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Foreword 
Autonomous driving and navigation is a major research issue which would affect our lives in near future. The 
purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation and of 
driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. 
Theses new technologies can be applied efficiently for other application field like unmanned vehicles, wheelchair 
or assistance mobile robot. Technologies related to this area, such as autonomous outdoor vehicles, achievements, 
challenges and open questions would be presented, including the following topics: Object detection, tracking and 
classification, Collision prediction and avoidance, Environment perception, vehicle localization and autonomous 
navigation, Real-time perception and sensor fusion, SLAM in dynamic environments, Real-time motion planning 
in dynamic environments, 3D Modelling and reconstruction, Human-Robot Interaction, Behavior modeling and 
learning, Robust sensor-based 3D reconstruction, Modeling and Control of mobile robot, Cooperation and 
communications, Multi-agent based architectures, Cooperative unmanned vehicles.  
 
Previously, four workshops were organized in the same field. The 1st edition PPNIV'07 of this workshop was held 
in Roma during ICRA'07 (around 60 attendees), and the second PPNIV'08 in Nice during IROS'08 (more than 90 
registered people), the third edition SNODE'09 in Kobe during ICRA'09 (around 70 attendees), and the last one 
PPNIV'09 was organized in the next IROS'09 in Saint-Louis. A special issue in IEEE Transaction on ITS, mainly 
focused on Car and ITS applications, has been published last September 2009. Previous editions were focused 
mainly on the use of one vehicle; the 5th edition will extend the topics to control, traffic and multi-vehicle.  

This workshop is composed with 4 invited talks and 12 selected papers (6 selected for oral presentation and 6 
selected for interactive session. Five sessions has been organized: 

• Session I: Perception & Localization 
• Session II: Path Planning & Navigation Systems 
• Session III: Human-Robot Interaction  
• Session IV: Interactive Session 
• Session V: Multi-robot Control and ITS 

 
Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 

Christian Laugier, Ming Lin, Philippe Martinet and Urbano Nunes 
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Session I 
 

Perception & Localization 
 

• Keynote speaker: Alberto Broggi (Parma University, Italy) 
Title: The VIAC Challenge: Setup of an Autonomous Vehicle for a 13,000 km 
Intercontinental Unmanned Drive 
Co-Authors: Massimo Bertozzi, Luca Bombini, Alberto Broggi, and Paolo Grisleri 

 
 
• Title: Learning a Real-Time 3D Point Cloud Obstacle Discriminator via 

Bootstrapping 
Authors: Michael Samples and Michael R. James 
 

 
• Title: In Improved Flies Method for Stereo Vision: Application to Pedestrian 

Detection 
Authors: Hao Lee, Gwenaelle Toulminet, Fawzi Nashashibi 
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Session I 
Keynote speaker: Alberto Broggi (Parma University, Italy) 

 
The VIAC Challenge: Setup of an Autonomous Vehicle for a 13,000 km 

Intercontinental Unmanned Drive 
 

Co-Authors: Massimo Bertozzi, Luca Bombini, Alberto Broggi, and Paolo Grisleri 
 

Abstract : Autonomous vehicles have been demonstrated to be able to traverse the desert (the DARPA Grand 
Challenge, 2005),  navigate downtown together with other traffic (the DARPA Urban Challenge, 2007), someone 
is even trying to emulate experienced drivers in extreme races,...  In all these situations, however, the unmanned 
vehicles move within a semi-controlled environment. VisLab is now trying to push the unmanned vehicles 
technology  to the limit and test their systems (both hardware and software) for a long time and in an extreme 
environment: on July 10, 2010, two autonomous vehicles will leave Italy and will drive for 13,000 km in Europe 
towards Moscow, then Russia, then Siberia, Kazakstan, then China, Mongolia, finally reaching Shanghai on 
October 10, 2010, after 3 months of autonomous driving. As a 'challenge into the challenge, VisLab selected 
electric vehicles, with the final aim of setting a new milestone in the history of robotics: goods will be transported 
from Italy to China on a ground trip with no driver, and without using a drop of conventional fuel. Not only these 
vehicles will be moving without any human intervention, but the driverless technology will be powered by solar 
energy thanks to a panel on the vehicle's roof. The talk will present the current state of the art and the major design 
challenges. 
 
Biography: Prof. Broggi graduated in  Electronic  Engineering  and  got  his  Ph.D. in Information Technology at 
the University of Parma, Italy, in 1990 and 1994, respectively. From 1994 to  1998  he  was  an  Assistant  
Professor  at the Dipartimento di Ingegneria dell'Informazione of  the  University  of Parma; from 1998 to 2001 he 
was Associate Professor of Artificial  Intelligence at the Dipartimento di Informatica e Sistemistica (Vision  
Laboratory)  of the University  of  Pavia,  Italy.   On  November  2001  he  joined  again the Dipartimento di 
Ingegneria dell'Informazione of the University of  Parma as an  Associate  Professor  of  Computer  Engineering.  
In  2003  he  got the recognition for Full Professorship by  two  distinct  Universities  and two years later became 
Full Professor at the University of Parma.  He  acted  as  Program  Chair  of  the  main  conference  in  the  field of 
intelligent vehicles  (the  IEEE  Intelligent  Vehicles  Symposium  2000 in Detroit, MI) together with Jim Rillings  
(General  Motors)  and  as General Chair of the same conference in 2004; from 2004 to 2008 he served  the most 
important scientific Journal in  the  field  of  Intelligent Transportation Systems, the IEEE Trans on ITS, as Editor-
in-Chief; he is  now  serving the IEEE Intelligent Transportation System Society as President. Prof. Broggi has 
been invited as keynote speaker in  many  different events worldwide  to  describe  and  discuss  the  current  state  
of  the  art on intelligent vehicles and future trends in the field. He is the  Founder and Director of the Artificial 
Vision and Intelligent Systems Lab and author of more than  150  publications  on  international  scientific  
journals, book chapters, refereed conference proceedings, He is also President and CEO of  VisLab  srl,  a  spin-off  
company  of the University  of  Parma,  whose  mission  is  the   transfer   of perception technologies to the 
industrial market. Prof. Broggi acted as Associate Editor for many international  journals and is  the  Founding  
Editor  of  the  regular   Department   on "Intelligent Transportation Systems" of IEEE Intelligent Systems 
Magazine, IEEE Computer Society, and the Founding Editor  of  the  IEEE  Intelligent Transportation Systems 
Council Newsletter. Alberto Broggi was awarded an ERC Advanced Grant in  2008  for  his project OFAV (Open 
intelligent systems for Future Autonomous Vehicles). 
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The VIAC Challenge: Setup of an Autonomous Vehicle
for a 13,000 km Intercontinental Unmanned Drive

Massimo Bertozzi, Luca Bombini, Alberto Broggi, and Paolo Grisleri
VisLab, University of Parma, ITALY – www.vislab.it

Abstract— Autonomous vehicles have been demonstrated able
to reach the end of a 220 miles off-road trail (in the DARPA
Grand Challenge), and1 negotiate traffic and obey traffic rules
(in the DARPA Urban Challenge), but no one ever tested their
capabilities on a long, intercontinental trip and stressed their
systems for 3 months in a row on extreme conditions.

This invited paper presents the vehicles that will run the
VisLab Intercontinental Autonomous Challenge and the design
issues that are the base for the equipment of an autonomous
vehicle that will have to drive itself without any human
intervention on an intercontinental route for more than 13,000
km.

The challenge will take place from July 10, 2010 to Oct 10,
2010, therefore being currently under preparation, this paper
focuses on the preparation issues and describes some important
design choices.

I. INTRODUCTION

The World Expo 2010 will be held in Shanghai, China,
May 1-Oct 31, 2010. It is the third most relevant worldwide
event after the FIFA World Cup and the Olympic Games.
The 2010 Expo theme is better cities, better life; therefore
issues related to sustainable mobility are indeed central to
the Expo, which will be a display of new ideas developed
worldwide in this field.

The Expo will constitute a great opportunity to showcase
new and innovative technologies in the field of intelligent
mobility, especially urban mobility.

VisLab has been working for more than 15 years in the
field of intelligent vehicles and participated in many world-
wide events, like the DARPA Challenges. Many of VisLab’s
results are considered as worldwide milestones in the field
of vehicular robotics, like the ARGO project (a passenger
car that in 1998 drove for 2000+ km on Italian highways in
automatic mode; 94% of the event was performed without
human intervention), or the TerraMax vehicle.

TerraMax is an Oshkosh MTVR truck that VisLab equip-
ped with sensing systems (primarily artificial vision) and that
was able to reach the end of the DARPA Grand Challenge
in 2005 (220 miles of off-road driving with no human inter-
vention) and was qualified for the DARPA Urban Challenge
in 2007 (6 hours of urban driving).

VisLab wants to set a new milestone in the domain of in-
telligent vehicles with a new initiative, completely conceived
and sustained by VisLab: the idea is to demonstrate, through
an extensive and impressive test, that the current technology

The work described in this paper has been partially funded by the Open
intelligent systems for Future Autonomous Vehicles (OFAV) Project, by the
European Research Council (ERC) within an Advanced Investigator Grant.

Fig. 1. The VisLab Intercontinental Autonomous Challenge route.

is mature enough for the deployment of non-polluting and
no-oil based autonomous vehicles in real conditions.

II. THE CHALLENGE

The challenge, named VisLab Intercontinental Autono-
mous Challenge (VIAC), has a unique final goal: to design
vehicles able to drive autonomously along a 13,000 km trip,
with no human intervention. Although this goal is definitely
very complex, VisLab is approaching this exciting endeavor
together with additional innovative ideas. The vehicles will
be electric and power to the electronic pilot will be delivered
by solar panels. These additional requirements will help de-
monstrate that it is possible –although in a prototype version–
to move goods between two continents with non-polluting
vehicles powered by green energy and with virtually no
human intervention. Some goods will be packed in Rome,
some collected throughout the trip, and finally taken to
Shanghai with virtually no impact on world’s pollution.

Fig. 2. The VisLab autonomous vehicles before equipping them with
sensors.
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Fig. 3. BRAiVE (VisLab’s latest driverless vehicle) in Rome, and the route of the demo.

A. The Route

The route will pass through different countries both in
Europe and in Asia as depicted in figure 1. The main coun-
tries that will be traversed, besides few European countries,
are Russia, Kazakhstan, and China, where the vehicles will
spend much of the 3 months trip. Different roads and traffic
conditions will be faced and the vehicles will have to deal
with unexpected situations, providing ground for an excellent
improvement of VisLab current ADAS systems.

B. Scientific Outcome

The Intercontinental Autonomous Challenge will be the
first demonstration of autonomous driving on a route that is:

• Long: more than 13,000 km. This extensive test will
allow a thorough test of the developed technologies;

• Extreme: different environments will be crossed to
validate and stress the system in several different
conditions.

C. The Expedition

The expedition will be composed of 4 autonomous ve-
hicles plus support vehicles (4 Overland trucks including
mechanic shop, storage, accommodation. . . ). Other vehicles
will also follow, mainly for live satellite broadcasting of the
event. The complete trip will last three months.

III. AUTONOMOUS DRIVING

During the challenge two autonomous vehicles will be
driving. Although the two vehicles will be exactly identical
(same sensor suite and identical control system) they will
have different goals:

• the first one will use the whole sensor suite (including
expensive sensors) and will face a completely unknown
environment;

• the second one will use a subset of sensors (only
cheap ones) and will demonstrate 100% autonomy when
coarse route information will be provided by the first
vehicle.

A. The First Vehicle

The first vehicle will drive autonomously for most of the
trip; it will conduct experimental tests on sensing, decision,
and control subsystems, and will collect data throughout the
whole trip. Although limited, human interventions will be
needed to define the route and intervene in critical situations.

B. The Second Vehicle

The second vehicle will automatically follow the route
defined by the preceding vehicle, requiring no human inter-
vention (100% autonomous). It will be regarded as a readily
exploitable vehicle, able to move on loosely predefined rou-
tes. At the end of the trip, its technology will be transferred
to a set of vehicles to move in the inner part of Rome in the
close future.

C. Technology Demonstration

During the trip, demonstrations will be performed in
specific hot spots: autonomous vehicles will follow given
routes, negotiating traffic, avoiding obstacles, and stopping
when required. A first demonstration was given in Rome
between the Campidoglio and the Colosseum in late October,
which demonstrated autonomous driving in narrow roads,
with pedestrians and traffic. The BRAiVE vehicle was used,
which incorporates much of the technology installed on the
electric vehicles that will on the road to China.

The Intercontinental Autonomous Challenge was officially
announced by the Major of Rome in a press conference
in Rome on October 29, 2009; after the presentation, the
Major of Rome left the meeting on BRAiVE, VisLab’s latest
driverless car (www.braive.vislab.it).

IV. VEHICLE SETUP

The 4 electric vehicles are all equipped with the very same
sensing and actuation technologies to optimize development
time and help in case of failures.

A. The Sensing System

The vehicle sensing system is based on cameras and laser-
scanners. 7 cameras are installed on the vehicle (5 forward
and 2 backward looking), while 6 laserscanners with different
characteristics and orientations are placed around the vehicle.

ICRA10 International workshop on Robotics and Intelligent Transportation System 10/142
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Figure 4 shows the vision sensors’ placement and describe
their use.

Each camera is connected at 400 Mbps to its specific
processing unit in the trunk through a Firewire hub. La-
serscanners are connected to the 100 Mbps ethernet switch.
Each camera is capable of transmitting the Bayer/Raw image
captured from the Micron MT9V022, 752 × 480 sensor
through the IEEE 1394A bus; in this way all the color
information available is transmitted at 1/3 of the bandwidth
of a full RGB, 8 bit per channel image. Appropriate color
reconstruction is needed on-board the processing unit. The
shutter of each camera belonging to the same system is
started by a 10Hz software generated common trigger signal,
to ensure the images are taken at the very same time:
error between the starting capture times is below a tenth
of microseconds. The stitching system and the stereo system
have separate triggers. A software plugin performs a very fast
analysis of the incoming images from a camera and finds
the best exposure parameters, like shutter and gain, to be
applied to the camera to improve recognition rates. Another
custom software plugin ensures the synchronization of the
main exposure properties between the cameras to ensure that
images feeding the same system are consistent and similar to
each other. Other camera parameters like white balance and
gamma are tuned at the camera boot time to be consistent.

The optical system has been tuned selecting a focal length
of 4.5 mm for the Stereo Front cameras, and 3.5 mm for the
Stereo Back and Stich. The forward and backward stereo
vision systems locate obstacles and lane markings, while the
3-camera frontal system stitches the 3 images together to
form a single panoramic view of the 180 degrees in front
of the vehicle in order to locate the leader vehicle. The
laserscanners are used to locate obstacles, the vehicle in
front, and other traffic.

One multi-beam laserscanner unit is mounted in the center
of the front bumper. This laser has four planes, a horizontal
aperture of 85 degrees, a vertical aperture of 3.2 degrees,
and measures distances in the range 0,3–80 m. It is set to
produce data in free run mode (not triggered) at 12.5 Hz. It
is positioned at 54 cm from the ground plane and the pitch
orientation is a few degrees downward. Three mono-beam
laserscanners create a perception plane all around the vehicle
at a height of about 60 cm. This allows to detect most of
the commercially available vehicles. These lasers are placed
at about 60 cm from the ground plane, with the scanning
plane parallel to the ground plane and with an orientation
appropriate to cover the maximum area around the vehicle.
Other two mono-beam laserscanners are placed at 173 cm
from the ground plane, over the cabin with a pitch angle
of 45 degrees downward to detect ditches and curbs in the
forward looking direction. All lasers are set up to send raw
data at a selected rate. Since most of them do not have a
trigger input, the synchronization is obtained via software by
selecting the last captured scan before a given captured set of
images. The laserscanners are visible from all the computers
connected to the network; in this way their data can be used
for several processings at a time. All the laser sensors have

Fig. 4. The vehicle’s vision sensing. Top: frontal and backward stereo
vision systems able to detect lane markings and obstacles; bottom: frontal
panoramic vision system, used to locate the leader vehicle.

Fig. 5. The laserscanner system. Top: monobeam laserscanners covering the
front and the back of the vehicle; bottom: multibeam (4) frontal laserscanner.

an IP67 waterproof grade.
Figure 5 shows the laserscanner sensing systems and their

use.
The vehicle also features GPS, IMU, and intervehicle

communication systems. The AGI3 GPS/IMU unit, provided
by TopCon, is mounted on top of the roof and provides
both GPS and inertial data through a 115200 bps RS232
serial port and through a CAN port. GPS Transmitted data
are provided in NMEA format, while INS data are avai-
lable on a proprietary protocol. The inertial unit provides
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Fig. 7. The simple gas control board.

linear acceleration on three axes as well; the three angular
accelerations are measured using the internal gyroscope; an
additional magnetometer provides the bearing information
and finally a thermometer provides the temperature of the
unit.

Other data are available on the vehicle CAN bus. Among
these: odometry, obtained from an incremental encoder, and
the steering wheel status, which are used by the control
algorithms.

Two technologies (vision and laser) are used together and
their data fused in order to achieve a more robust detection
in all scenarios like mountain, urban, off-road, and in all
weather situations like dust, heavy rain, sunshine. . .

Two 240 W solar panels are mounted externally on top
of the roof and provide the power to run the complete auto-
nomous driving system. All the additional devices mounted
on the vehicles for the autonomous challenge rely on an
electrical system which is completely decoupled from the
original vehicle power system.

B. The X-by-Wire System

The vehicles are equipped with full x-by-wire to control
acceleration, braking, and steering.

In a number of vehicles, the CAN bus is used to control
different on-board systems and even gas or brakes. Altough
directly acting on CAN messages may seem a straightfor-
ward solution, this procedure hides complex issues, since
car manufacturers generally use proprietary interfaces and
protocols.

In this case we selected a vehicle on which we can comple-
tely master the CAN bus and protocol. On the Porter Piaggio
we developed specific control mechanisms onterfaced with
the CAN bus for the control of:

• gas,
• brake, and
• steering
1) Gas: The Porter Piaggio is an electric vehicle and its

engine is controlled using pulse-width modulation (PWM).
The PWM signal is generated by a mechanical potentiometer
(6539S-1-502) directly connected to the gas pedal. The pot
resistance varies from 0 to 5 kΩ while the current intensity
ranges from 0.1 to 0.4 mA.

Therefore, a good solution for controlling the gas is the
replacement of the mechanical pot using a digital one and a
DIP packaged microchip PIC device has been selected. This

Fig. 8. The AES-25 installed on the Porter.

digital pot can be controlled using the standard SPI protocol.
Since the gas pedal has to be controlled using a CAN bus,
an additional device is used to for CAN I/O and to generate
the SPI signals: the PIC18F2585.

The PIC18F2585 is an 8 bits microcontroller that can work
up to 40 MHz; it is equipped with a 4 MBytes flash memory,
and can be programmed using the C language. An MCP2551
driver is used to interface the microcontroller to the CAN
bus.

The digital potentiometer is a Microchip MCP41010 able
to vary the resistance in the range 0–10 kΩ in 256 steps (in
order to fit the resistance range in the required one, the pot
is connected in parallel to a 10 kΩ resistor).

Figure 7 shows the resulting board.
The electric vehicle is not equipped with a complex

gearbox and therefore it has only been necessary to automate
the switch between forward and reverse gears: a separate
circuit is again used to control a relay inside the electric
engine.

2) Steering: Off-the-shelf components can be easily adap-
ted to act on the steering wheel. In fact, in the agricultural
environment, semi-automated or remotely driven tractors are
widely exploited and the devices used to act on the tractors
steering wheels can be transferred to the Porter Piaggio.

Specifically, a TopCon Accurate Electric Steering-25 has

Fig. 9. The linear actuator installed on-board of the vehicle.
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Fig. 6. The first vehicle equipped with sensing technology and the on-board PCs.

been selected. This device is an electronic steering wheel that
can be controlled via CAN bus through a proprietary proto-
col. The AES-25 can reach 30 RPM, features a 0.5 degrees
resolution, and reached a 5 N m torque.

Figure 8 shows the installation of AES-25 on the Porter.
The AES-25 features the possibility of overriding the

steering. If a sufficiently high external torque is applied to
the steering wheel (namely, the driver tries to override the
AE-25 behavior), it stops working and allows the driver to
steer. This feature is mandatory for the development phase,
since it is possible to safely test new control or perception
strategies and to take the vehicle control in case of errors or
danger.

3) Brake: The Porter is equipped with a mechanical brake
and therefore it is not possible to intervene at electronic or
idraulic level. Also in this case, it is mandatory to allow the
driver to override the system behavior, namely to be able to
brake even when the system is not braking.

Therefore, it has been selected to directly intervene on the
brake pedal using a linear actuator. The main requirements
for this actuator are a reduced size and to feature a really
short latency. For these reasons, the use of an idraulic
actuator was discarded and the use of an electric one was
preferred.

In order to precisely define the actuator, a usage percentage
(Fu[%]) has to be considered:

Fu[%] =
twork

ttot
× 100

When Fu[%] < 30% the use of a linear actuator based
on trapezoidal spindle is suggested, while for Fu[%] > 50%
the use of ball screw technology is preferred.

For safety reasons, it has been decided to over-estimate the
Fu[%] and therefore a ball screw based actuator has been
selected: the Setec ISOMOVE 32.

This actuator is able to reach a 1500 N axial dynamic
force at 200 mm/s and can be easily controlled thanks to a
CAN interface.

C. The Software Architecture

The current system is depicted in figure 10.

Fig. 10. The vehicles software architecture.

The solution adopted, and currently being tested, is based
on 4 blocks: the Perception Server (PS), the Automated
Vehicle Driver (AVD), the Graphical User Interface (GUI),
and the central part which is the union of trajectory planner
and path planner. In a further paper a more detailed definition
of the software architecture will be given, together with
an analysis of the achieved performance during the testing
phase.

V. CONCLUSIONS

The 4 electric vehicles will leave Italy on July 10, 2010,
and currently the VisLab team is still working on the
prototypes.

Anyway, the equipment of these prototypes attracted the
interest of other players and, in accordance to our ERC-
funded project, VisLab is going to share the internal architec-
ture, as wll as also replicas of these vehicles, with interested
research centers.
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Learning a Real-Time 3D Point Cloud Obstacle Discriminator via
Bootstrapping

Michael Samples and Michael R. James
Toyota Research Institute, North America

{michael.samples, michael.james}@gmail.com

Abstract— Many recent mobile robotics applications have
incorporated the use of 3D LIDAR sensors as an important
component in scene understanding due to frequent data mea-
surements and direct observation of geometric relationships.
However, the sparseness of point cloud information and the lack
of unique cues at an individual point level presents challenges
in algorithm design for obstacle detection, segmentation, and
tracking. Since individual measurements yield less information
about the presence of obstacles, many algorithmic approaches
model the joint posterior of point-labels. Such approaches can
produce robust point labelings at higher computation cost. In
this paper, we apply joint posterior approaches with smooth
terrain priors for point cloud obstacle discrimination. The
resulting labels are used to bootstrap efficient discriminators
which require no human labeled data, yet are comparable in
discriminative ability to the joint posterior approaches.

I. INTRODUCTION

Autonomous driving in urban environments requires the
ability to quickly identify navigable terrain from potential
obstacles. As mobile robots move from structured test envi-
ronments to real-world scenarios, robotic perception systems
must become more competent in navigating through dynamic
environments. In addition to determining local navigability,
perception systems should also identify the location and class
of obstacles within the scene.

Entries in the recent DARPA Urban Challenge (see, e.g.,
[10], [13], [2]) used a combination of LIDAR, vision, and
radar for obstacle detection. Each sensor has its own unique
advantages and challenges, but in this paper, we focus on
the use of LIDAR sensors to directly acquire 3D point
clouds from objects within a scene. Mobile robotics are
naturally dependent on planning paths in metric space; using
point clouds greatly simplifies the problem of acquiring
relative obstacle pose, but has its own unique challenges in
obstacle detection and classification. LIDAR data becomes
much sparser away from the sensor, and laser typically lacks
high-resolution texture data that can be used for feature
generation. Simple strategies–such as ground point removal
by height thresholding–work in simple environments, but
are not robust in real-world autonomous driving scenes.
Moreover, simple systems are difficult to tune correctly:
a classifier with a high false-positive rate may cause an
autonomous vehicle to take sub-optimal paths, or produce
uncomfortable stop-and-go behavior.

The problem of obstacle detection and classification from
3D point clouds can be approached using local feature-based
classifiers [16], [10], [13], [12], solved as a joint inference

Fig. 1. Velodyne LIDAR point cloud colored by height. Data captured in
a parking lot with (a) 1 rotation and (b) accumulated over several seconds.

labeling problem [1], [11], or a combination of both [14],
[9]. Several approaches have also trained classifiers to match
specific objects in a scene [8], [6]. In general, the techniques
which use global labeling by the joint distribution of features
and labels outperform the local classifier techniques. How-
ever, this improvement in classifier performance comes at
greatly increased computational cost. Autonomous driving
systems require both high accuracy and rapid classification
to perform at modest street-driving velocities. During the
DARPA Urban Challenge, vehicles with uncertain obstacle
maps were able to slow down and take more sensor mea-
surements. This option may not always be available.

In [4], Dahlkamp et al. demonstrate the bootstrapping of a
vision-based classifier in cases where the features indicative
of obstacles may change over time. Similarly, due to the wide
variety of autonomous driving situations, it is challenging
to generate many large human-labeled 3D point clouds for
use as training data. This paper approaches this problem
using manually-constructed weak classifiers and global ter-
rain estimation using a random field approach. The inclusion
of terrain estimation produces a more accurate point-cloud
labeling, but requires greater computational resources. To
meet the rapid classification requirements on the vehicle
platform, we train a decision tree classifier to match the
output of the combined weak classifiers and terrain model.
The resulting classifier achieves high accuracy with small
computational cost. This approach uses no human-labeled
data, and can be run iteratively to increase the classification
accuracy. In the following sections, we describe approaches
to terrain estimation, including our approach using a random
field model. We present results comparing the accuracy and
speed of our learned classifiers, and we discuss how an
efficient solution to the obstacle detection problem can be
used for scene segmentation.
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II. TERRAIN ESTIMATION

Several approaches for estimating the maximum likelihood
labeling for a 3D point cloud involve a class of Markov
Random Field problems [15]. Many such labeling problems
are reduced to the Ising model, which incorporates both
local evidence and neighborhood label contiguity. Work by
Anguelov et al. [1] and Munoz et al. [11] demonstrates
how random field approaches can be used to achieve high
accuracy of classification using a maximum-margin training
procedure. However, margin-based approaches still require
labeled training data, which may be challenging to obtain in
many autonomous driving scenes.

We reduce the problem of obstacle-ground discrimination
to estimating the ground surface height for some region
around the vehicle, using the assumption that obstacle points
can be trivially classified once the terrain is known. The
problem of terrain estimation was first addressed in the
GIS community for processing aerial LIDAR data (see, e.g.,
Sithole and Vosselman [12] for a review of large-scale terrain
estimation approaches). Many of these approaches apply
local geometric filters (e.g., incline thresholding) to classify
aerial LIDAR points as terrain or objects.

In [9], Lu et al. labeled aerial LIDAR data using a con-
ditional random field which explicitly maintained variables
for terrain height. LIDAR points were labeled as terrain or
obstacles based on an expectation maximization algorithm
which incorporated local geometric features in addition to
terrain smoothness. In an earlier approach, Wellington et
al., [14] employed a random field which simultaneously
estimated variables for terrain height and terrain type over a
discrete grid. Local observations were made in a 3D voxel
representation which allowed the algorithm to incorporate
historical observations. The random field was solved using a
Gibb’s sampling approach which estimated the likelihood of
each column based on a Hidden Semi-Markov model learned
from labeled training data. In the approaches of both [14] and
[9], points were independent of their neighbors, conditioned
on their explicit variables for local terrain height and class.
This conditional independence leads to a natural 2-stage
algorithm in which points are classified in one stage, and
the terrain is estimated in the second stage, proceeding until
convergence. Similarly, in [7], Hadsell et al. estimate ter-
rain using a kernel-based function approximation technique,
assuming that ground discrimination is handled separately.

III. BOOTSTRAPPING CLASSIFIER

Similarly to the approaches of [9] and [7], we adopt
a multistage approach to point classification and terrain
modeling. Our overall process is shown in Figure 2. In
the first step, a feature vector is computed for each point
based on the local geometric arrangement to the point cloud.
In the second step, weak classifiers (explained below) are
manually constructed that are better than chance. These weak
classifiers are applied to the point cloud, and in the third
step, statistics over label type are maintained in a 3D grid
centered around the vehicle. In the fourth step, a terrain
height is estimated for each column in the 3D grid, based

Fig. 2. Bootstrapping a classifier from weak labelings and terrain
estimation. The white boxes represent an offline training process.

on the local statistics previously accumulated in that column.
Finally, the original data points are relabeled based on their
height above the terrain estimate, and a new classifier is
trained to discriminate those points based on their original
feature vectors.

Feature Generation. Feature generation for real-time
point cloud classification has unique challenges from of-
fline algorithms. First, while offline point cloud processing
may use points generated from multiple timesteps, online
algorithms must use features computed from instantaneously
available data. Secondly, features should be principally based
on local information to be robust to pose uncertainty of
the sensor platform. Finally, the feature vectors must be
rapidly computed. Certain features which may seem useful
(e.g., collecting statistics on all neighboring points within a
bounded region) may not be feasible to compute on a mobile
platform with a short horizon to decision making.

Table I contains a list of features for each laser point.
On our sensor platform, the Velodyne LIDAR consists of 64
lasers with unique horizontal and vertical angular offsets. We
generate features using data collected during a single rotation
of the unit. Due to the known internal structure of the laser,
we can quickly find measurements made immediately the
left, right, top, and bottom of the current beam. The last
features, f7 and f8 are made after correcting for the roll,
pitch, and yaw of the sensor platform. The last feature, f8,
is calculated by keeping a 2D grid of the lowest measurement
observed in each cell on a given rotation.

TABLE I
LOCAL FEATURES FOR POINT CLASSIFICATION.

