROACHES
FOR NONLINEAR ESTIMATION

A. The Extended Kalman Filter (EKF)

The main difference between traditional and extended
Kalman filter appears in the computation of the various
matrices. In the KF, the process and the measurement
matrices are composed of "true” linear functions; whereas
in the EKF, these matrices (called Jacobian matrices) are
composed of Taylor first order linearized functions.
Although the EKF has been shown reliable in many
practical driving situations, it has some well known
drawbacks. A major one concerns the hypothesis related
to the point of the linearization. Theoretically, the non-
linear process function f is linearized around the true
current state. But in the implementation, this function is
linearized around the estimated value of X, leading to an
additional error [7]. Moreover, another evident limitation
of this filter concerns the possibility of computation of
the Jacobian matrices. For very complex systems, strong
nonlinearities can generate system instability problems;
therefore the theoretical calculation of these matrices
can simply become impossible, for example when the
process or measurement functions are non-differentiable.
However for intelligent vehicles applications, most of the
used functions are differentiable, so the main drawback



concerns linearization. In order to bypass these limita-
tions, some other methods based on a derivative free
approach are presented in the following. These methods
are shown often more powerful than the EKF and include
UKF [5], DD1 & DD2 [4].

B. The Unscented Kalman Filter (UKF)

The UKF is an application of the unscented Transfor-
mation to a mean square recursive estimation [5]. This
tranformation is a method for calculating the statistics
of a random variable that undergoes a nonlinear process.
We consider a random propagating variable X through a
nonlinear function, Y = f(X). A set of sigma points with
mean X (mean of X) and covariance P,, (covariance of
X)), is deterministically chosen. The nonlinear function f
is applied to each point to yield a cloud of transformed
points with statistics Y and P,y,. The n-dimensional
random variable X is approximated by 2n + 1 weighted
sigma points.

This transformation is built following the steps below:

o The sigma points are propagated through the non-

linear function. For ¢ =0,---,2n

Vi = f[Xi] (1)

e The mean is calculated as the weighted mean of the
transformed points:

2n
Y = Z Wi )i (2)
i=0

where W; is the weight of the i*" point.
e The covariance is obtained according to Eq. 3

2n
Py, = ZWzD}l _Y]D}i —Y]T (3)
i=0

C. The Divided Differences Kalman Filter of first and
second Order (DD1 & DD2)

These filters’ formulations were proposed by Norgaard
et al [4]. Both are based on the Stirling interpolation
(presented in the following), and their implementation
methods are very similar. In the DD1, we are limited
to the 1% order interpolation, and in the DD2 the func-
tions are linearized at the 2"? order. The DD1 & DD2
filters differ from the EKF in the fact that the Jacobian
matrices are replaced by divided differences. Therefore
the correction steps are the same. The main difference
appears in the filters’ covariance matrices update.

In the EKF we used to linearize the function from a
Taylor series development of first order. In order to
implement the Sterling interpolation two operators are
defined. Let us consider a one dimensional interval with
length &:

§ §

BHX) = F(X +3) = F(X = 3) @

pIX) = U+ S+ rx -5 )

The Stirling interpolation formula is obtained by apply-
ing both the above operators to the mean value px rather
than directly to X. The second order interpolation gives

gD(MX)(X—,uX)?

FOX) = f(nx)+ oo () (X = px) + 725,
' (6)

where px is the mean value of distribution X and

flpx +&) — flux =€)

Folix) = - @)

During the DD1 and DD2 filters implementation, a
Householder triangulation is introduced, in order to
compute the characteristic divided difference matrices.
These matrices are then used in order to get the process
and measurement noise covariance matrices, as well
as the predicted and corrected state error covariance
matrices. More details can be found in [4], [6], [7].

III. SYSTEM MODELING AND COMPARISON CRITERIA
A. Vehicle model and GPS model

All the filters that are compared are based on the
kinematic model presented in equation 9.

Tklk—1 = Tk—1|k—1T
ViTcos(Yp_1jk—1 + T /2)cos(dr)
Yklk—1 = Yk—-1jk—1F 9)
ViT'sin(yy_1j5—1 + Ttr/2)cos(dk)
Vrh—1 = Vo1t + T

where T is the time period, [z, yk], is the position vector,
Vi is the vehicle velocity and dy is the steering front
wheel angle. This angle is used to take into account
the kinematic constraints on the vehicle [8]. ¢, and 1y,
represent the yaw angle (heading) and the yaw rate,
respectively.

The GPS observation model is linear and is the same for
all filters, with the corresponding observation matrix

100
H =
lO 1 O]

B. Comparison criteria

(10)

In ordre to evaluate and then compare the presented
filter performances, many measures can be used. In this
work, we focused on the accuracy measure, the confidence
on the outputs and then the consistency of various filters.

e Accuracy: For our localization application it is

more appropriate to use as accuracy measure, the
Average Euclidean Error AEE [9] defined as

M
AEE(X) = % S VXTX
=1

(11)



Where M is a number of trials, X = X — X is
the estimation error, X is the real state vector and
X is its estimatee. AEE is chosen because it better
approximates the true mean error, that means the
true average Euclidean distance between the real
value and the estimatee.

o Confidence in the output:

— Firstly, we focus on the 20 confidence envelopes
in order to evaluate the level of confidence we
can have on each filter’s output. Evaluating
the various filters uncertainties can derive in
the consistency of each filter’s estimated error
assessment.

— Secondly, the 20 uncertainty ellipse areas are
considered. In fact, the results of the filters are
given a posteriori with an uncertainty symbol-
ized by an ellipse. In order to obtain the size
of the axes of these ellipses, it is necessary
to compute the eigenvalues of the covariance
matrix P. These values are weighted with a

factor k = /—2log(1l — P,), where P, is the

membership probability [10].

« Consistency: Various filters’ consistency is studied.
A state estimatee X with covariance matrix P is
called consistent if it satisfies equation 12 [6], [11].

B|(x-x) (x-x)"| =p[xx7] <P ()

The Normalized Innovation Squared (NIS) measure,
€, is used [11] to characterize the filters’ consistency.

e=3:T8"1z

(13)

Z is the filter innovation and S the innovation covari-
ance matrix. Under the hypothesis that the filters
are consistent and approximately linear-Gaussian, €
is x? (chi-square) distributed with dim(Z) degrees
of freedom. The average value of the NIS € then
tends toward the dimension of the observation vector
Z = [rgps,Yyaps]

Ele)=n, withn=2 (14)

Therefore, a filter will be called consistent, if the
average NIS is less or equal to 2.

IV. EXPERIMENTAL RESULTS
A. Test track and collected data

The tests carried out in this work used real data
collected with It is assumed that the slope and bank
angles remain negligible. The experimental data used in
equation 9 were directly provided by an inertial measure-
ment unit Crossbow VG400 (yaw rate v), an odometer
fixed to the front axis (vehicle speed V') and a coder that
recorded the steering angle at the front wheel (d). A low
cost GPS directly provided correction data and initial
states. The state noise was derived from various sensor
noises. In our experiment, we have oogometer = 0.005m/s

and og4yro = 0.05rad/s. The complete track has a length
of approximately 5.5km. During the tests, the reference
trajectory was obtained by using a fusion of a very
accurate INS and a RTK! GPS (Thales).

During the first scenario (complete test track, see figure
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Fig. 1. Test track in scenario 1
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1), all the sensors were synchronized thanks to GPS
timestamps, and the system provided an output at the
frequency of 5Hz. In the area surrounded by trees (see
figure 2 around (400, —500)) the GPS points have an
error of more than 10m from the reference.

The second scenario took place on a part of the road
track described in figure 3. During this scenario, the
GPS sensor was switched off from time to time. During
such periods, the localization was performed with only
proprioceptive sensors and the filters ran in the predictive
step. The update was performed only in presence of GPS.

B. Accuracy

1) Scenario 1: Figure 4 presents the positioning Eu-
clidean errors for the 4 presented methods. The methods
show rather comparable errors.Table I presents the mean

1Real Time Kinematic
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and maximum values of the Euclidean errors. The anal-
ysis of this table brings a confirmation of what figure 4
indicates. The performances of the EKF, UKF, DD1 and
DD2 filters are globally similar (2.91%difference). When
we focus on these results, we can notice that EKF and
DD1 have the same mean error 3.093m, they appear
globally more accurate than UKF and DD2 (mean AEE
3.186m and 3.185m).

Nevertheless the max values of the error, which are
reached in the area in figure 2 (from 125s to 220s),
reveal that the UKF and DD2 have a better behavior.
This result contrasts with the global performance order
established from mean AEE, the reason for this is in the
following. In fact, this area is characterized by very poor
quality GPS data combined with strong nonlinearities

TABLE 1
MEAN AND MAX AEE IN SCENARIO 1

Method Mean AEE (m) | Max. AEE (m)
EKF 3.093 15.274
UKF 3.186 14.732
DD1 3.093 15.273
DD2 3.185 14.732

in the prediction (strong turns in the trajectory). In
such situations filter outputs are more influenced by
the predictive step. UKF and DD2 better handle such
nonlinearities and are less influenced by updating GPS
data. Considering Table I, the second order filters (UKF
and DD2) are slightly more accurate (respective max
AEE 14.732m) than first order filters (EKF max AEE
15.274m, DD1 max AEE 15.273m) in such a situation.
But in each group the filters behave very similarly.

To conclude, it appears that following given situations,
EKF and DD1 have better performances than UKF and
DD2 and vice versa. But globally, first order filters are
recommended for such a scenario.
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Fig. 5. Euclidean positioning Error in scenario 2

2) scenario 2: The Euclidean positioning error in this
scenario is shown in figure 5. First of all, it is remarquable
that in presence of GPS signal, all the methods show
rather comparable errors (like in scenario 1). Important
differences appear when GPS is switched off. This is an
interesting illustration of the theory : in fact, these filters
are theoretically different in the manner they handle the
nonlinear process fonction. These theoretical differences
are presented in [6] and [7].
In this scenario, the common GPS observation model is
linear. Thus, the correction stage will not show important
differences between filters. However, during the GPS
outages, figure 5 confirms that EKF and DD1 (first order
filters) react similarly and are more accurate than UKF
and DD2, which are also similar.
During the first GPS outage, EKF and DD1 mean AEE
(4.89m and 4.73) is almost 1m lower than DD2 and
UKF mean AEE(5.73m and 5.75m). The maximum AEE
has the same order. During the second GPS outage, the
AEE differences are reduced to about 15¢m for the mean
values and 50cm for the max. But the first order filters
are still more accurate. Figure 6 presents the X-axis and
Y-axis positioning error. It reveals that the difference
on the X-axis is more important than on the Y-axis.
The explanation is found in the modeling error and the
cumulated error of second order filters DD2 and UKF. In
presence of trajectory non linearity, these filters react as



TABLE II
MEAN AND MAX AEE DURING GPS OUTAGES (SCENARIO 2)

Method GPS outage 1 [10 — 75s] GPS outage 2 [110 — 135s] GPS outage 3 [210 — 270s]
meanAEE(m) [ mazAEE(m) || meanAEE(m) | mazAEE(m) || meanAEE(m) [ maxzAEE(m)
EKF 4.89 11.95 4.87 19.53 7.58 14.50
DD1 4.73 11.56 4.88 19.59 6.68 13.23
DD2 5.73 13.05 5.02 20.08 6.96 13.48
UKF 5.75 13.00 5.02 20.08 6.93 13.48

if the vehicle turns earlier than it should be (see figure
3). In fact, the bias between the first order filters and the
second order filters comes from the way the estimatee
is computed. Using velocity and heading, the primary
computation is done in the polar space and the result is
returned in the Cartesian space. This polar to Cartesian
conversion problem was handled in [7], and it derives in a
cumulative error for second order filters, which is visible
on figure 3.

During the third GPS outage, the filters still react
similarly with very close errors, except for EKF which
is Im worse. Examining figure 6, we can see that all
the filters deviate progressively on the Y-axis (from
210s). However, EKF deviates more than the others.
Considering that the road configuration is linear here,
this deviation comes from the sensors noise modeling
(gyro) and the inadequate initialization before the GPS
was switched off. The results given in table II reveal
that, considering the defects cited above (sensors noise
and inadequate initialization), DD1 is more accurate and
shows a better robustness than EKF and second order
filters in such situations.
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C. Consistency

1) Scenario 1: In order to study the confidence in
those estimatee, we compute the 20 scaled envelopes
provided by each filter (95% probability region). On
figures 7 and 8 we superposed the positioning axis error

X-axis error and 2-sigma envelope
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Fig. 7. X-axis 20 envelope and error in scenario 1
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Fig. 8. Y-axis 20 envelope and error in scenario 1

and the associated 20 envelope. For all the filters, we
can see that the estimation error on each axis is most of
the time inside the corresponding envelope. This means
that globally, the error estimatee given by the filters
through their covariance matrices is consistent with the
real positioning estimation error. The forest area is an
exception. With poor quality GPS data, filter envelopes
grow considerably (see figures 7 and 8), deriving in a
loss of confidence in the estimation. However all the
filterenvelops are almost identical.

Figure 9 shows the NIS of the position innovation nor-
malized to a 95% probability region, assuming a y? dis-
tribution. Most of the time the normalized NIS of EKF,
UKF, DD1 and DD2 are below 2.0. This means that
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the estimated filter uncertainties are most of the time
consistent with the true estimation error, considering
95% probability region. Once more an exception appears
in the forest area (from 125s to 220s), where NIS values
are often above 2.0. This last measure confirms that of
the 20 envelopes: the four filters behave similarly, the
differences between their errors and their uncertainty are
very small.

2) Scenario 2: The confidence of the presented filters

output is tackled under the 20 uncertainty ellipses anal-
ysis. Figure 6 (bottom) shows the filters ellipse areas. It
reveals that the uncertainty ellipse areas grow consider-
ably during GPS outages. During the first outage period
[10—755], these areas almost reach to 2000m?2. During the
other GPS outage periods the maximal areas are around
1000m2. The behavior of various filters is very similar:
the uncertainty is low when correction data are used, and
high if not.
The uncertainty growth is more important during the
first GPS outage. This part of the scenario is character-
ized by multiple trajectory nonlinearities combined with
a long period without correction. During the second GPS
uncertainty, the trajectory is highly non linear, and the
outage lasted 25s. The growth here is comparable to that
during the third outage (linear, 60s). These observations
reveal that the uncertainty ellipse areas growth is also
a fonction of the system non linearity: the stronger the
nonlinearity, the stronger the growth.

V. CONCLUSION

In this paper an experimental comparative study of
4 Kalman based localization approaches (EKF, UKF,
DD1, and DD2 filters) were presented. Previous works
[6], [7] exhibit major differences as well as similarities
between those filters. [6] shows theoretical differences
whereas [7] analyses practical differences during the pre-
diction steps. Nevertheless practical experiments taking
into account the whole localization process (both predic-
tion and correction steps) exhibit minor differences. The
differences observed during the prediction step in terms

of accuracy and uncertainty (due to the linearization or
the use of the sigma points) are strongly reduced during
the correction step.

According to our experiments, the choice of a given filter
will depend on the situation: this means, the presence
and the quality of correction data, or the presence of
strong nonlinearities on the trajectory. Therefore

o if there is no GPS signal outage for a long time
during the navigation, or if the GPS signal is of
good quality (if the correction step runs efficiently),
then it is not easy to propose a favorite filter. The
use of one or another among the presented filters
brings almost insignificant amelioration in terms of
accuracy, as well as the confidence of each estimatee.

o if the GPS signal is of poor quality, in presence
of strong nonlinearities we should consider UKF or
DD2 which seem more robust in such situations.

o if the GPS signal is absent for a long time, the EKF
or the DD1 are recommended as mentioned in [7],
but our study also reveals that DD1 remains, to our
best tunings, the most robust filter among the four.

In further work, these filters will be compared to other
estimators which are theoretically assumed more robust,
such as multiple model filters or Monte Carlo filters.
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Predictive Lane Detection for Simultaneous Road Geometry
Estimation and Vehicle Localization

Chenhao Wang, Zhencheng Hu, Tomoki Maeda, Naoko Hamada, and Keiichi Uchimura

Abstract — this paper describes a predictive lane detection
method with assistance of road geometry data from digital
road map to simultaneously estimate road shape and vehicle
localization. In our approach, visual information is not the
only source to detect lane and estimate road parameters, the
road geometry information derived from digital road map has
also been providing important predictive cues for lane
detection. Comparing with the conventional vision-only based
approaches, our system is able to provide more reliable and
stable road geometry estimation result. In addition, a precise
longitudinal localization can also be achieved through the
piecewise polynomial matching algorithm. Simulative and
real road tests under various environmental conditions have
shown the effectiveness of the proposed method.

