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Forword 
The purpose of this workshop is to discuss topics related to the challenging problems of 
autonomous navigation in open and dynamic environments. Technologies related to 
application fields such as unmanned outdoor vehicles or intelligent road vehicles will be 
considered from both the theoretical and technological point of views. Several research 
questions located on the cutting edge of the state of the art will be addressed. Among the 
many application areas that robotics is addressing, transportation of people and goods seem to 
be a domain that will dramatically benefit from intelligent automation. Such new technologies 
can also be efficiently applied to other application field such as unmanned vehicles, intelligent 
wheelchair, service robots, or more generally to human assistance. Technical contributions 
related to this area, such as autonomous outdoor vehicles, achievements, challenges and open 
questions will be presented and discussed. Five technical areas, with a focus to their 
instantiation to dynamic environments, will particularly be addressed: Vision-Based 
Perception, Multi-sensors Perception & Localisation, SLAM & 3D Reconstruction, Path 
Planning & Navigation Systems, and Motion Planning. 

Previously, two workshops were organized in the same field. The 1st edition of this workshop 
was held in Roma during ICRA’07 (around 60 attendees), and the second in Nice during 
IROS’08 (more than 90 registered people). A special issue of IEEE Transactions on ITS will 
be published at the beginning of 2009 following these two workshops mainly focused on Car 
and ITS applications. This workshop will be more focused on vision based perception, robust 
sensor-based navigation, and human robot interaction. 

This workshop is composed with 6 invited talks and 12 selected papers. Four sessions has 
been organized: 

1. Session 1: Vision based perception & Visual SLAM  
2. Session II: Multi-sensor perception & navigation  
3. Session III: SLAM, Localization, Reconstruction  
4. Session IV: Motion planning 

 
Intended Audience concerns researchers and PhD students interested in mobile robotics, 
motion and action planning, robust perception, sensor fusion, SLAM, autonomous vehicles, 
human-robot interaction, and intelligent transportation systems. Some peoples from the 
mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on 
“Autonomous Ground Vehicles and Intelligent Transportation Systems” (http://tab.ieee-
ras.org/). 

 

Christian Laugier, Philippe Martinet and Urbano Nunes 
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Comparing appearance-based controllers for
nonholonomic navigation from a visual memory

Andrea Cherubini, Manuel Colafrancesco, Giuseppe Oriolo, Luigi Freda and François Chaumette

Abstract— In recent research, autonomous vehicle navigation
has been often done by processing visual information. This
approach is useful in urban environments, where tall buildings
can disturb satellite receiving and GPS localization, while
offering numerous and useful visual features. Our vehicle uses
a monocular camera, and the path is represented as a series
of reference images. Since the robot is equipped with only
one camera, it is difficult to guarantee vehicle pose accuracy
during navigation. The main contribution of this article is the
evaluation and comparison (both in the image and in the 3D
pose state space) of six appearance-based controllers (one pose-
based controller, and five image-based) for replaying the ref-
erence path. Experimental results, in a simulated environment,
as well as on a real robot, are presented. The experiments
show that the two image jacobian controllers, that exploit the
epipolar geometry to estimate feature depth, outperform the
four other controllers, both in the pose and in the image space.
We also show that image jacobian controllers, that use uniform
feature depths, prove to be effective alternatives, whenever
sensor calibration or depth estimation are inaccurate.

I. INTRODUCTION

In recent research, mobile robot navigation has been often
done by processing visual information [1]. This approach can
be useful for navigation in urban environments, where tall
buildings can disturb satellite receiving and GPS localization,
while offering numerous and useful visual features. The
most widespread approaches to visual navigation are the
model-based, and the appearance-based approaches, which
we shall briefly recall. Model-based approaches rely on the
knowledge of a 3D model of the navigation space. The model
utilizes perceived features (e.g., lines, planes, or points), and
a learning step can be used for estimating it. Conversely, the
appearance-based approach does not require a 3D model of
the environment, and works directly in the sensor space. The
environment is described by a topological graph, where each
node corresponds to the description of a position, and a link
between two nodes defines the possibility for the robot to
move autonomously between the two positions.

In this work, we focus on appearance-based navigation,
with a single vision sensor. The environment descriptors
correspond to images stored in an image database. A sim-
ilarity score between the view acquired by the camera and
the database images, is used as input for the controller that
leads the robot to its final destination (which corresponds to
a goal image in the database). Various strategies can be used
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to control the robot during navigation. An effective method
is visual servoing [2], which was originally developed for
manipulator arms, but has also been used for controlling
nonholonomic robots (see, for instance, [3]).

The main contribution of this paper is the comparison
between six controllers for nonholonomic appearance-based
navigation using monocular vision. In particular we investi-
gate the performance of this controllers both in the image,
and in the 3D pose state spaces. The paper is organized as
follows. In Sect. II, a survey of related works is carried out.
In Sect. III, the problem of appearance-based nonholonomic
navigation from a visual memory is defined. Although the
scope of this paper is the discussion of the control strategies,
in Sect. IV, we outline the image processing and the 3D
reconstruction algorithms used in our navigation framework.
In Sect. V, we present and illustrate the six controllers. The
simulated and experimental results are presented in Sect. VI.

II. RELATED WORK

Recent works in the field of appearance-based autonomous
vehicle navigation are surveyed hereby. Most of these works
[3 – 13] present a framework with these characteristics:
• a wheeled robot with an on-board camera is considered;
• during a preliminary phase, the teaching phase, the

robot motion is controlled by a human operator, and
a set of images is acquired and stored in a database;

• an image path to track is then described by an ordered
set of reference images, extracted from the database;

• during the replaying phase, the robot (starting ’near’ the
teaching phase initial position) is required to repeat the
same path;

• the replaying phase relies on a matching procedure (usu-
ally based on correlation) that compares the currently
observed image with the reference images;

• although the control strategy enabling the robot to track
the learned path varies from one work to the other,
it relies, in all cases, on the comparison between the
current and reference images.

The methods presented hereby can be subdivided in two
main areas. In some works, a three dimensional recon-
struction of the workspace is used. The other navigation
frameworks, instead, rely uniquely on image information.

We firstly survey the works where 3D reconstruction
is utilized. In 1996, Ohno and others [4] propose to use
the image database to reconstruct the robot pose in the
workspace (i.e., position and orientation) which is utilized
for control. In [5], a three dimensional representation of the
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Fig. 1. Relevant variables utilized in this work. Top: mobile robot (orange),
equipped with fixed pinhole camera (blue), and applied control variables (v,
ω). Bottom: two different views (distinct camera placements) of the same
3-D point p, i.e., in the current (left) and reference (right) images.

taught path is built from the image sequence, and a classic
path following controller is used for navigation. Similarly,
in [6], pairs of neighboring reference images are associated
to a straight line in the 3D workspace, that the robot must
track. The epipolar geometry and a planar floor constraint are
used to compute the robot heading used for control in [7].
Similarly, in [8], 3D reconstruction is used to improve an
omnidirectional vision-based navigation framework.

In general, 3D reconstruction is unnecessary, since moving
from one reference image to the next, can also be done by
relying uniquely on visual information, as shown in many
papers. For instance, in [3], the vehicle velocity commands
and the camera pan angle are determined using an image-
based visual servoing scheme. In [9], a particular motion
(e.g., ’go forward’, ’turn left’) is associated to each image,
in order to move from the current to the next image in the
database. In [10], a proportional control on the position of
the feature centroid in current and reference images drives
the robot steering angle, while the translational velocity is
set to a constant value. The controller presented in [11]
exploits angular information regarding the features matched
in panoramic images. Energy normalized cross correlation is
used to control the robot heading in [12]. In [13], a specific
image jacobian, relating the change of some image features
with the changes in motion in the plane, is used for control.

In summary, a large variety of control schemes has been
applied for achieving nonholonomic navigation from a vi-
sual memory. However, a comparison between the various
approaches has never been carried out. Moreover, in most of
the cited articles, the focus has been the qualitative evaluation
of the proposed navigation framework in real, complex,
environments, without a quantitative assessment of the con-
troller performance. In this paper, we shall compare the
performance of six approaches to nonholonomic navigation
from a visual memory. The controllers will be assessed using
various metrics, both in simulations, and in real experiments.
In particular, we will compare the controller accuracy both
in the image and in the pose state space, since both are
fundamental for precise unmanned navigation.

III. PROBLEM DEFINITION
A. System characteristics

In this work, we focus on a nonholonomic mobile robot
of unicycle type, equipped with a fixed pinhole camera. The
workspace where the robot moves is planar: W = IR2. With
reference to Fig. 1, let us define the reference frames: world
frame FW (W,x′, z′), and image frame FI(O,X, Y ) (point
O is the image plane center). The robot configuration is:
q = [x′ z′ θ]T , where [x′ z′]T is the Cartesian position of the
robot center in FW , and θ ∈ ]−π,+π] is the robot heading
(positive counterclockwise) with respect to the world frame
z′ axis. We choose u = [vω]T as the pair of control variables
for our system; these represent respectively the linear and
angular velocities (positive counterclockwise) of the robot.
The state equation of the robot is:

q̇ =

 cos θ 0
sin θ 0

0 1

u
We also define the camera frame FC(C, x, y, z), shown in

Fig. 1 (C is the optical center). The distance between the y
axis and the robot rotation axis is denoted by δ. A pinhole
camera model is considered; radial distortion is neglected.
Hence, the camera intrinsic parameters are the principal
point coordinates and the focal lengths in horizontal and
vertical pixel size: fX , and fY . In the following, we consider
that the camera parameters have been determined through
a preliminary calibration phase, although we shall partially
relax this assumption later in the paper. Image processing is
based on the grey-level intensity of the image, called I(P )
for pixel P = (X,Y ).

As outlined in Sect. II, our navigation framework relies
on a teaching and on a replaying phases. These phases will
be described in the rest of this section.

B. Teaching phase

During the teaching phase, an operator guides the robot
stepwise along a continuous path. Each of the N teaching
steps starts at time ti−1 and ends at ti > ti−1 (i = 1, . . . , N ).
At each step i, the control input u is assigned arbitrarily
by the operator. In this work, we assume that throughout
teaching, the robot moves forward, i.e., v > 0. At the end
of each teaching step, the robot acquires a reference image,
that we call Ii, and stores it in a database. Visual features
are detected in each Ii. We call FC i(Ci, xi, yi, zi) and
FI i(Oi, Xi, Yi) (see Fig. 1) the N camera and corresponding
N image frames associated to the reference configurations
qi reached at the end of each teaching step.

C. Replaying phase

At the beginning of the replaying phase, the robot is placed
at the starting position of the teaching phase. During the
replaying phase, the robot must autonomously track the path
executed during the teaching phase. The task of replaying
the taught path is divided into N subtasks, each consisting of
zeroing the visual error between the currently acquired image
(called I) and the next reference image (I1, I2, . . . , IN ) in



the database. In practice, as soon as the visual error between
I and goal image Ii is ’small enough’, the subtask becomes
that of reaching image Ii+1. Both the visual error and the
switching condition will be detailed in Sect. V. Throughout
replaying, the linear velocity is fixed to a constant value v̄ >
0, while the angular velocity ω is derived with a feedback
law dependent on the visual features. In all six feedback
controllers that we have tested, at each iteration of subtask i,
ω is based on the feature points matched between the current
image I and the reference image Ii.

IV. VISION ISSUES

A. Image processing

During both teaching and replaying, the images acquired
by the robot camera must be processed in order to detect
feature points. Besides, during the replaying phase, corre-
spondences between feature points in images I and Ii are
required to generate the set of matched points which is used
to control the robot. In both teaching and replaying phases,
we detect feature points with the well known Harris corner
detector [14]. Every iteration of the replaying phase relies on
image matching between Harris corners in the current image
I and in the nearest next reference image in the database Ii.
For each feature point P in image I , we use a correlation
technique to select the most similar corresponding point Pi
in image Ii. For each pair of images (I, Ii), the algorithm
returns the n pairs of matched points (P, Pi)j , j = 1, . . . , n.

B. Deriving 3D information

In one the control schemes used in this work (i.e., the robot
heading controller), it is necessary to estimate the camera
pose variation (rotation R and translation t, see Fig. 1)
between the current view I and the next reference view Ii
during replay. Moreover, in two of the five image jacobian
controllers used, the z coordinates in FC (i.e., the depths) of
the retroperspective projection p of feature points must be
estimated. The depths can also be derived from the camera
pose variation. The problem of estimating the camera pose
variation (R, t) is a typical structure from motion problem.

In some works (see, for instance, [5]), the camera pose
is estimated by using bundle adjustment methods, which
result in long computation processing, unsuitable for on-
line use. Here, we have decided to perform on-line 3D
reconstruction, by using only the pair of images (I, Ii),
instead of I with the whole database. This choice inevitably
implies lower computational time to the detriment of the
3D reconstruction accuracy. The technique that we used for
camera pose estimation is epipolar geometry (see [15], for
further details). Using an estimate of the distance from q to
qi for ‖t‖, four alternative solutions (R, t) can be derived.
For each of the four possible pose variations, we use the
technique described in [16] to derive the feature point 3D
position p, as the midpoint on the perpendicular to the
projecting rays in the two camera frames (see Fig. 1). Finally,
we select the pose variation (R, t) with the greatest number
of positive depths in both camera frames FC and FC i, since
feature points must lie in front of both image planes.

V. CONTROL SCHEMES

In this section, we describe the characteristics of the six
controllers on ω that we have tested in the replaying phase
(v is fixed to constant value v̄, see Sect. III). In all cases, we
consider that subtask i (i.e., reaching image Ii) is achieved,
and we consequently switch to reaching image Ii+1, as soon
as the average feature error:

εi =

n∑
j=1

‖Pj − Pi,j‖

n

is below a threshold τε, and starts to rise.
The first feedback law that we will describe, is pose-based:

the feedback law is expressed in the robot workspace, by
using the 3D data derived from image matching as described
in Sect. IV-B. The 5 other feedback laws, instead, are
image-based: both the control task, and the control law are
expressed in the image space, by using the well known image
jacobian paradigm. In practice, an error signal measured
directly in the image is mapped to actuator commands. Two
of the 5 image jacobian controllers require camera pose
estimation to derive the depth of feature points. For the 3
others, some approximations on the feature depths are used,
as will be shown below.

We hereby recall the image jacobian paradigm which is
used by the five image-based controllers. The image jacobian
is a well known tool in image-based visual servo control [2],
which is used to drive a vector of k visual features s to a
desired value s∗. It has been previously applied for solving
the problem of nonholonomic appearance-based navigation
from a visual memory (see, e.g., [3] and [13]). Let us define:

uc = [vc,x vc,y vc,z ωc,x ωc,y ωc,z]
T

the camera velocity expressed in FC . The matrix Ls relates
the velocity of feature s to uc:

ṡ = Lsuc (1)

For the robot model that we are considering, the camera
velocity uc can be expressed in function of u = [v ω]T by
using the homogeneous transformation:

uc =C TRu (2)

with:

CTR =


0 −δ
0 0
1 0
0 0
0 −1
0 0


In the following, we will call Tv and Tω the first and second
columns of CTR. Injecting (2) in (1), we obtain:

ṡ = Ls,vv + Ls,ωω



where Ls,v = LsTv , and Ls,ω = LsTω are k × 1 column
vectors. In order to drive s to the desired value s∗, we set
v = v̄ and we select as control law on ω:

ω = −Ls,ω+ (λe+ Ls,v v̄) (3)

where λ is a given positive gain, e is the error s − s∗, and
Ls,ω+ ∈ IR1×k is the Moore-Penrose matrix pseudoinverse
of Ls,ω , i.e., Ls,ω+ =

(
Ls,ωTLs,ω

)−1
Ls,ωT .

A. Robot heading controller

The first controller that we tested in this work, the robot
heading controller (called RH), is based on the 3D informa-
tion, derived as described in Sect. IV-B. Since the y-axis is
parallel to the robot rotation axis, from the matrix R defining
the rotation between the two camera frames, it is trivial to
derive the relative heading variation between the two robot
configurations ∆θ = θ−θi. Then, we apply the control law:

ω = −λ∆θ

with λ a given positive gain. A similar controller has been
used in [7]. In contrast with that work, however, we do not
use the planar constraint to derive the 3D pose variation, and
we use R, instead of t (which is usually more affected by
noise), to derive the heading value.

B. Image jacobian points controller

In the image jacobian points controller (IJP), the visual
features used for achieving subtask i are the current image
I coordinates of the n matched points:

s = [X1, Y1, . . . , Yn]T ∈ IR2n

Each subtask i will consists of zeroing error:

e = [X1 −Xi,1, Y1 − Yi,1, . . . , Yn − Yi,n]T ∈ IR2n

For a normalized perspective camera, the expression of LP
for a single image point P (X,Y ) seen in I is:

LP =

 −
1
z 0 X

z XY −1−X2 Y

0 − 1
z

Y
z 1+Y2 −XY −X


where z is derived with the method described in Sect. IV-B.
By applying the transformation CTR, we obtain:

LP,v =
[

X
z
Y
z

]
LP,ω =

[
δ
z + 1 +X2

XY

]
If we consider all n matched points between I and Ii, by
merely stacking n times vectors LP,v and LP,ω , we obtain
the two 2n× 1 column vectors Ls,v and Ls,ω to be used in
(3)1.

1Ls,ω+ is always defined, since:

Ls,ωTLs,ω =

n∑
j=1

[(
δ

zj
+ 1 +X2

j

)2

+ (XjYj)
2

]
> 0

because δ
z

+ 1 +X2 > 0 for all P .

C. Image jacobian points controller with uniform depths

The image jacobian points controller with uniform depths
(IJPU) is based on an approximation of the model used by
the IJP controller. The only difference between the IJPU
controller and the IJP controller, is that the depths of all
points Pj (which are required for calculating Ls,v and Ls,ω)
are assumed identical and set to a fixed value:

zj = z̄ ∀j = 1, . . . , n

Although this approximation requires z̄ to be tuned by
the user, depending on the workspace characteristics, and
although it can lead to imprecision in the case of sparse 3D
points, setting zj = z̄ avoids the need for 3D reconstruction,
and consequently spares computational resources. In prac-
tice, the IJPU uses an approximation of the interaction matrix
similar to the ones commonly used in the visual servoing
literature, when pose estimation should be avoided. In fact,
it has been shown in many works that a coarse approximation
of the image jacobian, without depth estimation, is often
sufficient to achieve visual servoing tasks [2], and uniform
depths have been successfully used in [17].

D. Image jacobian centroid controller

In the Image jacobian centroid controller (IJC), the visual
features used for achieving subtask i are the current image
I coordinates of the centroid of the n matched points:

s = [XG, YG]T =
1
n

n∑
j=1

[Xj , Yj ]
T ∈ IR2

Each subtask i will consists of zeroing error:

e = [XG −Xi,G, YG − Yi,G]T ∈ IR2

For a normalized perspective camera, the expression of Ls
related to the centroid of a discrete set of n image points has
been derived in [18] by using image moments:

Ls=
1
n

n∑
j=1


− 1
zj

0 Xj

zj
XjYj −1+X2

j Yj

0 − 1
zj

Yj

zj
1+Y 2

j −XjYj −
n∑
j=1

Xj


where the zjs are derived with the method described in
Sect. IV-B. By applying the transformation CTR, we obtain:

Ls,v=
1
n

n∑
j=1


Xj

zj

Yj

zj

 Ls,ω=
1
n

n∑
j=1


δ
zj

+1+X2
j

XjYj

 (4)

These two vectors are used in the control law (3)2.

2Ls,ω+ is always defined, since:

Ls,ωTLs,ω =
1

n2

[(
n∑
j=1

δ

zj
+ 1 +X2

j

)2

+

(
n∑
j=1

XjYj

)2]
> 0

because
n∑
j=1

δ

zj
+ 1 +X2

j > 0.
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Fig. 2. Robot path in FW during Webots navigation, with N = 17 reference configurations qi (black dots), using controllers: RH, IJP, IJPU, IJC, IJCU,
AIJCA (left to right), in the experiments with correct (full curves) and coarse (dashed curves) camera calibration.

E. Image jacobian centroid controller with uniform depths

The image jacobian centroid controller with uniform
depths (IJCU) is based on an approximation of the model
used by the IJC controller. The approximation is identical to
the one used in IJPU to avoid 3D reconstruction:

zj = z̄ ∀j = 1, . . . , n

with z̄ to be tuned according to the workspace characteristics.

F. Approximated image jacobian centroid abscissa controller

From a control viewpoint, since in (3) we control only one
degree of freedom (ω), one feature is sufficient for control.
In the approximated image jacobian centroid abscissa con-
troller (AIJCA), the only visual feature that we use is the
abscissa of the centroid of the n matched points in I:

s = XG ∈ IR

This choice is reasonable, since the camera optical axis is
orthogonal to the robot rotation axis. Each subtask i will then
consist of zeroing error:

e = XG −Xi,G ∈ IR

The relationship between ṡ and uc is here characterized only
by the first lines of Ls,v and Ls,ω in (4). By neglecting
δ with respect to the point depths, and assuming that the
centroid stays ’near’ the image plane center, we assume that:

1
n

n∑
j=1

Xj

zj
� 1

1
n

n∑
j=1

δ

zj
+X2

j � 1

which leads to Ls,v = 0 and Ls,ω = 1. Replacing in (3)
leads to the same control law used in [10]:

ω = −λe

where λ is a given positive gain. With this method, no
metrical knowledge of the 3-D scene is needed, since the
controller relies uniquely on the image features. However,
we will show that not taking into account 3D information,
is a limitation for this control strategy.

VI. SIMULATIONS AND EXPERIMENTS

The simulations and experiments have been carried out
on a MagellanPro robot. This is a differential-drive robot
with a caster wheel added for stability. The on-board camera
is a 30 Hz Sony EVI-D31, with a resolution of 640 × 480
pixels. For preliminary simulations, we have made use of
Webots3, where a simulated robot with the same kinematic
and sensorial characteristics as MagellanPro has been de-
signed. Video clips of the experiments are available at:
www.dis.uniroma1.it/∼labrob/research/VisNav.html.

In Webots, the six controllers have been compared by
replaying a taught path of approximately 4.8 m composed of
N = 17 reference images; we set τε = 4. Using the Webots
GPS sensor, we can derive the 3D paths tracked by the sim-
ulated robot in the 6 cases (full curves in Fig. 2). Note that,
although with all controllers the robot is able to reach the
final goal image I17, path tracking is less accurate with RH
and AIJCA than with the 4 other controllers. This result is
confirmed by the metrics reported in Table I: both the image
error εi with respect to Ii, and the position error with respect
to qi, averaged over the 17 reference images/configurations,
are higher for RH and AIJCA, than for the other controllers.
The smaller value of the third metric (average number of
matched points n on each image) for RH and AIJCA, is both
a cause and an effect of lower accuracy: less points provide
less information for control, while, inprecise path tracking
worsens feature tracking. Although the performances of the
4 other controllers are comparable, slightly better results are
obtained when the depth is estimated using 3D reconstruction
(IJP and IJC), than when it is fixed (IJPU and IJCU). The
importance of the – mainly longitudinal – position error in
RH and AIJCA is due to the fundamental role played by the
point depths (which are not used by the latter controllers) in
the pose accuracy associated to an image-based task: with
RH and AIJCA, the robot stops much after configuration
q17. To further investigate the controller performances, we
have plotted, in Fig. 3 (left), the typical evolution of ω and
εi during a path step. Here, we focus on the step from I6
to I7, although the trends are similar for the other 16 steps.
The curves show that with RH, which is merely position-
based, the value of ω is strongly conditioned by the 3D

3www.cyberbotics.com



TABLE I
CONTROLLERS PERFORMANCE IN WEBOTS - CORRECT CALIBRATION

controller RH IJP IJPU IJC IJCU AIJCA
average εi w.r.t. Ii (pixels) 2.9 1.9 2.4 2.2 2.6 3.1
average position error (cm) 14 4 5 4 6 21

average n 77 94 92 93 92 73

Fig. 3. Evolution of ω (top, in rad/s) and ε7 (bottom, in pixels) at successive
iterations while the simulated robot moves from I6 to I7 using: RH (grey),
IJP (red), IJPU (orange), IJC (blue), IJCU (cyan), and AIJCA (green), with
correct (left) and coarse (right) camera calibration.

reconstruction error, and oscillates, leading to later conver-
gence of εi (hence to the late robot stop). The inaccuracy
in ∆θ (±6◦ average estimation error over a total heading
variation, throughout the path, of −110◦) is due to our choice
of estimating on-line the camera pose by using only pairs
of images, instead of performing a computationally costly
global bundle adjustment. This is consistent with the choice
of processing the same sensor input for all controllers, i.e.,
simply data from the current and from the next reference
images. Late convergence of εi also occurs with AIJCA
(green in Fig. 3). Smoother curves are obtained with the
other 4 image jacobian controllers, which take into account
the feature point image positions, as well as their 3D depths.

To verify the controllers’ robustness, the 6 simulations
have been repeated with a random calibration error of either
+10% or −10% on each of the camera parameters: fX , fY ,
δ. For the uniform depth controllers (IJPU and IJCU), we
have also included a random calibration error of +10% or
−10% on z̄, simulating imprecise tuning of this parameter.
For the coarsely calibrated simulations, the replayed paths
are represented by the dashed curves in Fig. 2, while the
relevant metrics, and the evolution of ω and εi during the
seventh step are shown respectively in Table II, and Fig. 3
(right). For AIJCA, which is independent from the camera
parameters, the results are identical to those of the calibrated
case. Fig. 2 shows that the robot is able to successfully
follow the path in all 6 cases, although path tracking is
obviously less precise than in the calibrated camera case.
Again, the 4 image jacobian controllers that utilize feature
depth, outperform RH (where camera parameters are crucial
for control) and AIJCA.

To evaluate the effect of the choice of the parameter z̄ used
by the two uniform depth controllers, we have repeated the
calibrated camera simulations by varying the value of z̄ for
a fixed gain λ. Since in our workspace the feature points
are very sparse (with average depth 1.9 m, and standard
deviation 1.5 m), the uniform depth assumption is quite
strong. Nevertheless, all the simulations that we have run
using z̄ ∈ [0.8, 500] m were successful, and provided good
performances: average εi < 3.5, n > 80 and position error
< 25 cm. In fact, for z̄ → ∞, both IJPU and IJCU rely
uniquely on image features, since Ls,v → 0, and Ls,ω

TABLE II
CONTROLLERS PERFORMANCE IN WEBOTS - COARSE CALIBRATION

controller RH IJP IJPU IJC IJCU AIJCA
average εi w.r.t. Ii (pixels) 3.5 2.7 2.7 2.3 2.5 3.1
average position error (cm) 19 7 7 5 9 21

average n 57 94 96 93 90 73

depends only on the image coordinates of the Pj points;
hence, in this case, inappropriate tuning of z̄ does not worsen
the controllers’ performance. On the other hand, for z̄ < 0.8
m, the simulations fail, due to the large modeling error in the
choice of z̄, which should be closer to the average value 1.9
m. Therefore, the simulations show that IJPU and IJCU are
robust to large z̄ modeling errors, and that overestimating z̄
is preferable.

To assess the convergence domain, in a fourth series of
simulations, the 6 controllers have been tested starting from
an initial configuration ’distant’ from the teaching phase
initial configuration. The distance is evaluated by considering
the ratio ρ obtained by dividing the initial image error ε1
(with respect to I1) in the presence of initial pose error, by
the initial ε1 in the ideal case (i.e., when replay starts at
the teaching initial configuration). For each controller, we
assess the convergence domain by verifying the maximum ρ
tolerated. For IJP and IJC, a maximum ρ of 4.1 is tolerated
(i.e., these controllers converge from an initial view with
ε1 4.1 times larger than the initial teaching view). For
IJPU and IJCU, ρ = 2.6 is tolerated; for AIJCA and RH,
respectively ρ = 2.1 and ρ = 1.9. Clearly, a complete
stability analysis would be required to precisely assess the
convergence domain. Nevertheless, these simulation results
are useful to confirm the properties of the 6 controllers, and
show that IJP and IJC can converge even in the presence of
a large initial error.

After the simulation results, we ported the navigation
framework on the real MagellanPro for further validation.
Since the image jacobian points and centroid controllers have
behaved similarly in Webots, we have not tested the centroid
controllers IJC and IJCU on the real robot. A taught path
of approximately 2.0 m, composed of N = 4 reference
images, has been replayed using the other 4 controllers,
with τε = 5. Since the robustness of the image processing
algorithms is not crucial in this work, the environment was
lightly structured, by adding artificial visual textures. With
RH, the experiment failed after having reached image I2. The
reason is the large position error with respect to the taught
path, which causes feature point loss. The replayed paths, are
shown, along with the taught path (white) in Fig. 4. Values of
the main metrics are reported in Table III, and the evolution
of ω and εi while the robot approaches I1 are shown in Fig. 5.
The experiments confirm the controllers’ characteristics seen
in Webots. Indeed, both the attempt of accomplishing an
image-based task by using merely 3D features (RH), and that
of tracking accurately the 3D path by using merely image
features (AIJCA) are unfruitful, while the two complete
image jacobian controllers provide the best performances
both in the image and in the 3D state space. Again, IJP,
which utilizes computed depths, outperforms IJPU, which
utilizes an approximation of the depths. This result is even
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Fig. 4. Replaying a taught path (white) using controllers: RH (grey),
IJP (red), IJPU (orange), and AIJCA (green). Robot key positions during
navigation are also shown: initial, intermediate and, for the 3 successful
controllers, final positions.

more evident in a real environment than in simulations. Fig. 4
also confirms that in all cases, the predominant component
of the position error is in the longitudinal direction (i.e.,
in the z direction), as outlined in the simulations. This is
not a surprise, since it is well known that for nonholonomic
systems, set-point regulation (which cannot be achieved via
smooth time-invariant feedback) is more difficult to achieve
than trajectory tracking. Besides, the importance of the
longitudinal position error is due to the utilization of scale-
dependent Harris points, which are hard to track when the
motion in the optical axis direction is important. However,
since the object of this study is the control, rather than the
sensing technique, this is not crucial: using scale-invariant
features will improve navigation, without modifying the
controllers’ characteristics.

VII. CONCLUSIONS AND FUTURE WORK

We have compared 6 appearance-based controllers for
nonholonomic navigation from a visual memory. The simula-
tions and experiments have shown that the 4 complete image
jacobian controllers, which combine both image data and
feature depth, outperform the 2 controllers which utilize only
3D data, or only image data. Besides, although 3 controllers

TABLE III
COMPARING FOUR CONTROLLERS ON THE REAL ROBOT

controller RHa IJP IJPU AIJCA
average εi w.r.t. Ii (pixels) 4.2 3.0 3.8 4.5

average position error (cm)b 40 30 33 44
average n 42 63 57 32

aSince RH failed after I2, these are averaged over 2 replay steps.
bEstimated from the videos of the experiments.

Fig. 5. Evolution of ω (left, in rad/s) and ε1 (right, in pixels) while the robot
moves towards I1 using controllers: RH (grey), IJP (red), IJPU (orange),
and AIJCA (green).

necessitate 3D reconstruction, for the image jacobian con-
trollers (IJP and IJC), a large 3D reconstruction error (e.g.,
due to coarse camera calibration) can be allowed without
jeopardizing performance. Indeed, in the IJP and IJC experi-
ments, as opposed to the RH experiments, 3D reconstruction
performed on-line by using only pairs of subsequent images
gave excellent results. Moreover, since 3D reconstruction
introduces computational delay at run time, and increases
sensitivity to image noise, a valid alternative is to use the
uniform depth controllers IJPU and IJCU. We hope that the
results of this study can be useful for the researchers working
on similar visual navigation frameworks worldwide. Future
work will be devoted to taking into account environment
modifications between the teaching and replaying phases.
We also plan to implement and integrate obstacle avoidance,
by considering cases where the robot must deviate from the
taught path in order to avoid an obstacle, while maintaining
localization accuracy.
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Abstract—In this paper, we present a generic framework for
urban vehicle navigation using a topological map. This map is
built by taking into account the non-holonomic behaviour of the
vehicle. After a localization step, a sensory route is extracted to
reach a goal. This route is followed using a sensor-based control
strategy, based on the vehicle model and computed from the
state extracted from the current and the desired sensory images.
In that aim, a generic model is proposed for visual sensors.
Experiments with an urban electric vehicle navigating in an
outdoor environment have been carried out with a fisheye camera
using a single camera and natural landmarks. A navigation along
a 1700-meter-long trajectory validates our approach.

Index Terms—Urban vehicle navigation, topological map,
generic camera model, autonomous navigation, non-holonomic
mobile vehicle, real-time application

I. I NTRODUCTION

Saturation of vehicles traffic in large cities is a major
concern. Improvements can be gained from the development
of alternative public transportation systems. In order to meet
public expectation, such systems should be very flexible, in
order to be suitable answer to many different individual needs,
and as nuisance free as possible (with respect to pollution,
noise, urban scenery, . . . ). Individual vehicles, available in
a car-sharing concept, meet clearly both requirements. They
appear to be very suitable in specific areas where the public de-
mand is properly structured, as in airport terminals, attraction
resorts, university campus, or inner-cities pedestrian zones.
In order to spread such a transportation system, automatic
navigation of those vehicles has to be addressed: passengers
could then move from any point to any other point at their
convenience in an automatic way, and vehicles could be
brought back autonomously to stations for refilling and reuse.
Automatic navigation is generally divided in four steps : 1)
map building, 2) localisation onto the map, 3) path planning
and 4) control to actually achieve the navigation task. Many
works deal with the problems of fuzzing steps 1) and 2)
on a single stage (Simultaneous Localization And Mapping;
SLAM). Unfortunately, even if computers are more and more
powerfull, those strategies are restricted to small environments
since the computational cost highly increases with the number
of features integrated onto the map. An alternative solution,
suitable for large scale environment, consists on using a
Geographical Information System (GIS) as proposed in [1].

Using visual sensors, appearance-based or “visual memory-
based” navigation approaches are emerging. The main idea
is to represent the mobile robot environment with a bounded
quantity of images gathered in a database (visual memory).
For example, [2] proposes to use a sequence of images
recorded during a human teleoperated motion, and called
View-Sequenced Route Reference. Such a strategy is called
“mapless” (refer to [3]). Indeed, any notion of map nor
topology of the environment appears, neither to build the
reference set of images, nor for the automatic guidance of
the mobile robot. Similar approaches have been proposed for
urban vehicles in [4]. In practise, a topological organization
decreases the computational cost and is more intuitive.
In this paper, we present a generic framework for urban vehicle
navigation using a topological map. This topological map
directly takes into account the control constraints duringits
building (refer to Section II). Before the beginning of the
motion the localization of the robotic system is performed.
Given an image of one of the paths as a target, the vehicle
navigation mission is defined as a concatenation of path
subsets, called sensory route. A navigation task then consists in
autonomously executing this route. The path-following control
law adapted to the nonholonomic constraints of the vehicle is
first defined (Section III-B). This control guides the vehicle
along the reference route without explicitly planning any
trajectory. This step requires also a model of the sensor to
compute the state needed by the control law. In the case of
visual sensors, we propose a generic model valid for a large
set of cameras (including perspective, catadioptric, spherical
and fisheye cameras). Those elements are presented in Section
III-C. Experiments have been carried out with an electrical
urban vehicle, navigating in outdoor environment along a
1200-meter-long trajectory. Results are presented in the last
Section.

II. TOPOLOGICAL MAP WITH CONTROL CONSTRAINTS

In the sequel, we define an imageI as the representation of
the environment given by an embedded sensor. This sensor is
supposed to be rigidly fixed to the vehicle. The environment
is represented by a set of images, topologically organized.
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Fig. 1: The memory of the robot, composed of 5 ordered pathsΨi .
Each square represents an image of the memory.

A. Representation of the environment

Let consider a sensory pathΨp composed ofn key sensory
images:

Ψp =
{

I
p
i |i = {1,2, . . . ,n}

}

Such a path is a directed graph composed of images suc-
cessively acquired. In practise, such a path can represent a
street between two crossroads. This representation is justified
because, when following the given path it is not necessary to
take into account the other elements of the environment. Paths
are then linked. The choice of the key images and the path
linking is explained in Section II-C. The environment is thus
represented by a topological map which is a multigraph of
sensory paths (refer to Fig. 1).

B. Paths acquisition

The learning stage relies on the human experience. The user
guides the vehicle along one or several paths of its workspace.
During this stage, the motions are assumed to be limited to
those of a car-like vehicle, which only goes forward. Images
are acquired by the embedded sensor and then, a selection
process occurs in order to keep only some images called
“key images”. As noticed in [2], the number of key images
of a visual path is directly linked to the human-guided path
complexity.

C. Control constraints during map building

For control purpose (refer to Section III), the authorized
motions are assumed to be limited to those of a car-like
vehicle, which only goes forward. The following Hypothesis
2.1 formalizes these constraints.

Hypothesis 2.1:Given two framesRFi and RFi+1, respec-
tively associated to the vehicle when two successive key
imagesIi and Ii+1 of a sensory pathΨ were acquired, there
exists an admissible pathψ from RFi to RFi+1 for a car-like
vehicle whose turn radius is bounded, and which only moves
forward.

Moreover, because the controller is sensor-based, the robot is
controllable fromIi to Ii+1 only if the hereunder Hypothesis
2.2 is respected.

Hypothesis 2.2:Two successive key sensory imagesIi and
Ii+1 contain a setPi of matched features, which can be tracked

Ig

Ic

ψ

Fig. 2: A sensory route, from the current and goal locations (in the
sensory memory) of the robot.

along a path performed betweenRFi andRFi+1 and which are
sufficient to compute the full control law.

This Hypothesis 2.2 has three effects. Firstly, it limits the set
of possible sensors. In fact, some sensors may not provide
enough information to compute the control law. Secondly, for
the same reason, the position of the sensor is important as
it must provide the needed information. Finally, during the
acquisition of a sensory path, this hypothesis constrains the
choice of the key images.
In order to connect two sensory paths, the terminal extremity
of one of them and the initial extremity of the other one must
be constrained as two consecutive key images of a sensory
path.

D. Sensory route

A sensory route describes the vehicle’s mission in the sensor
space. Given two key images of the sensory memoryIc and
Ig, corresponding respectively to the current and goal locations
of the robot, a sensory routeψ is a set of key images which
describes a path fromIc to Ig (refer to Fig.2).
The sensory route describes a set of consecutive states that

the sensor has to reach in order that the robot joins the goal
configuration from the initial one. The robot motions are
controlled along the sensory route using the data provided
by the embedded sensor. In that aim, the sensor has to be
modelled as well as the vehicle. A control law is then designed
and computable by the state given by the sensor’s relative
information. The next section deals with those issues.

III. M ODELLING AND CONTROL

When starting the autonomous navigation task, the output
of the localization step provides the closest imageIc to the
current initial imageI ∗

c . A visual routeΨ connectingIc to
the goal image is then extracted from the visual memory. As
previously explained, the sensory route is composed of a setof
key images. The next step is to automatically follow this route
using a sensor-based technique. The principle is presentedin
Fig. 3.
To design the controller, described in the sequel, the key

images of the reference route are considered as consecutive
checkpoints to reach in the sensor space. The control problem
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Fig. 3: Route following process with a visual sensor.

is formulated as a path following to guide the nonholonomic
vehicle along the sensory route.

A. Model and assumptions

1) Control objective: Let Ii and Ii+1 be two consecu-
tive key images of a given route to follow andIc be the
current image. Let us noteFi = (Oi ,X i ,Y i ,Z i) and Fi+1 =
(Oi+1,X i+1,Y i+1,Z i+1) the frames attached to the vehicle
when Ii and Ii+1 were stored andFc = (Oc,Xc,Yc,Zc) a
frame attached to the vehicle in its current location. Figure 4
illustrates this setup. The originOc of Fc is on the center rear
axle of a car-like vehicle, which moves on a perfect ground
plane. The hand-eye parameters (i. e. the rigid transformation
betweenFc and the frame attached to the camera) are supposed
to be known. According to Hypothesis 2.2, the state of a set of
featuresPi is known in the imagesIi andIi+1. The state ofPi

is also assumed available inIc. The task to achieve is to drive
the state ofPi from its current value to its value inIi+1. Let
us noteΓ a path fromFi to Fi+1. The control strategy consists
in guiding Ic to Ii+1 by regulating asymptotically the axleYc

on Γ. The control objective is achieved ifYc is regulated to
Γ before the origin ofFc reaches the origin ofFi+1.

2) Vehicle Modelling:Our experimental vehicle is devoted
to urban transportation, i.e. it moves on asphalt even grounds at
rather slow speeds. Therefore, it appears quite natural to rely
on a kinematic model, and to assume pure rolling and non
slipping at wheel-ground contact. In such cases, the vehicle
modelling is commonly achieved for instance relying on the
Ackermann’s model, also named the bicycle model: the two
front wheels located at the mid-distance between actual front
wheels and actual rear wheels. As seen previously, our control
problem has as objective that the vehicle follows a reference
path Γ, we propose to describe here, its configuration with

(Γ)

Xi+1
Xc

M

θ

Oi+1OC y

Fi+1

E

Yc

Ic

Zi+1

Ii+1

Zc

Fc

V
δ

Fig. 4: ImagesIi and Ii+1 are two consecutive key images of the
visual routeΨ. Ic is the current image.Γ is the path to follow.

respect to that path, rather than with respect to an absolute
frame. To meet this objective, the following notations are
introduced (see Figure 4).

• OC is the center of the vehicle rear axle,
• M is the point ofΓ which is the closest toOC. This

point is assumed to be unique which is realistic when the
vehicle remains close fromΓ.

• s is the curvilinear coordinate of pointM along Γ and
c(s) denotes the curvature ofΓ at that point.

• y andθ are respectively the lateral and angular deviation
of the vehicle with respect to reference pathΓ

• δ is the virtual front wheel steering angle
• V is the linear velocity along the axleYc of Fc

• l is the vehicle wheelbase.

Vehicle configuration can be described without ambiguity by
the state vector(s , y , θ): the two first variables provide point
OC location and the last one the vehicle heading. SinceV is
considered as a parameter, the only control variable available
to achieve path following isδ. The vehicle kinematic model
can then be derived by writing that velocity vectors at point
OC and at center of the front wheel are directed along wheel
planes and that the vehicle motion is, at each instant, a rotation
around an instantaneous rotation center. Such calculations lead
to (refer to [5]):



























ṡ= V
cosθ

1−c(s)y

ẏ = V sinθ

θ̇ = V

(

tanδ
l

−
c(s)cosθ
1−c(s)y

)

(1)

Model (1) is clearly singular wheny=
1

c(s)
i.e. when pointOC

is superposed with the pathΓ curvature center at abscissas.
However, this configuration is never encountered in practical
situations: on one hand, the path curvature is small and on the
other, the vehicle is expected to remain close toΓ.



B. Control Design

The control objective is to ensure the convergence ofy
and θ toward 0 before the origin ofFc reaches the origin
of Fi+1. The vehicle model (1) is clearly nonlinear. However,
it has been established in [6] that mobile robot models can
generally be converted in an exact way into almost linear
models, named chained forms. This property offers two very
attractive features: on one hand, path following control law can
be designed and tuned according to celebrated Linear System
Theory, while controlling nevertheless the actual non linear
vehicle model. Control law convergence and performances are
then guaranteed whatever the vehicle initial configurationis.
On the other hand, chained form enables to specify, in a very
natural way, control law in term of distance covered by the
vehicle, rather than in term of time. Vehicle spacial trajectories
can then easily be controlled, whatever the vehicle velocity is
[7].

Conversion of the vehicle model (1) into chained form
can be achieved thanks to the following state and control
transformation:

Φ(
[

s y θ
]

)
∆
=

[

s y (1−c(s)y)tan(θ)
]

(2)

The expression of the actual control lawδ can be obtained
by inverting the chained transformation:

δ(y,θ) = arctan
(

−l
[

cos3 θ
(1−c(s)y)2

(

dc(s)
ds ytanθ

−Kd(1−c(s)y) tanθ
−Kpy+c(s)(1−c(s)y) tan2 θ

)

+ c(s)cosθ
1−c(s)y

])

(3)

The gains(Kd, Kp) impose a settling distance and set the
desired control performances. Consequently, for a given initial
error, the vehicle trajectory will be identical, whatever the
value ofV is, and even ifV is time-varying (V 6= 0). Control
law performances are therefore velocity independent. In our
experiments the path to follow is simply defined as the straight
line Γ′ = (Oi+1,Y i+1) (refer to Figure 4). In this casec(s) = 0
and the control law (3) can be simplified as follows:

δ(y,θ) = arctan
(

−l
[

cos3 θ(−Kd tanθ−Kpy)
])

(4)

The implementation of control law (4) requires the on-line
estimation of the lateral deviationy and the angular deviation
θ of Fc with respect toΓ. In the next Section, we describe how
geometrical relationships between two views acquired with
a camera under the generic projection model (conventional,
catadioptric and fisheye cameras) are exploited to enable a
partial Euclidean reconstruction from which(y, θ) are derived.