Feature Description
f1 beam range
f2 beam remission
f3 left beam range - range
f4 right beam range - range
f5 top beam range - range
f6 bottom beam range - range
f7 distance below sensor
f8 height above lowest measurement in grid cell

Weak Classifiers. It is challenging to construct classifiers
for the features listed in Table I without large amounts of
labeled training data. In order to bootstrap our classification
process, we created 2 weak classifiers implemented as deci-
sion tree stumps. The first weak classifier uses the decision
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Fig. 3. Caricature of weak classification results. Features (such as
comparative beam length f6) tend to classify steep obstacles well, but
misclassify flat portions of obstacles. Obstacle classification shown in red.
In the lower image, a terrain surface is estimated which fits ground points
and respects smoothness constraints. The smooth terrain estimate allows one
point to be reclassified as an obstacle (shown in blue).

rule f8 > ε1. Specifically, for a given point within a discrete
2D grid cell, it is labeled as an obstacle if the point is
higher than the lowest measurement observed in the same
grid cell (in our experiments ε1 = 1.0). This classifier is
useful for labeling obstacle points on walls, trees, and the
tops of vehicles. The second weak classifier labels points as
obstacles if f6 > ε2. In our experiments, ε2 was set to −0.05
meters to reflect the confidence in LIDAR return range. This
parameter relates to the local inclination around the point:
steeper inclines will yield relatively larger values for f6. The
second weak classifier is inspired by a similar application on
Stanford’s Urban Challenge entry Junior [10].

Summary statistics from the output of the weak classifiers
is stored in a 3D grid which serves as the input to the terrain
estimation procedure (as in [14]). Since terrain does not vary
over time, each column in the grid maintains statistics on all
of the data produced by the weak classifiers over previous
timesteps. Table II shows the statistics used for each column.

TABLE II
SUMMARY STATISTICS COMPUTED FOR DISCRETE COLUMN i OF 3D

GRID USING WEAK CLASSIFIER OUTPUT.

Feature Description
µi

g average height of ground hits in global coordinates
σi

g variance of ground hit heights
µi

o average height of obstacle hit in global coordinates
σi

o variance of obstacle hit heights
µi

t ground height as measured by known tire position
σi

t variance of tire hit heights

Terrain CRF. We used a Conditional Random Field in
Gibbsian form to find the most likely continuous labeling
for the vector of terrain heights Z. Figure 4 shows the
graphical model for our system, in which the height estimate
zi for each column i depends on the summary statistics

Fig. 4. CRF model for terrain estimation. Terrain height zi depends on
neighboring terrain heights and the column’s summary statistics Oi.

in the column and the continuous height labels assigned to
neighboring terrain cells.

The conditional likelihood of our terrain estimate Z is
based on a continuous extension of the familiar Ising model:

P(Z|O) =
1
Q

exp
(− (ωψΨ(Z, O) + ωφΦ(Z))

)
(1)

where Ψ and Φ represent the local and neighborhood
weighted potentials, and Q is the partition function [15].

The local evidence is calculated as:

Ψ(Z, O) =
∑

j

Ψj(Z, O) (2)

Ψ1(Z, O) =
1

2σ2
t

(zi − µit)
2 (3)

Ψ2(Z, O) =
1

2σ2
g

(zi − µig)
2 (4)

Ψ3(Z, O) = − ln
(
1− 1

2
[1 + erf

(zi − µio)
σio
√

2
]
)

(5)

The first and second terms of the local evidence function
Ψ drive the terrain towards the wheel estimates and the
local estimates for ground point distribution, respectively.
The third component Ψ3 creates a potential which drives the
terrain below increasing densities of obstacle hits, regulated
by the cumulative density function of the best-fit Gaussian.

Our neighborhood function Φ encodes the assumption that
terrain height labels vary smoothly with neighboring terrain
cells:

Φ(Z) =
1
2

∑

i

∑

j∈N(i)

(zi − zj)2. (6)

Optimization. As is commonly stated, solving Equation 1
optimally is generally intractable. As in [5], we settle for a
high likelihood approximation of the posterior

Z∗m = argmaxZ
(
logP(Z|O)

)
(7)

which is equivalent to finding a local minima of the weighted
energy U(Z,O) = ωψΨ(Z,O)+ωφΦ(Z). This minimization
can be efficiently implemented using conjugate gradient
optimization:

∂Ψ
∂zi

=
(zi − µit)

2σ2
t

+
(zi − µig)

2σ2
g

+

1√
2πσi

o

exp -1
2 ( z

i−µi
o

σi
o

)2

1− 1
2 (1 + erf (zi−µi

o)

σi
o

√
2

)
(8)

and
∂Φ
∂zi

=
∑

j∈N(i)

(zi − zj). (9)
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IV. EXPERIMENT AND RESULTS

We collected approximately 30 minutes of normal driving
data in parking lots and urban streets. For each rotation
of the Velodyne LIDAR, we computed local features and
labeled each point using the hand-constructed weak classi-
fiers. We constructed a 3D Grid at 1 meter resolution to
maintain summary statistics over weak classifier labelings.
We optimized the terrain CRF described above using a
sliding window approach with size 100x100. Subsequently,
the LIDAR points from each frame were relabeled using
height above terrain model as the primary classifier. In
this implementation, laser points higher than 20cm above
the terrain were labeled obstacles. We used the geometric
features listed in Table I and the relabeled points to train a
Decision Tree classifier using a standard implementation in
OpenCV [3]. We further increased the speed of our decision
tree implementation by compiling the trees to machine code.

Figure 8 contains the results of our experiments. In each
data set, the weak classifiers are capable of recognizing many
points on an obstacle, but also misclassify a large number
of points. Typically, these misclassified points would not
be used for individual object classification, and the miss-
ing points might also prevent good estimates for tracking.
However, incorporation of the terrain prior for smoothness
allows many of these points to be correctly and efficiently
relabeled as is seen in row 4 of Figure 8. The final decision
tree classifier does an equivalently good job at discriminating
obstacle points, yet does so without needing to explicitly
estimate the local terrain.

The final decision tree implementation requires less than
30ms to classify more than 100,000 points, which includes
feature vector construction. By contrast, Figure 5 shows the
amount of time required to solve the terrain CRF model for
an area around the vehicle. To decrease the computational
cost of the conjugate gradient optimization, we seed the so-
lution with the previous best terrain estimate. Consequently,
the vehicle requires more time to solve the CRF at higher
velocities, as it rapidly encounters unseen grid cells.

Evaluating the quality of the final classification is gen-
erally difficult without human-labeled data. However, the
quality of the decision trees and the quality of the terrain
estimation may be evaluated separately. Table III shows good
correlation between the points relabeled using the results of
the terrain CRF output and the rules learned by the decision
tree. In some cases, the decision tree may generalize better
than the CRF output. Figure 3 shows possible errors which
can occur during the terrain estimation process when the
weak classifiers mislabel the data. Figure 8 actually contains
this type of error: points measured from a car on a side
street are still considered to be ground due to numerous weak
classifier mistakes. However, the final rules learned from the
decision tree generalize well enough from other pieces of
training data to correctly detect the obstacle.

It is difficult to empirically evaluate the quality of terrain
estimation without ground truth information, but given the
assumptions implicit in the CRF, one straightforward metric

is the likelihood computed in the optimal solution to Equa-
tion 7. Figure 6 shows the Gibb’s cost for each of the point
labeling strategies. The most costly terrain estimate arises
from the weak classifiers, while the best terrain estimate is
found by relabeling points with terrain data as it becomes
available. The terrain estimates using labels from the de-
cision tree validates the assumption that the decision tree
approximates the maximum likelihood terrain estimate more
closely than weak classifiers, and results in a terrain estimate
that more closely aligns with our assumptions about terrain
structure.
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Fig. 5. Terrain estimation CPU time as a function of grid size from 10x10
through 100x100. The green dashed rate is taken from the Parking Lot data
set with an average speed of 10mph. The solid red line is taken from the
Surface Street data set at 40mph. Differences in solution rate are the result of
greater re-use of previous solutions for the slower dataset. The blue dashed
line represents the constant-time decision tree implementation.

TABLE III
DECISION TREE CLASSIFICATION AGREEMENT WITH TERRAIN

ESTIMATE DATA. ‘+’ REPRESENTS OBSTACLE CLASS.

Terrain + Terrain -
Tree + 17.9 1.3
Tree - 1.5 79.2
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Fig. 6. Gibb’s cost for best terrain CRF solution as a function of timesteps
during the Parking Lot test. Terrain was optimized using Weak Labels (red),
Weak Labels + Previous Terrain (Blue), and Decision Tree Labels (Green).
The decision tree more closely approximates the behavior of the CRF.
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V. EXTENSIONS TO TOTAL SCENE SEGMENTATION

In this paper, we’ve presented a machine-learning ap-
proach to train discriminative classifiers without any hu-
man labeled data. Including neighborhood priors in a point
labeling procedure allows us to bootstrap weak classifiers
into a competent binary classification algorithm. We have
demonstrated that we are able to use this bootstrapping
approach to generate a large amount of labeled training
data. The success of the final classifier shows that there is
sufficient information within the local geometric features to
discriminate obstacles. In addition, by preventing overfitting
of the strong classifier models, we are able to learn classifiers
which out-perform the initial labeled data set in some cases.

In this work, our random field for estimating terrain was
kept deliberately simple for ease of computation. Since
the bootstrapping process can be performed offline, more
computationally challenging models can be implemented as
in [9] which iteratively converge on good labels for all the
points within the scene.

The total computation time from LIDAR point acquisition
to labeling is less than 50ms, which means this algorithm
is capable of operating in real-time on our test vehicle with
sensor information arriving at 10 Hz. The rapid discrimi-
nation of obstacle points allows our autonomous vehicle to
spend more CPU time on object segmentation, classification,
and tracking. In particular, more robust point discrimination
results in higher efficacy for segmentation and classifica-
tion algorithms. Figure 7 shows the result of our obstacle
discrimination applied to a straight-forward distance-based
segmentation algorithm. Without removal of non-obstacle
points, a simple segmentation algorithm would not provide
correct groupings for obstacle points. The training process
described in this paper demonstrates the best approach we
know for efficient and accurate obstacle discrimination.

Our future work includes extending this binary discrimina-
tion procedure to automatically train classifiers for dynamic
objects within the scene, such as vehicles and pedestrians.

Fig. 7. Segmentation of obstacle points within the scene. Different
colors represent different segmentation groups. Good obstacle discrimination
simplifies obstacle segmentation.
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Fig. 8. Comparative classification results from 3 test sets. The first row shows the original data colored by height. The second row shows
the labeling produced by the weak classifier. The third row shows the optimal terrain conditioned on the weak classification results. The
fourth row shows points reprocessed with terrain information. The final row is directly labeled with a strong decision tree classifier using
only local features. The parking lot data was taken at 10mph, and the surface street at 40mph.
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An Improved “Flies” Method for Stereo Vision: Application to Pedestrian 
Detection 

Hao LI, Gwenaelle TOULMINET, Fawzi NASHASHIBI 

 
ABSTRACT — In the vast research field of intelligent 

transportation systems, the problem of detection (and 
recognition) of environment objects, for example pedestrians 
and vehicles, is indispensable but challenging. The research 
work presented in this paper is devoted to stereo-vision based 
method with pedestrian detection as its application (a sub-part 
of the French national project “LOVe”: Logiciels 
d’Observation des Vulnerables). With a prospect of benefiting 
from an innovative method i.e. the genetic evolutionary “flies” 
method proposed by former researchers on continuous data 
updating and asynchronous data reading, we have carried on 
the “flies” method through the task of pedestrian detection 
affiliated with the “LOVe” project. Compared with former 
work of the “flies” method, two main contributions have been 
incorporated into the architecture of the “flies” method: first, 
an improved fitness function has been proposed instead of the 
original one; second, a technique coined “concentrating” has 
been integrated into the evolution procedure. The improved 
“flies” method is used to offer range information of possible 
objects in the detection field. The integrate scheme of 
pedestrian detection is presented as well. Some experimental 
results are given for validating the performance improvements 
brought by the improved “flies” method and for validating the 
pedestrian detection method based on the improved “flies” 
method.  

I. INTRODUCTION 
 Research works on intelligent transportation systems 
have progressed rapidly around the world and have been 
showing more and more promising results for enhancing 
urban traffic safety and efficiency. The problem of detection 
(and recognition) of environment objects, for example 
pedestrians and vehicles, is indispensable but challenging. 
Many research works have been devoted to the problem; take 
pedestrian detection as an example, mono-vision based 
methods have been introduced in [1][2] while laser-scanner 
based methods in [3]. Experiences show that methods based 
on single on-vehicle sensor have considerable limitations due 
to the limited capability of the sensor itself. Therefore, the 
fusion strategy among multiple on-vehicle sensors has been 
exploited to achieve either faster computation or more 

desirable detection results. The method using fusion between 
laser scanner and mono-camera has been discussed in [4]. The 
method based on stereo-vision (i.e. the fusion between two 
mono-cameras) has long since been researched for indoor 
applications [5] and has later been extended to outdoor 
applications as well [6][7]. The research work presented in 
this paper is devoted to stereo-vision based method with 
pedestrian detection as its application (a sub-part of the 
multi-participants French national project “LOVe” (
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Logiciels 
d’Observation des Vulnerables) which aims at localization of 
vulnerable objects, e.g. pedestrians, in a traffic scenario [8].   
 Stereo-vision techniques enable the process of 
recovering the range information of the environment from a 
pair of image views. This process often involves establishing 
correspondence between both images, either by finding 
corresponding pixels i.e. the so-called disparity map (dense 
correspondence) [7] or by finding corresponding edges 
(sparse correspondence) [6][9]. The methods based on edge 
correspondence inevitably incur the problem of edge 
extraction which itself is challenging and susceptible to 
environment conditions; while the methods based on 
disparity map show robust detection result but the 
computational demand is forbidding for real-time 
applications. Besides these commonly used stereo-vision 
techniques, Louchet et al have put forward an innovative 
method which they label as the “flies” method [10][11]. 
Instead of establishing correspondence between 2-D images, 
the “flies” method directly evaluate the fitness (defined in 
certain way) of a group of 3-D points i.e. “flies”, and use 
genetic evolutionary techniques to converge these flies to 
places with high fitness values (which correspond to real 3-D 
objects). With a prospect of benefiting from the “flies” 
method on continuous data updating and asynchronous data 
reading, we have carried on the “flies” method through the 
task of pedestrian detection affiliated with the “LOVe” 
project. 
 Compared with former work of the “flies” method, two 
main contributions have been incorporated into the 
architecture of the “flies” method: first, an improved fitness 
function has been proposed instead of the original one; 
second, a technique coined “concentrating” has been 
integrated into the evolution procedure. The improved “flies” 
method is used to offer range information of objects in the 
detection field (latter referred to as “OOI”, Objects Of 
Interest). The paper is organized as follows: The basic 
philosophy of the “flies” method is briefly reviewed and the 
limitation of the original fitness function is analyzed in 
section 2; An improved fitness function as well as a 
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“concentrating” technique is proposed in section 3; The 
integrate scheme of pedestrian detection is described in 
section 4 while experimental results are presented in section 5, 
followed by a conclusion in section 6. 

II. THE FLIES METHOD 

A. Review of the philosophy of the flies method [11] 
 A fly is defined as 3-D point (x , y , z); its projection on 
the left image is denoted as (uL , vL) and latter referred to as 
“left projection” while its projection on the right image is 
denoted as (uR , vR) and referred to as “right projection”; The 
(uL , vL) and (uR , vR) can be easily computed from (x , y , z) 
with calibrated camera parameter. If a fly is situated on an 
opaque object, the neighborhoods of its left projection and 
right projection are almost identical; otherwise, there is large 
difference between the neighborhoods of its two projections. 
Based on this heuristic observation, a fitness function can be 
defined to evaluate the degree of similarity between the 
neighborhoods of a fly’s left projection and right projection. 
In other words, the fitness function is defined in a way that a 
high fitness value is generally computed for a fly on an object 
but a low fitness value for a fly off an object. The fitness 
function used in former research [11] is re-written here; see 
Eq.(1): 
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Where the denominator means the summed square of the 
grey-level difference between corresponding pixels in the two 
neighborhoods of the fly’s left and right projections; the 
numerator ‘G’ is “defined as the square root of an image 
gradient norm” [11].  
 The philosophy of the flies method is to detect 
environment objects by searching more and more flies with 
high fitness value through genetic evolution. Genetic 
evolution techniques are used to evolve a group of randomly 
initialized flies so that they may converge onto visible objects. 
The genetic evolution techniques [11] include 1) selection: 
retaining those best individuals; 2) sharing: reducing the 
fitness values of flies located in crowded areas; 3) mutation: 
adding random variances to the flies; 4) crossover: bearing 
new fly which is randomly located on the line segment of its 
parent flies. After a certain number of evolutionary iterations, 
the flies are expected to gather onto the surfaces of visible 
objects in the detection field.  

B. The limitation of the original fitness function 
 Consider the fitness function Eq.(1); the inverse of the 
denominator gives high fitness values to flies whose left and 
right projections have similar neighborhoods; the numerator 
‘G’, as explained in [10], is a normalizing factor that is 
adopted so as to reduce the fitness values of flies over 
insignificant regions, especially uniform regions. The fitness 
function Eq.(1) seems plausibly effective. However, it is 

susceptible to quasi-uniform regions with small variances of 
high spatial frequencies.   
 A piece of synthetic “uniform” patch is composed for 
showing the limitation of Eq.(1), as shown at the left side in 
Fig.1 (a). There is small grey-level variance (difficult to see 
by naked eye) within it; the variance is indicated by a 
white-black alternating pattern on its immediate right side. 
Consider the fly ‘A’, the neighborhoods of its left and right 
projections are exactly the same, resulting in the denominator 
in Eq.(1) being zero. Although the numerator ‘G’ is small (but 
non-zero), the fitness value computed via Eq.(1) is high 
(infinite). As a consequence, the fly ‘A’ may be mistaken as 

being situated on the patch. 

  
(a)        (b) 

Fig.1. (a) the quasi-uniform pattern; (b) a real patch of road surface

 Above synthetic example is a bit exaggerated; in real 
situations, however, the problem of marking high fitness 
value to flies with wrong depth due to Eq.(1) still exists. This 
often happens where flies are in front of some quasi-uniform 
regions such as road surfaces; see Fig.1 (b). A simple tactic of 
adding a positive constant to the denominator so as to avoid it 
being zero does not help much.   

III. AN IMPROVED FITNESS FUNCTION AND A 
“CONCENTRATING” TECHNIQUE 

 The original flies method has been briefly reviewed and 
the limitation of the original fitness function has been 
analyzed in the previous section. In this section, we are 
going to propose first an improved fitness function and then 
a concentrating technique. 

A. The improved fitness function  
 Before any fitness function is constructed, it’s better to 
consider which features deserve high fitness value (called 
“desirable features”). As described in former work [11], 
desirable features are considered from two aspects: a) 
similarity and b) informativeness. “Similarity” means the 
similarity between the two neighborhoods of a fly’s left and 
right projections; the more similar the two neighborhoods are, 
the higher the fitness value is. “Informativeness” means the 
extent of variance within the neighborhoods. The more 
informative the neighborhoods are (like those with a lot of 
textures and contrasts), the higher the fitness value is. In the 
original fitness function Eq.(1), the “similarity” is measured 
by the summed square difference (SSD), i.e. the summed 
square of the grey-level difference between corresponding 
pixels in the two neighborhoods; while the “informativeness” 
is measured by the square root of an image gradient norm.   
 The limitation of the original fitness function has 
already been analyzed. Besides, using the SSD to measure the 
similarity (though it is simple and direct) between the two 
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neighborhoods has another limitation. Because of the 
limitation of camera calibration and image rectification and 
because of the influence of quantization process, even a fly is 
right on an object, the neighborhoods of its two projections 
still have some differences which are often likely to be 
increased in proportional to the extent of contrast within the 
neighborhoods. In other words, the more and larger the 
variations are there in an area, the more difficult it is for this 
area’s projections on both images to be the same. As a result, 
the SSD tends to mark lower scores for informative regions 
than non-informative regions, which is not desirable.      

The to-be-proposed fitness function is also constructed 
based on considerations from the two aspects “similarity” and 
“informativeness”. Instead of the SSD which takes into 
account strictly the pixel-to-pixel difference between the two 
neighborhoods, a new fitness function based on covariance 
and the difference of grey-level mean is proposed, shown in 
Eq.(2):  
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Where (uL , vL) and (uR , vR) are respectively the left and right 
projections of the fly; their neighborhoods are respectively 
L(uL+i , vL+j) (called “left neighborhood”) and R(uL+i , vL+j) 
(called “right neighborhood”) for i=-uSz, … , +uSz; 
j=-vSz, … , +vSz; Lj(fly) is the grey-level mean of row j in the 
left neighborhood while Rj(fly) is the grey-level mean of row j 
in the right neighborhood. It is worth noting that the objects 
concerned (pedestrians) are normally vertical for our camera 
configuration; thus horizontal variances are more useful than 
vertical variances. This is why the new fitness function is 
constructed in a “row-by-row” manner. 
 The Cj(fly) is constructed in accordance with standard 
definition of covariance; the Dj(fly) is the exponential 
function in terms of the absolute difference of the grey-level 
means of two corresponding rows. The considerations for 
“similarity” and “informativeness” are integrated 
comprehensively in the new fitness function. If the two 
neighborhoods have similar grey-levels on general (then 
Dj(fly) is large) and they are informative and similar (then 
Cj(fly) is large), a high fitness value is computed via Eq.(2). 
Otherwise, either Cj(fly) or Dj(fly) might be small, resulting in 
a low fitness value. More words hovering around the 
“similarity” aspect, the criterion of measuring similarity by 
the difference of grey-level mean and the covariance is a bit 
“loose” compared with the SSD. It is this “looseness” that 
gives some tolerance to the inaccuracy of camera calibration 
and image rectification and the influence of quantization 
process. The performance improvements brought by the new 

fitness function are demonstrated in latter sections. 

B. The concentrating technique 
 After the evolution process, the result is a group of 
cloud-like flies which gather roughly around OOI. These 
fly-clouds are difficult to be used directly; a technique labeled 
“concentrating technique” is proposed for “concentrating” 
these fly-clouds (with thousands of flies) to several points 
which correspond to the position of OOI. The concentrating 
technique is incorporated into the flies method because of two 
reasons: first, it is used to output meaningful localization 
results of OOI; second, its output can be used to guide the 
re-generation of new fly population in the genetic evolution 
process. It is worth noting that a simple tactic of localize OOI 
by finding flies with local maximum fitness value is not 
practical because few flies which are far away from real 
objects might have high fitness value due to coincidental 
similarity between its backgrounds on both images.  

The principle of the proposed concentrating method is to 
localize OOI by finding points with local maximum fitness 
value density. This process is similar to that of finding the 
modes presented in [12], where a mean-shift method is 
described. Here, the mean-shift method is borrowed from [12]. 
Besides, a step of “histogram based sampling” is used as a 
fast procedure to generate some sampling points which can be 
served as proper starting points for the mean-shift process. 
The proposed concentrating technique consists of two steps: 1) 
histogram based sampling; 2) mean-shift. 
1) Histogram based sampling: 

Several narrow view-angles which cover the detection 
field are chosen. This step is to locate a sample point for each 
narrow view-angle chosen; the sample point is the place with 
largest vote of the fitness value histogram within the 
view-angle. For a narrow view-angle, if there is OOI inside 
(Fig.3 (a)), the area around OOI is likely to be the area with 
highest fitness value density in it (Fig.3 (b)). Therefore, the 
sample point of this view-angle is normally close to the OOI. 
Then, starting mean-shift process from the sample point will 
facilitate convergence to the position of OOI. The detailed 
procedures of “histogram based sampling” are described 
below in this sub-part while the mean-shift process described 
in the following sub-part.   
[i] Choose several narrow view-angles which cover the 

detection field.   
[ii] For each view-angle, compute a histogram (Fig.3 (c)) 

from the flies within the view angle according to the 
distance, i.e. the longitudinal coordinate ‘x’; the vote is 
weighted by the fitness value of the fly.   

[iii] For each view-angle (denote its direction angle generally 
as tan-1ki), find the distance interval with the largest vote 
(suppose it to be [xk xk+1]); then the sample point of this 
view-angle is computed via (let all sample points be 
situated on the ground surface, i.e. z = 0): 

;2/)();0,,(),,( 1++=⋅= kkiiiiiii xxdkddzyx  
2) Mean-shift: 
 The sample points obtained from the previous step are 
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served as starting points for the mean-shift process described 
below.  
[i] Imagine all the flies are temporarily situated on ground, 

i.e. let their ‘z’ coordinate be temporarily 0; then project 
all the flies onto the left image (or right image). Latter, 
the mean-shift process is carried out in the left image 
coordinate instead of directly in the world coordinates; 
and the bandwidth matrix can be assigned uniformly to 
be the identity matrix, i.e. H = h2I. Otherwise, different 
bandwidth matrixes have to be assigned to the flies 
according to their depth because same pixel length 
means different physical length at different depth. This 
will not only increase the complexity of the bandwidth 
matrixes assignment itself but also increase 
computational burden.    

[ii] The algorithm for mean-shift is derived from the general 
case introduced in [12]:  
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Where {pi | i = 1, 2, … , n} are the positions of all the 
flies on the left image; f(pi) is the fitness value of fly pi; 
pold is the old position of the sample point while pnew is 
the new position of it. For each sample point, repeat 
mean-shift for few times. 

[iii] Cluster the sample points using a simple distance 
criterion; the distance threshold is chosen to be h. 
Compute the geometric center of each cluster, which is 
referred to as “candidate point”. 

[iv] Discard those candidate points with low fitness value 
density; fitness value density is computed via (also 
derived from the general case introduced in [12]): 
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For simplicity, the normalizing constant can be omitted.  
[v] Re-project each candidate point from the left image onto 

the ground surface; the positions of these candidate 
points in the world coordinates are regarded as the 
positions of OOI and are the output of the proposed 
concentrating technique. 

IV. THE INTEGRATE SCHEME OF PEDESTRIAN DETECTION 
 The improved flies method which can offer range 
information of OOI has been introduced in previous sections. 
In combination with learning-based classifier, it has been 
applied to pedestrian detection as a sub-part of the French 
national project “LOVe”. 
 The range information of OOI offered by the improved 
flies method can be used to extract some ROI (Region Of 
Interest) boxes on the image. For each box (its size is 48x96 
pixels after normalization), a feature vector based on HOG 
(Histogram of Oriented Gradient) [13] is computed and then 
fed to a SVM for classification; the SVM has been pre-trained 

off-line with the HOG-based feature vectors computed from 
10000 pedestrian examples (normalized boxes which contain 
pedestrians) and 18000 non-pedestrian examples (normalized 
boxes which do not contain pedestrians). 

 

 
(a) 

 
(b) 

Fig.2. (a) fitness values of the flies indicated by different colors 
(results by the improved fitness function); (b) comparison between the 
performances of the improved fitness function and the original fitness 
function 

V. RESULTS 

A. The evaluation of the improved fitness function and 
comparison with the original one 

 3000 flies are initialized randomly in the detection field. 
The fitness values of the flies are computed via the improved 
fitness function Eq.(2). All the flies are displayed in the image 
coordinates (Fig.2 (a)) and in the world coordinates (the left 
part of Fig.2 (b), in bird-eye view); the fitness value of each 
fly is indicated by its color: the higher the fitness value is, the 
warmer the color is (the maximum and minimum fitness 
value are respectively indicated by pure red color and pure 
blue color). See areas marked by red circles, on the whole the 
color of flies around real objects (pedestrians, cars, poles) are 
apparently warmer than that of flies at non-object area. This 
shows that the improved fitness function is effective in 
distinguishing flies at object area from those at non-object 
area. 
 Fitness values are computed for the same flies via the 
original fitness function Eq.(1) (a constant is added to the 
denominator to avoid it being zero). Fitness values computed 
via Eq.(1) are also indicated by different colors like before; 

ICRA10 International workshop on Robotics and Intelligent Transportation System 26/142



see the right part of Fig.2 (b). Compare the left part (results by 
the improved fitness function) with the right part (results by 
the original fitness function) of Fig.2 (b); qualitatively 
speaking, the color differences between flies at object area 
and flies at non-object area are more prominent in the left part 
than in the right part of Fig.2 (b). In other words, the 
improved fitness function is more effective than the original 
fitness function in distinguishing flies at object area from 
those at non-object area.  

For quantitative comparison, a view-angle which 
contains a pedestrian is chosen; see Fig.3 (a). For this 
view-angle, compute a histogram from the flies within it 
according to the distance; the vote is weighted by the fitness 
value of the fly. First, fitness value is computed via the 
improved fitness function and the histogram obtained is 
displayed in the left part of Fig.3 (c); then fitness value is 
computed via the original fitness function and the histogram 
obtained is displayed in the right part of Fig.3 (c). The 
ground-truth position of the pedestrian is (15.52, -1.10, 0), i.e. 
15.52 meters ahead of the vehicle. It can be seen that the 
votes of histogram in the left part of Fig.3 (c) are more 
concentrated to where the pedestrian is than in the right part 
of Fig.3 (c).    

The root mean square distance (weighted by the fitness 
value of each fly) from each fly within the view-angle to the 
pedestrian is computed to be 2.94 meter if the improved 
fitness function is used while 6.86 meter if the original 
fitness function is used. The root mean square distance 
associated with the improved fitness function is noticeably 
smaller than that associated with the original fitness function. 
This quantitative result also shows that the improved fitness 
function is more effective than the original fitness function in 

distinguishing flies at object area from those at non-object 
area. 
 

 
Fig.4. the process of the concentrating technique and its application to 
pedestrian detection 

 
(a) 

 
(b) 

 
(c) 

Fig.3. (a) a view-angle which contains a pedestrian; (b) fitness values 
of the flies indicated by different colors; (c) histograms according to 
distance 

B. The performance of the concentrating technique 
 The concentrating technique consists of two steps: 
histogram based sampling and mean-shift. See the example 
shown before (Fig.3), the histogram based sampling step can 
have a rough localization result of OOI, i.e. (14.50, -0.94, 0) 
which is close to the ground-truth value (15.52, -1.10, 0) and 
can be served as good starting point for the mean-shift step. 
Nevertheless, this localization result still has considerable 
error; thus the mean-shift step is needed to advance the 
localization result to more accurate one. For this example, the 
localization result after mean-shift is (15.43, -1.13, 0) which 
is much closer to the ground-truth value. 
 For the whole image, see Fig.4 for example. As shown 
in the top-left part, a group of sample points generated by the 
histogram sampling step are marked by green circles. Some of 
these sample points are close to OOI, some are not. During 
the mean-shift step, these sample points either converge to 
OOI (with high fitness value density) or converge to 
somewhere with low fitness value density; those sample 
points which converge to the latter case are discarded while 
others are kept. The final outputs of the mean-shift step are 
marked by red crosses as shown in the top-right part of Fig.4; 
the positions of these red crosses are consistent with the 
positions of OOI like the pedestrian, the cars and the poles in 
the environment. This shows the effectiveness of the 
concentrating technique in localizing OOI.  