I. INTRODUCTION

W ITHIN the last two decades, lane detection is one of
the primary research topics in advanced driving
assistance systems (ADAS). Lane detection primarily works
for vehicle’s lateral control systems, namely, Lane
Departure Warning System (LDWS) and Lane Keeping
Assist System (LKA) to estimate vehicle position and
posture relative to road lane. Although some works utilize
LIDAR or RADAR to detect roadside boundary, or uses
embedded magnetic markers in the road way, the
predominant approach by far is the use of video camera and
image processing to extract the land and road edge markings
from the image — exactly what human drivers do in visually
processing the road scene.

So far, exiting works in vision based lane detection
literature generally refer to a lane model consisting of
camera model and road shape model. Most of the approaches
are conduced to calculate related road shape parameters and

trace lane boundaries in a recursive prediction-updating loop.

Widely adopted methods for road parameters estimation are
Kalman Filtering (KF), Extended Kalman Filtering (EKF)
and Particle Filtering (PF) techniques. Road model is
another argumentative topic in the field of lane detection.
Straight line is the simplest road shape model, but is also
erroneous for non-straight or non-flat road. Recently most
approaches prefer to use piecewise line segments with the
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Science and Technology, Kumamoto University
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assumption of flat road surface, such as piecewise lines,
circular [3], clothoid [4], polynomial approximation and so
on. Although some more precise models like
three-dimensional (3-D) road shape [5] could gain accuracy
describing lane variance in both horizontal and vertical, it
surfers from the high computational cost and high sensitivity
to noise on the contrary.

The most difficult challenge for vision-based approaches
is the robustness to different environment condition. Various
meteorological and lighting conditions (day, night, sunny,
rainy, snowy), road environmental conditions (occlusion,
degraded road markings) significantly influence the
estimation results. Most of the previous works depend on
occupancy rate of proposed road model points and actual
road features (edges or lane markers) on the image to
evaluate result’s accuracy. However, even with high
occupancy rate, the estimated road shape model may not be
accurate if two or more parameters are problematic. For
example, on a curve road, if road width is estimated wider
than its true value and road curvature is slightly bigger, we
can still observe the image matches perfectly with the
estimated road shape model.

To solve the problems mentioned above, a Predictive
Lane Detection (PLD) algorithm is proposed in this paper.
PLD is a hybrid solution composing of prediction module
and visual detection module. The prediction module for road
geometry is estimated by vehicle localization and road
network, because it performs more reliable and robust for
road prediction than the previous vision-only based
approaches (example shown in Fig.1). In addition,
prediction is also used for lane tracking on noisy image by
limiting the detection zone on the image close to camera.

Fig. 1: The result of road geometry estimation projected on real scene
without visual detection in stormy weather



The paper is outlined as follows: section Il describes our
approach for PLD with constrains, road model and algorithm
procedure. Section Il discusses road geometry estimation in
detail relying on present digital map. And Section 1V
introduces visual detection modules and how to analyze the
parameters in each module. Hybrid results are presented in
the finally section.

Il. OUR APPROACH

A. Constrains

In our project, we utilize 2-D digital road map to
reconstruct front road geometry for lane detection. And
roadside variance in vertical plane is ignored here. In order
to achieve our goal for PLD, we develop an image-based
approach by taking following constrains into account.

i. It must collaborate with vehicle localization module,
which is required for high accuracy and real-time
performance.

ii. Local road network (2-D map, 3-D map) should be
included unless a more precise approach could support
for road information in detail.

iii. Inourapproach, Vehicle Coordinate System (VCS) and
Camera Coordinate System (CCS) are regarded as same
coordinate system, because we set GPS’s antenna,
Gyroscope and camera in the same plane.

iv. The algorithm in this paper assumes in a horizontal
plane and the road’s vertical curve is ignored. But the
vertical part could also be recovered as long as 3-D map
employing in system.

v. The rolling angle of vehicle is set as constant value.

B. Road Model

(CHx(d), CHy(d))

pPL(n)

(Vx(d), Vy (D))

Fig. 2: Relationship between vehicle and road from bird’s-eye view

Since road model could figure lane mark’s position and its
variety in VCS (see Fig. 2), how to define a road model
precisely is a key problem for most lane detection. In our

approach, we could replace lane’s variety part with road
geometry estimation. As the original reference information
(road width and vehicle’s offset) is also included in road
model, road model for PLD is defined as following equation:

Vy(d) = £0.5W + X,z + CHy(d) 1)

- Vx(d): is the position in latitudinal direction of VCS;
W is the width of lane;

- X5 is the lateral displacement in vehicle coordinate
system;

CHx(d): is lane variety in latitudinal direction of VCS;
d: is the distance along the road network;

CHy(d) is a crucial part driven from road geometry.
Comparing to other models by visual detection, our
approach utilizes the reference points from road network in
2-D plane directly, which should be more reliable than
points of image-based. The road geometry is recovered
relying on vector of distance. It could simulate road
geometry not only in latitudinal direction but also in
longitudinal direction which used to be ignored by many
approaches. Besides, lane width and lateral displacement are
detected by visual detection module.

C. Algorithm Procedure

Predication Module (PM)
Vehicle Localization
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Fig. 3: Procedure chats of Predictive Lane Detection

Figure 3 presents the system block diagram. In prediction
module, vehicle localization is estimated based on vehicle
motion model with supporting with GPS and DR sensors.
Digital road map is not only applied Map Matching (MM),
but also provides node points of road network. In the step of
road geometry estimation, new reconstruction approach
based on route distance is designed for various road
networks. Before visual detection, the PM could offer
information of road geometry as soon as possible.

In Visual Detection Module (VDM), system will refer to



the information from PM first. It will help to confirm the
processing area avoiding noise’s influence. And the error
causing by road geometry should be considered in PW
(vehicle Pitch angle and road Width) module and YL
(vehicle Yaw angle and vehicle Lateral displacement)
module. These two modules are proposed to analyze feature
points for related parameters.

I1l. PREDICTION MODULE

In section 11, we have mentioned the road model (Equ.1)
as crucial part for lane detection. Lane variety used to be
recovered by image-based points with various models, such
as circular, clothoid or polynomial ways. Because road
parameters are very sensitive from reference points through
image processing, we try to rebuild road geometry by
utilizing vehicle localization and digital map. It is supposed
to be a robust way to acquire the road parameters reliable
and stable.

Since vehicle localization and digital map were
introduced by many papers [7], [8], [9], it is no necessary to
discuss these technologies in detail but know about the
information from this module. Position and orientation
(v_x(k), v_y(k), v_ori(k))are given by localization system
with time sequence k. Road node points (r_x, r_y) consisting
for road network are provided by digital map.

A. Road Geometry Reconstruction

--2® (rx2T,ry2h

) ) T T
Road Network“\ (rx1%ryl’)

Vehicle I R

Vx
Fig. 4: Road geometry reconstruction in VCS

First of all, the node points should be transformed into
VCS (see fig. 4). Vehicle always locate at origin point by
tangent with road network. Node points in front of car, could
figure out a general road’s direction within certain distance.
Polynomial method is chosen to approximate to real road
because it is flexible to reconstruct any kinds of road. If road
points by a selected route, we could simulation any road
geometry by polynomial method. Furthermore, road
geometry will be changed with vehicle following on the road
network. So this method could express the road geometry
precisely and timely.

The traditional method for polynomial is set up a
relationship between V, and Vy directly. It relies on the
order of polynomial and the number of node points. So it is
hard to recover geometry accurately especially in some

situations such as intersection and U-turn.

Here, we consider the polynomial in low-order and route
distance is chosen as variety vector for recover V, and Vy
independently. This method could simulate geometry as to
practical situation and be realized easily by the way of
mean-square. Although computational expense for CHx(d)
and CHy(d) estimation are increases for double, it could
recover the geometry in a low-order and high precision.

CHy(d) = X1 A()d" )
CHy(d) = XY B(Dd" @)

- A(i) : is the polynomial parameters in latitudinal
direction of VCS;

- B(i): is the polynomial parameters in longitudinal
direction of VCS;

- d: is the distance along the road network;

The road network near to intersection is selected here and
figure 5 expresses the procedure of our approach for road
geometry estimation. Fig. 5(a) is the original data of vehicle
localization (A\) and road node points (*) in local coordinate
system. And fig.5 (b) shows the result in VCS after
coordinate transformation. According to node points (*) in
fig.5 (b) projected into two feature spaces independently
with the variety of distance, fig. 5(c) and fig. 5(d) is the
feature space of x-d and y-d. The reconstruct route is shown
as pink curve in the figure through proposed equation 2, 3
with 3 orders estimation. And the final combination result
for road geometry is shown in the fig. 5(e) as green curve.

B. Prediction for Visual Detection

The purpose of this section is to provide the precise
information for visual detection. In the section I, lane
variety in road model is supposed to be given by road
geometry estimation. And it could refer to the result of
CHy(d) by equation 2. Furthermore, it could also be utilized
in visual detection to eliminate influence causing by CHx(d)
in latitudinal direction.

Besides, information CHy(d) by equation 3 is also very
important. However, it is ignored in the most situations
because CHy(d)is considered as same as distance, which
means visual detection model would like to select the feature
points by horizontal line. According to point PL(n) and
point PR(n) shown in figure 2, these two points are not at
same horizontal line in VCS. That is why the road width of
curve part is wider than straight one.

The slope k(d) of road geometry is expressed by equation
4. We could estimate the difference between left line and
right line in longitudinal direction while the road width is
considered the same, like the point PL(n) and point PR(n)
in the figure 2. If we refer the right line as the baseline
CHy(d), the corresponding pair points should locate at



CHy(d) + Ay(d) of longitudinal direction. So Ay(d) could
be expressed as equation 5.

dCHy(d) _ Y1isB(i)di~?

k(d) = dCHy(d)  XPixA(i)di~1 @)
. _ -1
Ay(d) = W - sin(tan 1(@)) ®)
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Fig. 5: Simulation results of road geometry reconstruction

IV. VISUAL DETECTION MODULE

Here we set the right line as the base line and right road
line is denoted as equation 8, 9. Left road line could be
denoted as equation 6, 7 according to road geometry
estimation provided by PM.

B —0.5W+X,rr+CHx(d)
LX(d) = f, ( CHy(d)+Ay(d) lp) ©
H
Ly(d) = f, (W "
0.5W+Xors+CHx(d)
RX(d) = fx(# ) ©
RY(@ = f, (G ) ©

- (LX(d),LY(d)): is the point on the image of left lane

marks;
- (RX(d), RY(d)): is the point on the image of left lane
marks;
(CHx(d), CHy(d)): is the road geometry in VCS;
H: is the height of camera;
Y: is the yaw angle of car;
0: is the yaw angle of car;
- (fx fy): is the focal length of the camera;

A. PW Module

PW module shows the linear relationship between vehicle
Pitch angle and road width. The difference function (Equ.
10) between right line and left line is acquired by equation 6,
8, where Ay(d) is set as zero.

AX(d) = RX(d) — LX(d) = ’;‘—”:Ly(d) - fTW 9 (10

AX(d) means the difference between pair points locating on
right line and left line and LY (d) is the related point on the
vertical direction of image. Normally, Ay(d) is close to zero
and A4X(d)could be estimated by same horizontal line.
According to equation 10, the relationship of 4X(d) and
LY(d) is the linear if two lines are parallel in vehicle
coordinate system unless some places such as fork or
junction. PW module is relying on this linear relationship
and related parameters could be estimated by feature points
on the space of 4X(d) and LY (d). But it should refer to
Ay(d) for picking up pair points on a significant curve.

Figure 6 is a typical image after feature extraction. Firstly,
we should calculate the difference of feature points based
one same horizontal line, which appear in zone belonging to
left line or right line. And according to equation 10, the
difference is calculated by given space of W and 6. So if we
set up a series of reasonable W and 0, the different results
could estimate the matching points with actual points from
image. Figure 7 shows the matching probability in the space
of Wand 6. The peak area (shown as red points in fig 7)
represents a reliable area with high probability. Finally
width and pitch are estimated by statistical results.

The result is given in figure 8, blue points are the actual
different points and pink points are given by estimated
parameters. Of course, the difference points in figure 8
perform a linear characteristic of PW module. In this way,
the lane width could be calculated by the slope of straight
line and pitch angle is calculated afterwards by intercept.

Fig. 6: The image of feature extraction



Fig. 7: Matching probability corresponding to W and 6
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Fig. 8: Feature distribution map of PW module

B. YL Module

YL module is designed to get vehicle lateral displacement
and yaw angle by referring to equation 6 or 8. The same as
PW module, the parameters in this module should be seen as
linear characteristic according to related functions. But we
have discussed lane variety CHy(d) of latitudinal direction
in section 3, which is the prediction vector to eliminate the
influence caused by curve part. If the feature points on image
are compensated in opposite direction, YL module could
search maximal matching probability on image in linear way
as PW module. For example, road geometry is estimated by
prediction model (see fig. 9). Then it is transformed into
image space through camera’s parameters. So the original
feature points (white points) are compensated by relevant
compensation, which are shown as the green points in figure
10.
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Fig. 9: Road geometry Estimation in VCS

Fig. 10: Feature compensation based on geometry estimation for linear
transformation

V. SIMULATIONS AND RESULTS

Our tests were based on the on-line data collection based
on several sensors: a Teli CCD COLOR CAMERA was
mounted on the front roof of test vehicle, image sequences
were captured in NTSC format at the frame rate of 30fps,
GPS data (Pioneer® GPS-M1ZZ) and inertial data
(Gyroscope: Datatec®GU-3024 & Nissan LAFESTA CAN
Speed) were sent to PC’s serial port and recorded at the
frequency of 1Hz and 60Hz separately; Shobunsh® Super
Mapple ver.6 (1/25,000) was used as the 2D road map.
Unfortunately, so far the algorithm has not been
implemented by on-line processing. We just record data of
vehicle localization and road network with synchronization
of video recorder. And all tests are realized in the laboratory.

We have discussed the prediction module in section 111
and the result of road geometry estimation is shown in figure
5. Firstly, road geometry in VVCS should be confirmed if it
matches to the road on image or not. The range of geometry
results (“*”) in fig. 11(a) is 60 meters with interval of 2
meters. According to fig. 11(a), CHx(60) is 11.73 meters
and CHy(60) is 58.2. Although the error by longitudinal
direction in VCS could be ignored, CHx(d) by latitudinal
direction must be counted for visual detection. But in fig.
11(c), CHy(d) could not be ignored as same as CHx(d). And
the projected road by estimation results is shown in fig.

11(b) (d).
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Fig. 11: Road geometry estimation and projection on image

As a result of geometry estimation shown in fig. 12 (a) (c)
(e), other parameters are detected by visual detection module
introduced in section 4. And all the parameters are included
in table 1. Here we choose the 3-order of polynomial for
reconstruction road geometry. Furthermore, final lines are
plotted on the image based on parameters (shown in fig. 12
(b) (d) (e)). Although the results on the image match to real
line mark, there are little excursion between proposed line
and real line. The error by vehicle localization, digital map
or road reconstruction model might cause the excursion.

VI. CONCLUSION

In this paper we proposed a predictive lane detection
method with road geometry estimation that relying on
precise localization and digital map. Although some
constrains are defined for practical application, this method
effectively estimate the reliable parameters and works well
in different kinds of condition.

The online processing of this approach is still under
evaluation and we are focusing on improving the accuracy
and stability of vehicle localization. In addition we are also
working on some important applications using this approach,
like the classification of different types of lane marks based

on different lane width distribution.
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Table 1: Road parameters of figure 12 by proposed approach
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R Width Offset Pitch Yaw CHy CHy
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-0.00826 0.99946
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Fig. 12: Road geometry estimation and final detection result on image
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Experiments Results
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Experiments Results (cont’)
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Conclusion

Estimate different of SIFT result and 3D parallel line result

Get more stable result by fuse of two result

Average Processing Time per each scene
— SIFT Matching : 0.8 sec
— 3D parallel Line Matching : 1sec
— Fusion & Filtering : 1.8sec
— Centrino 2Hz CPU & 1G byte RAM

Future works
— Sensor fusion with GPS and wheel odometry information
— To evaluate the pose estimation result
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LASER SCANNER BASED SLAM
IN REAL ROAD AND TRAFFIC ENVIRONMENT

Olivier Garcia-Favrot and Michel Parent
INRIA Paris - Rocquencourt
domaine de Voluceau, BP 105, 78153 Le Chesnay Cedce.