C. State estimation from a visual sensor

Different sensors are suitable for our application. The
method consists on two steps: 1/ sensor modeling, 2/ extraction
of the state of the robot in the sensor space. In the sequel,
visual cameras are used to extract the state required by the
control law but our framework is not limited to those sensors.
We consider a camera modeled by the generic projection
on the sphere and the image of points features. The unified

projection model consists on a projection onto a virtual unitary
sphere, followed by a perspective projection onto an image
plane [8]. This virtual unitary sphere is centered in the
principal effective view point and the image plane is attached
to the perspective camera.
Let Fc and Fm be the frames attached to the conventional
camera and to the unitary sphere respectively. In the sequel,
we suppose thatFc andFm are related by a simple translation
along theZ-axis (Fc and Fm have the same orientationThe
origins C andM of Fc andFm will be termed optical center
and principal projection center respectively. The opticalcenter
C has coordinates[0 0 −ξ]T with respect toFm and the image
plane is orthogonal to theZ-axis and it is located at a distance
Z = fc from C .
Let X be a 3D point with coordinatesX = [X Y Z]T with
respect toFm. The point on the normalized image plane
is of homogeneous coordinatesx = [xT 1]T = f (X) (where
x = [x y]T ):

x = f (X) =

[

X
εsZ+ ξρ

Y
εsZ+ ξρ

1
]⊤

(5)

The parameterεs allows to integrate the spherical projection
into this model by settingεs = 0 andξ = 1. In the general case
and in the sequel, this parameter is equal to 1. Note that, setting
ξ = 0 (andεs = 1), the general projection model becomes the
well known pinhole model.ξ can be seen as a parameter which
allows to control the amount of radial distortions for fisheye
lenses.
Finally the point of homogeneous coordinatesm in the image
plane is obtained after a plane-to-plane collineationK of the
2D projective point of coordinatesx:

m = Kx (6)

The matrixK can be written asK = KpM where the matrix
Kp contains the perspective camera intrinsic parameters, and
the diagonal matrixM links the frame attached to the unitary
sphere to the camera frameFm. For a central catadioptric
camera, this matrix depends on the shape of the mirror.

Let X be a 3D point with coordinatesXc = [Xc Yc Zc ]T in the
current frameFc andX

∗ = [Xi+1 Yi+1 Zi+1 ]T in the frameFi+1.
Let Xm andX

∗
m be the coordinates of those points, projected

onto the unit sphere (refer to Fig. 5). LetR (respectivelyt)
represent the rotational matrix (resp. the translational vector)
between the current and the desired frames. Similarly to the
case of pinhole model, the epipolar geometry leads to:

Xm

TEXm

∗T = 0 (7)

where E = R [t]× is the essential matrix [9]. The essential
matrix E between two images is estimated using five couples
of matched points as proposed in [10] if the camera calibration
(matrix K ) is known. Outliers are rejected using a random
sample consensus (RANSAC) algorithm. From the essential
matrix, the camera motion parameters (that is the rotationR
and the translationt up to a scale) can be determined. Finally,
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the estimation of the input of the control law (3),i.e the
angular deviationθ and the lateral deviationy, are computed
straightforwardly fromR and t.

IV. I MPLEMENTATION AND EXPERIMENTAL RESULTS

A. Map management

We have proposed a software platform called SoViN to
efficiently manage visual memory for autonomous vehicle
navigation in large scale environments [11]. An overview of
SoViN is shown in Fig. 6. The software platform is divided
into three different modules: a module for processing (image
processing, computer vision and control); a module for HMI
(visualization and high-level actions control) and a module for
data storage and access (low-level functions). For data storage,
our software uses a conventional database software. HMI and
processing modules communicate with the database thanks to
this low-level module.

During both localization and path following stages, key im-
ages’ elements (image points with their descriptors, matching
between successive image points . . . ) are loaded on-line from
the database.

B. Experimental set-up

Our experimental vehicle is depicted in Figure 7. It is an
urban electric vehicle, named RobuCab, manufactured by the

Fisheye Camera

Fig. 7: RobuCab vehicle with the embedded camera.
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Fig. 8: Large-scale environment: large loop

Robosoft Company. Currently, RobuCab serves as experimen-
tal testbed in several French laboratories. The 4 DC motors are
powered by lead-acid batteries, providing 2 hours autonomy.
Vision and guidance algorithms are implemented inC++ lan-
guage on a laptop using RTAI-Linux OS with a 2GHz Centrino
processor. The Fujinon fisheye lens, mounted onto a Marlin
F131B camera, has a field-of-view of 185deg. The image
resolution in the experiments was 800×600 pixels. It has been
calibrated using the Matlab toolbox presented in [12]. The
camera, looking forward, is situated at approximately 80cm
from the ground. The parameters of the rigid transformation
between the camera and the robot control frames are roughly
estimated. Grey level images are acquired at a rate of 15fps.

C. Experimentations

1) Learning stage:The robot has been manually driven
along a 1200 meter-long loop (refer to Fig. 8) at the beginning
of July, with a very sunny weather. The fisheye lens camera
was rigidly fixed at approximately 1 m from the ground, 1 m
at the left of the middle of the car. The camera was looking
in the direction of the vehicle. It has been calibrated using
the unified model on the sphere. An importation step occurred
and result to 35 edges after having cut some edges in function
of the context (straight lines, huge turns). A longitudinal
velocity has been given for each edge (0.4 m/s for huge
turns, 0.8 m/s in small turns, 1 m/s for straight parts). The
DGPS data has also been acquired. For each node, the position
given by interpolation of the DGPS data have been saved
too (interpolation in function of the time when data where
acquired).



Fig. 11: Trajectories obtained with the RTK-DGPS
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2) Localization step and initialisation:After a localization
step, a visual route is extracted. It consists on doing at least
one loop.

3) Autonomous navigation:The experiment lasts 26 min-
utes for a path of 1700 meters (refer to Fig. 9) which results to
an average longitudinal velocity of around 1 m/s. This visual
route is composed of 54 edges and around 1400 key images.
This path following stops for safety reasons because few visual
features were robustly matched.

Evaluation with a RTK-GPS:DGPS data have been
recorded during the learning and the autonomous stages.
The results are reported in Fig. 11. The red and blue lines
represents respectively the trajectories recorded duringthe
learning and autonomous stages. It can be observed that these

trajectories are similar. The lateral error measured by theRTK-
GPS has a mean of 23 cm and a standard deviation of around
30 cm.

V. CONCLUSION

We have presented a complete framework for autonomous
navigation which enables a vehicle to follow a sensory path
obtained during a learning stage. The robot environment is
modeled as a topological map from which a sensory route
connecting the initial and goal images can be extracted. The
robotic vehicle can then be driven along the route thanks to
a sensor based control law which takes into account non-
holonomic constraints. Furthermore, the state of the robotis
estimated using a generic camera model valid for a perspective,
catadioptric as well as a large class of fisheye cameras. Our
approach has been validated on an urban vehicle navigating
along a long trajectory. At our knowledge, it reports it is the
first time that a 1700-meter-long trajectory is done using a
single camera and natural landmarks.
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Use a Single Camera for Simultaneous Localization And Mapping with
Mobile Object Tracking in dynamic environments

Davide Migliore, Roberto Rigamonti, Daniele Marzorati, Matteo Matteucci, Domenico G. Sorrenti

Abstract— The aim of this work is to demonstrate that it is
possible to use a single camera to solve the problem of Simul-
taneous Localization And Mapping in dynamic environments
obtaining, at the same time, the estimation of the moving objects
trajectories. Specifically, we show that it is possible to segment
the features belonging to independently moving objects from a
moving camera using a MonoSLAM algorithm together with
a Bearing-Only Tracker. The idea is to exchange between two
parallel working systems, i.e. the SLAM filter and the bearing-
only tracker, information about the pose of the camera and
the motion of the feature to improve the robustness of the
SLAM algorithm and maintain a consistent estimation of both
the pose, the map, and the features trajectories. Experiments in
simulated and real environments substantiate that the proposed
technique is able to maintain consistent estimations in a fast
and robust way suitable for a real-time application, even in
situations where classical MonoSLAM algorithms are deemed
to fail.

I. INTRODUCTION

The key prerequisite for a complete autonomous naviga-
tion system is a deep understanding of the surrounding world
as perceived by robot sensors. In Simultaneous Localization
And Mapping (SLAM) literature it is possible to find many
solutions using different kind of sensors (i.e. lasers, cameras,
sonars) [1], but most of these algorithms assume a static
environment or filter out the dynamic elements perceived in
the scene [2].

Although the proposed approaches are effective, they are
often expensive or complex and not usable for real applica-
tions. For this reason, in this paper, we focus on solutions
based on a single camera, a small and inexpensive device
that allows to have rich information about the environment
perceived. In the last years we assisted the proliferation [3]
of systems based on a single camera that are able to simul-
taneously localize themselves in real-time [4], building 3D
maps of huge environments [5] and placing virtual elements
in the scene [6]. However, as their precursors, they assume
again a static environment.

In this paper we want to demonstrate that it is possible to
relax the world motionless hypothesis, proposing a method
to estimate online the 6 DoF of a camera and the 3D map
in presence of generic dynamic objects.

A first remarkable work on this direction was done by
Wang et al. [7], who proposed a mathematical framework

D. Marzorati and D. G. Sorrenti are with Università di Milano -
Bicocca, Building U14, v.le Sarca 336, 20126, Milano, Italy{marzorati,
sorrenti}@disco.unimib.it

M. Matteucci, R. Rigamonti and D. Migliore are with Politec-
nico di Milano, via Ponzio 34/5, 20133, Milano, Italy{matteucci,
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to solve the problem of Simultaneous Localization And
Mapping and Moving Objects Tracking (SLAMMOT), that
can be considered the intersection between SLAM and
moving object tracking. The authors investigate theoretically
the SLAMMOT problem, demonstrating that it is possible
to solve it maintaining separate posteriors for stationaryand
moving objects, and validating the algorithm empirically by
analyzing data acquired with a laser rangefinder in real urban
environment.

A different approach was presented by Bibby and Reid [8],
introducing a technique called SLAMIDE, to combine the
least-squares formulation of SLAM and sliding window opti-
mization, together with a generalized expectation maximiza-
tion method. Their idea is to incorporate both dynamic and
stationary objects into SLAM estimation, without splitting
the problem in two and considering the possibility of a
reversible data association. Simulated experiments demon-
strated the capabilities of the proposed solution, which is
able to estimate, consistently, the pose and the map also
in presence of dynamic features in a unique framework.
However, as already demonstrated by Wang [7], the idea
of including all the features in the SLAM state reduces the
performance of the filter in terms of speed, highlighting the
principal drawback of SLAMIDE: the complexity.

A different approach was proposed by Ess et al. [9],
who presented a mobile system based on a stereo camera
which integrates continuous visual odometry computation
with tracking-by-detection, to track pedestrians in spiteof
frequent occlusions and egomotion of the camera rig. This
method obtains interesting results in very challenging sce-
narios, but it is not a generic solution since it considers only
pedestrian/vehicle tracking, and it is not computationally
feasible for a robotics application. Moreover, no map is built,
since the system is based on a visual odometry, thus it is not
possible to have enough information about the environment
to allow trajectory planning for an autonomous vehicle.

An approach requiring less computational resources, but
still using a stereo camera, was introduced by Solà et
al. [10], who described a system based on a framework called
BiCamSLAM, that combines the advantages of the monoc-
ular reconstruction with the advantages of stereo vision. In
his proposal, Solà tries to solve the SLAMMOT problem
estimating, at the same time, the position of the robot, the
static map and the trajectory of the moving objects. In par-
ticular, Solà proposes to separate the SLAM algorithm from
the tracking one, adopting a camera-centric representation
of the world and using a different filter for each moving
object, dropping in this way objects crosscorrelations with



Prediction

Update

Classification

Data Association

Add Feature

Shadow FilterMonoSLAM

Add Feature

Prediction

Update

Data Association

Fig. 1. Schema of the proposed SLAMBOT system. On the left we have
the SLAM filter that, as explained in [11], estimates the camera pose and the
position of the static elements in the scene by means of the EKF prediction,
data association and update steps. The last pose estimated by the SLAM
filter is then used by the the Shadow filter to identify dynamicfeatures and
estimate their trajectories. Once a feature is classified asstatic, it is added
to the SLAM filter.

the robot’s pose.
In this paper, starting from the Solà idea, a viable solution

to the online monocular SLAM with moving objects tracking
is proposed. The goal of our method is to obtain a consistent
map of the static environment, discriminating between static
and dynamic objects and being able at the meantime to
approximate the trajectories of the moving features.

II. MONOSLAM WITH MOVING OBJECTS

Simultaneous estimation of pose and map based on the
analysis of images perceived by a moving observer is not
a trivial task; especially when the environment monitored
contains dynamic elements that might affect the consistency
of the estimates, leading to failure in the traditional SLAM
algorithm. In the monocular case, this hindrance is worsened
by the reconstruction procedure that is often unable to detect
the dynamic behavior of a feature because of the high initial
uncertainty associated with it [4].

A possible solution was proposed by Wang et al. [7], under
the assumption that moving objects do not carry information
about the map and the robot pose: he did not consider
them as references for localization because of their inherent
instability [10]. Exploiting this insight, we decided to split
the estimation process over two filters reciprocally related
(see Figure 1): the SLAM filter based on monocular camera
(MonoSLAM), that uses static features to estimate map and
camera pose, and the tracker, named in this paper “Shadow
Filter”, that, by knowing the camera pose, deals with the
moving features in the environment. The role of the Shadow
Filter is twofold: on one side, it tracks the behavior of the
moving features, on the other, it retains the new features
detected by the camera until it can tag them as static or

dynamic, avoiding in this way inconsistencies in the SLAM
process.

The system we propose relies on two main assumptions.
Since we do not have any odometry measurement (i.e., we
do not have an IMU), we need an absolute reference to
understand how the camera and the feature are moving.
Therefore, before perceiving dynamic features, we initialize
the SLAM filter with a set of static features in known position
(to estimate the scale), obtaining a first estimation of the
camera pose w.r.t. the world frame. Moreover, to ensure con-
sistent estimation and correct features classification during
the whole execution of this system, it is important to have in
the image and in the SLAM filter state enough static features
to maintain an estimation of the absolute reference frame.

Under these assumptions, that could be easily relaxed
by the use of an Inertial Measurement Unit (IMU), new
features are initialized in the Shadow filter only. To avoid the
corruption of the SLAM filter, these features are retained init
until it is not possible to mark them as static, in which case
they are passed to the SLAM filter, or dynamic, in which
case they are kept in the Shadow filter and tracked along
their movements.

The MonoSLAM algorithm used in this work is the same
proposed by Marzorati et al. [11], thus we avoid to explain
here how this algorithm works, focusing, instead, on the
description of the Shadow Filter side of the system and its
interaction with the SLAM filter. However, it is simple to
notice that the method proposed is independent of the SLAM
algorithm used, since the only information exchanged are the
camera pose and the feature positions.

III. DYNAMIC FEATURES TRACKING

As explained before, we propose to use a Bearing Only
Tracker, the “Shadow Filter”, to estimate and classify the new
features perceived. Once we know the camera pose from the
SLAM filter, to estimate the position and the velocity of a
moving feature w.r.t. the camera frame we can use an EKF
characterized by the following state:

xk =

[

x
Ck

Fk

vFk

Fk

]

, (1)

wherexCk

Fk

= (xf , yf , zf , wf )T are the feature homogeneous
coordinates at timek w.r.t. the camera frameCk andv

Fk

Fk
=

(vfx
, vfy

, vfz
)T is its velocity w.r.t. the feature frameFk.

At each step we have to maintain the reference of the
Shadow filter always w.r.t. the camera frame, thus we need
to roto-translate the feature position and rotate the velocity
vector before the update step. Assuming constant velocity,
we can write the motion equation as:

xk+1 =

[

x
Ck+1

Fk+1

v
Fk+1

Fk+1

]

=

[

x
Ck+1

Ck
⊕ x

Ck

Fk
⊕ (vFk

Fk+1
∆t)

x
Fk+1

Fk
⊕ v

Fk

Fk

]

,

(2)
where: xCk+1

Ck

is the roto-translation between the camera
posesCk and Ck+1, xCk

Fk

is the feature position w.r.t. the
camera pose at timek, v

Fk

Fk+1
is the velocity of the feature



at time k + 1 w.r.t. the feature frameFk, v
Fk

Fk
the velocity

of the feature at timek w.r.t. the feature frameFk, x
Fk+1

Fk

is the rotation from the frame reference at timek to the
frame reference at timek + 1 and⊕ is the transformation
composition operator. Notice that the state of the feature
is somehow represented in a mixed frame of reference to
simplify the motion model: its position is in the camera
frame, while its velocity is in the feature frame (i.e., the
camera reference translated in the feature point).

The measurement equation in homogeneous coordinates
can be written as:

hk =





hkx

hky

hkz



 = MxCk

Fk
, (3)

whereM is the calibration matrix:

M =





fcx
0 ccx

0 fcy
ccy

0 0 1





, (4)

and the pixel coordinates on the image plane can be simply
obtained as

hk =

[

hku

hkv

] [

hkx
/hkz

hky
/hkz

]

. (5)

For the experiments shown in this paper we used a camera
with a wide-angle lens, to improve the performance of single-
camera SLAM [12], thus the measurement equation should
be modified accordingly to take into account the radial
distortion, as exposed in [11]. Finally, to estimate iteratively
the current position1 of the feature, we just need to compute
the Jacobian of these models and apply the classical steps of
the Extedend Kalman Filter.

This approach allows us to have an approximated estima-
tion of the feature pose and, in this way, make inference
about its movements.

A. Detecting moving features

To guarantee the correct functioning of the SLAM algo-
rithm, we need to classify new features as dynamic or static
before using them to estimate the camera pose and the map.
The first time we perceive a feature, we do not know where
it is located in the 3D scene, thus we initialize it with a
huge uncertainty in the depth. In the next frame, once the
feature is associated with a measurement and then updated,
its position changes, moving along the projection ray and
possibly causing the estimate of false motion. For this reason
we can not rely the velocities estimated in the Shadow Filter
and we need a more robust classifier.

Referring to the viewing ray as a straight line and to the
position from where the feature was viewed the first time,
we can make a geometric reasoning, based on an approach
that resembles the epipolar constraint. The basic idea is to
check continuously the intersections between three viewing
rays belonging to the same feature viewed in three different

1Notice that this filter can estimate the trajectories of the moving points
up to a scale factor [13], however it is possible to overcome this drawback
initializing the correct scale in the first frame, as showed in [14].

camera poses. If these intersections are not the same during
the camera motion or it does not exist, then the feature can
be classified as dynamic.

However, in real world, where the moving sensor returns
uncertain bearing-only measurements, the previous task is
not trivial to solve, since the presence of the uncertainty
could affect all the geometric reasoning. To take into account
the uncertainty associated with each measurement and each
estimate, we need to introduce a probabilistic framework that
allows us to check the relationships between the viewing rays
in an uncertain world: Uncertain Projective Geometry [15].

Using this framework we can describe, combine, and
estimate various types of geometric elements (3D points, 3D
lines and 3D planes) maintaing the information about their
uncertainty. By the use of Uncertain Projective Geometry,
these elements are represented using homogeneous vectors
(using the Plücker coordinates for lines) with their covariance
matrices, and simple bilinear expressions to represent join
and intersection operators are used. This result can be
obtained by using two construction matrices:O(·) (for 3D
lines) andΠ(·) (for 3D points and 3D planes).

To join two 3D pointsX = (X1, Y1, Z1, W1)
T , Y =

(X2, Y2, Z2, W2)
T into a 3D line L expressed in Plücker

coordinates [15], we can write:

L = X ∧ Y = Π(X)Y, (6)

being

Π(X) =
∂X ∧ ∂Y

∂Y
=

















W1 0 0 −X1

0 W1 0 −Y1

0 0 W1 −Z1

0 −Z1 Y1 0
Z1 0 −X1 0
−Y1 X1 0 0

















.

(7)
Again we can join a 3D pointX = (X1, Y1, Z1, W1)

T with
a 3D lineL = (L1, L2, L3, L4, L5, L6) into a 3D planeA:

A = X ∧ L = O(L)X, (8)

O(L) =
∂X ∧ ∂L

∂X
=









0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0









.

(9)
These construction matrices are useful tools to derive new
geometric entities from known ones, e.g. a 3D line from
two 3D points, a 3D point from the intersection of two 3D
lines, etc.; at the same time, being bilinear equations, these
operators directly represent the Jacobian of the transforma-
tion which is used for the uncertainty propagation in the
construction process.

A new entityz can be estimated from two entitiesx and
y, with a simple matrix multiplication:

z = f(x, y) = U(x)y = V (y)x, (10)

where U(x) and V (y) are, at the same time, the bilinear
operators and the Jacobian of thex andy entity respectively.



Assuming the entities to be uncertain, the pairs(x, Σxx) and
(y, Σyy), and possibly the covariancesΣxy betweenx and
y, are required for computing the error propagation as:

(z, Σzz) = (11)
(

U(x)y, [V (y), U(x)]

(

Σxx Σxy

Σxy Σyy

) [

V

T (y)
U

T (x)

])

,

and in case of independence between x and y we obtain:

(z, Σzz) =
(

U(x)y, U(x)ΣyyU

T (x) + V (y)ΣxxV

T (y)
)

. (12)

To check the geometric relationship between two geometric
entities it is then possible to use a statistical test on the dis-
tance vectord defined using the previous bilinear equation. In
particular a relation can be assumed to hold if the hypothesis

H0 : d = U(x)y = V (y)x = 0 (13)

cannot be rejected. Notice that the hypothesisH0 can be
rejected with a significance level ofα if

T = d

T Σ−1

dd d > εH = χ

2

1−α;n (14)

To perform the test, we need to fix the probabilityα that
we rejectH0 although it is actually true and this situation
is called Type-I error. The probabilityα is usually a small
number such as1% or 5% and it is called significance level of
the test. The critical valueεH such thatP (T > εH |H0) = α

is given by the(1 − α)-quantile of theχ2 distribution. It is
crucial to note that a successful hypothesis testT < εH does
not validate thatH0 is true, it merely states that there is not
enough evidence to rejectH0.

The covariance matrixΣdd of d is given by first order
error propagation as

Σdd = U(x)ΣyyU

T (x) + V (y)ΣxxV

T (y)

In generalΣdd may be singular, ifd is a n x 1 vector, r
is is the degree of freedom of the relationR and r < n.
The singularity causes a problem, as we have to invert the
covariance matrix. But, at least for projective relations,it can
be guaranteed that the rank ofΣdd is not less thanr (see
Heuel [15] for more details).

IV. EXPERIMENTAL RESULTS

In this section we want to test the capabilities of our
system, verifying the result of dynamic classification and the
consistence of the estimated position and map. Before trying
the algorithm with real data, we verified the consistency
of the Shadow filter, testing it in a simulated framework,
in which a moving camera was put inside an environment
where another dynamic element is moving in the scene (see
Figure 2 for a reference). At each time the correct camera
position is passed to the Shadow filter and the trajectory
of the feature is estimated. As it is possible to notice from
Figure 3, the estimate remains consistent during the whole
process. The uncertainty associated to the depth coordinate
(in the case of the experiment this can be identified with
theX coordinate) is higher than the uncertainties associated
to the other coordinates, making the Shadow filter estimates
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Fig. 2. In this image we show the trajectory of the camera (in green) and
of the feature (in red), simulated to test the capabilities of the Shadow filter.
In blue it is possible to see the accuracy of the estimated position (the small
image represents the projection of the same scene on the XY plane).
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Fig. 3. Consistency test for the Shadow filter. In the plots weshow
the estimation error (in green) for thex, y, z coordinates of the feature
respectively. In red we present the±3σ threshold for the covariance; notice
that the errors are always contained between those bounds, thus this filter
remains consistent.

unfeasible for accurate tracking. This drawback is principally
due to consecutive violations of the observability conditions.
In fact the displacements between two consecutive steps
are so small to cause the partial unobservability of the
homogenous part of the feature and a consequent increase
of the uncertainty associated to the depth component. This
simple analysis gives us information about the quality and
the accuracy of the estimates, but also provides an important
insight: the observability condition can be easily violated in
an online MonoSLAM application.

Although we can not localize accurately the moving
object, the consistency of the filter demonstrates the validity
of the reasoning based on the uncertainty geometry approach
(notice that the errors is always included in the±3σ uncer-
tainty interval) and it proves that, taking into account the
estimate uncertainty, we can robustly classify a feature as
static or dynamic.



(a) (b)

(c) (d)

Fig. 4. Static/Dynamic classifier results. In the first row itis possible to see an example of dynamic (in green), static (in blue) classification. The features
in the Shadow filter that are waiting for a classification are showed in red. In the last row we can see a feature erroneously classified as moving. This kind
of error is expected since the classification is based on a probabilistic test with a threshold of95%.

This statement can be validated by testing the classifier
algorithm on real datasets. In Figure 4 it is possible to
see two examples representing both a correct and a wrong
classification. We have tested the algorithm using many real
datasets and we noticed that, if the feature is correctly
matched, the algorithm always distinguish between moving
and static features. Sometimes it is possible to have a static
feature classified as dynamic (see again Figure 4(c) 4(d)),
but it never happened to confuse a moving feature as static.
Albeit the probabilistic test has an expected failure rate of
the5%, this contingency happened rarely in our experiments
(see again Figure 4(c) 4(d) for an example) and, since it does
not corrupt the SLAM filter, it can be tolerated.

Finally we were interested in verifying that our system
is able to improve the estimates quality when there are
dynamic features in the environment. For this purpose we
set up a simulated 3D environment characterized by features
both static and dynamic. Data association was performed
manually to avoid possible errors due to mismatches and
to evaluate the quality of the pose and of the estimated map
against a ground truth. In Figure 5 it is possible to see the
improvements carried by the use of the Shadow Filter. In the
first plot (Figure 5(a)) it is possible to see the map resulting
from the use of the classic MonoSLAM algorithm using only
the static features. In Figure 5(b) it is shown the results using
always the classic MonoSLAM, but this time introducing
the dynamic elements, and in the last image (Figure 5(c))

the resulting map obtained introducing the Shadow filter. It
is also possible to see how a traditional SLAM filter, that
does not identify and exclude from estimation the dynamic
features, introduces a set of errors that lead to failure. If
we correctly identify the dynamic features, we can avoid
to initialize them inside the SLAM filter, maintaining the
same accuracy of a SLAM system operating in a purely-
static environment. In Figure 6 it is possible to see the
results obtained using the real dataset. Despite the presence
of dynamic features that could affect the SLAM algorithm,
the estimated map remains consistent and, when the camera
perceives again the checkerboard, the features are re-matched
correctly, closing the loop.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a novel solution for the
problem of Simultaneous Localization, Mapping and Moving
Object Tracking, when using a single camera as a sensor.
To avoid errors in the SLAM estimates, we demonstrated
that it is possible to identify online the static and dynamic
features, using an approach based on the Uncertain Geometry
proposed by Heuel [15], that allows to detect the moving
features with a simple statistical test. The experimental
results confirmed the capabilities of this approach that can
be used online in real application and, potentially, with
any MonoSLAM algorithm with performances that allow
online execution, since it does not require any particular
modification of the original SLAM algorithm.



−2 −1 0 1 2 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 35

9072 89

37

92

74

97
46

39

88

49

9498

28

8786 8577 82 99

(a)

−4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

9

10

35

90

37

89

72

49

39

97
92

46
74

28

88
9498

87

85
86

110

112

106

116

82
99

114

77

(b)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5 35

9072 89

37

92

74

97
46

39

88

49

9498

28

8786 8577 82 99

(c)

Fig. 5. In this image we show the estimated map when we have an
environment containing moving feature, using the MonoSLAMproposed
in [11] (b) and using the MonoSLAMBOT approach (c). This result can
be compared with the map obtained using the MonoSLAM and “disabling”
the dynamic features (a).

One limitation of this work is due to the difficulty of
tracking robustly the moving elements between frames at
different time (e.g., the interest points detected on a walking
person, as in Figure 6, could change considerably during the
acquisition). For this reason it is not always possible to reach
the convergence of the Shadow Filter and, as a consequence,
to obtain an accurate estimate of the moving objects in the
scene. In the future we want to cope with this limitation
introducing an analysis of the structure of the scene, e.g.,
clustering points with similar dynamics [16] or adopting a
Tracking-by-Detection approach [17], to introduce enough
constrains to reduce the uncertainty associated with each
point. Moreover we plan to investigate a possible extension
based on the integration with an IMU to remove the con-
straints over the first frame, the need to perceive enough
static features in each image frame, and to allow a direct
estimate of the real scale.
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Abstract—In this paper we present a 6DOF metric
SLAM system for outdoor enviroments using a stereo
camera, mounted next to the rear view mirror, as the
only sensor. By means of SLAM the vehicle motion
trajectory and a sparse map of natural landmarks
are both estimated at the same time. The system
combines both bearing and depth information using
two different types of feature parametrization: inverse
depth and 3D. Through this approach near and far
features can be mapped, providing orientation and
depth information respectively. Natural landmarks
are extracted from the image and are stored as 3D or
inverse depth points, depending on a depth thresh-
old. At the moment each landmark is initialized, the
normal of the patch surface is computed using the
information of the stereo pair. In order to improve
long-term tracking a 2D warping is done considering
the normal vector information of each patch. This
Visual SLAM system is focused on the localization of
a vehicle in outdoor urban environments and can be
fused with other cheap sensors such as GPS, so as to
produce accurate estimations of vehicle’s localization
in a road. Some experimental results under outdoor
environments and conclusions are presented.

I. Introduction

Real-time Simultaneous Localization and Mapping has
an important key role in robotics. In recent times, SLAM
has captured the attention of computer vision researchers
and the interest of using cameras as sensors has grown
considerably due to mainly three reasons. Cameras are
cheaper than commonly used scan-lasers, they provide
rich visual information about scene elements and are easy
to adapt for wearable systems. According to that, the
range of SLAM based applications has spread to non
typical robotic environments such as augmented reality
[1], non-invasive surgery [2] and vehicle localization [3].

In this work a 6DOF Stereo SLAM system is proposed
in order to develop a robust localization system, using
only a cheap stereo camera mounted next to the rear view
mirror, able to complement a standard GPS sensor for
autonomous vehicle navigation where GPS signal does
not exist or it is not reliable (tunnels, urban areas...). At
the same time, a sparse map of high quality features is
computed. This optimized map contributes to a better
localization estimate and prevents the system from drift-
ing in situations where the vehicle visits some areas that
were previously visited, i.e. loop closing situations. The
main advantages of using a stereo system instead of a
monocular one were described in [4].

The traditional approach in in the literature for solving
the SLAM problem, is using an extended Kalman Filter
(EKF) with the vehicle pose and static landmarks as
the evolving filter state. This EKF approach has some
drawbacks as it is explained in [5]. The main drawback
of the EKF implementation is that the computational
requirement for the filter update increases quadratically
in large-scale maps as a function of the landmarks intro-
duced into the filter O(n2). A typical solution to cope
with this problem is submapping, where the global map
is obtained fusing the information from local submaps
[3], [6].

Our system follows a Davison’s SLAM approach [7].
That is, a few high quality features are tracked and
used to compute the position of the camera creating a
sparse map of high quality textured landmarks using an
Extended Kalman Filter (EKF). Paz et al. proposed in
[8] a 6DOF Stereo EKF-SLAM system with stereo in
hand for large indoor and outdoor environments. The
inverse depth parametrization proposed by Civera et
al. [9] for the MonoSLAM approach is adapted to the
StereoSLAM version so as to provide distance and orien-
tation information. Point features are extracted from the
images and are classified as 3D features if the disparity
is enough, or stored as inverse depth features otherwise.
Their Visual SLAM algorithm generates conditionally in-
dependent local maps and finally, the full map is obtained
using the Conditionally Independent Divide and Conquer
algorithm, which allows constant time operation most
of the time [6]. Although results are good considering
large maps in indoor/outdoor environments, the range of
camera movements is limited, since no patch adaptation
is done and only 2D image templates correlations are
carried out in the matching process. By means of an
empirical analysis, they suggest choosing a threshold of
depth 5 m, for switching between inverse depth and 3D
features. Besides, our sequences are more suitable to
show the benefits of an inverse depth parametrization
for far features.

The accuracy of the stereo sensor is limited up to
a certain depth, depending mainly on the baseline of
the sensor. In typical outdoor road vehicles sequences,
is common to have very far landmarks. If we try to
measure the 3D position of a far feature, which is located
beyond the limits of our sensor, the uncertainty in the
measurement will be very high. On the contrary we can



reduce the uncertainty of far features if we just measure
the orientation of the feature.

The two key contributions of our work, are the use of
inverse depth and 3D features for providing both depth
and angular information, and a 2D homography warping
method considering information from both cameras of
the stereo pair. This paper is organized as follows: the
general structure of the system is explained in section
II. In section III we deal with the problem of how to
switch between inverse depth or 3D parametrization.
In The 2D homography warping for patch adaptation
is described in section IV. Finally, some experimental
results are presented in section V. Main conclusions and
future works are discussed in section VI.

II. System Structure

Our system is based on a stereo camera mounted on
a mobile vehicle close to the rear view mirror. Fig. 1
depicts the common type of sequences in outdoor road
vehicle navigation. As it can be observed, some features
are very far with respect to the camera, whereas we can
have some features close to the camera. Both far and
close features are displayed in orange (weak) and red
(dark) respectively in Fig. 1.

Fig. 1. Typical outdoor road navigation sequences

The global state vector X incorporates the information
for the left camera and for the features. The camera state
is composed of its 3D position using cartesian coordi-
nates, the camera orientation in terms of a quaternion,
and the linear and angular speed, which are necessary
for the impulse motion model used for modelling the
camera movement. The motion model that is assumed is
a constant velocity and constant angular velocity model
explained in [7].

Xv [13,1] = (Xcam, qcam, vcam, ωcam)
t

(1)

Two types of feature parametrization are used pro-
viding orientation and depth information respectively.
Depending on the depth of the feature as described in
section III, features are initialized as inverse depth or
3D and are incorporated to the EKF SLAM algorithm.

X = (Xv, Y1 3D · · ·Yn 3D, Y1 INV · · ·Ym INV )
t

(2)

Interesting points are extracted from the image using
the Harris corner detector [10] and a subsequent subpixel
refinement. When the camera moves, these features are
tracked over the time to update the filter. In order
to track a feature, image position is predicted in both
cameras. Then, the feature appearance is transformed
using a 2D homography according to section IV, and
a correlation search is performed inside a search area
of high probability which is defined by the uncertain-
ties of the feature and the camera. ZMCC (Zero Mean
Cross Correlation) is used since its robustness against
lighting changes. An intelligent feature management is
implemented, so low-quality features are deleted from the
state vector.

Due to the use of a wide-angle lens, it is necessary
to use a distortion model correcting distorted images.
Unlike other SLAM systems [4], [7] radial and tangential
distortion are corrected using LUT (Look up tables), so
images are corrected previous to processing. Two main
advantages are obtained from using LUTs: firstly, this
method is faster than working with the distorted images
and then correcting the distorted projection coordinates,
and secondly, the matching process is less critical if
undistorted images are used.

A. 3D Features

For 3D features, the feature’s state vector encodes the
information about the 3D position of the feature in the
global map reference system.

Y3D [3,1] = (x, y, z)
t

(3)

B. Inverse depth Features

For inverse depth features, the feature’s state vector
encodes the information of the 3D optical center pose
from which the feature was first seen Xori, the orientation
of the ray passing through the image point (angles of
azimuth θ and elevation φ) and the inverse of its depth,
ρ. Fig. 2 depicts the inverse depth point coding:

Fig. 2. Inverse depth point coding

YINV [6,1] = (Xori, θ, φ, ρ)
t

(4)

In Fig. 2, m(θ, φ) is the unitary ray directional vector
from the camera to the feature. This unitary vector is
defined according to eq. 5:



m(θ, φ) [3,1] = (sinφ cos θ,− cos φ, sin φ sin θ)
t

(5)

The angles of azimuth and elevation are defined as
follows:

θ = tan

−1

(

z

x

)

(6)

φ = tan

−1

(√
x

2 + z

2

y

)

(7)

III. Switching between Inverse Depth and 3D
Features

Harris corners are extracted from the images and
are classified as 3D features or stored as inverse depth
features, depending on a depth threshold. This depth
threshold is empirically set to 30 m. The value of
this threshold is chosen as a compromise between non-
linearity measurements, features uncertainty and the
overhead introduced by the inverse depth parametriza-
tion. After some experimental tests we found the value
of 30 m as a good threshold for our application.

Once the features are predicted in the EKF predic-
tion step, it is necessary to determine if the original
parametrization of the features has to be changed (i.e. if
an inverse depth feature is now below the depth threshold
and should adapt a 3D parametrization or viceversa).
Besides, a constraint is imposed: the feature has to
remain at least m frames (typically 15 frames) in its
new parametrization state before the switching. This is
done in order to avoid unnecessary switchings in case that
the depth estimate is above and below the threshold in
consecutive frames.

When an inverse depth feature is switched to a 3D
parametrization, it is necessary to adapt the feature’s
state and the covariances implied in the filtering process
by means of equations 8 for the feature’s state and 8,
10 for the covariances. In the same way we can switch
between 3D features to inverse depth, although this is
not a common case in autonomous navigation.

Y3D [3,1] = XORI +
1

ρ

· m(θ, φ) (8)

PYY3D [3,3] =

(

∂Y3D

∂YINV

)

· PY YINV
·

(

∂Y3D

∂YINV

)t

(9)

PXY3D [13,3] = PXYINV
·

(

∂YINV

∂Y3D

)t

(10)

IV. 2D Homography Warping

When a feature is going to be measured, the estimation
of the left camera position and orientation, which are
obtained both from the SLAM state vector, and the
normal surface patch vector are used for transforming
the initial image template appearance (due to changes
in viewpoint) by warping the initial template using a

2D homography. Our approach is related to the previous
works of [11], [12].

Considering two camera centered coordinate systems,
the transformation between two generic coordinate sys-
tems X1 and X2 is defined by:

X2 = R · X1 + T (11)

where R and T are the rotation matrix and the
traslation vector encoding the relative position of the two
coordinate systems. If X1 is a point on the plane defined
by eq. 12:

π : a · x1 + b · y1 + c · z1 + 1 = 0 (12)

This is a plane which does not pass through the origin,
and n = (a, b, c)t is the plane normal. According to this,
the following relationship can be found:

n

t · X1 = −1 (13)

Using the previous equation, eq. 11 can be expressed
as follows:

X2 = R · X1 − T · nt · X1 =
(

R − T · nt
)

· X1 (14)

And therefore, image positions in the two camera
frames are related by the 2D homography:

U2 = C2 ·
(

R − T · nt
)

· C−1

1
· U1 (15)

Fig. 3 depicts the stereo geometry, and also the prob-
lems of obtaining the plane normal vector and the 2D
homography for warping the initial image template using
information from both cameras.

Fig. 3. Stereo geometry and locally planar surfaces

Eq. 16 denotes the relationship between the left camera
and the right camera coordinate systems:

UR = CR ·
(

R

RL − T

RL · nt
)

· C−1

L · UL (16)

The previous equation depends on the rotation matrix
R

RL and the translation vector T

RL between both cam-
eras. The values of these matrixes are known accurately,
since they are estimated in a previous stereo calibration
process. Supposing an affine transformation between left



and right image patches, the affine transformation H

RL
A

can be expressed as:

HRL

A = CR ·
(

R

RL − T

RL · nt
)

· C−1

L (17)

This affine transformation can be computed easily by
means of 3 correspondences of non collinear points and
with the assumption of locally planar patches. As it can
be observed, eq. 17 depends on the plane normal vector
n. From eq. 17 the product T

RL · n

t can be isolated.
Denoting this product as X, it can be obtained as follows:

X = T

RL · nt = R

RL − C

−1

R · HRL
A · CL (18)

All the parameters of eq. 18 are known, since the affine
transformation H

RL
A has been previously computed, and

the rest of implied matrixes are known from the stereo
calibration process. According to this, a system of 9
equations and 3 unknowns, which are the components
of the plane normal vector, can be found:











nx = X11

Tx
nx = X21

Ty
nx = X31

Tz

ny = X12

Tx
ny = X22

Ty
ny = X32

Tz

nz = X13

Tx
nz = X23

Ty
nz = X33

Tz

(19)

At the moment of a feature initialization, the plane
normal vector is computed in the way it has been
explained. Once this normal vector is estimated, the
2D homography between two different viewpoints can
be determined using the estimation of the current left
camera position and orientation and the left camera
position and orientation: from the feature initialization
viewpoint:

UCAM = CL ·
(

R

CO − T

CO · nt
)

· C−1

L · UORI (20)

where R

CO and T

CO are the rotation and translation
matrixes between the current left camera position and
the reference position when the feature was initialized.

V. Experiments in Outdoor Environments

In order to test the system performance, lots of out-
door sequences in urban environment under real traffic
condictions have been tested. In this work, we present
only the results of two of them. The cameras used were
the Unibrain Fire-i IEEE1394 modules with a baseline
of 30 cm. Image resolution was 320× 240 pixels and the
images were B&W sequences. The acquisition frame rate
was 30 frames per second. The sequences were processed
on a laptop with an Intel Core 2 Duo processor at
2.4GHz. Camera calibration is done in a previous setup
process. The Visual SLAM algorithm is implemented in
C/C++ and works in real-time as long as the number of
features doesn’t exceed 150 approximately.

Figures 5(a) and 5(b) illustrate the aerial views of the
trajectory done by the vehicle in each of the sequences.
For each of the sequences two different simulations were

done: without inverse depth parametrization (only 3D
parametrization) and considering both parametrizations
(inverse depth and 3D) with a depth threshold of 30 m.

The final map and trajectory for the first and second
sequences are displayed in Fig. 6 and Fig. 7 respectively,
considering the different cases. Table I shows the results
of the comparison between the different experiments. The
meaning of the parameters of this table are:

• % Inverse Features: Is the percentage of the total
number of features in the map that were initialized
with an inverse depth parametrization.

• Estimated Length (m): Is the estimate of the total
distance covered by the vehicle in the sequence.

• Mean PY Y Trace: Is the mean trace of the covariance
matrix PY Y for each of the features that compose
the final map. This parameter is indicative of the
uncertainty of the features, i.e. the quality of the
map.

In the first experiment, the car starts turning slightly
right and then left until the car reaches an almost straight
path for approximately 100 m. Then, the car turns right
until the end of the street. The estimated length run of
the first sequence is 166.07 m. In the second experiment
the car starts turning left and then approaches a straight
path for a while. After that, the car does a sharp right
turn and moves straight during some meters, yielding an
estimated length run of 216.33 m.

In figures 6(a) and 6(b) the two different trajectories
and maps for the first sequence are displayed in a 2D
view. In the same way, figures 7(a) and 7(b) depict
the two different trajectories and maps for the second
sequence.

The maps are composed of the 3D position of the
features with its respective covariance, which has an
elliptical shape. This covariance is an indicative of the
quality of the map and the uncertainty in the estimate
of the 3D position of the feature in the global map. The
main result that can be obtained from Tab. I or just
observing figures 6(b) and 7(b) is that the uncertainty in
the 3D position of the features is much lower in the cases
where an inverse depth parametrization is used. This is
because as mentioned previously, the uncertainty of a far
feature is much lower if it is parameterized as an inverse
depth feature.