C. Pedestrian detection 
 The outputs of the improved flies method are the 3D 
positions of several OOI, which can be used then to generate 
several ROI on the image; see the down-left part of Fig.4, the 
cars on both side, the poles on the right side and the pedestrian 
in the middle are detected by the improved flies method and 
several ROI boxes are generated around them. A HOG-based 
feature vector is computed for each box and then fed to a 
pre-trained SVM for classification; positive results are 
regarded as pedestrians, as shown in the down-right part of 
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Fig.4. More results are demonstrated in Fig.5. 

D. Computational efficiency 
 The whole work is implemented in C++ in windows 
operating system; the CPU is 2.0GHz and the RAM is 2.0GB. 
The step of classification takes almost no time (<10ms) 
because the SVM classifier only has to deal with few ROI. 
The evolution part consumes most computational time which 
depends on the number of evolutionary iterations. It is true 
that more evolutionary iterations will drive flies onto more 
detailed 3-D structures (useful for 3-D construction) and also 
take more computational time. But for our application, two or 
three evolutionary iterations are normally enough for locating 
OOI, which take no more than 150ms. This computational 
efficiency can satisfy real-time demand. 

VI. CONCLUSION 
 This paper presents an improved version of the genetic 
evolutionary “flies” method. An improved fitness function is 
proposed instead of the original one; a concentrating 
technique is incorporated into the architecture of the flies 
method. Experimental results are given for validating the 
improved performance brought by the proposed fitness 
function and for showing the effectiveness of the improved 
flies method in localizing OOI. In combination with a SVM 
classifier, the improved flies method is applied to pedestrian 
detection as a sub-part of the French national project “LOVe”. 

 The strategy of using the fusion between camera and 
laser scanner for pedestrian detection has been showing 
promising results [4]. One merit of this strategy is that the 
laser scanner can be used to offer reliable localization results 
of OOI and reliable ROI on the image. The improved flies 
method presented in this paper, if considered from its function, 

can be regarded as a laser scanner, while the device 
(stereo-vision) needed for it is considerably cheaper than a 
laser scanner. On the other hand, there are still spaces for 
improvements. By so far, size information of OOI located can 
not be offered; besides, occasionally few objects in the 
detection field will be missed, without being detected as OOI. 
To be able to offer size information of OOI and to reduce the 
rate of relevant objects undetected are the direction for further 
research. 
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Abstract : This talk describes how the mobile internet is changing the face of traffic monitoring at a rapid 
pace. In the last five years, cellular phone technology has bypassed several attempts to construct dedicated 
infrastructure systems to monitor traffic. Today, GPS equipped smartphones are progressively morphing into 
an ubiquitous traffic monitoring system, with the potential to provide information almost everywhere in the 
transportation network. Traffic information systems of this type are one of the first instantiations of 
participatory sensing for large scale cyberphysical infrastructure systems.  
However, while mobile device technology is very promising, fundamental challenges remain to be solved to 
use it to its full extent, in particular in the fields of modeling and data assimilation. The talk will present a 
new system, called Mobile Millennium, launched recently by UC Berkeley, Nokia and Navteq, in which the 
driving public in Northern California can freely download software into their GPS equiped smartphones, 
enabling them to view traffic in real time and become probe vehicles themselves.  
The smartphone data is collected in a privacy-by-design environment, using spatially aware sampling. Using 
data assimilation, the probe data is fused with existing sensor data, to provide real time estimates of traffic.  
Results from experimental deployments in California and New York will be presented, as well as 
preliminary results from a pilot field operational test in California, with already more than 5,000 downloads. 
 
Biography: Alexandre Bayen received the Engineering Degree in applied mathematics from the Ecole 
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of the Ballhaus Award from Stanford University, 2004. His project Mobile Century received the 2008 Best 
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NBC, ABC, CNET, NPR, KGO, and the BBC. 
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MOBILE MILLENNIUM

Alexandre BayenAlexandre Bayen
Systems Engineering,CEE, UC Berkeley

http://traffic.berkeley.edu

The edge of the “classical” sensing paradigm
In the “classical” sensing paradigm, we

– Use the best / most accurate sensors
f– Deploy a dedicated monitoring and data gathering infrastructure

– Maximize coverage of the sensor network
– Maximize autonomy of the platform (robots)

Example: autonomous water sensors 
patrolling water distribution infrastructure

– Floating robots 
– Built for a specific application
– Goal: no human involved
– Possess suite of sensors

– Salinity
– Trubidity
– Contaminants
– Etc.

– 2010 Target: 100 g
autonomous in the 
Sacramento Delta and 
San Francisco Bay 

User generated content: sensor-free sensing
An example in which user generated content can be
more can be more efficient than the proper tool. 

– An appropriate sensor to measure an earthquake 
is an accelerometer

– USGS has deployed sensor arrays in the US
T d t t h h l t– Today, most smartphones have accelerometers

– Using them for earthquake monitoring is 
challenging
Deploying a dedicated infrastructure is– Deploying a dedicated infrastructure is 
expensive

– Yet Twitter can provide first alert of the type
“Did you feel it” based on user generatedDid you feel it   based on user generated 
content

One day of Mobile Millennium data (SF taxis)



One day of Mobile Millennium data (SF taxis) One day of Mobile Millennium data (SF taxis)

One day of Mobile Millennium data (SF taxis) One day of Mobile Millennium data (SF taxis)
Revealing the previously 
unobservable (D. Estrin)

CENSCENS



One day of Mobile Millennium data (SF taxis)
Revealing the previously 
unobservable (D. Estrin)

CENSCENS

One day of Mobile Millennium data (SF taxis)

Societal need for [traffic] information systems

Rough estimates of congestion impacts
– 4.2 billion hours extra travel in the US
– Accounts for 2.9 billion gallons of fuel
– Congestion cost of 78 billion dollars

[2007 Urban Mobility Report September 2007 Texas[2007 Urban Mobility Report, September 2007, Texas 
Transportation Institute, David Schrank & Tim 
Lomax]

ff fTraffic information systems
– Call in numbers (511)
– Changeable message signs (CMS)
– Online navigation devices
– Web-based commuter services:

– www.511.org
– www.traffic.com
– Google Traffic

– Cellular phone web browsingg
– Connected aftermarket devices

Source of today’s traffic information
Dedicated traffic monitoring infrastructure:

– Self inductive loops
– Wireless pavement sensors
– FasTrak, EZ-pass transponders
– Cameras
– Radars
– License plate readers

Issues of today’s dedicated infrastructure
– Installation costs

M i t t– Maintenance costs
– Reliability
– Coverage
– Privacy intrusion



Web 2.0 on wheels
Emergence of the mobile internet

– Internet accesses from mobile 
devices skyrocketing y g

– Mobile devices outnumber 
PCs by 5:1

– 1. 5 million devices/day (Nokia) y ( )
– Redefining the mobile market:  

Google, Apple, Nokia, Microsoft, 
Intel, IBM, etc.
Open source computing:– Open source computing: 
Symbian Foundation, Android, 
Linux

Sensing and communication suite 3 billion
3.3 billion mobile 

deviceg
– GSM, GPRS, WiFi, bluetooth, 

infrared
– GPS, accelerometer, light sensor, 

i h
2 billion

device 
subscriptions 

worldwide in 2007

camera, microphone
Smartphones and Web 2.0

– Context awareness
1 billion

– Sensing based user generated 
content

1

0

[Courtesy J. Shen, Nokia Research Center Palo Alto]

The notion of probe
Probe historically has made extensive use of fleet vehicles

– INRIX’s fleet includes approx. 1M vehicles
– NAVTEQ’s fleet data ~40M data points / dayQ p y
– Historically, sampling rate has been low (up to 15 mins or more)
– 2-way GPS (Dash-type)

Emergence of the Mobile Internet, two years of rapid expansion... 
– Non GPS based solutions (Airsage type)
– GPS-enabled smartphone software clients: Mobile MillenniumGPS enabled smartphone software clients: Mobile Millennium, 

Google Android, INRIX, etc. participatory sensing. 

... until concerns about distracted driving will reshape the landscape... until concerns about distracted driving will reshape the landscape
– Phone can act as a data collector, interface, getway
– Integration of the phone into the car infrastructure

– Docking stations (BMW)Docking stations (BMW)
– Bluetooth (plus eventually ODB-II)

– Fusion of phone and car will lead to car centric infrastructure
S t h / b i thi t lk h ld b d t dSmartphone/probe in this talk should be understood 
in the broad sense, not (only) phone-centric
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A cyberinfrastructure for participatory sensing
Sensing

– Millions of mobile 
devices as new

Mobile Millennium system architecture

devices as new 
sources for data

Communication 
– Existing cell phoneExisting cell phone 

infrastructure to 
collect raw data 
and receive traffic 
informationinformation

Data assimilation
– Real-time, online 

traffic estimationtraffic estimation
Privacy Management 

– Encrypted 
transactionstransactions

– Client 
authentication

– Data
Data assimilationData transmission

Data 
anonymization

Data aggregationData generation,
info distribution



Privacy issues for location based services
Phone can reveal

– GPS tracks
Precise location– Precise location

– Individual patterns
– User generated 

contentcontent
– Personal info
– Activity
– …

Data collection: spatially aware traffic monitoring

Sampling strategy uses
– Virtual Trip Lines (VTLs) which are– Virtual Trip Lines (VTLs), which are 

geographic markers deployed at 
privacy aware locations which 
probabilistically trigger GPS updates 
for a proportion of the phonesfor a proportion of the phones 
crossing them.

– Phone anonymizes data
– GPS update is encrypted and sent– GPS update is encrypted and sent

[Hoh et al. Mobisys, 2008]

Nationwide deployment of a virtual infrastructure
Privacy preserving data collection infrastructure includes

– 450,000 VTLs in use for Northern California, 4.5M for the US
000 C f ( )– 5,000 pilot users in Northern California (Nokia, Blackberry)

Illustration: trajectory based vs. VTL based
Mobile Century test (100 cars)

– Feb. 8, 2008, 100 cars, 165 
students, 10 hrs, 10 miles

New York test (20 cars)
– Test was 
– Only VTL data is shown, ,

– Movie shows “helicopter 
view of 100 cars experiment)

– GPS log shown every 3 
d f h

Only VTL data is shown
– Data is sufficient for a
– Data is gathered in a privacy 

aware environmentseconds for each car
– VTL subset of the data (2% of 

total traffic is enough for 
traffic reconstruction)traffic reconstruction)



Tradeoffs (summary)
Privacy considerations

– Sampling strategy
– Randomization of the

Accuracy considerations, and data 
to push the estimation further

– Full trajectory collectionRandomization of the 
sampling

– Anonymization of the data
– Encryption of the data

– Full trajectory collection
– Re-identification (day to day)
– Additional context collection 

(jam, pictures, other sensors)yp
– Local computations (onboard 

the phone)

(jam, pictures, other sensors)
– Tower information

Hardness of estimation Privacy intrusionPrivacy intrusion

Estimation results
– Patterns

T l ti

Individual trajectories
– Inference from patterns

R t ti ?– Travel time
– Aggregate data

– Reconstruction?

Additional questions (beyond data collection)
The emphasis of the talk was only on data collection and some of the 
processing. This is only part of the problem. Privacy can be 
compromised / protected in several different other ways:

– Identification (voluntary or not, disclosure, self incrimination)
– Structure of the data sharing graph (social networks), g g p ( ),

distribution procedure
– Correlation with other sources
– Inference mechanisms
– Additional user generated content
– Chain: data creation, sharing, storage, publishing

Path inference
Path inference needs to be used to extract useful information from 
travel time between any two road locations. Time scales vary from 1 to 
15 minutes, space scale from 200m to several miles

– VTL (spatial)
T i (t l)– Taxi (temporal)

– Bluetooth (temporal)
– Bus (temporal)Bus (temporal)

Start

End

233/15/2010

Mobile Millennium today
Traffic monitoring system freely available to the public through our 
website on their phone, based on participatory sensing. 



Modelling approaches to privacy aware sampling 
Aggregation of data provides application-optimized privacy aware data 

collection infrastructure. In the case of traffic monitoring:
– Travel time
– Queue lengths, extent of traffic jams, clear up time, etc. 

Modelling approaches to privacy aware sampling
Aggregation of data provides application-optimized privacy aware data 

collection infrastructure. In the case of traffic monitoring:
– Travel time
– Queue lengths, extent of traffic jams, clear up time, etc. 

Modelling approaches to privacy aware sampling
Aggregation idea

– Describe aggregate behavior (not individual behavior)
Sample individual behavior accurately enough that it can be– Sample individual behavior accurately enough that it can be 
used to reconstruct aggregate behavior

– Additional benefit:
serves computationalse es co putat o a
efficiency

Data assimilation / inverse modeling
How to incorporate Lagrangian (trajectory based) and Eulerian (control 
volume based) measurements in a flow model.



Prototype experiment: Mobile Century
Experimental proof of concept: the Mobile Century field test

– February 8th 2008
80 C C– I80, Union City, CA

– Field test, 100 cars
– 165 Berkeley students drivers
– 10 hours deployment, 
– About 10 miles
– 2% - 5% penetration rate

29

Mobile Century validation video data collection
Video data: 

– Vehicles counts 
Travel time validation– Travel time validation

A glimpse of Mobile Century (February 8th, 2008) A glimpse of Mobile Century (February 8th, 2008)



Validation of the data (video)
Travel time predictions 

– Can be done in real time at a 2% 
penetration rate of trafficpenetration rate of traffic

– Proved accurate against data from 
www.511.org, with higher degree of 
granularitygranularity

Mobile Century Map

511.org Map

Prototype experiment: Mobile Century
Experimental proof of concept: the Mobile Century field test

– February 8th 2008
80 C C– I80, Union City, CA

– Field test, 100 cars
– 165 Berkeley students drivers
– 10 hours deployment, 
– About 10 miles
– 2% - 5% penetration rate

34

Revealing the previously unobservable
5 car pile up accident (not Mobile Century vehicles)

– Captured in real time
Delay broadcast to the system in less than one minute– Delay broadcast to the system in less than one minute

e
os

tm
ile

Po

time

Granularity of the data (GPS data)



Granularity of the data (loops, for comparison) Flow reconstruction (inverse modeling)
Physical model and data assimilation enable state estimation

– Works even with low penetration rate
– Interpolation will just not do the job
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Flow reconstruction (inverse modeling)
Physical model and data assimilation enable state estimation

– Works even with low penetration rate
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Flow reconstruction (inverse modeling)
Physical model and data assimilation enable state estimation

– Works even with low penetration rate
– Interpolation will just not do the job
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Bounds on travel time (PeMS)

Outflow loop

Inflow loop

How to decrease the uncertainty on a parameter / 
state variable (travel time) with inverse modelingstate variable (travel time) with inverse modeling
– 2 sensors
– One accident in the middle, not captured by 

the sensors
– One can still estimate bounds on congestion

Bounds on travel time (PeMS and phones)

Outflow loop

Inflow loop

How to decrease the uncertainty on a parameter / 
state variable (travel time) with inverse modelingstate variable (travel time) with inverse modeling
– 2 sensors
– One accident in the middle, not captured by 

the sensors
– One can still estimate bounds on congestion

Mobile Millennium: a pilot project 
Mission statement
The goal of Mobile Millennium is to establish the design of a system
th t ll t d t f GPS bl d bil h f it ith d t

Mobile Millennium is a field operational test

that collects data from GPS-enabled mobile phones, fuses it with data
from existing sensors and turn it into relevant traffic information.

Mobile Millennium is a field operational test
– Deployment of thousands of cars on a network including arterials
– Participating users agree to share position and speed
– Phones receive live information on map applicationPhones receive live information on map application
– Project duration 12 months
– Mobile Millennium was a pilot

L hLaunch
Mobile Millennium was launched
on November 10th, 2008, at
8:30am from the UC Berkeley8:30am from the UC Berkeley
campus, and was concluded on
November 10th, 2009



The 1/10 multiplier and the 10 multiplier Mobile Millennium Management team
Corporate and Government Relations
Tom West, Director, CCIT

Chief of Staff
JD M li i S i E iJD Margulici, Senior Engineer

Project ManagerProject Manager
Joe Butler, Senior Software Engineer

Project Administrator
Coralie Claudel, Policy Analyst

Project Coordinator
Steve Andrews Senior Policy AnalystSteve Andrews, Senior Policy Analyst 

Post doctoral researchers, software eng. team
Software engineering team: Andre Lockhard, Daniel Edwards, 
Benson Chiu, Saneesh Apte, Xiaopang Pong, Yanli Li, 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

e so C u, Sa ees pte, aopa g o g, a ,
Morgan Smith

Post doctoral researchers: 
Olli-Pekka Tossavainen
Jeff Ban

Graduate and undergraduate students
Graduate Students
Dan Work (CEE)
Ch i Cl d l (EECS)Chris Claudel (EECS)
Ryan Herring (IEOR)
Saurabh Amin (CEE)Saurabh Amin (CEE)
Aude Hofleitner (EECS)
Sebastien Blandin (CEE)( )
Juan Carlos Herrera (CEE)
Tim Hunter (CS)

Visiting Grad. Students: Matthieu Nahoum
(ENAC France) Vassili Lemaitre (ENAC(ENAC France), Vassili Lemaitre (ENAC 
France), Elena Agape (TU Aachen). 

Undergraduate students: Sarah Stern (ME), 
Marcella Gomez (ME). 



Data flow in the Mobile Millennium system

3/15/2010 49

Example of process flow in the system

3/15/2010 50

From academic research to product

3/15/2010 51

Another example of data assimilation
Sacramento San Joaquin Delta
• Static sensors
• Own deployable sensors
• Floating sensors (phones)

Challenges
• Nowcast and forecast of flow 

and salinity in complexand salinity in complex 
hydrodynamic regimes (tidal 
forcing and inversion)

• Providing data on factors• Providing data on factors 
which control fish migration.  

Three deplo ment areasThree deployment areas:
• Georgianna Slough (current)
• Grant line canal (current)
• 3-miles slough (future)



Traditional [Eulerian] sensing in the Delta
Few key locations:
50 sensors for 1000 km of channel

Inflexible (install once) ; expensive to 
install and maintain

Good for long term trends; not good for 
localized or medium-term phenomena

UC Berkeley [Eulerian] sensing
“Deployable” Eulerian sensors:
-- Underwater sensors, autonomy 15 
ddays.
-- Measure cross sectional velocity 
and stage
-- Need to be deployed from crane 
operated boat
-- Need to be anchored to the 
ground (because of drift)
-- Data upload after the experiment 
(no underwater comm.)( )

Mobile Berkeley floating sensor package
Mobile  floating sensor

Designed for manufacturability: standard 
parts less custom machiningparts, less custom machining
Two propellers in differential drive 
configuration
Internal water bag for buoyancy controlInternal water bag for buoyancy control
First round of prototyping happening now; 
planning a fleet of 100

Water cyberinfrastructure

Inverse modelingg
Server 

(UC Berkeley)



ClearSky

Alexandre Bayen, Steve Glaser, Edmund SetoAlexandre Bayen, Steve Glaser, Edmund Seto
Systems Engineering,CEE, School or Public Health, UC Berkeley

http://traffic.berkeley.edu http://float.berkeley.edu

Future goals (1): real time noise exposure
Inference of noise levels from traffic data (static, source: City of SF)

– 1/6 of population in SF exposed to unhealthy noise levels

Seto Holt Rivard and Bhatia 2006Seto, Holt, Rivard, and Bhatia, 2006

Future goals (1): real time noise exposure
Inference of noise levels from traffic data (static, source: City of SF)

– Production of noise maps for the urban network and in the 
vicinity of the highway networky g y

– Real-time map based on dynamic data
– Can be used as a communication tool to rapidly inform the public

Future goals (1): real time noise exposure
Empirical data gap filling: how to understand presence of trucks?

– Aerial photographs
– Spatial dataSpatial data



Future goals (1): real time noise exposure
Correlation of the assessment with population density:

– Assessment of impact on population

±

2 0 21 Km

 
Population Density (#/100 sq m)

0 1 2

3 -
 5

6 -
 12

Seto, Holt, Rivard, and Bhatia, 2006

Future goals (1): real time noise exposure
Impact maps on the population: building / using risk curves

– Mortality rates can be inferred from these maps (other agents)
– In a security scenario: one hour death maps, two hours, etc.In a security scenario: one hour death maps, two hours, etc.

Future goals (1): real time noise exposure
Integration process (noise, air pollution, airborne agent, etc.)

– Process will be integrated entirely in Mobile Millennium system
– Linked to population data to assess impact on populationLinked to population data to assess impact on population

Traffic Counts Citywide Traffic Map

Traffic-Noise
relationshipCitywide Noise Map

Noise-Annoyance 
relationship Citywide Population Map

Citywide Annoyance Mapy y p

Future goals (2): example PM2.5 aerosol
Assessment of exposure to aerosols (and other airborne agents)

– In the present case: emitted from cars, combustion, etc.
– Study can be replicated with sensor dataStudy can be replicated with sensor data



Future goals (2): example NOx aerosol
Assessment of exposure to aerosols (and other airborne agents)

– In the present case: emitted from cars, combustion, etc.
– Study can be replicated with sensor dataStudy can be replicated with sensor data

Validation procedure
Scientific approach

– Validation of the models (in the present case: Gaussian 
dispersion models)p )

– Model, assess concentration, measure, check that the 
measured data corresponds to the estimate

– Photographs: deployment of validation sensors.

Validation procedure
Scientific approach

– Validation of the models (in the present case: Gaussian 
dispersion models)p )

– Model, assess concentration, measure, check that the 
measured data corresponds to the estimate

– Photographs: deployment of validation sensors.

Research opportunities

Exposure 
Assessment

Streaming data 
Historical data

Data fusion
Data assimilation
Inverse modeling

Framework for responding to potential health risks

Response
P di i P d MitigationPrediction Preparedeness



Questions

Alexandre Bayen, Steve Glaser, Edmund SetoAlexandre Bayen, Steve Glaser, Edmund Seto
Systems Engineering,CEE, School or Public Health, UC Berkeley

http://traffic.berkeley.edu http://float.berkeley.edu
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Optimal Vehicle Routing and Scheduling
with Precedence Constraints and Location Choice

G. Ayorkor Korsah, Anthony Stentz, M. Bernardine Dias, and Imran Fanaswala

Abstract— To realize the vision of intelligent transportation
systems with fully automated vehicles, there is a need for high-
level planning for single vehicles as well as fleets of vehicles.
This paper addresses the problem of optimally assigning and
scheduling a set of spatially distributed tasks to a fleet of vehi-
cles working together to achieve a high-level goal, in domains
where tasks may be related by precedence or synchronization
constraints and might have a choice of locations at which they
can be performed. Such problems may arise, for example, in
disaster preparedness planning, transportation of people, and
delivery of supplies. We present a novel mathematical model of
the problem and describe how it can be solved optimally in a
branch-and-price framework.

I. INTRODUCTION

Intelligent transportation systems comprising fully auto-
mated vehicles hold promise for improved efficiency, safety,
and convenience over current systems. For this potential to
be realized there is a need for algorithms for high-level
planning for single vehicles and fleets of vehicles, in addition
to sophisticated sensing, localization and navigation.

Traditionally, vehicle routing problems (VRPs) have ad-
dressed the problem of computing efficient routes for the
transportation of people and goods by a fleet of vehicles. To
realize the vision of truly intelligent transportation systems,
approaches to these problems must address an increasingly
richer set of constraints that may arise in various problem
domains. While some tasks are independent of each other,
others might be related by precedence or synchronization
constraints. For example, during the evacuation of a special
needs population in anticipation of a disaster, medical per-
sonal might need to visit some patients before they can be
transported to shelters. Additionally, many tasks may have
a pre-specified location at which they must be performed,
while others may have a choice of a small set of locations
where they may take place. For example, there might be
choice of shelters to which individuals can be evacuated in
anticipation of a disaster.

Inspired by optimal mathematical programming ap-
proaches from the Operations Research literature, this pa-
per presents a set-partitioning model for the problem of
allocating, scheduling and choosing locations for mutually-
constrained tasks to be performed by a fleet of vehicles.

This work is supported by the Qatar National Research Foundation under
contract NPRP 1-7-7-5.

G. A. Korsah (previously published as G. A. Mills-Tettey), A.
Stentz, and M. B. Dias are with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, USA. (Emails: ayorkor@cmu.edu,
axs@ri.cmu.edu, mbdias@ri.cmu.edu). I. Fanaswala is
with the Computer Science Department, Carnegie Mellon University, Doha,
Qatar (Email: imranf@qatar.cmu.edu).

This model enables finding a bounded optimal solution,
considering the value of tasks completed, travel costs, as
well as any costs due to waiting time needed to ensure that
timing constraints are satisfied. We present a branch-and-
bound approach to solving small instances of this problem,
as well as a branch-and-price approach for larger instances.

II. PROBLEM FEATURES AND EXAMPLE

When an area needs to be evacuated on the threat of
a disaster such as a hurricane, the population of people
with special needs, who are not able to make their own
evacuation plans, requires particular attention. Individuals
may have special transportation or sheltering needs that
must be considered during planning. Considering available
transportation options (e.g. vans, ambulances, helicopters),
available support teams, and available shelters, an evacuation
plan for this population will determine which vehicle will
pick up which individuals and when. It will schedule any
support teams (e.g. medical personnel) which need to be
available before, at the time of, or after pickup or drop-
off of an individual. It will also determine which shelter
each individual will be taken to, considering the individual’s
particular requirements. With appropriate databases of the
special needs population, an optimal evacuation plan can be
created ahead of time, and this optimal plan can be adjusted
as needed in the event of an actual disaster.

We consider a problem in which a set of agents, K (com-
prising automated vehicles and other entities in the team), is
available to perform a collection of tasks, J . Each task j ∈ J
consists of one or more spatially distributed subtasks that
must be performed in a given order. For example, a medical
visit task comprises a single subtask, whereas transporting a
customer comprises a pickup subtask and a drop-off subtask.
Different tasks are suited to different types of agents in the
system – medical tasks cannot be performed by automated
transportation agents and vice-versa. Each subtask, i ∈ I
may have a fixed location at which it might be performed,
or a choice of a very small set of locations Li at which
it may be performed. Subtasks might have time windows
constraining their start time, and in the case of transporting
items from one location to another, subtasks might use up
a finite capacity available on the assigned agent. Pairs of
subtasks in the problem might be related by precedence
or synchronization constraints, thus creating constraints be-
tween different agents’ schedules. These constraints need to
be considered in assigning agents to tasks, and may result
in delays in the agents’ schedules, which may increase the
cost, or conversely, reduce the total value of the solution.
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III. RELATED WORK

Vehicle routing problems (VRPs) address the transporta-
tion of passengers or the distribution of goods between
depots and final users. VRPs can be expressed as mixed
integer programming problems (MIP), defined on a graph
in which the nodes correspond to locations of tasks to
be performed, and edges correspond to travel segments
between these locations. These mathematical models enable
the formulation of optimal solution approaches. Proposed
mathematical models can be broadly categorized as 3-index
models and 2-index (or set-partitioning) models. For exam-
ple, Cordeau [1] defines, for the dial-a-ride (DARP) problem
(a variant of the VRP), a 3-index binary variable xk

ij which
is equal to 1 if vehicle k travels from node i to node j
in the final solution. In contrast, Savelsbergh and Sol for
the DARP [2] propose a set-partitioning model in which Ωk

is the set of feasible routes for vehicle k, and the 2-index
variable xk

r is a binary decision variable that takes on the
value 1 if route r ∈ Ωk is performed by vehicle k and 0
otherwise. Each route in Ωk is a path through a subset of
nodes, and is feasible in that all capacity and time constraints
are satisfied along the route. Note that as the problem size
grows, the number of feasible routes is usually too large to
enumerate exhaustively. Rather a small set of feasible routes
is initially used, and subsequently, additional “profitable”
feasible routes are computed by a pricing sub-problem, and
the master (set-partitioning) problem then selects a minimal
cost set of routes satisfying the constraint that each customer
must be serviced by only one vehicle.

Recent work in the vehicle routing literature has consid-
ered precedence constraints and synchronization constraints.
In particular, Bredstrom and Ronnqvist present two different
approaches. In one case [3], they create a three-index formu-
lation of a vehicle routing problem, taking into consideration
timing/synchronization constraints between individual tasks,
each of which occurs at a fixed location. In this model, it is
possible to penalize waiting time. In another case [4], they
present a set-partitioning formulation that takes into con-
sideration precedence constraints. However, in this model,
waiting time cannot be penalized because time variables do
not appear in the master problem formulation and so cannot
be put in the objective function. Neither model addresses
location choice. This paper presents a set-partitioning model
which addresses location choice and precedence (and/or syn-
chronization) constraints, while also being able to penalize
waiting time as needed.

IV. MATHEMATICAL MODEL

We present a set-partitioning model with side constraints
for this problem. The set-partitioning model, while repre-
senting complete feasible routes with single variables, also
exposes time variables in the master problem formulation,
thus allowing waiting time to be penalized by putting wait
time variables in the objective function. We adopt the ter-
minology of the vehicle routing literature and use the term
route to represent a single agent’s plan – that is, a sequence

of subtasks that the agent / automated vehicle will perform
at given locations according to the computed schedule.

In a set-partitioning approach, feasible routes for agents
are represented by columns in the mixed integer linear
program. In particular, a binary variable xk

r indicates whether
an agent k performs a given route r chosen from among
all possible routes Rk that can feasibly be performed by
agent k. In our problem, a feasible route is an ordered set of
subtasks to be performed at chosen locations, such that all
subtasks corresponding to the same task occur on the same
route, time constraints are not violated, and agent capacity
constraints are also not violated. A typical set-partitioning
formulation would consist of these variables alone, with
constraints specifying that each agent must perform only one
route, and each task must appear on only one route.