Abstract - In this paper we will present a SLAM
algorithm we have recently developed for our
needs in autonomous automotive applications.
Our approach has the particularity of making use
exclusively of laser scanners to achieve our goals
without using any other type of sensors or source
of information. We concentrated on developing a
self-contained system that could be placed on any
kind of mobile platform and work in any kind of
dynamic environment; this is why too at this
point our approach does not make use of any
model of the vehicle. Our SLAM system has been
tested with success both on a car at full speed on
a road and a human evolving indoors. We will
present here the challenges we face that pushed
us to develop the algorithm, the solutions we are
exploring, discuss experimental results and
suggest areas of future work.

| - Introduction

When trying to make a vehicle autonomously travel
to its destination over many kilometers you soon
realize you will have to overcome many challenges
[1]1,[2],[3].[4]. The first need is to be localized
globally in order to know what path to take for
reaching your destination. The second need is to be
localized locally in the surrounding environment to
make sure you are keeping the road, the right speed
the right distance with the vehicle in front, thyaiu

do not collide with other vehicles and obstacles et
A third need is to have the ability to detect derta
features in the environment in order to know how to
properly behave on the road. For example, you need
to be able to detect lanes in order to stay cedtere
you need to detect intersections, crosswalks,
continuous or dashed lines etcThen you have to
take cost into consideration if you expect your kvor
to have one day any use in real life. While global
localization is a problem that can be considerduokto
solved thanks to a wide variety of affordable GPS
solutions, all the other issues still present a big
challenge when it comes to real world applications.

Fig 1. Map result showing road features.

In our struggle for achieving autonomous driving we
have been exploring separately the potential of a
single sensorial solution, the laser scanner, we
believe eventually may give the necessary
information to tackle all the issues mentioned a&bov
We plan to use other types of sensors too butist th
point the goal of our research is to make the most
out of this type of sensor taken separately, before
combining it with other sensorial input [5],[6].

Using a laser scanner only, we are able to keeg tra
of our trajectory and our speed, in other words to
localize, this, combined with the range data, alow
us to create a model of our environment in the form
of a map. This duality between creating consistent
maps and localizing has been extensively studied as
the Simultaneous Localization And Mapping
(SLAM) problem [7],[8]. As we see in the figures
presented (for example Fig 1), taken from real
driving situations, the maps obtained contain &tk

of useful information we plan to use for path
planning and navigation, such as lane markings,
intersections, crosswalks, empty parking space etc.
But before entering into more details of our
experimental results, we will first have an ovewie

of the algorithm.



Il - The algorithm overview

Our SLAM algorithm consists of two steps. A first
step in which the relative movement of the vehisle
estimated and a second step in which this first
estimation is refined by relocating the pose respec
to the map we are progressively building. Figure 2
shows the different steps of the algorithm.

Pseudo code
woid main.g)

. Nnit the pose and the robot's motion
Fose=init_pose ()
Relative  rmoation = init_relative_motion () ;

NiGetthe first scan and plot it on the fmap
Scan=get_scan{);

Spikes = get_high_derivative_points (Scan) ;
Frevious_segments = calculate_segments (Spikes) |
Map = update_map (Fose Scan, Map) ;

JiLacatization loop
whiledtrug)

Scan=get scan ()

Spikes = get_high_derivative_points (Scan) ;

Current_segments = calculate_segments (Spikes) ;

Frevious_maotion = Relative_motion

Relative_motioh = caleulate motion (Previous_sedments, Current_segments);
if {Relative_mation = = NULL) Relative_moation = Previous_motion

FPose_estimation = calculate_pose_estimation (Pose, Relative. motion) ;
Frevious_pose = Pose’;

Fose=refine_pose estimation (Pose_estimation, Scan, Map)

Map = update_map (Fose,Scan, Map)

Relative_motion = recalculate motion (Pose, Previous_pose)
Previous_segments = Current_segments |

Hiend of while
HWend af main

Fig 2. Steps of the algorithm.

[I.1- Motion estimation: The first step works by
tracking the motion between the current scan aed th
previous one. This is done by tracking points ghhi
derivative, in other words by tracking the “spikes”
that are apparent on the scan. This makes the
algorithm absolutely universal as it will work imya
structured or non structured environment. To find
points of high derivative within the scan is easy b
we need to identify them over the current scan and
the previous one in order to discover the motion.
What we do to perform this identification is todea
segments between the spikes and make use of
invariants throughout the movement such as for
example the length of those segments. For example,
if we manage to find a segment of length “L”
connecting two spikes in the current scan and we
find also a segment of the same length in the
previous scan, then we have pretty good chancés tha
those two spikes at the ends of the segment are the

same points of the environment. Now, by looking to
our relative position to the segments in both the
current and previous scans we are able to infer the
relative translation and rotation we have done
between the two scans. The problem is that many of
the spikes are noise and are not consistent wéh th
vehicle’s movement. The challenge here was to
develop the proper filter capable of sorting oulyon
the spikes that are common to both the scans.

The typical error of the motion calculated this way
of #20 cm in both x and y and +2° in the orientatio
Thankfully this error can be greatly reduced by
refining this first estimation through a secondgste

II.2- Relocation: The second step makes use of our
near past experience by relocating on a map created
by the previous scans. In our case a map is nothing
else but a model, a discretization of the enviromme

in the form of a bitmap containing a height field
(Fig.3). The height field is formed as laser
measurements are accumulated over time on certain
pixels making the features of the environment
become apparent. The amount of the laser data and
its accuracy determine the level of discretizatidn

the environment that can be achieved, that is, the
map resolution (see sectiticB). We believe that by
studying the morphology of this height field we Iwil

be able to extract from it all the information
necessary for navigation but this is a totally sefa
matter from localization.

Fig 3. Bitmap containing the height field.



For relocation within the map, we use the fact that
we know the actual pose of the vehicle is withia th
rather small error bounds of the pose estimation
obtained from the first step. Since for relocatiom

are going to try to match the current scan with the
map, the number of possible poses within the error
bounds is limited by the resolution of the map. For
example, if we have a 10cm per pixel map, the
search area will be a square of 5x5 pixels and the
discretization for the heading can be let say 0.2°.
This gives us 25x21 = 525 candidate poses we then
check exhaustively for the best match. We consider
as the best match the candidate pose that maximizes
the sum of the range value of the current scantpoin
that hit non-empty pixels in the map. Of course, if
our actual position is outside the typical boundls o
error, then we are lost. For the rare cases whien th
happens we plan in the future to use more
sophisticated techniques to find our position wnithi
the map but in practice this rarely happens exirept
the case the environment is very poor in infornratio
such as very large open spaces.

About this second step it is worth noting that the
more information the map has about the zone of the
current scan, the better it works. Although this
seems evidence, it brings to an important conctusio
which is that relocation works best when having a
sensor looking in the opposite direction to the
movement. This is so because unless we have done a
loop, in general we are exploring what lies in fron
while we have already explored what lies behind us
and therefore we have much more information. This
is especially true at high speeds, looking at Fgur
we can see the height field is much clearer in the
opposite direction of the movement as we have
gathered much more information in the zone of the
map we have left behind than the amount we have
managed to gather of what is coming in front of us.
This means that simply having a sensor in the front
of the vehicle is conceptually a bad policy if warp

to do localization, especially at high speeds. Aiso

an automotive application it is of utmost importanc
to include the rear of the vehicle in the fieldvidw

as otherwise it would be like driving without any
mirrors.

Finally, once we have refined our location witHe t
map, we update the height field with the curreainsc
data and we recalculate at posteriori the relative
movement we have done.

It may happen to the first part of the algorithnt tw
give any output, in such cases we simply fill tlag g
taking as our current relative movement the lagt on
we were able to calculate.

.\"-\‘__ Poor

information

Fig 4. Best info is found at the back of the vehicl

[1.3- Algorithm’s behavior: Although there is
certainly a cumulative error out of this two step
algorithm, it is so small that for practical purpes
there is none. As we explained in the introductton
is not our goal to make use of this localizatiorov
hundreds of kilometers, this task is left to theSGP
Our use of the algorithm is to be localized locally
that is, to be able to generate an accurate m#peof
surrounding over 100 m of our vehicle in order to
extract from it information about lanes, obstacles
and other vehicles and take it as a base for path
planning and trajectory control.

Even though, we have to say that our experimental
results over few kilometers show very little
accumulated error (see section Il for more détails
Errors mainly seem to occur as a result of
singularities, such as having a surrounding
environment very poor in information, that is, when
we happen to go through large open spaces. This is
to be expected as the accuracy and quality of the
output of the algorithm varies depending on the
guality and amount of the information you feedtin i



A study on the subject has not been realized yet at
this point but globally we have the following:

The map resolution that can be achieved in general
is very dependent on the angular resolution and the
scan frequency. Without surprise the scan frequency
is particularly important at high speeds. Other

parameters like the laser range and field of view
have no remarkable effect on the achievable map
resolution. Actual tested implementations with

different settings gave a 10 cm per pixel map
resolution at 10 Hz and 0.5° angular resolution and

5 cm per pixel map resolution at 20 Hz and 0.25°
angular resolution.

When it comes to loss of localization, as we have
explained, open spaces are our major enemy. It is
therefore no surprise that the robustness of the
algorithm is directly proportional to the rangetbé
laser and how wide is our field of view, as thidplse

to reduce greatly the cases in which the algorithm
has nothing to “hook” on.

Another potential source of error is moving objects
The algorithm normally filters out the segments
including moving points because they do not
maintain the invariants found in segments from
static points. This works only if the scans contain
sufficient number of static points. The field otwi

is therefore quiet important for dealing with this.
270° field of view is generally enough for
completely removing this issue as a source of error
even in very heavy traffic conditions.

Il - Real road testing

In order to test our algorithm in a real driving
situation we went to see our partners at the
Southwest Research Institute in San Antonio, Texas.
We have to thank the whole SSTI team for their help
and for making this possible.

The SSTI vehicle (Fig 5) is a fully automated Ford
Explorer equipped between other things with two
Alasca Ibeo laser scanners and a differential
omnistar GPS we will only use for reference. Each
of the Alasca scanners have a range of up to 200 m,
have 4 layers and a 270° field of view. They are
located at the left and right front corners of the
vehicle, so together they cover almost 360° except
for the very rear part of the vehicle.

Fig 5. The SSTI vehicle at the SwRI in San Antonio.

Alasca laser scanners have both positive and
negative specifications when it comes to our
algorithm. On one side they have a long range, a
270° field of view and 4 simultaneous scanning
planes at different angles (Fig 6). In the end we
make use of only one of the planes in the
localization process but the information of therfou
combined makes possible to obtain very rich and
detailed maps. On the other side, each separate
scanning plane has a very poor angular resolution
which only gets worse when increasing the scanning
frequency.

Fig 6. The laser scanners have 4 simultaneousdayer

Although the different scanning planes are intextac
and we have tried to combine them, this does not
work because of the fact the points of high
derivative we use keep information about the
movement only when you derivate a continuous
signal coming from the same scan plane. To make
things worse, by default the angular resolutionds
constant but higher in the front and lower on the
sides and rear, which as we explained earlierds th
best zone for relocation. As a result of this, the
implementation on the SSTI vehicle was limited to
achieve a 20 cm per pixel map resolution but turned
out to be very robust thanks to the almost 3604 fie
of view and possibly to its low map resolution. The
scanning frequency was set to 12.5 Hz which may
not be sufficient when driving at high speed but to
increase the frequency would have lowered too
much the angular resolution.



On the whole, results were very satisfactory as we
were able to localize over kilometer drives at high
speeds (60km/h to 70km/h) on a real road and heavy
traffic environment.

Because the four scanning planes were plotted, rich
and detailed maps were obtained with road features
becoming apparent such as continuous and dashed
lane markings (Fig 7). We believe this happens
because as the lower scans sweep the road at a
certain distance and angle, only reflective sudace
send back an echo. At this point we don't take
advantage of this for localization because the towe
scans are not used in the process.

Fig 7. Road features become apparent.

We have to point out that when driving over large
distances the use of a static map is not pracfitas

is why for the real road tests we have used a
dynamic map centered on the vehicle and which we
build from a circular buffer containing the N
previous scans, that is, when new data comesaen, th
oldest data in the buffer disappears. The result
covers a square area of 200m x 200m around the
vehicle (1000 pixels x 1000 pixels) and we say the
map is dynamic because it is being completely
redrawn at each new scan. A dynamic map of the
sort has been preferred during the tests to & sind
primarily because the large distances involveche t
testing would have required a huge bitmap. Then
this is ok because in this application the map

information is normally used for local navigation,
which generally only involves a few meters around
the vehicle. Other benefits of a dynamic map is its
ability to regenerate rapidly in the case of a loks
localization and if a small buffer is used, the
capacity of reflecting the changes in the
environment. For example an opening gate that was
initially closed will disappear from the map as it
opens. Another example would be to update empty
spaces in a parking lot while searching a place to
park.

In the case we are dealing with an application in
which we want to have a map over the complete
trajectory of the vehicle, we need as we go to keep
record of all measurements along with the calcdlate
associated position. For drawing a portion of a map
we then need to specify a location and we search in
the recorded data all the positions found to béiwit

a certain radius of the selected location. Now, we
obtain a map by simply applying the appropriate
coordinate change to the associated scans of those
found positions. Because the map is kept not as a
bitmap but reconstructed from the raw scan data
every time, it is possible to easily zoom in or @oo
out or rotate the map at will. This can be usetul f
example if we want the orientation of the map to
follow in real time the current orientation of the
vehicle.

Even though it is not the purpose of our algorithm,
we are going to show here an example of its
accuracy over a long distance drive (2.18Km).
During the test, the differential GPS position was
recorded to be used as a reference.

283m

\ |

Fig 8. Laser(blue) and GPS(red) paths (2.18Km)



On this ride (Fig 8.), the differential GPS and the
laser trajectories seem to match relatively wedl th
first 400m but after an offset appears that remains
for the rest of the way. Even though, comparing the
relative shape of the trajectories and the distance
involved, we can see the algorithm in general
performs quite well even if it is almost inevitalite
have at some moment some surrounding
environment that the algorithm won't be capable of
dealing with. We want to point that what we seesher
is the result of the raw output of the localization
process, it could be certainly improved for example
adding a Kalman filter which points towards
interesting future developments.

IV - Suggested areas of future work

Immediate planned future work includes testing the
algorithm with other laser configurations to see/é
can improve its performance both in map definition
and robustness. After that we plan to do:

- Tracking of moving objects, this should improve

the localization process as we can eliminate the
moving points from the next iteration of step oe a

well as eliminate those from the map, improving in

this way the relocation in step two.

- Elaborate a good control law working with the map
localization.

- Create classifiers able to extract from the map
features such as lanes, intersections and so on.

- Combine the algorithm output with a low cost 1Hz
GPS in order to transform the map coordinates into
global latitude and longitude coordinates for globa
navigation.
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Fast and Feasible Deliberative Motion Planner for
Dynamic Environments

Mihail Pivtoraiko and Alonzo Kelly

Abstract— We present an approach to the problem of differ-
entially constrained mobile robot motion planning in arbitrary
time-varying cost fields. We construct a special search space
which is ideally suited to the requirements of dynamic environ-
ments including a) feasible motion plans that satisfy differential
constraints, b) efficient plan repair at high update rates, and
¢) deliberative goal-directed behavior on scales well beyond
the effective range of perception sensors. The search space
contains edges which adapt to the state sampling resolution yet
aquire states exactly in order to permit the use of the dynamic
programming principle without introducing infeasibility. It is a
symmetric lattice based on a repeating unit of controls which
permits off-line computation of the planner heuristic, motion
simulation, and the swept volumes associated with each motion.
For added planning efficiency, the search space features fine
resolution near the vehicle and reduced resolution far away.
Furthermore, its topology is updated in real-time as the vehicle
moves in such a way that the underlying motion planner
processes changing topology as an equivalent change in the
dynamic environment. The planner was originally developed
to cope with the reduced computation available on the Mars
rovers. Experimental results with research prototype rovers
demonstrate that the planner allows us to exploit the entire
envelope of vehicle maneuverability in rough terrain, while
featuring real-time performance.

I. INTRODUCTION

Capable motion planners are important for enabling field
robots to perform reliably, efficiently and intelligently. De-
spite decades of significant research effort, today the ma-
jority of field robots still exhibit various failure modes
due to motion planning deficiencies. These failure modes
range from computational inefficiencies to frequent resort
to operator involvement when the autonomous system takes
unnecessary risks or fails to make adequate progress. Based
on our field robotics experience, we have developed a motion
planning method that addresses many drawbacks of leading
approaches. It is a deterministic, sampling-based method. It
features a sampling of robot state space that lends itself
well to utilizing standard graph search techniques, while
enabling an array of high-performance planning capabilities.
The proposed motion planning method was implemented and
successfully validated in field experiments at the California
Institute of Technology, Jet Propulsion Laboratory (JPL;
Figure 1).

While the planner was originally developed for the Mars
rovers, it is equally relevant to dynamic environments. In

This research was conducted at the Robotics Institute of Carnegie Mellon
University, sponsored by NASA/JPL as part of the Mars Technology
Program.