The estimated trajectory reflects well the exact shape
of the real trajectory executed by the vehicle in both
experiments. The trajectory for the first sequence is
quite similar in both of the experiments. The estimated
length is also similar in both experiments, the estimated
length considering inverse depth parametrization is a
little bit lower than the other case. However, in the
second sequence the result considering an inverse depth
parametrization reflects better the shape of the real
trajectory and also the estimated length is closer to the
ground truth. At the end of each experiment it can be
observed that the quality of the trajectory is worst than
at the beginning of the sequence, which is also reflected



in the final estimated length of the trajectory. This is
because at the end of the sequences the number of land-
marks in the EKF filter is so high (more than 300) that
provokes inconsistency in the filter. This inconsistency
in the EKF is due to the errors in the approximation
of the observation model by a linearization, and also
because the representation of the uncertanties and 3D
feature position in a common global frame. Although
this is not the purpose of this work, this problem can
be solved by re-linearizing the filter after some error
has been accumulated creating a new submap with a
local coordinate frame, expressing the uncertainties and
relative 3D positions according to this new local frame.

The main drawback of the inverse depth parametriza-
tion is the computational overload of representing a
feature by 6 parameters instead of 3. This drawback
can be important if real-time constraints are needed
for the computation of each submap. Fig. 4 depicts the
state vector size during some frames of the sequence 1,
considering the two experiments. As it can be observed,
the difference in size due to the overload of using an
inverse depth parametrization is very significant as long
as new features are added to the map.

Fig. 4. Comparison of state vector size

VI. Conclusions and Future Works

In this paper we have presented a Visual SLAM ap-
proach that can estimate accurately the vehicle motion
trajectory in urban roads considering small environ-
ments. In the same way a sparse map of high quality
features is obtained. The system combines both bearing
and depth information by means of two different types
of feature parametrization: inverse depth and 3D. Inverse
depth features can be switched efficiently to 3D features
when its depth is below a depth threshold, reducing the
uncertainty of the 3D position of far features in the global
map, yielding a better localization.

We are very interested in studying the use of a dynamic
threshold as a function of the kind of environment,
instead of the static one that is currently used, so as
to mantain the same map quality keeping real time
constraints.

Considering 2D image templates and the normal vector
of the plane that contains the point in the space improves
the tracking considerably and it is better than using just
2D image templates. However, since the normal vector
is only estimated once per feature (at the moment each
feature is initialized), an update of the patch normals
estimation would likely be of benefit.

In further works, a high level SLAM will be developed
for mapping indoor and outdoor large environments
fusing the infromation from our metric submaps. In
addition, we are interested in fusing the stereo system
with a commercial GPS for outdoor experiments in order
to make the localization and mapping more robust, and
compare our results with an accurate ground truth. In
the same way, we will compare our Visual SLAM system
with another techniques such as stereo Visual Odometry.
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and J. Nuevo, “Real-time wide-angle stereo visual slam on

large environments using sift features correction,” IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2007.

[4] D. Schleicher, L. M. Bergasa, R. Barea, E. López, and
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(a) Sequence 1 (b) Sequence 2

Fig. 5. Trajectories in the city for experiments 1 and 2

(a) Without Inverse Depth Par. (b) With Inverse Depth P. Z = 30 m

Fig. 6. Inverse Depth and 3D comparison: Sequence 1

(a) Without Inverse Depth Par. (b) With Inverse Depth P. Z = 30 m

Fig. 7. Inverse Depth and 3D comparison: Sequence 2

Seq. Case % Inverse Features Estimated Length (m) Mean PY Y Trace
1 Without Inverse Par. 0.00 133.97 2.4414

1 With Inverse Par., Zt = 30 m 12.25 129.08 0.7177

2 Without Inverse Par. 0.00 130.61 2.9729

2 With Inverse Par., Zt = 30 m 14.85 177.87 0.2188

TABLE I

Inverse Depth and 3D comparison: Estimated Length Run and Features Uncertainty
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Abstract— In this paper we describe a state lattice based
motion planning approach, which we have successfully applied
to large, cluttered, but quasi-static environments. Our approach
produces smooth and complex maneuvers through the use of
a multi-resolution state lattice, where the resolution is adapted
based on the environment, and distance from the robot.

We also describe a framework for detecting dynamic obsta-
cles such as pedestrians and cars using a multisensor laser-
camera detection and tracking method. Image detection is
based on several extensions to the Implicit Shape Model
technique; laser detection is instead achieved through the use of
a Conditional Random Fields reasoning. Objects are tracked
through the use of multiple motion model Kalman filters in
order to cope with several different motion dynamics.

Urban environments, are complex, cluttered, and dynamic
scenes, however. We therefore propose to extend our dynamic
obstacle detection and tracking method with a short-term
motion prediction functionality based on the same models used
for tracking, effectively generating time based cost or risk
maps. We further propose to implement these cost maps into
our high-dimensional (5D to 6D) lattice planner to generate
time-optimal trajectories in dynamic, cluttered environments.
A D* implementation is envisioned to speed up re-planning
dramatically.

I. INTRODUCTION

In urban environments, autonomous cars are required to
navigate through both structured (streets) and unstructured
(parking lots, off-road tracks) dynamic environments. Due
to various vehicle and environmental constraints, they often
need to plan complex maneuvers to perform this navigation.
In order to provide responsive vehicle behavior in environ-
ments cluttered with dynamic obstacles, planning (and re-
planning) needs to be performed in real-time (i.e. at 10Hz).

Until recently, these real-time objectives rendered the com-
putation of optimal and kinematically feasible trajectories
(i.e. to the next waypoint, several 100[m] away) infeasi-
ble. Instead, deterministic graph search algorithms such as
Dijkstra [1] or A∗ [2] have often been applied to lower
dimensional representations of the navigation problem (such
as 2D grids). Paths returned by these grid based algorithms,
although optimal on the grid, are not directly achievable
due to vehicle constraints. Time consuming post-processing
steps, such as path smoothing and the generation of a
velocity profile along the smoothed path are required. Even if
execution time is of no concern, in absence of (road) structure
or in highly cluttered and dynamic environments, path- and

Fig. 1. SmartTer, the autonomous robotic car at the Autonomous Systems
Lab, ETH Zurich.

velocity planning cannot be separated in order to arrive at
truly time-optimal solutions, however.

A representation that addresses these issues comes in the
form of the state lattice, a construct that reformulates the
nonholonomic motion planning problem into graph search.
Via the use of lattice segments (motion primitives), the enor-
mous search space is reduced dramatically in an intelligent
way so as to comply with vehicle kinematic constraints and
retain all feasible vehicle motions (down to a discretization
limit) [3].

Lattices have been successfully applied in various contexts
of path planning, such as low-velocity rough-terrain naviga-
tion [3], and high-velocity navigation in urban environments
[4], [5] and [6]. Recently, Kushleyev et al. [7] introduced
the concept of the time-bounded lattice, which adds vehicle
velocity and time as separate search dimensions to the multi-
resolution lattice state space, thereby merging short-term
planning in time with long-term planning without time.

When incorporating time-based predictions into planning,
solutions generated can be vastly superior to non time-
parametrized paths, but also unsafe (a process running in
parallel could be implemented to ensure safety, if desired).
The fidelity of the predictions therefore plays a key role in
solution quality.



Fig. 2. A typical urban environment detection and tracking example: cars and pedestrian are correctly detected. Tracks are shown in the gray plot.

Urban environments feature many different types of dy-
namic obstacles, most importantly pedestrians and cars
(which exhibit very dissimilar dynamics). Pedestrians are
particularly difficult to detect because of their high vari-
ability in appearance due to clothing, illumination and self
occlusions. Cars are wide objects that dramatically change
their visual characteristics when the viewpoint changes. It is
thus advantageous to detect (label) and track these objects, in
order to generate a more informed prediction of their future
movement.

In the detection part we employ a multisensor laser-
camera detection and tracking method. Image detection is
based on several extensions to the Implicit Shape Model
technique [8]; laser detection is instead achieved through
the use of a Conditional Random Fields reasoning. Objects
are then tracked through the use of multiple motion model
Kalman filters in order to cope with several different motion
dynamics. These motion models could then further be used
to predict the near-future behavior of dynamic objects by
effectively generating time based cost or risk maps. We
propose to implement such time based cost maps into our
high-dimensional (5D to 6D) lattice planner and generate
time-optimal trajectories in dynamic, cluttered environments.

Several approaches can be found in the literature to iden-
tify a person in 2D laser data [9], [10], [11], [12] and [13]. In
the area of image-based people detection, there mainly exist
two kinds of approaches, one uses the analysis of a detection
window or templates [14], [15], the other performs a parts-
based detection [16], [17], [18]. Existing people detection
methods based on camera and laser rangefinder data either
use hard constrained approaches or hand tuned thresholding
[19], [20]. The only work present in literature that combines
images and laser by using Conditional Random Fields is the
work of Douillard [21] that uses image features in order to
enhance object detection but it does not explicitly handle
occlusions and separate image detection hypotheses.

In Section II, we describe our multi-sensor detection and
tracking method. Section III introduces our multi-resolution
state lattice. We also propose further steps on how to combine
these two frameworks in order to arrive at real-time planning
capability in cluttered and dynamic city environments. Sec-
tion IV concludes this paper and proposes further work.

II. DETECTION OF SENSITIVE URBAN OBJECTS:
PEDESTRIANS AND CARS

A. Overview of the method
Our system is composed of three main components: an

appearance based detector that uses the information from
camera images, a 2D-laser based detector providing struc-
tural information, and a tracking module that uses the com-
bined information from both sensor modalities and provides
an estimate of the motion vector for each tracked object. The
laser based detection applies a Conditional Random Field
(CRF) on a boosted set of geometrical and statistical features
of 2D scan points. The image based detection system extends
a multiclass version of the Implicit Shape Model (ISM) [22]
and uses Shape Context descriptors [23] computed at Harris-
Laplace and Hessian interest points. It also uses the laser
based detection result projected into the image to constrain
the position and scale of the detected objects. Then, the
tracking module applies an Extended Kalman Filter (EKF) to
the combined detection results where two different motion
models are implemented to account for a high variety of
possible object motions. In the following, we describe the
particular components.

B. Appearance Based Detection
Our image-based people detector is mostly inspired by

the work of Leibe et al. [18] on scale-invariant Implicit
Shape Models (ISM). Shortly, an ISM consists in a set of
local region descriptors, called the codebook, and a set of
displacements and scale factors, usually named votes, for
each descriptor. The idea of the votes is that each descriptor
can be found at different positions inside an object and at
different scales, and thus a vote points from the position of
the descriptor to the center of the object as it was found
in the training data set. To obtain an ISM from labeled
training data, all descriptors are first clustered, usually using
agglomerative clustering, and then the votes are computed by
adding the scale and the displacement of the objects’ center
to the descriptors in the codebook. For the detection, new
descriptors are computed on a given test image and matched
against the descriptors in the codebook. The votes that are
cast by each matched descriptor are collected in a 3D voting
space, and a maximum density estimator is used to find the
most likely position and scale of an object.



1) ISM Extensions: We introduce the following novelties
in the image detection part. Extensions in the Learning
Phase:
• Learning of Subparts: The aim of this procedure is to

enrich the information that is obtained from the voters
by distinguishing between different object subparts from
which the vote was cast.

• Learning a Template Mask: The idea here is to
build a probabilistic template map from the individual
segmentation masks in the training set in order to reject
early object hypotheses.

• Learning Superfeatures: We here propose a method to
drive the detection while still maintaining information
richness. The idea is to find good features in the image
space (namely 〈x, y, scale〉) and descriptor space (n-d
space) that could vote for the object center with more
weight to ease the hypothesis selection.

Extensions in the Testing Phase:
• Using Superfeatures: Superfeatures and features vote

for object centers in the same voting space: the votes
generated by the first are bigger than the latter.

• Using subparts and prob. template in the cost
function: Each hypothesis is now defined by an angular
histogram in which the bins are defined by the subparts.
Moreover, the probabilistic template is used to prune
feature matches that lie far outside the probabilistic
shape (scaled according to the hypothesis). We employ
a maximum likelihood estimation method in order to
select the winning hypotheses.

• Discriminate between object classes: We employ a
common measure to do hypothesis selection by using
the probabilistic template area ratio: each assigned
feature for a certain hypothesis occupies a scaled square
area in the probabilistic template.

C. Structure Based Detection

We modeled the object detection problem in laser data as a
Conditional Random Field (CRFs) probability inference [24].
CRFs represent the conditional probability p(y | z) using an
undirected cyclic graph, in which each node is associated
with a hidden random variable yi and an observation zi. In
our case, the yi is a discrete label that ranges over 2 different
classes (pedestrian and car) and the observations zi are 2D
points in the laser scan.

For the likelihood minimization in the training phase we
use the L-BFGS gradient descent method [25]. Once the
weights are obtained, they are used in the inference phase to
find the labels y that maximize:

p(y | z) =
1

Z(z)

N∏
i=1

ϕ(zi, yi)
∏

(i,j)∈E

ψ(zi, zj , yi, yj), (1)

Here, we do not need to compute the partition function Z, as
it is not dependent on y. We use max-product loopy belief
propagation to find the distributions of each label yi. The
final labels are then obtained as those that are most likely
for each node.

1) Node, Edge Features and Connectivity: As node fea-
tures fn we use a set of statistical and geometrical features
such as height, width, circularity, standard deviation, kurto-
sis, etc. (for a full list see [26]). We compute these features in
a local neighborhood around each point, which we determine
by jump distance clustering. We can then use these features
as an input to the CRF classification algorithm. However
as stated in [27], and also from our own observation, the
CRF is not able to handle non-linear relations between the
observations and the labels, which is a consequence of the
log-linear model described above. To overcome this problem,
we apply AdaBoost [28] to the node features and use the
outcome of AdaBoost as features for the CRF. Nodes are
connected using a Delaunay triangulation.

2) Tracking objects for sensor fusion: In order to fuse the
information coming from both sensors (camera and laser)
and to simultaneously keep track of the object we use an
EKF based tracking system, first introduced in [29]. Here,
each object is tracked with several motion models (in this
case: Brownian motion and linear velocity) in order to cope
with pedestrian and car movements. We perform tracking in
the laser data, therefore camera detections are projected and
assigned to segments in the laser data. In order to reliably
track wide objects, like cars, tracking single segments are
not enough. Single segments tend to be spatially very un-
stable due to the noise present in outdoor environments and
the scatter resulting from the distance with respect to the
observer. We therefore group segments with the same class
label using Delaunay triangulation and a trim distance rule.
The resulting cluster will have a more stable position and a
probability of being a class that is the average of its members.
Each Kalman filter state (〈x, y, (vx, vy)〉) is augmented with
N states where N is the number of classes present in the
detector. Indeed, the observation vector z fed to the tracking
system consists of the position of the cluster and the class
label probability. The matrix H that models the observations
to mapping in the Kalman Filter x = Hz is defined by
H = [Hlsr;Hcam] in order to manage multiple inputs from
different sensors. Each track, with its relative prediction, can
be used for the planning navigation algorithm.

Quantitative fused detection and tracking results are shown
in Fig 4 in which a Recall/false positive per frame is depicted.
The test dataset is composed in total of 511 frames. The car
detection obtains superior results with respect to pedestrian
detection specially due to the non flexible shape which
guarantees more distinct descriptors in the codebook. Both
graphs clearly show the advantage of using a combined
laser-camera detection method with respect to single modal
techniques.

III. SEARCH IN DYNAMIC ENVIRONMENTS
A. Overview

Deterministic motion planning in dynamic environments
remains extremely challenging due to the increased dimen-
sionality in state space. Lattices allow for an intelligent
reduction in search space, thereby increasing solution speed
dramatially, without noticeably affecting solution quality.



Fig. 3. Example of a 16-directional multi-resolution lattice (one of the 16 initial headings shown), which was constructed for a diff-drive household robot.
We plan on generating a similar lattice for our autonomous car, albeit with velocities of up to 20[m/s], and the steering angle considered as an additional
dimension. Top Left: black segments denote the low-resolution part. Black and blue segments together denote the high-resolution part. Some of the short
straight segments are occluded. Bottom Left: velocity profiles as a function of path length. Right: full 4D (x, y, θ, v) view for one initial heading starting
at a velocity of 0.5[m/s].

They are thus well suited for deterministic high-dimensional
planning tasks.

Here, we describe a generic lattice generation process,
and detail our extension to a multi-resolution lattice, which
allows for further reduction in search space. We then describe
the search over the obtained lattice and how dynamic short-
term predictions of dynamic obstacles’ future movement
can be implemented into it. Finally, we sketch an approach
for speeding up re-planning times, once an initial plan is
available.

B. Lattice Generation

The base lattice is generated by forward simulating a
suitable vehicle model using a (uniform) sampling of desired
velocity and steering angle as model inputs to generate
a large set of motion primitives, followed by a careful
selection of a small subset of these primitives: the selection is
performed in such a way, that through combination of motion
primitives belonging to the subset, any and all original mo-
tions can be reconstructed down to a discretization limit (see
[3] for an automated approach). Compliance with vehicle
kinematic and dynamic constraints is inherently guaranteed,
given the above design iteration and a high-fidelity dynamic
model of the vehicle.

The state lattice is then constructed by starting with a
node in a desired configuration space (in the case of a car:
(x, y, heading, v, steeringangle)) and then creating edges
emanating from this node. From every node these edges
transition to, the process is repeated, resulting in a connected
graph consisting of all the nodes and edges generated.
Typically, a discretization is applied to the nodes so that

they all reside on some grid in the configuration space. By
choosing a variable discretization, search speed is further
increased.

Fig. 3 shows our currently implemented indoor
differential-drive lattice, operating at 16 directions on
a 0.1[m] grid and 4 discrete velocities up to 1[m/s]. In
the future, we plan on implementing a similar lattice
for Ackermann-like vehicles and increase the velocity
discretization substantially.

1) Multi-Resolution Lattice Extension [Partially Imple-
mented]: An important factor when designing a state lattice
is the resolution of the discretization used to represent the
nodes in the lattice in terms of the position, heading, and
velocity discretization. From a computational point of view,
the underlying position discretization should be chosen as
coarse as possible. From a completeness point of view, it
needs to be fine enough to generate feasible plans in narrow
areas. 0.25[m] position discretization allows for successful
parking maneuvers at low velocities [4]. State lattices have
been successfully employed with 8 to 64 (uniform) direc-
tions. We found that for smooth and natural looking paths,
generally 32 directions are required.

Expanding 32-directional lattice segments over a 0.25[m]
grid is computationally intensive, however, and in many cases
not necessary to achieve a smooth and feasible trajectory. A
recently proposed solution to this problem is to incorporate a
multi-resolution lattice, operating at two or more resolutions
based on task [4], and environmental characteristics [30].
The lower resolution is usually chosen as a subset of the
higher resolution lattice so that suboptimality guarantees can
be given with respect to the low-resolution lattice. In our



Fig. 4. Recall/false positive per frame graph for cars and pedestrian in a
test dataset.

forthcoming lattice we plan on implementing the following
ideas:

1) Variable heading, position, and velocity discretization,
based on distance from the robot position. In combina-
tion with frequent replanning, the robot is guaranteed
to always remain on a high-fidelity trajectory, while
the trajectory assumes a lower quality further away,
although it remains feasible.

2) Variable position discretization based on vehicle ve-
locity. At higher velocities, safety margins around the
vehicle should be increased, hence a coarser discretiza-
tion is justified.

3) Addition of time into the state space, in conjunction
with short-term prediction of dynamic obstacles’ mo-
tion. By incorporating the ideas recently presented
by Kushleyev et al. [7], the time dimension can be
dropped at a variable time horizon. Unlike in their
approach, we do not believe in dropping all but the
position dimensions at that instant, as the trajectory
would loose its feasibility property.

These considerations are expected to have the effect of
generally producing trajectories close to the optimal one
(had only the high-resolution lattice been expanded) and
at the same time generating solutions much faster than by
expanding the high-resolution lattice alone [4].

C. Search over the Lattice
A state lattice can be considered a specific method for

constructing a directed graph. Thus, regular graph search
algorithms are applicable for searches along a state lattice.
The most popular and efficient deterministic graph search
algorithms belong to the family of ‘best-first’ searches. They
expand promising states first, making use of a heuristic
function to guide them, the original one being A∗ [2].
Subsequently, more efficient algorithms (particularly for re-
planning) have been devised (see i.e. [31] for an overview).
We currently use a forward planning Anytime A* extension
[32] over the presented multi-resolution state lattice, although
there are plans on implementing a backward planning algo-
rithm for more efficient replanning (see Section III-C.5).

1) Heuristic generation: The more accurate a heuristic is,
the faster the following high-dimensional search will con-
verge to the optimal solution. To this end, we perform a 2D
Dijkstra search out from the goal location(s) so that the cost
values become the heuristic values for the high-dimensional
search. To ensure the admissibility of this heuristic, we
constrain the costs of actions to be upperbound by their
Euclidean distance. In particular, the obtained heuristic costs
are divided by 1.03 for the 16-neighborhood employed (see
[33] for details).

2) Planning with quasi-static obstacles: Let us define
quasi-static obstacles as obstacles with a low maximal ve-
locity compared to our vehicle’s dynamics. In such cases,
combined with frequent replanning, the obstacles’ current
(inflated) pose can be considered untraversable during both
the heuristic generation and the higher-dimensional planning
step. Quantitative results show, that in such cases, our 4D
(x, y, θ, v) lattice planner is able to generate local, smooth
and feasible trajectories in real-time; our 3D (x, y, θ) planner
is able to generate (global,) smooth, and feasible paths in
real-time (see Fig. 5, fig. 6 and [33] for more details).

3) Representation of dynamic obstacles [Planned]: Rep-
resenting dynamic obstacles during the planning stage re-
mains a challenging problem. For short-term predictions
of dynamic obstacles’ future trajectories, the same motion
models could be used as for tracking (see Section II). In
the case of pedestrians and vehicles, we hope to provide
meaningful predictions several seconds into the future. We
then plan on mapping these predictions into local time-
parametrized cost or risk maps: through a discretization in
time (i.e. 0.1[s]) a set of local maps is populated, where a
given space-time entry is assigned the sum of all detected
dynamic obstacles’ probabilities to occupy this location at
the given time (cost map), multiplied with a severity factor
corresponding to the associated objects’ types (risk map).

Further work in this direction may involve quantifying
prediction fidelity, extending the prediction horizon, and
modelling agent-agent interactions.

4) Planning with dynamic obstacles [Planned]: Planning
with dynamic obstacles by considering their predicted future
motion amounts to applying the same search algorithm as
in the static situation (Anytime A* in our case), albeit in
a higher-dimensional space with time added as a separate



Fig. 5. The ’long run’ encompasses a path of approximately 40[m] through
the Intel Research Pittsburgh lab. The 3D planner expands less than 100
states in 0.04[s] to arrive at a solution. The 4D planner takes 2.28[s] with
5900 expanded states (pictured). The large difference in performance lies
in the 2D heuristic, which does not well predict the influence, which areas
of reduced maximal velocity (i.e. in vicinity of doors and narrow hallways,
colored orange) have on the 4D planner.

Fig. 6. The ’short run’ encompasses a path in the Intel Research Pittsburgh
kitchen area (approx. 10[m]). Both the 3D (less than 100 expansions in
0.01[s]) and the 4D planner (less than 100 expansions in 0.03[s], pictured)
show real-time capability in this scenario.

search dimension. Note that due to the probabilistic nature
of obstacles’ predicted motion, a generated trajectory is not
guaranteed collision free. In many situations it might be
useful to have such guarantees however. In such cases, a
collision avoidance algorithm could be run on the controller
level.

5) Speeding-up replanning [Planned]: Best-first searches,
starting their expansions at the goal location (i.e. D* [31]),
have been shown to be one to two orders of magnitude
faster than forward planning algorithms when replanning in
only slightly updated environments. Perceived changes in

the environment often appear close to the robot (due to
proprioceptive sensors). By planning from a distant goal,
large parts of the previously generated solution thus remain
valid. Despite these advantages, we currently do not use
backward searching algorithms:

1) Due to uncertainty in dynamic obstacles’ predicted
motion, large portions of the local map need to be
updated during every timestep, rendering repairing
algorithms ineffective.

2) When expanding states from the goal, the exact time
of arrival can only be induced once a solution is found.
During a given time of the search, however, it is
unclear which of the local time-parametrized cost/risk
maps needs to be called.

On the other hand, local high-dimensional plans are
typically generated over up to several hundred meters and
dramatic changes in costmaps are only perceivable in close
vicinity of the robot, where time-based planning is per-
formed. Further away, only slight changes are expected due
to newly perceived or updated static obstacles. Addition-
ally, we found a promising solution to the time-association
problem by producing an enormous look-up table, which
encodes all feasible motions up to a certain time horizon. It
grows exponentially with the branching factor of the lattice,
however, currently limiting it to a horizon below 5[s]. Further
tests will show, whether such a look-up table based backward
planning algorithm is able to outperform our current ARA*
implementation.

IV. CONCLUSIONS AND FURTHER WORK

A. Conclusions

In this paper we presented a multi-resolution state lattice
based path planning approach, which produces smooth ma-
neuvers in large and complex environments.

We also presented a framework for detecting dynamic
obstacles such as pedestrians and cars using a multisensor
camera-laser detection method based on several extensions
to the Implicit Shape Model technique, and Conditional Ran-
dom Fields reasoning. Tracking was demonstrated through
the use of multiple motion model Kalman filters.

Both of these methods have been extensively tested and
work well in isolation.

B. Further Work

Further work thus mainly lies in combining and extending
the two presented methods:

1) Tracked pedestrians’ and cars’ future motions need to
be estimated, possibly using the same motion models
used for tracking.

2) A multi-resolution state lattice for Ackermann-like
vehicles needs to be designed and implemented into
our SmartTer platform.

3) A look-up table based backward planning algorithm,
which potentially decreases search time substantially,
may be considered.
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ABSTRACT—Intelligent vehicle technology is a 
promising technology for enhancing urban traffic safety and 
efficiency. Pedestrian detection is an important issue for 
applications of intelligent vehicles in urban environments. 
The kind of most widely used method for pedestrian detection 
is vision based method. One general problem for vision based 
method is how to efficiently locate a proper ROI (region of 
interests) which contains a candidate object. Another 
problem is how to detect and segment features of candidate 
objects out of ROI. In this paper, a camera and laser scanner 
co-detection method is proposed. First, a method of camera 
and laser scanner co-calibration is presented. Second, a 
method of how to obtain proper ROI and the contours of 
candidate objects using the co-calibration results is 
introduced. Finally, a decision rule is induced from a set of 
examples of contour shapes of both pedestrians and 
landmarks (They are most likely to be confused with each 
other because of their similarity in size). Some experimental 
results are given for validating the camera and laser scanner 
co-detection method.  

1 Introduction 
 Intelligent vehicle technology is a promising technology 
for enhancing urban traffic safety and efficiency. Since there 
are lots of pedestrians in urban environments, the problem of 
how to ensure the safety of pedestrians arises urgently in the 
application of intelligent vehicles in urban environments. To 
ensure the safety of pedestrians, the intelligent vehicle system 
should detect pedestrians nearby correctly and in time. 
Therefore, pedestrian detection is an important issue for 
applications of intelligent vehicles in urban environments. 
 The problem of pedestrian detection is a considerable 
challenge. For this problem, the kind of most widely used 
method is vision based method. Broggi et al [1] proposes a 
method mainly based on human shape features, especially the 
vertical edge symmetry and binary model, which are used to 
localize pedestrians’ heads through stereo-vision’s distance 
refinement. Gavrila [2] uses a method of hierarchical 
template matching (a lot of pedestrians’ templates are needed) 
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based on contour figures and intensity features. Curio et al [3] 
presents a hybrid method architecture which integrates 
texture information, entropy, template matching results and 
etc. Shashua et al [4] presents a two-steps detection method in 
which the Adaboost training is used for the single-frame 
detection step and a final decision is made by integrating 
information of multi-frames. Besides vision based method, 
laser scanner based method has also been reported [5]. 
 The process of pedestrian detection can be mainly 
divided into two steps: object localization and object 
classification. In the first step, candidate objects are localized 
(obtain ROI) and segmented out from sensor data space 
(segment contours of candidate objects out of ROI). In the 
second step, a decision on whether a candidate object is a 
pedestrian is made based on the decision rule. The general 
difficulties for vision based method are at the step of object 
localization, while the general difficulties for laser scanner 
based method are at the step of object classification. 
Therefore, a more robust method might be realized if both 
camera and laser scanner are used together and cooperate 
with each other. 

In this paper, a new camera and laser scanner 
co-detection method is proposed. It mainly consists of three 
parts: 1) a method of camera and laser scanner co-calibration; 
2) a method of how to obtain proper ROI and the contours of 
candidate objects using the co-calibration results; 3) a 
decision rule induced from a set of examples of contour 
shapes of both pedestrians and landmarks. The paper is 
organized as follows: a method of camera and laser scanner 
co-calibration is presented in section2; the co-detection 
method is proposed in section3; experimental results on the 
co-calibration method and co-detection method are given in 
section4, followed by a conclusion in section5. 

2 Co-calibration of camera and laser radar 
 The co-calibration is to determine the geometric 
transform relationship between three coordinates, i.e. the 
laser scanner coordinate, the image coordinate and the vehicle 
coordinate. 

2.1 The three coordinate systems 
 The image coordinate is a 2D rectangular coordinate, 
denoted by a pair (u, v), where u, v mean the rows, columns of 
a pixel point.  
 The laser scanner used is a 2D laser scanner. The laser 
scanner coordinate mentioned here is a 3D rectangular 
coordinate, denoted by a triplet (xp, yp, zp), where the origin 
point Op is at the emitting point of the laser scanner; the 
Xp-axis and the Yp-axis are on the scanning plane of the laser 



scanner; the Zp-axis satisfies right-hand rule with the Xp-axis 
and the Yp-axis. 
 The vehicle coordinate is a 3D rectangular coordinate, 
denoted by a triplet (xw, yw, zw), where the Xw-axis and the 
Yw-axis are on the ground surface; the origin point Ow is right 
under the front center of the vehicle; the Xw-axis is in the 
longitudinal direction of the vehicle while the Yw-axis is in the 
lateral direction; the Zw-axis satisfies right-hand rule with the 
Xw-axis and the Yw-axis. 

2.2 The calibration tool and the method of obtaining 
control points 
 Some control points are needed for the co-calibration. 
But the laser beam is invisible, so control points can not be 
determined directly and they can only be determined 
indirectly using certain calibration tool. The calibration tool 
designed is shown in Fig1(a). It is a rectangular frame with 
one diagonal connected. A bracket on the frame bottom 
corner is used to hold the rectangular frame perpendicular to 
the ground surface where it is put. 

  
(a)      (b) 
Fig 1 the calibration tool and control points 

Suppose the scanning plane of the laser scanner 
intersects the rectangular frame at point PL, PM and PR; the 
line D3PMD1 is perpendicular to C1C2; the line PMD2 is 
perpendicular to C1C4; as shown in Fig1(b). Although the 
intersected point PM is invisible, its place can be revealed 
indirectly by geometric knowledge: 
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Where the lengths of C1C2 and C1C4 are measured directly 
and the lengths of PLPM and PMPR are computed from the 
coordinate information of PL, PM, PR in the laser scanner 
coordinate. 
 If a 2D rectangular coordinate (called frame coordinate) 
is established on the rectangular frame of the calibration tool, 
as shown in Fig1(b), then the coordinates of C1, C2, C3, C4 in 
the frame coordinate are respectively (0,0), (C1C2,0), 
(C1C2,C1C4), (0,C1C4). The image coordinates of C1, C2, C3, 
C4 are obtained manually. The geometric transform 
relationship between the frame coordinate and the image 
coordinate can be described by a homography transform 
which can be computed with the coordinate information of C1, 
C2, C3, C4 [6]. 
 The coordinates of D1, PM, D3 in the frame coordinate 
are respectively (C1D1,0), (C1D1,C1D2), (C1D1, C1C4). The 
image coordinates of D1, PM, D3 can be computed through the 
homography transform. 

 The Zw coordinate of D1, PM, D3 in the vehicle 
coordinate are respectively 0, C1D2, and C1C4. Their Xw, Yw 
coordinates in the vehicle coordinate are the same and are 
measured directly. 
 In sum, at each place where the calibration tool is put, 
the coordinates of PM in the laser scanner coordinate, the 
image coordinate and the vehicle coordinate are all known; 
the coordinates of D1, D3 in the image coordinate and the 
vehicle coordinate are known. Therefore, PM can be used as 
control point for calibrating the geometric transform 
relationship between the laser scanner coordinate and the 
vehicle coordinate, while PM, D1, D3 can be used as control 
point for calibrating the geometric transform relationship 
between the vehicle coordinate and the image coordinate. 

2.3 Computing the geometric transform relationship 
between the three coordinate systems 
(a) The geometric transform relationship between the 
laser radar coordinate and the vehicle coordinate 
 Suppose there are N control points and their coordinates 
in the laser scanner coordinate and the vehicle coordinate are 
respectively (xpi, ypi, zpi) and (xwi, ywi, zwi); i=1, 2, … , N. The 
geometric transform between the laser scanner coordinate and 
the vehicle coordinate can be described by a rotation and 
translation transform: 
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Where Rpw is the rotation matrix and Tpw = [Tx, Ty, Tz ]T is the 
translation vector. Any rotation matrix can be expressed in 
terms of 3 independent parameters (Rx, Ry, Rz), i.e. 
Rpw=exp(WR). 
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Because of the nonlinearity of Rpw with respect to Rx, Ry, Rz, it 
is not easy to compute Rx, Ry, Rz and Tx, Ty, Tz directly. An 
iteration method is needed to compute Rx, Ry, Rz along with Tx, 
Ty, Tz. Suppose the result of WR after k rounds of iteration is 
WR(k). The initial value WR(0) can be estimated 
quantitatively. The basic idea is: regard Rpw as a matrix of 9 
independent parameters; then a linear equation group of these 
9 parameters and Tx, Ty, Tz can be derived using Eq.(1) and the 
coordinate information of control points; Rpw is obtained by 
solving this linear equation group; then WR(0) can be 
estimated as (exp-1(Rpw)-exp-1(Rpw)T)/2. Details are not 
introduced here. In fact, since the requirement of the accuracy 
of WR(0) is not high, WR(0) can be just estimated 
qualitatively according to the installation position of the laser 
scanner. 
 The method of refining WR with iterations is introduced 
as follows. Denote Rx(k+1) = Rx(k)+ΔRx(k); Ry(k+1) = 
Ry(k)+ΔRy(k); Rz(k+1) = Rz(k)+ΔRz(k); and WR(k+1) = 
WR(k)+ΔWR(k). Let exp(WR(k)+ΔWR(k)) ≈ 



(I+ΔWR(k))exp(WR(k)), and substitute it into Eq.(1) 
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Where [xpi(k),ypi(k),zpi(k)]T = exp(WR(k)) [xpi,ypi,zpi]T. Then 
from Eq.(2) it can be derived: 
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In Eq.(3), i=1, 2, …, N, so there are a total number of 3N 
equations which form a linear equation group with respect to 
the vector [ΔRx(k), ΔRy(k), ΔRz(k), Tx, Ty, Tz]T that can be 
obtained by solving the linear equation with least-square rule. 
Then Rx(k+1), Rz(k+1), Rz(k+1) can be computed. After 
several rounds of iteration, Rx, Ry, Rz and Tx, Ty, Tz will 
converge; then the rotation matrix Rpw and the translation 
vector Tpw are obtained.  
(b) The geometric transform relationship between the 
vehicle coordinate and the image coordinate 

Suppose there are N control points and their coordinates 
in the vehicle coordinate and the image coordinate are 
respectively (xwi, ywi, zwi) and (ui, vi); i=1, 2, … , N. The 
geometric transform between the vehicle coordinate and the 
image coordinate can be described by a perspective transform 
[6]: 

[ 1] [ 1]T T
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Where Mwf is the perspective matrix which can be computed 
by solving a linear equation group using the coordinate 
information of the control points [6]. It is worth noting that 
all the image coordinates mentioned in the paper are 
distortion removed. So the perspective transform shown in 
Eq.(4) works well. 

3 Co-detection of pedestrians 
 The architecture of the co-detection method consists of 
four parts: 1) cluster and sift; 2) obtaining ROI; 3) obtaining 
contour edges; 4) decision. First, the range data are clustered 
and those clusters which might represent pedestrians (the 
object that such cluster represents is called candidate object) 
are sifted out; then proper ROI is obtained using the range 
data of candidate objects and the co-calibration results; after 
that edge-extraction is carried out in ROI and contour edges 
of candidate objects are obtained with the help of the range 
data of candidate objects and the co-calibration results; finally, 
decision on whether a candidate object is a pedestrian is made 
according to the feature of its contour edges. 

3.1 Cluster and sift 
 The cluster rule is generally described as [7]: if ||(xp,i, 
yp,i)-(xp,i+1

 , yp,i+1)||<Dthd, then the i-th and (i+1)-th scanning 
point of laser scanner are in the same cluster; otherwise they 
are in different clusters. Here, Dthd = K1min{||(xp,i, yp,i)||, 
||(xp,i+1

 , yp,i+1)||}, K1 = ksin(Δα/2); Δα is the angle resolution of 

laser scanner, k is a constant chosen according to experience.  
 Suppose there are totally N clusters C1, C2, …, CN; for 
any cluster Ci: {(xp,n(i-1), yp,n(i-1)), (xp,n(i-1)+1, yp,n(i-1)+1), …, 
(xp,n(i)-1, yp,n(i)-1)}, its diameter d(Ci) is defined as: d(Ci) = 
max{||(xp,j, yp,j)-(xp,l

 , yp,l)||: j,l∈[n(i-1), …, n(i)-1]}; i=1, 2, …, 
N. Since the size of a pedestrian’s body is limited, a range 
[Dmin, Dmax] is set to sift the clusters according to their 
diameter. If and only if the diameter of a cluster is in this 
range, then this cluster is reserved, and the object that such 
cluster represents is called candidate object; otherwise this 
cluster is discarded. Above, set Dmin=0.15m, Dmax=1.2m. 

3.2 Obtaining ROI 
 Given a candidate cluster Ci: {(xp,n(i-1), yp,n(i-1)), (xp,n(i-1)+1, 
yp,n(i-1)+1), …, (xp,n(i)-1, yp,n(i)-1)} (zp≡0), its two end-points are 
CL(xp,n(i-1), yp,n(i-1), zp,n(i-1)) and CR(xp,n(i)-1, yp,n(i)-1, zp,n(i)-1). The 
coordinates of CL and CR can be computed using Eq.(1), 
denote them as CL

w(xw,n(i-1), yw,n(i-1), zw,n(i-1)) and CR
w(xw,n(i)-1, 

yw,n(i)-1, zw,n(i)-1). A pedestrian’s body could be roughly 
represented by a vertical rectangular envelop, as shown in 
Fig2(a); the four corners are denoted as BC1, BC2, TC1 and 
TC2. Suppose CL

w and CR
w are respectively on the left and 

right side of the rectangular envelop; then the coordinates of 
these four corners in the vehicle coordinate are BC1(xw,n(i-1), 
yw,n(i-1), 0), BC2(xw,n(i)-1, yw,n(i)-1, 0), TC1(xw,n(i-1), yw,n(i-1), Hmax) 
and TC2(xw,n(i)-1, yw,n(i)-1, Hmax), where Hmax denotes the height 
limit of human beings (set Hmax = 2.5m). The rectangular 
envelop is expanded a bit (for example 30 cm) on both left 
side and right side. 
 The coordinates of the corresponding points of CL

w, CR
w, 

BC1, BC2, TC1, TC2 in the image coordinate can be computed 
using Eq.(4); their image coordinates are denoted respectively 
as CL

I(uCL, vCL), CR
I(uCR, vCR), BC1

I(uBC1, vBC1), BC2
I(uBC2, 

vBC2), TC1
I(uTC1, vTC1), TC2

I(uTC2, vTC2). The ROI should at 
least contain BC1

I, BC2
I, TC1

I, TC2
I; if a smallest vertical 

rectangle is chosen as the ROI, then its four corners are (umin, 
vmin), (umin, vmax), (umax, vmin), (umax, vmax); where umin = 
min{uBC1, uBC2, uTC1, uTC2}, umax = max{uBC1, uBC2, uTC1, uTC2}, 
vmin = min{vBC1, vBC2, vTC1, vTC2}, vmax = max{vBC1, vBC2, vTC1, 
vTC2}. As shown in Fig2, (b) shows the original image while 
(c) shows the extracted ROI of several candidate objects 
using above method. 

BC1 BC2

TC1 TC2

 
(a)    (b)     (c) 
Fig 2 the rectangular envelope and the region of interest (ROI) 

3.3 Obtaining contour edges 
 Edge-extraction is carried out in ROI using Canny 
method [8]. In ideal condition, CL

I(uCL, vCL) and CR
I(uCR, vCR) 

should be exactly on the left and right contour edge of 
candidate object. Actually, there will always be a slight 
deviation because of all kinds of errors. {(uCL, vCL), (uCR, vCR)} 



are matched with edge points in ROI using closest point or 
iterative closest point method, and two edge points on the left 
and right contour edges of candidate object are obtained. 
Then carry out edge point connection from these two edge 
points until discontinuity appears or the edge direction begins 
to deviate largely from vertical direction (on the consideration 
that the contour edges of a pedestrian are generally vertical). 
The extracted contour edges of several candidate objects are 
shown in Fig3. 

 
(a) 

 
(b) 

Fig 3 the contour edges of candidate objects 

3.4 Decision 
 In this section, a decision rule is induced from a set of 
examples of contour shapes of candidate objects. Besides 
pedestrians themselves, the most likely candidate objects 
sifted from range data are landmarks, because of their 
similarity in size to pedestrians; as shown in Fig3. Therefore, 
the decision rule in some sense is a rule of how to distinguish 
pedestrians from landmarks. 
 A noticeable feature of landmarks is that their contour 
edges are almost straight on image, while the contour edges of 
pedestrians are irregular curved lines. A contour curve 
measure Fcurve is defined as follows to describe the curved 
extent of contour edges of a candidate object.  

Suppose the set of edge points on the left and on the 
right contour edge of the candidate object are respectively the 
set CL: {(u1,L, v1,L), (u2,L, v2,L), …, (um,L, vm,L)} and the set CR: 
{(u1,R, v1,R), (u2,R, v2,R), …, (un,R, vn,R)}. Line lCL: 
aCLu+bCLv+cCL=0 and line lCR:aCRu+bCRv+cCR=0 are the 
straight lines fitted respectively to the edge points in set CL 
and in set CR with least square rule. The contour curve 
measure Fcurve is defined as: 
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m n
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Where d((ui,L, vi,L), lCL) denotes the distance between point 
(ui,L, vi,L) and line lCL; d((uj,R, vj,R), lCR) denotes the distance 
between point (uj,R, vj,R) and line lCR. 
 A number of 500 samples of pedestrians and landmarks 

are chosen; the contour edges of each object are extracted and 
the contour curve measure is computed using Eq.(5). The 
statistic result of Fcurve is shown in Fig4. It shows the 
probability distribution of the contour curve measure of 
sample pedestrians and landmarks. As it can be seen from 
Fig4 that there is an apparent dividing line (Fcurve=1) between 
the distribution of pedestrians and landmarks. So the decision 
is induced as: if Fcurve>1, then the candidate object is regarded 
as a pedestrian; otherwise, it is regarded as a landmark. 
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Fig 4 the probability distribution of the contour curve measure 

4 Experiment 

4.1 Experiment on the co-calibration method 
 Choose an arbitrary flat ground as the calibration field, 
as Fig5; put the calibration tool at several places in the 
calibration field and obtain the coordinate information of 
control points using the method introduced in section 2.2; 
compute the rotation matrix Rpw and the translation vector 
Tpw in Eq.(1) and the perspective matrix Mwf in Eq.(4) using 
the method introduced in section 2.3. Although the frame 
showed here happens to be roughly perpendicular to vehicle 
axis, it is not necessary to put the frame this way. 

 
Fig 5 the calibration field 

 In order to examine the effect of the co-calibration 
method, each scanning point and part of laser beams are 
projected onto the image using the range data and the 
co-calibration results, thus forming a kind of augmented 
reality effect, as shown in Fig6. As it can be seen from Fig6, 
the projection matches well with the scenario, especially note 
that at each boundary of two neighboring objects, there is a 



corresponding discontinuity in the projection of laser beam. 
Fig6 displays a kind of lifelikeness as if one can really see the 
laser beams and how they scan the scenario. Such lifelikeness 
indirectly testifies the effectiveness and accuracy of the 
proposed co-calibration method. 