In our formulation, however, we include additional time
variables that appear in side constraints enforcing the prece-
dence between subtasks that may appear on different routes.
The real-valued variable wk

i represents the amount of time
that agent k, having arrived at the chosen location for subtask
i, has to wait before it can begin execution of subtask i.
This waiting time might be due to precedence constraints
involving other subtasks being performed by other agents,
or it might be because subtask i has a specific time window
during which it must be performed. The waiting time is 0 if
agent k is not assigned to subtask i. The real-valued variable
ti represents the time that execution begins on subtask i.
If subtask i is not executed in the optimal solution, ti is
0. In addition to the domain variables xk

r , wk
i , and ti, the

model includes helper variables di′i representing the delay
that the waiting time for subtask i′ causes to a subtask i
occurring later on the same route. If subtasks i′ and i are
not on the same route in the chosen solution, di′i is 0. The
delay variables are needed to ensure a linear formulation.

In the model below, vj represents the value of completing a
task j, which may of course comprise more than one subtask.
ck
1r represents the total travel cost of the route r ∈ Rk, and

ck
2r represents the waiting cost per unit time for agent k.

The indicator πk
jr is 1 if task j occurs on route r ∈ Rk

and 0 otherwise. Similarly, γk
ilr is 1 if subtask i occurs at

location l on route r ∈ Rk and 0 otherwise, and δk
i′ir is 1

if subtask i′ occurs before subtask i on route r ∈ Rk and 0
otherwise. The value τk

ilr represents the time that subtask i
would be started on route r ∈ Rk assuming no wait time was
necessary, and τ∞ represents the largest possible time in the
model, that is, the end of the planning horizon. The value Wi
represents the maximum allowed waiting time for subtask i;
αil and βil represent the earliest and latest times respectively
that service can begin on subtask i when it is performed
at location l. λk

il represents the service time for subtask i
when it is performed at location l by vehicle k. In the model
below, we use λi and yi respectively as placeholders for the
following expressions:

λi =
∑

k∈K

∑
r∈Rk

∑

l∈Li

λk
ilγ

k
ilrx

k
r

yi =
∑

k∈K

∑
r∈Rk

∑

l∈Li

γk
ilrx

k
r ≡

∑

k∈K

∑
r∈Rk

πk
jrx

k
r

(where j is the task to which subtask i belongs)
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That is, λi is the service time of subtask i in the chosen
solution (0 if i is not performed), and yi indicates whether or
not subtask i is performed in the selected solution. Finally, P
represents the set of precedence constraints in the problem.
Each precedence constraint p = (i′, i) ∈ P indicates that
execution of subtask i′ must end at least εP

i′i time units before
service begins on subtask i.

The variables and defined quantities appearing in the
mathematical model are summarized in Table I.

Maximize:

∑
j∈J

∑

k∈K

∑
r∈Rk

vjπ
k
jrx

k
r −

∑

k∈K

∑
r∈Rk

ck
1rx

k
r −

∑
i∈I

∑

k∈K

ck
2wk

i (1)

Subject to:

1 =
∑

r∈Rk

xk
r ∀k ∈ K (C1)

1 ≥
∑

k∈K

∑
r∈Rk

πk
jrx

k
r ∀j ∈ J (C2)

wk
i ≤ Wi

∑

l∈Li

∑
r∈Rk

γk
ilrx

k
r ∀i ∈ I, k ∈ K (C3)

ti =
∑

l∈Li

∑

k∈K

∑
r∈Rk

τk
ilrγ

k
ilrx

k
r

+
∑

i′∈I

di′i +
∑

k∈K

wk
i

∀i ∈ I (C4a)

ti ≥
∑

l∈Li

αil

∑

k∈K

∑
r∈Rk

γk
ilrx

k
r ∀i ∈ I (C4b)

ti ≤
∑

l∈Li

βil

∑

k∈K

∑
r∈Rk

γk
ilrx

k
r ∀i ∈ I (C4c)

di′i ≥
∑

k∈K

wk
i′−

Wi′
∑

k∈K

∑
r∈Rk

(1− δk
i′irx

k
r )

∀i′, i ∈ I (C5a)

di′i ≤ Wi1

∑

k∈K

∑
r∈Rk

δk
i′irx

k
r ∀i′, i ∈ I (C5b)

di′i ≤
∑

k∈K

wk
i′ ∀i′, i ∈ I (C5c)

yi′ ≥ yi ∀(i′, i) ∈ P (C7a)
ti′ ≤ ti − λi′ − τ∞(yi − yi′)

− εP
i′i(yi + yi′ − 1)

∀(i′, i) ∈ P (C7b)

The objective function (1) strives to maximize the differ-
ence between overall reward and overall travel and waiting
cost. (C1) specifies that each agent is assigned to exactly one
route (which may be an empty route, allowing the solution
to choose not to use a given vehicle). (C2) specifies that
each task is assigned to at most one agent, and can in
fact be rejected by assigning it to no agent. These two are
the standard set-partitioning constraints. (C3) represents the
bound on the waiting times. (C4a) computes the start time for
a subtask, while (C4b) and (C4c) represent the time window
bounds for the subtask. (C5a-C5c) represent constraints on
the delay variables, which enable the start time of each

TABLE I
SUMMARY OF VARIABLES AND DEFINED QUANTITIES

Variable Definition
xk

r Whether or not agent k performs route r
wk

i Waiting time of agent k for subtask i
ti Execution start time for subtask i
di′i Delay for subtask i caused by i′

Quantity Definition
vj Value of completing task j
Rk Set of feasible routes for agent k
ck
1r Travel cost for route r ∈ Rk

ck
2r Wait cost per unit time for agent k

πk
jr Whether or not task j occurs on route r ∈ Rk

γk
ilr Whether or not subtask i occurs at location l on route

r ∈ Rk

δk
i1i2r Whether or not subtask i1 occurs before subtask i2 on

route r ∈ Rk

τk
ilr No-wait start time of subtask i at location l on route

r ∈ Rk

τ∞ End of planning horizon
Wi maximum allowed waiting time for subtask i
[αil, βil] Valid time window within which to begin execution of

subtask i at location l
λk

il Service time for subtask i performed by agent k at
location l

λi Service time for subtask i in chosen solution
yi Whether or not subtask i is performed in chosen solution
P Set of precedence constraints

subtask to be computed correctly, taking into consideration
the wait time of all prior subtasks on the selected route.
Finally, (C7a) and (C7b) capture the precedence constraints
of the problem: (C7a) indicates that the second task i in the
precedence constraint (i′, i) ∈ P is performed only if the first
task i′ is performed; (C7b) ensures that the start times of the
task satisfy the precedence constraints. Similar constraints to
(C7a) and (C7b) can represent synchronization constraints,
by changing the inequalities to equalities, and removing the
λi′ and τ∞(yi − yi′) terms from C7b.

In this model, the capacity and some time constraints
are dealt with when generating feasible routes. The process
of generating feasible routes also performs location choice
by fixing the location of each subtask on the route. The
solution of the set-partitioning problem then selects between
all feasible routes for an agent, thus finalizing the location
choice for each subtask, and also fixes the time for each task
by inserting waiting times as needed to ensure that between-
route timing constraints are satisfied while still respecting
the within-route timing constraints.

V. BRANCH-AND-BOUND ALGORITHM

In problems that are small enough to exhaustively enu-
merate all feasible routes, the above mixed integer pro-
gramming problem can be solved in a standard branch-and-
bound framework. To start with, an upper bound on the
solution is computed by relaxing the integrality constraints
on the xk

r variables, and solving the resulting linear program.
Subsequently, branching decisions are made on fractional xk

r

variables (e.g., forcing them to either 0 or 1), and the solution
process is repeated at each node of the branch-and-bound
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tree, until a solution that satisfies the integer constraints is
found. In reality, it is more efficient with this problem to
make higher-level branching decisions rather than simply
setting fractional xk

r to 0 or 1. We adopt the following
branching decisions, variations of which are used in several
VRP solution approaches: When there are fractional routing
variables, we branch by forcing two tasks to be on the
same route (“together”) in one branch or on different routes
(“not together”) in the other branch. When the fractional
routing variables represent two different routes with the
same subtasks performed in different orders, we branch by
constraining two subtasks to occur in a specific order.

VI. BRANCH-AND-PRICE ALGORITHM

In most situations, it will not be possible to enumerate
all possible routes up front, and this is where a column
generation process is useful. The algorithm starts out by
considering only a subset of columns, and new columns are
added as needed. The columns to be added are determined
by solving, a problem called the pricing subproblem. A
branch-and-price algorithm is a branch-and-bound algorithm
in which column generation occurs at each node of the
branch-and-bound tree.

Barnhart et al [5] provide a useful introduction to branch-
and-price approaches and a detailed theoretical discussion,
which is outside the scope of this paper. However, the
essential idea is that the pricing subproblem finds “profitable”
routes that can potentially improve the solution of the master
problem. This is done by optimizing a pricing function
computed from the dual variables of the master problem. For
a minimization problem, a profitable column has a “price” of
less than 0 (and as such, can decrease the objective function
of the master problem if included), while for a maximation
problem, a profitable column has a “price” of greater than
0 (and as such, can increase the objective function of the
master problem if included). At each iteration of the column
generation process, new columns are added to the master
problem until the pricing problem, when solved to optimality,
returns that there are no more profitable routes. At this point,
branching can be performed on any fractional values, and the
process repeated at subsequent branch-and-bound nodes.

If we designate the dual variables corresponding to con-
straints (C1) to (C7b) in our mathematical model as u1 to
u7b respectively, then the pricing subproblem for our set-
partitioning model can be derived as finding the feasible
route r for agent k that maximizes the quantity:

pk
r = −(ck

1r + u1
k) +

∑
j∈J

(vj − u2
j )π

k
jr

+
∑
i∈I

∑

l∈Li

(u3
ikWi + u4a

i τk
ilr − u4b

i αil + u4c
i βil)γ

k
ilr

+
∑

i′∈I

∑
i∈I

(−u5a
i′i + u5b

i′i)Wiδ
k
i′i

−
∑

(i′,i)∈P

∑

l∈Li′

(u7a
(i′,i) + u7b

(i′,i)(λ
k
il + εP

i′i − τ∞))γk
i′lr

+
∑

(i′,i)∈P

∑

l∈Li

(u7a
(i′,i) − u7b

(i′,i)(ε
P
i′i + τ∞))γk

ilr

(2)

To gain a better understanding of the pricing subproblem,
recall that πk

jr indicates whether a given task j is fully served
on route r, γlk

ir indicates whether subtask i is performed
at location l on route r ∈ Rk, and δk

i′ir indicates whether
subtask i′ occurs before subtask i on route r ∈ Rk. Also, note
that for a given instance of the subproblem solution process,
the dual variables u are constants. Thus, for a given agent,
solving the pricing problem is equivalent to finding a feasible
route that maximizes the above quantity. This can be done
by searching through a graph where nodes represent feasible
{location, subtask} pairs and edges indicate that it is possible
for agent k to travel from one location to another. No edges
connect pairs of nodes that correspond to the same subtask
but different locations. The transition costs in the graph are
determined by equation (2). The first term in the equation
represents the cost of the route modified by a constant that
depends on the agent. This route cost can be broken down
into a transition cost for each edge of the graph that is
traversed along the route. The second term in the equation
represents a value or reward for each task completed on the
route. Since a feasible route must comprise all subtasks of
any task that is performed on the route, and since a feasible
route consists of only one location for each subtask that is
performed on the route, this term can be broken down to
a value for each node of the graph visited along the route.
The third term in the equation represents a cost for each node
that is visited along the route: 3 of the sub-terms (involving
the dual variables u3

ik, u4b
i , and u4c

i ) represent a constant
cost for the node, and a fourth sub-term (involving the dual
variable u4a

i ) represents a cost that is linear in the time that
it takes to reach that node along the route, i.e., the no-wait
arrival time, τk

ilr. The fourth term in the equation represents
a cost for each ordered pair of tasks on the route, (i′, i), such
that i′ precedes i. The fifth term represents a cost for each
node along the route for which the corresponding subtask
appears as the first subtask in a precedence constraint. The
sixth and final term represents a cost for each node along
the route for which the corresponding subtask appears as the
second subtask in a precedent constraint.

VII. GENERATING NEW ROUTES:
THE CONSTRAINED ROUTING PLANNER (CRP)

We have formulated an optimal dynamic programming
route-planning algorithm to solve the pricing problem de-
scribed above. The algorithm finds the route that mini-
mizes p̄k

r = −pk
r , and hence maximizes pk

r . Our route-
planning algorithm is based on the DD* Lite algorithm
[6] for incremental search with state dominance. DD* Lite
performs a best-first search, focused by a heuristic, through
a multi-dimensional state space, to find a path from a start
node to a goal node, exploiting domain-specific dominance
relationships to prune the state space where possible in
order to make the search more efficient. While DD* Lite
is a general search algorithm, it needs to be customized to
the given domain, and we modify and customize it in the
following ways:

ICRA10 International workshop on Robotics and Intelligent Transportation System 56/142



1) State Space: Each node in the state space being
searched is identified by the graph node n representing a
given {subtask, location} pair, the no-wait arrival time ta
of the agent at the node along the route, the unordered set
Sp of subtasks that have been previously completed along
the route to that state, and a boolean variable b indicating
whether the route satisfies the branching constraints of the
current node in the branch-and-bound tree at which column
generation is being performed. state := {n, ta, Sp, b}

The node n is a node in the graph that is being searched,
that is, the collection of {subtask, location} pairs in addition
to two special nodes corresponding to the agent start and
end locations. We designate the set of graph nodes as N
where |N | = ∑

i∈I |Li|+2. While n is an path-independent
parameter of the state, whose value does not depend on the
path taken to reach the state, ta, Sp and b are path-dependent
parameters (as described in [7]) whose values depend on the
path taken to reach the state and are computed dynamically
during the search process. As such, states in this large multi-
dimensional search space are not instantiated up front but are
generated as they are encountered in the search.

2) Search Direction: The original version of DD* Lite
searches backwards from the goal to the start in order to
facilitate efficient replanning in domains where changes in
the graph are likely to occur close to the start state. In this
work, however, we flip the direction of search and instead
search forwards from the start state to the goal node. This is
because, as described in the previous section, the transition
cost to a node in the graph depends on the arrival time at the
node, and this can only be accurately computed if searching
in a forward direction. We do not currently use the replanning
functionality of DD* Lite.

3) Start and Goal States: The start state is defined as the
special graph node corresponding to the agent start location
for n, the earliest available time for the agent for ta, an
empty set for Sp, and a value for b that depends on the
particular branch constraints in question. The goal state is
defined as the special graph node corresponding to the agent
end location for n, and a value of true}for b. The values
of ta and Sp for the goal state are not known ahead of time,
but are computed during the search.

4) State Transitions: From a state s1 in the graph, we
can transition to a state s2 corresponding to any other node
n ∈ N in the graph, with the following exceptions:
• No transitions are allowed into the start node
• No transitions are allowed out of the end node
• Transitions are not allowed from s1 to a node corre-

sponding to a subtask that has already been completed
along this route, that is, a subtask in s1.Sp.

• Transitions are not allowed from s1 to a node corre-
sponding to a subtask whose previous subtasks have
not yet been performed (for tasks with more than one
subtask).

The arrival time of s2 is computed using the arrival time
of s1, the service time at s1.n, and the travel time from
s1.n to s2.n. Note that we are, in effect, computing the
no-wait arrival time along the route. Waiting time is not

included in the computation of ta, since waiting time might
be affected by the schedules of other agents and as such, is
determined in the branch-and-price master problem. s2.Sp is
computed as the union of s1.Sp with the subtask performed
at s2.n. Finally, s2.b is computed by examining whether the
branching constraints are satisfied for this state. To facilitate
this, we also keep track of a boolean variable for each
branching constraint that needs to be satisfied, in order to
be able to determine when they have all been satisfied.

The state transition function checks that agent capacity as
well as maximum route length constraints are not violated.
It also checks some time constraints, rejecting partial routes
that arrive at a node after the relevant time window. Note that
although the computation of ta does not take waiting time
into consideration, the algorithm does keep track for each
state of the minimum waiting time that would be required
to meet the time window constraints at the nodes along
the route to that state. This enables tighter checks of time
constraints and reduces the number of times the algorithm
will find a route that is ultimately rejected in the branch-and-
price master problem because of time constraints. The state
transition function also checks that no branching constraints
corresponding to the current branch of the branch-and-price
tree are violated. For a “not together” constraint involving
tasks ji and j2, it ensures that if j1 is already on the current
route, transitions to nodes corresponding to subtasks of j2
are not allowed, and vice-versa. For an “order” constraint
involving subtasks i1 and i2, it ensures that transitions to
nodes corresponding to the later subtask are allowed only if
the earlier subtask has been performed.

The transition cost from s1 to s2 is computed based on
equation 2. Equation 2 represents the value for an entire
route, but this needs to be incrementally computed as we
transition from one state to another during the search. Note
that negative transition costs are allowed in the graph, which
is not problematic since cycling is disallowed.

5) Search Heuristic: Having computed the cost from the
start state to state s, we need to compute a lower bound on
the transition cost for the remainder of the route from s to
the goal node. Whereas in the original version of DD* Lite a
heuristic can be omitted (i.e. the heuristic value of 0 can be
used), this is not possible here because transition costs can
be negative. Without a heuristic that is a valid lower bound
on the cost of the remainder of the route, the algorithm may
terminate with a suboptimal solution. We compute a valid
heuristic by computing bounds on the various dual variables,
and using maximum route length constraints to bound the
length of the remaining path.

6) Dominance Relationship: Assume that two states, s1

and s2 have the same node n, the same set of previous sub-
tasks, Sp, but different arrival times, ta1 and ta2. These states
represent two different partial routes r1 and r2, reaching node
n, having completed the subtasks in Sp in different orders
or at different locations. Assume, without loss of generality,
that ta1 < ta2. Then the partial route r′1 leaving from s1

can visit at least every node that the partial route r′2 leaving
from s2 can visit and will arrive at these nodes no later than
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if it left from s2. Furthermore, if the dual variable u4a
i is

non-positive for all subtasks, then, from the pricing equation
(2), the cost of the partial route r′1 from s1 to the goal, will
be no worse than the cost of the partial route r′2 from s2 to
the goal. Thus, if the cost of the route r1 from the start to
s1 is also better than the cost of the route r2 from the start
to s2, s1 dominates s2, because there is no benefit in taking
the route through s2.

VIII. RESULTS

We have implemented the branch-and-price algorithm as
described. Below, we present the solution of an illustrative
problem, highlighting the issues of precedence constraints,
waiting costs, waiting time, and location choice. We then
discuss the issue of how to handle dynamism, which is very
relevant to intelligent transportation systems.

A. Example Problem
The example in figure 1 shows an evacuation problem

where there are two transportation agents (squares), one
medical agent (triangle), five individuals to be transported
(crosses) and two shelters to which the victims can be
transported (circles). Each of the five individuals requires
a visit by the medical agent before being transported to a
shelter. Thus, there are five precedence constraints in the
problem. Figure 1 shows the routes computed for 2 different
values of waiting cost, and Figure 2 show the corresponding
schedules. In Figure 2, the horizontal axis represents time,
and the three lines represent the schedules of the agents 0,
1 and 2. Circles indicate arrival at a location to perform a
task, crosses indicate beginning execution of a task, dotted
lines indicate waiting time, and solid lines indicate execution
time. With a waiting cost of 0, the algorithm minimizes the
travel time, regardless of how long the agent needs to wait/be
idle before it can complete its task. Because there is only
one medical agent, waiting times for some tasks are quite
significant since the assigned transportation agent needs to
wait for the medical agent to complete its task before it can
transport the individual in question. When the waiting cost
is increased to 0.5 (that is, half of the transportation cost per
unit time), the transportation agents are less willing to wait
and would prefer to travel in order to transport an individual
that is ready. The overall distance traveled is increased, and
the waiting time is reduced, though not completely.

For this example with 5 transportation tasks and 5 medical
tasks to perform, the table below shows the effect of location
choice on the problem size, and the potential advantage
of column generation. As the number of subtasks in the
problem that have a choice of locations at which they can be
performed increases, the number of feasible routes increases
drastically, but the number of routes generated in the column
generation process stays roughly constant for this problem.

Location
choices

0 1 2 3 4 5

Feasible
routes

2261 3391 5073 7487 10813 15231

Generated
routes

50 51 52 52 47 48

�
�

�
�

�
�

Fig. 1. Example evacuation problem and routes computed with waiting
costs of 0 and 0.5

� ������ ��	

����� ����	


Fig. 2. Agents’ schedules for waiting cost of 0 and 0.5

B. Handling dynamism

The presented approach has the advantage of computing an
optimal solution to the task allocation and routing problem,
but it requires that the system knows about all tasks ahead
of time. By itself, it is not suited to dynamic domains in
which new tasks arrive or conditions change over time. To
handle dynamism, we propose a hybrid planning approach in
which the optimal planner computes an initial optimal plan
for the set of static tasks, that is, the tasks available at the
beginning of the planning horizon. As new tasks arrive, they
are incorporated into the schedule by using a decentralized
market-based task allocation method [8]. The same method
can be used to handle any modifications in the plan that are
required as a result of unforeseen events (such as a road
being closed, or a given vehicle becoming disabled).
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2 agents, 12 tasks 2 agents, 16 tasks 5 agents, 20 tasks

Fig. 3. Relative route costs for the optimal planner, the hybrid planner, and the market-based planner, as a function of the proportion of static tasks

Figure 3 compares the average solution cost (in this case,
total team distance) for this hybrid approach to that for a
solely market-based approach for three different problems
configurations of a simulated scenario in which a team of
vehicles needs to perform a collection of simple single-step
tasks. For this scenario, there are no precedence constraints
or location choices. The vehicles operate in a 40x40 area,
traveling at a speed of 1 unit of distance per unit time.
A set of “static” tasks is present from the begin of the
planning horizon (t=0) while the remaining “dynamic” tasks
come in at various times from t=1 to t=100. The optimal
planner computes an initial plan for the static tasks, which
the vehicles begin to execute. As they come in, new tasks
are allocated and incorporated in the vehicle schedules
with the market-based planner. The costs of the solutions
computed by the optimal, hybrid and market-based allocation
approaches (averaged over 5 random instances) are expressed
as a ratio of the best solution computed by the optimal
approach, in “hindsight”, that is, after all dynamic tasks
have arrived in the system. Note that this “hindsight” plan
optimizes the team distance by inserting waiting time into the
plan as appropriate, since it knows the exact times at which
all tasks arrive in the system. As such, it is a plan that is
unattainable without knowing the future. Note also that for
this problem, a timeout is set on the solution process for
the constrained route planning subproblem and so the best
solution produced by the optimal planner may be slightly
suboptimal in some cases. Figure 3 illustrates that having
an optimized seed plan is usually, although not always,
advantageous over using only a market-based method. As
expected, the advantage of having a seed plan increases with
the proportion of tasks that are static.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel mathematical
model for a complex task allocation and routing problem
involving precedence constraints and location choice. We
have presented a branch-and-price solution process and a

novel dynamic programming algorithm for finding profitable
routes. We also presented an approach by which this method
can be combined with a market-based method to address
dynamic scenarios. Our ongoing work includes a compre-
hensive analysis of the performance of the approach for
different problem configurations. It also includes developing
heuristic algorithms to solve the constrained route-planning
subproblem, to widen the pool of problems for which this
is a tractable planning approach. The planning framework
presented contributes to enabling vehicles in an intelligent
transportation system to achieve autonomy, not only on the
level of navigation but also on the level of coordinating with
other vehicles in a fleet to achieve high-level goals.
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Abstract— In this paper, we provide a brief survey of our re-
cent work on multi-agent planning and simulation for intelligent
transportation system. In particular, we first present a novel
algorithm to reconstruct and visualize continuous traffic flows
from discrete spatio-temporal data provided by traffic sensors.
Given the positions of each car at two recorded locations on a
highway and the corresponding time instances, our approach
can reconstruct the traffic flows (i.e. the dynamic motions of
multiple cars over time) in between the two locations along the
highway using a priority-based multi-agent planning algorithm.
Our algorithm is applicable to high-density traffic on highways
with an arbitrary number of lanes and takes into account the
geometric, kinematic, and dynamic constraints on the cars. In
addition, we describe an efficient method for simulating realistic
traffic flows on large-scale road networks. Our technique is
based on a continuum PDE model of traffic flow that we
extend to correctly handle lane changes and merges, as well as
traffic behaviors due to changes in speed limit. We show that
our method can simulate plausible traffic flows on publicly-
available, real-world road data and demonstrate the scalability
of this technique on many-core systems.

I. INTRODUCTION

Traffic congestion management is a global challenge that
transportation engineers and planners, policy makers, and the
public at large will likely have to cope with for decades.
Besides the obvious energy and environmental impacts, traf-
fic congestion imposes tangible costs on society. The latest
biennial report on urban mobility in the US [7] indicates that
over 4 billion hours of delays are cumulatively experienced
by the system users at a staggering annual cost of over
$78 billion. and this figure has doubled over a 10-year
period between 1997-2007. It is unlikely that traditional
physically-centered mitigation strategies by themselves will
be successful. These approaches are simply not sustainable
in the current economical and environmental climate.

A. Intelligent Transportation Systems

In order to address the problems caused by traffic conges-
tion, numerous strategies have been proposed to construct
Intelligent Transportation Systems (ITS), a term originally
coined to represent the incorporation of sensing, information
and communication technologies in transportation infrastruc-
ture and vehicles. At a broad level, research in ITS tends to
minimize many undesirable impacts, such as excessive travel
delay, air pollution, infrastructure utilization, fuel consump-
tion, and also improves overall highway safety. ITS tech-
nologies encompass basic management strategies, such as

traffic signal control, variable message signs, speed cameras,
and license plate readers, to more advanced technologies,
such as variable speed-limit for flow control, electronic
toll collection and congestion pricing, and automatic law
enforcement (e.g. radars). More vehicles are increasingly
equipped with cruise-control, collision avoidance systems,
and GPS-guided navigation. Recent developments related to
semi-autonomous or autonomous vehicles have also shown
some success, e.g. DARPA Grand Challenge.

Sensing technologies have continued to make leaps
with the wide availability of Radio-frequency identification
(RFID), inexpensive intelligent beacon sensing, inductive
loop detectors, video/camera detection systems, etc. As wire-
less communication networks have become ubiquitous, cell-
phones and Wi-Fi networks have also been used as networks
of mobile sensors to monitor or visualize traffic conditions.

B. Main Results

In this paper, we propose to develop a new algorithmic
framework with efficient computational methods applied
to solving challenging transportation engineering problems.
Our vision is that of a seamless, integrated transportation
system where traffic at the micro, meso or macro scales is
sensed and re-constructed; and where estimation of future
traffic states takes place in a real-time manner; where high-
performance simulators is invoked and test multiple traffic
control strategies; and where algorithms select the optimal
control strategies to apply to the context at hand; and where
quick handoffs between simulation and physical controllers
implement the proposed strategies in a timely manner while
the context is still valid.

Our proposed framework relies on available infrastructure-
based sensors on road networks, but can also incorporate
mobile sensor data. In addition to traffic monitoring and
basic traffic mitigation, we propose to develop an interactive
computational framework that captures current traffic states
continuously by streaming and processing sensor data, per-
forming on-the-fly traffic reconstruction and simulation for
continuous analysis, prediction, intervention, and traffic con-
trol in real time by utilizing the computational capabilities of
many-core processors and graphics processor units (GPUs)
available on current desktop systems. Eventually, these al-
gorithms can also be embedded in intelligent vehicles to
provide more coordinated, individualized rerouting schemes
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for each car in coordination with vehicle flows of the entire
transportation system to avoid traffic congestion.

In this paper, we present an overview of our early results,
including (1) a novel traffic reconstruction algorithm [3]
based on multi-agent planning and coordination, taking into
account the geometric, kinematic, and dynamic constraints
on each car in Sec. II; (2) real-time, large-scale traffic
simulation [6] based on a continuum representation with
discrete, individual-vehicle behaviors in Sec. III and a fast
parallel realization of this method to handle urban traffic
consisting of tens of thousands of vehicles on GPUs and
many-core processors for desktop and portable systems.
We conclude by suggesting several research challenges in
realizing this vision.

II. TRAFFIC RECONSTRUCTION USING MULTI-AGENT
PLANNING AND COORDINATION

Fig. 1. Images of highway traffic synthesized by our method. Our method
computes trajectories one by one for a continuous stream of cars (of possibly
high-density). The trajectories fit the boundary conditions at the sensor
points, and obey the geometric, kinematic and dynamic constraints on the
cars. The number of lane changes and the total amount of (de-)acceleration
are minimized and the distance to other cars is maximized to obtain smooth
and plausible motions.

In this section, we present a multi-agent planning method
for reconstructing traffic flows based on the spatial-temporal
data captured from in-road sensors. Given two locations
along a highway, say A and B, we assume that the velocity
and the lane of each car is known at two corresponding
time instances. The challenge is to reconstruct the continuous
motion of multiple cars on the stretch of the highway in
between the two given locations. We formulate it as a “multi-
robot planning problem”, subject to spatial and temporal
constraints. There are several key differences, however, be-
tween the traditional multi-robot planning problem and our
formulation. First of all, we need to take into account the
geometric, kinematic and the dynamic constraints of each
car (though a subset of specialized algorithms have also
considered these issues [2]). Second, in our formulation, not
only the start time, but the arrival time of the cars is also
specified. In contrast, the objective of previous literature has
been for the robots to arrive at the goal location as soon
as possible. Third, the domain that is dealt with here is an
open system, i.e. the number of cars is not fixed. Instead, new
cars can continuously enter the stretch of the highway. This
aspect requires incremental update to the current solution as
new cars arrive at the given location.