The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. {mihail , alonzo}@ cs.cmu.edu

fact, a variant of this planner was used in CMU’s winning
entry in the DARPA Urban Challenge [1]. Motion planners
intended for use in dynamic environments must be:

o Fast, in order to replan on-the-move when changes in
the environment are detected,

o Feasible (meaning satisfying differential constraints) at
least in the near field, so that the predicted path to avoid
dynamic obstacles is the one actually executed by the
vehicle,

« Deliberative, so that effective goal-directed behavior can
be maintained despite the path perturbations caused by
reacting to changes in the environment such as the
motions of dynamic obstacles and the appearance and
disappearance of local minima.

In order to satisfy the differential constraints, we propose
to encode them in the search space. This allows to shift the
constraint satisfaction to the search space design process,
which can be accomplished a priori and off-line. In partic-
ular, we enforce that the edges of the graph that represents
the planning problem represent the feasible motions that can
be directly executed by the robot. In this manner, the on-line
planner can utilize unconstrained, standard search algorithm
to find a solution to the motion planning problem, a path in
the representation graph.

For most systems featuring differential constraints, rela-
tively high dimensionality of the state space may be required.
Deterministic search in this setting can be computationally
costly. Planning in complex outdoor environmens can be
especially computationally expensive due to any combination
of scale, dynamics, and dense obstacles.

Fig. 1. FIDO rover navigates autonomously using the proposed motion
planner among dense obstacles in the Mars Yard at the California Institute
of Technology, Jet Propulsion Laboratory. The planner manages frequent
updates of the limited perception system by replanning continuously at
approximately 10Hz. Computed planner motions are smooth in curvature
and executable by the robot verbatim.



This paper proposes a two-fold solution to this difficulty.
First, the search space is designed to be compatible with
replanning algorithms [2], [3] that can repair the motion
plan efficiently when the representation of the environment
changes. This is particularly important in robotics applica-
tions in partially known or dynamic environments, where
changes in environment information are frequent. The robot
must be able to recompute its motion plan quickly. The
second manner of alleviating computational complexity of
planning is through modification of the fidelity of represen-
tation of the motion planning problem. The proposed search
space consists of one or more arbitrary regions of different
fidelities. Lower fidelity of representation results in faster
search, but higher fidelity results in better quality solutions.
The approach is closely related to multi-resolution planning
[4], but we use the term graduated fidelity to emphasize that
the quality of representation is expressed not only as the
resolution of state discretization, but also as the connectivity
of edges between the vertices in the state lattice. Each region
of the search space can be assigned a fidelity arbitrarily, yet
practically this choice is guided by the region’s relevance for
the planning problem and the availability of the environment
information. In particular, it is often beneficial to utilize a
high fidelity of representation in the immediate vicinity of
the moving robot. Our method meets that need by allowing
the regions of different fidelity to move or change shape
arbitrarily.

The contribution of this work is a representation of motion
planning problems under differential constraints that has a
number of important advantages:

« Satisfaction of differential constraints is accomplished

off-line, to allow fast on-line perfomance,

o Compatibility with standard replanning algorithms al-
lows quick robot reaction to changing environment
information,

« Fast planning is enabled through managing the fidelity
of representation.

Our concentration on achieving a fast deterministic
constraint-compliant planner was originally motivated by the
spartan processing available on the Mars rovers. However,
our results are equally applicable to terrestrial problems
where high planner update rates can be used to respond
effectively to changes in dynamic environments as they are
predicted or discovered by perception.

In the next section, we relate the proposed approach
to prior work. In the following three sections, we further
describe each of its principal benefits, as listed above. We
will conclude this presentation with experimental results.

II. PRIOR WORK

A planner based on A* search in the state lattice was
successfully utilized to guide a car-like robot in challenging
natural environments [5]. The graduated fidelity extension
to the state lattice is related to the general area of multi-
resolution planning: [6], [7], [8] and others. One difference
our method has with most multi-resolution predecessors
is that we allow regions of different resolution to move

over time, while the search space remains compatible with
systematic search. The idea of dividing the search space into
regions is related to [9], but our method allows replanning
in this search space.

Satisfaction of differential constraints also has received
a considerable amount of attention in motion planning
research. Powerful probabilistic techniques have been de-
veloped [10] [11], however our method is deterministic
and under appropriate conditions can offer a number of
guarantees provided by standard search algorithms, including
optimality and resolution-completeness. A number of other
approaches utilize discretization in control space to manage
the complexity of the planning problem [12]. However, there
are important advantages to using discretization in the state
space instead. In particular, it simplifies reducing dispersion
of sampling, in turn allowing a more uniform distribution of
samples in the state space [4]. This is beneficial to exploring
the state space more efficiently, as the search attempts to find
a path from initial to final state. Unfortunately, reducing state
space dispersion through control space sampling is difficult.
It was shown in [16] that through careful discretization in
control space, it is possible to force the resulting reachability
graph of a large class of nonholonomic systems to be a
lattice, however this is usually difficult to achieve. By using
a boundary value problem solver [14], we are able to choose
a convenient discretization in the state space, one that makes
the search more efficient, while maintaining the satisfaction
of differential constraints.

ITII. FEASIBLE MOTIONS

Discrete representation of robot state is a well-established
method of reducing the computational complexity of motion
planning. This reduction comes at the expense of sacrificing
feasibility and optimality, the notions denoting the planner’s
capacity to compute a motion that satisfies given constraints,
and to minimize the cost of the motion, respectively. In
computing motions, we seek to satisfy two types of con-
straints: features of the environment that limit the robot’s
motion (obstacles) and the limitation of the robot’s mobility
due to the constrained dynamics of its motion (differential
constraints). Motions that satisfy both types of constraints
will be referred to as feasible motions.

The proposed method is based on a particular discretiza-
tion of robot state space, the state lattice. It encodes a graph,
whose vertices are a discretized set of all reachable states of
the system, and whose edges are feasible motions, controls,
which connect these states exactly. The motions encoded in
the edges of the state lattice form a repeating unit that can
be copied to every vertex, while preserving the property that
each edge joins neighboring vertices exactly. This property of
the search space will be denoted regularity. The canonical
set of repeating edges will be called the control set. The
number of edges in the control set is exactly the branching
factor, out-degree, of each vertex in the reachability graph.



A. Sampling State and Motions

Beneficial state sampling policies include regular lattice
sampling, where a larger volume of the state space is covered
with fewer samples, while minimizing the dispersion or
discrepancy [4]. It is natural to extend the concept of regular
sampling from individual values of state to sequences of
states (i.e. paths). As for state space, the function continuum
of feasible motions can also be sampled to make compu-
tation tractable. The effective lattice state space sampling,
developed in this work, induces a related effective sampling
of motions.

Suppose discrete states are arranged in a regular pattern.
Besides sampling efficiency benefits, an important advantage
of regular sampling of state space is (quantized) translational
invariance. Any motion which joins two given states will
also join all other pairs of identically arranged states. By
extension, the same set of controls emanating from a given
state can be applied at every other instance of the repeat-
ing unit. Therefore, in this regular lattice arrangement, the
information encoding the connectivity of the search space
(ignoring obstacles) can be pre-computed, and it can be
stored compactly in terms of a canonical set of repeated
primitive motions, the control set. Two properties of lattice
search spaces that are necessary conditions for satisfying
differential constraints are:

1) Enforcing continuity of relevant robot state variables
across the vertices,

2) Ensuring that the edges between the vertices of the
search space represent feasible motions.

The first condition can be satisfied by adding the relevant
dimensions to the search space, in order to represent the
continuity of state variables explicitly. For example, if a
heading dimension is added to the a 2D (x,y) state space,
then (x,y, North) and (x,y, Fast) become distinct states.
In order to satisfy the second condition, we require a method
of discretizing the robot control space to force its reachability
tree to be a regular lattice in state space. We identify two
methods of achieving this:

e Forward — for certain systems, there are methods of
sampling the control space that result in a state lattice
(161, [15],

e Inverse — a desired state sampling can be chosen first,
and boundary value problem solvers can be used to find
the feasible motions (steering functions) that drive the
system from one state value to another, e.g. [14], [17].

We prefer the inverse approach because it permits the
choice of state discretization to be driven by the application —
including the vehicle and the environment. Smaller state
spacing is desired for denser obstacles or smaller vehicles.
Note that, in the state lattice, if state separations are small
relative to the distance required to change vehicle heading
by the distance to the next heading sample, the edges in such
a structure can span many state separations.

Fortunately, the work of constructing the state lattice can
be performed off-line, without affecting planner runtime.
Once it is constructed and represented as a directed graph

(compactly specified with a control set), the state lattice
can be searched with standard algorithms. An example of
a simplified state lattice is shown in Figure 2.

Fig. 2. An Example State Lattice. A repeated and regular pattern of vertices
and edges comprises the state lattice. The inset shows the control set, the
motions leading to some nearby neighbors of a vertex. The overall motion
plan (thick black curve) is simply a sequence of such edges. Reverse motions
were omitted for clarity.

Algorithm 1 is a simple inverse method for generating
a control set. Referred to as the Shortest Edges algorithm,
it may serve as a departing point to evaluate our proposed
approach to search space design. To better illustrate the
algorithm, in this section we assume a 4D state lattice that
consists of 2D translation, heading and curvature. Suppose
that © and K are user-defined subsets of discrete values
of heading and curvature in the state lattice, respectively. By
exploiting rotational symmetries in the state lattice, these sets
can be desired strict subsets of all possible discrete values
of these states variables. The outer for-loop selects the per-
mutations of discrete values of initial and final heading and
curvature. The inner for-loop cycles through all discrete value
pairs of  and y, such that the maximum norm! L., between
the origin O and (xy, ys) grows from 1 to infinity. For each
value of L, if the trajectory generator finds a solution to the
boundary value problem, a feasible trajectory u;, we add it to
the control set. At this point we break from the inner for-loop
and proceed with another choice of terminal heading and
curvature values. The algorithm terminates when a trajectory
is generated for every permutation of heading and curvature
values.

'L oo norm of a vector x = [x1, %2, ..., Tp] is max; |z;|



Input: State discretization in the state lattice: position,
discrete values of heading (©) and curvature (K)
Output: A control set,
Ew = @;
foreach 0;,0; € © and k;,x; € K do
foreach x5, ys s.t. Loo(O, [z, yf]) =[1...00) do
u; = trajectory([0, 0, 6;, ki, [xf,ys,0F, Kf]);
if u; # 0 then
Ey — u;
break;
end
end
end
Algorithm 1: A simple method of generating a control set.

B. Heuristic Cost Estimate

Heuristic estimates of the remaining cost in a partial plan
are well-known to have the potential to focus the search
enough to eliminate unnecessary computation while preserv-
ing the quality of the solution. The Euclidean distance metric
is among the simplest options for a heuristic estimate of path
length in the state lattice. This function is computationally
efficient, and it satisfies the admissibility requirement of
A* [18]. However, for differentially constrained planning,
it is not a well-informed heuristic and, in the case of short
paths, it can vastly underestimate the true path length, result-
ing in inefficient search. A heuristic for a vehicle with limited
turning radius moving in the plane could be derived from
the methods of Reeds and Shepp [19]. However, the Reeds-
Shepp paths are discontinuous in curvature (i.e. infeasible
to execute without stopping), and they do not account for
discretization, so even these paths are underestimates. Given
ample off-line computational resources, a straight-forward
and effective way to predict path lengths is to pre-compute
and store the actual cost heuristics that a planner will need,
using the planner itself. Such a Heuristic Look-Up Table
(HLUT) can be implemented as a database of real-valued
query costs. Under this approach, the computation of the
heuristic becomes a simple table dereference [20], [21].

IV. REACTIVE REPLANNING

The state lattice search space presented above is compat-
ible with most dynamic programming algorithms. In order
to achieve efficient implementation of efficient replanning
algorithms (variants of D*), a number of implementation
details are presented in this section.

A. Computing Edge Costs

The regularity of the state lattice allows an efficient opti-
mization in evaluation of the cost of graph edges during plan-
ning with continuous cost maps, which is roughly equivalent
in computational terms to pre-computing C' space obstacles.
Recall that, in continuous cost field environment models, the
cost of a configuration is computed as a cost weighted swept
volume (i.e. area in 2D workspace cost fields). That is, the
sum of the workspace cell costs occupied by the vehicle
volume. We denote the set of map cells occupied by the
vehicle volume during execution of a particular motion as the

swath of this motion. Since lattice edges repeat regularly, so
do their associated swaths. Thus, it is possible to pre-compute
the swaths for all elements of the control set. When costs
change in the workspace cost map, the only computation
required to update the cost of an edge (motion) is to add the
costs of the cells in the swaths.

The top of Figure 3 depicts a motion of a tractor-trailer
vehicle, along with the swath of this motion. In order to
evaluate the cost of a motion, the costs of map cells in the
swath (reproduced on the bottom of Figure 3) are simply
summed up — an operation typically much more efficient than
simulating the motion of the system. The simpler alternative
of low-pass filtering the workspace cost map by a circular
vehicle approximation will be significantly less accurate for
systems with elongated shape. The calculation proceeds off-
line for a state lattice and we care to satisfy differential
constraints, so we use the correct vehicle shape and highly
accurate simulation.

) 4

Fig. 3. An example of a pre-computed swath of a path for a tractor-trailer
vehicle. Bottom: the swath allows computing the cost of a motion w.r.t. a
cost map, without explicitly considering the motion itself (top).

B. Processing Edge Cost Updates in Replanning

D* variants were originally applied to grids [2], [3]. The
earliest work on D* used the same resolution for both the
cost map and the search space and implicit “edges” which
connected states only to their nearest 8 neighbors. In this
case, the mapping from a modified map cell to the affected
search space edges and vertices is trivial. For a state lattice
whose edges may span several map cells, the above historical
simplifications of these issues are no longer feasible.

Suppose the replanner uses a priority queue to ensure
optimality of the solution. For every change in the cost of the
directed edge from the vertex x; to x;, ¢(x;, ¢;), a replanning
algorithm requires recomputing the cost of x; and potentially
inserting it into the priority queue. Assuming a map cell
m;; € N? changes cost, the planner needs to know the set
of vertices V. that potentially need to be re-inserted into the
priority queue with new priority. Thus, the planner requires
a mapping Y : N2 — V.

To develop this mapping, we use the concept of swath,
introduced in Section IV-A. More formally, we consider the



swath a set C; C N2 of cost map cells that are occupied
by the robot as it executes a motion. The cost of an edge
that represents this motion is directly dependent on the costs
of map cells in Cs. Recall that once we pre-compute the
control set of a regular lattice, it is possible to pre-compute
the swaths of the edges in it.

Since the mapping between edges and their terminal
vertices is trivial, it is easier first to develop the mapping
Y’ : N2 — E,, where E, is the set of edges that are affected
by m;; (i.e. the set of edges whose swaths pass through the
cell). Determining Y’ may still appear as a formidable task,
given the high density of edges in the multi-dimensional state
lattice. However, we again exploit the regularity of the lattice
to simplify the problem. If we have Y : O — E,., where
O is the map origin, then Y’ = Y + n,Vn € N2, In other
words, the set of edges, affected by m;; = O is identical
for any other cell, up to the translation coordinates. Further,
recall that the swath Cs of each edge in E. is known. In
principle, E. contains all edges u,, such that m;; belongs
to Cs of u.. Hence, the mapping Y is exactly the set
of edges, whose swaths pass through the 2D origin. The
Figure 4 illustrates this idea. Like the control set and path
swaths, the resulting set of edges can be pre-computed due
to the regularity of the state lattice. An example of the V.
for the implementation described in Section VI is shown in
the Figure 5.
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Fig. 4. The first several steps of pre-computing the list of graph vertices
that are affected by a change in cost of a map cell. In a), a single element
of a control set is chosen for this example. It emanates from the origin of
the state lattice, thick square, and connects it to another graph vertex, thick
circle. Grey cells are the swath of this motion. Suppose a map cell, located at
the origin of the state lattice (thick square), changes cost. We attempt to find
all translational versions of the chosen motion, whose swaths are affected by
the changed map cell. In the subfigures b) — e), we iterate through several
such translational versions of the motion. The resulting (edge end-point)
vertices that are considered for insertion to the priority queue are shown in
subfigure f). Typically, many more such vertices are processed for each edge
(as suggested by ellipsis in subfigure f). The process repeats for all edges
in the control set. Pre-computation allows eliminating any redundancy by
generating a unique list of such vertices.
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Fig. 5. A 2D projection of an example of V., the set of lattice states that
are to be re-considered for every updated map cell. The units in the plot are
state lattice cells. For the purposes of exposition, here the size of map cells
is set to be equal to the size of state lattice (z,y) cells. For each map cell,
m;j, that changes cost, we place the set of vertices above in this Figure
onto m;; (i.e. the origin of the set of vertices, denoted with coordinates
(0,0), is identified with m;;). Next, we iterate through the depicted list
of the vertices and place each one on the priority queue, if it was indeed
affected by the cost change of m;;.