 
Fig 6 the projection of laser beam on the images 

4.2 Experiment on the co-detection method 
 The intelligent vehicle used is the CyberC3 vehicle 
developed by the IV Lab of SJTU, with a 2D laser scanner 
SICK installed on the front of the vehicle and an off-the-shelf 
Logitech camera installed on the top of the vehicle. The 
camera and laser scanner are co-calibrated with the proposed 
method introduced in section2. The experiment scenario for 
pedestrian detection is shown in Fig7; the intelligent vehicle 
is moving on a road and its detection area is within 20m ahead 
and within 4m on two sides. Several pedestrians and 
landmarks appear in the detection area early or late during the 
experiment process. Every time the vision data and range data 
are recorded at the same time and the sample interval is about 
0.1 second; every frame of recorded data is processed using 
the proposed co-detection method. Several images are 
displayed as example, shown in Fig7. A detected pedestrian is 
marked by bold yellow box while a detected landmark is 
marked by thin blue box, as shown in Fig7; it can be seen that 
the proposed method works well; the pedestrians as well as 
landmarks are correctly detected. During the whole 
experiment process, the omission detection ratio (omission 
detection means all the cases when the pedestrian is not 
detected or is detected as other object) and the false detection 
ratio (false detection means all the cases when a 
non-pedestrian is detected as a pedestrian) for pedestrians are 
respectively 1% and 3%. 

 
Fig 7 the result of co-detection of pedestrians 

5 Conclusion 
 In this paper, a new co-detection method using camera 
and laser scanner is proposed for pedestrian detection. First, a 
method of camera and laser scanner co-calibration is 
proposed, including how to obtain coordinate information of 
control points and how to compute the geometric transform 
relationship between the laser scanner coordinate, the vehicle 
coordinate and the image coordinate. Then a laser scanner 
and camera based pedestrian detection method using the 
co-calibration result is proposed, including how to sift 
candidate objects through range data, how to obtain proper 
ROI and contour edges of candidate objects using range data 
and co-calibration result, and how to make a decision on 
candidate object according to its contour feature. Experiments 
validate the efficiency of the proposed co-calibration method 
and co-detection method. In future work, more sophisticated 
image processing method such as SVM, NN, SIFT will 
integrated into the architecture of the proposed co-detection 
method. 
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Abstract— Situational awareness is crucial for autonomous
driving in urban environments. We present the moving vehicle
tracking module we developed for our autonomous driving
robot Junior. The robot won second place in the Urban Grand
Challenge, an autonomous driving race organized by the U.S.
Government in 2007. The module provides reliable detection
and tracking of moving vehicles from a high-speed moving
platform using laser range finders. Our approach models both
dynamic and geometric properties of the tracked vehicles and
estimates them using a single Bayes filter per vehicle. We
show how to build consistent and efficient 2D representations
out of 3D range data and how to detect poorly visible black
vehicles. Experimental validation includes the most challenging
conditions presented at the Urban Grand Challenge as well as
other urban settings.

I. I NTRODUCTION

Autonomously driving cars have been a long-lasting dream
of robotics researchers and enthusiasts. Self-driving cars
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort
and convenience. In recent years the Defense Advanced
Research Projects Agency (DARPA) has taken a lead on
encouraging research in this area and organized a series of
competitions for autonomous vehicles. In 2005 autonomous
vehicles were able to complete a 131 mile course in the desert
[1]. In the 2007 competition, the Urban Grand Challenge,
the robots were presented with an even more difficult task:
autonomous safe navigation in urban environments. In this
competition the robots had to drive safely with respect to
other robots, human-driven vehicles and the environment.
They also had to obey the rules of the road as described
in the California rulebook (see [2] for a detailed description
of the rules). One of the most significant changes from the
previous competition is the need for situational awareness
of both static and dynamic parts of the environment. Our
robot, Junior, won the second prize in the 2007 competition.
An overview of Junior’s software and hardware architecture
is given in [3]. In this paper we describe the approach we
developed for detection and tracking of moving vehicles.

Vehicle tracking has been studied for several decades.
A number of approaches focused on the use of vision
exclusively [4], [5], [6]. Whereas others utilized laser range
finders [7], [8], [9] sometimes in combination with vision
[10]. We give an overview of prior art in Sect. II.

For our application we are concerned with laser based
vehicle tracking from the autonomous robotic platform Ju-
nior, to which we will also refer as the ego-vehicle (see
Fig. 1). In contrast to prior art, we propose a model based
approach which encompasses both geometric and dynamic

This work was in part supported by the Defense Advanced Research
Projects Agency under contract number HR0011-06-C-0145. The opinions
expressed in the paper are ours and not endorsed by the U.S. Government.

(a)

(b)

Fig. 1. (a) Our robot Junior (blue) negotiates an intersection
with human-driven vehicles at the qualification event for the Urban
Grand Challenge in November 2007. (b) Junior, is equipped with
five different laser measurement systems, a multi-radar assembly,
and a multi-signal inertial navigation system.

(a) without geometric model (b) with geometric model

Fig. 2. Scans from vehicles are often split up into separate clusters by
occlusion. Geometric vehicle model helps interpret the data properly. Purple
rectangles group together points that have been associatedtogether. In (b)
the purple rectangle also denotes the geometric vehicle model. Gray areas
are objects. Gray dotted lines represent laser rays. Black dots denote laser
data points. (Best viewed in color.)



(a) without shape estimation (b) with shape estimation
Fig. 3. Vehicles come in different sizes. Accurate estimationof geometric shape helps obtain a more precise estimate of the vehicle dynamics. Solid
arrows show the actual distance the vehicle moved. Dashed arrows show the estimated motion. Purple rectangles denote the geometric vehicle models.
Black dots denote laser data points. (Best viewed in color.)

properties of the tracked vehicle in a single Bayes filter. The
approach eliminates the need for separate data segmentation
and association steps. We show how to properly model
the dependence between geometric and dynamic vehicle
properties usinganchor point coordinates. The geometric
model allows us to naturally handle the disjoint point clusters
that often result from partial occlusion of vehicles (see
Fig. 2). Moreover, the estimation of geometric shape leads
to accurate prediction of dynamic parameters (see Fig. 3).

Further, we introduce an abstract sensor representation, we
call thevirtual scan, which allows for efficient computation
and can be used for a wide variety of laser sensors. We
present techniques for building consistent virtual scans from
3D range data and show how to detect poorly visible black
vehicles in laser scans. Our approach runs in real time with
an average update rate of 40Hz, which is 4 times faster than
the common sensor frame rate of 10Hz. The results show
that our approach is reliable and efficient even in challenging
traffic situations presented at the Urban Grand Challenge.

II. BACKGROUND

Typically vehicle tracking approaches (e.g. [7], [8], [9],
[10]) proceed in three stages: data segmentation, data associ-
ation, and Bayesian filter update. During data segmentation
the sensor data is divided into meaningful pieces (usually
lines or clusters). During data association these pieces are
assigned to tracked vehicles. Next a Bayesian filter update
is performed to fit targets to the data.

The second stage - data association - is generally con-
sidered the most challenging stage of the vehicle detection
and tracking problem because of the association ambiguities
that arise. Typically this stage is carried out using variants
of multiple hypothesis tracking (MHT) algorithm (e.g. [8],
[9]). The filter update is usually carried out using variants
of Kalman filter (KF), which is augmented by interacting
multiple model method in some cases [7], [9].

Although vehicle tracking literature primarily relies on
variants of KF, there is a great body of multiple target
tracking literature for other applications (see [11] for a
summary) where parametric, sample-based, and hybrid filters
are used. For example [12] uses a Rao-Blackwellized particle
filter (RBPF) for multiple target tracking on simulated data.
A popular alternative to MHT for data association is the joint
probabilistic data association (JPDA) method. For example
in [13] a JPDA particle filter is used to track multiple targets
from an indoor mobile robot platform.

The work included in this paper has been presented at
two conferences: [14] and [15]. In contrast to prior vehi-
cle tracking literature, we utilize a model based approach,
which uses RBPFs and eliminates the need for separate data

Fig. 4. Dynamic Bayesian network model of the tracked vehicle
poseXt, forward velocityvt, geometryG, and measurementsZt.

segmentation and association stages. Our approach estimates
position, velocity and shape of tracked vehicles.

III. R EPRESENTATION

Our ego-vehicle is outfitted with the Applanix navigation
system that provides pose localization with 1m accuracy.
We further improved the localization module performance
by observing lane markings [3]. Although global localization
shifts may still occur, vehicle tracking is much more affected
by localization drift rather than global shifts. For this reason
we implementedsmooth coordinates, which provide a locally
consistent estimate of the ego-vehicle motion based on the
data from the inertial measurement unit (IMU). As a result
there is virtually no drift in the smooth coordinate system.
Thus for the remainder of the paper we will assume that
a reasonably precise pose of the ego-vehicle is always
available.

Following the common practice in vehicle tracking, we
will represent each vehicle with a separate Bayesian filter,
and represent dependencies between vehicles via a set of
local spatial constraints. Specifically we will assume thatno
two vehicles overlap, that all vehicles are spatially separated
by some free space, and that all vehicles of interest are
located on or near the road.

A. Probabilistic Model and Notation

For each vehicle we estimate its 2D position and orien-
tation Xt = (xt, yt, θt) at time t, its forward velocityvt

and its geometryG (further defined in Sect. III-B). Also
at each time step we obtain a new measurementZt. See



Fig. 5. As we move to observe a different side of a stationary
car, our belief of its shape changes and so does the position of the
car’s center point. To compensate for the effect, we introduce local
anchor point coordinatesC = (Cx, Cy) so that we can keep the
anchor pointXt stationary in the world coordinates.

Fig. 4 for a dynamic Bayes network representation of the
resulting probabilistic model. The dependencies between
the parameters involved are modeled via probabilistic laws
discussed in detail in Sects. III-C and III-E. For now we
briefly note that the velocity evolves over time according to

p(vt|vt−1).

The vehicle moves based on the evolved velocity according
to a dynamics model:

p(Xt|Xt−1, vt).

The measurements are governed by a measurement model:

p(Zt|Xt, G).

For convenience we will writeXt = (X1,X2, ...,Xt) for
the vehicle’s trajectory up to timet. Similarly, v

t and Z

t

will denote all velocities and all measurements up to timet.

B. Vehicle Geometry

The exact geometric shape of a vehicle can be complex
and difficult to model precisely. For simplicity we approx-
imate it by a rectangular shape of widthW and lengthL.
The 2D representation is sufficient because the height of the
vehicles is not important for driving applications.

For vehicle tracking it is common to track the position
of a vehicle’s center within the state variableXt. However,
there is an interesting dependence between our belief about
the vehicle’s shape and position (Fig. 5). As we observe the
object from a different vantage point, we change not only our
belief of its shape, but also our belief of the position of its
center point. AllowingXt to denote the center point can lead
to the undesired effect of obtaining a non-zero velocity fora
stationary vehicle, simply because we refine our knowledge
of its shape.

To overcome this problem, we viewXt as the pose of
an anchor pointwho’s position with respect to the vehicle’s
center can change over time. Initially we set the anchor point
to be the center of what we believe to be the car shape and
thus its coordinates in the vehicle’slocal coordinate system
areC = (0, 0). We assume that the vehicle’s local coordinate
system is tied to its center with thex-axis pointing directly
forward. As we revise our knowledge of the vehicle’s shape,

the local coordinates of the anchor point will also need to
be revised accordingly toC = (Cx, Cy). Thus the complete
set of geometric parameters isG = (W,L,Cx, Cy).

C. Vehicle Dynamics Model

Given a vehicle’s velocityvt−1 at time stept − 1, the
velocity evolves via addition of random bounded noise based
on maximum allowed accelerationamax and the time delay
∆t between time stepst − 1 and t. Specifically, we sample
∆v uniformly from [−amax∆t, amax∆t].

The pose evolves via linear motion - a motion law that
is often utilized when exact dynamics of the object are
unknown. The motion consists of perturbing orientation by
∆θ1, then moving forward according to the current velocity
by vt∆t, and making a final adjustment to orientation
by ∆θ2. Again we sample∆θ1 and ∆θ2 uniformly from
[−dθmax∆t, dθmax∆t] for a maximum allowed orientation
changedθmax.

D. Sensor Data Representation

In this paper we focus on laser range finders for sensing
the environment. Recently these sensors have evolved to be
more suitable for driving applications. For example IBEO
Alasca sensors allow for easy ground filtering by collecting
four parallel horizontal scan lines and marking which of
the readings are likely to come from the ground. Velodyne
HDL-64E sensors do not provide ground filtering, however
they take a 3D scan of the environment at high frame rates
(10Hz) thereby producing 1,000,000 readings per second.
Given such rich data, the challenge has become to process
the readings in real time. Vehicle tracking at 10 - 20Hz is
desirable for driving decision making.

A number of factors make the use of raw sensor data
inefficient. As the sensor rotates to collect the data, each
new reading is made from a new vantage point due to ego-
motion. Ignoring this effect leads to significant sensor noise.
Taking this effect into account makes it difficult to quickly
access data that pertains to a specific region of space. Much
of the data comes from surfaces uninteresting for the purpose
of vehicle tracking, e.g. ground readings, curbs and tree tops.
Finally, the raw 3D data wastes a lot of resources as vehicle
tracking is a 2D application where the cars are restricted
to move on the ground surface. Therefore it is desirable to
pre-process the data to produce a representation tailored for
vehicle tracking.

To expedite computations, we construct a grid in polar
coordinates - avirtual scan- which subdivides360◦ around
a chosen origin point into angular grids (see Fig. 6). In each
angular grid we record the range to the closest obstacle.
Hence each angular grid contains information about free,
occupied, and occluded space. We will often refer to the
cone of an angular grid from the origin until the recorded
range as aray due to its similarity to a laser ray.

Virtual scans simplify data access by providing a single
point of origin for the entire data set, which allows con-
stant time look-up for any given point in space. As we
mentioned earlier it is important to compute correct world
coordinates for the raw sensor readings. However, once the
correct positions of obstacle points have been computed,
adjusting the origin of each ray to be at the common origin
for the virtual scan produces an acceptable approximation.
Constructed in this manner, a virtual scan provides a compact
representation of the space around the ego-vehicle classified



(a) anatomy of a virtual scan

(b) a virtual scan constructed from Velodyne data

Fig. 6. In (b) yellow line segments represent virtual rays. Colored points
show the results of a scan differencing operation. Red points are new
obstacles, green points are obstacles that disappeared, and white points are
obstacles that remained unchanged or appeared in previouslyoccluded areas.
(Best viewed in color.)

into free, occupied and occluded. The classification helps
us properly reason about what parts of an object should be
visible as we describe in Sect. III-E.

For the purpose of vehicle tracking it is crucial to deter-
mine what changes take place in the environment over time.
With virtual scans these changes can be easily computed in
spite of the fact that ego-motion can cause two consecutive
virtual scans to have different origins. The changes are com-
puted by checking which obstacles in the old scan are cleared
by rays in the new scan and vice versa. This computation
takes time linear in the size of the virtual scan and only
needs to be carried out once per frame. Fig. 6(b) shows
results of a virtual scan differencing operation with red points
denoting new obstacles, green points denoting obstacles
that disappeared, and white points denoting obstacles that
remained in place or appeared in previously occluded areas.

Virtual scans are a suitable representation for a wide
variety of laser range finders. While this representation is
easy to build for 2D sensors such as IBEO, for 3D range
sensors additional considerations are required to produce
consistent 2D representations. We describe these techniques
in Sect. V.

E. Measurement Model

Given a vehicle’s poseX, geometryG and a virtual scan
Z we compute the measurement likelihoodp(Z|G,X) as
follows. We position a rectangular shape representing the
vehicle according toX and G. Then we build a bounding

(a)

(b)

Fig. 7. Measurement likelihood computations. (a) shows the
geometric regions involved in the likelihood computations. (b)
shows the costs assignment for a single ray. (Best viewed in color.)

box to include all points within a predefined distanceλ

1

around the vehicle (see Fig. 7). For an actual vehicle in
this configuration, we would expect the points within the
rectangle to be occupied or occluded, and points in its
vicinity to be free or occluded, because vehicles are spatially
separated from other objects in the environment.

Following the common practice for modeling laser range
finders, we consider measurements obtained along each ray
independent of each other. Thus if we have a total ofN rays
in the virtual scanZ, the measurement likelihood factors as
follows:

p(Z|G,X) =
N
∏

i=1

p(zi|G,X).

We model each ray’s likelihood as a zero-mean Gaussian of
varianceσi computed with respect to a costci selected based
on the relationship between the ray and the vehicle (ηi is a
normalization constant):

P (zi|G,X) = ηi exp{ −
c

2

i

σ

2

i

}.

The costs and variances are set to constants that depend on
the region in which the reading falls into (see Fig. 7 for
illustration).cocc, σocc are the settings for range readings that
fall short of the bounding box and thus represent situations
when another object is occluding the vehicle.cb andσb are
the settings for range readings that fall short of the vehicle
but inside of the bounding box.cs and σs are the settings

1We used the setting ofλ = 1m in our implementation.



for readings on the vehicle’s visible surface (that we assume
to be of non-zero depth).cp, σp are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
rangermin and maximum rangermax of the sensor. Since
the costs we select are piece-wise constant, it is easy to
integrate the unnormalized likelihoods to obtain the nor-
malization constantsηi. Note that for the rays that do not
target the vehicle or the bounding box, the above logic
automatically yields uniform distributions as these rays never
hit the bounding box.

Note that the proposed measurement model naturally
handles partially occluded objects including objects thatare
“split up” by occlusion into several point clusters (see Fig. 2).
In contrast these cases are often challenging for approaches
that utilize separate data segmentation and correspondence
methods.

IV. V EHICLE TRACKING

Most vehicle tracking methods described in the literature
apply separate methods for data segmentation and corre-
spondence matching before fitting model parameters via
extended Kalman filter (EKF). In contrast we use a single
Bayesian filter to fit model parameters from the start. This
is possible because our model includes both geometric and
dynamic parameters of the vehicles and because we rely
on efficient methods for parameter fitting. We chose the
particle filter method for Bayesian estimation because it is
more suitable for multi-modal distributions than EKF. Unlike
the multiple hypothesis tracking (MHT) method commonly
used in the literature, the computational complexity for our
method grows linearly with the number of vehicles in the
environment, because vehicle dynamics dictates that vehicles
can only be matched to data points in their immediate
vicinity. The downside of course is that in our case two
targets can in principle merge into one. In practice we have
found that it happens rarely and only in situations where
one of the targets is lost due to complete occlusion. In these
situations target merging is acceptable for our application.

We have a total of eight parameters to estimate for each
vehicle: X = (x, y, θ), v, G = (W,L,Cx, Cy). Computa-
tional complexity grows exponentially with the number of
parameters for particle filters. Thus to keep computational
complexity low, we turn to RBPFs first introduced in [16].
We estimateX and v by samples and keep Gaussian es-
timates forG within each particle. Below we give a brief
derivation of the required update equations.

A. Update Equations
At each time stept we produce an estimate of a Bayesian

belief about the tracked vehicle’s trajectory, velocity and
geometry based on a set of measurements:

Belt = p(Xt
, v

t
, G|Zt).

We split up the belief into two conditional factors:

Belt = p(Xt
, v

t|Zt) p(G|Xt
, v

t
, Z

t).

The first factor encodes the vehicle’s motion posterior:

Rt = p(Xt
, v

t|Zt).

The second factor encodes the vehicle’s geometry posterior,
conditioned on its motion:

St = p(G|Xt
, v

t
, Z

t).

Fig. 8. We determine ground readings by comparing angles between
consecutive readings. IfA, B, C are ground readings, thenα is
close to0 and thuscos α is close to1.

The factorRt is approximated using a set of particles; the
factorSt is approximated using a Gaussian distribution (one
Gaussian per particle).

Detailed derivations of the update equations are provided
in [15]. Here we briefly note that the motion update of the
particle filter is carried out using the vehicle dynamics model
described in Sect. III-C. The measurement update is carried
out by computing the importance weightswt for all particles:

wt = IESt−1
[ p(Zt|G,Xt) ].

In words, the importance weights are the expected value
(with respect to the vehicle geometry prior) of the mea-
surement likelihood. Using Gaussian approximations of
the geometry priorSt−1 and the measurement likelihood
p(Zt|G,Xt), this expectation can be computed in closed
form. We obtain a Gaussian approximation of the geometry
prior recursively and apply Laplace’s method to approximate
the measurement likelihood by a Gaussian.

B. Initializing and Discontinuing Tracks

New tracks are initialized in areas where scan differencing
detects a change in data, that is not already explained
by existing tracks. New tracks are fitted using the same
measurement and motion models (Sects. III-E and III-C) that
we use for vehicle tracking. The candidates are vetted for
three frames before they can become “real tracks”. Detection
of new vehicles is the most computationally expensive part of
vehicle tracking. In order to achieve reliable vehicle detection
in real time, we developed a number of optimization tech-
niques. Details of the detection algorithm and optimizations
can be found in [14].

We discontinue tracks if the target vehicle gets out of
sensor range or moves too far away from the road2. We also
discontinue tracks if the unnormalized weights have been
low for several turns. Low unnormalized weights signal that
the sensor data is insufficient to track the target, or that
our estimate is too far away from the actual vehicle. This
logic keeps the resource cost of tracking occluded objects
low, yet it still allows for a tracked vehicle to survive bad
data or complete occlusion for several turns. Since new track
acquisition only takes three frames, it does not make sense to
continue tracking objects that are occluded for significantly
longer periods of time.

V. WORKING WITH 3D RANGE DATA

As we explained in Sect. III-D, vehicle tracking is a 2D
problem, for which compact 2D virtual scans are sufficient.
However for 3D sensors, such as Velodyne, it is non-
trivial to build consistent 2D virtual scans. These sensors
provide immense 3D data sets of the surroundings, making

2A digital street map was available for our application in the Road
Network Definition Format (RNDF).



computational efficiency a high priority when processing the
data. In our experience, the hard work pays off and the
resulting virtual scans carry more information than 2D sensor
data.

A. Classification of 3D Points

To produce consistent 2D virtual scans, we need to un-
derstand which of the 3D data points should be considered
obstacles. From the perspective of driving applications we
are interested in the slice of space directly above the ground
and about 2m high, as this is the space that a vehicle would
actually have to drive through. Objects elevated more than
2m above ground - e.g. tree tops or overpasses - are not
obstacles. The ground itself is not an obstacle (assuming
the terrain is drivable). Moreover, for tracking applications
low obstacles such as curbs should be excluded from virtual
scans, because otherwise they can prevent us from seeing
more important obstacles beyond them. The remaining ob-
jects in the 2m slice of space are obstacles for a vehicle,
even if these objects are not directly touching the ground.

In order to classify the data into the different types of
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a single point
of origin and stores actual world coordinates of the sensor
readings. Just as in the 2D case, this grid is an approximation
of the sensor data set, because the actual laser readings in a
scan have varying points of origin. In order to downsample
and reject outliers, for each spherical grid cell we compute
the median range of the readings falling within it. This gives
us a single obstacle point per grid cell. For each spherical
grid cell we will refer to the cone from the grid origin to the
obstacle point as a virtual ray.

The first classification step is to determine ground points.
For this purpose we select a single slice of vertical angles
from the spherical grid (i.e. rays that all have the same
bearing angle). We cycle through the rays in the slice from
the lowest vertical angle to the highest. For three consecutive
readingsA, B, andC, the slope betweenAB andBC should
be near zero if all three points lie on the ground (see Fig. 8
for illustration). If we normalizeAB and BC, their dot
product should be close to1. Hence a simple thresholding of
the dot product allows us to classify ground readings and to
obtain estimates of local ground elevation. Thus one useful
piece of information we can obtain from 3D sensors is an
estimate of ground elevation.

Using the elevation estimates we can classify the re-
maining non-ground readings into low, medium and high
obstacles, out of which we are only interested in the medium
ones (see Fig. 9). It turns out that there can be medium height
obstacles that are still worth filtering out: birds, insectsand
occasional readings from cat-eye reflectors. These obstacles
are easy to filter, because theBC vector tends to be very long
(greater than 1m), which is not the case for normal vertical
obstacles such as buildings and cars. After identifying the
interesting obstacles we simply project them on the 2D
horizontal plane to obtain a virtual scan.

B. Detection of Black Obstacles

Laser range finders are widely known to have difficulty
seeing black objects. Since these objects absorb light, the
sensor never gets a return. Clearly it is desirable to “see”
black obstacles for driving applications. Other sensors could
be used, but they all have their own drawbacks. Here we

Fig. 10. Detecting black vehicles in 3D range scans. White points represent
raw Velodyne data. Yellow lines represent the generated virtual scans. Top
left: actual appearance of the vehicle. Top right: the vehicle gives very few
laser returns. Bottom left: virtual scan with black object detection. Bottom
right: virtual scan without black object detection.

present a method for detecting black objects in 3D laser data.
Figure 10 shows the returns obtained from a black car. The
only readings obtained are from the license plate and wheels
of the vehicle, all of which get filtered out as low obstacles.
Instead of looking at the little data that is present, we can
detect the black obstacle by looking at the data that is absent.
If no readings are obtained along a range of vertical angles in
a specific direction, we can conclude that the space must be
occupied by a black obstacle. Otherwise the rays would have
hit some obstacle or the ground. To provide a conservative
estimate of the range to the black obstacle we place it at
the last reading obtained in the vertical angles just before
the absent readings. We note that this method works well
as long as the sensor is good at seeing the ground. For the
Velodyne sensor the range within which the ground returns
are reliable is about 25 - 30m, beyond this range the black
obstacle detection logic does not work.

VI. EXPERIMENTAL VALIDATION

The most challenging traffic situation at the Urban Grand
Challenge was presented on course A during the qualifying
event (Fig. 11) . The test consisted of dense human driven
traffic in both directions on a course with an outline resem-
bling the Greek letterθ. The robots had to merge repeatedly
into the dense traffic. The merge was performed using a
left turn, so that the robots had to cross one lane of traffic
each time. In these conditions accurate estimates of positions
and velocities of the cars are very useful for determining
a gap in traffic large enough to perform the merge safely.
Cars passed in close proximity to each other and to station-
ary obstacles (e.g. signs and guard rails) providing plenty
of opportunity for false associations. Partial and complete
occlusions happened frequently due to the traffic density.
Moreover these occlusions often happened near merge points
which complicated decision making.

During extensive testing, the performance of our vehicle
tracking module has been very reliable and efficient (see
Fig. 11). Geometric shape of vehicles was properly estimated
(see Figs. 12 and 13), which increased tracking reliabilityand
improved motion estimation. The tracking approach proved



(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 9. In (c) Velodyne data is colored by type: orange - ground, yellow - low obstacle, red - medium obstacle, green - high obstacle.
In (d) yellow lines denote the virtual scan. Note the truck crossing the intersection, the cars parked on a side of the road and the white
van parked on a driveway. On the virtual scan all of these vehicles areclearly marked as obstacles, but ground, curbs and tree tops are
ignored.

TABLE I
TRACKER PERFORMANCE ON DATA SETS FROM THREE URBAN ENVIRONMENTS. MAX TP IS THE THEORETICALLY MAXIMUM POSSIBLE TRUE

POSITIVE PERCENT FOR EACH DATA SET. TP AND FP ARE THE ACTUAL TRUE POSITIVE AND FALSE POSITIVE RATES ATTAINED BY THE ALGORITHM.

Total Total Correctly Falsely Max TP TP FP
Data Sets Frames Vehicles Identified Identified (%) (%) (%)
UGC Area A 1,577 5,911 5,676 205 97.8 96.02 3.35
Stanford Campus 2,140 3,581 3,530 150 99.22 98.58 4.02
Alameda Day 1 1,531 901 879 0 98.22 97.56 0
Overall 5,248 10,393 10,085 355 98.33 97.04 3.3

capable of handling complex traffic situations such as the
one presented on course A of the UGC. The computation
time of our approach averages at 25ms per frame, which is
faster than real time for most modern laser range finders.

We also gathered empirical results of the tracking module
performance on data sets from several urban environments:
course A of the UGC, Stanford campus and a port town in
Alameda, CA. For each frame of data we counted how many
vehicles a human is able to identify in the laser range data.
The vehicles had to be within 50m of the ego-vehicle, on or
near the road, and moving with a speed of at least 5mph. We
summarize the tracker’s performance in Tbl. I. Note that the
maximum theoretically possible true positive rate is lower
than 100% because three frames are required to detect a
new vehicle. On all three data sets the tracker performed
very close to the theoretical bound. Overall the true positive
rate was97% compared to the theoretical maximum of98%.

Several videos of vehicle detection and tracking using the
techniques presented in this paper are available at the website

http://cs.stanford.edu/people/petrovsk/uc.html

VII. C ONCLUSIONS

We have presented the vehicle tracking module developed
for Stanford’s autonomous driving robot Junior. Tracking is
performed from a high-speed moving platform and relies on
laser range finders for sensing. Our approach models both
dynamic and geometric properties of the tracked vehicles
and estimates them with a single Bayes filter per vehicle.
In contrast to prior art, the common data segmentation and
association steps are carried out as part of the filter itself.
The approach has proved reliable, efficient and capable of
handling challenging traffic situations, such as the ones
presented at the Urban Grand Challenge.

Clearly there is ample room for future work. The pre-
sented approach does not model pedestrians, bicyclists, or
motorcyclists, which is a prerequisite for driving in populated
areas. Another promising direction for future work is fusion
of different sensors, including laser, radar and vision.
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(a)

(b)

(c)

Fig. 11. Tracking results on course A at the UGC. (a) actual scene,
(b) Velodyne data, (c) virtual scan and tracking results. In(c) yellow line
segments represent the virtual scan and red/green/white points show results
of scan differencing. The purple boxes denote the tracked vehicles. (Best
viewed in color.)

Fig. 12. Size estimation results on Stanford campus. Vehiclesof different
sizes are successfully estimated and tracked. (Best viewed in color.)

(a) without size estimation (b) with size estimation

Fig. 13. Size estimation improves accuracy of tracking as can be seen on
the example of a passing bus taken from an Alameda data set. Without size
estimation (a) the tracking results are poor because the geometric model
does not fit the data well. Not only is the velocity estimated incorrectly, but
the track is lost entirely when the bus is passing. With size estimation (b)
the bus is tracked successfully and the velocity is properlyestimated. (Best
viewed in color.)
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Connexity based fronto-parallel plane detection for stereovision
obstacle segmentation

Thomas Veit

Abstract— Progress in hardware makes it possi-
ble to compute dense disparity maps in real-time.
This work describes a suitable obstacle segmentation
method for these dense disparity maps. The method
analyses the connexity of the disparity map in or-
der to extract fronto-parallel planes by means of a
suitable depth constraint. This pragmatic geometrical
approach reduces the number of detection parame-
ters. As a consequence it is easy and intuitive without
requiring expert knowledge of the segmentation algo-
rithm. The target application field is Advanced Driv-
ing Assistance Systems (ADAS). The performance
of the method is illustrated by various results on
real image sequences in the context of pedestrian
detection.

I. Introduction

The development of Advance Driving Assistance Sys-
tems (ADAS) necessitates tools that are able to interpret
the surroundings of a vehicle. As an example, a path
planning algorithm needs to compute the free navigable
space in order to determine which direction the vehicle
should take. The issue addressed in this paper is part
of the process of analysing a road scene. The proposed
method intends to extract from the scene the objects that
are relevant for its interpretation.

The aim of this work is to segment the disparity
map obtained from a stereo-vision system. In the field
of intelligent vehicles, stereo-vision is backed up as an
alternative to high cost laser sensors by the real-time
computation of dense disparity maps [1]. Compared to
1D scanning sensors, stereo-vision not only provides
depth information but also height on top of the full
intensity information of the scene.

The outline of this paper is the following. Section II
presents some related work. The computation of the
disparity map is briefly described in Section III. The
obstacle segmentation process is detailed in Section IV.
Section V presents some experimental results in the
context of pedestrian detection. Finally, Section VI gives
some concluding remarks.

II. Related work

A large amount of literature discusses the issue of
stereo-vision obstacle detection. The problem is stud-
ied from different angles. In [2] a method is proposed
that extracts obstacles without computing a disparity
map. The system analyses polar histograms obtained

T. Veit is with LIVIC / INRETS, 14 route de la Minière, F-78000
Versailles France, Thomas.Veit@inrets.fr

after compensating the perspective in the left and right
images. This work focuses more on free-space estimation
than on obstacle segmentation.

The authors of [3] present a framework for road plane
estimation, marker-less road segmentation and obstacle
segmentation. The obstacle segmentation step is based
on a split and merge technique in order to group pixels
with similar disparities.

The problem of obstacle detection is addressed in [4]
by projecting the 3-dimensional disparity data on a 2D
plane where obstacles appear as line segments. Thus,
the obstacles extraction problem is translated into a line
extraction problem making extensive use of the Hough
transform. Unfortunately, the line segment model for
obstacle is only an approximation and the line detection
in the 2D space still turns out to be complex due to low
contrast and discontinuities.

The work in [5] is the closest to the one proposed in
this paper. The authors rely on a watershed segmentation
in order to group disparity values into regions corre-
sponding to obstacles. This watershed segmentation is
applied on a multi-scale morphological gradient image of
the disparity map.

III. Disparity map computations

The obstacle detection algorithm relies on a classical
stereo-vision framework. The images acquired by the left
and right camera are supposed to be rectified (i.e. epipo-
lar lines correspond in both images). The disparity map
is computed by applying a Sum of Absolute Difference
(SAD) matching cost on squared aggregation windows
and a winner-take-all strategy. The size of the windows
is chosen rather large (9×9 for 320×240 images). Indeed,
the foreground fattening effect is beneficial for obstacle
detection. The disparity map is computed after filtering
the input images with a Laplacian filter in order to be
robust against global illumination changes between both
cameras. In order to reduce the number of errors in the
disparity map due to false correspondences, a symmetry
constraint is enforced: pixels for which the disparity
values for left to right and right to left matching differ are
discarded. Finally, the disparity map is post-processed
with a 3× 3 median filter in order to enhance spatial
coherence and reduce errors due to noise. An example of
the resulting disparity map is presented in Fig. 1.

IV. Obstacle segmentation

The proposed obstacle segmentation algorithm pro-
ceeds in three steps. First, the road plane is suppressed.



Fig. 1. Left image, right image and corresponding disparity map

Then, connected components in the disparity map are ex-
tracted according to a specific depth constraint. Finally,
the connected components satisfying a set of geometri-
cal constraint on their height, width and position are
selected. Fig. 2 sums up the general flow of the algorithm.

Median Filter

Disparity Map Computation

Rectified Left Image

Laplacian Filter

Rectified Right Image

Laplacian Filter

Geometrical Constraints

Connected Components Extraction

Road plane subtraction

Fig. 2. General flow of the algorithm

A. Road plane subtraction

The first step of the detection algorithm is to suppress
from the disparity map the values that correspond to the
road plane. Indeed the proposed detection method relies
on the classical assumption that the obstacle of interest
are above the ground plane. If the position of the camera
with respect to the road plane is assumed to be known
then the disparity dmax(v) of a pixel (u,v) belonging to the
road plane is easily related to its vertical image position:

dmax(v) = ((v− v0)cosθ + αsinθ)
b
h
, (1)

where α is the focal length expressed in pixels, v0 is
the vertical image position of the optical center, b is the

baseline distance of the stereo-system, h is the height of
the camera with respect to the road plane and θ is the
angle between the optical axes and the road plane.

All pixels which, for a given vertical image position,
have a disparity that is lower than the road plane (in
other words all points below the road plane) are dis-
carded from further processing. In practice, a slightly
stronger constraint is enforced: all points that are below
a planar surface that is 0.3m above the road plane are
discarded. This margin enables to deal with situations
where a sidewalk is present or where the planar road
assumption is only partly verified.

Now, the position of the camera with respect to the
road plane can either be assumed constant or it can
be dynamically estimated. The first alternative is suit-
able for smooth urban driving conditions and situations
were acceleration and deceleration are reasonably low.
However, when the vehicle’s dynamics causes strong
variations of the camera pitch angle, it has to be rees-
timated using methods such as the Hough transform
[4], least-squares [3] or RANSAC [5]. More sophisticated
techniques estimating a non-planar road surface might
also be applied.

B. Connected component extraction

Once the values that correspond to the road surface
are removed it is possible to focus on obstacles. One
major characteristic of obstacles is that they can be
approximated as fronto-parallel surfaces with respect to
the image plane. In other words, obstacles are repre-
sented by approximately constant connected regions in a
disparity map. The simple idea of the proposed method
is to pick out these approximately constant connected
regions. One of the difficulties is that the disparity values
of an obstacle surface are only constant in the ideal
case. In practice, the depth of obstacles varies with their
shape. Therefore, a certain amount of disparity variation
needs to be tolerated. Of course, the disparity tolerance
needs to take into account the decrease of the distance
resolution for small disparity values.

The tolerance on the disparity difference within a
region ∆disp(d) can be specified as a function of the
maximal depth variation of an obstacle surface ∆Z . This
depth constraints can be translated to a corresponding



limit on the disparity variation within a region of the
disparity maps and depends on the current disparity d:

∆disp(d) =
d2∆Z

αb + d∆Z
(2)

Now that the disparity tolerance is specified, a simple
flood-fill algorithm is applied: given a starting point
p∗, all neighboring pixels p that satisfy the disparity
difference constraint d(p)− d(p∗) < ∆disp(d(p∗)) (2) are
grouped. A last question to answer is“which pixels should
be considered as starting points?”. The naive answer
would be to apply the flood-fill to a discrete grid of sub-
sampled image positions. A better strategy consists in
selecting the maximal disparity value of the disparity
map as a starting point. The pixel grouped with this seed
point are then suppressed and the next maximal value is
processed. The algorithm stops when the whole image is
processed or when the maximal disparity is zero. This
strategies enables to extract obstacle regions by starting
with the closest obstacle (maximal disparity).

C. Geometrical selection

Finally, since not all approximately fronto-parallel pla-
nar surfaces correspond to relevant obstacles, a geometri-
cal filtering step is applied. Based on the 3D geometrical
characteristics of the extracted surfaces (position in the
scene, width, height), it is possible to select only a
subset of objects of interest. This part of the algorithm
is of course application dependent. If the focus is on
pedestrian detection the constraints will be stronger than
for a general obstacle detection algorithm.

V. Experimental results

This section presents some results on real data in the
context of pedestrian detection but the algorithm can
be applied to general obstacle detection by relaxing the
geometrical constraints on the obstacles. The data of this
experiments was collected with the LOVe project.

The baseline of the stereo system is about 40cm and
the processed images are 320×240.

The geometrical constraints enforced on the extracted
connected components are the following:
• image surface: 50 pixels,
• height: 1m to 2m,
• top: < 2.5m,
• bottom: < 0.4m,
• width over height ratio: < 1.
A first series of results is presented in Fig. 3. Another

series of results on various urban scenarios is presented
in Fig. 4. These results show that the detection method
correctly picks out the obstacles verifying these geomet-
rical specifications and that the detected objects indeed
correspond to pedestrians.

A few false alarms appear on road scene objects that
do comply with the geometrical constraints but do not
correspond to pedestrians. This is the case of the back of
some partly occluded cars parked on the road side (see

Fig. 3. Disparity maps (right) and corresponding extracted con-
nected components (left). The disparity values decrease from red,
over yellow, and green to blue. The red rectangles correspond to
the bounding boxes of the detected components. Pixels belonging
to a detected component are colored in the gray level images.



Fig. 4. Detection results for different urban scenes. The blue rect-
angles correspond to the bounding boxes of the selected connected
components.

Fig. 5) and of parcmeters as illustrated on Fig. 3 (last
line). A shape recognition step should be able to lift these
ambiguities.

Fig. 5. Some false alarms on the back of partly occluded parked
cars.

The computation time on a 2Ghz Intel Xeon is about
70ms. The computation of the disparity map corresponds
to about 65% of this time. No SIMD optimization were
implemented.

Compared to other obstacle segmentation methods the
proposed method is simple and intuitive: it does not
require any expert knowledge of the segmentation algo-
rithm for tuning the parameters. The detection results
are really satisfying since objects verifying the geometric
constraints are accurately extracted. All detection re-
lated threshold are expressed in explicits units. Most of
them are expressed in meters and refer to the size in the
real scene.

VI. Conclusion

In this paper, a method for segmenting obstacles from
a disparity map was proposed. The method groups neigh-
boring disparity values according to a depth difference
constraint. Simple geometrical rules enable to select rel-
evant objects among the extracted components. Effective
results were obtained on various real image sequences in
an urban environment.

Of course analysing only the disparity map might not
be sufficient to obtain a highly robust obstacle detec-
tion algorithm. Two aspects might highly improve the
robustness : enforcing temporal coherence of successive
detections by tracking them and applying shape recogni-
tion in order to validate the detected region as relevant
obstacles.

VII. Acknowledgment

This work was partially funded by the ANR project
LOVe. Thanks to A. Cord for fruitful discussions.

References

[1] W. van der Mark and D. M. Gavrila,“Real-time dense stereo for
intelligent vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 7, no. 1, pp. 38–50, March 2006.

[2] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo
vision system for generic obstacle and lane detection,” IEEE
Transactions on Image Processing, vol. 7, no. 1, pp. 62–81,
January 1998.

[3] P. Lombardi, M. Zanin, and S. Messelodi, “Unified stereovision
for ground, road, and obstacle detection,” in IEEE Intelligent
Vehicles Symposium, 2005.

[4] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obsta-
cle detection on non flat road geometry through ‘v-disparity’
representation,” in Proceedings of IEEE Intelligent Vehicle
Symposium, vol. 2, Versailles, France, 2002, pp. 646–651,
http://perso.lcpc.fr/tarel.jean-philippe/publis/iv02.html.
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Safe and Dependable Operation of a Large Industrial Autonomous
Forklift

Ashley Tews

Abstract— For autonomous vehicles to operate in industrial
environments, they must demonstrate safe, reliable, predictable,
efficient and repeatable performance. To achieve this, two
important high level factors are situational awareness and
system dependability. The vehicle must be able to identify
objects and predict the trajectories of dynamic objects in order
to avoid unplanned interaction and to improve performance.
In many environments, the vehicle is also required to operate
for long periods of time over many days, weeks and months.
Towards this goal, the vehicle needs to self-monitor its hardware
and software systems, and have redundant primary systems.
We have incorporated many of these requirements into our
Autonomous Hot Metal Carrier which is a modified 20 tonne
forklift used in aluminium smelters for carrying a 10 tonne
payload between large sheds, in the presence of other vehicles
and people. Our HMC has successfully conducted 100’s of hours
of autonomous operation in our industrial worksite. The main
hardware and software systems will be discussed in this paper
with particular focus on the redundant localisation and obstacle
avoidance systems. Experiments are described to highlight the
performance of the HMC systems in the presence of dynamic
objects around a typical worksite.

I. I NTRODUCTION

Vehicles operate constantly around industrial worksites.
In many applications, they perform repetitive homogeneous
tasks such as moving loads from one warehouse location
to another. In the aluminium industry, Hot Metal Carriers
(HMCs) perform the task of transporting molten aluminium
from the smelter (where the aluminium is made) to the
casting shed where it is turned into block products. The vehi-
cles weigh approximately 20 tonnes unloaded and resemble
forklifts except they have a dedicated hook for manipulating
the load rather than fork tines (Figure 1). The molten
aluminium is carried in large metal crucibles. The crucibles
weigh approximately 2 tonnes and they can hold 8 tonnes
of molten aluminium usually superheated above 700 degrees
Celcius. Therefore, HMC operations are considered heavy,
hot, and repetitive, with safety of operation a significant
issue.

Our research is focused towards automating the opera-
tions of Hot Metal Carrier-like vehicles. There are many
challenges in their operating environment considering they
travel inside and outside of buildings. Inside, there is a vast
amount of infrastructure, other mobile machines and people.
In various areas, there are strong magnetic fields and high
temperatures near the molten aluminium vats. Outside, their
paths may be surrounded by infrastructure, fences, and their

Ashley Tews is with the Commonwealth Scientific and
Industrial Research Organization, Queensland, Australia
Ashley.Tews@csiro.au

Fig. 1. A Hot Metal Carrier in the process of picking up the crucible.

operation may be affected by the environmental conditions:
rain, fog, snow, and heat. Research into automating these
vehicles and their operations needs to consider the variability
in operating conditions to produce repeatable and reliable
performance of the task.