A. Overview

We extend a prioritized approach that assigns priorities
to each car based on the relative positions of the cars on
the road: cars in front have a higher priority. Then, in order
of decreasing priority, we compute trajectories for the cars
that avoid cars of higher priority for which a trajectory has
already been determined. To make the search space for each
car tractable, we constrain the motions of the car to a pre-
computed roadmap, which is a reasonable assumption as
each car typically has a pre-determined location to travel to.
The roadmap provides links for changing lanes and encodes
the car’s kinematic constraints. Given such a roadmap, and
a start and final state-time on the roadmap, we compute a
trajectory that is compliant with the car’s dynamic constraints
and avoids collisions with cars of higher priority. At each
time step, the car either accelerates maximally, maintains
its current velocity, or decelerates maximally. This approach
discretizes the set of possible velocities and the set of
possible positions as well, enabling us to compute in three-
dimensional state-time grids along the links of the roadmap.
Our algorithm searches for a trajectory that minimizes the
number of lane changes and the amount of (de-)acceleration,
and maximizes the distance to other cars to obtain smooth
and realistic motions.

B. Reconstructing Traffic

1) Constructing the Roadmap: The cars are constrained to
move over a preprocessed roadmap to make the configuration
space of a car tractable. We construct this roadmap as
follows. First, we subdivide the highway into M segments
of equal length. For each lane of the highway, we place a
roadmap vertex at the end of each segment This gives a M×
N grid of roadmap vertices, where N is the number of lanes.
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Each vertex (i, j) is connected by an edge to the next vertex
(i + 1, j) in the same lane. These edges allow cars to stay
in their lane and move forward. To allow for lane changes,
we also connect vertices of neighboring lanes. Each vertex
(i, j) is connected to vertices (i+a, j +1), . . . , (i+ b, j +1)
and (i+a, j−1), . . . , (i+ b, j−1). Here a and b denote the
minimum and maximum length (in number of segments) of a
lane change, respectively. The short lane changes are useful
at lower velocities, the longer ones at higher velocities.

When adding the edges for lane changes, we have to
make sure that they are “realistic”. That is, they should obey
the kinematic constraints of a car and should be traversable
without abrupt steering wheel motions. Let us look more
closely at the constraint on the speed with which the steering
wheel is turned. It translates into the following bound on the
curvature derivative:

|φ′(t)| ≤ ωmax ⇐ |κ′(t)| ≤
ωmax

λ
⇔ |κ′(s)| ≤

ωmax

vλ
⇔ v ≤

ωmax

|κ′(s)|λ
(1)

In other words: the smaller the curvature derivative (with
respect to path length s), the higher the velocity with which
this path can be traversed.

The roadmap resulting from the above method is valid for
cars with any value of λ, so we need to construct a roadmap
only once, and can use it for all cars.

2) Trajectory for a Single Car: Given a roadmap as
constructed above and the state-time graph as defined in
the previous section, we describe how we can compute a
trajectory for a single car, assuming that the other cars are
moving obstacles of which we know their trajectories. How
we reconstruct the traffic flows for multiple cars is discussed
in below.

A straightforward approach for searching a trajectory in
the state-time graph is the A*-algorithm. It builds a minimum
cost tree rooted at the start state-time and biases its growth
towards the goal. To this end, A* maintains the leaves of
the tree in a priority queue Q, and sorts them according to
their f -value. The function f(〈q, t〉) gives an estimate of the
cost of the minimum cost trajectory from the start to the
goal via 〈q, t〉. It is computed as g(〈q, t〉) + h(〈q, t〉) where
g(〈q, t〉) is the cost it takes to go from the start to 〈q, t〉,
and h(〈q, t〉) a lower-bound estimate of the cost it takes to
reach the goal from 〈q, t〉. A* is initialized with the start
state-time in its priority queue, and in each iteration it takes
the state-time with the lowest f -value from the queue and
expands it. That is, each of the state-time’s successors in
the state-time graph is inserted into the queue if they have
not already been reached by a lower-cost trajectory during
the search. This process repeats until the goal state-time is
reached, or the priority queue is empty. In the latter case, no
valid trajectory exists.

In [8] the A*-algorithm was used to find a minimal-time
trajectory. That is, only a goal state is specified, and the task
is to arrive there as soon as possible. This makes it easy to
focus the search towards the goal; the cost of a trajectory is
simply defined as its length (in terms of time). However, in

our case the arrival time is specified as well, so we know
in advance how long our trajectory will be. Therefore, we
cannot use time as a measure in our cost function. Instead,
we let the cost of a trajectory T depend on the following
criteria, in order to obtain smooth and realistic trajectories:

• The number of lane changes X(T ) in the trajectory.
• The total amount A(T ) of acceleration and deceleration

in the trajectory.
• The accumulated cost D(T ) of driving in closer prox-

imity than a preferred minimum dlimit > 0 to other
cars.

More precisely, the total cost of the trajectory T is defined
as follows:

cost(T ) = cXX(T ) + cAA(T ) + cDD(T ) (2)

where cX , cA and cD are weights specifying the relative
importance of each of the criteria. A(T ) and D(T ) are
defined as follows:

A(T ) =
∫

T

|v′(t)| dt (3)

D(T ) =
∫

T

max(
dlimit

d(t)
− 1, 0) dt (4)

where v(t) is the velocity along the trajectory as a function
of time, and d(t) is the distance (measured in terms of time)
to the nearest other car on the highway as a function of time.

The distance d(t) to other cars on the highway given a
position s in the roadmap and a time t is computed as
follows. Let t′ be the time closest to t at which a car
configured at s would be in collision with another car, given
the trajectories of the other cars. Then, d(t) = |t − t′|. We
obtain this distance efficiently by — prior to determining a
trajectory for the car — computing for all positions in the
roadmap during what time intervals it is in collision with any
of the other cars. Now, d(t) is simply the distance between
t and the nearest collision interval at s. If t falls within an
interval, the car is in collision and the distance is zero. As a
result, the above cost function would evaluate to infinity.

In the A*-algorithm, we evaluate the cost function per
edge of the state-time graph that is encountered during the
search. The edge is considered to contain a lane change if a
lane-change edge of the roadmap is entered. The total cost
g(〈q, t〉) of a trajectory from the start state-time to 〈q, t〉
is maintained by accumulating the costs of the edges the
trajectory consists of. The lower bound estimate h(〈q, t〉)
of the cost from 〈q, t〉 to the goal state-time 〈qgoal, tgoal〉 is
computed as follows:

vavg =
x(q)− x(qgoal)

tgoal − t
(5)

h(〈q, t〉) = cX |lane(q)− lane(qgoal)|+ (6)
cA(|v(q)− vavg|+ |v(qgoal)− vavg|)

where vavg is the average velocity of the trajectory from 〈q, t〉
to 〈qgoal, tgoal〉, and x(q), lane(q) and v(q) are respectively
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the the position along the highway, the lane and the velocity
at state q. If vavg > vmax, we define h(〈q, t〉) = ∞.

An advantage of the goal time being specified is that
we can apply a bidirectional A*, in which a tree is grown
from both the start state-time and the goal state-time in the
reverse direction until a state-time has been reached by both
searches. This greatly reduces the number of states explored
and hence the running time.

Streaming: Let us assume that we acquire data from each
of the sensors A and B whenever a car passes by. Obviously,
for each car, we first acquire data from A and then from B.
We order the cars in a planning queue sorted by the time at
which the cars pass sensor A. The queue grows when new
sensor data arrives from sensor A. Now when data from
sensor B has arrived, we compute a trajectory for the car
at the front of the queue. To this end, we use the algorithm
of the previous section, such that the car avoids other cars
for which a trajectory has previously been computed (which
is initially none). The start state-time and the goal state-
time are directly derived from the data acquired at sensor A
and B respectively. They are rounded to the nearest point
in the discretized state-time space. This procedure repeats
indefinitely.

Streaming Property: The reconstructed trajectories can
be regarded as a “movie” of the past, or as a function
R(t) of time. As new trajectories are continually computed,
the function R(t) changes continuously. However, the above
scheme guarantees that R(t) is final for time t if (∀i : tAi <
t : tBi < tcur), where tcur is the current “real world” time.
“Final” means that R(t) will not change anymore for time
t when trajectories are determined for new cars. In other
words, we are able to “play back” the reconstruction until
time t as soon as all cars that passed sensor A before time t
have passed sensor B. We call this the streaming property; it
allows us to stream the reconstructed traffic at a small delay.

Real Time Requirements: In order for our system to
run in real time, that is, so that the computation does not
lag behind new data arriving (and the planning queue grows
bigger and bigger), we need to make sure that reconstruction
takes on average no more time than the time in between
arriving cars. For instance, if a new car arrives every second,
we need to be able to compute trajectories within a second
(on average) in order to have real-time performance.

Prioritization: The above scheme implies a static prior-
itization on the cars within a given pair of sensor locations.
Cars are assigned priorities based on the time they passed
sensor A, and in order of decreasing priority trajectories are
calculated that avoid cars of higher priority (for which tra-
jectories have previously been determined). This is justified
as follows: in real traffic, drivers mainly react to other cars
in front of them, hardly to cars behind. This is initially the
case: a newly arrived car i has to give priority to all cars in
front of it. On the other hand, car i may overtake another car
j, after which it still has to give priority to j. However, it is
not likely that once car i has overtaken car j that both cars
will ‘interact’ again, and that car j influences the remainder
of the trajectory of car i. This can be seen as follows. If

we assume that cars travel on a trajectory with a constant
velocity (this is what we try to achieve by the optimization
criteria of Equation (3)), each pair of cars only interact (i.e.
one car overtakes the other) at most once.

In fact, in a real-world application it is to be expected
that multiple consecutive stretches of a highway are being
reconstructed, each bounded by a pair of a series of sensors
A,B, C, . . . placed along the highway. If car i overtakes car
j in stretch AB, then for reconstructing the stretch BC,
car i has gained priority over car j. So, when regarded
from the perspective of multiple consecutive stretches being
reconstructed, there is an implicit dynamic prioritization at
the resolution of the length of the stretches.
Results: We show that this approach can successfully
reconstruct traffic flows for a large number of cars efficiently,
and examine the performance of our method on a set of
real-world traffic flow data in [3]. Fig. 1 shows some of the
challenging scenarios reconstructed and visualized by our
method.

III. CONTINUUM TRAFFIC SIMULATION

Traffic forecast is usually performed by forward simula-
tion, i.e. by propagating the flow model forward assuming
some inflow and outflow conditions. A key component of our
system framework is developing a fast and accurate traffic
simulator. The main challenge is to model traffic flow: given
a road network, some traffic measurements, and the initial
vehicle states, how does the traffic in the system evolve?
Such methods are typically designed to explore specific phe-
nomena, such as congestion, shockwaves, unstable, stop-and-
go patterns of traffic, or to evaluate network configurations
to aid in real-world traffic engineering.

We develop a novel method for efficient modeling and
simulations of large-scale, real-world networks of traffic
using a continuum representation. Specifically, using traffic
sensor measurement, we can transform discrete, moving
vehicles on multiple lanes into continuous traffic flow, and
vice versa. Our goal is to allow the individual vehicles to
be introduced into this continuum representation of traffic
flow at any given time. This approach of using continuum
simulation with discrete vehicle behaviors could allow the
simulation to capture both the macroscopic flow behavior,
as well as the individual movement of each vehicle in the
traffic. The sensor data collected from traffic loop detectors
and camera/video sensors will be used to provide the initial
states to the traffic simulator.

A. Mathematical Formulation

Next we describe the essential elements modeled in our
continuum traffic simulation.
Road Networks We propose to simulate the traffic flow in
a network of roads. Each road has one or more lanes and
is connected to other roads through intersections and inter-
changes. We plan to design our data structure and software
systems so that we can also model other information in the
future, including road quality and conditions, information
about driveways, parking spaces along the arterial roads,
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(a) A freeway in a city (b) Traffic at an interchange (c) A Cloverleaf Intersection

Fig. 2. Images from our simulator

etc. Each multi-lane road segment can also have variable
speed limits. Moreover, driveways, parking lots, and curbside
parking are treated as sources and sinks along lanes.
Traffic Flow We model the flow of traffic using a system of
nonlinear hyperbolic conservation laws that represent traffic
as a continuum along lanes. We use the ARZ model proposed
by Aw and Rascle [1] and Zhang [9], which addressed non-
physical pheonomena of earlier partial differential equations
for modeling traffic flows. The resulting equations can writ-
ten as [5]:

qt + f(q)x = 0,where q =
[
ρ
y

]
and f (q) =

[
ρu
yu

]
, (7)

where the subscripts denote differentiation, q is a vector-
valued quantity of the traffic density ρ, i.e. “cars per length”,
and the “relative flow” of traffic, y, and u as the velocity of
traffic. f (q) is a vector-valued function, known as the flux
function, uniquely characterizing the dynamics of the system.

Discretization: One way to discretize solutions to Eqn. (7)
is based on the Finite Volume Method (FVM). If we take
the integral of Eqn. (7) in space over some arbitrary interval
x ∈ [a, b], we have∫ b

a

qt dx+
∫ b

a

f(q)x dx =
d
dt

∫ b

a

q dx+f(q (b))−f(q (a)) = 0.

(8)
We can divide Eqn. (8) by (b − a) = ∆x and discretize q
into quantities Qi representing the average of q over [a, b],
followed by

Qn+1
i −Qn

i

∆t
+

1
∆x

[f(q (b))− f(q (a))] = 0,

Qn+1
i = Qn

i −
∆t

∆x
[f(q (b))− f(q (a))] (9)

Numerical update procedure Eqn. (9) is a straightforward
update scheme; what remains to be computed are the quanti-
ties f(q (b)) and f(q (a)) — that is, the flux that occurs at the
boundaries between cells. This is in fact not straightforward
for nonlinear f(·) (as in the ARZ system of equations) and
accounts for the bulk of the computation in the underlying

numerical scheme. The problem of determining these fluxes
is known as the Riemann problem.
Riemann Problem and Field Classification In order to
compute fluxes, we must be able to determine the value
of between the piecewise-constant states in adjacent cells.
Depending on the relative values of initial and final constant
states at the cell boundary, we expect the solution to consist
of two or more distinct “regions” of self-similar solutions
traveling with varying speeds.

The eigenstructure of the Jacobian of the flux function is
the key to determining theses speeds and the solution various
regions of the solution. Based on the eigenvalues and eigen-
vectors of the Jacobian, we can perform field classification
to determine when to expect nonlinear phenomena, such as
shocks and rarefaction waves to appear or when the flow
will propagate as constant discontinuity. Based on the field
classification, we can classify the solutions for different cases
of vehicle densities, velocities, etc.
Generalized Solutions for Variable Speed Limit The above
discussion on the solution to the Riemann problem for the
ARZ system of equations has assumed that the maximum
velocity remains constant in space — i.e. that the speed
limit on either side of the interface is the same. Clearly speed
limits vary from road to road and changes even along a single
lane, and the effects of these variations in speed limits have
discernable effects on traffic flow and in fact can be used
as a mechanism to regulate the flow. At a decrease in speed
limit, we expect traffic to slow and increase in density, while
an increase in speed limit might case traffic to accelerate
and rarefy. Whereas the solution to the Riemann problem
developed above is a homogeneous Riemann problem, when
speed limits on either side of a cell interface differ, we also
need to solve these inhomogeneous cases. We investigate
the inhomogeneous Riemann problem for the ARZ equations
using the concepts of supply and demand of flow [4]. For
more detail, please refer to [6].
Additional Issues: Other challenging issues include (1)
handling of lane-end boundary conditions at the intersection,
stopped outflow, ‘starvation’ inflow, taper in/out; (2) source
terms due to driveways, parking lots, and curbside parking,
(3) single-in and multiple-out Riemann solvers for handling
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lane merging and splitting, etc. We are not aware of any
prior work on real-time traffic simulation with this level of
accuracy.
Discrete Representation of Cars: Another challenge is
introducing discrete vehicle representation of vehicles in
our proposed approach. In order to have the underlying
continuum simulation reflect the position of these vehicles,
we need to “seed” the discrete cells along each lane with the
appropriate density and velocities of each car. We interpret
the quantity ρ stored at each grid cells as “cars per length”;
thus, for each cell i a particle j with velocity uj overlaps,
we compute the updated density (ρ′

i) and velocity (u′
i) at i

from their original values [ρi, ui]
T and the contribution of

j:

∆ρi =
oi,j

∆xlane
; ρ′

i = ρi + ∆ρi; u′
i =

ρiui + ∆ρiuj

ρ′
i

.

(10)

Here oi,j is the length (in real, not parametric, space) that the
particle j overlaps cell i. Our approach can also handle the
movement of vehicles from one lane to another (interchange-
ably for a lane change or a merge) using a combination of
information from particles and the density/flow data from
the continuum model, similarly for the vehicle entering and
existing the highway system.
Continuum-Discrete Coupling: One of the future key
challenges is a truly hybrid traffic simulation that correctly
provide coupling between the continuum and discrete simu-
lation, thus enabling level-of-detail simulations for modeling
traffic flows.

Fig. 3. Comparison on performance scaling of agent-based SUMO in red
curve (top) vs. our simulator in blue line (bottom) as the number of cars
increases.

B. Parallelization on GPU & Many-core Processors

The vast majority of the computation time in our simula-
tion framework is spent in two kernels: (1) the computation
of solutions to the many Riemann problems across the grid
and (2) the application of these Riemann solutions to the cells
of the grid to advance to the next timestep. The computation

of Riemann solutions is essentially independent across all
cell interfaces. Given the two cells adjacent to a given
interface, we compute the fluxes and speeds that comprise
the Riemann solution at that interface. The update procedure
is similarly data-parallel across each grid cell; to update a
cell, we need only the global timestep being used for each
pass and the Riemann solutions corresponding to the two
interfaces shared with the cell’s neighbors along the current
dimension.

We therefore can achieve significant performance scaling
from a parallelization of these kernels across the grid. Our
early multiple-CPU implementation parallelize the dynamics
computations of traffic flow and show scalable performance.
Some images from our traffic simulator can be seen in
Fig. 2. And, a comparison against a well known agent-based
simulation is shown in Fig. 3

IV. CONCLUSION AND FUTURE WORK

In this paper, we briefly summarize a novel traffic recon-
struction algorithm based on a novel priority-based, multi-
agent planning method [3] and an efficient continuum traffic
simulation [6] for intelligent transportation systems and traf-
fic congestion management. Next, we plan to investigate fast
computations of optimal control strategies that can quickly
evaluate various freeway and arterial control strategies using
the traffic reconstruction and simulation techniques described
in this paper and adaptively select the best rerouting options
for individual vehicles to alleviate traffic congestion.
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Robots for the Human

Oussama Khatib
Artificial Intelligence Laboratory

Department of Computer Science
Stanford University

.. in the human environment 

.. not only walk, but also interact with the world

w h o l e   b o d y   c o n t r o l

.. motion in contact

p e r c e p t i o n
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: Stanford Human-Safe Robot 2s ρ
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Validation – whole-body effort
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Human Motion Reconstruction
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Collision Detection
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Skill Learning
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.. simulating the sense of touch
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Benchmark Tools for Evaluating AGVs at Industrial Environments

Héctor Yuste, Leopoldo Armesto and Josep Tornero

Abstract— The paper addresses the problem of evaluating
AGVs with different degrees of autonomy by defining a method-
ology and benchmark tools to grade the performance of each
solution. The proposed benchmark requires running different
experiments, from manual driving to autonomous navigation,
at different velocities and different scenarios. The goal is to
evaluate the performance of AGVs, in terms of robustness
to reach the goal, collisions reduction, traveling time, average
speed, etc. The underlying objective is to evaluate the potential
advantages of manual-assisted driving as well as autonomous
navigation against standard manual driving. To obtain valid
and significant results, 180 experiments have been completed
on each case with drivers of different ages, sex and skills.

I. INTRODUCTION

Advanced Auto-Guided Vehicles (AGVs) involved in in-
dustrial applications constitute interesting Intelligent Trans-
portation Systems (ITS) for researchers and engineers. Com-
mercial AGVs like those found in [1], [2] among others, are
typical based on magnets, wires or laser guidance, which
require a specific infrastructure. Another type of guidance for
AGVs is the inertial navigation, using accelerometers and gy-
roscopes aided with exteroceptive transponders embedded in
the floor. The advantages are to provide a fully autonomous
solution with capacity to react, to avoid obstacles and to
compute the path by using the most advance techniques. The
drawbacks of these solutions are, in our opinion, the high
implantation cost and the general lack of flexibility make
unfordable the use of this kind of technology, especially for
SME (Small-Medium Enterprises). On the other hand, tradi-
tional manually maneuvering with forklifts has advantage of
providing human intelligence to adapt to unstructured and
cluttered environments. However, human behavior is occa-
sionally risky and dangerous because they may underestimate
a particular situation. It seems appropriate to investigate
on new ITS that combine both, human intelligence and
computational capabilities of an artificial system, to improve
security and reduce the risk of having accidents. This kind of
ITS have become increasingly common in cars, see section
I-A for details, but rarely used in industrial environments.

The reduction of accidents of transportation systems, is
nowadays, one of the main goals in many companies. Ac-
cidents with industrial vehicles have negative consequences
for companies such as: delays in scheduled tasks affecting to

This work was supported by PISALA Project funded by Vicerectorado de
Investigación Desarrollo e Innovación, Universidad Politecnica de Valencia
and PROMETEO Program funded by Conselleria Educació, Generalitat
Valenciana,

Héctor Yuste, Leopoldo Armesto and Josep Tornero are with Institute
of Design and Manufacture in Automation (IDF-Automation), Universidad
Politécnica de Valencia, Camino de Vera s/n, Spain. Corresponding author:
Leopoldo Armesto {leoaran@isa.upv.es}

the manufacturing process, damages on the vehicles which
require expensive reparations and maintenance, worker ca-
sualties and economical looses. Accidents can be caused
by human driving errors, but also by unexpected obstacles,
machine failures or incorrect signaling of restricted areas,
among other causes.

This paper discusses advantages and disadvantages of
different AGV control modes in the context of industrial en-
vironments using industrial forklifts covering several driving
modes from traditional manual driving mode to autonomous
navigation, including a hybrid solution where an intelligent
system assists manual driving so both the human operator
and the intelligent system play a cooperative role. In order
to provide valid and useful ITS solutions to improve security
in industrial environments, benchmarking tools are needed to
evaluate techniques and methods under the same conditions.

In that sense, the main contribution of the paper is the
definition of a methodology for evaluating ITS approaches,
especially in the context of robustness and security perfor-
mance with industrial forklifts, but also in the context of
timing aspects as well as trajectory shape. The methodology
establishes to run experiments under different scenarios and
different velocities for each ITS approach being evaluated. In
particular, we grade the performance of manual driving, that
is driving with no kind of assistance, manual-assisted driving
and an advance obstacle avoidance technique appropriate for
troublesome scenarios for autonomous navigation.

A. Intelligent Transportation System Technologies

The Antilock Braking System (ABS) first brought to
market by Bosch in 1978 prevents wheel lock during full
braking. This ensures that the vehicle can still be steered
and moved out of the way of unexpected obstacles. Adaptive
Cruise Control (ACC) technology improves the function of
standard cruise control by automatically adjusting the vehicle
speed and distance to the vehicle ahead. Adaptive headlights
can direct the beams by moving each headlamp left, right,
up or down in reaction to steering wheel angle, speed
and movement of the vehicle. The Lane Change Assistant
[3] or the Blind Spot Detection systems [4] continuously
monitor the rear blind spots on both sides of the vehicle.
Driver Drowsiness Monitoring and Warning systems [5] can
detect the driver’s drowsiness in several ways: by tracking
the driver’s facial features, movements of hands and feet,
by analyzing eye-closures and head pose or even changes
in heartbeat. The Electronic Brake assist System (EBS) is
a very efficient aid in emergency braking situations when
the driver wants the vehicle to stop as quickly as possible
which can be found in Mercedes-Benz (S-Class, SL-Class).
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The Electronic Stability Control [6] detects the deviation
between the vehicle’s trajectory and the intended direction.
Without any action on the part of the driver, small amounts
of braking are applied separately to each wheel and this
can bring the vehicle back to the intended course. Lane
Departure Warning Systems (LDWS) are electronic systems,
found initially in Nissan, Toyota and Citroën that monitor
the position of the vehicle within its lane and warn the
driver if the vehicle deviates or is about to deviate from the
lane. Obstacle / Collision Warning Systems help the driver to
prevent or mitigate accidents by detecting vehicles or other
obstacles on the road ahead and by warning the driver if a
collision becomes imminent. Current solutions with limited
performance are an additional function of Adaptive Cruise
Control, using information obtained from radar sensors to
give visual and acoustic warnings [7] and [8]. Intelligent
Speed Adaptation (ISA), also known as Intelligent Speed
Assistance, is any system that constantly monitors vehicle
speed and the local speed limit on a road and implements
an action when the vehicle is detected to be exceeding the
speed limit, see [9] for a complete review. Other assistance
systems are gear shift indicator, night vision, adaptive light
control, automatic parking, traffic sign recognition and hill
descent control, among others.

B. Motion planning and obstacle avoidance techniques

Literature on mobile robot motion planning and reactive
obstacle avoidance of mobile robots considers the problem
of how to reach a goal pose without colliding with the
environment. Potential Field (PF) methods [10] and [11]
addressed the first sensor-based motions, where a large set
of different potential functions have been proposed [12],
[13], [14] among others. The Vector Field Histogram (VFH)
[15], [16], [17] considered sensor uncertain sensor to avoid
obstacles with application to sonar sensors using occupancy
grids. Generalized Perception Vector (GPV) [18] is com-
parable to the VFH but linked to the sensor instead of
occupancy grids. In [19] an extension of the GPV was
developed by considering an orientable eccentric ellipsoid as
focus of attention based on the movement direction for non-
holonomic mobile robots. The Elastic Bands [20] was the
first technique combining planning and reaction schema in a
unified framework. The Dynamic Window Approach (DWA)
was the first technique to address kinematics and dynamics to
carry out motion at high speeds [21] and similarly [22]. More
recently, the Nearness Diagram (ND) navigation [23] was the
first technique to address motion in troublesome scenarios,
where several variations of the algorithm can be found [24],
[25], [26], [27].

II. ITS BASED ON INDUSTRIAL FORKLIFTS

In this section, we summarize our research on ITS for
industrial forklifts. In the context of a several past Research
Projects named Auto Trans, GATA and LITRONA, we have
developed several approaches for automating industrial vehi-
cles for different applications such as teleoperation [28] and
vision-based line tracking [29], [30]. More recently, we have
proposed an unified and general approach for automating

vehicles in a range from manual driving to high-level au-
tomation modes in autonomous navigation, including several
medium automation levels solutions such as “guided” driving
[31] and manual-assisted driving in addition to teleoperation,
vision-based line tracking, etc.

A. Vehicle Automation

An auto-guided vehicle based on the Nichiyu FBT15
industrial forklift with three wheels in tricycle configuration
(an orientable wheel at the rear and two fixed wheels at the
front).A mechanical link joints the rear motor to the steering-
wheel with power-assistance. In additional, two DC motors
attached to the two fixed wheels, are coordinates with the rear
wheel through an electronic differential system for avoiding
slippery.

The automated industrial vehicle is based on a PLC for
low-level vehicle control and an industrial PC at high level,
implementing the intelligence of the AGV. The purpose of
the PLC is to provide an industrial solution to the most
critical aspects regarding with emergency stops and signal
interface. The devices have been installed on the vehicle are:
• Two lasers rangers form SICK providing a 180o range

scan with 0.5o angular precision at a rate of 75Hz (see
Fig. 1) at the rear and front of the Vehicle. They provide
warning and protection zones that activate a digital output
in case of intrusion to implement emergency stops.

• Sonar rangers and infrared sensors to cover lateral areas
of the vehicle for moving in narrow areas.

• Two incremental encoders measure speed of fixed wheels
an an absolute encoder to measure the angle of the rear
steering wheel.

• PLC controller analog inputs: one sensing the throttle
pedal and another one sensing the torque applied to the
steering wheel.

• PLC controller analog outputs: one for controlling the
vehicle drive velocity that replaces the original throttle
pedal signal and another signal for controlling the rear
steering wheel as if a power-assisted steering wheel.

• PLC controller digital inputs and outputs: for sensing and
generating signals related with laser warning and protec-
tion intrusion, level gear (forward, neutral and reverse) and
other non-relevant signals.

B. Teleoperation

Likewise manual-assisted driving, teleoperation is human
driven but with the main difference that vehicle control has to
be performed remotely. Therefore, wireless communications
should be established to transmit remote control and sensing
and that a “replica” of the vehicle, namely a teleoperation
cabin, to reproduce vehicle commands. In this application
force feedback control becomes more important to sense the
environment through the steering wheel.

C. Vision-based Line Tracking

In vision-based line tracking applications an “intelligent”
system processes images from a camera pointing to the floor
where a line circuit defines the route to follow. As a result,
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Fig. 1. Security zones covered by range sensors.

Fig. 2. Component-based software architecture. On the PC-side application
there are three main components: scan matching, map building and nearness
diagram (ND), apart from others such as display and data-logging modules
(not included here). The PC communicates through RS-232 with the PLC
and the LMS Devices.

the detected line on the image is used as reference to guide
the vehicle. In this application, the “intelligent” head that
processes images should be robust enough to detect lines
under several lighting conditions and floor backgrounds. The
proposed solutions is based on the CMUCAM3 embedded
vision system to detect lines [31].

D. Autonomous Navigation

The autonomous navigation application has been designed
using component-based software architecture, where the
main modules are shown in Fig 2. In particular, we are using
scan matching techniques to locally estimate the vehicle pose
[32] and occupancy grid maps to fuse data from multiple
scans [33]. In addition, we have selected ND [25] as the
obstacle avoidance technique, which has shown appropriate
behavior to avoid obstacles at moderate velocities.

In Fig. 3(a) we show an example of the autonomous nav-
igation application, where the vehicle moved on a cluttered
unstructured environment as shown in Fig. 3(b).

In the previous example the vehicle tries to reach the target
from a start point along a very cluttered environment. There
was no constrain to solve the problem.

E. Manual-Assisted Driving

In manual assisted driving, the driver normally operates
the vehicle, but it can receive feedback from different kind

(a) Experiment scenario.

(b) Complete map and robot trace.