V. FAST OPERATION

By virtue of the state lattice’s general representation as
a directed graph, it can be naturally extended with multi-
resolution enhancements. Significant planning runtime im-
provement was achieved in the literature via a judicious use
of the quality of representation of the planning problem,
e.g. [22], [7], [8] among others. In field robotics, it is fre-
quently beneficial to utilize a high fidelity of representation in
the immediate vicinity of the robot (perhaps within its sensor
range), and reduce the fidelity in the areas that are either
less known or less relevant for the planning problem. Lower
fidelity of representation is designed to increase search speed,
while higher fidelity provides better quality solutions. Since
grids have traditionally been utilized in replanning, the notion
of varying the quality of problem representation has been
identified with varying the resolution of the grid. However,
our method varies the discretization of both the state and
motions. We refer to managing the fidelity of state lattice
representation as graduated fidelity.

In designing the connectivity of search space regions of
different fidelities, care must be taken to ensure that all
regions consist of motions that are feasible with respect
to the robot’s mobility model. If this rule is violated,
mission failures become possible due to the differences in
the representation of vehicle mobility. Figure 6 illustrates
this situation using a simple example. Suppose a search
space is used in which a high fidelity region of finite size
surrounds and moves with the vehicle, and a disjoint lower
fidelity grid is used beyond that. Suppose the A* algorithm
is used to plan paths in this hybrid graph. A car-like robot
attempts to travel to a goal on the other side of a collection
of obstacles that forms a narrow corridor. As long as the
low-fidelity region includes the corridor (black line), the
planner will find a solution in the graph. However, the 90



degree turn in the path is actually infeasible, since the car-
like robot cannot turn in place. As the vehicle moves, the
high fidelity region will eventually include the turn in the
corridor and the planner will then fail to find a solution. The
only viable alternative will be to back up, thereby moving
the corridor to the low fidelity region once again. Since the
original state of the scenario has now been achieved, it is
easy to see that this behavior will repeat forever. In order
to avoid such difficulties, it is necessary to ascertain that all
levels of fidelity include feasible motions. In particular, the
connectivity of low fidelity regions must be a subset of that
of the higher fidelity regions.

Fig. 6. A simple example of a motion planning problem, where a car-like

robot that attempts to follow the infeasible path (black line) experiences a
failure.

Goal

To implement graduated fidelity planning, the above de-
sign requires only a minor modification. Once the state lattice
graph is separated into subgraphs of different fidelities as
desired, each subgraph uses its own control set to achieve
the chosen fidelity. Each control set defines the successors
of a vertex being expanded during search. Care must be
taken to design the control sets such that they adequately
span the boundaries between the subgraphs. Note that control
set design is the sole procedure needed to enable graduated
fidelity. Replanning algorithms require no changes and will
achieve the desired effects automatically.

It can be useful to enable a high fidelity subgraph to
move along with the mobile robot as described in the
example above. As shown in [23], such flexibility can be
accomplished by undoing the effects of previous expansions
of the vertices on the perimeter of the moving subgraph. Ac-
complishing this once again requires no change to the actual
replanning algorithm. The change of graph connectivity that
occurs between replans is presented to the planning algorithm
as a change in cost of the affected graph vertices. Such
topology based cost changes appear to replanning algorithms
to be identical in nature to perception based cost changes.
If the vertex expansion step is considered to be part of an
external search space module, the planner actually cannot
tell that the graph topology is changing.

More generally, it is straight-forward to extend the concept
of graduated fidelity to allow multiple subgraphs of different
fidelity to move or change shape between replans. Such
flexibility results in a dynamic search space, which comple-
ments dynamic replanning algorithms to improve planning
efficiency. Thus, the graduated fidelity extension of state
lattice planning is conceptually simple and straight-forward
to implement, and it can be designed to result in significant
savings in runtime and memory usage in replanning.

VI. EXPERIMENTAL RESULTS

A differentially constrained motion planner, lattice plan-
ner, was implemented based on the state lattice and tested
in a variety of scenarios, including in simulation and on real
robots. The planner was ported to the VxWorks™hard real-
time operating system that controls the JPL rover FIDO that
was used in field experients. Figure 7 shows the results of a
typical experiment with the FIDO running the lattice planner
on-board to navigate autonomously amid dense rocks. In this
experiment, the rover was given a command to drive to a goal
15 meters directly in front of it, as shown by the black line
in the top of the Figure. This motion was infeasible due to
large rock formations. However, the rover, under guidance of
the lattice planner, negotiated this maze-like and previously
unknown environment, and found a feasible path (white dots)
to accomplish its mission, despite a very limited perception
horizon of 3 meters and +£40° field of view.

We have not had a chance to optimize memory usage of
our planner implementation; nevertheless, the peak memory
usage of the lattice planner over all our experiments with
the FIDO rover was less than 100MB. The bottom part
of Figure 7 shows the semilog plot of the on-board lattice
planner runtime per replan cycle, averaging at approximately
10Hz. This plot serves well to illustrate two points regarding
typical planner runtime on-board FIDO: the computation
time per replanning operation can vary greatly (depending
on the difficulty of the problem at hand), and the replanning
runtime was frequently lower than the time-resolution of the
rover’s operating system (5ms), which is observed via the
bottom-limited segments of the plot.

Rover mobility was characterized by a minimum turning
radius of 0.5m and a capacity of point turns, which had a
high cost due to the time and energy required for reorienting
wheels. Both cost map cells and (x,y)-cells of the state
lattice were square with 20cm side length; both types of
cells coincided in position. The rover used a single 1.6GHz
CPU and 512MB of RAM, shared among all processes of
the rover, including state estimation, stereo vision perception
and communication systems.

The lattice planner utilized two fidelity regions. High
fidelity region was square 21x21 mapcells (L.-radius of 2
meters), centered around the rover. It utilized a lattice control
set with average outdegree 12. Its state space consisted of
2D position and heading (z,y,0). It was generated using
Algorithm 1. A trajectory generator in [17] was used to
generate the motions between the given values of robot state.
Motions were parameterized as cubic polynomial curvature,
K, functions of path length s, k(s). Low fidelity was repre-
sented as eight-connected grid.

In this experiment, the rover traversed approximately 30
meters and achieved the goal successfully (only the first
two-thirds of the rover path are shown in the photograph
due to the limited field of view of the external camera). No
path tracking was used, and the rover executed verbatim the
smooth and feasible motion computed by the lattice planner.
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Fig. 7. A field experiment in the JPL Mars Yard. Top: the FIDO rover
was commanded to go straight 15 meters (black line). The rover navigated
autonomously among previously unknown maze-like obstacles, while run-
ning the graduated fidelity lattice planner on-board. White dotted line is the
path traversed by FIDO. The rover encountered multiple difficult planning
scenarios due to the very limited perception. It traveled approximately 30
meters in order to achieve its goal. Bottom: throughout numerous field
experiments, lattice planner on-board FIDO averaged replanning frequency
of approximately 10Hz.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we described an effective approach to plan-
ning robot motions that satisfy differential constraints. In
addition to leveraging dynamic replanning algorithms, this
approach enables dynamic and deliberate changes in search
space connectivity to boost efficiency. Standard replanning
algorithms can be utilized, while the proposed search space
design allows both the automatic satisfaction of differential
constraints and the adjustment of the search space between
replans. The method was successfully demonstrated in sim-
ulation and on real robots. Future work includes a further
investigation into the state and motion space sampling to
further improve planning efficiency.
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Benchmarking Collision Avoidance Schemes
for Dynamic Environments

Luis Martinez-GomeZz and Thierry Fraichard

Abstract— This paper evaluates and compare three state- among people, it is vital to assert their ability to avoid
of-the-art collision avoidance schemes designed to operate in collisions.

dynamic environments. The first one is an extension of the ; )
popular Dynamic Window approach; it is henceforth called In the last forty years, the number and variety of au

TVDW which stands for Time-Varying Dynamic Window. The ONOmous navigation schemes that have been proposed is
second one called NLVO builds upon the concept ofNon huge €f [2]). In general, these navigation schemes intend to
Linear Velocity Obstacle which is a generalization of the Velocity  fulfill two key purposes: reach a goal and avoid collision
Obstacle concept. The last one is calledcls-AvoliD, it draws  with the objects of the environment. When it comes to

upon the concept of Inevitable Collison States, ie states for o jiiq avoidance, once again, many collision avoidance
which, no matter what the future trajectory of the robotic

system is, a collision eventually occurs. The results obtained Schemes have been proposed. Their aim of course is to
show that, when provided with the same amount of information ~ensure the robotic systems’ safety. However, the analysis
about the future evolution of the environment, Ics-Avoid  carried out in [3] of the most prominent navigation schemes
outperforms the other two schemes. The primary reason for (ie the ones currently used by robotics systems operating

this has to do with the extent to which each collision avoidance . . . .
scheme reasons about the future. The second reason has to doIn real environmentseg [4]-{7]) shows that, especially in

with the ability of each collision avoidance scheme to find a €nvironments featuring moving objectaption safety is not
safe control if one exists. £s-AvoID is the only one which is guaranteedin the sense that collisions can occur even if they
complete in this respect thanks to the concept of Safe Control have full knowledge of the environment future evolution: no
Kernel. _ o _ _uncertainty or spurious information). As shown in [3], col-
Index Terms— Motion Safety; Collision Avoidance; Dynamic jiqiqn ayoidance in dynamic environments is complex since
Environments; Inevitable Collision States, Velocity Obstacles, . . . )
Dynamic Window. it requires to explicitly reason about tifieture behaviourof
the moving objects with &me horizon ie the duration over
which the future is taken into account, which is determined
by the nature of both the moving objects and the robotic
A. Background and Motivations system at hand. Failure to do so yields collision avoidance

Autonomous mobile robots/vehicles navigation has a longchemes with insufficient motion safety guarantees.
history by now. Remember Shakey’s pioneering efforts in
the late sixties [1]. Today, the situation has dramaticalls. Contributions
changed as illustrated rather brilliantly by the 2007 DARPA ) . . .
Urban Challenge The challenge called for autonomous The primary purpose of this paper 1S to e>_<p|_0r_e this
car-like vehicles to drive 96 kilometers through an urbafiMe horizon issue and to show how important it is in the
environment amidst other vehicles (11 self-driving and 55!e3|gn ,Of a truly s_afe collision avoidance scheme. To that
human-driven). Six autonomous vehicles finished the ragghd: this paper W'I,I evaluate and compare three statg-pf-
thus proving that autonomous urban driving could become the-art collision avoidance schemes that have been etiplici

reality. Note however that, despite their strengths, thigadr esigned to hz_indle dynamic envir(_)nments._The first one is

Challenge vehicles have not yet met the challenge of fullgé),n:j [8] and is henceforth .car:Ied’lme;jVarymg .Dynam|r(]:

autonomous urban driving (how about handling traffic lightdVindow (TVDW), it is a straightforward extension of the
popular Dynamic Window approach [6]. The second one

or pedestrians for instance?). build h dlon Li Velocity Ob |
Another point worth mentioning is that at least one ullds upon the concept dion Linear Velocity Obstacle

collision took place between two competitors. This unforgNLVO) [9] which is a generalization of the Velocity Ob-

tunate mishap raises the important issuenajtion safety stacle concept [7]. The last onecs-AvoiD [10], draws

ie the ability for an autonomous robotic system to avoid'Pon the concept ofnevitable Collision St.atesieveloped
collision with the objects of its environment. The size and [11] (aka Obstacle Shadow [12] or Region of Inevitable

the dynamics of the Urban Challenge vehicles make the@ollision [13], [14]). The three collision avoidance schesn
t

I. INTRODUCTION

potentially dangerous for themselves and their envirortme o reason about the future evolution of the environments but
(especially when driving at high-speed). Therefore, befor ey do so dlﬁergntly, each scheme has its own tlme_ horlzgn.
When placed in the same environment and provided with

letting such autonomous systems transport around or move ' -
exactly the same amount of information about the future,

fINRIA, CNRS-LIG & Grenoble University, France. the results we have obtained show thaslAvoib performs
lhtt p: // www. dar pa. mi | / gr andchal | enge. significantly better than the other two schemes.



The primary reason for this has to do with the wayA. Time Varying Dynamic Window

each collision avoidance scheme uses the information aboutrpe Dynamic Window approach is a velocity space based
the future, thus emphasizing the fact that, reasoning abdi5) reactive avoidance scheme where search for adréssibl
the future is not nearly enough, it must be done with agontrols is carried out directly in the linear and angular
appropriate time horizon. In contrast with TVDW and NLVO, e|qcity space [6]. The search space is reduced by the system
Ics-AvolD is the only scheme that reasons over an infinitginematic and dynamic constraints to a set of reachable

time-horizon. The analysis carried out in [10] shows that i{je|ocities /) in a short time intervalt) around the current
Ics-Avoip were provided with full knowledge about the ye|qcity vector (Fig.1a):

future, it would guarantee motion safety no matter what.

Now, it could be argued that infinite knowledge about the Ve ={(v,w)[v € [ve — th AL, ve + Ve AL]A )
future is not available in realistic cases (which is trué)eT W € [we — WpAt,we + W At]}

fact remains thatds-AvolID is the only scheme that is able

to make full use of all the information about the future WhiChacceIerations and breaking decelerations. A velocity is ad

is provided. missible if it allows the system to stop before hittin
The second reason has to do with the decision part er1 objectg/a) y P g

each collision avoidance scheme. In all cases, their dpgrat

principle is to first characterize forbidden regions in aegiv. =~ Vi, = {v,w < \/2pmin (v, W)Us A V/2Pmin (v, W)} (2)

control space and then select an admissible conigabne . . N . .
An admissible velocity optimizing a given cost function

which is not forbidden. Accordingly motion safety also. lected at h i tep. Thi h id th
depends on the ability of the collision avoidance schemg S€'€cted at each time step. This approach considers the
at hand to find such admissible control. In the absenc%bJeCtS in the environment as static. TVDW extends this

of a formal characterization of the forbidden regions, al Cthf(ran(ca)bz)t/aglzlscl{nlrafatlggto?j{egaﬁholrré???; ihse?:tk (?erggrﬂ]sglate
schemes resort to sampling (with the inherent risk of m'g;sinu u J les | :

the admissible regions). In contrast;stAvolID through the :Ir)]V\tlh% short telrtm [8]. In th'bs riS&eth T{VDV\L 'i supenorf t’?h
concept ofSafe Control Kernels the only one for which it ecause 1t reasons about the future benhaviour of the

is guaranteed that, if an admissible control exists, it vl obstgcle;. The extent of the_ look ahead time I set to_e_qual
. the time it takes to the robotic system to stop, if no collisio
part of the sampling set. . X s ) :
occurs during that time the velocity is considered admissib

wherev,, W, Uy andw, are maximal translational/rotational

C. Outline of the Paper (Fig.1b).
The paper is organized as follows: Section Il gives an VS
overview of the collision avoidance schemes used for the e

comparative evaluation: TVDW, NLVO anat-AvolID. Af-
terwards, Section Il details the way each collision avoitka
scheme reasons about the future. Section IV describes the Dynamic WindowV
benchmarking and simulation setup. The benchmark results v,

are presented in Section V. Discussion and concluding re-
marks are made in Section VI.

Actual Velocity

Il. STATE-OF-THE-ART COLLISION AVOIDANCE (a) Dynamic Window.
SCHEMES

As exposed in the introduction, the benchmarking con-
cerns TVDW, NLVO and ts-AvoiD. The first two are ex-
tensions to popular collision avoidance schemes used in rea
world applications: Dynamic Window (DW) and Velocity
Obstacles (VO). DW has been demonstrated at relatively high
speeds (up td m/s) in complex environments with Min-
erva [15], Rhino [16] and Robox [17], robotic tour-guides
that have operated for different time periods in different
places in the United States, Germany and Switzerland. VO Fig. 1: Dynamic Window based approaches.
has been tested with MAId [18], an automated wheelchair
that navigated in the concourse of the central station in Ulm . )

(DE) and during the German exhibition Hanover FairggB: Non-Linear Velocity Obstacles

Ics-AvoID, is the continuation of the work done around the Velocity Obstacles is a reactive approach that operates
ICS concept for safe motion planning in dynamic environin the Cartesian velocity space of the robotic system con-
ments [19], [20] with applications in driverless vehicl@d], sidered [7]. VO takes into account the velocity of the
[22]. moving objects (assumed to be moving with a constant linear

(b) Time-Varying Dynamic Window.



velocity). Each object yields a set of forbidden velocitiess defined as a state for which, no matter what the future
whose shape is that of a cone (Fig.2a depicts the linetrajectory followed by the system is, a collision eventyall
velocity space of the robaotic system, the red conical regiooccurs. £s-Avoib searches the control space of the system
on the right is the set of forbidden velocities that wouldor a control to apply at the next time step. A control is
yield a collision between the roba#l and the moving admissible if it drives the system to a non-ICS state. To test
object B). Should the robotic system select a forbidderior ICS-ness the ICS-Checker presented in [23] is used. If
velocity, it would collide with the moving object at a laterthe current state is not an ICS then it is guaranteed that
time (possibly infinite) in the future. In practice, velaeg Ics-Avoib will find and return an admissible control (Safe
yielding a collision occurring after a given time horizonControl Kernel) [10].