At our worksite, we have fully automated a Hot Metal
Carrier and have demonstrated typical operations of a pro-
duction vehicle. Our vehicle is capable of autonomous start
up, shutdown, navigation, obstacle management, and crucible
pickup and drop off. It has conducted hundreds of hours
of autonomous operations and demonstrated long periods of
high reliability and repeatibility. The vehicle also has several
safety systems incorporated into it to make its operations as
safe as possible. The remainder of this paper outlines our
research and results.

II. M ODULES

To be fully capable of conducting all tasks of a manned
vehicle, the autonomous HMC needs to address the issues of
safety, reliability and repeatability. We have consideredthese
issues when automating the HMC’s hardware and software
systems. A block diagram of the major hardware components
is shown in Figure 2.

The major modules of the system are separated into high
level and vehicle level. The high level modules provide
commands for controlling the vehicle based on the requested
tasks, vehicle state and observed state of the environment.
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Fig. 2. Overview of the hardware architecture.

The vehicle level modules provide vehicle state information
and act as the interface to the vehicle’s control systems.
They also take care of several low level safety interfaces
including physical interlocks, heartbeat monitors between
critical systems, and e-stop control.

The vehicle has a light stack on the hood to provide a basic
visual indication of its state. The lights indicate whetheran
e-stop is active, user intervention is required, if the vehicle is
operating in autonomous mode, as well as two programmable
status indicators that can be used to indicate if a monitored
system’s parameters exceed or drop below a threshold value
(e.g. pneumatic system pressure).

To allow the HMC to conduct autonomous operations
safely without the requirement of a safety supervisor to
be in the cabin, a RF safety remote is part of the low
level interface. This allows the supervisor to be outside
of the cabin to monitor operations. The unit has several
programmable switches and an e-stop switch to stop the
vehicle in an emergency.

The remainder of this section describes the main high level
modules.

A. Redundant Localisation

A fundamental requirement for any autonomous vehicle
conducting reliable operations is localisation. It forms the
basis of any high level navigation, path planning and obstacle
avoidance systems. To achieve high reliability, single points
of failure need to be reduced or removed completely. Many
localisation system use a single type of sensor or fuse sensors
into a single system. A hardware or sofware fault with these
systems can render the localisation useless. Consequently, the
vehicle may have little choice but to signal a fail and wait to
be rescued. Using redundant hardware and software systems
provides many benefits including the ability to continue with
the complete failure of a system as well as the ability to
cross-reference systems for bootstrapping, validity checking,
and can also be used for offline data fusion.

The HMC’s localisation consists of independent vision and
laser-based systems. The vision-based localisation system is
described in detail in [1]. It conists of a firewire fisheye
camera mounted on each of the front mudguards that provide
colour images back to an onboard computer (see Figure

(a) Camera Setup (b) Fish-eye image

(c) 3D-edge-map of buildings (d) Un-distorted image with pro-
jected 3D-edge-map

Fig. 3. Examples of the vision-based localisation system. Twofish-eye
cameras are placed at the front of the vehicle facing sideways(a and b).
The blue hemispheres represent the field of view of the cameras.A surveyed
edge map of the buildings (c) can be tracked in the images (d).

Fig. 4. The HMC’s coverage from lasers mounted on the corners.

3). The images are exposure compensated and edge-features
extracted. Edges consist of the outline of major pieces of
infrastructure such as sheds and doorways. The resulting
edge-map is compared to ana-priori map generated offline
from surveyed coordinates. The matches are determined
probabilistically using a particle filter. The laser-based
system uses the four outer lasers on the HMC (see Figure 4)
and retro-reflective tape that forms artificial beacons highly
visible on the lasers’ intensity channel. The beacons have
been placed at irregular intervals around the worksite with
a maximum separation of 30m. Their locations have been
surveyed and recorded in a database that is stored on the
HMC. The system compares a sensed beacon constellation
with the database to triangulate the vehicle position. A
particle filter is also used for this purpose. The accuracy
of this system is dependent on the density of sensed beacons
and around our site, it is sufficient to allow the large HMC to
navigate accurately through narrow doorways and roadways



Fig. 5. Entry to the storage shed where the crucible gets dropped
off. Note the clearance between the vehicle and the doorway sides is
less than 20cm. The vehicle successfully traverses through the doorway
using waypoints which demonstrates the accuracy and repeatability of the
localisation, navigation and control systems.

(e.g. Figure 5), some of which have a clearance of 20cm.
The combined localisation system works by use of an

arbitration mechanism that compares the output and confi-
dence of the vision and laser localisers. If the primary system
has a low confidence or fails, the arbitrator promotes the
secondary system to the primary and continues to monitor
both for failure and recovery. The localisation output from
the arbitrator is sent to the navigation module so any single
system failure is transparent to vehicle operations. More
details of this system are described in [2].

B. Obstacle Detection

The obstacle detection systems consist of one of the most
important safety aspects for any autonomous vehicle. We
define an ’obstacle’ as a significantly sized object that comes
close to, or intersects the vehicle’s volumetric trajectory. The
volumetric trajectory consists of the bounding volume of
the vehicle projected along its planned path. This includes
overhangs such as the top of a shed door opening, side
obstructions, and objects above a certain size on the ground.
It is very difficult or expensive to outfit a vehicle such that
it is entirely shrouded by a protective sensor curtain that can
detect any object approaching or too close to the vehicle.
As a result, the HMC uses 2D and 3D obstacle detection
systems. These are supplementary systems that run in parallel
and affect the vehicle’s operations in different ways. These
systems are described next.

1) 2D Obstacle Detection: The role of the 2D Obstacle
Detection system is to provide a reactive protective envelope
around the entire vehicle such that the vehicle will reduce
speed and stop as an object approaches. This system is
implemented using scanning laser rangefinders located at
each corner of the vehicle, mounted approximately 1.4 m
from the ground as shown in Figure 4.

These lasers are mounted with a slight downward tilt so
they intersect the ground at around 25-30m. This module
interacts directly with the hardware interface layer module
(HMC Interface) to override any control commands and
reduce the vehicle’s velocity depending on the range of the

object. It has two modes of operation depending on whether
the crucible is on or not. When the crucible is on, it is
detected in the rear laser scans and consequently, a shaped
detection envelope is used instead. In this mode, the vehicle
has a blind spot behind the crucible. In typical operations
with the crucible on, the vehicle will only reverse when it
is dropping off which is less frequent than other operations.
However, we are addressing the blind spot issue as part of
future work.

A second issue with using planar laser scans is that objects
are only detected within the laser plane. Any obstacle above
or below the scan is not detected. As a result, the main
purpose of this system is to detect people close to the vehicle
or nearby infrastructure (e.g. buildings, bollards or parked
vehicles). In operation, the vehicle slows when it approaches
the obstacle, or the obstacle approaches it until either the
object is close enough to warrant the vehicle to halt or it
passes. If the object is too close (approximately 50cm), the
vehicle will remain stationary until the operator intervenes
to remove the object, or drive the HMC around it manually.

2) 3D Obstacle Detection: The 3D obstacle detection
system’s primary purpose is to provide a more thorough
analysis of the path in front of the vehicle. It consists
of a system using a laser mounted above the cabin. The
laser has a horizontal scan plane that intercepts the ground
approximately 25m in front of the vehicle. This allows
approximately eight seconds for the vehicle to come to a halt
if travelling at high velocities around 3.0 m/s. An obstacleis
determined as an object higher than approximately 5cm that
lies in the path of the vehicle. The path is determined from
the vehicle’s current position past the next waypoint. The
system works by accumulating scans as the vehicle travels.
The ground plane is extracted from these scans and any
object projecting from it identified as traversable or not. If
it is not, the system sends a signal to the hardware interface
to stop the vehicle and signal that an obstacle has been
encountered. This signal consists of a flashing light on the
vehicle’s status light stack and sending a message through
the software system. The vehicle remains halted until the
object is removed and the status cleared by the operator via
the safety remote. Manual, rather than automatic clearing
of the status is a safety issue since in general, the vehicle’s
path should be clear and any unexpected object detected may
indicate a problem in that area of the worksite.

C. Mission Controller

The high level mission controller directs the navigation,
tasking and path planning components as shown in Figure 6.
The Mission Controller is responsible for switching between
tasks and monitoring their performance. A task may be “drive
along a section of road”, “drop off the crucible”, “start up
the engine” or even “blow the horn”. Currently a mission
is a sequence of tasks with each task returning its status
during execution. Once a task has finished, the Mission
Controller selects the next task. Contingencies occurring
during task execution cause the Mission Controller to select
the contingency sub-task for that task. For example, a missed



Fig. 6. Overview of the mission control architecture.

crucible pick up will trigger a “missed approach” signal and
the HMC will move away from the crucible and retry the
approach manoeuvre.

The mission controller is a generic component of our
system: only the task implementations are specific to the
HMC. For this reason, it is currently used on several of our
platforms, including an autonomous submarine [3].

D. Human-Robot Interface

The ultimate goal of an autonomous industrial vehicle is
for it to be dependable enough to conduct tasks out of sight
of an operator. To allow this, the vehicle needs to have some
level of offboard control and the ability to report status and
sensor data to a safety supervisor who may be monitoring
several vehicles simultaneously.

The most basic level of offboard control consists of a
remote e-stop that can be manually or automatically trig-
gered. At more advanced levels, the vehicle may be fully
controlled offboard by either a computer or physical interface
(manual control panel and joystick), with full sensor displays,
allowing immersive tele-operation.

Our system consists of a small remote RF portable con-
trol unit that has an e-stop, several programmable function
switches and a range of approximately 150m. The unit sends
a heartbeat signal out periodically which is received by the
onboard RF receiver which is hardwired into the e-stop safety
PLC circuitry on the vehicle. If a signal is not received within
several milliseconds, an e-stop is initiated on the vehicle. We
have programmed the switches to perform the functions of
halting the vehicle, sounding the horn, and resetting from
a ’detected obstacle’ event. The halt function forces the
vehicle to stop moving and freezes all controls. Upon release,
the vehicle will continue from that state. This function is
particularly useful when testing.

The vehicle also outputs data from its internal sensors
(e.g. engine parameters, mast information, brakes etc.) and
external sensors (lasers and cameras) for external viewing.
Visualisation software allows the safety supervisor to monitor
all systems on the vehicle.

E. Object Detection

Object detection in the system consists of detecting the
crucible for pickup operations, and offboard detection and
classification of dynamic objects in the environment. The
pickup system is based on visually recognising the crucible
in the environment [4]. Due to the similarity of the crucible’s
round profile with other objects in the worksite, such as

Fig. 7. The visual fiducials used to uniquely identify the crucible in the
environment.

drums, the crucible is uniquely marked with self-similar
landmarks as shown in Figure 7. Cameras are mounted on the
mast of the vehicle looking rearwards for crucible detection.

The system has different modes of operation depending on
whether the crucible’s location is known or not. If it is, which
would be the case if the location was recorded when it was
dropped off, the cameras are directed to locate the markers
on the handle. Once positively identified, the relative location
of the crucible is calculated with respect to the hook on the
HMC. The vehicle then visually servos to the pickup point
on the crucible where the remainder of the pickup procedure
is managed as a task in the mission controller. If the location
is known only approximately within a 20 by 20 m area, the
system will execute a distributed search plan for the cameras
to locate it. Once they have, a normal visual servo ensues.
This is known as a ’long range’ pickup.

The offboard system is in its preliminary stages at present
and consists of a static webcam monitoring one of the
common areas for HMC operations. The purpose of this
system is to track and classify objects in the scene to
provide the HMC with greater situational awareness and
offboard localisation ability. The system is based on [5],
with enhancements to the classification part of the system.
Basically, the system consists of:
1. Determining the background image
2. Performing background subtraction to highlight moving
parts of the image
3. Merging proximally close moving parts into single blobs
and tracking the blobs
4. Classifying the blobs as either ’vehicle’ or ’person/group’.

The system is capable of tracking and identifying multiple
various dynamic objects in a scene, in sunlight and rain.
It can handle objects being temporarily occluded or objects
crossing paths. Examples of classification are shown below
in Figure 8.

Fig. 8. An example of the various types of dynamic objects tracked. From
left to right - forklift, cyclist in the rain, and a person after egressing a car.



Fig. 9. Traffic cones and chairs used to test the 3D obstacle detection
system.

F. Other Modules

There are many other modules that complete the HMC’s
systems. These include the hardware interface, various safety
systems including physical interlocks and heartbeat checks,
navigation and crucible manipulation. The operation of the
low level interface and safety modules are beyond the
scope of this paper. The navigation module is based on
waypoint traverses through pre-programmed path segments.
The segments are stored in a mission database file and
selected as part of the mission script. The inter-operation
of the mission controller and navigation system is basic
but effective. Picking up and dropping off the crucible are
also basic programmed operations that do not vary once the
parameters encoding the vehicle position versus the mast
motion are tuned.

III. E XPERIMENTS

A. Obstacle Detection

This consisted of testing the 2D and 3D obstacle detection
systems.
2D Obstacle Detection: The 2D tests consist of placing a tall
object in the path of the vehicle during forward and reverse
manoeuvres, for each corner laser. In each case, the vehicle
would slow to a stop as it approached the object. The system
was also tested with people walking towards the HMC from
various peripheral locations. The HMC perfomed as expected
by slowing to a halt as the person approached.
3D Obstacle Detection: The 3D obstacle detection system
was tested with a variety of obstacle shapes and sizes
along different trajectories of the HMC. Example objects
are shown in Figure 9. These objects were placed in the
HMC’s path during a prolonged experiment. The obstacle
detection system correctly determined that each object was
an obstacle which would then halt the vehicle when it was
within approximately 15 m. The safety supervisor removed
the object and reset the ’obstacle detected’ system via a
switch on the safety remote. The vehicle continued until then
next object was found. A screenshot visualising the data on
detection of a non-traversable object is shown in Figure 10.

Tests were also conducted with smaller objects consisting
of chunks of concrete which were considered traversable by
a human operator. In these cases, the vehicle would continue
over them.

Fig. 10. A 2D visualisation of an ’obstacle detected’ event in the 3D
obstacle detection system. The HMC is the yellow object with the grey
crucible attached behind it (left). The HMC’s path is shown as the black
line projected to the right. Environment features are shown in black and
pink with the groundplane as the green dots. Along the vehicle’s projected
path is a red object (traffic cone). Since this object occurs within the width
of the vehicle along its path, it is considered an obstacle.

B. Redundant Localisation

The redundant localisation system was tested around our
main workarea as shown by the blue square in Figure 11. The
area is surrounded by buildings which is well-suited to the
vision-based localisation method described previously. The
main experiment involved simulating a power failure in the
primary laser-based localisation system which reduced its
confidence values ([1]). Upon detecting this, the arbitrator
switched the primary localisation source to the vision-based
localiser and the vehicle continued operations. The laser-
beacon localisation system was then brought back online and
since it produces slightly higher accuracy and therefore is
considered as the primary localisation source, the arbitrator
switched back to using its outputs.

C. Long Duration Experiments

Three significant long duration experiments have been
undertaken in the project to date. They consist of a two,
five, and eight hour trial with the HMC conducting typical
operations.

Fig. 11. The path (yellow) of the 2 hour experiment. The crucible pick
up and drop off occurred in the open area at the end of the path on the left
and the in-shed operations were conducted in the large shed on the upper
right. The 5 hour experiment was conducted in the large area surrounded
by buildings annotated by the blue box.

Five Hour Trial: the purpose of this trial was to test the
integrity of all hardware and software systems continuously
operating over five hours. The experiment was conducted in
the area indicated by the blue square shown in Figure 11.



Fig. 12. Transposition of hook path for 29 crucible pickups undertaken
at one of the pickup locations during the five hour trial. For reference, the
width of the pickup point on the handle of the crucible is approximately
20cm.

The HMC’s task was to pick up and drop off the crucible at
opposite ends of that area with navigation loops in between
tasks. The vision-based crucible detection system was used
for locating and servoing to the crucible during pickups. The
vehicle undertook the five hour test with the only halt being
when the battery on the safety remote had to be replaced.
This triggered an e-stop on the vehicle which was then reset
and it continued on from where it stopped in the mission.
Statistics from this test are shown in Table I. While it is
difficult to determine the accuracy of the vehicle and crucible
localisation systems due to the lack of a reliable ground truth
(GPS is ineffective around built environments mainly due to
multi-pathing), upon analysing the log files recorded during
the test showed a maximum path spread of 0.3m over all
paths with the average being less than 0.2m. The accuracy
of the crucible pickups occurring at one end of the test area,
which represent the accuracy of the vision-based crucible
recognition system is shown in Figure 12.

Two Hour Trial: from the success of the systems tested in
the five hour experiment, a trial was conducted with a longer
traverse path along a narrow road and a crucible dropoff point
inside a shed with a narrow entry and filled with equipment.
This main path is shown in yellow in Figure 11 and the shed
entry in Figure 5.

Three techniques for locating the crucible were tested.
Two were vision-based as described in Section II-E. The
third was based on servoing to the dropoff location of the
crucible recorded from the laser-beacon localisation system.
This provided a test of the accuracy of the laser-beacon
localiser since any error in location would result in the HMC
trying to pick the crucible up from the wrong location.

The mission script required the HMC to autonomously
start up, traverse to the crucible scan location and conduct
a ’long range’ visual pickup. It would then traverse to the
storage shed, drop the crucible off inside, drive out and
conduct a laser-beacon localiser pickup in the shed. It would
then traverse back to the start location, drop the crucible off,
navigate around the area to a point where it would conduct a
normal vision-based crucible pickup. This cycle to and from
the storage shed constituted the remainder of the mission

until the last cycle where the crucible was placed in its
’home’ location and the HMC parked in its shed and shut
down. All phases of the trial were conducted successfully.
More details about the five and two hour experiments can be
found in [4].

TABLE I

KEY STATISTICS FROM THE5 AND 2 HOUR EXPERIMENTS

Experiment Total Dist. Cycle Dist. Velocity Range Cruc. Ops.

5 hr 8.5 km 0.3 km -1.1 : 1.6 m/s 58
2 hr 6.5 km 0.93 km -1.4 : 3.0 m/s 14

Eight Hour Trial: The purpose of this trial was to test
automated door control, 3D obstacle detection and vehicle
scheduling over a shift of normal vehicle operations. The
mission was written such that every hour, the vehicle would
signal an operator to enable the physical safety interlocksto
allow it to conduct a task sequence. The sequence consisted
of starting up in its shed and requesting the shed door to
open via wireless communication to a receiver on the door
built specifically for the purpose. Once the door signalled it
was open, the HMC would move out, request the door to
close and conduct the crucible pickup - navigation - dropoff
cycle described in the two hour trial. Upon completing the
20 minute cycle, it would request the door to open, drive in
and park with a final request to close the door. All operations
were conducted successfully during the eight hours.

IV. D ISCUSSION

It is important for autonomous vehicles operating in
environments with large amounts of infrastructure and in
the presence of dynamic objects to be able to conduct
repeatable, safe, predictable and reliable operations. Dy-
namic objects can manifest as people or vehicles moving
about the environment, sometimes within close proximity to
the robot. To provide the required dependable operations,
the vehicle should have redundant self-monitoring systems
that are fault-tolerant and where possible have redundant
backups. Outside the vehicle, it needs to be ’situationally
aware’ of its surroundings with respect to its task. Local
observations taken from environment sensors such as lasers
may be insufficient to determine potential collisions with
unseen dynamic objects. Offboard systems such as webcams
mounted to infrastructure, or even the perception from other
mobile bases can be used to augment this extra sensing.

We are in the process of providing these functionalities
with the autonomous Hot Metal Carrier project. Many of the
systems described in this paper have been designed to ac-
commodate these requirements. In particular, the localisation,
obstacle detection and object recognition systems. While the
object recognition system is currently offboard the vehicle,
it is capable of tracking and localising dynamic objects
to report back to the HMC. We are currently undertaking
experiments to demonstrate this utility. While the HMC
consists of several basic systems, it has been successfully



conducting autonomous operations over hundreds of hours
of demonstrations and tests. The fundamental systems have
proven reliable, but need to facilitate the redundancy and
situational awareness capbilities mentioned above.
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Figure: A General 2D Autonomous Navigation Scenario.
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Dealing with Measurement Uncertainty

✔ Environmental Estimation: Robotic Mapping

✔ Bayesian approach, widely accepted in robotics

Assuming vehicle path is known (RM):
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, X k

, uk−1
, X0): encapsulates all uncertainty

about the map at time k .
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The Measurement Likelihoods
Widely adopted in the GBRM literature.

Grid Maps:

Gk (Zk = r |Mk = GRID, Xk ) [Elfes, ’89]
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How are the measurement likelihoods calculated ?

Gk (Zk = r |Mk = E , Xk ) ?

Gk (Zk = r |Mk = O, Xk ) ?
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Motivation Summary

Safe autonomous navigation requires accurate map
estimates

✘ In challenging environments (landmarks of various shapes
and sizes) and noisy sensors (radar / sonar), incorporation
of uncertainty in to filter recursion is critical

✘ Occupancy mapping likelihoods appear to have some
inconsistencies

✔ Change the measurement space from range/bearing to
detection/non-detection

✔ Improve robustness of occupancy grid framework to noisy
environments and sensors
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Grid Mapping Example
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The GBRM Problem

pk |k(Mk =[m1, . . . , mW×H ]|Z k
, X k

, uk−1
, X0) =

gk(Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, X k

, uk−1
, X0)

∫

gk (Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, uk−1

, X0)dMk
W

H � Bayesian recursive approach
� Measurement uncertainty
� Map occupancy uncertainty
� Decompose map into W × H independent

estimation problems

pk |k(Mk |Z
k
, Xk ) =

i=W×H
∏

i=1

pk |k(mi
k |Z

k
, X k

)

GBRM requires the propagation of the map occupancy state.
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Current Approach: The Range-based Recursion

The Range-based GBRM Filter

pk |k(Mk =[m1, . . . , mW×H ]|Z k
, X k

, uk−1
, X0) =

gk(Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, X k

, uk−1
, X0)

∫

gk (Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, uk−1

, X0)dMk

State is binary: M = [O, E ]

Prediction: pk |k−1(Mk |Z k−1
, X k

, uk−1
, X0)

Measurement: Zk =range/bearing

Form likelihood: gk(Zk |Mk , Xk )

Bayesian Update: pk |k(Mk |Z k
, X k

, uk−1
, X0)
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Current Approach: The Range-based Recursion

The Range-based GBRM Filter

pk |k(Mk =[m1, . . . , mW×H ]|Z k
, X k

, uk−1
, X0) =

gk(Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, X k

, uk−1
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∫
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, uk−1

, X0)dMk

State is binary: M = [O, E ]

Prediction: pk |k−1(Mk |Z k−1
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, uk−1
, X0)

Measurement: Zk =range/bearing

Form likelihood: gk(Zk |Mk , Xk )

Bayesian Update: pk |k(Mk |Z k
, X k

, uk−1
, X0)
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The Measurement Likelihood: State Dependency

Gk (zk = r |mk ,(x)
= O, Xk )
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The Measurement Likelihood: State Dependency

Gk (zk = r |mk ,(x)
= O, Xk )
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The likelihood of a range measurement conditioned on the
occupancy state and vehicle pose

Q. What is the function that relates mk ,(x)
and Xk to zk , where

zk is range reading?
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A. Use zk = {Detection,No Detection} to get state dependant
measurement equation.
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The Measurement Likelihood: Uncertainty

Gk (zk = r |mk ,(x)
= O, Xk )
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The Measurement Likelihood: Uncertainty
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The Measurement Likelihood: Uncertainty

Gk (zk = r |mk ,(x)
= O, Xk )
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Dealing with detection uncertainty and spurious
measurements.

Q. For no range reading, how is Gk(zk = r |mk ,(x)
= [O, E ], Xk )

defined ?
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A. Use zk = {Detection,No Detection} to have a well-defined
likelihood.
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Current approach: Drawbacks

Grid-based Framework

✔ Estimation state space: Occupancy

✔ Map representation
Measurement Likelihood:

✔ Measurement Noise
✗ State dependent
✗ Detection Uncertainty
✗ Spurious Measurements
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Proposed Approach: Advantages

Grid-based Framework

✔ Estimation state space: Occupancy

✔ Map representation
Measurement Likelihood:

✔ Measurement Noise
✔ State dependent
✔ Detection Uncertainty
✔ Spurious Measurements
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Proposed Approach: The Detection-based Recursion

The Detection-based GBRM Filter

pk |k(Mk =[m1, . . . , mW×H ]|Z k
, X k

, uk−1
, X0) =

gk(Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, X k

, uk−1
, X0)

∫

gk (Zk |Mk , Xk )pk |k−1(Mk |Z k−1
, uk−1

, X0)dMk

State is binary: M = [O, E ]

Prediction: pk |k−1(Mk |Z k−1
, X k

, uk−1
, X0)

Measurement: Zk =Detection / Non-detection

Form likelihood: gk(Zk |Mk , Xk )

Bayesian Update: pk |k(Mk |Z k
, X k

, uk−1
, X0)
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Proposed Approach: The Filtering State-Space
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k kp(z =detection|m )

New (state-dependent)
occupancy measurements
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Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

the measurement likelihood is state-dependant

the measurement likelihood always exists

the measurement likelihood becomes the
detection statistics
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Simulation: Known Likelihoods
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Filter Implementation ?

✔ Likelihoods are landmark dependent
Landmark properties affect its fluctuation model

✔ Likelihoods are detector dependent
Statistical detectors/parameters alter likelihoods

✔ Likelihoods are sensor dependent
Detection theory may differ between sensor - MMWR, LMS,
Camera, Sonar etc. etc.
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The MMW Radar

Operates at 77GHz

Returns unprocessed data allowing for
custom detector design
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The Detection Problem: A Stochastic Approach

✘ Rarely considered in current navigation algorithms

✔ Stochastic detectors exploit statistics of underlying signals

Bearing 1

Bearing 2
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The Detection Problem: A Stochastic Approach

✔ Outperform classically adopted constant thresholds

✔ Detections (and non-detections) are statistically significant
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Detection Statistics
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Detection Statistics

Pd =

∫

∞

0
P[ψRi+r ≥ TRi+r |HO]fµ(µ)dµ

Pn =

∫

∞

0
P[ψRi+r < TRi+r |HE ]fµ(µ)dµ

Pmd =

∫

∞

0
P[ψRi+r < TRi+r |HO]fµ(µ)dµ

Pfa =

∫

∞

0
P[ψRi+r ≥ TRi+r |HE ]fµ(µ)dµ
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MMWR: Stochastic Detection
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At a given range, r , assuming ΩE =µ then,

gk (zk =D|mk ,(r) =O, Xk ) =

∫

∞

0
P[ψr ≥ Tr |HO]fµ(µ̂)d µ̂

gk (zk =D|mk ,(r) =E , Xk) =

∫

∞

0
P[ψr ≥ Tr |HE ]fµ(µ̂)d µ̂

Introduction The GBRM Framework Case Study: MMW Radar Map Estimation Conclusions & Future Directions

MMWR: OS-CFAR Likelihoods
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Assume v(ΩE ) is IID,

gk(zk =D|mk ,(r) =E , Xk)=K

Analgous to data association threshold

✔ χ

2 test accepts a correct assignment with a fixed probability
✔ CFAR test accepts an incorrect assignment with a fixed

probability
✔ Both threshold give no information of the converse
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MMWR: OS-CFAR Likelihoods

gk(zk =D|mk ,(r) =O, Xk )=

(

1 +
Tr

1+
¯
�r

)

−2W

where,

Tr = τµ̂r

τ = arg min
τ

(

kos

(

2W
kos

)

(kos − 1)!(τ + 2W − kos)!

(τ + 2W )!
− Pfa

)

µ̂r = Ψos,kos

Ψos = sort([ψr−G−W , . . . , ψr−G] ∪ [ψr+G+1, . . . , ψr+G+W ])

�̄r =
ψr − µ̂r

µ̂r
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MMWR: Evaluating the Likelihoods

pk |k(mk ,(x)
=O|zk

, X k
) =

gk(zk |mk ,(x)
=O, Xk )pk |k−1(mk ,(x)

=O|zk−1
, X k

)

pk |k(zk |mk ,(x)
, X k

)

Likelihood Filter

Discrete probabilistic Binary Bayes Filter
Discrete evidential Dempster-Shafer Evidential Filter
Continuous probabilistic if Gaussian - Kalman Filter

if non-Gaussian - Particle Filter.
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MMWR: Discrete Probabilistic GBRM Filter

Pk |k(Mk = O|zk ,(r) = D) =

ZPd
Pk |k−1(Mk = O|Zk−1)

ZPd
Pk |k−1(Mk = O|Zk−1) + ZPfa

Pk |k−1(Mk = E |Zk−1)

Pk |k(Mk = O|zk ,(r) = D̄) =

ZPmd
Pk |k−1(Mk = O|Zk−1)

ZPmd
Pk |k−1(Mk = O|Zk−1) + ZPnPk |k−1(Mk = E |Zk−1)
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MMWR: Discrete Evidential GBRM Filter

mm(C) =

∑

A∩B=C
mz(A)mm(B)

1−
∑

A∩B=∅

mz(A)mm(B)

mz(mF
k |zk = D̄) =

ZPmd

ZPmd
+ ZPn + ZPu

mz(mE
k |zk = D̄) =

ZPn

ZPmd
+ ZPn + ZPu

mz(mU
k |zk = D̄) =

ZPu

ZPmd
+ ZPn + ZPu

mz(m∅

k |zk ) = 0
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MMWR: Continuous Probabilistic GBRM Filter

pk−1|k−1(ok−1,(r)|z
k−1
(r) ) ≈

N
∑

i=1

w (i)
k−1,(r)δo(i)

k−1,(r )
(ok−1,(r))

where,

ot−1,(r) =

[

mk−1,(r)

λk−1,(r)

]

o(i)
k ,(r) ∼ q(ok ,(r)|o

(i)
k−1,(r), zk ,(r))

w (i)
k ,(r) = w (i)

k−1,(r)

p(zk ,(r)|o
(i)
k ,(r))p(o(i)

k ,(r)|o
(i)
k−1,(r))

q(o(i)
k ,(r)|o

(i)
k−1,(r), zk ,(r))
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MMWR: Continuous Probabilistic GBRM Filter

p(mk−1,(r)|z
k−1
(r) ) ∼ p(mk−1,(r) = 1|zk−1

(r) ,Π)

pk |k−1(λk ,(r)|z
k−1
(r) ) = pk−1|k−1(λk−1,(r)|z

k−1
(r) )

q(o(i)
k ,(r)|o

(i)
k−1,(r), zk ,(r)) = p(o(i)

k ,(r)|o
(i)
k−1,(r)).

p(zk ,(r)|o
(i)
k ,(r)) =

p(ψr |m(r) = 1,ΩO)

p(ψr |m(r) = 0,ΩE)

ôk ,(r) =

N
∑

i=1

w (i)
k ,(r)o

(i)
k ,(r).
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Testing Environment

Figure: Testing Ground overview with corresponding scan maps
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Testing Environment

Figure: Carpark binary ground-truth GB map.
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GBRM: Error Quantification

Vector Map Comparison

Sum of Squared Error (SSE) common [Martin, ’96], [Collins ’98],

[Rachlin, ’05]
q

∑

i

(mi − m̂i)
2

✗ Not applicable to outdoor environments

NASSE = 0.5
(

1
qO

qO
∑

i=0

(

P(mi
k |z

i ,k
, mi

=1)− 1
)2

+

1
(q− qO)

q
∑

i=qO+1

(

P(mi
k |z

i ,k
, mi

=0)− 0
)2

)
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GBRM: Error Quantification
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Figure: Grid-based error metric comparison with localisation error.
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Discrete Probabilistic Implementation

Figure: Discrete probabilistic detection filter (left) and discrete range
filter (right).
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Discrete Probabilistic Implementation
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Figure: Discrete probabilistic detection vs range likelihood NASSE
comparison.
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Discrete Evidential Implementation

Instantaneous mass distributions on the map.
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Discrete Evidential Implementation

Discrete evidential detection filter (left) and discrete range filter (right).
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Discrete Evidential Implementation
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Continuous Probabilistic Implementation

Continuous detection filter (left) and discrete range filter (right).
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NASSE Comparisons

NASSE comparison.
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NASSE Comparison vs. Detector Parameter
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Figure: Continuous detection vs range likelihood NASSE vs sliding
window width.
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Campus Results

Figure: Campus excerpt map estimate
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Campus Results

Figure: Comparison of radar and laser posterior grid map estimates
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Campus Results

Figure: Campus excerpt map estimate
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Campus Results

Figure: Campus excerpt map estimate
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Conclusions

Autonomous safety is highly dependant on accurate
environmental representation

✔ Error of estimated grid maps can be reduced by
incorporating the measurement uncertainty directly into the
measurement likelihood

✔ Changing measurement space to detection/non-detection
makes the likelihoods physically intuitive

✔ Likelihoods derived and mapping filters implemented using
a MMWR sensor

✔ Improved mapping accuracy, particulary in situations of
high false alarm and missed detection probability

Introduction The GBRM Framework Case Study: MMW Radar Map Estimation Conclusions & Future Directions

Future directions

Extend detection recursion to other sensing modalities

For radar: Develop the EKF - Evidential Kalman Filter
(Continuous evidential likelihoods)

Extend to feature extraction algorithms - estimating the
probability of feature existence

Introduction The GBRM Framework Case Study: MMW Radar Map Estimation Conclusions & Future Directions
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Abstract—Localizing a vehicle consists in estimat-
ing its state by merging data from proprioceptive sen-
sors (inertial measurement unit, gyrometer, odome-
ter, etc.) and exteroceptive sensors (GPS sensor). A
well known solution in state estimation is provided
by the Kalman filter. But, due to the presence of non-
linearities, the Kalman estimator is applicable only
through some alternatives among which the Extended
Kalman filter (EKF), the Unscented Kalman Filter
(UKF) and the Divided Differences of 1st and 2nd order
(DD1 and DD2). We have compared these filters using
the same experimental data. The results obtained aim
to rank these approaches by their performances in
terms of accuracy, confidence and consistency.

I. Introduction

In the intelligent vehicle applications, the extended
Kalman filter (EKF) has unquestionably been up to now,
the dominating state estimation technique [1], [2]. More
recently, some new methods have been developed in order
to improve the nonlinear estimation. They include some
other variants of the Kalman filter such as the Divided
Differences of first and second order (DD1 & DD2) [3],
[4] and the unscented Kalman filtering (UKF) [5]. The
principle of these new approaches is based on the lin-
earization of the process and measurement functions by
statistical linear regression functions, through sampling
points in the region around the state estimatee.
Up to now there is not much work related to the com-
parison of performances of the more recent filters. A
study carried out in [6] aims to evaluate some Kalman
filter variants (EKF, DD1, DD2, UKF) capacities to
linearize the process and measurement models. This work
theoretically compares the filters’ performance separately
for the prediction step and the correction step, but does
not analyze their overall performances. [7] shows the
performances of these estimators (EKF, DD1, DD2 and
UKF) in their predictive steps in road vehicles localiza-
tion. The objective of this paper is to complement the
work already carried out in [7] by taking into account
the overall localization process (both the predictive and
corrective steps). In order to ensure the comparison be-

tween these methods, two criteria of performance are set
and applied. The first criterion concerns the evaluation
of the accuracy of each method. We use a reference
trajectory provided by a centimetric RTK GPS. The
next studied criteria relate to the size of the 2σ scaled
confidence envelops, the 2σ uncertainty ellipse areas and
the Normalized Innovation Squared (NIS), from which
each filter consistency will be deduced. This paper is
organized as follows. Section 2 provides an overview of
the Kalman Filter approaches (EKF, UKF, DD1, DD2)
for nonlinear estimation. Section 3 presents the system
modeling and the comparison criteria that we use in
this work. In section 4, we describe the experimental
environment and analyse the results of the 4 filters.

II. Review of the Kalman Filter Approaches
for nonlinear Estimation

A. The Extended Kalman Filter (EKF)

The main difference between traditional and extended
Kalman filter appears in the computation of the various
matrices. In the KF, the process and the measurement
matrices are composed of ”true” linear functions; whereas
in the EKF, these matrices (called Jacobian matrices) are
composed of Taylor first order linearized functions.
Although the EKF has been shown reliable in many
practical driving situations, it has some well known
drawbacks. A major one concerns the hypothesis related
to the point of the linearization. Theoretically, the non-
linear process function f is linearized around the true
current state. But in the implementation, this function is
linearized around the estimated value of X , leading to an
additional error [7]. Moreover, another evident limitation
of this filter concerns the possibility of computation of
the Jacobian matrices. For very complex systems, strong
nonlinearities can generate system instability problems;
therefore the theoretical calculation of these matrices
can simply become impossible, for example when the
process or measurement functions are non-differentiable.
However for intelligent vehicles applications, most of the
used functions are differentiable, so the main drawback



concerns linearization. In order to bypass these limita-
tions, some other methods based on a derivative free
approach are presented in the following. These methods
are shown often more powerful than the EKF and include
UKF [5], DD1 & DD2 [4].

B. The Unscented Kalman Filter (UKF)

The UKF is an application of the unscented Transfor-
mation to a mean square recursive estimation [5]. This
tranformation is a method for calculating the statistics
of a random variable that undergoes a nonlinear process.
We consider a random propagating variable X through a
nonlinear function, Y = f(X). A set of sigma points with
mean X̄ (mean of X) and covariance Pxx (covariance of
X), is deterministically chosen. The nonlinear function f
is applied to each point to yield a cloud of transformed
points with statistics Ȳ and Pyy. The n-dimensional
random variable X is approximated by 2n+ 1 weighted
sigma points.
This transformation is built following the steps below:

• The sigma points are propagated through the non-
linear function. For i = 0, · · ·, 2n

Yi = f [Xi] (1)

• The mean is calculated as the weighted mean of the
transformed points:

Ȳ =

2n
∑

i=0

WiYi (2)

where Wi is the weight of the ith point.
• The covariance is obtained according to Eq. 3

Pyy =
2n
∑

i=0

Wi[Yi − Ȳ ][Yi − Ȳ ]T (3)

C. The Divided Differences Kalman Filter of first and
second Order (DD1 & DD2)

These filters’ formulations were proposed by Norgaard
et al [4]. Both are based on the Stirling interpolation
(presented in the following), and their implementation
methods are very similar. In the DD1, we are limited
to the 1st order interpolation, and in the DD2 the func-
tions are linearized at the 2nd order. The DD1 & DD2
filters differ from the EKF in the fact that the Jacobian
matrices are replaced by divided differences. Therefore
the correction steps are the same. The main difference
appears in the filters’ covariance matrices update.
In the EKF we used to linearize the function from a
Taylor series development of first order. In order to
implement the Sterling interpolation two operators are
defined. Let us consider a one dimensional interval with
length ξ:

δf(X) = f(X +
ξ

2
) − f(X −

ξ

2
) (4)

µf(X) =
1

2
(f(X +

ξ

2
) + f(X −

ξ

2
)) (5)

The Stirling interpolation formula is obtained by apply-
ing both the above operators to the mean value µX rather
than directly to X . The second order interpolation gives

f(X) ≃ f(µX)+f ′

DD(µX)(X−µX)+
f

′′

DD(µX)

2!
(X−µX)2

(6)
where µX is the mean value of distribution X and

f

′

DD(µX) =
f(µX + ξ) − f(µX − ξ)

2ξ
(7)

f

′′

DD(µX) =
f(µX + ξ) + f(µX − ξ) − 2f(µX)

ξ

2
(8)

During the DD1 and DD2 filters implementation, a
Householder triangulation is introduced, in order to
compute the characteristic divided difference matrices.
These matrices are then used in order to get the process
and measurement noise covariance matrices, as well
as the predicted and corrected state error covariance
matrices. More details can be found in [4], [6], [7].

III. System modeling and Comparison criteria

A. Vehicle model and GPS model

All the filters that are compared are based on the
kinematic model presented in equation 9.


































xk|k−1 = xk−1|k−1+

VkTcos(ψk−1|k−1 + T ψ̇k/2)cos(δk)

yk|k−1 = yk−1|k−1+

VkTsin(ψk−1|k−1 + T ψ̇k/2)cos(δk)

ψk|k−1 = ψk−1|k−1 + ψ̇kT

(9)

where T is the time period, [xk, yk]
′

is the position vector,
Vk is the vehicle velocity and δk is the steering front
wheel angle. This angle is used to take into account
the kinematic constraints on the vehicle [8]. ψk and ψ̇k

represent the yaw angle (heading) and the yaw rate,
respectively.
The GPS observation model is linear and is the same for
all filters, with the corresponding observation matrix

H =

[

1 0 0

0 1 0

]

(10)

B. Comparison criteria

In ordre to evaluate and then compare the presented
filter performances, many measures can be used. In this
work, we focused on the accuracy measure, the confidence
on the outputs and then the consistency of various filters.

• Accuracy: For our localization application it is
more appropriate to use as accuracy measure, the
Average Euclidean Error AEE [9] defined as

AEE(X̂) =
1

M

M
∑

i=1

√

X̃

T
i X̃i (11)



Where M is a number of trials, X̃ = X − X̂ is
the estimation error, X is the real state vector and
X̂ is its estimatee. AEE is chosen because it better
approximates the true mean error, that means the
true average Euclidean distance between the real
value and the estimatee.

• Confidence in the output:

– Firstly, we focus on the 2σ confidence envelopes
in order to evaluate the level of confidence we
can have on each filter’s output. Evaluating
the various filters uncertainties can derive in
the consistency of each filter’s estimated error
assessment.

– Secondly, the 2σ uncertainty ellipse areas are
considered. In fact, the results of the filters are
given a posteriori with an uncertainty symbol-
ized by an ellipse. In order to obtain the size
of the axes of these ellipses, it is necessary
to compute the eigenvalues of the covariance
matrix P . These values are weighted with a
factor k =

√

−2 log(1 − Pa), where Pa is the
membership probability [10].

• Consistency: Various filters’ consistency is studied.
A state estimatee X̂ with covariance matrix P is
called consistent if it satisfies equation 12 [6], [11].

E

[

(

X − X̂

) (

X − X̂

)T
]

≡ E

[

X̃X̃

T
]

≤ P (12)

The Normalized Innovation Squared (NIS) measure,
ǫ, is used [11] to characterize the filters’ consistency.

ǫ = z̃

T
S

−1
z̃ (13)

z̃ is the filter innovation and S the innovation covari-
ance matrix. Under the hypothesis that the filters
are consistent and approximately linear-Gaussian, ǫ
is χ2 (chi-square) distributed with dim(Z) degrees
of freedom. The average value of the NIS ǫ then
tends toward the dimension of the observation vector
Z = [xGPS , yGPS]

E[ǫ] = n, with n = 2 (14)

Therefore, a filter will be called consistent, if the
average NIS is less or equal to 2.

IV. Experimental results

A. Test track and collected data

The tests carried out in this work used real data
collected with It is assumed that the slope and bank
angles remain negligible. The experimental data used in
equation 9 were directly provided by an inertial measure-
ment unit Crossbow VG400 (yaw rate ψ̇), an odometer
fixed to the front axis (vehicle speed V ) and a coder that
recorded the steering angle at the front wheel (δ). A low
cost GPS directly provided correction data and initial
states. The state noise was derived from various sensor
noises. In our experiment, we have σodometer = 0.005m/s

and σgyro = 0.05rad/s. The complete track has a length
of approximately 5.5km. During the tests, the reference
trajectory was obtained by using a fusion of a very
accurate INS and a RTK1 GPS (Thales).
During the first scenario (complete test track, see figure

Fig. 1. Test track in scenario 1

Fig. 2. Zoom on Forest Area in scenario 1

1), all the sensors were synchronized thanks to GPS
timestamps, and the system provided an output at the
frequency of 5Hz. In the area surrounded by trees (see
figure 2 around (400,−500)) the GPS points have an
error of more than 10m from the reference.
The second scenario took place on a part of the road

track described in figure 3. During this scenario, the
GPS sensor was switched off from time to time. During
such periods, the localization was performed with only
proprioceptive sensors and the filters ran in the predictive
step. The update was performed only in presence of GPS.