Fig. 3. Example of autonomous navigation of the industrial forklift in a
very cluttered environment.

of visual, audio and haptic devices aimed to reduce the risk of
collisions. The main idea is to investigate on feasible ready-
to-market solutions that improves driving security aspects
with industrial forklifts. Our particular approach focuses on
haptic feedback devices, with which drivers can feel the
danger of selecting an inappropriate steering wheel direction
by applying a torque on the steering wheel opposite to
that direction. In addition to this, the vehicle speed is
automatically regulated as in Adaptive Cruise Control (ACC)
systems. Our implementation is based on the GPV technique
[19], where the main ideas can be summarized as follows:
obstacles inside an ellipsoid surrounding the vehicle are
taken into account to compute a coefficient indicating the
risk of collision. This coefficient is used to cancel the
throttle pedal commands introduced by the driver and even to
generate a negative acceleration if required. This coefficient
is also used to generate a proportional reactive torque on
the rear motor that is feedback on the steering wheel so the
driver feels higher stiffness while trying to move towards an
inappropriate direction.

The main advantage of manual-assisted driving with re-
spect to autonomous driving are easiness implantation, since
it requires fewer changes to companies, with greater flex-
ibility and adaptability to route re-planning. In addition to
this, it does not required a specific infrastructure which im-
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plies lower implantation costs. Moreover, the manual-assisted
driving can improve pure manual driving performance in
reducing collisions and correcting common human mistakes
which are also costly for companies.

III. BENCHMARKING METHODOLOGY

In order to grade the performance of an AGV, we propose
a complete benchmark:
• Define different types of scenarios where the vehicles

move. Possible scenarios may include wide and narrow
corridors, small and large isles, rooms, slalom-like parts
requiring zig-zag maneuvering, moving objects (other ve-
hicles or people). Combinations of these elements could
be considered based on the application requirements.

• For each scenario a collection of pairs start-goal positions
are defined (in our case 10). The criteria for choosing
these group of points is as follows: the start and target
points, must be located in the free space of the augmented
scenario with a margin distance, the euclidean distance
between start position and target position must be greater
than a given threshold. Moreover, the location of each pair
of points must be in different quadrants of the scenario to
cover the overall parts of the scenario. The final selection
of points has been filtered manually so that the problem
to solve results interesting in terms of narrow corridors,
slaloms, u-shaped obstacles to avoid.

• Define a set of maximum velocities that the vehicle can
reach.These are interpreted as the maximum speed that the
vehicle reacts when the driver fully accelerates. The speed
time constant is fixed so the variation of the maximum
speed from one experiment to another is sensed by the
driver as a change in the sensitivity of the throttle pedal. In
our case the we have chosen 5 different maximum speeds:
1m/s, 2m/s, 3m/s, 4m/s, 5m/s.

• Each single test is performed as follows: A start-goal po-
sitions couple and a maximum speed are chosen randomly
from the two sets defined before. The user is asked to go
from the start position to the target without any limitation,
but a maximum time. The driver has previous knowledge
about the type of driving mode and is informed about the
time left.Nevertheless, he does not know the maximum
speed that the vehicle can reach nor how the algorithm (if
exists) is working.

• A fixed number of experiments is performed for each
scenario and driving mode (10 in our particular case).
Some data is logged to posterior analysis of performance:
start and goal positions, distance to obstacles, robot posi-
tions, time instants, collisions, etc... to obtain metrics of
the performance. Related to robustness, an experiment is
classified as positive (P) if it has reached the goal within
the time interval and classified as negative (N) if not.
Moreover, true positive (TP) experiments are those that
reached the goal without colliding, while false negative
(FN) experiments have at least generate one collision to
reach the goal.
The simulation platform used to perform the tests was

Player/Stage. To make the experiments as real as possible

TABLE I
ROBUSTNESS OF DRIVING MODES AT DIFFERENT SPEEDS.

Speed Case Mode
[m/s] [%] Manual Assisted Autonomous

1
TP 88.23 95 76.92
FP 8.82 5 2.56
N 2.94 0 20.51

2
TP 60.52 100 56.75
FP 34.21 0 2.7
N 5.26 0 40.54

3
TP 70.27 94.87 85.71
FP 29.72 5.12 0
N 0 0 14.28

4
TP 79.41 94.73 80.95
FP 14.7 5.26 2.38
N 5.88 0 16.66

5
TP 56.75 96.66 92.59
FP 37.83 3.33 0
N 5.4 0 7.40

the user interact with the real truck but statically, that is,
without a real movement, and the simulation is carried out on
the on-board PC. All vehicle signals (throttle pedal position,
steering wheel angle, break and selected gear) are sensed
from the real truck in real time while laser data is supplied
by the simulation platform. Vehicle signals are converted into
appropriate position Player/Stage commands to simulate the
robot motion. The Stage simulation is displayed on the screen
as main GUI.

Table I contains the results of one of the simulated environ-
ments based on Player/Stage [34]. In particular, we are using
the “cave” scenario and evaluating the performance of three
driving modes. This scenario contains wide and narrow cor-
ridors and small and large isles. The driving modes that have
been considered are manual driving, manual-assisted driving
with a haptic device as proposed in II-E and autonomous
navigation as described in section II-D. The experiments have
been carried out with people external to the project in order
to minimize the manipulation of results, including people
of different sex and with ages between 25 to 50. A total
amount of 180 experiments have been performed on each
driving mode. From the total amount of people that did the
experiments a 40% were experts in driving industrial trucks
whilst the rest had experience only with cars.

It can be appreciated from the results of table I that
manual-assisted driving is clearly more robust than manual
and autonomous modes. In particular, negative cases of
autonomous mode are basically due to trap situations that
the ND could not solve as shown in Fig. 4(a), while negative
cases of manual and assisted modes are basically due to lack
of time to solve the scenario. In favor to ND, the number of
false positive cases is lower than manual and manual-assisted
modes, which implies lower collisions. However, in order to
properly interpret the results of table I, the human factor must
be taken into account, specially for non-skilled drivers who
prefer to collide several times moving forward and backward
until they can solve a trapping situation as shown in Fig. 4(b).
The autonomous mode tries to move forward and backward
but without colliding, but as a result it can not escape from
the trapping situation. It is also interesting to remark that

ICRA10 International workshop on Robotics and Intelligent Transportation System 90/142



(a) N case in autonomous mode.

(b) FP case in manual mode.

Fig. 4. Example of a negative (N) and false positive (FP) cases in the cave
scenario. The blue point is the goal to reach.

manual-assisted mode has been designed to be usable as
main design priority so force feedback applied to the steering
wheel and speed reduction are moderate. As a consequence,
drivers can collide with objects on purpose and therefore this
is the trade off between usability and security we need to pay.

In addition to robustness, the performance of an AGV
can be grade with several metrics as those proposed in
[35] for the positive cases (including true positives and
false positives). In particular, we have considered, for each
velocity and driving mode, the mean time employed to reach
the goal, the average speed, two security metrics as defined
in [35], the bending energy and smoothness of the described
trajectory as shown in table II. Regarding with the security
metrics (SM), we have considered SM2 and SM3, where
SM2 is the mean of minimum distances to the obstacles
taken at each sampling time. This gives an idea of the risk
taken through the entire mission, in terms of the proximity
to an obstacle. On the other hand, SM3 is the minimum
distance between the vehicle and any obstacle through the
entire trajectory. This index measures the maximum risk
taken throughout the entire mission. On the other hand, the

TABLE II
METRICS OF DRIVING MODES AT DIFFERENT SPEEDS.

Speed Metrics Mode
[m/s] Manual Assisted Autonomous

1

Mean Time [s] 53.1 46.06 95.79
Av. Speed [m/s] 0.7 0.68 0.31
Path Length [m] 27.15 24.18 29.02

SM2 [m] 1.17 1.28 1.17
SM3 [m] 0.29 0.42 0.54

TBe 5.01 6.71 1.11
Smoothness 0.7 0.13 0.05

2

Mean Time [s] 45.27 35.96 42.71
Av. Speed [m/s] 1.02 0.92 0.6
Path Length [m] 27.44 31.98 26.47

SM2 [m] 1.1 1.28 1.1
SM3 [m] 0.22 0.4 0.5

TBe 20 17.31 4.72
Smoothness 3.63 0.67 0.13

3

Mean Time [s] 45.78 34.4 33.1
Av. Speed [m/s] 1.1 1.01 0.93
Path Length [m] 27.49 29.93 33.44

SM2 [m] 1.1 1.25 1.13
SM3 [m] 0.27 0.38 0.51

TBe 33.15 28.37 13.71
Smoothness 9.36 1.38 1.7

4

Mean Time [s] 40.75 33.15 25.82
Av. Speed [m/s] 1.11 1.03 1.23
Path Length [m] 29.8 26.42 38.26

SM2 [m] 1.16 1.24 1.12
SM3 [m] 0.23 0.37 0.49

TBe 33.4 34.81 28.41
Smoothness 14.49 4.83 6.42

5

Mean Time [s] 49.5 34.83 20.04
Av. Speed [m/s] 1.08 1.04 1.56
Path Length [m] 28.72 30.99 27.47

SM2 [m] 0.99 1.31 1.13
SM3 [m] 0.15 0.34 0.48

TBe 44.38 42.47 50.11
Smoothness 19.2 2.75 17.48

bending energy is related with curvature of the trajectory
while the smoothness is a measure of the variation of such
a curvature.

From the results of table II we conclude that the average
velocity and mean time with manual and manual-assisted
modes are basically constant, though the performance of
manual-assisted mode is clearly higher. Both cases seem
to be invariant to the maximum speed, due to the fact
that drivers adapt vehicle velocity accordingly to their skill,
whatever the maximum velocity is used. On the other hand,
autonomous navigation seems to be more conservative at low
speeds than the other two modes and more aggressive at high
speeds, showing a linear relation with the maximum velocity.
Regarding with security metrics, the manual-assisted driving
has the higher SM2, which implies that is more distant
to obstacles during the whole experiment. The autonomous
mode is the one that shows better SM3 due to the fact
that has lower collisions. Finally, with respect to trajectory
metrics, the autonomous and manual-assisted modes show
a complementary behavior. Autonomous mode describes
smoother trajectories at low speeds while it performs more
abruptly at high speeds. Manual-assisted mode shows, in
general, smooth trajectories though for low velocities they
are slightly more abrupt than the autonomous mode. In any
case, the manual mode, without any kind of assistance, shows
the worst performance.
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IV. CONCLUSIONS

The paper addresses the problem of AGV under the per-
spective of Intelligent Transportation Systems (ITS) covering
different automated solutions such as line-tracking, manual-
assisted driving, remote teleoperation and autonomous navi-
gation.

The main contribution of the paper is to introduce a
methodology to evaluate the performance of AGVs with
different degrees of autonomy. This methodology establishes
a benchmark consisting of running multiple experiments,
like Monte Carlo simulations, under the different velocity
conditions and measuring the performance based on several
metrics, including mean time, mean speed, security metrics
and trajectory bending energy and smoothness. In particular,
the paper evaluates the benefits of manual-assisted driv-
ing compared to traditional manual driving. Moreover, the
comparison is extended by including also an autonomous
navigation mode based on ND algorithm, obtaining a solution
with fewer collisions but less robust since it is based on a
local planner that fails to solve specific trapping situations.

It is interesting to remark that in the manual-assisted mode
a force feedback is applied to the steering wheel together
with speed reduction when an obstacle is being detected. In
this mode, drivers may collide with objects if they intended it
on purpose, depending on the degree of freedom imposed. On
the contrary, in autonomous navigation mode the goal is to
reach the destination without any possible collision, therefore
the priority is on security performance. The natural limit of
our implemented autonomous navigation solution is on the
lack of reasoning, global perception and learning which is
seriously affecting to the robustness as mentioned therein
after.
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Abstract— Automation of logistic processes is essential to 

improve productivity and reduce costs. In this context, 

intelligent warehouses are becoming a key to logistic systems 

thanks to their ability of optimizing transportation tasks and, 

consequently, reducing costs. This paper initially presents 

briefly routing systems applied on intelligent warehouses. Then, 

we present the approach used to develop our router system. 

This router system is able to solve traffic jams and collisions, 

generate conflict-free and optimized paths before sending the 

final paths to the robotic forklifts. It also verifies the progress 

of all tasks. When a problem occurs, the router system can 

change the tasks priorities, routes, etc. in order to avoid new 

conflicts. In the routing simulations each vehicle executes its 

tasks starting from a predefined initial pose, moving to the 

desired position. Our algorithm is based on Dijkstra's shortest-

path and the time window approaches and it was implemented 

in C language. Computer simulation tests were used to validate 

the algorithm efficiency under different working conditions. 

Several simulations were carried out using the Player/Stage 

Simulator to test the algorithms. Thanks to the simulations, we 

could solve many faults and refine the algorithms before 

embedding them in real robots.  

I. INTRODUCTION 

HE routing task may be understood as the process of 

simultaneously selecting appropriate paths for the AGVs 

(Automated Vehicle Guided) among different solutions. One 

of the goals of routing for AGVs is the minimization of 

cargo cost. In recent years, several algorithms, distinguished 

in two categories: static [1]-[7] and dynamic [8]-[17], have 

been proposed to solve routing problems. In the first case, 

static routing the route from node i to node j is determined in 

advance and is always used if a load has to be transported 

from i to j. Thus, a simple assumption is to choose the route 

with the shortest distance from i to j. However, these static 

algorithms can not adapt to changes in the system and traffic 

conditions. In dynamic routing, the information necessary to 

determine efficient routes are dynamically revealed to the 

decision-maker and, as a result, various routes between i and 

j can be chosen [18]. As one can notice, the several papers 

found in the literature, have not take into account important 

features in the routing, such as path maneuvers, time curves, 

load and unload operations, etc. 
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In many researches, the route is calculated considering the 

minimum path. Broadbent et al. [1] presented the first 

concept of conflict-free and shortest-time AGV routing. The 

routing procedure described employs Dijkstra’s shortest path 

algorithm to generate a matrix, which describes the path 

occupation time of vehicles. 

Kim and Tanchoco [9] proposed an algorithm based on 

Dijkstra’s shortest-path method and the concept of time 

windows graph for dynamic routing of AGVs in a 

bidirectional path network. They presented formulas to 

consider the time curves, but this was not considered in their 

results.  

Maza and Castagna [12-13] added a layer of real time 

control to the method proposed by Kim and Tanchoco. In 

[12], they proposed a robust predictive method of routing 

without conflicts, and in [13] they developed two algorithms 

to control the AGV system using a predictive method when 

the system is subject to risks and contingences avoiding 

conflicts in real time manner.  In both, the curve time is not 

mentioned. 

Möhring et al. [14] extended the approaches of Huang, 

Palekar and Kapoor [18] and Kim and Tanchoco [9], and 

presented an algorithm for the problem of routing AGVs 

without conflicts at the time of route computation. In the 

preprocessing step the real-time computation for each 

request consists in the determination of the shortest path 

with time-windows and a following readjustment of these 

time-windows, both is done in polynomial time. By goal-

oriented search, they computed times appropriate for real-

time routing. Extending this concept, Klimm et al. [14] 

presented an efficient algorithm to cope with the problem of 

congestion and detours that also avoids potential deadlock 

situations. The authors in [14-15] did not consider that the 

time window for routes with curves could imply the 

estimated time. Only in [16], Gawrilow et al. presented an 

algorithm to avoid collisions, deadlocks and livelocks 

already at the route computation time, considering the 

physical dimensions of the AGVs to cope with complex 

maneuvers and certain safety aspects that imply particular 

applications.  

Ravizza [17] focused on the online control of AGVs, 

presenting a heuristic approach for task assignment and a 

dynamic polynomial-time sequential routing to guarantee 

deadlock and conflict-free routing of the AGVs in 

undisturbed operations. The articles cited above used 

Dijkstra's Algorithm to calculate the route. 

However, the shortest route is not always the most 

efficient method, ie. the number of maneuvers is larger than 
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the number necessary for the path to be executed. 

In this context, as a solution to this problem, this paper 

presents the development of a routing system that computes 

optimal routes, reducing the amount of unnecessary 

maneuvers, allowing path planning and coordinating the task 

execution of the transport and handling in structured 

environments. It also avoids known and dynamic obstacles 

located in the environment. This approach investigates an 

efficient solution to routing AGVs, as an alternative to the 

various methods developed previously in the literature. We 

also propose a software architecture that considers the local 

and global tasks of the robotic forklifts (e.g.: local 

navigation, obstacle avoidance, and auto-localization). 

Figure 1 presents this architecture. 

In summary, it can be explained as follows: the routing 

system receives information about the required 

transportation tasks from a user interface. Based on these 

data, it selects the minimum quantity of robotic forklifts 

necessary to execute the tasks. Then, based on a topologic 

map of the environment, it calculates the routes for the 

selected forklifts, checking possible collisions, traffic jams, 

etc. After that, it sends the routes to each robotic forklift and 

regularly verifies the progress of all tasks. Taking into 

account the global route, each forklift calculates its own 

local path necessary to reach its goal and monitors its 

surroundings looking for mobile or unexpected obstacles 

during the execution of the planned path. At a certain 

frequency, based on sensor data and an environment map, 

each robotic forklift auto-localization subsystem updates its 

estimated position and informs these data to the local 

navigation subsystems. The local navigation subsystem 

compares the current position with the desired one. If the 

robot deviates from the route, the local navigation subsystem 

sends commands to correct its pose returning the planned 

route. If the local navigation subsystems verify that the route 

has exceeded the limit runtime determined by the routing, it 

communicates it to the routing system, which recalculates 

the route avoiding collisions or deadlocks among other 

robotic forklifts. The algorithm is based on Dijkstra's 

shortest-path method [20] to calculate the routes of the 

robotic forklift adding heuristic functions to optimize the 

quantity of maneuvers, and using the method of routing with 

time-windows [21] to ensure conflict-free routes.  

II. ROUTING ALGORITHM 

The routing algorithm (Fig. 2) was based on the dynamic 

programming approach, which consists in dividing the 

original problem into smaller and simpler problems. This 

approach was very useful to our problem, as it presents a 

sequence of decisions to be taken along a time sequence 

[22]. Therefore, our routing system could be divided into 

seven steps. 

A. Step 1 

The routing system receives a list of the requests as input 

(Table 1 presents a summary of the requested data 

considered in the storage activities). Each request is a task 

defined by a sequence of pairs: loading stations (origin node) 

and unloading stations (destination node). Then, according 

to the requests, the routing system checks the quantity of 

robotic forklifts necessary to execute the tasks, and assigns 

each task to a forklift.  

Several tasks can be attributed to various robotic forklifts, 

but one task cannot be attributed to several robotic forklifts. 

When all tasks have been designated and the quantity of 

 
 

Fig. 1.  Overall System Architecture proposed.[25] 

 
 

Fig. 2.  Proposed Algorithm. 

TABLE I 

REQUEST DATA, INPUTS AND OUTPUTS OF OUR ALGORITHM  

Data Input Output 

Request 

(Orders) 

Quantities, loading 

data / unloading data 

of each product 

Necessary number of forklifts 

and allocation of each request 

in a route for the forklifts  

Loading Location point for 

loading the pallets 

Routes that the forklifts 

should execute to carry the 

pallets 

Unloading  Location point for 

delivering the pallets 

Routes that the forklifts 

should execute to unload the 

pallets 
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robotic forklifts necessary has been determined, these data 

are sent to Step 2 in order to calculate the routes. 

B. Step 2 

In this Step the routing system applies a graph-based 

approach. The graph is obtained by using a topological map 

of the warehouse environment. The route necessary to 

execute each task is composed of two sub-routes. Which 

their one has its own origin and destination nodes. Then 

Dijkstra’s Algorithm is applied to calculate the lowest path 

(relation between distance and total cost) for each robotic 

forklift. The path is a continuous sequence of positions and 

orientations of the robotic forklift (e.g.: the intermediate 

positions and the pre-established positions and orientations 

present in Fig. 3). Aiming to guarantee that collisions 

between robotic forklifts will not occur, the forklift cannot 

use the same arc or node at the same time. Therefore, we 

know when every arc is (or not) occupied by a robotic 

forklift for each calculated sub-route. These data (time 

intervals [ai, bi]) and the time window are saved on a list 

(log file), allowing verifying possible conflicts between 

paths of the robotic forklifts. When the sub-route is a task, a 

value representing the time needed to load or unload the 

pallets is added to the destination node time interval.  

Figure 3 illustrates how algorithm generally defines a 

route. The origin of the first sub-route is the current robotic 

forklift position. Its destination is defined as the task initial 

position (loading node). The second sub-route origin is the 

loading node and its destination is the unloading node. If the 

same robotic forklift has another task, the following sub-

routes are defined in a similar way. If it is closing-time, or 

the robotic forklift needs to recharge its batteries, after the 

last task its final sub-route drives it directly to its depot. 

Thus, we always have the origin and destination nodes and 

also know if a task is (or not) in execution. 

C. Step 3 

In this step the quantity of maneuvers (e.g.: curves) during 

the path route is analyzed by heuristic functions, which 

verify the possibility of optimizing them. If the maneuvers 

are unnecessary, the route is optimized using again the 

Dijkstra’s Algorithm with time-window, taking into account 

the costs previously established. If the resulting total 

execution time of the task is longer than the previously 

calculated (Step 2), the final route is not changed (it means 

that the route cannot be optimized). At the end of this step, if 

the route has been optimized, it will be conflict-free. 

D. Step 4 

In this step, the routes are sent to each robotic forklift and 

the routing system interacts with the other systems 

embedded in the robots (navigation and auto-localization 

systems), as shown in Fig. 4.  

The routing system verifies each task progress regularly. 

Each robotic forklift has its own sensor, auto-localization, 

and local navigation sub-system running independently and 

informing regularly the global path planner about the status 

of each task (position and problem found or task finished). 

Therefore, it is possible to minimize the impact of this local 

problem in the global system that controls the intelligent 

warehouse. Table 2 presents a summary of this procedure. 

E. Step 5 

In this step the algorithm checks the status of the tasks, 

where: 0 - task finished, 1 - rerouting of the task (unexpected 

collisions or exceed time), and 2 - call operator and assign 

tasks of this forklift to others.  

If the status is equal 1 to, it is necessary to recalculate the 

sub-route (Here, the use of sub-routes is very useful as, only 

 
 

Fig. 3.  Illustration of route definition. A robotic forklift will execute a 

task (go to Shelf A- 01, load a pallet and unload it at Charging Platform 

F). After this task, it will return to its depot. The first (1) and the second 

(2) sub-routes represent the task execution. The third one (3) represents 

the robotic forklift returning to its depot. 

TABLE II 

REQUEST DATA, INPUTS AND OUTPUTS OF OUR ALGORITHM  

Data Input Output 

Problems 

in route 

execution 

Route cannot be 

concluded. 
Inform position and list of 

the problems found 

(unexpected collisions, 

exceeded time) or call 

operator. 

   

 

 
Fig. 4.  Interaction of the routing system with navigation, control, and 

localizations systems. 
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the sub-route is corrupted). Basically the algorithm verifies 

which robotic forklift presents conflicts and its location (arc 

or node – see Fig. 5). The reroute process is carried out in 

Step 6. 

F. Step 6 

Now, the corrupted sub-route is eliminated and the arc 

where the conflict occurred is blocked. Then, the sub-routes 

of the robotic forklifts that caused the conflict are 

recalculated (Fig. 6).  

To recalculate this sub-route again, the algorithm returns 

to steps 2 and 3, the origin node receive the position where 

forklift is and the destination node is the same for this sub-

task. These new sub-routes are called conflict-free sub-

routes. If after these conflict-free sub-routes there are other 

sub-routes in the forklift schedule, then it is necessary to 

verify the conflict-free final time in the destination node. If it 

differs from the previously calculated (Step 2), then it is 

necessary to readjust the time windows of this forklift 

checking if it may cause other conflicts. For instance, let us 

assume that the robotic forklift #1 in Fig. 5 has more sub-

routes scheduled, after its conflict-free sub-route (Fig. 7). 

Therefore, it is necessary to readjust the time windows of the 

subsequent sub-routes by checking the list of available time 

windows. Then, the algorithm verifies again the presence of 

conflicts in the route, due to the readjustment of the time 

windows. If there is any conflict, it returns to the beginning 

of this step. 

G. Step 7 

Finally, the algorithm verifies if there are more tasks to be 

executed. If so, it returns to its beginning (step 1). The 

objective of this step is to verify and validate the execution 

time of the tasks attributed versus position of the robotic 

forklifts. 

III. INTERFACE  

In this work, a graphic interface allows the routing 

operation to be controlled by an operator, through Qt Creator 

4 software [23] and a simulated virtual environment in the 

Player/Stage developed in previous works [24]. Both were 

implemented in Linux Operating System. 

The graphic interface (Fig. 8) was developed to perform 

the communication between the user and the routing system 

(including all system algorithms). It also allowed the 

configuration of both routing system and simulation 

environment at a higher level (Fig. 9), guaranteeing the 

functionality of the routing operation and returning 

information concerning the process performance in a simple 

and visual way. 

The interface allows the operator to schedule processes of 

robotic forklifts, setting time, data, quantity of pallets 

involved, as well as origin and destination, and the quantity 

of mobilized forklifts. With such information, the operator 

 
Fig. 5.  Illustration of two examples of collision between the robotic 

forklifts #1 and #2. In (a) a collision in the arc, in (b) in the node. 

 
Fig. 6.  Result of the rerouting process for the example presented in 

Fig. 5-b. 

 
Fig. 8.  Graphic Interface 

 
Fig. 7.  Sub-routes of the robotic forklift #1. 
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can simulate the process. In order to do this, it is possible to 

configure the simulation environment in the most 

appropriate and realistic way, providing drivers for the 

available sensors and the bi-dimensional plan of the modeled 

warehouse. Thus, the operator can simulate and evaluate 

with a good accuracy the time and effectiveness of the 

process without the mobilization of real robotic forklifts. 

IV. RESULTS 

As previously mentioned, this work used a local 

navigation and auto-localization systems in order to obtain 

more realistic simulations. The routing system uses the A* 

algorithm in the local path planning, and applies the 

Extended Kalman Filter (EKF) algorithm for the auto-

localization for each robotic forklift [24][25]. The proposed 

algorithm is based on Dijkstra's shortest-path method to 

calculate the routes of the robotic forklift adding heuristic 

functions to optimize the quantity of maneuvers, and using 

the method of routing with time-windows to ensure conflict-

free routes. Using heuristic functions, it was possible to 

verify the number of unnecessary curves and make a route 

optimization reducing the amount of maneuvers to be 

performed and thus increasing the mobility of the robotic 

forklift. It is important to emphasize that the optimized route 

do not exceeds the total cost previously established.  

In order to verify the performance of our algorithms, 

several simulations were carried out using a virtual 

warehouse (50x30m) and the Player/Stage Simulator. In the 

simulation 6 robotic forklifts working at the same time in 

this warehouse were considered (at this moment we did not 

consider here unknown obstacles like people walking or 

other vehicles moving in the warehouse). In order to 

simplify the implementation, we selected in the Player/Stage 

library the Pionner mobile robot to represent our robotic 

forklifts. Maximum cruiser speeds of 1m/s and 5°/s were 

applied to all robots. The algorithm could solve the conflicts 

and return the optimized routes. Figure10 shows the 

simulations of the tasks attributed for 6 robotic forklifts. 

This test would have several collisions that can be observed 

in Fig. 10-a (arrow). Firstly, the deadlock between the 

robotic forklifts #4 (red) and #5 (yellow) is detected. Due to 

this deadlock, a new deadlock also involving the robotic 

forklift #6 (lemon) occurs. The collisions happened because 

the robotic forklift #4 needs to occupy the same arc at the 

same time that robotic forklifts #5 and #6. Unfortunately, as 

we highlighted before, if the Router did not verify all sub-

routes after the first corrupted one detected, more conflicts 

may occur. In this case, a new deadlock between the robotic 

forklifts #6 (lemon) and #1 (purple). Figure 10-b presents 

the proposed algorithm. One may verify that the conflicts 

identified in Fig. 10-a were eliminated, the final paths 

provided by the routing algorithm were collision-free and 

avoided traffic jams. It also shows in detail the optimizations 

performed by the Routing System.  

In this scenario, each robotic forklift calculates the 

trajectory to be executed considering the route sent by the 

routing system (Fig. 11). Each forklift receives a safety time 

for the minimum path between two nodes, them navigation 

 
Fig. 10.  Comparison between shortest path method and optimized 

routes of the robotic forklift #3 (grey) and forklift #2(green). In (a) the 

route marked with an X represents the maneuver that the robotic 

forklifts perform using shortest path method; and in (b) the routes 

marked with circles represent the maneuvers that the robotic forklifts 

did using the route optimized by our algorithm. 

 
Fig. 9.  Graphic Interface for the simulated virtual environment. 

 
Fig. 11.  Illustration of route informed for local planner. The routing 

system sends the each two points (e. g. forklift position and 

Intermediary position) the safety time that the local planner has to 

calculate the path planning. 

2m 

2m 
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system can fix both the speed and trajectory to execute the 

path. The local planner applies time windows to calculate 

the safe trajectory. In case of disturbances that divert the 

robot from its planned trajectory, the local planner tries to 

run the route within the stipulated time, e.g., increasing the 

speed. If the time is exceeded, the robot sends an error log to 

the routing system describing the problem found during the 

route. 

V. CONCLUSIONS 

Firstly, we described the most important works found in 

literature that focus on routing systems for AGVs. Next, we 

presented the approach used to develop our Routing system. 

It is able to solve traffic jams and collisions. It also 

guarantees optimized routes before sending the final paths to 

the robotic forklifts. It also verifies the progress of all tasks. 

When a problem occurs, the routing system can change the 

tasks priorities, routes, etc. to avoid new conflicts. In order 

to verify the algorithm’s performance, the robotic forklifts 

were tested executing tasks that simulate the load and unload 

of goods using the interface and the virtual environment in 

the Player/Stage software. The use of the interface was very 

interesting because it allowed us to control the process 

simulation at a higher level. Therefore, this program can be 

used directly in industries at future.  

The A* algorithm was a simple way to control the robot 

maneuvers, and the EKF was sufficient to avoid the position 

error propagation. Both algorithms were implemented in C. 

As a result, we could solve many faults and refine the 

algorithms before embedding them in real robots. We also 

plan some improvements on the algorithm, for instance, to 

refine the routing task planner and to take into account more 

realistic parameters during the simulations (e.g.: velocity 

changes while maneuvering, load and unload times, etc.). It 

is important to emphasize that in the current version, the 

algorithm assigns the time for each path according to the 

distance, maneuvers and loading and unloading of pallets. 