(tg) are considered as admissible. NLVO is an extension
of VO that considers known arbitrary velocity profiles for
the moving objects [9]. NLVO consist of all velocities of All the collision avoidance schemes used in the bench-
A at ty that would result in collision with3 at any time marking make use of a model of the future, that is, they
to <t < ty.As depicted in Figure.2bY LV O(t) is a scaled take into account the future behaviour of the obstacles in
down B, bounded by the cone formed betwedrandB(¢), the environment. The different extent in which they use the
thus, NLVO is a warped cone with apex dtand formally available information have an impact in the decisions they

[11. REASONING ABOUT THE FUTURE

defined as: made and consequently in their overall performance. TVDW
NLVO — U B(t) 3) considers as look ahead the braking time (the time it
to<i<ti t—1o takes to the system to go from its current velocity to a halt).
This time is then state dependent and upper-bounded. NLVO
where E—(fo) is the setB(t) scale down by(t — tp). One use as look ahead an arbitrarily set time horizog){( in

issue (often overlooked) with the VO representation is,thabther words, there is no clear guideline on how to choose
in a closed environment, every velocity is forbidden sirice it an is not a function of the system dynamics nor current
eventually yield a collision. For that reason, both VO andtate. Furthermore, it can't be set to a very large value
NLVO require a time horizorty that cannot be arbitrarily because in closed environments it will render all velositie
large. inadmissibles.¢s-AvoID in accordance to the ICS defintion
reasons in terms of infinite duration. It uses the available
information about the unfolding of the environment up to
infinity. The different look ahead of the collision avoidanc
schemes is illustrated in Fig.3 to emphasize the fact thidt bo
TVDW and NLVO truncate their future model and disregard
any information beyondg andty respectively (even if it's
available). In contrast, this isn't the case farstAvoID.

‘A

Ics-AvoID(o0)

(a) Velocity Obstacles.
NLVO(t 1)

TVDW(t5)

o

s

Fig. 3: Look-ahead of the different schemes.
(b) Non Linear Velocity Obstacles.

Fig. 2: Velocity Obstacles based approaches.
IV. BENCHMARK AND SIMULATION SETUP
To assess the performance of the collision avoidance
C. Ics-Avoip schemes just presented a comparative evaluation was con-
Ics-AvoID is a reactive navigation approach based upoducted. A simulation environment capable of reproducirgg th
the concept of Inevitable Collision State (ICS) [11]. An ICSsame conditions for all the schemes was chosen to conduce



the benchmarking. The robotic system, environment setup A
and implementation is discussed next.

1) Robotic System: Point Mass Moddlet A be modeled
as a disk with point mass non-dissipative dynamicsstéte 23
of A is defined ass = (z,y,v,,v,) Where(z,y) are the
coordinates of the center of the disk and v, are the axial
components of the velocity. A control of is defined by the
pair (uz, u, ) which denote the force exerted by the actuators

along the x- and y-axis respectively. The motion 4fis P B(®)
governed by the following differential equations:
T Vg 0 0
vl | vy 0 0 N
g |~ o [Tl % t]o|w @ W
Uy 0 0 1
with a lgou[)d in the control given by the maximum acceler- Fig. 5: World Model of the future.
uy+u

ation: =+ < a?  wherem is the robot mass.

max

2) Workspace Model:A moves in a closed 2D workspace an identical reproduction of simulation conditions for leac
W (100 by 100 meters), cluttered up with disk-shapedy the collision avoidance schemes in the benchmark. The
moving objects (grown by the radius gff. A total of twenty  intormation about the future behaviour of the objects in the
three objects move with random constant speeds (betweghironment was made available to all the schemes with a

1 to 10 m/s) along complex cyclic trajectories (closed B-|imit of ¢, — 1, 3 and 5 seconds into the future.
splines with 10 random control knots). Figure 4 shows the

trajectories of the objects to illustrate the complexity of V. BENCHMARK

the environment. This setup can theoretically provideruitu  The collision avoidance schemes were tested on a set of
five runs with a duration of two minutes each. We varied the
amount of available information about the future behaviour
of the obstacles in the environment with = 1, 3 and 5
seconds. For each run the number of collisions betwden
and the object®3; are recorded in Table I.

Scheme Run | Collisions | Collisions | Collisions

TF=1(s) | TF=3(s) | TF=5(s)
1 5 6 3
Sy 2 12 4 4
7 ik TVDW 3 5 7 3
& %}r 4 12 2 4
el N S 5 12 2 4
\&r = Sl A L Average: 9.2 42 36
LAy 1 10 2 0
2 8 2 0
NLVO 3 12 2 0
4 3 3 2
5 7 2 2
Average: 8.0 2.2 0.8

; 1 7

Fig. 4. Workspace example, 23 obstacles (represented by > 0 8 g
circles) with random generated velocities and B-Splines Ics-AvoID 3 1 0 0
trajectories. 4 1 0 0
5 1 0 0
Average: 2.0 0.0 0.0

information about the behaviour of the moving objects up to ] . i
infinity. In practice, knowledge is provided until a fixed 8m TABLE I: Benchmarking of collision avoidance schemes.
in the futuret  after which constant linear motion is assumed
(Fig. 5). This to resemble realistic cases where prediction TVDW (Fig. 6) performs poorly in comparison with the
quality degrades as time pass by. other two schemes. One of the main causes of failure is
3) Implementation:The simulation environment and col- the limited extent in which the scheme use the information
lision schemes were programmed entirely in C++ usingvailable about the future trajectories of the objects: as
OpenGL as rendering engine. The random number generatxplained before it limits itself to a small fraction of thme
employed to produce the obstacles trajectories and vigscit at hand {g). In contrast, NLVO (Fig. 7) exploits better the
was seeded with a set of identical numbers to achiewg@ven information. In these rurtg; was set equal toz so all



the available information could be taken into account. NLVC
averages less of one collision per run in the 5 second sett
nonetheless, it fails to guarantee the safety of the syste
when provided with less informationcs-Avoib (Fig. 8)
has the best performance in all the time setups-AvoID

is designed to reason in terms of infinite duration but eve
when dealing with minimal information about the future (1
second) it outperfomed the other two schemes. When give
more information (3 and 5 seconds) not a single collisiol
occured. The results show the importance of the look ahei
time, when a colllision avoidance scheme disregard availab
information its performance is lower compared to those ths
use more.

Fig. 7: NLVO. Black warped cones are forbidden velocities

) @ Aﬁ\a{ for he robotic system.

O

O
?

¥

Fig. 6: TVDW. Admissible velocitiesl(,) are represented in
black, velocities in red are forbidden.

VI. CONCLUSION

We have presented a comparative evaluation with thre
state-of-the-art collision avoidance schemes designéane
dle complex dynamic environments. The results show thz
when provided with the same amount of information abou
the future evolution of the environmen$-AvoID outper- '
forms the others. The reason for this has to do with the extepigy. 8: Ics-Avoip. Black regions are forbidden states (ICS).
to which each collision avoidance scheme reasons about the
future.
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Mapping Obstacles to Collision States for On-line Motion Planningin
Dynamic Environments
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Abstract— This paper presents a representation of static and of the set of inevitable collision states. Repelling theath
moving obstacles, using Velocity Obstacles (VO), for on-line velocity from entering the inevitable collision states @es
planning in dynamic environments. Each obstacle is mapped it 4 golution exists) that the robot does not crash into any

to forbidden states by selecting a proper time horizon for the . . . . S
velocity obstacle. The proper choice of the time horizon ensures static or moving obstacle. The safe time horizon, which is

that the boundary of the mapped obstacle overlaps with the Obstacle specific, is determined by computing the minimum
boundary of the set of inevitable collision states (ICS). This time it would take the robot to avoid collision, either by

time horizon is determined by the minimum time it would  stopping or by passing the respective obstacle. Deterginin
take the robot to avoid collision, either by stopping or by he gafe time horizon is computationally very efficient and i

passing the respective obstacle. This representation allows safe . . . . . .
on-line planning using only one step look ahead. The on-line does not require a prior mapping of inevitable collisiorieta

trajectories favorably compare with the trajectories obtained Ve demonstrate the approach for on-line motion planning in
by a global planner. very crowded static and dynamic environments.

I. INTRODUCTION Il. THE VELOCITY OBSTACLE

Most of the work on motion planning over the past twenty The velocity obstacle represents the set of all colliding
years has focused on static obstacles, with a few exceptionglocities of the robot with each of the neighboring obstacl
We distinguish between local and global planners. The loc&l maps static and moving obstacles into the robot’s veloc-
planner generates one, or a few steps at every time stéy, space. The velocity obstacl&/@Q) of a planar circular
whereas the global planner uses a global search to thestacle,B, that is moving at a constant velocity, is a
goal over a time spanned tree. Examples of local (reactivepne in the velocity space of robd, reduced to a point
planners are [3], [16], [8], [11], but most do not guarante®y enlarging respectively obstacB. Each point inVO
safety as they are too slow and hence their ability to lookepresents a velocity vector that originate®afny velocity
ahead and avoid states of inevitable collision is very kit of A that penetrate’¥O is a colliding velocity that would
Recently, iterative planners [5], [7], [1], [12], [10], [L®ere result in collision betweei andB at some future time. All
developed that compute several steps at a time, subjectveglocities ofA that are outside o¥O are safe as long &8
the available computation time. The trajectory is generatestays on its current course. The velocity obstacle thusvallo
incrementally by exploring a search-tree and choosing th#etermining if a given velocity is potentially dangerous,
best branch. These planners too do not address the issueanél suggesting possible changes to this velocity to avert
safety. collision. If B is known to move along a curved trajectory

Only a few works have addressed the safety issue ir at varying speeds, it would be best represented by the
dynamic environments, which is crucial for partial (local)nonlinear velocity obstacle (NLVO), which accounts for a
planning. One approach is to use braking policies [17]jeneral trajectory of the obstacle, while assuming a cahsta
another is to ensure local avoidance for a limited time [10)elocity of the robot. It applies to the situation where, at
However, neither considers the dynamic of the moving robotime ty, a pointA attempts to avoid an obstaclB, that is
A promising approach to safe motion planning in dynamiéollowing a general known trajectorg(t), and at timetg is
environment is the consideration of "regions of inevitabldocated atc(tp). The NLVO consists of all velocities of at
collision,” first introduced in [9] and later extended in [6] t, that would result in collision with the obstacle at any time
[14], [4], [2]. t > to. Selecting a single velocity,, at timet =ty outside the

We address the issue of safety for an on-line local plann®lLVO thus guarantees thatavoids collision at all times. It
in dynamic environments. Motion safety is guaranteed by efis constructed as a union of its temporal elemeNts/O(t),
suring that the robot’s velocity does not penetrate theoiglo which is the set of all absolute velocities &f v,, that would
obstacle, which is generated for a carefully selected tim@sult in collision at a specific time
horizon. This velocity obstacle is a mapping of the obstacle The velocityv, that would result in collision with poinp
to a set of forbidden states, which overlaps with the boundain B at timet > to, expressed in a frame centeredAdty),

is simply

This work was performed at the Paslin Robotics Research batmyrat C(t) +r
the Ariel University Center, Israel. Va= , (1)
Oren Gal is a graduate student at the Department of MechaBugit t—to

neering, Technion, Israel.or engal @ x. t echni on. ac.il) . Lo e
Zvi Shiller is with the Department of Mechanical Engineetimiel wherer is the vector to poinp in the obstacle’s fixed frame.

University Center, Israg{ shil | er@riel .ac.il) The set,NLVO(t) of all absolute velocities of that would



result in collision with any point inB at timet > tg is B B
obtained by replacing with the set of all points irB:
Vv

ct)e#
NLvo() = SDEZ @)
t—to np d
L Vi

whereZ represents the set of all points in the grown obstacle <o A S W
B, defined relative to some center that follows the cuaite, A
and @ represents the Minkowski sum. ClearN/VO(t) is d;
a scaled4, located at a distance from that is inversely
proportional to the collision timé. The entireNLVO is the Fig. 2. Stopping and passing maneuvers

union of its temporal subsets frotg, the current time, to
some set time horizoty: _ o . _
ot) & B velocity v, as shown in Figure 1. The relative velocity

NLVOE'; = U —_—, (3) Vap is then projected into two components, and v; that
th>t>tg t—1o are parallel and normal to the line connectiAgand the

The non-linear v-obstacle is a warped cone.clt) is CeNter ofB, as shown in Figure 1. _

bounded ovett = (to,), then the apex of this cone is at _The robot can avoid coII|S|o_n b)_/ elthe_r stopplng before
A(to). The boundaries of thBILVO represent velocities that hitting th‘? obsta_cle,_ or by passing it on either side. To stop
would result inA grazingB. The smallest safe time horizon is the robot's longitudinal velocity, must decelerate to zero

the one that allows sufficient time to avoid or escape coliisi Pefore traversing the distana; to pass, the robot must
as discussed next. traverse the lateral distanak faster than it would traverse

the longitudinal distancd,. We select the time horizon such
I1. TIME HORIZON that when the robot’s velocity first penetrates the velocity
The time horizon plays an important role in selectingPbstacle, it still has sufficient time to avoid collision heit
feasible avoidance maneuvers. It allows considering only stoppingor by passing. To this end, we wish to determine
those maneuvers that would result in a collision within 4he minimum time required for each maneuver (stopping
specified time interval. Setting the time horizon too higlnd passing) to select the smallest safe time horizon. For
would be too prohibitive, as it would mark as dangerousimplicity, we decouple the two maneuvers, assuming that
maneuvers resulting in collision at a distant time; seteci  €ach is executed by a single control effort. The minimum
too small time horizon would permit dangerous maneuveténes for the stopping and passing maneuvers thus depend
that are too close and at too high speeds to avoid the obstad¥ the initial velocity, distance, and the control consttan
It is essential that the proper time horizon be selected ®ach direction. The smallest safe time horizon is then the
ensure that a safe maneuver, even if temporarily pointirgmallest of the minimum times for stopping and passing.
toward the obstacle, is selected. The smallest safe time o
horizon is the one that allows sufficient time for the robof"\' Stopping time
to avoid the obstacle either by stopping or by passing. It The minimum stopping time is the time it would take the
depends on the size of the obstacle, its velocity, and thiebot to decelerate to a stop from its current normal vejocit
robot’s dynamic constraints. Vp, using the maximum deceleration. Assuming a constant
longitudinal decelerationy, < 0, the stopping time is

Vi
7un :

tsop = (4)
Since theVO assumes collision at a constant speed,
whereastgop, assumes a constant deceleration, udigg
as the time horizon would alert the robot too early of
a potential collision. Taking into account the decelegtin
velocity allows us to use a shorter time horizon. To deteemin
how short, we compare the distance traveled dygy at a
constant speed and at a constant deceleration.
The distance traveled at a constant veloaityover the
stopping timetgop Is:

Fig. 1. The robot and obstacle on a collision course

Consider a robof and an obstaclB, each moving at some
constant velocity. The time horizon is relevant only if the
two are on a collision course, i.e. the Ve|ocﬁy penetrates The distance traveled at a constant deceleral'}pflom the
the velocity obstacle oB. To determine the proper time initial velocity v, to a stop is:
horizon for this case, we first transform the problem into 1,
the avoidance of a static obstacle by considering the velati dec = Vntstop + éuntstop‘ (6)

Oeonst = Vntsop- %)



Substitutingv, = —Untgop iNto (6) yields: computation time and provides an intuitive mapping of the
1 dynamic environment. Thus, the original collision avoidan

1
ddec = Vntstop — évntgop = évntaop = édcong. (7) problem turns into the velocity avoidance of the mapped
. . . oObstacles.
Since the distance traveled at a constant deceleratiorfis ha
the distance traveled at a constaptover the stopping time IV. THE PLANNER

tsop, the moving robot should start decelerating when the The efficient representation of static and moving obstacles
time to collision at a constant speed drops to half the st@ppi by velocity obstacles allows us to efficiently plan safe
time (4). The smallest time horizoty for the stopping trajectories in dynamic environments. The proper choice

maneuver is therefore half the stopping titggp: of the time horizon ensures survival of the robot, i.e. not
1 Vi entering inevitable collision states (ICS). For one olstac
ts= Etstop = “ou, ) this guarantees convergence to the goal. For many obstacles

B ina i a solution cannot be guaranteed due to the changing nature
' n_g .|me _ _ _ _ of the environment. The computational effort is drasticall
The minimum time for passindp, is the solution to the reduced by considering only “safe” attainable states that

minimum time problem of traversing the distandg given  satisfy system dynamics and are out of the ICS.
an initial velocity vy and an unspecified final velocity. The

solution to this problem is an extremal control that eitheft System Dynamics

accelerates or decelerates, depending on the sigdsanfd For simplicity, the robot is assumed a planar point mass.
Vi This is necessary for computational reasons, and is in no way
The velocity vs developed by accelerating & overt, a limitation of this approach.
until traversingd; satisfies: We consider the following point mass model:
Vi = W+tp 9) X=up;jup| <1 (14)
Vi = Ve 2udh. (10) Y= Up;|up] <1 (15)

The minimum timefp, to traverse the distanak is thus the where (x,y)" € R? represents the robot's position in a
smallest positive solution: Cartesian coordinate frame afuh, u;)" € R? represents the
robot’s controls.