B. Accuracy

1) Scenario 1: Figure 4 presents the positioning Eu-
clidean errors for the 4 presented methods. The methods
show rather comparable errors.Table I presents the mean

1
Real Time Kinematic
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110s
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Fig. 3. Filters localization in scenario 2

Fig. 4. Euclidean positioning error in scenario 1

and maximum values of the Euclidean errors. The anal-
ysis of this table brings a confirmation of what figure 4
indicates. The performances of the EKF, UKF, DD1 and
DD2 filters are globally similar (2.91%difference). When
we focus on these results, we can notice that EKF and
DD1 have the same mean error 3.093m, they appear
globally more accurate than UKF and DD2 (mean AEE
3.186m and 3.185m).
Nevertheless the max values of the error, which are
reached in the area in figure 2 (from 125s to 220s),
reveal that the UKF and DD2 have a better behavior.
This result contrasts with the global performance order
established from mean AEE, the reason for this is in the
following. In fact, this area is characterized by very poor
quality GPS data combined with strong nonlinearities

TABLE I

Mean and max AEE in scenario 1

Method Mean AEE (m) Max. AEE (m)
EKF 3.093 15.274

UKF 3.186 14.732

DD1 3.093 15.273

DD2 3.185 14.732

in the prediction (strong turns in the trajectory). In
such situations filter outputs are more influenced by
the predictive step. UKF and DD2 better handle such
nonlinearities and are less influenced by updating GPS
data. Considering Table I, the second order filters (UKF
and DD2) are slightly more accurate (respective max
AEE 14.732m) than first order filters (EKF max AEE
15.274m, DD1 max AEE 15.273m) in such a situation.
But in each group the filters behave very similarly.
To conclude, it appears that following given situations,
EKF and DD1 have better performances than UKF and
DD2 and vice versa. But globally, first order filters are
recommended for such a scenario.

GPS outage

Fig. 5. Euclidean positioning Error in scenario 2

2) scenario 2: The Euclidean positioning error in this
scenario is shown in figure 5. First of all, it is remarquable
that in presence of GPS signal, all the methods show
rather comparable errors (like in scenario 1). Important
differences appear when GPS is switched off. This is an
interesting illustration of the theory : in fact, these filters
are theoretically different in the manner they handle the
nonlinear process fonction. These theoretical differences
are presented in [6] and [7].
In this scenario, the common GPS observation model is
linear. Thus, the correction stage will not show important
differences between filters. However, during the GPS
outages, figure 5 confirms that EKF and DD1 (first order
filters) react similarly and are more accurate than UKF
and DD2, which are also similar.
During the first GPS outage, EKF and DD1 mean AEE
(4.89m and 4.73) is almost 1m lower than DD2 and
UKF mean AEE(5.73m and 5.75m). The maximum AEE
has the same order. During the second GPS outage, the
AEE differences are reduced to about 15cm for the mean
values and 50cm for the max. But the first order filters
are still more accurate. Figure 6 presents the X-axis and
Y-axis positioning error. It reveals that the difference
on the X-axis is more important than on the Y-axis.
The explanation is found in the modeling error and the
cumulated error of second order filters DD2 and UKF. In
presence of trajectory non linearity, these filters react as



TABLE II

Mean and max AEE during GPS outages (scenario 2)

Method GPS outage 1 [10 − 75s] GPS outage 2 [110 − 135s] GPS outage 3 [210 − 270s]

meanAEE(m) maxAEE(m) meanAEE(m) maxAEE(m) meanAEE(m) maxAEE(m)

EKF 4.89 11.95 4.87 19.53 7.58 14.50

DD1 4.73 11.56 4.88 19.59 6.68 13.23

DD2 5.73 13.05 5.02 20.08 6.96 13.48

UKF 5.75 13.00 5.02 20.08 6.93 13.48

if the vehicle turns earlier than it should be (see figure
3). In fact, the bias between the first order filters and the
second order filters comes from the way the estimatee
is computed. Using velocity and heading, the primary
computation is done in the polar space and the result is
returned in the Cartesian space. This polar to Cartesian
conversion problem was handled in [7], and it derives in a
cumulative error for second order filters, which is visible
on figure 3.
During the third GPS outage, the filters still react
similarly with very close errors, except for EKF which
is 1m worse. Examining figure 6, we can see that all
the filters deviate progressively on the Y-axis (from
210s). However, EKF deviates more than the others.
Considering that the road configuration is linear here,
this deviation comes from the sensors noise modeling
(gyro) and the inadequate initialization before the GPS
was switched off. The results given in table II reveal
that, considering the defects cited above (sensors noise
and inadequate initialization), DD1 is more accurate and
shows a better robustness than EKF and second order
filters in such situations.

Fig. 6. X-axis (top) Y-axis (middle) positioning error and 2σ

uncertainty ellipse areas (bottom)

C. Consistency

1) Scenario 1: In order to study the confidence in
those estimatee, we compute the 2σ scaled envelopes
provided by each filter (95% probability region). On
figures 7 and 8 we superposed the positioning axis error

Fig. 7. X-axis 2σ envelope and error in scenario 1

Fig. 8. Y-axis 2σ envelope and error in scenario 1

and the associated 2σ envelope. For all the filters, we
can see that the estimation error on each axis is most of
the time inside the corresponding envelope. This means
that globally, the error estimatee given by the filters
through their covariance matrices is consistent with the
real positioning estimation error. The forest area is an
exception. With poor quality GPS data, filter envelopes
grow considerably (see figures 7 and 8), deriving in a
loss of confidence in the estimation. However all the
filterenvelops are almost identical.
Figure 9 shows the NIS of the position innovation nor-
malized to a 95% probability region, assuming a χ2 dis-
tribution. Most of the time the normalized NIS of EKF,
UKF, DD1 and DD2 are below 2.0. This means that



Fig. 9. Filters NIS in scenario 1

the estimated filter uncertainties are most of the time
consistent with the true estimation error, considering
95% probability region. Once more an exception appears
in the forest area (from 125s to 220s), where NIS values
are often above 2.0. This last measure confirms that of
the 2σ envelopes: the four filters behave similarly, the
differences between their errors and their uncertainty are
very small.

2) Scenario 2: The confidence of the presented filters
output is tackled under the 2σ uncertainty ellipses anal-
ysis. Figure 6 (bottom) shows the filters ellipse areas. It
reveals that the uncertainty ellipse areas grow consider-
ably during GPS outages. During the first outage period
[10−75s], these areas almost reach to 2000m2. During the
other GPS outage periods the maximal areas are around
1000m2. The behavior of various filters is very similar:
the uncertainty is low when correction data are used, and
high if not.
The uncertainty growth is more important during the
first GPS outage. This part of the scenario is character-
ized by multiple trajectory nonlinearities combined with
a long period without correction. During the second GPS
uncertainty, the trajectory is highly non linear, and the
outage lasted 25s. The growth here is comparable to that
during the third outage (linear, 60s). These observations
reveal that the uncertainty ellipse areas growth is also
a fonction of the system non linearity: the stronger the
nonlinearity, the stronger the growth.

V. Conclusion

In this paper an experimental comparative study of
4 Kalman based localization approaches (EKF, UKF,
DD1, and DD2 filters) were presented. Previous works
[6], [7] exhibit major differences as well as similarities
between those filters. [6] shows theoretical differences
whereas [7] analyses practical differences during the pre-
diction steps. Nevertheless practical experiments taking
into account the whole localization process (both predic-
tion and correction steps) exhibit minor differences. The
differences observed during the prediction step in terms

of accuracy and uncertainty (due to the linearization or
the use of the sigma points) are strongly reduced during
the correction step.
According to our experiments, the choice of a given filter
will depend on the situation: this means, the presence
and the quality of correction data, or the presence of
strong nonlinearities on the trajectory. Therefore

• if there is no GPS signal outage for a long time
during the navigation, or if the GPS signal is of
good quality (if the correction step runs efficiently),
then it is not easy to propose a favorite filter. The
use of one or another among the presented filters
brings almost insignificant amelioration in terms of
accuracy, as well as the confidence of each estimatee.

• if the GPS signal is of poor quality, in presence
of strong nonlinearities we should consider UKF or
DD2 which seem more robust in such situations.

• if the GPS signal is absent for a long time, the EKF
or the DD1 are recommended as mentioned in [7],
but our study also reveals that DD1 remains, to our
best tunings, the most robust filter among the four.

In further work, these filters will be compared to other
estimators which are theoretically assumed more robust,
such as multiple model filters or Monte Carlo filters.
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Abstract — this paper describes a predictive lane detection 
method with assistance of road geometry data from digital 
road map to simultaneously estimate road shape and vehicle 
localization. In our approach, visual information is not the 
only source to detect lane and estimate road parameters, the 
road geometry information derived from digital road map has 
also been providing important predictive cues for lane 
detection. Comparing with the conventional vision-only based 
approaches, our system is able to provide more reliable and 
stable road geometry estimation result. In addition, a precise 
longitudinal localization can also be achieved through the 
piecewise polynomial matching algorithm. Simulative and 
real road tests under various environmental conditions have 
shown the effectiveness of the proposed method.  

I. INTRODUCTION 
 ITHIN the last two decades, lane detection is one of 
the primary research topics in advanced driving 

assistance systems (ADAS). Lane detection primarily works 
for vehicle’s lateral control systems, namely, Lane 
Departure Warning System (LDWS) and Lane Keeping 
Assist System (LKA) to estimate vehicle position and 
posture relative to road lane. Although some works utilize 
LIDAR or RADAR to detect roadside boundary, or uses 
embedded magnetic markers in the road way, the 
predominant approach by far is the use of video camera and 
image processing to extract the land and road edge markings 
from the image – exactly what human drivers do in visually 
processing the road scene. 

So far, exiting works in vision based lane detection 
literature generally refer to a lane model consisting of 
camera model and road shape model. Most of the approaches 
are conduced to calculate related road shape parameters and 
trace lane boundaries in a recursive prediction-updating loop. 
Widely adopted methods for road parameters estimation are 
Kalman Filtering (KF), Extended Kalman Filtering (EKF) 
and Particle Filtering (PF) techniques. Road model is 
another argumentative topic in the field of lane detection. 
Straight line is the simplest road shape model, but is also 
erroneous for non-straight or non-flat road. Recently most 
approaches prefer to use piecewise line segments with the 

 
C.H. Wang, Z. Hu, and K.Uchimura and are with the Graduate School of 

Science and Technology, Kumamoto University  
Graduate School of Science and Technology, Kumamoto University, 

2-39-1, Kurokami, Kumamoto, Japan, 860-8555 
(e-mail: wang@navi.cs.kumamoto-u.ac.jp, hu@cs.kumamoto-u.ac.jp 

uchimura@cs.kumamoto-u.ac.jp and shun@navi.cs.kumamoto-u.ac.jp, ). 
 
 

assumption of flat road surface, such as piecewise lines, 
circular [3], clothoid [4], polynomial approximation and so 
on. Although some more precise models like 
three-dimensional (3-D) road shape [5] could gain accuracy 
describing lane variance in both horizontal and vertical, it 
surfers from the high computational cost and high sensitivity 
to noise on the contrary. 

The most difficult challenge for vision-based approaches 
is the robustness to different environment condition. Various 
meteorological and lighting conditions (day, night, sunny, 
rainy, snowy), road environmental conditions (occlusion, 
degraded road markings) significantly influence the 
estimation results. Most of the previous works depend on 
occupancy rate of proposed road model points and actual 
road features (edges or lane markers) on the image to 
evaluate result’s accuracy. However, even with high 
occupancy rate, the estimated road shape model may not be 
accurate if two or more parameters are problematic. For 
example, on a curve road, if road width is estimated wider 
than its true value and road curvature is slightly bigger, we 
can still observe the image matches perfectly with the 
estimated road shape model. 

To solve the problems mentioned above, a Predictive 
Lane Detection (PLD) algorithm is proposed in this paper. 
PLD is a hybrid solution composing of prediction module 
and visual detection module. The prediction module for road 
geometry is estimated by vehicle localization and road 
network, because it performs more reliable and robust for 
road prediction than the previous vision-only based 
approaches (example shown in Fig.1). In addition, 
prediction is also used for lane tracking on noisy image by 
limiting the detection zone on the image close to camera.  

 
Fig. 1: The result of road geometry estimation projected on real scene 

without visual detection in stormy weather 
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The paper is outlined as follows: section II describes our 

approach for PLD with constrains, road model and algorithm 
procedure. Section III discusses road geometry estimation in 
detail relying on present digital map. And Section IV 
introduces visual detection modules and how to analyze the 
parameters in each module. Hybrid results are presented in 
the finally section. 

II. OUR APPROACH 

A. Constrains  
In our project, we utilize 2-D digital road map to 

reconstruct front road geometry for lane detection. And 
roadside variance in vertical plane is ignored here. In order 
to achieve our goal for PLD, we develop an image-based 
approach by taking following constrains into account. 

i. It must collaborate with vehicle localization module, 
which is required for high accuracy and real-time 
performance.  

ii. Local road network (2-D map, 3-D map) should be 
included unless a more precise approach could support 
for road information in detail. 

iii. In our approach, Vehicle Coordinate System (VCS) and 
Camera Coordinate System (CCS) are regarded as same 
coordinate system, because we set GPS’s antenna, 
Gyroscope and camera in the same plane.  

iv. The algorithm in this paper assumes in a horizontal 
plane and the road’s vertical curve is ignored. But the 
vertical part could also be recovered as long as 3-D map 
employing in system. 

v. The rolling angle of vehicle is set as constant value.  

B. Road Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Relationship between vehicle and road from bird’s-eye view  
 
Since road model could figure lane mark’s position and its 

variety in VCS (see Fig. 2), how to define a road model 
precisely is a key problem for most lane detection. In our 

approach, we could replace lane’s variety part with road 
geometry estimation. As the original reference information 
(road width and vehicle’s offset) is also included in road 
model, road model for PLD is defined as following equation:  

 
௑ܸሺ݀ሻ ൌ  േ0.5ܹ ൅ ܺ௢௙௙ ൅  ௑ሺ݀ሻ            (1)ܪܥ

 
- ௑ܸሺ݀ሻ: is the position in latitudinal direction of VCS; 
- ܹ: is the width of lane;  
- X୭୤୤: is the lateral displacement in vehicle coordinate 

system; 
- CHXሺdሻ: is lane variety in latitudinal direction of VCS; 
- d: is the distance along the road network; 

 
௑ሺ݀ሻܪܥ  is a crucial part driven from road geometry. 

Comparing to other models by visual detection, our 
approach utilizes the reference points from road network in 
2-D plane directly, which should be more reliable than 
points of image-based. The road geometry is recovered 
relying on vector of distance. It could simulate road 
geometry not only in latitudinal direction but also in 
longitudinal direction which used to be ignored by many 
approaches. Besides, lane width and lateral displacement are 
detected by visual detection module. 

C. Algorithm Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Procedure chats of Predictive Lane Detection 
 
Figure 3 presents the system block diagram. In prediction 

module, vehicle localization is estimated based on vehicle 
motion model with supporting with GPS and DR sensors. 
Digital road map is not only applied Map Matching (MM), 
but also provides node points of road network. In the step of 
road geometry estimation, new reconstruction approach 
based on route distance is designed for various road 
networks. Before visual detection, the PM could offer 
information of road geometry as soon as possible. 

In Visual Detection Module (VDM), system will refer to 

GPS & DR sensors Vehicle Localization 

2D Digital Map Road Geometry Estimation

Camera WP Module 

Results

Predication Module (PM) 

Visual Detection Module (VDM) 

YL Module 

X 

Ψ

Y 
VX 

VY 

W 

ܺoff 

ሺ ௑ܸሺ݀ሻ, ௒ܸሺ݀ሻሻ 

ሺCHXሺdሻ, CHYሺdሻሻ

d 

ܴܲሺ݊ሻ

 ሺ݊ሻܮܲ



 
 

 

the information from PM first. It will help to confirm the 
processing area avoiding noise’s influence. And the error 
causing by road geometry should be considered in PW 
(vehicle Pitch angle and road Width) module and YL 
(vehicle Yaw angle and vehicle Lateral displacement) 
module. These two modules are proposed to analyze feature 
points for related parameters. 

III. PREDICTION MODULE 
In section II, we have mentioned the road model (Equ.1) 

as crucial part for lane detection. Lane variety used to be 
recovered by image-based points with various models, such 
as circular, clothoid or polynomial ways.  Because road 
parameters are very sensitive from reference points through 
image processing, we try to rebuild road geometry by 
utilizing vehicle localization and digital map.  It is supposed 
to be a robust way to acquire the road parameters reliable 
and stable.  

Since vehicle localization and digital map were 
introduced by many papers [7], [8], [9], it is no necessary to 
discuss these technologies in detail but know about the 
information from this module. Position and orientation 
ሺv_xሺkሻ, v_yሺkሻ, v_oriሺkሻሻare given by localization system 
with time sequence k. Road node points ሺr_x, r_yሻ consisting 
for road network are provided by digital map. 

A. Road Geometry Reconstruction 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Road geometry reconstruction in VCS 
 
First of all, the node points should be transformed into 

VCS (see fig. 4). Vehicle always locate at origin point by 
tangent with road network. Node points in front of car, could 
figure out a general road’s direction within certain distance. 
Polynomial method is chosen to approximate to real road 
because it is flexible to reconstruct any kinds of road. If road 
points by a selected route, we could simulation any road 
geometry by polynomial method. Furthermore, road 
geometry will be changed with vehicle following on the road 
network. So this method could express the road geometry 
precisely and timely. 

The traditional method for polynomial is set up a 
relationship between V୶  and VY  directly. It relies on the 
order of polynomial and the number of node points. So it is 
hard to recover geometry accurately especially in some 

situations such as intersection and U-turn. 
 Here, we consider the polynomial in low-order and route 

distance is chosen as variety vector for recover V୶  and VY 
independently. This method could simulate geometry as to 
practical situation and be realized easily by the way of 
mean-square. Although computational expense for  CHXሺdሻ 
and CHYሺdሻ estimation are increases for double, it could 
recover the geometry in a low-order and high precision.  

 
௑ሺ݀ሻܪܥ                          ൌ ∑ ሺ݅ሻ݀௜௡ܣ

ଵ                          (2) 
௒ሺ݀ሻܪܥ  ൌ ∑ ሺ݅ሻ݀௜௡ܤ

ଵ                          (3) 
 

ሺ݅ሻܣ - : is the polynomial parameters in latitudinal 
direction of VCS; 

ሺ݅ሻܤ - : is the polynomial parameters in longitudinal 
direction of VCS; 

- d: is the distance along the road network; 
 

The road network near to intersection is selected here and 
figure 5 expresses the procedure of our approach for road 
geometry estimation. Fig. 5(a) is the original data of vehicle 
localization (△) and road node points (*) in local coordinate 
system. And fig.5 (b) shows the result in VCS after 
coordinate transformation. According to node points (*) in 
fig.5 (b) projected into two feature spaces independently 
with the variety of distance, fig. 5(c) and fig. 5(d) is the 
feature space of x-d and y-d. The reconstruct route is shown 
as pink curve in the figure through proposed equation 2, 3 
with 3 orders estimation. And the final combination result 
for road geometry is shown in the fig. 5(e) as green curve. 
 

B. Prediction for Visual Detection 
The purpose of this section is to provide the precise 

information for visual detection. In the section II, lane 
variety in road model is supposed to be given by road 
geometry estimation. And it could refer to the result of 
CHXሺdሻ by equation 2. Furthermore, it could also be utilized 
in visual detection to eliminate influence causing by CHXሺdሻ 
in latitudinal direction.  

Besides, information CHYሺdሻ by equation 3 is also very 
important. However, it is ignored in the most situations 
because CHYሺdሻis considered as same as distance, which 
means visual detection model would like to select the feature 
points by horizontal line. According to point PLሺnሻ  and 
point PRሺnሻ shown in figure 2, these two points are not at 
same horizontal line in VCS. That is why the road width of 
curve part is wider than straight one.  

The slope kሺdሻ of road geometry is expressed by equation 
4. We could estimate the difference between left line and 
right line in longitudinal direction while the road width is 
considered the same, like the point PLሺnሻ and point PRሺnሻ 
in the figure 2. If we refer the right line as the baseline 
CHYሺdሻ , the corresponding pair points should locate at 

ሺr_x1T, r_y1Tሻ 
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CHYሺdሻ ൅ ∆yሺdሻ of longitudinal  direction. So ∆yሺdሻ could 
be expressed as equation 5.  

 

kሺdሻ ൌ பେHౕሺୢሻ
பେH౔ሺୢሻ

ൌ ∑ ୧כBሺ୧ሻୢ౟షభ౤
భ

∑ ୧כAሺ୧ሻୢ౟షభ౤
భ

                  (4) 

∆yሺdሻ ൌ W · sinሺtanିଵሺ ିଵ
୩ሺୢሻ

ሻሻ                 (5) 
 
 
 
 
 
 
 

 
 

    (a)                                                      (b) 
 

 
 
 
 
 
 
 

    (c)                                                     (d) 
 
 
 
 
 
 
 
 
 
 
 
 

(e) 
Fig. 5: Simulation results of road geometry reconstruction 

IV. VISUAL DETECTION MODULE 
Here we set the right line as the base line and right road 

line is denoted as equation 8, 9. Left road line could be 
denoted as equation 6, 7 according to road geometry 
estimation provided by PM. 
 

ሺ݀ሻܺܮ ൌ ௫݂ ቀ
ି଴.ହௐା௑೚೑೑ାେH౔ሺୢሻ

େHౕሺୢሻା∆୷ሺୢሻ
൅  ቁ              (6)ߖ

ሺ݀ሻܻܮ ൌ ௬݂ ቀ ு
େHౕሺୢሻା∆୷ሺୢሻ

൅  ቁ                         (7)ߠ
 

ܴܺሺ݀ሻ ൌ ௫݂ሺ
଴.ହௐା௑೚೑೑ାେH౔ሺୢሻ

େHౕሺୢሻ
൅  ሻ                 (8)ߖ

ܴܻሺ݀ሻ ൌ ௬݂ ቀ ு
େHౕሺୢሻ

൅  ቁ                                  (9)ߠ
 

-  ሺܺܮሺ݀ሻ,  ሺ݀ሻሻ: is the point on the image of left laneܻܮ

marks; 
- ሺRXሺdሻ, RYሺdሻሻ: is the point on the image of left lane 

marks; 
- ሺCHXሺdሻ, CHYሺdሻሻ: is the road geometry in VCS; 
- H: is the height of camera; 
- Ψ: is the yaw angle of car; 
- θ: is the yaw angle of car; 
-  ሺf୶, f୷ሻ: is the focal length of the camera; 

A. PW Module 
PW module shows the linear relationship between vehicle 

Pitch angle and road width. The difference function (Equ. 
10) between right line and left line is acquired by equation 6, 
8, where ∆yሺdሻ is set as zero. 

 
ሺ݀ሻܺ߂ ൌ ܴܺሺ݀ሻ െ ሺ݀ሻܺܮ ൌ ௙ೣ ௐ

௙೤ு
ሺ݀ሻܻܮ െ ௙ೣ ௐ

ு
 (10)      ߠ 

 
 ሺ݀ሻ means the difference between pair points locating onܺ߂
right line and left line and ܻܮሺ݀ሻ is the related point on the 
vertical direction of image. Normally, ∆yሺdሻ is close to zero 
and ܺ߂ሺ݀ሻ could be estimated by same horizontal line. 
According to equation 10, the relationship of ܺ߂ሺ݀ሻ and 
ሺ݀ሻܻܮ  is the linear if two lines are parallel in vehicle 
coordinate system unless some places such as fork or 
junction. PW module is relying on this linear relationship 
and related parameters could be estimated by feature points 
on the space of ܺ߂ሺ݀ሻ and ܻܮሺ݀ሻ. But it should refer to 
∆yሺdሻ for picking up pair points on a significant curve. 

Figure 6 is a typical image after feature extraction. Firstly, 
we should calculate the difference of feature points based 
one same horizontal line, which appear in zone belonging to 
left line or right line. And according to equation 10, the 
difference is calculated by given space of W and θ. So if we 
set up a series of reasonable W and θ, the different results 
could estimate the matching points with actual points from 
image. Figure 7 shows the matching probability in the space 
of  W and θ. The peak area (shown as red points in fig 7) 
represents a reliable area with high probability. Finally 
width and pitch are estimated by statistical results.  

The result is given in figure 8, blue points are the actual 
different points and pink points are given by estimated 
parameters. Of course, the difference points in figure 8 
perform a linear characteristic of PW module. In this way, 
the lane width could be calculated by the slope of straight 
line and pitch angle is calculated afterwards by intercept. 

 
 
 
 
 
 
 

Fig. 6: The image of feature extraction  
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Fig. 7: Matching probability corresponding to W and θ 
  

 
 
 
 
 
 
 
 
 
 
 

    Fig. 8: Feature distribution map of PW module  

B. YL Module 
YL module is designed to get vehicle lateral displacement 

and yaw angle by referring to equation 6 or 8. The same as 
PW module, the parameters in this module should be seen as 
linear characteristic according to related functions. But we 
have discussed lane variety CHXሺdሻ of latitudinal direction 
in section 3, which is the prediction vector to eliminate the 
influence caused by curve part. If the feature points on image 
are compensated in opposite direction, YL module could 
search maximal matching probability on image in linear way 
as PW module. For example, road geometry is estimated by 
prediction model (see fig. 9). Then it is transformed into 
image space through camera’s parameters. So the original 
feature points (white points) are compensated by relevant 
compensation, which are shown as the green points in figure 
10. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Road geometry Estimation in VCS 

 
 
 
 
 
 
 
 

     Fig. 10: Feature compensation based on geometry estimation for linear 
transformation 

V. SIMULATIONS AND RESULTS 
Our tests were based on the on-line data collection based 

on several sensors: a Teli CCD COLOR CAMERA was 
mounted on the front roof of test vehicle, image sequences 
were captured in NTSC format at the frame rate of 30fps, 
GPS data (Pioneer® GPS-M1ZZ) and inertial data 
(Gyroscope: Datatec®GU-3024 & Nissan LAFESTA CAN 
Speed) were sent to PC’s serial port and recorded at the 
frequency of 1Hz and 60Hz separately; Shobunsh® Super 
Mapple ver.6 (1/25,000) was used as the 2D road map. 
Unfortunately, so far the algorithm has not been 
implemented by on-line processing. We just record data of 
vehicle localization and road network with synchronization 
of video recorder. And all tests are realized in the laboratory.  

We have discussed the prediction module in section III 
and the result of road geometry estimation is shown in figure 
5. Firstly, road geometry in VCS should be confirmed if it 
matches to the road on image or not. The range of geometry 
results (‘*’) in fig. 11(a) is 60 meters with interval of 2 
meters. According to fig. 11(a), CHXሺ60ሻ is 11.73 meters 
and CHYሺ60ሻ is 58.2. Although the error by longitudinal 
direction in VCS could be ignored, CHXሺdሻ by latitudinal 
direction must be counted for visual detection. But in fig. 
11(c), CHYሺdሻ could not be ignored as same as CHXሺdሻ. And 
the projected road by estimation results is shown in fig. 
11(b) (d).  
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Fig. 11: Road geometry estimation and projection on image 

 
As a result of geometry estimation shown in fig. 12 (a) (c) 

(e), other parameters are detected by visual detection module 
introduced in section 4. And all the parameters are included 
in table 1. Here we choose the 3-order of polynomial for 
reconstruction road geometry. Furthermore, final lines are 
plotted on the image based on parameters (shown in fig. 12 
(b) (d) (e)). Although the results on the image match to real 
line mark, there are little excursion between proposed line 
and real line. The error by vehicle localization, digital map 
or road reconstruction model might cause the excursion. 
 

VI. CONCLUSION 
In this paper we proposed a predictive lane detection 

method with road geometry estimation that relying on 
precise localization and digital map. Although some 
constrains are defined for practical application, this method 
effectively estimate the reliable parameters and works well 
in different kinds of condition.  

The online processing of this approach is still under 
evaluation and we are focusing on improving the accuracy 
and stability of vehicle localization. In addition we are also 
working on some important applications using this approach, 
like the classification of different types of lane marks based 

on different lane width distribution.   
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Table 1: Road parameters of figure 12 by proposed approach  
 

Fig Width 
(m) 

Offset 
(m) 

Pitch  
(°) 

Yaw   
(°) 

܆۱۶
 (૚ିܕ)

 ܇۱۶
 (૚ିܕ)

(a)(b) 3.33 1.60 1.28 1.50 
-0.00826 
-0.00312 
1.65e-005 

0.99946 
-0.00027 
1.43e-006 

(c)(d) 3.24 1.40 0.00 0.00 
0.00592 
0.00517 

-2.46e-005 

1.0044 
-0.00057 

-6.62e-007 

(e)(f) 3.25 1.80 0.77 -1.00 
-0.0465 
0.004 

-4.10e-006 

1.0007 
4.892e-005 
-7.92e-006 
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Fig. 12: Road geometry estimation and final detection result on image 
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Global Real Plane DetectionGlobal Real Plane Detection

•• 2D line matching using 2D line matching using 

the color histogramthe color histogram
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Focus of Attention & Evidence SelectionFocus of Attention & Evidence Selection

•• Automatic perception of Environment change in ROI (distance, Automatic perception of Environment change in ROI (distance, 
illumination, texture)illumination, texture)
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Experiment & ResultsExperiment & Results

ExperimentsExperiments

Wide Baseline Stereo CameraWide Baseline Stereo Camera

••Base line : 120cm Base line : 120cm 
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Result of SIFT Feature ExtractionResult of SIFT Feature Extraction

Result of 2D line detectionResult of 2D line detection



Result of 3D line detectionResult of 3D line detection

Result of Octree RepresentationResult of Octree Representation



Experiments ResultsExperiments Results

Experiment A Experiment A -- Pose Estimation Result of the all evidences Pose Estimation Result of the all evidences 
fusion (5 sequential scenes)fusion (5 sequential scenes)

Experiments Results (contExperiments Results (cont’’))

Experiment B Experiment B -- Pose Estimation Result of the all evidences Pose Estimation Result of the all evidences 
fusion (10 sequential scenes)fusion (10 sequential scenes)



ConclusionConclusion

•• Estimate different of SIFT result and 3DEstimate different of SIFT result and 3D parallelparallel line resultline result
•• Get more stable result by fuse of two resultGet more stable result by fuse of two result
•• Average Processing Time per eachAverage Processing Time per each scenescene

– SIFT Matching : 0.8 sec
– 3D parallel Line Matching : 1sec
– Fusion & Filtering : 1.8sec
– Centrino 2Hz CPU & 1G byte RAM

•• Future works Future works 
– Sensor fusion with GPS and wheel odometry information
– To evaluate the pose estimation result

Thank You !Thank You !
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Abstract - In this paper we will present a SLAM 
algorithm we have recently developed for our 
needs in autonomous automotive applications. 
Our approach has the particularity of making use 
exclusively of laser scanners to achieve our goals 
without using any other type of sensors or source 
of information. We concentrated on developing a 
self-contained system that could be placed on any 
kind of mobile platform and work in any kind of 
dynamic environment; this is why too at this 
point our approach does not make use of any 
model of the vehicle. Our SLAM system has been 
tested with success both on a car at full speed on 
a road and a human evolving indoors. We will 
present here the challenges we face that pushed 
us to develop the algorithm, the solutions we are 
exploring, discuss experimental results and 
suggest areas of future work.  
 
 
 
I - Introduction 
 
When trying to make a vehicle autonomously travel 
to its destination over many kilometers you soon 
realize you will have to overcome many challenges 
[1],[2],[3],[4]. The first need is to be localized 
globally in order to know what path to take for 
reaching your destination. The second need is to be 
localized locally in the surrounding environment to 
make sure you are keeping the road, the right speed, 
the right distance with the vehicle in front, that you 
do not collide with other vehicles and obstacles etc. 
A third need is to have the ability to detect certain 
features in the environment in order to know how to 
properly behave on the road. For example, you need 
to be able to detect lanes in order to stay centered, 
you need to detect intersections, crosswalks, 
continuous or dashed lines etc… Then you have to 
take cost into consideration if you expect your work 
to have one day any use in real life. While global 
localization is a problem that can be considered to be 
solved thanks to a wide variety of affordable GPS 
solutions, all the other issues still present a big 
challenge when it comes to real world applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1. Map result showing road features. 

 
In our struggle for achieving autonomous driving we 
have been exploring separately the potential of a 
single sensorial solution, the laser scanner, we 
believe eventually may give the necessary 
information to tackle all the issues mentioned above. 
We plan to use other types of sensors too but at this 
point the goal of our research is to make the most 
out of this type of sensor taken separately, before 
combining it with other sensorial input [5],[6].  
 
Using a laser scanner only, we are able to keep track 
of our trajectory and our speed, in other words to 
localize, this, combined with the range data, allows 
us to create a model of our environment in the form 
of a map. This duality between creating consistent 
maps and localizing has been extensively studied as 
the Simultaneous Localization And Mapping 
(SLAM) problem [7],[8]. As we see in the figures 
presented (for example Fig 1), taken from real 
driving situations, the maps obtained contain all kind 
of useful information we plan to use for path 
planning and navigation, such as lane markings, 
intersections, crosswalks, empty parking space etc. 
But before entering into more details of our 
experimental results, we will first have an overview 
of the algorithm. 



II - The algorithm overview 
 
Our SLAM algorithm consists of two steps. A first 
step in which the relative movement of the vehicle is 
estimated and a second step in which this first 
estimation is refined by relocating the pose respect 
to the map we are progressively building. Figure 2 
shows the different steps of the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Steps of the algorithm. 
 
II.1- Motion estimation:  The first step works by 
tracking the motion between the current scan and the 
previous one. This is done by tracking points of high 
derivative, in other words by tracking the “spikes” 
that are apparent on the scan. This makes the 
algorithm absolutely universal as it will work in any 
structured or non structured environment. To find 
points of high derivative within the scan is easy but 
we need to identify them over the current scan and 
the previous one in order to discover the motion. 
What we do to perform this identification is to trace 
segments between the spikes and make use of 
invariants throughout the movement such as for 
example the length of those segments. For example, 
if we manage to find a segment of length “L” 
connecting two spikes in the current scan and we 
find also a segment of the same length in the 
previous scan, then we have pretty good chances that 
those two spikes at the ends of the segment are the 

same points of the environment. Now, by looking to 
our relative position to the segments in both the 
current and previous scans we are able to infer the 
relative translation and rotation we have done 
between the two scans. The problem is that many of 
the spikes are noise and are not consistent with the 
vehicle’s movement. The challenge here was to 
develop the proper filter capable of sorting out only 
the spikes that are common to both the scans.  
 
The typical error of the motion calculated this way is 
of ±20 cm in both x and y and ±2° in the orientation. 
Thankfully this error can be greatly reduced by 
refining this first estimation through a second step. 
 
II.2- Relocation: The second step makes use of our 
near past experience by relocating on a map created 
by the previous scans. In our case a map is nothing 
else but a model, a discretization of the environment 
in the form of a bitmap containing a height field 
(Fig.3). The height field is formed as laser 
measurements are accumulated over time on certain 
pixels making the features of the environment 
become apparent. The amount of the laser data and 
its accuracy determine the level of discretization of 
the environment that can be achieved, that is, the 
map resolution (see section II.3 ). We believe that by 
studying the morphology of this height field we will 
be able to extract from it all the information 
necessary for navigation but this is a totally separate 
matter from localization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Bitmap containing the height field. 



For relocation within the map, we use the fact that 
we know the actual pose of the vehicle is within the 
rather small error bounds of the pose estimation 
obtained from the first step.  Since for relocation we 
are going to try to match the current scan with the 
map, the number of possible poses within the error 
bounds is limited by the resolution of the map. For 
example, if we have a 10cm per pixel map, the 
search area will be a square of 5x5 pixels and the 
discretization for the heading can be let say 0.2°. 
This gives us 25x21 = 525 candidate poses we then 
check exhaustively for the best match. We consider 
as the best match the candidate pose that maximizes 
the sum of the range value of the current scan points 
that hit non-empty pixels in the map. Of course, if 
our actual position is outside the typical bounds of 
error, then we are lost. For the rare cases when this 
happens we plan in the future to use more 
sophisticated techniques to find our position within 
the map but in practice this rarely happens except in 
the case the environment is very poor in information 
such as very large open spaces. 
 
About this second step it is worth noting that the 
more information the map has about the zone of the 
current scan, the better it works. Although this 
seems evidence, it brings to an important conclusion 
which is that relocation works best when having a 
sensor looking in the opposite direction to the 
movement. This is so because unless we have done a 
loop, in general we are exploring what lies in front 
while we have already explored what lies behind us 
and therefore we have much more information. This 
is especially true at high speeds, looking at Figure 4 
we can see the height field is much clearer in the 
opposite direction of the movement as we have 
gathered much more information in the zone of the 
map we have left behind than the amount we have 
managed to gather of what is coming in front of us. 
This means that simply having a sensor in the front 
of the vehicle is conceptually a bad policy if we plan 
to do localization, especially at high speeds. Also, in 
an automotive application it is of utmost importance 
to include the rear of the vehicle in the field of view 
as otherwise it would be like driving without any 
mirrors. 
 
Finally, once we have refined our location within the 
map, we update the height field with the current scan 
data and we recalculate at posteriori the relative 
movement we have done.  

It may happen to the first part of the algorithm not to 
give any output, in such cases we simply fill the gap 
taking as our current relative movement the last one 
we were able to calculate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Best info is found at the back of the vehicle. 

 
 
II.3- Algorithm’s behavior:  Although there is 
certainly a cumulative error out of this two step 
algorithm, it is so small that for practical purposes 
there is none. As we explained in the introduction it 
is not our goal to make use of this localization over 
hundreds of kilometers, this task is left to the GPS. 
Our use of the algorithm is to be localized locally, 
that is, to be able to generate an accurate map of the 
surrounding over 100 m of our vehicle in order to 
extract from it information about lanes, obstacles 
and other vehicles and take it as a base for path 
planning and trajectory control. 
 
Even though, we have to say that our experimental 
results over few kilometers show very little 
accumulated error (see section III for more details). 
Errors mainly seem to occur as a result of 
singularities, such as having a surrounding 
environment very poor in information, that is, when 
we happen to go through large open spaces. This is 
to be expected as the accuracy and quality of the 
output of the algorithm varies depending on the 
quality and amount of the information you feed in it.  
 



A study on the subject has not been realized yet at 
this point but globally we have the following: 
 
The map resolution that can be achieved in general 
is very dependent on the angular resolution and the 
scan frequency. Without surprise the scan frequency 
is particularly important at high speeds. Other 
parameters like the laser range and field of view 
have no remarkable effect on the achievable map 
resolution. Actual tested implementations with 
different settings gave a 10 cm per pixel map 
resolution at 10 Hz and 0.5° angular resolution and a 
5 cm per pixel map resolution at 20 Hz and 0.25° 
angular resolution. 
 
When it comes to loss of localization, as we have 
explained, open spaces are our major enemy. It is 
therefore no surprise that the robustness of the 
algorithm is directly proportional to the range of the 
laser and how wide is our field of view, as this helps 
to reduce greatly the cases in which the algorithm 
has nothing to “hook” on. 
 
Another potential source of error is moving objects. 
The algorithm normally filters out the segments 
including moving points because they do not 
maintain the invariants found in segments from 
static points. This works only if the scans contain a 
sufficient number of static points. The field of view 
is therefore quiet important for dealing with this. A 
270° field of view is generally enough for 
completely removing this issue as a source of error 
even in very heavy traffic conditions. 
 
III - Real road testing 
 
In order to test our algorithm in a real driving 
situation we went to see our partners at the 
Southwest Research Institute in San Antonio, Texas. 
We have to thank the whole SSTI team for their help 
and for making this possible. 
 
The SSTI vehicle (Fig 5) is a fully automated Ford 
Explorer equipped between other things with two 
Alasca Ibeo laser scanners and a differential 
omnistar GPS we will only use for reference. Each 
of the Alasca scanners have a range of up to 200 m, 
have 4 layers and a 270° field of view. They are 
located at the left and right front corners of the 
vehicle, so together they cover almost 360° except 
for the very rear part of the vehicle.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig 5. The SSTI vehicle at the SwRI in San Antonio. 

 
Alasca laser scanners have both positive and 
negative specifications when it comes to our 
algorithm. On one side they have a long range, a 
270° field of view and 4 simultaneous scanning 
planes at different angles (Fig 6). In the end we 
make use of only one of the planes in the 
localization process but the information of the four 
combined makes possible to obtain very rich and 
detailed maps. On the other side, each separate 
scanning plane has a very poor angular resolution 
which only gets worse when increasing the scanning 
frequency.  
 
 
 
 
 
Fig 6. The laser scanners have 4 simultaneous layers. 
 
Although the different scanning planes are interlaced 
and we have tried to combine them, this does not 
work because of the fact the points of high 
derivative we use keep information about the 
movement only when you derivate a continuous 
signal coming from the same scan plane. To make 
things worse, by default the angular resolution is not 
constant but higher in the front and lower on the 
sides and rear, which as we explained earlier is the 
best zone for relocation. As a result of this, the 
implementation on the SSTI vehicle was limited to 
achieve a 20 cm per pixel map resolution but turned 
out to be very robust thanks to the almost 360° field 
of view and possibly to its low map resolution. The 
scanning frequency was set to 12.5 Hz which may 
not be sufficient when driving at high speed but to 
increase the frequency would have lowered too 
much the angular resolution. 



On the whole, results were very satisfactory as we 
were able to localize over kilometer drives at high 
speeds (60km/h to 70km/h) on a real road and heavy 
traffic environment.  
 
Because the four scanning planes were plotted, rich 
and detailed maps were obtained with road features 
becoming apparent such as continuous and dashed 
lane markings (Fig 7). We believe this happens 
because as the lower scans sweep the road at a 
certain distance and angle, only reflective surfaces 
send back an echo. At this point we don’t take 
advantage of this for localization because the lower 
scans are not used in the process.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Road features become apparent. 
 

We have to point out that when driving over large 
distances the use of a static map is not practical. This 
is why for the real road tests we have used a 
dynamic map centered on the vehicle and which we 
build from a circular buffer containing the N 
previous scans, that is, when new data comes in, the 
oldest data in the buffer disappears. The result 
covers a square area of 200m x 200m around the 
vehicle (1000 pixels x 1000 pixels) and we say the 
map is dynamic because it is being completely 
redrawn at each new scan. A dynamic map of the 
sort has been preferred during the tests to a static one 
primarily because the large distances involved in the 
testing would have required a huge bitmap. Then 
this is ok because in this application the map 

information is normally used for local navigation, 
which generally only involves a few meters around 
the vehicle. Other benefits of a dynamic map is its 
ability to regenerate rapidly in the case of a loss of 
localization and if a small buffer is used, the 
capacity of reflecting the changes in the 
environment. For example an opening gate that was 
initially closed will disappear from the map as it 
opens. Another example would be to update empty 
spaces in a parking lot while searching a place to 
park. 
 
In the case we are dealing with an application in 
which we want to have a map over the complete 
trajectory of the vehicle, we need as we go to keep 
record of all measurements along with the calculated 
associated position. For drawing a portion of a map 
we then need to specify a location and we search in 
the recorded data all the positions found to be within 
a certain radius of the selected location. Now, we 
obtain a map by simply applying the appropriate 
coordinate change to the associated scans of those 
found positions. Because the map is kept not as a 
bitmap but reconstructed from the raw scan data 
every time, it is possible to easily zoom in or zoom 
out or rotate the map at will. This can be useful for 
example if we want the orientation of the map to 
follow in real time the current orientation of the 
vehicle. 
 
Even though it is not the purpose of our algorithm, 
we are going to show here an example of its 
accuracy over a long distance drive (2.18Km). 
During the test, the differential GPS position was 
recorded to be used as a reference.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. Laser(blue) and GPS(red) paths (2.18Km) 



On this ride (Fig 8.), the differential GPS and the 
laser trajectories seem to match relatively well the 
first 400m but after an offset appears that remains 
for the rest of the way. Even though, comparing the 
relative shape of the trajectories and the distance 
involved, we can see the algorithm in general 
performs quite well even if it is almost inevitable to 
have at some moment some surrounding 
environment that the algorithm won’t be capable of 
dealing with. We want to point that what we see here 
is the result of the raw output of the localization 
process, it could be certainly improved for example 
adding a Kalman filter which points towards 
interesting future developments.   
 