The robotic forklift speed during the path is determined by 

the local planner, which checks the distance to achieve the 

goal and determines the speed required for the robotic 

forklift to arrive there in time. One limitation of the 

algorithm is that collisions are always solved by finding a 

new route. A possible solution would be the application of 

stoppages to one of the forklifts during a certain time 

interval, or the reduction of its speed. Both options will be 

investigated in future. At this moment our group is finishing 

the design and construction of mini-mobile robots and a 1:5 

scale warehouse to test experimentally our algorithms. 
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Coordinating the motion of multiple AGVs in automatic warehouses

Roberto Olmi, Cristian Secchi and Cesare Fantuzzi

Abstract— In this paper an algorithm for planning a coordi-
nated motion of a fleet of Autonomous Guided Vehicles (AGVs)
delivering goods in an automatic warehouse is proposed. The
AGVs travel along a common segmented layout and a path
is assigned to each robot by a mission planner. Coordination
diagrams are used for representing possible collisions among
the robots and a novel algorithm for efficiently determining a
coordinated motion of the fleet is proposed. The coordination
approach proposed in the paper is validated through experi-
ments on real plants layouts. We present an example in which
the coordinated motion of 10 vehicles is computed in only 12.4
sec. on a common PC.

I. INTRODUCTION

Automated guided vehicles (AGVs) are used more and
more in industrial plants and warehouses for transporting
goods. In these applications, a central issue is how to plan the
motion of the AGVs in order to minimize the delivery time
while avoiding collisions and deadlocks. The work presented
in this paper is made in cooperation with a company produc-
ing AGVs for transporting goods in warehouses. The robots
are controlled through a centralized architecture. Given a
warehouse, a roadmap along which the AGVs can move is
designed. The central system assigns to each AGV a mission,
namely a path on the roadmap, that the robot has to track.
Our goal is to provide a motion coordination algorithm which
is efficient and that avoids collisions and deadlocks between
robots.

The problem of coordinating the motion of a fleet of
robots with assigned paths has already been tackled in several
works. In [1] a mathematical programming formulation in
which the task completion time is taken as objective function
and where dynamic constraints are considered is given. In
many applications, however, considering the average time-to-
goal as objective function would be more appropriate since
this allows minimize the number of vehicles required to serve
a given plant ([2]). Some other strategies apply the so called
coordination diagram (CD) [3] in order to map the coordi-
nation problem into a path planning problem. Given a fleet
of robots to be coordinated along assigned paths, the CD is a
representation of all configurations of the fleet where mutual
collisions might occur. A path through the CD, indicated
as coordination path, defines a coordinated motion for the
robots. In [4] we have presented an incremental coordination
algorithm based on the CD. The algorithm determines the
coordination action step by step without computing any

Authors are with the Department of Sciences and Methods of Engineer-
ing, University of Modena and Reggio Emilia, via G. Amendola 2, Morselli
building, Reggio Emilia I-42122 Italy

E-mail: {davide.ronzoni, roberto.olmi, cristian.secchi,
cesare.fantuzzi}@unimore.it

preplanning for the coordination. This approach is indicated
when a lot of unexpected events could prevent some AGVs
from performing the preplanned action. Other approaches
try to plan a coordination path by means of standard search
algorithms. For an introduction to this topic see [5]. In [6]
the cylindrical structure of the CD is exploited in order to
give an implicit cell decomposition of the diagram. Then
the A* algorithm is applied to find a coordination path. A
distributed approach is presented in [7]. In this case the CD is
partitioned into a regular grid over which the D* algorithm
searches for a coordination path. However, by minimizing
the length of the coordination path, the obtained solution
does not minimize the average time-to-goal. An algorithm
that minimizes the average time-to-goal is presented in [8]
where the optimal coordination path is found by applying
the dynamic programming principles.
These techniques however require the CD to be partitioned
into a grid in which the search algorithm is used in order to
find a coordination path. At each iteration step the number of
grid elements explored by the algorithm can be exponential
in the number of vehicles. To avoid this problem the algo-
rithm proposed in [6] explores only along Manhattan paths,
but then a smoothing technique is applied over the output
path. Moreover the partition of the entire CD requires an
enormous number of cells. As far as the problem instance is
simple (i.e. the obstacle within the CD are small and sparsely
distributed), the algorithm explores a small subset of cells.
Differently the computation time will grow very quickly.

In this paper we propose a new search strategy that
explores the CD by incrementally expanding a set of co-
ordination paths. Starting from a null length path, at each
iteration step the algorithm selects a path to be extended.
This operation generates new paths that are identical to
the extended one except for the last added segment. The
exploration continues until an optimal path, among all the
possible paths that can be explored by the algorithm, is
found.
The main feature of our algorithm is that it drastically re-
duces the directions to be evaluated by explicitly considering
the cylindrical structure of the CD. The set of directions used
to extend each path is computed by considering two things:
the direction of the last segment of the path and the position
of the last point of the path compared to the obstacles. The
directions will be generated by taking the last direction of
the path and modifying only the components that are relevant
in order to avoid the obstacles. The second contribution of
the paper is the definition of an heuristic estimate of the
cost function which takes into account the number of times
that a vehicle has to stop and start its motion during the
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coordinated motion. This brings two benefits. The first one
is that we define a trade-off between time optimality and
smoothness of the motion of each vehicle. The second, but
more important, benefit is that the number of explored states
is further reduced thanks to the fact that the algorithm tends
to extend only the smoother paths.
The procedure used for the expansion of a path is similar to
that reported in [9] where an exact algorithm for computing
Pareto optima paths is given. The input for this algorithm
is a collision-free path; the output is the Pareto optimal
path homotopic to the input. However the output path is
only guaranteed to be a local minimum of the cost function
considered. The proposed algorithm does not focus on a
particular homotopy class but it searches among all possible
homotopy classes.
In order to prove the efficiency of the proposed algorithm
an example is shown in which 10 vehicles are coordinated
on a roadmap designed to serve a real industrial plant. The
coordination has been computed in only 12.4 sec. on a
common PC.
The paper is organized as follows: in Sec. II a formal
definition of the problem is reported. In Sec. III we present
the search algorithm. In Sec. IV the heuristic cost function is
defined. In Sec. V an experiment on a real plant is presented.
Finally, in Sec. VI some conclusions are drawn and some
future work is addressed.

II. OVERVIEW OF THE PROBLEM

A. Coordination Diagram

In the application that we are considering, a centralized
planning system plans a set of missions to be executed by
the AGVs. We consider N AGVs that are moving in the same
environment and that share the same configuration space
C (e.g. SE(2)). The path of each vehicle Ai is computed
without considering the presence of other robots and it can
be represented as a continuous mapping πi : si → C. The
scalar parameter si ∈ [0, Ti] is the time that the vehicle Ai

would take to reach the position πi(si) considering that it
travels with a given nominal velocity profile vi(si).
Our coordination strategy is based on the concept of coordi-
nation diagram (CD). Given N paths πi(·) the CD is given
by S = [0, T1] × · · · × [0, TN ]. A point s = (s1, . . . , sN )
within the CD represents a possible configuration of the
robots along their paths. We denote as sI = (0, . . . , 0) ∈
S the initial configuration of the fleet and with sG =
(T1, . . . , TN ) the goal configuration. For each pair of paths,
a collision region is defined as:

Xcoll
ij = {(s1, . . . , sN ) ∈ S |A(πi(si)) ∩ A(πj(sj)) �= ∅}

(1)
This region defines all the possible configurations of the fleet
such that two vehicles collide moving along paths πi and πj .
Since the collision region depends only on the configuration
of two robots, this region can be completely characterized
by its 2D projection onto the (si, sj) plane of the CD (that
we will denote shortly with CDij).
A coordination path is a continuous map γ : t → S where

si

sj

Ti

Tj

r1

r2

r3

r4

r5

r6

r7

Collision subregions

Forbidden regions

Fig. 1. Two collision subregions and the relative forbidden regions.

t ∈ [0, tend] is the time, that defines a coordinated motion of
the robots along their predefined paths. A path that avoids
all collision regions within the CD is said to be collision-
free. A possible solution to the coordination problem is to
find a collision-free path with end points γ(0) = sI and
γ(tend) = sG.
For many industrial applications (e.g. AGVs systems) the
paths of the robots are constrained to a specified roadmap.
In this case a technique for efficiently computing the CD is
presented in [4]. This technique gives a grid representation
of each plane of the CD.
The motion of the vehicles is computed by searching for a
path within the CD which avoids all the collisions among
vehicles. Since the collisions depend only on the configura-
tions of the pairs of vehicles, such a path can be found by
considering just all the planes CDij of the CD.
Note that a collision region Xcoll

ij can be composed of
many disjoint subregions. The proposed algorithm exploits
an explicit representation of the CD that is obtained by
approximating each subregion with a convex polygonal re-
gion as shown in Fig. 1. The polygon corresponds to the
region enclosed by a set of lines: two horizontal (r1 and r5),
two vertical (r2 and r6), two parallel to the bisector of the
plane (r3 and r4) and one orthogonal to the bisector of the
plane (r7); all tangent to the obstacle and non coincident
with each other. We refer to this polygon as forbidden
region. This approximation is justified by the observation that
frequently, in AGV application, the collision regions have a
strip shape ([4]). Thanks to this definition a coordination
path that avoids all the forbidden regions is also collision-
free. The algorithm that we propose finds a collision-free
path by efficiently exploiting the explicit representation of
the forbidden regions.

B. Problem formulation

The collision-free coordination problem requires to define
a coordination path γ : [0, tend] �→ S whose components
si(t) define a motion plan for each vehicle Ai such that all
the paths are completed (i.e. γ(tend) = sG, tend <∞) with-
out mutual collisions. Our goal is to solve the coordination
problem problem by seeking to minimize the sum of the
mission time of all vehicles. We consider that each vehicle
can not backtrack along its path and that, at each position si,
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the robots are able to switch instantaneously between their
nominal speed vi(si) and halting. Therefore the motion of a
vehicle can be described using only a binary variable and the
coordination paths are piecewise linear curves. The direction
of each linear segment of γ(t) can be defined by a vector
u = (u1, . . . , uN ) where ui ∈ {0, 1} for i = 1, . . . , N .
Each variation of the direction u of γ(t) corresponds to an
instantaneous change of the motion of some vehicles. We
denote with ni

acc the number of times that the component
ui switches its value along the path γ(t). In other words,
ni
acc corresponds to the number of times that the vehicle Ai

changes its speed while executing the coordinated motion
γ(t). Given a path γ(t) with end points at sI = (0, . . . , 0)
and sG = (T1, . . . , TN ), we denote as t∗i the time in which
the vehicle Ai reaches its destination (i.e. si(t∗i ) = Ti). We
propose this cost function:

C(γ) =
N∑
i=1

(t∗i + ni
acc ·Kacc) (2)

where Kacc is a parameter that is used to penalize the
paths that require many vehicles to be stopped during the
execution of their path. Since the measure of t∗i is computed
without considering the vehicle dynamics, Kacc can be used
to approximately take into account the delay accumulated
by the vehicles each time that a component of u switches its
value (considering the same delay for a start or a stoppage).

III. COORDINATION PATH SEARCH

In this section we give an heuristic algorithm for the
computation of a near-optimal solution to the coordination
problem. The approach consist of building a set of piecewise
linear coordination paths by iterative expansions. The algo-
rithm terminates when the best path of the set is better than
all those that can be generated. At each iteration step a path
is selected from the set and one or more paths are generated
by concatenating it with a set of linear segments (for each
segment a new path is generated). These segments will be
referred as actions since they represent a coordinated motion
of the fleet from a configuration to another. This process
induces a hierarchical structure over the set of paths such
that each path can be defined as an extension of another
one.

The extension of a path is based on the explicit represen-
tation of the CD obtained by defining the forbidden regions.
For each forbidden region a set of segments, called critical
segments, can be defined. Given a plane CDij , the set of
critical segments associated with the forbidden regions of
this plane is composed by (see Fig. 2):

• all the boundary edges of the forbidden region but the
one coincident with r7.

• two segments coincident with r3 and r4 outgoing from
the boundary of the forbidden region towards the axes
of the plane. These are interrupted when they encounter
another forbidden region.

• two segments coincident with r1 and r2 from the for-
bidden region towards r3 and r4. These are terminated
when they encounter another forbidden region.

si

sj

Ti

Tj

Critical segments

Fig. 2. Critical segments for two forbidden regions

• two segments coincident with the rays si = Ti and
sj = Tj , from sG towards the axes of the plane.

Loosely speaking the subset of critical segments defined in
CDij represents some configurations that are critical for the
coordination of the vehicles Ai and Aj . This means that
when a coordination path γ(t) reaches a critical segment on
some CDij , the different alternatives for the coordination of
Ai and Aj should be explored.

A coordination path γ(t) is represented as an object η
characterized by some properties (indicated by using the
syntax “η.Property”). The properties are:

• η.s denotes the ending point of the path
• η.P : indicates the parent path
• η.u direction of the last action
• η.d time duration of the last action
• η.CC coordination components
• η.ES extension stage

Every path has the starting point at sI ∈ S while the ending
point is defined by the property η.s ∈ S . A path has zero
or more children paths. The children represent the paths
that are generated, during one iteration of the algorithm, by
extending a given path, called the parent path (η.P ). The only
exception is the root path, denoted as ηR, for which no parent
is defined. The root path is the null length path with which
the algorithm is initialized ηR.s = sI . The extension of a path
η, generates a new path η′ that is obtained by adding to η an
action connecting the point η.s to a point s′ ∈ S . The new
path η′ is the piecewise linear curve connecting the sequence
of points η0.s, . . . , ηk.s, ηk+1.s where η0 = ηR, ηk = η,
ηk+1 = η′ and ηi.P = ηi−1 for every i ∈ [1, k + 1]. The
point s′ is the nearest point at which a ray outgoing from the
point η.s reaches a critical segment in some CDij . In Fig. 3
an example of the paths generated after two expansion steps
within a two dimensional CD is reported. More formally:

s′ = η.s + dss′u (3)

where u = (u1, . . . uN ), ui ∈ {0, 1}, is the vector that
defines the direction of the action with which the path is
extended. This vector defines the vehicles of the fleet that
have to advance in order to reach the new configuration s′

from η.s. Each component ui defines whether a vehicle must
be moving or not. The scalar value dss′ > 0 represents the
time required by the fleet to reach the new configuration
s′ considering that each vehicle is traveling at its nominal
velocity. This parameter is stored as a property of the path,
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denoted η′.d, since it will be used in the next section for the
computation of the cost function. A path η can be extended
by using a set of directions u. For each direction in which the
path is extended a new path η′ is added as a child of η. The
direction u along which the new path is created is stored in
η′.u. The i-th component of η.u is referred as (η.u)i. All the
pairs of axes (i, j) such that (η′.u)i = 1 or (η′.u)j = 1 and
where the new point η′.s is coincident with a critical segment
defined in CDij are called coordination components. These
axes are stored in η′.CC . Note that the point η′.s may
lie on a critical segment in more than one plane, thus the
cardinality of set is 2 ≤ |η′.CC | ≤ N . The set of directions
u along which a path can be extended is denoted with Uη .
The definition of Uη takes into account the direction η.u of
the last action of η and the set of coordination components
η.CC . Instead of all the 2N possible directions, the set Uη

contains only the directions defined by substituting in η.u
any possible assignment of the components indicated by
η.CC . Since, generally, |η.CC | is only a fraction of N , this
definition of Uη leads to a drastic reduction of the search
directions. When the point η.s is located on the boundary
of some forbidden region, all directions in Uη that enter the
forbidden region must be eliminated in order to ensure that
the paths extended are all collision free. Moreover, when a
path is chosen to be extended the algorithm does not consider
all the directions in Uη . The extension of a path is done in
different stages, called extension stages. This is obtained by
defining a partition of Uη so that at each extension stage
a different subset Ũη ⊆ Uη is used for the extension. The
partition is defined by considering the sum of the components
ui of the coordination components η.CC . The extension
stage of a given path, denoted as η.ES , indicates which
subset of directions must be considered for the next extension
of the path. Formally, the subset Ũη is defined as:

Ũη =

⎧⎨
⎩u ∈ Uη

∣∣∣∣∣∣
∑

i∈η.CC

ui = |η.CC | − η.ES

⎫⎬
⎭ (4)

where |·| denotes the cardinality of the set. Note that η.ES ∈
{0, 1, . . . , |η.CC |} thus the number of subsets defined by the
partition of Uη is equal to |η.CC |+ 1.

The algorithm is summarized in Alg. 1. The paths that
are created at any iteration step are inserted into an ordered
queue Q. The elements of Q are sorted in ascending order of
the cost function defined in the next section. At the beginning
of the algorithm Q is initialized with the root path ηR (lines
1-2 in Alg. 1). The algorithm then runs in a while loop (line
4) in which at each step, the first element from Q, denoted
as η∗, is considered for the extension. If η∗.ES = |η∗.CC |,
all the subset of Uη∗ have already been evaluated, the path
η∗ can not be further extended and it is removed from Q
(line 5). The function DirectionSet(η∗) (line 7) returns the
subset Ũη∗ of the directions corresponding to the extension
stage reached by η∗. After that, the extension stage of η∗ is
incremented (line 8). All the directions of Ũη∗ that enter any
forbidden region are removed (line 9). For each direction in
Ũη∗ , a new path (along with all its properties) is computed

s1

s2

T1

T2
sG

ηR

ηa
ηb ηc

Fig. 3. Coordination paths after two expansion steps in a 2D CD.

(lines 11-13). Then the cost function is evaluated so that the
new path can be inserted in the correct position within the
ordered queue Q (lines 14-15). When η∗.s ≡ sG the search
terminates and the path represented by η∗ is the optimal path
among all those that can be explored by the algorithm. This
path is then used to specify the coordinated motion of the
fleet.

Algorithm 1 Coordination path search
Require: Critical segments R and forbidden regions F

1: ηR.s = sI ; ηR.P = ∅; ηR.u = (0, . . . , 0); ηR.d = 0;
ηR.CC = {1, . . . , N}; ηR.ES = 0

2: Q = ηR
3: η∗ = GetFirst(Q)
4: while η∗.s �= sG do
5: if η∗.ES = |η∗.CC | then Q.Remove(η∗)
6: else
7: Ũη∗ = DirectionSet(η∗)
8: η∗.ES = η∗.ES + 1
9: Ũη∗ = RemoveCollDir(Ũη∗ , η∗.s,F)

10: for all u ∈ Ũ do
11: η′.s = s′ = NewPoint(η∗.s,u,R)
12: η′.P = η∗; η′.u = u; η′.d = dss′ ; η′.ES = 0
13: η′.CC = FindCoordAxes(s′,u,R)
14: Evaluate f(η′) � See Sec. IV
15: Q← η′

16: end for
17: end if
18: η∗ = GetFirst(Q)
19: end while

IV. HEURISTIC COST FUNCTION

In this section we describe the function used by the
algorithm to determine the order in which the paths are
extended. Thanks to this function the algorithm extends first
the paths that are more likely to optimize the objective
function defined in (2). When the algorithm terminates the
best path among all those that can be created is returned.

Like for the A* algorithm this function, denoted f(η), is
defined as the sum of two terms. The first, denoted g(η), is
directly related to the shape of the path while the second,
denoted h(η), is an heuristic underestimate of the minimum
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cost of the remaining path to the goal point sG ∈ S . Formally
the cost function is defined by this expression:

f(η) = g(η) + h(η) (5)

Recall that each path can be described as a sequence of
actions (i.e. linear segments). Each new path is obtained from
a previous one by adding a new action. Given a path η′ the
value of g(η′) is computed by adding to the cost of its parent
path η = η′.P the cost of the new action:

g(η′) = g(η) + c(η, η′), g(ηR) = 0 (6)

where c(η, η′) is the additional cost of the new added action.
This cost is defined as:

c(η, η′) = Kacc ·Nacc(η, η
′) +Nrun(η) · η′.d (7)

where, in the first term, Nacc(η, η
′) is the number of vehicles

that have to change their motion at the configuration η.s
while executing the coordination path η′. This quantity
corresponds to the number of non null components of the
vector η′.u−η.u. In the second term, Nrun(η) is the number
of vehicles that have not reached the goal at the configuration
η′.s. The value η′.d (defined in Sec. III) represents the time
required by the fleet to reach the configuration η′.s from
the configuration η.s. The parameter Kacc is the additional
cost accumulated each time that a vehicle has to change its
motion (Sec. II-B). By inflating this value, the costs of the
paths that require many changes of velocity increase. Thus
the paths that are extended are mainly those that require less
changes of velocity due to their lower cost. This focusing
of the extension process leads to a reduction of the explored
states and thus a reduction of the computational burden.

Thus, the paths that imply less changes of velocities are
extended before the others due to their lower cost.

The heuristic estimation of the cost-to-go must be an
underestimate of the actual cost in order to obtain an optimal
plan ([5]). The estimate of this cost is defined as:

h(η) =
N∑
i=1

(Ti − η.si) +Kacc · S(η) + 2Kacc · P (η) (8)

The first term is the sum of the times that each of the vehicles
takes to reach the goal position if the collisions with other
vehicles are ignored. The last two terms are an underestimate
of the amount of costs that will be accumulated each time
that a vehicle will have to stop or start its motion. In
particular S(η) is the number of vehicles Ai such that
(η.u)i = 0 and (η.s)i �= Ti. These vehicles will have to
start their motion in order to reach their goal. The term
P (η) represents the minimum number of vehicles that, from
the configuration η.s, will have to stop before reaching the
goal. This term is multiplied by two because each time that
a vehicle has to stop then it will also have to restart its
motion. Consider for example the point ηa.s in Fig. 3. From
this configuration the vehicles A1 and A2 will approach a
collision if they advance simultaneously. Thus if both are
advancing it can be stated that one of the two vehicles will
have to stop (thus P (ηa) = 1). The value of P (η) can be

computed by solving a binary integer program (BIP). We
denote with z1, . . . , zN the variables of the program. The
value zi = 1 means that the vehicle Ai will have to give
the way to another vehicle (thus ui will have to be set to 0)
while zi = 0 means that Ai is stopped or it does not have
to give the way to other vehicles. The objective function is∑N

i=1 zi, subject to the constrains defined as follows. For
each plane CDij such that (η.u)i = 1 and (η.u)j = 1,
if the projection of η.s onto CDij is between the rays r3,
r4, r5, r6 and r7 (Fig. 1), the constraint zi + zj ≥ 1
is imposed. This constraint means that, since the pair of
vehicles is approaching a collision, at least one of the two
vehicles will have to stop. The minimization of the objective
function under these constraints gives an underestimate of
the number vehicles that will have to stop in order to avoid
all forbidden regions. A solver for the BIP can be found
within the Optimization Toolbox of MATLAB.
Given the solution z∗1 , . . . , z

∗
N , P (η) is computed as:

P (η) =

N∑
i=1

z∗i (9)

Consider the example reported in Fig. 3 for two vehicles
in which ηR.s = (0, 0), ηa.s = (10, 10), ηb.s = (0, 5), ηc.s =
(30, 0) and sG = (60, 40). We report the computation of the
cost function for Kacc = 10. By applying (5)-(8):

• For ηR: g(ηR) = 0, h(ηR) = 120, thus f(ηR) =
120. But this path will not further extended because
ηR.ES = |ηR.CC |, thus it will be removed from Q.

• For ηa: g(ηa) = 40, h(ηa) = 100, thus f(ηa) = 140.
• For ηb: g(ηb) = 20, h(ηb) = 105, thus f(ηb) = 125.
• For ηc: g(ηc) = 70, h(ηc) = 80, thus f(ηc) = 150.

Thus at the next step the algorithm will extend path ηb.

V. EXPERIMENTS

We have tested our algorithm running a simulation with
up to 10 robots in MATLAB on a Intel P8400 2.26 GHz
(see Fig. 4). The total time required by the algorithm in
order to compute the coordination path is 12.4 seconds.
The vehicles are supposed to move on a roadmap used
in a real industrial plant. In its real implementation this
roadmap is composed both of curvilinear an straight line
segments. In order to simplify the simulation program, all
the curvilinear segments have been replaced by straight line
segments. However, this is only a graphical approximation
since the underlying coordination algorithm considers the
effective trajectory of the vehicles. The nominal speed with
which a vehicle has to cover each segment is defined during
the roadmap design and it can be different according to the
type of vehicle and the load that it carries. The missions that
are assigned to each vehicle are representative of the real
working condition of the system. Each mission is defined
by four way-points: initial position, pick-up position, drop
off position and rest position. In Fig. 4 the test is illustrated.
The initial, pick-up, drop-of and rest positions of the vehicles
are marked with S1, . . . , S10, P1, . . . , P10, D1, . . . , D10,
H1, . . . , H10 respectively. See also the attached video of
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TABLE I

TIMING FOR EACH VEHICLE.

Vehicle 1 2 3 4 5 6 7 8 9 10

Tadvance [s] 144.2 118.6 115.2 127 73.4 151 123 107 121.6 136.8
Tstop [s] 26.8 0 1.6 0 17 0 0 1.4 0 0
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Fig. 4. A snapshot of the simulation with 10 vehicle running in a real
industrial plant.

the simulation test. The timings of each vehicle are reported
in Tab. I. For each vehicle the total time of advancement
(Tadvance) and the waiting time (Tstop) are reported. For
the proposed experiment we have adopted Kacc = 10 so
that the algorithm extends only the coordination paths that
require few accelerations for the vehicles. In particular the
solution found will produce a coordinated motion in which
all vehicles avoid collisions by stopping their motion only
once. Although this could produce a suboptimal solution,
inflating Kacc allows a substantial reduction of the com-
putation times. In Fig. 5 the planes CDij , relative to an
experiment conducted with 5 vehicles are displayed. For each
plane, the projections of the collision-free coordination path
are displayed along with the set of paths explored by the
algorithm.

VI. CONCLUSIONS AND FUTURE WORK

Future work aims at determining the upper bounds of
the computational complexity of the proposed algorithm and
studying the relationship between this upper bound and the

Fig. 5. Projections of the best coordination path within CDij (red line)
and the paths explored by the algorithm (cyan lines). Axis units in 10−1s

parameter Kacc. In real world planning problems, time for
deliberation is often limited. Future work aims at modifying
the algorithm so that it can find a feasible solution quickly
and then refine it while vehicles are in motion. We will
also study the optimality of the proposed algorithm. This
will require to demonstrate that the set of coordination paths
extended by the algorithm can contain global optimum of
the cost function.
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Abstract— The ArosDyn project aims to develop an embed-
ded software for robust analysis of dynamic scenes in urban
environment during car driving. The software is based on
Bayesian fusion of data from telemetric sensors (lidars) and
visual sensors (stereo camera). The key objective is to process
the dynamic scenes in real time to detect and track multiple
moving objects, in order to estimate and predict risks of
collision while driving.

I. INTRODUCTION

Estimation and prediction of collision risks will be manda-
tory for the next generation of cars. The methods and
software being developed in the framework of the ArosDyn
project provide to monitor the traffic environment by on-
board stereo vision and laser scanners, perform data fusion
from multiple sensors by means of Bayesian Occupancy
Filter (BOF), as well as estimate and predict risks as stochas-
tic variables by using Hidden Markov Models (HMM) and
Gaussian process.

The detection of objects is performed by processing the
telemetric and visual data. The local simultaneous localiza-
tion and mapping (SLAM) algorithm serves for preprocess-
ing the range data from the lidars. The preprocessing of
stereo images results in a disparity map. The probabilistic
models of a lidar and a stereo camera are used. The envi-
ronment is represented by a grid, where each cell contains
the probability distribution of the cell occupancy and the
cell velocity. The data fusion is performed in the BOF with
the probability distributions computed from the real data
from lidars and stereo vision. The fast clustering-tracking
(FCT) algorithm performs clustering of detected objects,
data association and tracking of objects. The collision risk
estimation results in a probability of risks for a periodT
ahead. The visual detection and tracking provide to estimate
the position of objects relative to the reference frame and to
calculate a quality measure of visual tracking.

II. OBSTACLE DETECTION AND TRACKING BY A LIDAR

Perception of the surrounding physical world reliably is
a fundamental requirement of autonomous vehicle systems.
The major prerequisite for a such system is a robust algo-
rithm of object detection and tracking. We developed a lidar-
based moving object detection and tracking scheme. It is
composed of three main modules : (1) BOF for environment
representation, (2) the FCT algorithm for tracking of objects,
and (3) a local SLAM based preprocessing module.

Bayesian Occupancy Filter (BOF)

The BOF operates with a two-dimensional grid represent-
ing the environment. Each cell of the grid contains a prob-
ability distribution of the cell occupancy and a probability
distribution of the cell velocity. Given a set of observations,
the BOF algorithm updates the estimates of the cell occu-
pancy and velocity for each cell in the grid. The BOF model
is described in [1], [2]. At each time step, the probability
distributions of occupancy and velocity of a cell are estimated
through Bayesian inference with our model. The inference
leads to a Bayesian filtering process, as shown in Fig. 1.

Fig. 1: Bayesian filtering in the estimation of occupancy and
velocity distribution in the BOF grid

Fast Clustering-Tracking (FCT) algorithm

Our Fast Clustering-Tracking (FCT) algorithm works at
the level of object representation to track the trajectories
of objects [3]. The FCT algorithm can be roughly divided
into three modules : a clustering module, a data association
module, and a tracking and tracks management module.

The clustering module takes two inputs : the occu-
pancy/velocity grid estimated by the BOF, and the prediction
of the tracker which provides a region of interest (ROI) for
each object being tracked. We then try to extract a cluster
in each ROI and associate it with the corresponding object.
There could be a variety of cluster extracting algorithms,
however, we have found that a simple neighbourhood based
algorithm works efficiently and provides satisfactory results.
The output of this module leads to three possible cases, as
shown in Fig. 2 : (i) no observation, where the object is not
observed in the ROI, (ii) ambiguity free, where one and only
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one cluster is extracted and is implicitly associated with the
given object, and (iii) ambiguity, where the extracted cluster
is associated with multiple objects.