—Vg £ /2 + 2u 11
U (11) B, Attainable Cartesian Velocities
Note that there are two such solutions, one for passing onGiven the robot's dynamics, we wish to compute the set
the right and one on the left. Obviously, the smallest of thef attainable Cartesian velocitieAGV) of the maneuvering
two is selected. robot that can be reached over a given time interysl,
Selecting the time horizon as the smallest of the two timed-3]. This set contains the avoidance maneuvers that are
_ dynamically feasible from a given state. The attainable
th = min{ts, tp} (12)  Cartesian velocities, ACV (t + At) are integrated from the

ensures that when the robot's velocity touches the boundafyTTent state(x,v) = (x,y.x,y) by applying all admissible

of the velocity obstacle, there remains sufficient time toidy CONtrolsu = (g, uz) € U:

the ot_)stacle either by stoppirg by passing. Penetrating the ACV (t+At) = {V]v=Vv(t) + Atu,u € U . (16)
velocity obstacle would leave no time for a safe avoidance

maneuver, which implies that the boundary of the velocity he geometric shape @CV (t +At) depends on the specific
obstacle, generated foK tp,, represents states on the boundsystem dynamics. For a point mass model, with constant
ary of thelCS. The time horizon is computed individually for control constraints, it is a rectangle, similar in shapehte t
each obstacle, using the relative velocity between thetrob&et of admissible controld, as shown in Figure 3.

and obstacle. C. Tree Search

C. A compact representation of velocity obstacles The planner uses a depth first A* search over a tree
There is no need to compute the entire velocity obstacle féhat expands over time to the goal. Each node contains the

t € (to,th) since generally, any collision at time< t, would ~ current position and velocity of the robot at the current

be the result ofv, first penetrating the temporal velocity time step. At each state, the planner computes the set of

tp=min

obstacle at the time horizoNLVO(ty): admissible velocitiesACV, which is then tessellated by a
uniform grid, as shown in Figure 3. To test the safety of the
NLVO(ty) = W (13) nodes on the grid, the temporal velocity obstddlé/O(ty) is
th—to computed. Nodes insiddLVO(t,), marked red in Figure 3,

Thus, each obstacle is mapped to one tempdrél, are marked inadmissible. Nodes outNifVO(t,) are further
NLVO(ty), which is a set of a similar shape to the robotvaluated by computing from each the unconstrained (no
but of a different size and location. This greatly reducesbstacles) minimum time-to-go (to the goal), as discussed
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Fig. 3. Attainable Cartesian Velocities 0
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next. The node with the lowest time is then explored to the
next time step. This is repeated until reaching the goal. For
one obstacle, this planner is guaranteed to reach the goal
in the near minimum time. For many moving obstacles,
it may not, and a global search may be required. Using \
only one temporaNLVO(t) to determine potential collisions 1
represents a significant computational gain, compared with = ;
the computation of the velocity obstacle foe (0,tp).

2
'
5

5

Fig. 4. Avoiding a static and a moving obstacle. Obstaclesshosvn in
V. EXAMPLES blue, and their respective velocity obstacles shown inoyellThe velocity
vector is guided not to penetrate the velocity obstacles.
The on-line planner was implemented and tested for

obstacle-free, and crowded static and dynamic environsnent 5
In the first example, shown in Figure 4, the robot, represkente ar
by a point, starts near poinf0.25,—1) at zero speed, 3t
attempting to reach the goal at poift25,2) (marked by a
red triangle) at zero speed, while avoiding two obstacles, o
static and one moving (to the right). The trajectory is shown
in six snapshots, starting from the top left, and ending at th
bottom right of Figure 4. In each snapshot, the two obstacles
are shown in blue, together with their temporal velocity
obstacles shown at the respective time horizon. Also shown
is the robot trajectory up to that point from the start, wiia t
velocity marked at the current point. Note that as the time
horizon decreases, the size of the velocity obstacle isesea
(per (13)). At first, the robot turns left to avoid penetrgtin Fig. 5. Avoiding 70 static obstacles
the velocity obstacle. This turn to the left occurs before th
robot reaches the obstacle. After passing the static dbstac
on the left, it turns right, to avoid the moving obstacle. Atthe global planners in avoiding 70 static obstacles, sigrti
some point, the robot grazes the obstacle on the right, aftépm the bottom left. The local trajectory is shown in black,
which it is enclosed by the second velocity obstacle. Thighd the global trajectory in red. The two are almost idehtica
does not indicate a collision since its Ve|ocity points alds until the glObaI takes a left turn whereas the local takes a
of the velocity obstacle. At that point, the relative vetgaif  right turn before reaching the goal. The local trajectoryswa
the robot relative to the obstacle is tangent to the obstacféaveling 10% longer than the global solution.
as it should for the two to be sliding relative to each other. The last example, in Figure 7, shows four snapshots of the
After avoiding the moving obstacle, the robot turns to th&obot avoiding 70 moving obstacles. It starts from the butto
left to reach the goal. center and moves to the target at the top right. A video clip of
The second example, in Figure 5, shows the robot avoidiﬁbe full run is available in WWW.arieI.ac.il/me/pf/shiﬂ'eren.
70 static obstacles. The robot accelerates and slows down
through narrow passages toward the goal. Attempting to
avoid the static obstacles with a too small time horizon An efficient mapping of obstacles to forbidden states for
resulted in the robot crashing early on into one of then-line planning in dynamic environments was presented.
obstacles. It consists of generating velocity obstacles at a carefully
The next example, in Figure 6, compares the local anselected time horizon. This time horizon is selected foheac

VI. CONCLUSIONS
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Fig. 6. Local (black) and global (red) trajectories avogliO static
obstacles [9]
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Fig. 7. Avoiding 70 moving obstacles

obstacle, static or moving, as the smallest of the minimum
stopping and minimum passing times from the current state.
Keeping the robot's velocity vector out of the velocity
obstacle ensures that the robot does not enter unsafe states
from which avoidance cannot be guaranteed. Recognizing
unsafe states using the velocity obstacles is not only safe
but also very efficient as it drastically reduces the search
tree. The approach was demonstrated in an on-line planner
that generates near time-optimal trajectories. The planvas
demonstrated for a point mass dynamic model. Other robot
models can be used with minor modifications. It is suitable
for real time generation of high speed trajectories in cresvd
static and dynamic environments.
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Probabilistic Rapidly-exploring Random Trees for autooos) navigation
among moving obstacles.

Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier
LIG, INRIA Rhbne-Alpes, France

Abstract— The paper presents a navigation algorithm for replanning is performed. In all the cited methods however,
dynamic, uncertain environment. The static environment is yncertainty is usually not taken explicitly into account.
unknown, while moving pedestrians are detected and tracked From the more theoretical point of view instead, many works

on-line. The planning algorithm is based on an extension . e .
of the Rapidly-exploring Random Tree algorithm, where the handle a non-deterministic or probabilistic represeatatf

likelihood of the obstacles trajectory and the probability of  the information and the planning under uncertainty problem
collision is explicitly taken into account. The algorithm is used is solved using Markov Decision Processes (MDP), Partially

in a partial motion planner, and the probability of collision is  Observable MDPs or game theory [9]-[11]. For an overview
updated in real-time according to the most recent estimatio. see [2]. These approaches are however very expensive from

Results show the performance for a car-like robot among a th tati | fi d limited to | di
pedestrian tracking dataset and simulated navigation amog € computational perspective, ana are limited to low di-

multiple dynamic obstacles. mensional problems or to off-line planning. In [12] and
[13] a navigation strategy based on typical pattern based
|. INTRODUCTION and probabilistic prediction is used in a planning algarth

based on a complete optimization methotf, . However,

Auton_omou_s havigation in populated en\{ironments reP She problem ofA* and of all complete methods is that the
sents still an important challenge for robotics researdte T omputational time depends on the environment structure

key of the problem is to guarantee safety for all the agenf:s

S ) . n les: th meth re mor low dy-
moving in the space (people, vehicles and the robot |tselﬁ d obstacles: these methods are more adapted to a low dy

. . . amic environments, where the information does not change
In contrast with static or controlled environments, wher Lo
. . . . Tfrequently, the obstacles velocity is limited and the robot

path planning techniques are suitable [1] [2], high dynamic .
. - . ! . can stop often and plan its future movements. Also, they
environments present many difficult issues: the detection ; o
require a discretization of both the state and the control

and tracking of the moving obstacles, the prediction of the ; ; L
X ; . pace, which reduces drastically the space for finding a
future state of the world and the on-line motion planning an : . : .

L - ; . feasible solution, expecially for robots with non-holoreor
navigation. The decision about motion must be related wit : . .

. . : car-like constraints. Some recent work proposes to integra
the on-line perception of the world and take into account the o ; . s
sources of uncertaintv involved: uncertainty in randomised techniques, such as Probadilist
o v N Road Maps [14] and Rapidly-exploring Random Trees (RRT)

1) The limits of the perception system: occluded zone$ 5] [16].

limited range, accuracy and sensibility, sensor faultsin a highly dynamic environment aanytime algorithm is
2) The future behaviour of the moving agents: modeheeded, which is able to give a feasible solution at "anytime

error, unexpected changes of motion direction anf js asked to. In this paper we address the problem of taking

velocity; _ explicitly into account the uncertainty in sensing and ie-pr
3) New agents entering the workspace; diction. We want our navigation algorithm to integrate new
4) Errors of the execution system. information coming from the perception system and to be

Many real world applications rely on reactive strategibg t able to react to the changes of the environment. In previous
robot decides only about its immediate action with respeetork [17] we developed a probabilistic extension of the
to the updated local estimation of the environment [3]—[5]RRT algorithm to handle a probabilistic representatiorhef t
These strategies present however some major drawback: fissatic environment and of the moving obstacles prediction.
of all the robot can be stuck in local minima; secondly, mosthe search algorithm has been integrated in a navigation
of the developed approaches do not take into account thégorithm which updates the probabilistic information and
dynamic nature of the environment and the uncertainty athooses the best partial path on the searched tree. The
perception, so that the robot can be driven in dangerous pavigation algorithm is based on the architecture of Hartia
blocking situations. Motion Planning (PMP, [18]), where execution and local
To face these problems, reactive techniques are combingldnning work in parallel to assure safe behaviour. Thecstat
with global planning methods: a complete plan from presemnvironment is initially unknown and the robot explores it
state to goal state is computed on the basis of the a pri@nd builds an occupancy grid. While in [17] motion patterns
information; during execution, the reactive algorithm jgida were represented by Gaussian Processes, in this paper we
the trajectory in order to avoid moving and unexpected obzonsider two cases: in the first case the obstacles are simply
stacles [6]-[8]. If the perception invalidates the planpath tracked and their motion model is estimated on the basis of



previous observations; in the second case, the obstades aj
supposed to follow pre-learned motion patterns which are
represented by Markov chains and prediction is based o
Hidden Markov Models. !
The reminder of this paper is structured as follows: section

world and how the probability of collision of a configuration :
is computed. Section IV recalls the RRT basic algorithm 555 : .

and details the new proposed approach. Section V recalls (@) (b)

the PMP method and describes the planning and navigatieg. 1. (a) The cycab in the parking at INRIA Rhane-Alpes and (b) aoupancy
algorithm deve|0ped_ Results are presented in SectionVI: arid with the robot (green rectangle) and 2 moving obsta@etoured circles) along

X . L i . with their estimated trajectories.

experiment with a laser scan dataset with moving pedestrian
is presented and results in a simulated environment are

shown. Section VIl ends the paper with remarks and 'de%‘c’ccupationPocc of each cell is fixed ab.5. During navigation
for future work.

the space is observed by mean of a distance sensor (laser
Il. THE ROBOT AND THE STATE SPACE range finder). Assuming static environment, the probabilit
of occupation of each cell is recursively updated according
figuration spaceC = {,y,6,v,w} described respectively to the observations and estimated using a Bayesian filter. Th

by the position, orientation, linear and angular velotsitiepmb"’lbiIity of collision of a point in the space is given by

of the robot in the workspace. The robot moves accordinrti;:e probabili‘ty‘of occupation of the correspondent_cellr Fo
to its motion modelg(t + 1) = F(q(t),u(t)) where input the setS = (z,])j_v of N c_el_ls coyered py the robot in state
u is given by pairs(a,a) with a the linear anda the X, the probability of collision with static obstacles is give

angular acceleration. The robot is subjected to kinematfy the maximum probability over the set:

and dynamic constraints: the linear velocityis limited in P(coll(X,,G)) = mgX(Pocc(i,j)) (1)

the interval[0, v,,4,] and the angular velocity is limited ) . . )
iN [~Wmazs Wmaz]. @ and alpha are also boundeds €  Since the grid represents the static world, there is not oéed

[@min, Gmaz] ANAQ € [Cmin, Cmaz]- prediction and the probability of collision does not depend
Time is represented by the s&t = (0, +oc), which is the ON the time at which the robot is in a certain configuration.
infinite set of discrete instants with measure unit the ttey@s B. Moving obstacles

7. We define state spac& of the robot, the space that

.rep_resents the configuration of the robot at a certain_ ims'[ﬁrllnated by circles of fixed radius. The state of an obstacle is
n twpe Xb: ¢ IX T_I_IQ the \Il(vor:fSﬁace lt)herg are static ]:';m X = (z,y,0,v), its position in the 2D space, its orientation
moving obstacies. The task of the robot is to move romq jineqy velocity. Given an object observatiénthe belief

t.hE." |n|_t|al co_nflguratlonq_o toa go_a_l Conf'gurat'o%"“l N state X and the prediction are estimated using Bayesian
finite time without entering in collision with any obstack. ;<o ance

solut_|0n tra!ectory IS a sequence of §tates frgimio ggoa In a first case we will consider that the moving obstacles are
that is feasible according to the motion model of the robg etected and tracked by the robot using a Multi Hypothesis
and that is collision free: ie each configuration and ea

. . rget Tracking (MHT) algorithm based on a set of Kalman
transition of the sequence are collision free. We assunte tr}gners as in [20]: the motion of the obstacles can be

the position of the robot is known at each instant and that tr}%presented with\I linear motion models hypotheses,,

robot moves foIIowmg z_icgordmg to its motion mo.del without, .1, otected by zero-mean white Gaussian noi¢e, Q,,.).
error. In the deterministic case, the configuration spéce

L : \ X At a considered instant, the estimation of the state of
can be dvided iy, the S?t of free configurations of .th? an object is represented by a weighted sum of Gaussians
robot andC,;, the set of configurations where the robot is 'n(Gaussian mixture):
collision with an obstacle. In our case instead we want te giv
a probabilistic representation of environment percepénd
prediction uncertainty and we need to define a probability
of collision for each robot configuration. In the following

paragraphs we explain how this probability is computed fofhe predictionX can be analytically computed from the

We consider a car-like robot moving iR2. The con-

Lets assume that the moving obstaalgscan be approx-

P(Oi(1)) = Y am - N(Xin(t), S (1)) )

a considered state of the robat.. last estimation applying recursively the motion model. The
obtained distribution is always a mixture 8f Gaussians.
[1l. PROBABILITY OF COLLISION Considering time horizot + k:

A. The Static environment Xm(t k)= A Xtk —1) = Ak X (1) 3)

The 2D static environment is represented by an occu- k
pancy grid [19]: the space is divided in square cells. The fj(t+ k)= (AT)E. %, (t) - AR + ZV‘% Q) (4)
environment is initially unknown, and the probability of =0



Considering a state of the rob&t.(¢) and a moving obstacle based on some assumptions about the observed space and the
O;, the probability of collision is given by the integral of the size, shape and behaviour of the obstacles. The robot must
probability distribution over the aresi covered by the robot be able to recognize on-line thdoors with its perception

and enlarged by the radius of the obstacles: only.
In the parking environment where we tested our algorithm,
P(coll(X,,0;)) = //P(coll(Xr, 0;)) = we assumed that obstacles may enter only traversing hidden
g areas: i.e. they cannot pass through static obstaclesn@ive