 
 
IV - Suggested areas of future work 
 
Immediate planned future work includes testing the 
algorithm with other laser configurations to see if we 
can improve its performance both in map definition 
and robustness. After that we plan to do: 
 
- Tracking of moving objects, this should improve 
the localization process as we can eliminate the 
moving points from the next iteration of step one as 
well as eliminate those from the map, improving in 
this way the relocation in step two. 
 
- Elaborate a good control law working with the map 
localization. 
 
- Create classifiers able to extract from the map 
features such as lanes, intersections and so on. 
 
- Combine the algorithm output with a low cost 1Hz 
GPS in order to transform the map coordinates into 
global latitude and longitude coordinates for global 
navigation. 
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Fast and Feasible Deliberative Motion Planner for
Dynamic Environments

Mihail Pivtoraiko and Alonzo Kelly

Abstract— We present an approach to the problem of differ-
entially constrained mobile robot motion planning in arbitrary
time-varying cost fields. We construct a special search space
which is ideally suited to the requirements of dynamic environ-
ments including a) feasible motion plans that satisfy differential
constraints, b) efficient plan repair at high update rates, and
c) deliberative goal-directed behavior on scales well beyond
the effective range of perception sensors. The search space
contains edges which adapt to the state sampling resolution yet
aquire states exactly in order to permit the use of the dynamic
programming principle without introducing infeasibility. It is a
symmetric lattice based on a repeating unit of controls which
permits off-line computation of the planner heuristic, motion
simulation, and the swept volumes associated with each motion.
For added planning efficiency, the search space features fine
resolution near the vehicle and reduced resolution far away.
Furthermore, its topology is updated in real-time as the vehicle
moves in such a way that the underlying motion planner
processes changing topology as an equivalent change in the
dynamic environment. The planner was originally developed
to cope with the reduced computation available on the Mars
rovers. Experimental results with research prototype rovers
demonstrate that the planner allows us to exploit the entire
envelope of vehicle maneuverability in rough terrain, while
featuring real-time performance.

I. INTRODUCTION

Capable motion planners are important for enabling field
robots to perform reliably, efficiently and intelligently. De-
spite decades of significant research effort, today the ma-
jority of field robots still exhibit various failure modes
due to motion planning deficiencies. These failure modes
range from computational inefficiencies to frequent resort
to operator involvement when the autonomous system takes
unnecessary risks or fails to make adequate progress. Based
on our field robotics experience, we have developed a motion
planning method that addresses many drawbacks of leading
approaches. It is a deterministic, sampling-based method. It
features a sampling of robot state space that lends itself
well to utilizing standard graph search techniques, while
enabling an array of high-performance planning capabilities.
The proposed motion planning method was implemented and
successfully validated in field experiments at the California
Institute of Technology, Jet Propulsion Laboratory (JPL;
Figure 1).

While the planner was originally developed for the Mars
rovers, it is equally relevant to dynamic environments. In

This research was conducted at the Robotics Institute of Carnegie Mellon
University, sponsored by NASA/JPL as part of the Mars Technology
Program.
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fact, a variant of this planner was used in CMU’s winning
entry in the DARPA Urban Challenge [1]. Motion planners
intended for use in dynamic environments must be:

• Fast, in order to replan on-the-move when changes in
the environment are detected,

• Feasible (meaning satisfying differential constraints) at
least in the near field, so that the predicted path to avoid
dynamic obstacles is the one actually executed by the
vehicle,

• Deliberative, so that effective goal-directed behavior can
be maintained despite the path perturbations caused by
reacting to changes in the environment such as the
motions of dynamic obstacles and the appearance and
disappearance of local minima.

In order to satisfy the differential constraints, we propose
to encode them in the search space. This allows to shift the
constraint satisfaction to the search space design process,
which can be accomplished a priori and off-line. In partic-
ular, we enforce that the edges of the graph that represents
the planning problem represent the feasible motions that can
be directly executed by the robot. In this manner, the on-line
planner can utilize unconstrained, standard search algorithm
to find a solution to the motion planning problem, a path in
the representation graph.

For most systems featuring differential constraints, rela-
tively high dimensionality of the state space may be required.
Deterministic search in this setting can be computationally
costly. Planning in complex outdoor environmens can be
especially computationally expensive due to any combination
of scale, dynamics, and dense obstacles.

Fig. 1. FIDO rover navigates autonomously using the proposed motion
planner among dense obstacles in the Mars Yard at the California Institute
of Technology, Jet Propulsion Laboratory. The planner manages frequent
updates of the limited perception system by replanning continuously at
approximately 10Hz. Computed planner motions are smooth in curvature
and executable by the robot verbatim.



This paper proposes a two-fold solution to this difficulty.
First, the search space is designed to be compatible with
replanning algorithms [2], [3] that can repair the motion
plan efficiently when the representation of the environment
changes. This is particularly important in robotics applica-
tions in partially known or dynamic environments, where
changes in environment information are frequent. The robot
must be able to recompute its motion plan quickly. The
second manner of alleviating computational complexity of
planning is through modification of the fidelity of represen-
tation of the motion planning problem. The proposed search
space consists of one or more arbitrary regions of different
fidelities. Lower fidelity of representation results in faster
search, but higher fidelity results in better quality solutions.
The approach is closely related to multi-resolution planning
[4], but we use the term graduated fidelity to emphasize that
the quality of representation is expressed not only as the
resolution of state discretization, but also as the connectivity
of edges between the vertices in the state lattice. Each region
of the search space can be assigned a fidelity arbitrarily, yet
practically this choice is guided by the region’s relevance for
the planning problem and the availability of the environment
information. In particular, it is often beneficial to utilize a
high fidelity of representation in the immediate vicinity of
the moving robot. Our method meets that need by allowing
the regions of different fidelity to move or change shape
arbitrarily.

The contribution of this work is a representation of motion
planning problems under differential constraints that has a
number of important advantages:

• Satisfaction of differential constraints is accomplished
off-line, to allow fast on-line perfomance,

• Compatibility with standard replanning algorithms al-
lows quick robot reaction to changing environment
information,

• Fast planning is enabled through managing the fidelity
of representation.

Our concentration on achieving a fast deterministic
constraint-compliant planner was originally motivated by the
spartan processing available on the Mars rovers. However,
our results are equally applicable to terrestrial problems
where high planner update rates can be used to respond
effectively to changes in dynamic environments as they are
predicted or discovered by perception.

In the next section, we relate the proposed approach
to prior work. In the following three sections, we further
describe each of its principal benefits, as listed above. We
will conclude this presentation with experimental results.

II. PRIOR WORK
A planner based on A* search in the state lattice was

successfully utilized to guide a car-like robot in challenging
natural environments [5]. The graduated fidelity extension
to the state lattice is related to the general area of multi-
resolution planning: [6], [7], [8] and others. One difference
our method has with most multi-resolution predecessors
is that we allow regions of different resolution to move

over time, while the search space remains compatible with
systematic search. The idea of dividing the search space into
regions is related to [9], but our method allows replanning
in this search space.

Satisfaction of differential constraints also has received
a considerable amount of attention in motion planning
research. Powerful probabilistic techniques have been de-
veloped [10] [11], however our method is deterministic
and under appropriate conditions can offer a number of
guarantees provided by standard search algorithms, including
optimality and resolution-completeness. A number of other
approaches utilize discretization in control space to manage
the complexity of the planning problem [12]. However, there
are important advantages to using discretization in the state
space instead. In particular, it simplifies reducing dispersion
of sampling, in turn allowing a more uniform distribution of
samples in the state space [4]. This is beneficial to exploring
the state space more efficiently, as the search attempts to find
a path from initial to final state. Unfortunately, reducing state
space dispersion through control space sampling is difficult.
It was shown in [16] that through careful discretization in
control space, it is possible to force the resulting reachability
graph of a large class of nonholonomic systems to be a
lattice, however this is usually difficult to achieve. By using
a boundary value problem solver [14], we are able to choose
a convenient discretization in the state space, one that makes
the search more efficient, while maintaining the satisfaction
of differential constraints.

III. FEASIBLE MOTIONS

Discrete representation of robot state is a well-established
method of reducing the computational complexity of motion
planning. This reduction comes at the expense of sacrificing
feasibility and optimality, the notions denoting the planner’s
capacity to compute a motion that satisfies given constraints,
and to minimize the cost of the motion, respectively. In
computing motions, we seek to satisfy two types of con-
straints: features of the environment that limit the robot’s
motion (obstacles) and the limitation of the robot’s mobility
due to the constrained dynamics of its motion (differential
constraints). Motions that satisfy both types of constraints
will be referred to as feasible motions.

The proposed method is based on a particular discretiza-
tion of robot state space, the state lattice. It encodes a graph,
whose vertices are a discretized set of all reachable states of
the system, and whose edges are feasible motions, controls,
which connect these states exactly. The motions encoded in
the edges of the state lattice form a repeating unit that can
be copied to every vertex, while preserving the property that
each edge joins neighboring vertices exactly. This property of
the search space will be denoted regularity. The canonical
set of repeating edges will be called the control set. The
number of edges in the control set is exactly the branching
factor, out-degree, of each vertex in the reachability graph.



A. Sampling State and Motions

Beneficial state sampling policies include regular lattice
sampling, where a larger volume of the state space is covered
with fewer samples, while minimizing the dispersion or
discrepancy [4]. It is natural to extend the concept of regular
sampling from individual values of state to sequences of
states (i.e. paths). As for state space, the function continuum
of feasible motions can also be sampled to make compu-
tation tractable. The effective lattice state space sampling,
developed in this work, induces a related effective sampling
of motions.

Suppose discrete states are arranged in a regular pattern.
Besides sampling efficiency benefits, an important advantage
of regular sampling of state space is (quantized) translational
invariance. Any motion which joins two given states will
also join all other pairs of identically arranged states. By
extension, the same set of controls emanating from a given
state can be applied at every other instance of the repeat-
ing unit. Therefore, in this regular lattice arrangement, the
information encoding the connectivity of the search space
(ignoring obstacles) can be pre-computed, and it can be
stored compactly in terms of a canonical set of repeated
primitive motions, the control set. Two properties of lattice
search spaces that are necessary conditions for satisfying
differential constraints are:

1) Enforcing continuity of relevant robot state variables
across the vertices,

2) Ensuring that the edges between the vertices of the
search space represent feasible motions.

The first condition can be satisfied by adding the relevant
dimensions to the search space, in order to represent the
continuity of state variables explicitly. For example, if a
heading dimension is added to the a 2D (x,y) state space,
then (x, y, North) and (x, y, East) become distinct states.
In order to satisfy the second condition, we require a method
of discretizing the robot control space to force its reachability
tree to be a regular lattice in state space. We identify two
methods of achieving this:

• Forward — for certain systems, there are methods of
sampling the control space that result in a state lattice
[16], [15],

• Inverse — a desired state sampling can be chosen first,
and boundary value problem solvers can be used to find
the feasible motions (steering functions) that drive the
system from one state value to another, e.g. [14], [17].

We prefer the inverse approach because it permits the
choice of state discretization to be driven by the application –
including the vehicle and the environment. Smaller state
spacing is desired for denser obstacles or smaller vehicles.
Note that, in the state lattice, if state separations are small
relative to the distance required to change vehicle heading
by the distance to the next heading sample, the edges in such
a structure can span many state separations.

Fortunately, the work of constructing the state lattice can
be performed off-line, without affecting planner runtime.
Once it is constructed and represented as a directed graph

(compactly specified with a control set), the state lattice
can be searched with standard algorithms. An example of
a simplified state lattice is shown in Figure 2.

Fig. 2. An Example State Lattice. A repeated and regular pattern of vertices
and edges comprises the state lattice. The inset shows the control set, the
motions leading to some nearby neighbors of a vertex. The overall motion
plan (thick black curve) is simply a sequence of such edges. Reverse motions
were omitted for clarity.

Algorithm 1 is a simple inverse method for generating
a control set. Referred to as the Shortest Edges algorithm,
it may serve as a departing point to evaluate our proposed
approach to search space design. To better illustrate the
algorithm, in this section we assume a 4D state lattice that
consists of 2D translation, heading and curvature. Suppose
that Θ and K are user-defined subsets of discrete values
of heading and curvature in the state lattice, respectively. By
exploiting rotational symmetries in the state lattice, these sets
can be desired strict subsets of all possible discrete values
of these states variables. The outer for-loop selects the per-
mutations of discrete values of initial and final heading and
curvature. The inner for-loop cycles through all discrete value
pairs of x and y, such that the maximum norm1 L∞ between
the origin O and (xf , yf ) grows from 1 to infinity. For each
value of L∞, if the trajectory generator finds a solution to the
boundary value problem, a feasible trajectory ui, we add it to
the control set. At this point we break from the inner for-loop
and proceed with another choice of terminal heading and
curvature values. The algorithm terminates when a trajectory
is generated for every permutation of heading and curvature
values.

1L∞ norm of a vector x = [x1, x2, ..., xn] is maxi |xi|



Input: State discretization in the state lattice: position,
discrete values of heading (Θ) and curvature (K)

Output: A control set, Ex

Ex = ∅;
foreach θi, θj ∈ Θ and κi, κj ∈ K do

foreach xf , yf s.t. L∞(O, [xf , yf ]) = [1 . . .∞) do
ui = trajectory([0, 0, θi, κi], [xf , yf , θf , κf ]);
if ui 6= ∅ then

Ex ← ui;
break;

end
end

end
Algorithm 1: A simple method of generating a control set.

B. Heuristic Cost Estimate

Heuristic estimates of the remaining cost in a partial plan
are well-known to have the potential to focus the search
enough to eliminate unnecessary computation while preserv-
ing the quality of the solution. The Euclidean distance metric
is among the simplest options for a heuristic estimate of path
length in the state lattice. This function is computationally
efficient, and it satisfies the admissibility requirement of
A* [18]. However, for differentially constrained planning,
it is not a well-informed heuristic and, in the case of short
paths, it can vastly underestimate the true path length, result-
ing in inefficient search. A heuristic for a vehicle with limited
turning radius moving in the plane could be derived from
the methods of Reeds and Shepp [19]. However, the Reeds-
Shepp paths are discontinuous in curvature (i.e. infeasible
to execute without stopping), and they do not account for
discretization, so even these paths are underestimates. Given
ample off-line computational resources, a straight-forward
and effective way to predict path lengths is to pre-compute
and store the actual cost heuristics that a planner will need,
using the planner itself. Such a Heuristic Look-Up Table
(HLUT) can be implemented as a database of real-valued
query costs. Under this approach, the computation of the
heuristic becomes a simple table dereference [20], [21].

IV. REACTIVE REPLANNING
The state lattice search space presented above is compat-

ible with most dynamic programming algorithms. In order
to achieve efficient implementation of efficient replanning
algorithms (variants of D*), a number of implementation
details are presented in this section.

A. Computing Edge Costs

The regularity of the state lattice allows an efficient opti-
mization in evaluation of the cost of graph edges during plan-
ning with continuous cost maps, which is roughly equivalent
in computational terms to pre-computing C space obstacles.
Recall that, in continuous cost field environment models, the
cost of a configuration is computed as a cost weighted swept
volume (i.e. area in 2D workspace cost fields). That is, the
sum of the workspace cell costs occupied by the vehicle
volume. We denote the set of map cells occupied by the
vehicle volume during execution of a particular motion as the

swath of this motion. Since lattice edges repeat regularly, so
do their associated swaths. Thus, it is possible to pre-compute
the swaths for all elements of the control set. When costs
change in the workspace cost map, the only computation
required to update the cost of an edge (motion) is to add the
costs of the cells in the swaths.

The top of Figure 3 depicts a motion of a tractor-trailer
vehicle, along with the swath of this motion. In order to
evaluate the cost of a motion, the costs of map cells in the
swath (reproduced on the bottom of Figure 3) are simply
summed up – an operation typically much more efficient than
simulating the motion of the system. The simpler alternative
of low-pass filtering the workspace cost map by a circular
vehicle approximation will be significantly less accurate for
systems with elongated shape. The calculation proceeds off-
line for a state lattice and we care to satisfy differential
constraints, so we use the correct vehicle shape and highly
accurate simulation.

Fig. 3. An example of a pre-computed swath of a path for a tractor-trailer
vehicle. Bottom: the swath allows computing the cost of a motion w.r.t. a
cost map, without explicitly considering the motion itself (top).

B. Processing Edge Cost Updates in Replanning
D* variants were originally applied to grids [2], [3]. The

earliest work on D* used the same resolution for both the
cost map and the search space and implicit ”edges” which
connected states only to their nearest 8 neighbors. In this
case, the mapping from a modified map cell to the affected
search space edges and vertices is trivial. For a state lattice
whose edges may span several map cells, the above historical
simplifications of these issues are no longer feasible.

Suppose the replanner uses a priority queue to ensure
optimality of the solution. For every change in the cost of the
directed edge from the vertex xi to xj , c(xi, xj), a replanning
algorithm requires recomputing the cost of xj and potentially
inserting it into the priority queue. Assuming a map cell
mij ∈ N2 changes cost, the planner needs to know the set
of vertices Vc that potentially need to be re-inserted into the
priority queue with new priority. Thus, the planner requires
a mapping Y : N2 → Vc.

To develop this mapping, we use the concept of swath,
introduced in Section IV-A. More formally, we consider the



swath a set Cs ⊂ N2 of cost map cells that are occupied
by the robot as it executes a motion. The cost of an edge
that represents this motion is directly dependent on the costs
of map cells in Cs. Recall that once we pre-compute the
control set of a regular lattice, it is possible to pre-compute
the swaths of the edges in it.

Since the mapping between edges and their terminal
vertices is trivial, it is easier first to develop the mapping
Y ′ : N2 → Ec, where Ec is the set of edges that are affected
by mij (i.e. the set of edges whose swaths pass through the
cell). Determining Y ′ may still appear as a formidable task,
given the high density of edges in the multi-dimensional state
lattice. However, we again exploit the regularity of the lattice
to simplify the problem. If we have Y ′′ : O → Ec, where
O is the map origin, then Y ′ = Y ′′ + n,∀n ∈ N2. In other
words, the set of edges, affected by mij = O is identical
for any other cell, up to the translation coordinates. Further,
recall that the swath Cs of each edge in Ec is known. In
principle, Ec contains all edges uc, such that mij belongs
to Cs of uc. Hence, the mapping Y ′′ is exactly the set
of edges, whose swaths pass through the 2D origin. The
Figure 4 illustrates this idea. Like the control set and path
swaths, the resulting set of edges can be pre-computed due
to the regularity of the state lattice. An example of the Vc

for the implementation described in Section VI is shown in
the Figure 5.

Fig. 4. The first several steps of pre-computing the list of graph vertices
that are affected by a change in cost of a map cell. In a), a single element
of a control set is chosen for this example. It emanates from the origin of
the state lattice, thick square, and connects it to another graph vertex, thick
circle. Grey cells are the swath of this motion. Suppose a map cell, located at
the origin of the state lattice (thick square), changes cost. We attempt to find
all translational versions of the chosen motion, whose swaths are affected by
the changed map cell. In the subfigures b) – e), we iterate through several
such translational versions of the motion. The resulting (edge end-point)
vertices that are considered for insertion to the priority queue are shown in
subfigure f). Typically, many more such vertices are processed for each edge
(as suggested by ellipsis in subfigure f). The process repeats for all edges
in the control set. Pre-computation allows eliminating any redundancy by
generating a unique list of such vertices.

Fig. 5. A 2D projection of an example of Vc, the set of lattice states that
are to be re-considered for every updated map cell. The units in the plot are
state lattice cells. For the purposes of exposition, here the size of map cells
is set to be equal to the size of state lattice (x, y) cells. For each map cell,
mij , that changes cost, we place the set of vertices above in this Figure
onto mij (i.e. the origin of the set of vertices, denoted with coordinates
(0, 0), is identified with mij ). Next, we iterate through the depicted list
of the vertices and place each one on the priority queue, if it was indeed
affected by the cost change of mij .

V. FAST OPERATION

By virtue of the state lattice’s general representation as
a directed graph, it can be naturally extended with multi-
resolution enhancements. Significant planning runtime im-
provement was achieved in the literature via a judicious use
of the quality of representation of the planning problem,
e.g. [22], [7], [8] among others. In field robotics, it is fre-
quently beneficial to utilize a high fidelity of representation in
the immediate vicinity of the robot (perhaps within its sensor
range), and reduce the fidelity in the areas that are either
less known or less relevant for the planning problem. Lower
fidelity of representation is designed to increase search speed,
while higher fidelity provides better quality solutions. Since
grids have traditionally been utilized in replanning, the notion
of varying the quality of problem representation has been
identified with varying the resolution of the grid. However,
our method varies the discretization of both the state and
motions. We refer to managing the fidelity of state lattice
representation as graduated fidelity.

In designing the connectivity of search space regions of
different fidelities, care must be taken to ensure that all
regions consist of motions that are feasible with respect
to the robot’s mobility model. If this rule is violated,
mission failures become possible due to the differences in
the representation of vehicle mobility. Figure 6 illustrates
this situation using a simple example. Suppose a search
space is used in which a high fidelity region of finite size
surrounds and moves with the vehicle, and a disjoint lower
fidelity grid is used beyond that. Suppose the A* algorithm
is used to plan paths in this hybrid graph. A car-like robot
attempts to travel to a goal on the other side of a collection
of obstacles that forms a narrow corridor. As long as the
low-fidelity region includes the corridor (black line), the
planner will find a solution in the graph. However, the 90



degree turn in the path is actually infeasible, since the car-
like robot cannot turn in place. As the vehicle moves, the
high fidelity region will eventually include the turn in the
corridor and the planner will then fail to find a solution. The
only viable alternative will be to back up, thereby moving
the corridor to the low fidelity region once again. Since the
original state of the scenario has now been achieved, it is
easy to see that this behavior will repeat forever. In order
to avoid such difficulties, it is necessary to ascertain that all
levels of fidelity include feasible motions. In particular, the
connectivity of low fidelity regions must be a subset of that
of the higher fidelity regions.

Fig. 6. A simple example of a motion planning problem, where a car-like
robot that attempts to follow the infeasible path (black line) experiences a
failure.

To implement graduated fidelity planning, the above de-
sign requires only a minor modification. Once the state lattice
graph is separated into subgraphs of different fidelities as
desired, each subgraph uses its own control set to achieve
the chosen fidelity. Each control set defines the successors
of a vertex being expanded during search. Care must be
taken to design the control sets such that they adequately
span the boundaries between the subgraphs. Note that control
set design is the sole procedure needed to enable graduated
fidelity. Replanning algorithms require no changes and will
achieve the desired effects automatically.

It can be useful to enable a high fidelity subgraph to
move along with the mobile robot as described in the
example above. As shown in [23], such flexibility can be
accomplished by undoing the effects of previous expansions
of the vertices on the perimeter of the moving subgraph. Ac-
complishing this once again requires no change to the actual
replanning algorithm. The change of graph connectivity that
occurs between replans is presented to the planning algorithm
as a change in cost of the affected graph vertices. Such
topology based cost changes appear to replanning algorithms
to be identical in nature to perception based cost changes.
If the vertex expansion step is considered to be part of an
external search space module, the planner actually cannot
tell that the graph topology is changing.

More generally, it is straight-forward to extend the concept
of graduated fidelity to allow multiple subgraphs of different
fidelity to move or change shape between replans. Such
flexibility results in a dynamic search space, which comple-
ments dynamic replanning algorithms to improve planning
efficiency. Thus, the graduated fidelity extension of state
lattice planning is conceptually simple and straight-forward
to implement, and it can be designed to result in significant
savings in runtime and memory usage in replanning.

VI. EXPERIMENTAL RESULTS

A differentially constrained motion planner, lattice plan-
ner, was implemented based on the state lattice and tested
in a variety of scenarios, including in simulation and on real
robots. The planner was ported to the VxWorksTMhard real-
time operating system that controls the JPL rover FIDO that
was used in field experients. Figure 7 shows the results of a
typical experiment with the FIDO running the lattice planner
on-board to navigate autonomously amid dense rocks. In this
experiment, the rover was given a command to drive to a goal
15 meters directly in front of it, as shown by the black line
in the top of the Figure. This motion was infeasible due to
large rock formations. However, the rover, under guidance of
the lattice planner, negotiated this maze-like and previously
unknown environment, and found a feasible path (white dots)
to accomplish its mission, despite a very limited perception
horizon of 3 meters and ±40◦ field of view.

We have not had a chance to optimize memory usage of
our planner implementation; nevertheless, the peak memory
usage of the lattice planner over all our experiments with
the FIDO rover was less than 100MB. The bottom part
of Figure 7 shows the semilog plot of the on-board lattice
planner runtime per replan cycle, averaging at approximately
10Hz. This plot serves well to illustrate two points regarding
typical planner runtime on-board FIDO: the computation
time per replanning operation can vary greatly (depending
on the difficulty of the problem at hand), and the replanning
runtime was frequently lower than the time-resolution of the
rover’s operating system (5ms), which is observed via the
bottom-limited segments of the plot.

Rover mobility was characterized by a minimum turning
radius of 0.5m and a capacity of point turns, which had a
high cost due to the time and energy required for reorienting
wheels. Both cost map cells and (x, y)-cells of the state
lattice were square with 20cm side length; both types of
cells coincided in position. The rover used a single 1.6GHz
CPU and 512MB of RAM, shared among all processes of
the rover, including state estimation, stereo vision perception
and communication systems.

The lattice planner utilized two fidelity regions. High
fidelity region was square 21x21 mapcells (L∞-radius of 2
meters), centered around the rover. It utilized a lattice control
set with average outdegree 12. Its state space consisted of
2D position and heading (x, y, θ). It was generated using
Algorithm 1. A trajectory generator in [17] was used to
generate the motions between the given values of robot state.
Motions were parameterized as cubic polynomial curvature,
κ, functions of path length s, κ(s). Low fidelity was repre-
sented as eight-connected grid.

In this experiment, the rover traversed approximately 30
meters and achieved the goal successfully (only the first
two-thirds of the rover path are shown in the photograph
due to the limited field of view of the external camera). No
path tracking was used, and the rover executed verbatim the
smooth and feasible motion computed by the lattice planner.



Fig. 7. A field experiment in the JPL Mars Yard. Top: the FIDO rover
was commanded to go straight 15 meters (black line). The rover navigated
autonomously among previously unknown maze-like obstacles, while run-
ning the graduated fidelity lattice planner on-board. White dotted line is the
path traversed by FIDO. The rover encountered multiple difficult planning
scenarios due to the very limited perception. It traveled approximately 30
meters in order to achieve its goal. Bottom: throughout numerous field
experiments, lattice planner on-board FIDO averaged replanning frequency
of approximately 10Hz.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we described an effective approach to plan-
ning robot motions that satisfy differential constraints. In
addition to leveraging dynamic replanning algorithms, this
approach enables dynamic and deliberate changes in search
space connectivity to boost efficiency. Standard replanning
algorithms can be utilized, while the proposed search space
design allows both the automatic satisfaction of differential
constraints and the adjustment of the search space between
replans. The method was successfully demonstrated in sim-
ulation and on real robots. Future work includes a further
investigation into the state and motion space sampling to
further improve planning efficiency.

REFERENCES

[1] D. Ferguson, T. Howard, and M. Likhachev, “Motion planning in
urban environments: Part II,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Nice, France, September 2008, pp.
1070–1076.

[2] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Proceedings of the Fourteenth International Joint Conf. on Artificial
Intelligence, August 1995.

[3] S. Koenig and M. Likhachev, “D* Lite,” in Proceedings of the AAAI
Conference of Artificial Intelligence (AAAI), 2002.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[5] M. Pivtoraiko and A. Kelly, “Constrained motion planning in discrete
state spaces,” in Field and Service Robotics, vol. 25. Berlin /
Heidelberg: Springer, July 2005, pp. 269–280.

[6] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2001.

[7] D. Ferguson and A. Stentz, “Multi-resolution Field D*,” in Proc.
International Conference on Intelligent Autonomous Systems (IAS),
2006.

[8] D. Pai and L.-M. Reissell, “Multiresolution rough terrain motion
planning,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 1, pp. 19–33, 1998.

[9] R. Szczerba, D. Chen, and J. Uhran, “Planning shortest paths among
2D and 3D weighted regions using framed-subspaces,” International
Journal of Robotics Research, vol. 17, no. 5, pp. 531–546, 1998.

[10] D. Hsu, R. Kindel, and J.-C. L. S. Rock, “Randomized kinodynamic
motion planning with moving obstacles,” International Journal of
Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[11] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” Algorithmic and Computational Robotics:
New Directions, pp. 293–308, 2001.

[12] J. Barraquand and J.-C. Latombe, “On nonholonomic mobile robots
and optimal maneuvering,” in Proc. of the IEEE International Sympo-
sium on Intelligent Control, 1989.

[13] S. Pancanti, L. Pallottino, and A. Bicchi, “Motion planning through
symbols and lattices,” in Proc. of the Int. Conf. on Robotics and
Automation, 2004.

[14] T. Howard and A. Kelly, “Optimal rough terrain trajectory genera-
tion for wheeled mobile robots,” International Journal of Robotics
Research, vol. 26, no. 2, pp. 141–166, 2007.

[15] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” in Proc. of the American Control
Conference, 2001.

[16] A. Bicchi, A. Marigo, and B. Piccoli, “On the reachability of quantized
control systems,” IEEE Transactions on Automatic Control, vol. 47,
no. 4, pp. 546–563, 2002.

[17] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” International Journal of Robotics
Research, vol. 22, no. 7/8, pp. 583–601, 2002.

[18] J. Pearl, Heuristics: intelligent search strategies for computer problem
solving. Boston, MA: Addison-Wesley Longman Publishing Co.,
1984.

[19] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[20] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Optimal, smooth, non-
holonomic mobile robot motion planning in state lattices,” Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-07-15, May 2007.

[21] R. Knepper and A. Kelly, “High performance state lattice planning us-
ing heuristic look-up tables,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2006.

[22] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” Proc. of the IEEE/RSJ International Conference on
Intelligent Robots & Systems, 2001.

[23] M. Pivtoraiko and A. Kelly, “Differentially constrained motion re-
planning using state lattices with graduated fidelity,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2008.



 
 

   



 

 
 
 
 

Session IV 
 
 

Motion planning 
 

• Title: ICS-AVOID, a Collision Avoidance Scheme for Dynamic Environments 
Authors: Luis Martinez-Gomez and Thierry Fraichard 

 



 



Benchmarking Collision Avoidance Schemes
for Dynamic Environments

Luis Martinez-Gomez† and Thierry Fraichard†

Abstract— This paper evaluates and compare three state-
of-the-art collision avoidance schemes designed to operate in
dynamic environments. The first one is an extension of the
popular Dynamic Window approach; it is henceforth called
TVDW which stands for Time-Varying Dynamic Window. The
second one called NLVO builds upon the concept ofNon
Linear Velocity Obstacle which is a generalization of the Velocity
Obstacle concept. The last one is called ICS-AVOID , it draws
upon the concept of Inevitable Collision States, ie states for
which, no matter what the future trajectory of the robotic
system is, a collision eventually occurs. The results obtained
show that, when provided with the same amount of information
about the future evolution of the environment, ICS-AVOID
outperforms the other two schemes. The primary reason for
this has to do with the extent to which each collision avoidance
scheme reasons about the future. The second reason has to do
with the ability of each collision avoidance scheme to find a
safe control if one exists. ICS-AVOID is the only one which is
complete in this respect thanks to the concept of Safe Control
Kernel.

Index Terms— Motion Safety; Collision Avoidance; Dynamic
Environments; Inevitable Collision States, Velocity Obstacles,
Dynamic Window.

I. I NTRODUCTION

A. Background and Motivations

Autonomous mobile robots/vehicles navigation has a long
history by now. Remember Shakey’s pioneering efforts in
the late sixties [1]. Today, the situation has dramatically
changed as illustrated rather brilliantly by the 2007 DARPA
Urban Challenge1. The challenge called for autonomous
car-like vehicles to drive 96 kilometers through an urban
environment amidst other vehicles (11 self-driving and 50
human-driven). Six autonomous vehicles finished the race
thus proving that autonomous urban driving could become a
reality. Note however that, despite their strengths, the Urban
Challenge vehicles have not yet met the challenge of fully
autonomous urban driving (how about handling traffic lights
or pedestrians for instance?).

Another point worth mentioning is that at least one
collision took place between two competitors. This unfor-
tunate mishap raises the important issue ofmotion safety,
ie the ability for an autonomous robotic system to avoid
collision with the objects of its environment. The size and
the dynamics of the Urban Challenge vehicles make them
potentially dangerous for themselves and their environment
(especially when driving at high-speed). Therefore, before
letting such autonomous systems transport around or move

†INRIA, CNRS-LIG & Grenoble University, France.
1http://www.darpa.mil/grandchallenge.

among people, it is vital to assert their ability to avoid
collisions.

In the last forty years, the number and variety of au-
tonomous navigation schemes that have been proposed is
huge (cf [2]). In general, these navigation schemes intend to
fulfill two key purposes: reach a goal and avoid collision
with the objects of the environment. When it comes to
collision avoidance, once again, many collision avoidance
schemes have been proposed. Their aim of course is to
ensure the robotic systems’ safety. However, the analysis
carried out in [3] of the most prominent navigation schemes
(ie the ones currently used by robotics systems operating
in real environments,eg [4]–[7]) shows that, especially in
environments featuring moving objects,motion safety is not
guaranteed(in the sense that collisions can occur even if they
have full knowledge of the environment future evolution: no
uncertainty or spurious information). As shown in [3], col-
lision avoidance in dynamic environments is complex since
it requires to explicitly reason about thefuture behaviourof
the moving objects with atime horizon, ie the duration over
which the future is taken into account, which is determined
by the nature of both the moving objects and the robotic
system at hand. Failure to do so yields collision avoidance
schemes with insufficient motion safety guarantees.

B. Contributions

The primary purpose of this paper is to explore this
time horizon issue and to show how important it is in the
design of a truly safe collision avoidance scheme. To that
end, this paper will evaluate and compare three state-of-
the-art collision avoidance schemes that have been explicitly
designed to handle dynamic environments. The first one is
from [8] and is henceforth calledTime-Varying Dynamic
Window (TVDW), it is a straightforward extension of the
popular Dynamic Window approach [6]. The second one
builds upon the concept ofNon Linear Velocity Obstacle
(NLVO) [9] which is a generalization of the Velocity Ob-
stacle concept [7]. The last one, ICS-AVOID [10], draws
upon the concept ofInevitable Collision Statesdeveloped
in [11] (aka Obstacle Shadow [12] or Region of Inevitable
Collision [13], [14]). The three collision avoidance schemes
do reason about the future evolution of the environments but
they do so differently, each scheme has its own time horizon.

When placed in the same environment and provided with
exactly the same amount of information about the future,
the results we have obtained show that ICS-AVOID performs
significantly better than the other two schemes.



The primary reason for this has to do with the way
each collision avoidance scheme uses the information about
the future, thus emphasizing the fact that, reasoning about
the future is not nearly enough, it must be done with an
appropriate time horizon. In contrast with TVDW and NLVO,
ICS-AVOID is the only scheme that reasons over an infinite
time-horizon. The analysis carried out in [10] shows that if
ICS-AVOID were provided with full knowledge about the
future, it would guarantee motion safety no matter what.
Now, it could be argued that infinite knowledge about the
future is not available in realistic cases (which is true). The
fact remains that ICS-AVOID is the only scheme that is able
to make full use of all the information about the future which
is provided.

The second reason has to do with the decision part of
each collision avoidance scheme. In all cases, their operating
principle is to first characterize forbidden regions in a given
control space and then select an admissible control,ie one
which is not forbidden. Accordingly motion safety also
depends on the ability of the collision avoidance scheme
at hand to find such admissible control. In the absence
of a formal characterization of the forbidden regions, all
schemes resort to sampling (with the inherent risk of missing
the admissible regions). In contrast, ICS-AVOID through the
concept ofSafe Control Kernelis the only one for which it
is guaranteed that, if an admissible control exists, it willbe
part of the sampling set.

C. Outline of the Paper

The paper is organized as follows: Section II gives an
overview of the collision avoidance schemes used for the
comparative evaluation: TVDW, NLVO and ICS-AVOID. Af-
terwards, Section III details the way each collision avoidance
scheme reasons about the future. Section IV describes the
benchmarking and simulation setup. The benchmark results
are presented in Section V. Discussion and concluding re-
marks are made in Section VI.

II. STATE-OF-THE-ART COLLISION AVOIDANCE

SCHEMES

As exposed in the introduction, the benchmarking con-
cerns TVDW, NLVO and ICS-AVOID. The first two are ex-
tensions to popular collision avoidance schemes used in real-
world applications: Dynamic Window (DW) and Velocity
Obstacles (VO). DW has been demonstrated at relatively high
speeds (up to1 m/s) in complex environments with Min-
erva [15], Rhino [16] and Robox [17], robotic tour-guides
that have operated for different time periods in different
places in the United States, Germany and Switzerland. VO
has been tested with MAid [18], an automated wheelchair
that navigated in the concourse of the central station in Ulm
(DE) and during the German exhibition Hanover Fair’98.
ICS-AVOID, is the continuation of the work done around the
ICS concept for safe motion planning in dynamic environ-
ments [19], [20] with applications in driverless vehicles [21],
[22].

A. Time Varying Dynamic Window

The Dynamic Window approach is a velocity space based
local reactive avoidance scheme where search for admissible
controls is carried out directly in the linear and angular
velocity space [6]. The search space is reduced by the system
kinematic and dynamic constraints to a set of reachable
velocities (Vr) in a short time interval (∆t) around the current
velocity vector (Fig.1a):

Vr = {(v, ω)|v ∈ [vc − v̇b∆t, vc + v̇a∆t]∧

ω ∈ [ωc − ω̇b∆t, ωc + ω̇a∆t]}
(1)

wherev̇a, ω̇a, v̇b andω̇b are maximal translational/rotational
accelerations and breaking decelerations. A velocity is ad-
missible (Va) if it allows the system to stop before hitting
an object:

Va = {v, ω ≤
√

2ρmin(v, ω)v̇b ∧
√

2ρmin(v, ω)ω̇b} (2)

An admissible velocity optimizing a given cost function
is selected at each time step. This approach considers the
objects in the environment as static. TVDW extends this
scheme by calculating at each instant a set of immediate
future obstacles trajectories in order to check for collision
in the short term [8]. In this respect TVDW is superior to
DW because it reasons about the future behaviour of the
obstacles. The extent of the look ahead time is set to equal
the time it takes to the robotic system to stop, if no collision
occurs during that time the velocity is considered admissible
(Fig.1b).

Vr

Va

V S

Dynamic WindowVd

Actual Velocity

(a) Dynamic Window.

A

Bi(t0) Bi(t0 + ∆t)

Collision Points

TVDW Trajectories

(b) Time-Varying Dynamic Window.

Fig. 1: Dynamic Window based approaches.

B. Non-Linear Velocity Obstacles

Velocity Obstacles is a reactive approach that operates
in the Cartesian velocity space of the robotic system con-
sidered [7]. VO takes into account the velocity of the
moving objects (assumed to be moving with a constant linear



velocity). Each object yields a set of forbidden velocities
whose shape is that of a cone (Fig.2a depicts the linear
velocity space of the robotic system, the red conical region
on the right is the set of forbidden velocities that would
yield a collision between the robotA and the moving
object B). Should the robotic system select a forbidden
velocity, it would collide with the moving object at a later
time (possibly infinite) in the future. In practice, velocities
yielding a collision occurring after a given time horizon
(tH ) are considered as admissible. NLVO is an extension
of VO that considers known arbitrary velocity profiles for
the moving objects [9]. NLVO consist of all velocities of
A at t0 that would result in collision withB at any time
t0 ≤ t ≤ tH . As depicted in Figure.2b,NLV O(t) is a scaled
downB, bounded by the cone formed betweenA andB(t),
thus, NLVO is a warped cone with apex atA and formally
defined as:

NLV O =
⋃

t0≤t≤tH

B(t)

t − t0

(3)

where B(t)

t−t0
is the setB(t) scale down by(t − t0). One

issue (often overlooked) with the VO representation is that,
in a closed environment, every velocity is forbidden since it
eventually yield a collision. For that reason, both VO and
NLVO require a time horizontH that cannot be arbitrarily
large.
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vb

A

B

V O
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λr
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(a) Velocity Obstacles.
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B(t)

NLV O(t)
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(b) Non Linear Velocity Obstacles.

Fig. 2: Velocity Obstacles based approaches.

C. ICS-AVOID

ICS-AVOID is a reactive navigation approach based upon
the concept of Inevitable Collision State (ICS) [11]. An ICS

is defined as a state for which, no matter what the future
trajectory followed by the system is, a collision eventually
occurs. ICS-AVOID searches the control space of the system
for a control to apply at the next time step. A control is
admissible if it drives the system to a non-ICS state. To test
for ICS-ness the ICS-Checker presented in [23] is used. If
the current state is not an ICS then it is guaranteed that
ICS-AVOID will find and return an admissible control (Safe
Control Kernel) [10].

III. R EASONING ABOUT THE FUTURE

All the collision avoidance schemes used in the bench-
marking make use of a model of the future, that is, they
take into account the future behaviour of the obstacles in
the environment. The different extent in which they use the
available information have an impact in the decisions they
made and consequently in their overall performance. TVDW
considers as look ahead the braking timetB (the time it
takes to the system to go from its current velocity to a halt).
This time is then state dependent and upper-bounded. NLVO
use as look ahead an arbitrarily set time horizon (tH ), in
other words, there is no clear guideline on how to choose
it an is not a function of the system dynamics nor current
state. Furthermore, it can’t be set to a very large value
because in closed environments it will render all velocities
inadmissibles. ICS-AVOID in accordance to the ICS defintion
reasons in terms of infinite duration. It uses the available
information about the unfolding of the environment up to
infinity. The different look ahead of the collision avoidance
schemes is illustrated in Fig.3 to emphasize the fact that both
TVDW and NLVO truncate their future model and disregard
any information beyondtB and tH respectively (even if it’s
available). In contrast, this isn’t the case for ICS-AVOID.

s

t

TVDW(tB)

NLVO(tH )

ICS-AVOID(∞)

Fig. 3: Look-ahead of the different schemes.

IV. B ENCHMARK AND SIMULATION SETUP

To assess the performance of the collision avoidance
schemes just presented a comparative evaluation was con-
ducted. A simulation environment capable of reproducing the
same conditions for all the schemes was chosen to conduce



the benchmarking. The robotic system, environment setup
and implementation is discussed next.

1) Robotic System: Point Mass Model:Let A be modeled
as a disk with point mass non-dissipative dynamics. Astate
of A is defined ass = (x, y, vx, vy) where (x, y) are the
coordinates of the center of the disk andvx, vy are the axial
components of the velocity. A control ofA is defined by the
pair (ux, uy) which denote the force exerted by the actuators
along the x- and y-axis respectively. The motion ofA is
governed by the following differential equations:
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ẏ

v̇x

v̇y









=









vx

vy

0
0









+









0
0
1
0









ux +









0
0
0
1









uy (4)

with a bound in the control given by the maximum acceler-

ation:
u2

x
+u2

y

m2 ≤ a

2

max wherem is the robot mass.
2) Workspace Model:A moves in a closed 2D workspace

W (100 by 100 meters), cluttered up with disk-shaped
moving objects (grown by the radius ofA). A total of twenty
three objects move with random constant speeds (between
1 to 10 m/s) along complex cyclic trajectories (closed B-
splines with 10 random control knots). Figure 4 shows the
trajectories of the objects to illustrate the complexity of
the environment. This setup can theoretically provide future

Fig. 4: Workspace example, 23 obstacles (represented by
circles) with random generated velocities and B-Splines
trajectories.

information about the behaviour of the moving objects up to
infinity. In practice, knowledge is provided until a fixed time
in the futuretF after which constant linear motion is assumed
(Fig. 5). This to resemble realistic cases where prediction
quality degrades as time pass by.

3) Implementation:The simulation environment and col-
lision schemes were programmed entirely in C++ using
OpenGL as rendering engine. The random number generator
employed to produce the obstacles trajectories and velocities
was seeded with a set of identical numbers to achieve

W

t

tF

B(t)

Fig. 5: World Model of the future.

an identical reproduction of simulation conditions for each
of the collision avoidance schemes in the benchmark. The
information about the future behaviour of the objects in the
environment was made available to all the schemes with a
limit of tF = 1, 3 and 5 seconds into the future.