M partial map and the point of view of the robot, these regions
= Z O //N(X;,z;) (5) are easily extracted: the distance between the the points on

m=1 S the scan is studied and intervals bigger than the minimal
L . . size of an obstacles are kept as possible doors. For each

n% . . .
2T i . - ., mterval, the partial map is observed to see if the area @aroun
the distribution uniformly with the probability and consid is. occupied, free or occluded. If the area is occupied, the

ering the ratio between the number of samples inside ar?:%nsidered interval is discarded: the area is occupied by a

outside areds. . . . tatic obstacle that is hidden only from the current point of
In a second case we will consider obstacles moving accor@-

) ) . . lew. If th is f I e <0.5), i

ing to Hidden Markov Models as in [21]. The belief of thertlaecv(\)/gni;ez area is free or occludedf.. < 0.5), a door is
state at timet is given by a discretized .dl_stnbutlo.n over FheThe probability of a new obstacle entering in the workspace
states of the Markov model. The prediction at time horizo

; . : : ) an be modeled as an homogeneous Poisson process. The
t+k is recursively estimated propagating the estimated Statgrobability that at least one obstacle enters the scene&da g

P(X(t+k)|Z(t) = by the following equation:

> P(X(E+E)X(t+k—1D))P(X(t+k—1)|Z(t)) PIN(t+7) = N({t)>1]=1—e (8)
k—
Xk The rate parametey, is the expected number of arrivals per

where the first term in the sum is the probability to pasgpit time. This parameter could be derived from a learning
from stateX (¢ + k — 1) to stateX (¢ + k) specified by the phase or fixed a priori. When performing prediction, an
edges in the Markov model and the second is given by thgsstacle is initialized just behind the door, in the nearest
observation model. The integral in Eq. 5 is here substitute&ossime point with respect to the robot actual position.
by the sum over the states in the HMM touched by the aregne probability of occupation correspondent to the obstacl

S. grows with the length of the time period of prediction

Considering multiple moving obstacles, the total probgbil according to Eq. 8. Using a worst-case hypothesis, obstacle
of collision is given by the probability of colliding with & e supposed to move toward the robot. A noise in both

OR another obstacle. Under the assumption that collisiogrection and a velocity is added to the model to take into
with each obstacle are conditionally independent, the folccount the other possibilities of motion.

lowing equation is obtained:

P(coll(X,,0)) =1 [](1 = P(coll(X,,0;)) (6)
z‘ ¢ 9
In the same way the probability of collision consideringtot g
the static environment and the moving obstacles is obtained ) 9
©
P (coll(X,,0,0G)) = (7) - .
= 1—(1-P(coll(X,,3)) - (1= P(coll(X,,0))) —a g %Q)
(o) i |

C. New obstacles entering the scene

In dynamic environments, obstacles can enter or exit trt%%.taglles./_\ partial grid map, the extractedoors and the supposed new entering
workspace during the navigation task. Also if partial plizugn
is used, it should be taken into account that new obstactes ca
enter the the workspace and interfere with the next motions IV. PROBABILISTIC RRTS
of the robot. If it is possible to predict from where and whem. Basic Algorithm for RRTs

some obstacle may enter the scene, a more robust planning‘-he Rapidly-exploring Random Tree (RRT) is a well
can be performed. The robot must: known randomized algorithm to explore large state space
— Distinguish from where a new obstacle may come. in 3 relatively short time. The pseudocode of the algorithm
— Apply a probability to the fact that an obstacle mays given in Algorithm 1. The algorithm chooses a pojnt
enter and a motion model. in the state space and tries to extend the current search tree
For the first problem the robot searches for specific aredsward that pointp is chosen randomly, but in single-query
from where an obstacle may entelopr9. This technique is planning, some bias toward the goal is generally applied in



B. Introducing probabilistic uncertainty

As stated in previous sections, the robot knowledge about
the environment is incomplete in both space and time (sensor
range, occlusions, new moving obstacles) and uncertain
(sensor accuracy, motion model of the moving obstacles). On
the basis of the RRT algorithm we developed an exploring
algorithm which takes into account probabilistic uncertgai
For each configurationy of the space, a probability of
collision P.(q) is computed considering the static and mov-
(b) ing obstacles and the perception limits as in Eq. 7. The
Fig: 3. (a) RRT basic algorithm applied to a point holonome robot iknawn probability of reaching a particular configuratiqn is then
B e e o Loy GiveN by the probabiliy to cross the tree from the raot
Probabilistic RRT built in limited time: the search tree ahe likelihood of the nodes t0 the considered node, i.e. the probability rodt having
in blue (lighter colour is for lower likelihood) and the clewspartial path in red. collision in each of the traversed nodes:

Py(m(gn)) = Ps(qo---qn) 9)
Py(qo--qn) = (1 - Pelqn)) - Ps(qo---qn-1)
Algorithm 1: Basic RRT. N
Data: T' = H(l — Pe(qn))
1 while gg0q; ¢ T do ) n=0
3 e Sf’;ﬁ;ﬁf;‘;@fgggﬂp); where we have considered that collision in subsequent nodes
g g%m,:exctend(qﬁp); is statistically independent. We call this probability the
A S Cer b probability of successP, of the path. The probability falls
; end _ exponentially with the length of the path. This is a sign
9 Zq)a;hqg:"j(’ld(q); that longer path are more dangerous, as the uncertainty
ﬁ) while qjéTT-root dg oo accumulates over subsequent steps. All nodes than can be
12 path ':pjjzn(z)f °(2); added to the tree, or a minimum threshdh,,;,; can be
13 end chosen in order to avoid keeping in the tree very unlikely

paths. Once a point is chosen in the configuration space,

the node to grow nexj is chosen in dependence both on a

measure of the expected length of the patt(qo, ¢, p) and

on the probability of success of the path. More precisely,
order to speed up the exploratignis chosen in the limited P,(qy) is normalized by the lengthVv of the path and
Cyree (line 2). The nearest neighboyiof p within the nodes multiplied by the inverse of the distance to the chosen point

of the search tree is chosen for extension. A new node is 1

obtained applying an admissible control from the chosen Wy = e N/ Ps(q) (10)
. . .. . ’LSt(quqvp)

node g toward p (line 3). If ¢ is collision-free, it is added @

to the tree. The algorithm can be stopped once the goal is wy = 4 (11)

found (linel) or it can continue to run to find a better path. Zq Wq

The algorithm lies on a deterministic representation of th&€he normalization is taken out so that the probability of
environment, so that both in the static and dynamic caseiccess does not depend on the length of the path, which is
we have a priori information on if a node is collisiontaken instead into account by the distance term. The fumctio
free or not and add it or not to the search tree. Once th&st(qo, ¢, p) is @ sum of the length of the path from the root
goal state is reached, the path from the initial state to thg to the considered node and of the shortest path fydm
goal is retrieved. Fig. 3(a) shows a point holonome robqt, which is a lower limit for the length of the eventual path
in a known environment with static obstacles. The initiato p. The obtained weightg), are normalized over the set
position of the robot is in the left corner at the bottomof nodes in the tree (Eqg. 11), and the result is a distribution
while the goal is in the upper right corner. An example obver the nodes. The node to grow next is chosen taking the
the search tree (blue lines) and the found path (red lineé)aximum or drawing a random node proportionally to the
is shown; different running of the algorithm would give probability. In our implementation we choose the second
different results. In this case, the robot is supposed toemoease which appeared to be more robust to local minima.
along straight lines, so that the Euclidean distance can liven if a path to the goal is found, the algorithm can
used to determine the nearest neighbour in the current tre@ntinue to search for a better/safer path, until a path is
The algorithm can be generalized for car-like robots sgiin asked for execution. However, it is not guaranteed that a
different NearestNeighbor(. ) function. and limiting the set safe enouglpath is found even in infinite time, because of
of possible actions to the admissible controls of the robdhe environment uncertainty. The chosen path is then the bes
from the node configuration. path that is safe enough, i.e. for whidi(qn) > Psmina-



cost of crossing the tree changes and the tree needs to be
updated. The update consists in three steps:

1) Prune the tree: the new root is the position of the
robot and nodes that are in the past are deleted; the
probability of reaching the nodes is updated, taking
into account that the robot has already crossed part of
the tree.

2) Update the weight of the nodes: when a change in
the probability of collision is detected, the weight of

(b) (©) the correspondent nodes (and of their subtree) must be
Fig. 4. Partial Probabilistic RRT applied to static environment & point non- updated.
holonome robot. The tree updated and grown at three instamtag navigation (in .
blue) and the chosen partial path (in red). 3) Retrieve the best path-

If the considered environment is dynamic we need the robot
to do these operations in real-time. In better words we need
to know how much time is available for updating and how
quallocate it. In the first step, the present state of the trobo
iIs considered. The tree is pruned so that only the subtree
tached to the state of the robot is maintained. When the

In general, this threshold is different from,,;»,1: when
the tree is updated and grown after new observations (s
¢sec:OnLineNavigation) the probability of each path is abfa

modified. Fig. 3(b) shows the perception given by a distan
g 3(b) P P d y Brobability to pass from a configuratiafy to ¢; changes,

Sensor in a static environment: areas behind the obstages A ioht of th b heddo dated usi h
unknown to the robot (. ~ 0.5). Fig. 3(c) shows the tree the weig tort e su tree attachedgois updated using the
f[ollowmg equations:

grown by the described algorithm for an holonome poin

robot. The colour of the edges of the tree depends on the . 1

likelihood of the associated path: the lighter the colowr th Plgvla) = (Planlao) - P(qilqo))l _ p(q”qo)(lz)

lower the likelihood. In red, the best path chosen. Plavlao) = Plgilgo) + (1 — P(qilg0))Planla:) (13)
V. ON-LINE NAVIGATION The first equation gives the probability of traversing treetr

from ¢; to qn, assuming that the probability of reaching
changed fromP(¢;|qo)) to 1: qo is the old rootg; is the new
In a dynamic environment the robot has a limited time tQoot andgy is a node in the family of;;. This first update
perform planning which depends on the time-validity of thgs used when the tree is pruned and is due to the fact that
models used and on the moving objects in the environmenke robot has already moved frogg to ¢;, so that the new
The conditions used for planning could be invalidated aP(gilqo) is 1. The second equation gives the probability to
execution time: for example an obstacle could have chang@@verse the tree frony to g5 when the probability to pass
its velocity or some new obstacle could have entered theom ¢, to ¢; changes froml to P(qi|qo). Eq. 12 and 13
scene. The idea of Partial Motion Planning [18] is to tak@re used one after the other when the observations revealed
explicitly into account the real-time constraint and toitim some difference with the prediction. In this cageand ¢;
the time available for planning to a fixed interval. Afterare respectively the start and ending configuration in which
each planning cycle, the planned trajectory is generaBy jua change in the probability of collision has been detected.
a partial trajectory. The exploring tree is updated with then Fig. 4, the on-line updating of the tree is shown at 3
new model of the world and the final state of the previougstants during navigation. At the beginning, the mostljike
trajectory becomes the root of the new exploring tree. Thgaths are explored in the two possible directions and the
planning algorithm works in parallel with execution. Eachmost promising one is chosen. Fig. 4(b) shows the tree after
node of the tree is guaranteed to be not an Inevitablgyme steps: the tree has been updated: the branch in the right
Collision State (ICS, [22]) by checking if it exists a colis  direction has been cut has is not reachable anymore and the
free braking trajectory from the node. This is a consereatitree has been grown. Fig. 4(c) shows the tree and the new
approximation that does not allow the robot to pass apartial path found when a bigger portion of the space is
intersection before an approaching moving obstacle. Oujsiple
approach presents an adaptable time horizon for planning.
The time for the planning iterations depends on the length VI. EXPERIMENTAL RESULTS
of the previous computed trajectory and on the on-line rhe pjanning algorithm has been tested with real data
observations. Safety of a path is guaranteed studyingmgakiacqyired on the car-like vehicle (Cycab) shown in Fig. 1(a).
trajectories only for the last state of the path. To test the algorithm we define a goal 20 meters ahead the
robot at each observation cycle and let the algorithm run in
parallel with the online mapping and tracking (Fig. 6(beT
When the robot moves, it observes the environment arglanning algorithm runs at 2Hz. An example of the grown
updates its estimation with the incoming observations. Theee and the chosen path is shown in Fig. 5. The occupancy

A. Related work: the Partial Motion Planning

B. Developed Algorithm
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Fig. 5. The prediction of the moving obstacles and the explored itvegr, y, t)
space.
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grid correspondent to the figure is the one in Fig. 1(b). ;
The two cones represent the prediction of the two moving
pedestrians considering ellipses of axes correspondemigo (d)
standard deviation interval. A threshold has been appbed t
show different colours for safer (green) and dangerous (red L ]
paths. The best path is shown in blue. Each sequence is the. 'J G J
tested with the real data, letting a virtual robot move tigtou \ ¥ /
the map. Fig. 6(a) shows the observed occupancy grid (a) an
the tree of states explored in the available time (b): lighte il
blue is for higher probability of collision. The red line iset
chosen path. Fig. 6(c-f) shows subsequent positions of th
virtual robot; on the background the predicted occupanc n
grid at the correspondent planning stage, while the red @) - )
circles represent the real position of the obstacles at tt
19. 6. Plannlng results with a laser dataset. (a) The static emviemt is mapped
considered time. Results prove that the algonthm is able d the moving obstacles are tracked. (b) The algorithmoeaplthe state space and
Compute safe tra]ectones in real time tak|ng into accohat t chooses a path. (c-f) the path is compared with the predictia the real observations
static environment, the moving obstacles perceived arid the geauired.
velocity and the uncertainty which arises from a real datase
The navigation strategy has been tested in the Cycab simula-
tor (7(a)). A rectangular environment has been simulated. perfect: the obstacles are represented by circles.gffm
certain number of doors is simulated for the two long sidesadius whose position is always known; no occlusion or finite
of the rectangle. Obstacles are supposed to enter from a deange is considered. The robot has to cross the environment
and to exit by another door in the opposite side. The spaead successively reach goals which are positioned randomly
has been discretized in a uniform cell grid of stepm An in the environment, with some bounds near the walls. The
4-connected HMM graph has been built on the grid for eactobot knows where the doors are and the Markov graph
goal: the probability to pass from a state to another dependsrrespondent to the simulated trajectories. Predict®n i
on the decrease of the distance to the goal between the origierformed on the basis of Hidden Markov Models, as7h [
state and the destination one. A certain amount of noise @ [21] and the probability of collision is computed samglin
applied so that states that present nearly the same decrethee obtained distribution on the cells. Fig. 7(c-f) show the
in distance are given the same probability. The probabilityobot (green rectangle) traversing the environment tohreac
is then normalized over the set of edges coming out froitihe goal: the red line is the partial path computed at the
the origin node. A set of trajectories has been randomlyme-step in the shot, while red circles represent the ngvin
simulated on the basis of the graph: for each trajectory thabstacles with their previous trajectory attached. Theotob
enter door and the exit door are chosen (Fig. 7(b)). Givenraached1000 goals with various numbers of pedestrians
state of the obstacle, the next state is drawn proportipnalsimulated in the space. No collision with the robot in motion
with the edges probability. The position of the obstaclé&dies was detected during the experiment, while the number of
the cell is chosen by a smoothing filter. collisions as) velocity grows with the number of objects in

The simulated robot has the same dimensions and kinematie space. To understand these results, we must notice that
and dynamic constraints of the Cycab. Perception is assumigg simulated obstacles do not have any knowledge of the
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Fig. 7. Navigation results in simulated environment. (a) The Cysiatulator with the
robot and simulated pedestrians. (b) The simulated t@jgctataset. (c-f) Navigation
among moving pedestrians based on HMM probabilistic pteutic [11]

[12]
robot and that its kinematic possibilities are stronglyited
if compared to those of the obstacles: as the robot cannot go
backward, it tends to avoid obstacles and get stacked wilts]
the walls of the environment, while the obstacles continue
to move around it. [14]

VIl. CONCLUSION AND FUTURE WORK

The paper presents a navigation algorithm which integraté]sls]
perception uncertainty and incompleteness in the planning
strategy using a probabilistic framework. The tests proad t [16]
the robot is able to navigate in real-time reacting properlﬁﬂ
to unexpected changes of the environment and reaching
the given goal positions. The use of an adaptable time
horizon for planning makes the algorithm both reactive to
unexpected changes of the environment tordiard looking  [18]
when previously planned trajectories are not invalidated b
observation. (19
Immediate work will deal with testing the navigation al-[20]
gorithm to have a measure of its performance in more
complex and realistic scenarios. Future work will deal with?H
the integration of the localization and execution uncattai
in the planning algorithm and with testing the navigatior22]
with the real robot.
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