V. BENCHMARK

The collision avoidance schemes were tested on a set of
five runs with a duration of two minutes each. We varied the
amount of available information about the future behaviour
of the obstacles in the environment withtF = 1, 3 and 5
seconds. For each run the number of collisions betweenA
and the objectsBi are recorded in Table I.

Scheme Run Collisions Collisions Collisions
TF=1(s) TF=3(s) TF=5(s)

1 5 6 3
2 12 4 4

TVDW 3 5 7 3
4 12 2 4
5 12 2 4

Average: 9.2 4.2 3.6

1 10 2 0
2 8 2 0

NLVO 3 12 2 0
4 3 3 2
5 7 2 2

Average: 8.0 2.2 0.8

1 7 0 0
2 0 0 0

ICS-AVOID 3 1 0 0
4 1 0 0
5 1 0 0

Average: 2.0 0.0 0.0

TABLE I: Benchmarking of collision avoidance schemes.

TVDW (Fig. 6) performs poorly in comparison with the
other two schemes. One of the main causes of failure is
the limited extent in which the scheme use the information
available about the future trajectories of the objects: as
explained before it limits itself to a small fraction of the time
at hand (tB). In contrast, NLVO (Fig. 7) exploits better the
given information. In these runstH was set equal totF so all



the available information could be taken into account. NLVO
averages less of one collision per run in the 5 second setup,
nonetheless, it fails to guarantee the safety of the system
when provided with less information. ICS-AVOID (Fig. 8)
has the best performance in all the time setups. ICS-AVOID

is designed to reason in terms of infinite duration but even
when dealing with minimal information about the future (1
second) it outperfomed the other two schemes. When given
more information (3 and 5 seconds) not a single collision
occured. The results show the importance of the look ahead
time, when a colllision avoidance scheme disregard available
information its performance is lower compared to those that
use more.

Fig. 6: TVDW. Admissible velocities (Va) are represented in
black, velocities in red are forbidden.

VI. CONCLUSION

We have presented a comparative evaluation with three
state-of-the-art collision avoidance schemes designed tohan-
dle complex dynamic environments. The results show that,
when provided with the same amount of information about
the future evolution of the environment, ICS-AVOID outper-
forms the others. The reason for this has to do with the extent
to which each collision avoidance scheme reasons about the
future.
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Mapping Obstacles to Collision States for On-line Motion Planningin
Dynamic Environments

Oren Gal and Zvi Shiller

Abstract— This paper presents a representation of static and
moving obstacles, using Velocity Obstacles (VO), for on-line
planning in dynamic environments. Each obstacle is mapped
to forbidden states by selecting a proper time horizon for the
velocity obstacle. The proper choice of the time horizon ensures
that the boundary of the mapped obstacle overlaps with the
boundary of the set of inevitable collision states (ICS). This
time horizon is determined by the minimum time it would
take the robot to avoid collision, either by stopping or by
passing the respective obstacle. This representation allows safe
on-line planning using only one step look ahead. The on-line
trajectories favorably compare with the trajectories obtained
by a global planner.

I. I NTRODUCTION

Most of the work on motion planning over the past twenty
years has focused on static obstacles, with a few exceptions.
We distinguish between local and global planners. The local
planner generates one, or a few steps at every time step,
whereas the global planner uses a global search to the
goal over a time spanned tree. Examples of local (reactive)
planners are [3], [16], [8], [11], but most do not guarantee
safety as they are too slow and hence their ability to look-
ahead and avoid states of inevitable collision is very limited.
Recently, iterative planners [5], [7], [1], [12], [10], [15] were
developed that compute several steps at a time, subject to
the available computation time. The trajectory is generated
incrementally by exploring a search-tree and choosing the
best branch. These planners too do not address the issue of
safety.

Only a few works have addressed the safety issue in
dynamic environments, which is crucial for partial (local)
planning. One approach is to use braking policies [17];
another is to ensure local avoidance for a limited time [10].
However, neither considers the dynamic of the moving robot.
A promising approach to safe motion planning in dynamic
environment is the consideration of ”regions of inevitable
collision,” first introduced in [9] and later extended in [6],
[14], [4], [2].

We address the issue of safety for an on-line local planner
in dynamic environments. Motion safety is guaranteed by en-
suring that the robot’s velocity does not penetrate the velocity
obstacle, which is generated for a carefully selected time
horizon. This velocity obstacle is a mapping of the obstacle
to a set of forbidden states, which overlaps with the boundary
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of the set of inevitable collision states. Repelling the robot’s
velocity from entering the inevitable collision states ensures
(if a solution exists) that the robot does not crash into any
static or moving obstacle. The safe time horizon, which is
obstacle specific, is determined by computing the minimum
time it would take the robot to avoid collision, either by
stopping or by passing the respective obstacle. Determining
the safe time horizon is computationally very efficient and it
does not require a prior mapping of inevitable collision states.
We demonstrate the approach for on-line motion planning in
very crowded static and dynamic environments.

II. T HE VELOCITY OBSTACLE

The velocity obstacle represents the set of all colliding
velocities of the robot with each of the neighboring obstacles.
It maps static and moving obstacles into the robot’s veloc-
ity space. The velocity obstacle (VO) of a planar circular
obstacle,B, that is moving at a constant velocityvb, is a
cone in the velocity space of robotA, reduced to a point
by enlarging respectively obstacleB. Each point inVO
represents a velocity vector that originates atA. Any velocity
of A that penetratesVO is a colliding velocity that would
result in collision betweenA andB at some future time. All
velocities ofA that are outside ofVO are safe as long asB
stays on its current course. The velocity obstacle thus allows
determining if a given velocity is potentially dangerous,
and suggesting possible changes to this velocity to avert
collision. If B is known to move along a curved trajectory
or at varying speeds, it would be best represented by the
nonlinear velocity obstacle (NLVO), which accounts for a
general trajectory of the obstacle, while assuming a constant
velocity of the robot. It applies to the situation where, at
time t0, a point A attempts to avoid an obstacle,B, that is
following a general known trajectory,c(t), and at timet0 is
located atc(t0). The NLVO consists of all velocities ofA at
t0 that would result in collision with the obstacle at any time
t > t0. Selecting a single velocity,va, at timet = t0 outside the
NLVO thus guarantees thatA avoids collision at all times. It
is constructed as a union of its temporal elements,NLVO(t),
which is the set of all absolute velocities ofA, va, that would
result in collision at a specific timet.

The velocityva that would result in collision with pointp
in B at time t > t0, expressed in a frame centered atA(t0),
is simply

va =
c(t)+ r
t − t0

, (1)

wherer is the vector to pointp in the obstacle’s fixed frame.
The set,NLVO(t) of all absolute velocities ofA that would



result in collision with any point inB at time t > t0 is
obtained by replacingr with the set of all points inB:

NLVO(t) =
c(t)⊕B

t − t0
. (2)

whereB represents the set of all points in the grown obstacle
B, defined relative to some center that follows the curvec(t),
and⊕ represents the Minkowski sum. Clearly,NLVO(t) is
a scaledB, located at a distance fromA that is inversely
proportional to the collision timet. The entireNLVO is the
union of its temporal subsets fromt0, the current time, to
some set time horizonth:

NLVOth
t0 =

⋃

th>t>t0

c(t)⊕B

t − t0
. (3)

The non-linear v-obstacle is a warped cone. Ifc(t) is
bounded overt = (t0,∞), then the apex of this cone is at
A(t0). The boundaries of theNLVO represent velocities that
would result inA grazingB. The smallest safe time horizon is
the one that allows sufficient time to avoid or escape collision
as discussed next.

III. T IME HORIZON

The time horizon plays an important role in selecting
feasible avoidance maneuvers. It allows considering only
those maneuvers that would result in a collision within a
specified time interval. Setting the time horizon too high
would be too prohibitive, as it would mark as dangerous
maneuvers resulting in collision at a distant time; selecting a
too small time horizon would permit dangerous maneuvers
that are too close and at too high speeds to avoid the obstacle.
It is essential that the proper time horizon be selected to
ensure that a safe maneuver, even if temporarily pointing
toward the obstacle, is selected. The smallest safe time
horizon is the one that allows sufficient time for the robot
to avoid the obstacle either by stopping or by passing. It
depends on the size of the obstacle, its velocity, and the
robot’s dynamic constraints.

B

va/b

vn

vt
A

Fig. 1. The robot and obstacle on a collision course

Consider a robotA and an obstacleB, each moving at some
constant velocity. The time horizon is relevant only if the
two are on a collision course, i.e. the velocityva penetrates
the velocity obstacle ofB. To determine the proper time
horizon for this case, we first transform the problem into
the avoidance of a static obstacle by considering the relative

BB

dt

A
A

vn
vt

dn

Fig. 2. Stopping and passing maneuvers

velocity va/b, as shown in Figure 1. The relative velocity
va/b is then projected into two components,vn and vt that
are parallel and normal to the line connectingA and the
center ofB, as shown in Figure 1.

The robot can avoid collision by either stopping before
hitting the obstacle, or by passing it on either side. To stop,
the robot’s longitudinal velocityvn must decelerate to zero
before traversing the distancedn; to pass, the robot must
traverse the lateral distancedt faster than it would traverse
the longitudinal distancedn. We select the time horizon such
that when the robot’s velocity first penetrates the velocity
obstacle, it still has sufficient time to avoid collision either
by stoppingor by passing. To this end, we wish to determine
the minimum time required for each maneuver (stopping
and passing) to select the smallest safe time horizon. For
simplicity, we decouple the two maneuvers, assuming that
each is executed by a single control effort. The minimum
times for the stopping and passing maneuvers thus depend
on the initial velocity, distance, and the control constraint in
each direction. The smallest safe time horizon is then the
smallest of the minimum times for stopping and passing.

A. Stopping time

The minimum stopping time is the time it would take the
robot to decelerate to a stop from its current normal velocity
vn, using the maximum deceleration. Assuming a constant
longitudinal deceleration,un < 0, the stopping time is

tstop =
vn

−un
. (4)

Since theVO assumes collision at a constant speed,
whereaststop assumes a constant deceleration, usingtstop

as the time horizon would alert the robot too early of
a potential collision. Taking into account the decelerating
velocity allows us to use a shorter time horizon. To determine
how short, we compare the distance traveled overtstop at a
constant speed and at a constant deceleration.

The distance traveled at a constant velocityvn over the
stopping timetstop is:

dconst = vntstop. (5)

The distance traveled at a constant decelerationun from the
initial velocity vn to a stop is:

ddec = vntstop +
1
2

unt2
stop. (6)



Substitutingvn = −untstop into (6) yields:

ddec = vntstop −
1
2

vntstop =
1
2

vntstop =
1
2

dconst . (7)

Since the distance traveled at a constant deceleration is half
the distance traveled at a constantvn over the stopping time
tstop, the moving robot should start decelerating when the
time to collision at a constant speed drops to half the stopping
time (4). The smallest time horizonts for the stopping
maneuver is therefore half the stopping timetstop:

ts =
1
2

tstop =
vn

−2un
. (8)

B. Passing time

The minimum time for passing,tp, is the solution to the
minimum time problem of traversing the distancedt , given
an initial velocity vt and an unspecified final velocity. The
solution to this problem is an extremal control that either
accelerates or decelerates, depending on the signs ofdt and
vt .

The velocity v f developed by accelerating atut over tp

until traversingdt satisfies:

v f = vt +uttp (9)

v2
f = v2

t +2utdt . (10)

The minimum time,tp, to traverse the distancedt is thus the
smallest positive solution:

tp = min
−vt ±

√

v2
t +2utdt

ut
(11)

Note that there are two such solutions, one for passing on
the right and one on the left. Obviously, the smallest of the
two is selected.

Selecting the time horizon as the smallest of the two times

th = min{ts, tp} (12)

ensures that when the robot’s velocity touches the boundary
of the velocity obstacle, there remains sufficient time to avoid
the obstacle either by stoppingor by passing. Penetrating the
velocity obstacle would leave no time for a safe avoidance
maneuver, which implies that the boundary of the velocity
obstacle, generated fort ≤ th, represents states on the bound-
ary of theICS. The time horizon is computed individually for
each obstacle, using the relative velocity between the robot
and obstacle.

C. A compact representation of velocity obstacles

There is no need to compute the entire velocity obstacle for
t ∈ (t0, th) since generally, any collision at timet < th would
be the result ofva first penetrating the temporal velocity
obstacle at the time horizon,NLVO(th):

NLVO(th) =
c(th)⊕B

th − t0
. (13)

Thus, each obstacle is mapped to one temporalVO,
NLVO(th), which is a set of a similar shape to the robot
but of a different size and location. This greatly reduces

computation time and provides an intuitive mapping of the
dynamic environment. Thus, the original collision avoidance
problem turns into the velocity avoidance of the mapped
obstacles.

IV. T HE PLANNER

The efficient representation of static and moving obstacles
by velocity obstacles allows us to efficiently plan safe
trajectories in dynamic environments. The proper choice
of the time horizon ensures survival of the robot, i.e. not
entering inevitable collision states (ICS). For one obstacle,
this guarantees convergence to the goal. For many obstacles,
a solution cannot be guaranteed due to the changing nature
of the environment. The computational effort is drastically
reduced by considering only ”safe” attainable states that
satisfy system dynamics and are out of the ICS.

A. System Dynamics

For simplicity, the robot is assumed a planar point mass.
This is necessary for computational reasons, and is in no way
a limitation of this approach.

We consider the following point mass model:

ẍ = u1; |u1| ≤ 1 (14)

ÿ = u2; |u2| ≤ 1 (15)

where (x,y)T ∈ R2 represents the robot’s position in a
Cartesian coordinate frame and(u1,u2)

T ∈ R2 represents the
robot’s controls.

B. Attainable Cartesian Velocities

Given the robot’s dynamics, we wish to compute the set
of attainable Cartesian velocities (ACV ) of the maneuvering
robot that can be reached over a given time interval,∆t
[13]. This set contains the avoidance maneuvers that are
dynamically feasible from a given state. The attainable
Cartesian velocities, ACV (t + ∆t) are integrated from the
current state(x,v) = (x,y, ẋ, ẏ) by applying all admissible
controlsu = (u1,u2) ∈U :

ACV (t +∆t) = {v|v = v(t)+∆tu,u ∈U}. (16)

The geometric shape ofACV (t +∆t) depends on the specific
system dynamics. For a point mass model, with constant
control constraints, it is a rectangle, similar in shape to the
set of admissible controlsU , as shown in Figure 3.

C. Tree Search

The planner uses a depth first A* search over a tree
that expands over time to the goal. Each node contains the
current position and velocity of the robot at the current
time step. At each state, the planner computes the set of
admissible velocitiesACV , which is then tessellated by a
uniform grid, as shown in Figure 3. To test the safety of the
nodes on the grid, the temporal velocity obstacleNLVO(th) is
computed. Nodes insideNLVO(th), marked red in Figure 3,
are marked inadmissible. Nodes out ofNLVO(th) are further
evaluated by computing from each the unconstrained (no
obstacles) minimum time-to-go (to the goal), as discussed
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Fig. 3. Attainable Cartesian Velocities

next. The node with the lowest time is then explored to the
next time step. This is repeated until reaching the goal. For
one obstacle, this planner is guaranteed to reach the goal
in the near minimum time. For many moving obstacles,
it may not, and a global search may be required. Using
only one temporalNLVO(th) to determine potential collisions
represents a significant computational gain, compared with
the computation of the velocity obstacle fort ∈ (0, th).

V. EXAMPLES

The on-line planner was implemented and tested for
obstacle-free, and crowded static and dynamic environments.
In the first example, shown in Figure 4, the robot, represented
by a point, starts near point(0.25,−1) at zero speed,
attempting to reach the goal at point(0.25,2) (marked by a
red triangle) at zero speed, while avoiding two obstacles, one
static and one moving (to the right). The trajectory is shown
in six snapshots, starting from the top left, and ending at the
bottom right of Figure 4. In each snapshot, the two obstacles
are shown in blue, together with their temporal velocity
obstacles shown at the respective time horizon. Also shown
is the robot trajectory up to that point from the start, with the
velocity marked at the current point. Note that as the time
horizon decreases, the size of the velocity obstacle increases
(per (13)). At first, the robot turns left to avoid penetrating
the velocity obstacle. This turn to the left occurs before the
robot reaches the obstacle. After passing the static obstacle
on the left, it turns right, to avoid the moving obstacle. At
some point, the robot grazes the obstacle on the right, after
which it is enclosed by the second velocity obstacle. This
does not indicate a collision since its velocity points outside
of the velocity obstacle. At that point, the relative velocity of
the robot relative to the obstacle is tangent to the obstacle,
as it should for the two to be sliding relative to each other.
After avoiding the moving obstacle, the robot turns to the
left to reach the goal.

The second example, in Figure 5, shows the robot avoiding
70 static obstacles. The robot accelerates and slows down
through narrow passages toward the goal. Attempting to
avoid the static obstacles with a too small time horizon
resulted in the robot crashing early on into one of the
obstacles.

The next example, in Figure 6, compares the local and
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Fig. 4. Avoiding a static and a moving obstacle. Obstacles areshown in
blue, and their respective velocity obstacles shown in yellow. The velocity
vector is guided not to penetrate the velocity obstacles.
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Fig. 5. Avoiding 70 static obstacles

the global planners in avoiding 70 static obstacles, starting
from the bottom left. The local trajectory is shown in black,
and the global trajectory in red. The two are almost identical
until the global takes a left turn whereas the local takes a
right turn before reaching the goal. The local trajectory was
traveling 10% longer than the global solution.

The last example, in Figure 7, shows four snapshots of the
robot avoiding 70 moving obstacles. It starts from the bottom
center and moves to the target at the top right. A video clip of
the full run is available in www.ariel.ac.il/me/pf/shiller/oren.

VI. CONCLUSIONS

An efficient mapping of obstacles to forbidden states for
on-line planning in dynamic environments was presented.
It consists of generating velocity obstacles at a carefully
selected time horizon. This time horizon is selected for each
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Fig. 7. Avoiding 70 moving obstacles

obstacle, static or moving, as the smallest of the minimum
stopping and minimum passing times from the current state.
Keeping the robot’s velocity vector out of the velocity
obstacle ensures that the robot does not enter unsafe states
from which avoidance cannot be guaranteed. Recognizing
unsafe states using the velocity obstacles is not only safe
but also very efficient as it drastically reduces the search
tree. The approach was demonstrated in an on-line planner
that generates near time-optimal trajectories. The planner was
demonstrated for a point mass dynamic model. Other robot
models can be used with minor modifications. It is suitable
for real time generation of high speed trajectories in crowded
static and dynamic environments.
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Probabilistic Rapidly-exploring Random Trees for autonomous navigation
among moving obstacles.

Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier
LIG, INRIA Rhône-Alpes, France

Abstract— The paper presents a navigation algorithm for
dynamic, uncertain environment. The static environment is
unknown, while moving pedestrians are detected and tracked
on-line. The planning algorithm is based on an extension
of the Rapidly-exploring Random Tree algorithm, where the
likelihood of the obstacles trajectory and the probability of
collision is explicitly taken into account. The algorithm is used
in a partial motion planner, and the probability of collisio n is
updated in real-time according to the most recent estimation.
Results show the performance for a car-like robot among a
pedestrian tracking dataset and simulated navigation among
multiple dynamic obstacles.

I. I NTRODUCTION

Autonomous navigation in populated environments repre-
sents still an important challenge for robotics research. The
key of the problem is to guarantee safety for all the agents
moving in the space (people, vehicles and the robot itself).
In contrast with static or controlled environments, where
path planning techniques are suitable [1] [2], high dynamic
environments present many difficult issues: the detection
and tracking of the moving obstacles, the prediction of the
future state of the world and the on-line motion planning and
navigation. The decision about motion must be related with
the on-line perception of the world and take into account the
sources of uncertainty involved:

1) The limits of the perception system: occluded zones,
limited range, accuracy and sensibility, sensor faults;

2) The future behaviour of the moving agents: model
error, unexpected changes of motion direction and
velocity;

3) New agents entering the workspace;
4) Errors of the execution system.

Many real world applications rely on reactive strategies: the
robot decides only about its immediate action with respect
to the updated local estimation of the environment [3]–[5].
These strategies present however some major drawback: first
of all the robot can be stuck in local minima; secondly, most
of the developed approaches do not take into account the
dynamic nature of the environment and the uncertainty of
perception, so that the robot can be driven in dangerous or
blocking situations.
To face these problems, reactive techniques are combined
with global planning methods: a complete plan from present
state to goal state is computed on the basis of the a priori
information; during execution, the reactive algorithm adapts
the trajectory in order to avoid moving and unexpected ob-
stacles [6]–[8]. If the perception invalidates the plannedpath

replanning is performed. In all the cited methods however,
uncertainty is usually not taken explicitly into account.
From the more theoretical point of view instead, many works
handle a non-deterministic or probabilistic representation of
the information and the planning under uncertainty problem
is solved using Markov Decision Processes (MDP), Partially
Observable MDPs or game theory [9]–[11]. For an overview
see [2]. These approaches are however very expensive from
the computational perspective, and are limited to low di-
mensional problems or to off-line planning. In [12] and
[13] a navigation strategy based on typical pattern based
and probabilistic prediction is used in a planning algorithm
based on a complete optimization method,A

∗ . However,
the problem ofA∗ and of all complete methods is that the
computational time depends on the environment structure
and obstacles: these methods are more adapted to a low dy-
namic environments, where the information does not change
frequently, the obstacles velocity is limited and the robot
can stop often and plan its future movements. Also, they
require a discretization of both the state and the control
space, which reduces drastically the space for finding a
feasible solution, expecially for robots with non-holonome or
car-like constraints. Some recent work proposes to integrate
uncertainty in randomised techniques, such as Probabilistic
Road Maps [14] and Rapidly-exploring Random Trees (RRT)
[15] [16].
In a highly dynamic environment ananytimealgorithm is
needed, which is able to give a feasible solution at ”anytime”
it is asked to. In this paper we address the problem of taking
explicitly into account the uncertainty in sensing and in pre-
diction. We want our navigation algorithm to integrate new
information coming from the perception system and to be
able to react to the changes of the environment. In previous
work [17] we developed a probabilistic extension of the
RRT algorithm to handle a probabilistic representation of the
static environment and of the moving obstacles prediction.
The search algorithm has been integrated in a navigation
algorithm which updates the probabilistic information and
chooses the best partial path on the searched tree. The
navigation algorithm is based on the architecture of Partial
Motion Planning (PMP, [18]), where execution and local
planning work in parallel to assure safe behaviour. The static
environment is initially unknown and the robot explores it
and builds an occupancy grid. While in [17] motion patterns
were represented by Gaussian Processes, in this paper we
consider two cases: in the first case the obstacles are simply
tracked and their motion model is estimated on the basis of



previous observations; in the second case, the obstacles are
supposed to follow pre-learned motion patterns which are
represented by Markov chains and prediction is based on
Hidden Markov Models.
The reminder of this paper is structured as follows: section
III describes the representation of the static and dynamic
world and how the probability of collision of a configuration
is computed. Section IV recalls the RRT basic algorithm
and details the new proposed approach. Section V recalls
the PMP method and describes the planning and navigation
algorithm developed. Results are presented in Section VI: an
experiment with a laser scan dataset with moving pedestrians
is presented and results in a simulated environment are
shown. Section VII ends the paper with remarks and ideas
for future work.

II. T HE ROBOT AND THE STATE SPACE

We consider a car-like robot moving inR2. The con-
figuration spaceC = {x, y, θ, v, ω} described respectively
by the position, orientation, linear and angular velocities
of the robot in the workspace. The robot moves according
to its motion modelq(t + 1) = F (q(t), u(t)) where input
u is given by pairs(a, α) with a the linear andα the
angular acceleration. The robot is subjected to kinematic
and dynamic constraints: the linear velocityv is limited in
the interval[0, vmax] and the angular velocityω is limited
in [−ωmax, ωmax]. a and alpha are also bounded:a ∈
[amin, amax] andα ∈ [αmin, αmax].
Time is represented by the setT = (0, +∞), which is the
infinite set of discrete instants with measure unit the timestep
τ . We define state spaceX of the robot, the space that
represents the configuration of the robot at a certain instant
in time X = C × T . In the workspace there are static and
moving obstacles. The task of the robot is to move from
the initial configurationq0 to a goal configurationqgoal in
finite time without entering in collision with any obstacle.A
solution trajectory is a sequence of states fromq0 to qgoal

that is feasible according to the motion model of the robot
and that is collision free: ie each configuration and each
transition of the sequence are collision free. We assume that
the position of the robot is known at each instant and that the
robot moves following according to its motion model without
error. In the deterministic case, the configuration spaceC
can be divided inCfree, the set of free configurations of the
robot andCobs, the set of configurations where the robot is in
collision with an obstacle. In our case instead we want to give
a probabilistic representation of environment perceptionand
prediction uncertainty and we need to define a probability
of collision for each robot configuration. In the following
paragraphs we explain how this probability is computed for
a considered state of the robotXr.

III. PROBABILITY OF COLLISION

A. The Static environment

The 2D static environment is represented by an occu-
pancy grid [19]: the space is divided in square cells. The
environment is initially unknown, and the probability of

(a) (b)
Fig. 1. (a) The cycab in the parking at INRIA Rhône-Alpes and (b) an occupancy
grid with the robot (green rectangle) and 2 moving obstacles(coloured circles) along
with their estimated trajectories.

occupationPocc of each cell is fixed at0.5. During navigation
the space is observed by mean of a distance sensor (laser
range finder). Assuming static environment, the probability
of occupation of each cell is recursively updated according
to the observations and estimated using a Bayesian filter. The
probability of collision of a point in the space is given by
the probability of occupation of the correspondent cell. For
the setS = (i, j)N of N cells covered by the robot in state
Xr, the probability of collision with static obstacles is given
by the maximum probability over the set:

P (coll(Xr,G)) = max
S

(Pocc(i, j)) (1)

Since the grid represents the static world, there is not needof
prediction and the probability of collision does not depend
on the time at which the robot is in a certain configuration.

B. Moving obstacles

Lets assume that the moving obstaclesOi can be approx-
imated by circles of fixed radius. The state of an obstacle is
X = (x, y, θ, v), its position in the 2D space, its orientation
and linear velocity. Given an object observationZ, the belief
state X and the prediction are estimated using Bayesian
inference.
In a first case we will consider that the moving obstacles are
detected and tracked by the robot using a Multi Hypothesis
target Tracking (MHT) algorithm based on a set of Kalman
Filters as in [20]: the motion of the obstacles can be
represented withM linear motion models hypothesesAm,
each affected by zero-mean white Gaussian noiseN (0, Qm).
At a considered instantt, the estimation of the state of
an object is represented by a weighted sum of Gaussians
(Gaussian mixture):

P (Oi(t))←

M
∑

m=1

αm · N (X̂m(t), Σm(t)) (2)

The predictionX̂ can be analytically computed from the
last estimation applying recursively the motion model. The
obtained distribution is always a mixture ofM Gaussians.
Considering time horizont + k:

X̂m(t + k) = Am ·Xm(t + k − 1) = A

k ·X(t) (3)

Σ̂(t + k) = (AT
m)k ·Σm(t) · Ak

m +
k

∑

j=0

(Aj
m ·Qm) (4)



Considering a state of the robotXr(t) and a moving obstacle
Oi, the probability of collision is given by the integral of the
probability distribution over the areaS covered by the robot
and enlarged by the radius of the obstacles:

P (coll(Xr, Oi)) =

∫∫

S

P (coll(Xr, Oi)) =

=

M
∑

m=1

αm

∫∫

S

N (X̂t
m, Σt

m) (5)

The integral in previous equation is approximated sampling
the distribution uniformly with the probability and consid-
ering the ratio between the number of samples inside and
outside areaS.
In a second case we will consider obstacles moving accord-
ing to Hidden Markov Models as in [21]. The belief of the
state at timet is given by a discretized distribution over the
states of the Markov model. The prediction at time horizon
t+k is recursively estimated propagating the estimated state:

P (X(t + k)|Z(t)) =
∑

X(t+k−1)

P (X(t + k)|X(t + k − 1))P (X(t + k − 1)|Z(t))

where the first term in the sum is the probability to pass
from stateX(t + k − 1) to stateX(t + k) specified by the
edges in the Markov model and the second is given by the
observation model. The integral in Eq. 5 is here substituted
by the sum over the states in the HMM touched by the area
S.
Considering multiple moving obstacles, the total probability
of collision is given by the probability of colliding with one
OR another obstacle. Under the assumption that collisions
with each obstacle are conditionally independent, the fol-
lowing equation is obtained:

P (coll(Xr, O)) = 1−
∏

i

(1− P (coll(Xr, Oi)) (6)

In the same way the probability of collision considering both
the static environment and the moving obstacles is obtained:

P (coll(Xr, O,G)) = (7)

= 1− (1− P (coll(Xr,G)) · (1− P (coll(Xr, O)))

C. New obstacles entering the scene

In dynamic environments, obstacles can enter or exit the
workspace during the navigation task. Also if partial planning
is used, it should be taken into account that new obstacles can
enter the the workspace and interfere with the next motions
of the robot. If it is possible to predict from where and when
some obstacle may enter the scene, a more robust planning
can be performed. The robot must:

– Distinguish from where a new obstacle may come.
– Apply a probability to the fact that an obstacle may

enter and a motion model.

For the first problem the robot searches for specific areas
from where an obstacle may enter (doors). This technique is

based on some assumptions about the observed space and the
size, shape and behaviour of the obstacles. The robot must
be able to recognize on-line thedoors with its perception
only.
In the parking environment where we tested our algorithm,
we assumed that obstacles may enter only traversing hidden
areas: i.e. they cannot pass through static obstacles. Given a
partial map and the point of view of the robot, these regions
are easily extracted: the distance between the the points on
the scan is studied and intervals bigger than the minimal
size of an obstacles are kept as possible doors. For each
interval, the partial map is observed to see if the area around
is occupied, free or occluded. If the area is occupied, the
considered interval is discarded: the area is occupied by a
static obstacle that is hidden only from the current point of
view. If the area is free or occluded (Pocc ≤ 0.5), a door is
recognized.
The probability of a new obstacle entering in the workspace
can be modeled as an homogeneous Poisson process. The
probability that at least one obstacle enters the scene, is given
by the following equation:

P [N(t + τ)−N(t) ≥ 1] = 1− e

−λτ (8)

The rate parameterλ, is the expected number of arrivals per
unit time. This parameter could be derived from a learning
phase or fixed a priori. When performing prediction, an
obstacle is initialized just behind the door, in the nearest
possible point with respect to the robot actual position.
The probability of occupation correspondent to the obstacle
grows with the length of the time period of prediction
according to Eq. 8. Using a worst-case hypothesis, obstacles
are supposed to move toward the robot. A noise in both
direction and a velocity is added to the model to take into
account the other possibilities of motion.

Fig. 2. A partial grid map, the extracteddoors and the supposed new entering
obstacles.

IV. PROBABILISTIC RRTS

A. Basic Algorithm for RRTs

The Rapidly-exploring Random Tree (RRT) is a well
known randomized algorithm to explore large state space
in a relatively short time. The pseudocode of the algorithm
is given in Algorithm 1. The algorithm chooses a pointp

in the state space and tries to extend the current search tree
toward that point.p is chosen randomly, but in single-query
planning, some bias toward the goal is generally applied in



(a) (b) (c)

Fig. 3. (a) RRT basic algorithm applied to a point holonome robot in aknown
static environment; (b) Perception given by a distance sensor at the initial position:
white, black and grey represent respectively free, occupied and occluded zones; (c)
Probabilistic RRT built in limited time: the search tree andthe likelihood of the nodes
in blue (lighter colour is for lower likelihood) and the chosen partial path in red.

Algorithm 1 : Basic RRT.

Data: T

while qgoal /∈ T do1
p = ChoosePoint (qgoal);2
q = T. NearestNeigbohr (p);3
qnew = extend (q, p);4
if qnew ∈ Cfree then5

T. addSon (q, qnew);6
end7
q = qgoal ;8
path = add (q);9
while q 6= T.root do10

q = T. parentNode (q);11
path = add (q);12

end13

order to speed up the exploration.p is chosen in the limited
Cfree (line 2). The nearest neighbourq of p within the nodes
of the search tree is chosen for extension. A new node is
obtained applying an admissible control from the chosen
nodeq toward p (line 3). If q is collision-free, it is added
to the tree. The algorithm can be stopped once the goal is
found (line1) or it can continue to run to find a better path.
The algorithm lies on a deterministic representation of the
environment, so that both in the static and dynamic case
we have a priori information on if a node is collision
free or not and add it or not to the search tree. Once the
goal state is reached, the path from the initial state to the
goal is retrieved. Fig. 3(a) shows a point holonome robot
in a known environment with static obstacles. The initial
position of the robot is in the left corner at the bottom
while the goal is in the upper right corner. An example of
the search tree (blue lines) and the found path (red line)
is shown; different running of the algorithm would give
different results. In this case, the robot is supposed to move
along straight lines, so that the Euclidean distance can be
used to determine the nearest neighbour in the current tree.
The algorithm can be generalized for car-like robots setting a
different NearestNeighbor(. ) function. and limiting the set
of possible actions to the admissible controls of the robot
from the node configuration.

B. Introducing probabilistic uncertainty

As stated in previous sections, the robot knowledge about
the environment is incomplete in both space and time (sensor
range, occlusions, new moving obstacles) and uncertain
(sensor accuracy, motion model of the moving obstacles). On
the basis of the RRT algorithm we developed an exploring
algorithm which takes into account probabilistic uncertainty.
For each configurationq of the space, a probability of
collision Pc(q) is computed considering the static and mov-
ing obstacles and the perception limits as in Eq. 7. The
probability of reaching a particular configurationqN is then
given by the probability to cross the tree from the rootq0

to the considered node, i.e. the probability ofnot having
collision in each of the traversed nodes:

Ps(π(qN )) = Ps(q0...qN ) (9)

Ps(q0...qN ) = (1− Pc(qN )) · Ps(q0...qN−1)

=

N
∏

n=0

(1 − Pc(qn))

where we have considered that collision in subsequent nodes
is statistically independent. We call this probability the
probability of successPs of the path. The probability falls
exponentially with the length of the path. This is a sign
that longer path are more dangerous, as the uncertainty
accumulates over subsequent steps. All nodes than can be
added to the tree, or a minimum thresholdPsmin1 can be
chosen in order to avoid keeping in the tree very unlikely
paths. Once a pointp is chosen in the configuration space,
the node to grow nextq is chosen in dependence both on a
measure of the expected length of the pathdist(q0, q, p) and
on the probability of success of the path. More precisely,
Ps(qN ) is normalized by the lengthN of the path and
multiplied by the inverse of the distance to the chosen point.

w̃q =
1

dist(q0, q, p)
N

√

Ps(q) (10)

wq =
w̃q

∑

q w̃q

(11)

The normalization is taken out so that the probability of
success does not depend on the length of the path, which is
taken instead into account by the distance term. The function
dist(q0, q, p) is a sum of the length of the path from the root
q0 to the considered node and of the shortest path fromq to
p, which is a lower limit for the length of the eventual path
to p. The obtained weights̃wq are normalized over the set
of nodes in the tree (Eq. 11), and the result is a distribution
over the nodes. The node to grow next is chosen taking the
maximum or drawing a random node proportionally to the
probability. In our implementation we choose the second
case which appeared to be more robust to local minima.
Even if a path to the goal is found, the algorithm can
continue to search for a better/safer path, until a path is
asked for execution. However, it is not guaranteed that a
safe enoughpath is found even in infinite time, because of
the environment uncertainty. The chosen path is then the best
path that is safe enough, i.e. for whichPs(qN ) ≥ Psmin2.



(a) (b) (c)
Fig. 4. Partial Probabilistic RRT applied to static environment for a point non-
holonome robot. The tree updated and grown at three instantsduring navigation (in
blue) and the chosen partial path (in red).

In general, this threshold is different fromPsmin1: when
the tree is updated and grown after new observations (see
§sec:OnLineNavigation) the probability of each path is infact
modified. Fig. 3(b) shows the perception given by a distance
sensor in a static environment: areas behind the obstacles are
unknown to the robot (Pc ≃ 0.5). Fig. 3(c) shows the tree
grown by the described algorithm for an holonome point
robot. The colour of the edges of the tree depends on the
likelihood of the associated path: the lighter the colour the
lower the likelihood. In red, the best path chosen.

V. ON-LINE NAVIGATION

A. Related work: the Partial Motion Planning

In a dynamic environment the robot has a limited time to
perform planning which depends on the time-validity of the
models used and on the moving objects in the environment.
The conditions used for planning could be invalidated at
execution time: for example an obstacle could have changed
its velocity or some new obstacle could have entered the
scene. The idea of Partial Motion Planning [18] is to take
explicitly into account the real-time constraint and to limit
the time available for planning to a fixed interval. After
each planning cycle, the planned trajectory is generally just
a partial trajectory. The exploring tree is updated with the
new model of the world and the final state of the previous
trajectory becomes the root of the new exploring tree. The
planning algorithm works in parallel with execution. Each
node of the tree is guaranteed to be not an Inevitable
Collision State (ICS, [22]) by checking if it exists a collision
free braking trajectory from the node. This is a conservative
approximation that does not allow the robot to pass an
intersection before an approaching moving obstacle. Our
approach presents an adaptable time horizon for planning.
The time for the planning iterations depends on the length
of the previous computed trajectory and on the on-line
observations. Safety of a path is guaranteed studying braking
trajectories only for the last state of the path.

B. Developed Algorithm

When the robot moves, it observes the environment and
updates its estimation with the incoming observations. The

cost of crossing the tree changes and the tree needs to be
updated. The update consists in three steps:

1) Prune the tree: the new root is the position of the
robot and nodes that are in the past are deleted; the
probability of reaching the nodes is updated, taking
into account that the robot has already crossed part of
the tree.

2) Update the weight of the nodes: when a change in
the probability of collision is detected, the weight of
the correspondent nodes (and of their subtree) must be
updated.

3) Retrieve the best path.

If the considered environment is dynamic we need the robot
to do these operations in real-time. In better words we need
to know how much time is available for updating and how
to allocate it. In the first step, the present state of the robot
is considered. The tree is pruned so that only the subtree
attached to the state of the robot is maintained. When the
probability to pass from a configurationq0 to qi changes,
the weight of the subtree attached toqi is updated using the
following equations:

P (qN |qi) = (P (qN |q0)− P̂ (qi|q0))
1

1 − P̂ (qi|q0)
(12)

P (qN |q0) = P (qi|q0) + (1 − P (qi|q0))P (qN |qi) (13)

The first equation gives the probability of traversing the tree
from qi to qN , assuming that the probability of reachingqi

changed fromP̂ (qi|q0)) to 1: q0 is the old root,qi is the new
root andqN is a node in the family ofqi. This first update
is used when the tree is pruned and is due to the fact that
the robot has already moved fromq0 to qi, so that the new
P (qi|q0) is 1. The second equation gives the probability to
traverse the tree fromq0 to qN when the probability to pass
from q0 to qi changes from1 to P (qi|q0). Eq. 12 and 13
are used one after the other when the observations revealed
some difference with the prediction. In this caseq0 and qi

are respectively the start and ending configuration in which
a change in the probability of collision has been detected.
In Fig. 4, the on-line updating of the tree is shown at 3
instants during navigation. At the beginning, the most likely
paths are explored in the two possible directions and the
most promising one is chosen. Fig. 4(b) shows the tree after
some steps: the tree has been updated: the branch in the right
direction has been cut has is not reachable anymore and the
tree has been grown. Fig. 4(c) shows the tree and the new
partial path found when a bigger portion of the space is
visible

VI. EXPERIMENTAL RESULTS

The planning algorithm has been tested with real data
acquired on the car-like vehicle (Cycab) shown in Fig. 1(a).
To test the algorithm we define a goal 20 meters ahead the

robot at each observation cycle and let the algorithm run in
parallel with the online mapping and tracking (Fig. 6(b)). The
planning algorithm runs at 2Hz. An example of the grown
tree and the chosen path is shown in Fig. 5. The occupancy



Fig. 5. The prediction of the moving obstacles and the explored treein (x, y, t)

space.

grid correspondent to the figure is the one in Fig. 1(b).
The two cones represent the prediction of the two moving
pedestrians considering ellipses of axes correspondent toone
standard deviation interval. A threshold has been applied to
show different colours for safer (green) and dangerous (red)
paths. The best path is shown in blue. Each sequence is then
tested with the real data, letting a virtual robot move through
the map. Fig. 6(a) shows the observed occupancy grid (a) and
the tree of states explored in the available time (b): lighter
blue is for higher probability of collision. The red line is the
chosen path. Fig. 6(c-f) shows subsequent positions of the
virtual robot; on the background the predicted occupancy
grid at the correspondent planning stage, while the red
circles represent the real position of the obstacles at the
considered time. Results prove that the algorithm is able to
compute safe trajectories in real time taking into account the
static environment, the moving obstacles perceived and their
velocity and the uncertainty which arises from a real dataset.
The navigation strategy has been tested in the Cycab simula-
tor (7(a)). A rectangular environment has been simulated. A
certain number of doors is simulated for the two long sides
of the rectangle. Obstacles are supposed to enter from a door
and to exit by another door in the opposite side. The space
has been discretized in a uniform cell grid of step0.5m An
4-connected HMM graph has been built on the grid for each
goal: the probability to pass from a state to another depends
on the decrease of the distance to the goal between the origin
state and the destination one. A certain amount of noise is
applied so that states that present nearly the same decrease
in distance are given the same probability. The probability
is then normalized over the set of edges coming out from
the origin node. A set of trajectories has been randomly
simulated on the basis of the graph: for each trajectory the
enter door and the exit door are chosen (Fig. 7(b)). Given a
state of the obstacle, the next state is drawn proportionally
with the edges probability. The position of the obstacle inside
the cell is chosen by a smoothing filter.
The simulated robot has the same dimensions and kinematic
and dynamic constraints of the Cycab. Perception is assumed

(a) (b)

(c) (d)

(e) (f)
Fig. 6. Planning results with a laser dataset. (a) The static environment is mapped
and the moving obstacles are tracked. (b) The algorithm explores the state space and
chooses a path. (c-f) the path is compared with the prediction and the real observations
acquired.

perfect: the obstacles are represented by circles of0.30m

radius whose position is always known; no occlusion or finite
range is considered. The robot has to cross the environment
and successively reach goals which are positioned randomly
in the environment, with some bounds near the walls. The
robot knows where the doors are and the Markov graph
correspondent to the simulated trajectories. Prediction is
performed on the basis of Hidden Markov Models, as in [?]
or [21] and the probability of collision is computed sampling
the obtained distribution on the cells. Fig. 7(c-f) show the
robot (green rectangle) traversing the environment to reach
the goal: the red line is the partial path computed at the
time-step in the shot, while red circles represent the moving
obstacles with their previous trajectory attached. The robot
reached1000 goals with various numbers of pedestrians
simulated in the space. No collision with the robot in motion
was detected during the experiment, while the number of
collisions as0 velocity grows with the number of objects in
the space. To understand these results, we must notice that
the simulated obstacles do not have any knowledge of the



(a) (b)
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(e) (f)
Fig. 7. Navigation results in simulated environment. (a) The Cycabsimulator with the
robot and simulated pedestrians. (b) The simulated trajectory dataset. (c-f) Navigation
among moving pedestrians based on HMM probabilistic prediction.

robot and that its kinematic possibilities are strongly limited
if compared to those of the obstacles: as the robot cannot go
backward, it tends to avoid obstacles and get stacked with
the walls of the environment, while the obstacles continue
to move around it.

VII. C ONCLUSION AND FUTURE WORK

The paper presents a navigation algorithm which integrates
perception uncertainty and incompleteness in the planning
strategy using a probabilistic framework. The tests prove that
the robot is able to navigate in real-time reacting properly
to unexpected changes of the environment and reaching
the given goal positions. The use of an adaptable time
horizon for planning makes the algorithm both reactive to
unexpected changes of the environment andforward looking
when previously planned trajectories are not invalidated by
observation.
Immediate work will deal with testing the navigation al-
gorithm to have a measure of its performance in more
complex and realistic scenarios. Future work will deal with
the integration of the localization and execution uncertainty
in the planning algorithm and with testing the navigation
with the real robot.
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