Fig. 2: Cases of the clustering result

In the clustering module, if there exist more than one ROI
of the tracked objects which are overlapped, the extracted
cluster will be associated with multiple targets. This is the
so-called ambiguity data association case. A data association
module is then designed to solve this problem. Assume there
are N targets associated with a single cluster, whereN is a
number we know exactly. The causes of the ambiguity are
further analyzed as twofold : (i) targets are being too close
to each other and the observed cluster is the union of more
than one observations generated byN different real objects,
(ii) N different targets correspond to a single object in the
real world and they should be merged into one.

We employ a re-clustering strategy to the first situation and
a cluster merging strategy to the second one. The objective
of the re-clustering step is to divide the cluster intoN sub-
clusters and associate them with theN objects, respectively.
Because the numberN is known, a natural approach is to
apply a K-means based algorithm [4]. To deal with the
second case, we follow a probabilistic approach. Whenever
an ambiguous associationFi j between two tracksTi andTj is
observed, a random variableSi j is updated which indicates
the probability ofTi and Tj to be parts of a single object
in the real world. The probability valuesP(Fi j | Si j) and
P(Fi j | ¬Si j) are the parameters of algorithm which are
constant with regard toi and j. Similarly, the probability
Pt(Si j |¬Fi j) is updated when no ambiguity betweenTi and
Tj is observed. Then, by thresholding the probabilityPt (Si j),
the decision of merging the tracksTi andTj can be made by
calculating the Mahalanobis distance between them.

Now we arrive at a set of reports which are associated
with the objects being tracked without ambiguity. Then, it
is straightforward to apply a general tracks management
algorithm to create and delete the tracks, and use a Kalman
filter [5] to update their states.

Local SLAM based preprocessing module

In the outdoor environment, a large part of the laser im-
pacts comes from the stationary objects, e.g. buildings, trees
and parked vehicles. Because the BOF works in the local
frame, if we use the laser data directly to build the sensor
model for the BOF-FCT framework, the stationary objects

will be detected and tracked which is not our objective.
Therefore, we solve a local SLAM problem and use the map
built on-line to divide the laser impacts into a stationary set
and a moving set. Then, only the laser impacts caused by
moving objects are used to build the sensor model.

We solve the local SLAM problem by using an occupancy
grid map based algorithm [6]. Letm denote the map,
Z0:t = z0, · · · ,zt be the sensor observations wherezi is the
frame of observation at time stepi, U1:t = u1, · · · ,ut denote
the odometry data,X0:t = x0, · · · ,xt be the states of the
vehicle. The objective of a full sequential SLAM algorithm
is to estimate the posteriorP(m,xt |Z0:t ,U1:t ,x0). Though it is
already well formulated, the estimation of this posterior is
not trivial. However, in our application, we are not concerned
with the global precision of the vehicle’s states. Instead of
building a map of a large cyclic environment, we only need to
build a map of a limited area, which moves with the vehicle.
The precision of this map can be guaranteed by the relatively
accurate laser sensor. Thus, it is feasible to apply a maximum
likelihood algorithm rather than a probabilistic algorithm in
this case. By estimating the maximum likelihood map and the
maximum likelihood state at each time step, the local SLAM
problem can be decomposed into a mapping problem and a
localization problem.

To solve the mapping problem, we apply a standard
log-odds filtering scheme. Letl(mi|x0:t ,Z0:t) = P(mi|X0:t ,Z0:t)

P(¬mi|X0:t ,Z0:t)
denote the log-odds value of a cellmi in m. The update
formula can be written as :

l(mi|x0:t ,Z0:t) = l(mi|xt ,Zt )− l(mi)+ l(mi|x0:t−1,Z0:t−1),

where l(mi) is the prior value which is set to 0, and
l(mi|xt ,Zt ) is obtained from the beam-basedinverse sensor
model.

In the localization step, the maximum likelihood state can
be estimated as :

xt = argmax
xt

P(zt |m,x
′

t)P(x
′

t |xt−1,ut).

To balance the processing time and the accuracy, we employ
a sampling based scan matching algorithm in localization.
Given the odometry motion modelP(xt |xt−1,ut), a set of
state samples is generated at each time step. From each state
samplex

′

t , we match the current sensor measurement with the
map. Under the assumption of the independency of beams,
the likelihood probability can be expressed as :

P(zt |m,x
′

t) = ∏
i

P(zt |mi,x
′

t).

Then, the sample with the maximum likelihood probability
is selected as the current state. Although, in theory, this
algorithm may suffer from the local minima problem, our
experimental results show that it works fine with an accurate
laser scanner in an outdoor urban environment.

Given the occupancy grid map and the current state of the
vehicle, the laser impacts generated from stationary object or
moving object can be discriminated by applying a threshold
of occupancy probability. We then use the impacts generated
by moving objects to create the sensor model for the BOF.
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Fig. 3: Results on the CMU dataset

Experimental results

To test the effectiveness of the BOF-FCT framework and
the preprocessing algorithm, we use a laser scanner dataset
available from the Carnegie-Mellon University (CMU) [7].
The CMU dataset was recorded for the vehicle moving in
the urban traffic environment. The maximum detection range
of the laser is about 80 meters, the angular range is from
0◦ to 180◦, the angular resolution is 0.5◦. The odometry
data is also provided. The camera images in this dataset are
only used to demonstrate the scenario. The grid resolution
of the occupancy grid map is 0.2m, and the grid resolution
of the BOF is 0.3m. An example is presented in Fig. 3.
The left of the figure demonstrates the occupancy grid map
view, the right-top shows the BOF view, and the right-bottom
is the camera image view. In the occupancy grid map, the
rectangle represents the host vehicle, the ellipses represent
the mean positions and their covariances of the moving
objects, the trajectories of the ego-vehicle and the targets are
also shown. It can be seen that most typical moving objects,
i.e. cars, buses and pedestrians, are well detected and tracked,
while the stationary objects, e.g. poles, parked vehicles and
buildings on the roadside, are represented by the occupancy
grid map built on-line.

Implementation aspects

The major computational cost of the overall system is
the calculation of the BOF grid. It has been shown in [2]
and [3] that, compared with the expensive computational
cost of the BOF, the cost of the FCT algorithm can be
neglected. Thanks to the grid based algorithm of the BOF
which provides a way to well parallelizing the computation,
we re-implemented it on the GPU. The both versions are
implemented in C++ language without optimization. We
compared the costs of running the BOF on CPU, on a GPU
with 4 multiprocessors (NVidia Quadro FX 1700), and on a
GPU with 30 multiprocessors (NVidia GeForce GTX 280).
The BOF on GPU can greatly reduce the processing time
which guarantees the feasibility of the proposed framework
for real-time applications. In particular, the autonomous
vehicle application which is shown in the previous section
is capable to run at 20Hz.

III. O BSTACLE DETECTION BY STEREO VISION

We extend the BOF framework presented in section II to
the detection of obstacles by means of stereo vision, which
retrieves tri-dimensional data from multiple cameras. We use
a stereoscopic sensor equipped with two cameras in a geo-
metrical configuration called "rectified" and shown in Fig. 4,
where the image planes are assumed to be perfectly parallel
and aligned. In the rectified configuration of the stereoscopic
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Fig. 4: Geometry of the stereoscopic sensor

sensor, a pixel and its correspondant in the second image
are situated on the same image line. Therefore, assuming
a matching is performed, one measures the difference of
abscisses, named the disparity value. This value is inverse
proportional to the distance to the observed object. Thus,
the image coordinates and the disparity value for each pixel
provide a tri-dimensional measurement. By estimating the
disparity value for each pixel of the scene, one can compute
a disparity map, corresponding to a partial tri-dimensional
representation of the scene, as shown in Fig. 5.

Overview of the detection method

The stereo images are used to compute the occupancy
grid. The first stage of the algorithm is to compute tri-
dimensional data from the stereo image pair. The correspond-
ing implementation may be in software, or with the dedicated
hardware (both approaches are considered in ArosDyn). The
occupancy grid is computed from the disparity data. This
requires the definition of a probabilistic sensor model. For
this purpose we apply a novel approach, which deals with
the specific uncertainty of stereo data. The occupancy grid is
then used for obstacle detection in the BOF framework. The
object level representation of the scene is retrieved from the
FCT algorithm. The detection method is explained in [8].

Disparity map computation

To compute a disparity map, we use a local matching
method based on the SAD (Sum of Absolute Differences)
criterion. The corresponding algorithm relies on the double
correlation method [9] used for precise matching over the
road surface. The main objective of this method is to provide
the instant separation between “road” and “obstacle” pixels.

ICRA10 International workshop on Robotics and Intelligent Transportation System 107/142



a

b

c

Fig. 5: a) left image from a stereo camera, b) the correspond-
ing disparity image, c) the corresponding 3D representation

The u-v-disparity representation

Our algorithm uses the u-v-disparity approach described
in [10]. The idea is to perform projections in the disparity
space because this is computationally inexpensive and it
allows us to work with simplified data structures. Indeed,
it is more convenient to work with images than large point
clouds. A significant part of our method uses u-disparity
images. These images are computed by projecting disparity
images along the columns, with accumulation.

User interface

The input is composed of two images at each time step.
The output can be either an occupancy grid for the current

observation, or a list of detected objects, while using the BOF
and the FCT algorithm. The user interface is based on the
Qt library. Users have access to several parameters related
to the fitering of disparity data and to the BOF. The images
being processed can be visualized to better understand the
computation process. The replay capability is based on the
Hugr middleware [11].

Fig. 6: User interface of the software

IV. CONCLUSION

The developed software modules provide to detect and
track multiple moving objects by means of stereo vision and
laser scanners. The next step is to improve our algorithms,
reduce the computation time, and integrate the software
modules for data fusion and risks estimation and prediction
in the traffic environment.
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Real–Time Detection of Moving Obstacles from Mobile Platforms

Chunrong Yuan and Hanspeter A. Mallot

Abstract— In this paper we present a vision–based algorithm
for the detection of moving obstacles in complex and unknown
environments. The goal is to find moving objects from images
captured by a mobile camera navigating together with a
moving platform. One specific feature of our approach is
that it does not need any information of the camera and
hence works without camera calibration. Another advantage
lies in the fact that it integrates motion separation and outlier
detection into one statistical framework. Based on sparse point
correspondences extracted from consecutive frame pairs, scene
points are clustered into different classes by statistical analysis
and modeling of the probability distribution function of the
underlying motion characteristics. Experimental results based
on several real–world video streams demonstrate the efficiency
of our algorithm.

I. INTRODUCTION

Vision–based navigation strategies have been applied for a
number of autonomous systems. Quite a lot of research effort
has been put into camera–based detection of obstacles for the
safe navigation of different robot and vehicle systems. For
an intelligent vehicle to navigate automatically in dynamic
environments, it is critical to provide such a vehicle with the
very ability of avoiding moving obstacles.

For road vehicles, there are many possible solutions in-
cluding the use of camera systems in combination with 3D
range sensors. For aerial vehicles, particularly small–size
UAVs, it is usually not possible to use many sensors due
to weight or upload limit. In some cases, only a single
perspective camera can be used. An example is shown in
Fig. 1 with an AR–100 UAV. We have used this platform for
the development of safe visual navigation system in static
environments [1]. In this work, we would like to advance its
autonomy so that it can handle moving obstacles as well.

While an imaging sensor is moving in a dynamic environ-
ment, the observed image displacements are the results of
two different kinds of motion: One is the self–motion of the
camera and the other is the independent motion of individual
moving objects. Here it is essential to know whether there
exist any moving obstacles and eventually to separate the
object motion from the motion of the camera.

In the literature, different approaches have been proposed
toward solving this problem. Some approaches make explicit
assumptions about or even restrictions on the motion of the
camera or object in the environment. Under the assumption
of constant camera motion, Argyros and Lourakis [2] have

This work was supported by the European Commission for the research
projectµDrones with the contract number FP6-2005-IST-6-045248

C. Yuan and H. A. Mallot are with the Chair of Cognitive Neu-
roscience, University of T̈ubingen, Germany,{chunrong.yuan,
hanspeter.mallot}@uni-tuebingen.de

Fig. 1. The AR–100 UAV.

derived a simple constraint extracted from three frames to de-
tect scene points whose 2D motion changes between frames.
In the work of Clarke and Zisserman [3], it is assumed that
both the camera and the object are just translating. Sawhney
and Ayer [4] proposed a method which can apply to small
camera rotation and scenes with small depth changes. In
the work proposed by Patwardhan et. al. [5], only moderate
camera motion is allowed.

A major difference among the existing approaches lies
in the parametric modeling of the underlying constraint
used for motion detection. One possibility is to use the
2D homography to establish a constraint between a pair of
viewed images [6], [7]. Points whose 2D displacements are
inconsistent with the homography are classified as belonging
to independent motion. The success of such an approach
depends on the existence of a dominant plane (e.g. the ground
plane) in the viewed scene.

Another possibility is to use geometric constraint between
multiple views. The approach proposed by Torr et. al. [8]
uses the trilinear constraint over three views. A multibody
trifocal tensor based on three views is applied by Hartley and
Vidal [9], where the EM (Expectation and Maximization)
algorithm is used to refine the constraints as well as their
support iteratively. In both approaches, the separation process
is only partially automatic. Another inherent problem shared
by the two is their inability to deal with dynamic objects
that are either small or moving at a distance. Under such
circumstances it would be difficult to estimate the parametric
model of independent motion, since not enough scene points
may be detected from dynamic objects.

So far few of the cited work has been extensively evaluated
using different real–world scenarios. With a few exceptions,
one or two examples with a couple of images are used to
validate the proposed approach. Due to various limitations
in the approaches, performance is far from satisfactory.

In this paper, we present a new approach for fast detection
of independent object motion under challenging real–world
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situations. Our approach can be applied for arbitrary video
sequences taken with a general perspective camera. No cam-
era calibration is required. Unlike most current approaches,
where it is already assumed that independent motion exists,it
is in our case possible to differentiate automatically whether
there is independent motion at all. This is integrated in
a general framework which is capable of fully automatic
clustering of the motion of scene points into three different
classes. They are camera motion, object motion and outliers.

We argue that automatic detection of independent motion
requires: (1) Accurate localization of 2D point correspon-
dences in noisy situation. (2) A proper selection of motion
constraint. (3) Automatic determination of the membership
of each detected scene point by taking into account the
probabilistic distribution of the underlying motion charac-
teristics. In section II to IV, we will present our approach
by discussing each of these three aspects respectively. In
section V, experimental results will be shown. In particular,
we evaluate the performance of our approach under various
environmental changes, e.g., strong changes of illumination
in outdoor environment and motion disturbance of non–rigid
background object like swinging leaves of trees.

II. 2D M OTION DETECTION

The goal of 2D motion detection is to find the correspond-
ing scene points between a pair of images. We take a local
approach for the measurement of 2D image displacement and
evolve from the well–known Lucas–Kanade algorithm [10]
into an optimal motion detection approach.

Suppose an image pointp = [x, y]
T is observed at time

step t in image f t. At time step t + 1, a corresponding
point q is observed in imagef t+1. Let’s denote the image
displacement as a 2D vectorv = [u, v]

T, the following
relationship holds:

q = p + v (1)

Let fx and fy be the spatial image gradient, andft the
temporal image derivative, the displacement can be computed
as [10]:

v = G−1b , (2)

with

G =
∑

(x,y)∈w

[

fx
2

fxfy

fxfy fy
2

]

, (3)

and

b = −
∑

(x,y)∈w

[

ftfx

ftfy

]

. (4)

The above solution requires thatG is invertible, which
means that the image should have gradient information in
both x and y direction in the neighborhoodw centered
at point p. For the reason of better performance, a point
selection process should be carried out beforev is calculated.
Because matrixG can be diagonalized as

G = U−1

[

λ1 0
0 λ2

]

U , (5)

whereU is an orthonormal transform, the following criterion
can be used to select pointp from f t:

1) λ1 andλ2 should be big.
2) The ratio of λ1

λ2

should not be too large.

For the purpose of subpixel estimation ofv , we use an
iterative algorithm, updatingft sequentially. We calculateft

as follows:

ft = f

t+1(x + u, y + v) − f

t(x, y) . (6)

The initial value of v is set asv = [u, v]
T

= [0, 0]
T.

To handle large motion, a further strategy is to carry out
the above iterative steps in a pyramidal fashion, beginning
with the smallest scale image and refining the estimate in
consecutive higher scales. This coarse to fine strategy uses
the fact that large image motion in the original images
corresponds to smaller motions in a down–scaled version.

Once a set of point{pi} has been selected from image
f t and a corresponding set of{v i} is calculated, we obtain
automatically a set of point{q i} in f t+1 with q i = pi +v i.
In order to make the estimated 2D displacementsv i more
accurate, we calculate a new set of backward displacement
v̂ i for q i from f t+1 to f t. As a result we get a backward
projected point̂p with

p̂i = q i + v̂ i (7)

An accurately calculated displacementv i should satisfy

ei = ‖pi − p̂i‖ = 0 . (8)

For this reason, only those points whoseei < 0.1 pixel will
be kept. In this sense, we have achieved an optimal data
set {(pi, q i)} with high accuracy of point correspondences
betweenf t and f t+1 .

III. M OTION CONSTRAINT

While the observing camera is moving, the relative motion
between it and the surrounding environment gives rise to
the perception of image displacement of scene points. The
perceived 2D displacement can be caused either entirely by
the camera motion, or by the joint effect of both camera
and object motion. This means, the displacement vector
v i can come either from static or dynamic objects in the
environment. While static objects remain their location and
configuration in the environment, dynamic objects vary their
locations with time.

Without loss of generality, we can assume that camera mo-
tion is the dominant motion. This assumption is reasonable
since moving objects generally come from a distance and can
come near to the moving camera only gradually. Compared
to the area occupied by the whole static environment, the
subpart occupied by dynamic objects is less significant.
Hence it is generally true that camera motion is the dominant
motion.

As a consequence, it is also true that most vectorsv i

come from static scene points. Under such circumstance, it
is possible to find a dominant motion constraint. The motion
of static scene points will agree with the dominant motion.
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Those scene points whose motions do not agree with the
dominant motion constraint can hence be either dynamic
points or outliers which result from environmental changes
that so far have not been considered during the 2D motion
detection process. Motion separation can then be achieved by
finding how well each vectorv i agrees with the dominant
motion constraint.

Having gained a corresponding point set{pi} and{q i},
with i = 1, . . . N , we can find a transform which will explain
the 2D motion ofn static points betweenf t and f t+1.
We use a similarity transformT = {R, t , s} as motion
constraint. This means, we can find the transform parameters
minimizing the following distance measure:

D(R, t , s) =
N

∑

i=1

|| q i − (sRpi + t) ||2 (9)

A solution can be found by using a simple linear least–
squares minimization method [11].

IV. M OTION SEPARATION

Since the vectorsv i coming from static scene points are
caused by the camera motion, while thev i coming from
moving scene points are the result of independent motion,
the separation of the two kinds of motion is equivalent to
clustering the set of mixed{v i} into different classes. Alto-
gether there are three classes: Static scene points, dynamic
scene points, and outliers.

Based on the motion constraintT = {R, t , s}, we can
calculate a residual error for each of the points as

di =

n
∑

i=1

|| (pi + v i) − (sRpi + t) || . (10)

We can expect that:

• di = 0 ⇒ v i is correct (inlier),pi is a static point
• di is small ⇒ v i is correct (inlier),pi is a dynamic

point
• di is very big⇒ v i is incorrect (outlier)

Now the problem becomes finding two thresholdsk1 and
k2, so that:

pi is







static point if di ≤ k1

dynamic point if k1 < di ≤ k2

outlier if di > k2

(11)

This belongs to a typical pattern classification problem,
which can be solved by analyzing the probabilistic distri-
bution of the set of distance errors{di}. The most direct
way is to quantize the distancedi into L + 1 level, ranging
from 0 to L pixels. Following that, a residual distance
histogramh(j), j ∈ [0, L], can be calculated. Ifh(j) is
a multimodal histogram, two thresholdsk1 and k2 can be
found automatically for motion separation.

If there are two classesΩ0 andΩ1, a probability distribu-
tion of di can be computed as

ρi =
hi

N

. (12)

Since points belonging to the same class have similar distri-
bution, a thresholdk exists for separatingΩ0 and Ω1. The
thresholdk can be computed automatically by going through
the following steps:

1) Calculate probability density functions ofΩ0 andΩ1

ρ(Ω0) =

k
∑

i=0

ρi (13)

ρ(Ω1) =

L
∑

i=k+1

ρi (14)

2) Calculate the mean ofΩ0 andΩ1 respectively as

µ(Ω0) =

k
∑

i=0

iρi

ρ(Ω0)
(15)

µ(Ω1) =
L

∑

i=k+1

iρi

ρ(Ω1)
(16)

3) Calculate the mean of the whole data set

µ =

L
∑

i=0

iρi (17)

4) Calculate the inter–class difference function

J(k) = ρ(Ω0)(µ(Ω0)−µ)2+ρ(Ω1)(µ(Ω1)−µ)2 (18)

5) Threshold is found as

κ = argmax
k

{J(k)} . (19)

Using the above two–class method, we can first find a
thresholdk1 (0 < k1 < L) for separating the points into
two classes:Ω0 with static points andΩ1 a mixed class of
dynamic points and outliers. In case thatk1 = 0 or k1 = L,
this means there is only a single motion which is the camera
motion. If k1 does exist, then we will further cluster the
remaining mixed set of both dynamic points and outliers by
calculating another thresholdk2 with k1 < k2 < L.

V. EXPERIMENTAL EVALUATION

The proposed approach has been implemented using C++
running on a Dell Latitude E4300 laptop. For each pair of
frame f t and f t+1, we first detect3000 features in frame
f t and try to find their correspondences inf t+1. Depending
on the nature of the input frames, the found number of point
correspondencesN ranges from a few hundreds to a few
thousands. Thanks to the linear methods used, our motion
separation algorithm has only a computational complexity
of O(N). Consequently, a frame rate of25-30 frames/s can
be achieved for images with a resolution of640 × 480.

For the evaluation of our approach, we have used several
video sequences. All the frames are captured by mobile
cameras navigating in natural environments. Evaluation is
based on the successful detection of moving objects appeared
in the visual field of the mobile camera. At the same time,
false alarms are computed.

The images in the first video sequence are taken on
a sunny day in an outdoor environment, using a camera
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(a) (b)

(c) (d)

Fig. 2. Examples of detection results in sequence 1.

mounted on the AR–100 UAV. Here the dynamic objects are
people moving around the UAV. Altogether there are 3082
frames in the video sequence. Among them, there are 1907
frames where no independent motion occurs. In each of the
remaining 1175 frames, there are either one or two objects
moving. The total number of moving objects is 1250.

Shown in Fig. 2 (a) is one example image together with the
detected 2D displacement vectors. There are a few outliers
in the static background as well as on the moving person.
This is due largely to illumination variations. Those long
vectors (with color yellow) are the outliers. The vectors
shown in color black come from the static background. The
two moving persons have been identified correctly, as can be
seen clearly from the vectors shown in red lines with green
tips. Another example is shown in Fig. 2 (b), where neither
independent motion nor outlier occurs. In both cases, it is
observed that the camera motion consists of both rotation
and translation component.

Further examples are shown in the bottom row of Fig. 2.
For clearly we show here only the flow vectors from the iden-
tified moving objects. In Fig 2 (c), there is only one person
moving. In Fig 2 (d), a false alarm has occurred, although
the two moving persons have been detected correctly. The
false alarm is caused by environmental factors, especially
illumination changes and swinging leaves.

Sequence 2 is captured with a hand–held camera. The

moving object to be detected is the AR–100 UAV. There are
also some people moving in the background. In Fig. 3 on
the left we can see one input frame, where the moving UAV
is even difficult to perceive with human eyes. On the right
is the result of detection. Three moving objects have been
identified. They are the UAV as well as two persons moving
behind the tree. It is obvious from this example that our
algorithm is capable of detecting moving objects regardless
of their speed and distance.

The purpose of performance evaluation with sequence 2
is to find how our algorithm will behave in case the size
of the object is very small compared to the visual field of
the camera. All together there are 80 frames, with the UAV
moving all the time in the scene.

Shown in Fig. 4 are examples of detection results achieved
from the third video sequence. The moving object is a single
robot car driving on the road. There are 303 frames. Each
frame has a single moving object in it.

Performance has been evaluted using all image pairs in
the three video sequences. The average detection accuracy is
83.3%. This means, among all those flow vectors detected,
83.3% of them have been correctly classified as coming
from either static background or moving objects. The false
alarm rate of moving object detection is below5%. As
mentioned already, both video sequence 1 and 2 are quite
challenging. Particularly for the images taken in sequence1,
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Fig. 3. Detection of small moving objects in sequence 2.

Fig. 4. Detection of a driving car in sequence 3.

there are strong lighting changes due to afternoon sunshine.
Also transmission errors occur frequently, since the images
are sent online via radio link from the UAV to the ground
station laptop, on which our algorithm is running. Another
reason lies in the fact that the moving objects are not rigid.
A person’s motion can be difficult to detect if he or she only
changes pose slightly. Further factors which have aggravated
the situation are shadows and the swinging of trees due to
wind. Considering that the dynamic objects are either small
or moving at far distances and that we use only the last and
current frame for real–time detection of moving objects in
the current frame, the results are quite encouraging.

VI. CONCLUSION

This paper presents a new approach for the detection of
objects maneuvering in the visual field of a monocular cam-
era navigating in the real world. Using the approach we have
proposed, we are able to establish point correspondences
between image pairs despite noisy situations where both
independent motion and outliers occur. We do not make
any assumption about the motion of the camera and the
objects in the scene. The constraint in the form of a similarity
transform is simple to implement and requires no camera cal-
ibration. Once the transform parameters have been estimated
using a linear least–squares method, independent motion
and outliers are identified based on how well they agree
with the motion constraint. The process of motion separation
and clustering is completely automated. Moving objects are
identified by analyzing the underlying motion characteristics
of each scene point probabilistically. Performance has been
evaluated using several challenging video sequences captured

in outdoor environments. We believe that the detection rate
can be improved by taking into account the past history
of independent motion and combining motion detection and
tracking in subsequent frames.
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Abstract— The goal of this paper is to study a noisy WiFi
range-only sensor and its application in the development of
localization and mapping systems. Moreover, the paper shows
several localization and mapping techniques to be compared.
These techniques have been applied successfully with other
technologies, like ultra-wide band (UWB), but we demonstrate
that even using a much more noisier sensor these systems can
be applied correctly. We use two trilateration techniques and a
particle filter to develop the localization and mapping systems
based on the range-only sensor. Some experimental results and
conclusions are presented.

I. I NTRODUCTION

For most outdoor applications, i.e. surveillance tasks or
vehicle navigation systems, Global Positioning System (GPS)
[1] provide enough accuracy. On the contrary, when GPS
receiver is in urban environments with high buildings or trees,
the signal can suffer multipath fading or even Line-Of-Sight
(LOS) blockage. In addition, it is important to remark that GPS
signal is not strong enough to penetrate inside buildings, then
this problem discards this technique to use it like an indoor
localization system.

Vehicle navigation systems use a combination of a previ-
ous map with localization information to guide the vehicle
through a mesh of connected ways. Maps are usually obtained
in a semi-autonomous way process known as mapping [2].
Mapping is based on sensor observations which extract main
features of the environment and allow to represent them into
a topolocical or metric map.

Autonomous localization and mapping are two problems
with similar features. It is not possible to built a map if the
localization process does not work well, and it is impossible to
locate a device with high precision without an accurate map.
The SLAM(Simultaneous Localization And Mapping) tech-
niques [3] [4] are used to solve these problems simultaneously,
because the uncertainty of both processes can be reduced by
doing localization and mapping at the same time .

Several systems for localization and mapping have been
proposed and successfully deployed for indoor environments.
These systems are based on: infrared sensors [5], computer
vision [6], ultrasonic sensors [7], laser [8] or radio frequency
(RF) [9] [10] [11] [4]. Within the last group we can find lo-
calization systems that use WiFi and Ultra Wide Band (UWB)
signal level (SL). In order to estimate the vehicle or map
feature location, these systems measure the signal strength and
then apply a deterministic (i.e. trilateration) or probabilistic
(i.e. particle filter) algorithm to infer the estimated position.

In addition, these techniques can be used in the same way in
outdoor environments.

While the UWB systems achieve a high accuracy in both
systems (localization and mapping), by mean of adding UWB
reference beacons in the environment, WiFi technology uses
802.11b/g network infrastructure to estimate a device position
without using additional hardware. Unfortunately, signalprop-
agation is affected by reflection, refraction and diffraction in
indoor environments. This effect, known as multipath effect,
turns the received SL into a complex function of the distance.
To solve this problem, several localization systems use a
previous map and then, in the estimation phase, the received
signal measure from each Access Point (AP) is compared with
the map to obtain the estimated position [12] [13] [14]. This
last technique is not recommended when the environment is
dynamic or when its size increases.

In this work, we use the combination of the WiFi signal
measure and a propagation model to obtain a range-only sensor
that can be used both indoor and outdoor. We compare two
deterministic and one probabilistic techniques to obtain the
accuracy of all of them. These techniques are used in the same
way for localization and mapping with slightly modifications.
This work represents a previous step before obtaining a WiFi
range-only SLAM system.

The rest of the paper is organized as follows: section 2
shows propagation models and WiFi signal variations; section
3 shows the localization with propagation model techniques;
section 4 shows the mapping process; section 5 describes the
results obtained by WiFi localization and mapping systems;
and finally, section 6 shows some conclusions and future
works.

II. W IFI RANGE-ONLY SENSOR

This section provides an introduction about the WiFi signal
measure and its application as a range-only sensor. It is
important to highlight that WiFi technology works at 2.4Ghz, a
closer frequency to water resonant one, then it can be affected
by several variations.

In a previous work [15] authors have throughly studied the
main variations that affect to WiFi signal. We identified five
main variations that can appear when working with robots.
Among this five ones, there are three main variations to take
into account when we want to develop WiFi range-only sensor
localization and mapping systems:
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• Temporal variations: when the robot is standing at a
fixed position, the signal strength measure can vary over
time. SL variations can be up to 2 dBm. These variations
are usually due to changes in the physical environment
such as people in movement.

• Small-scale variations: these variations occur when the
robot moves in a small distance, under the wavelengthλ.
As a result, there are significant changes in the average
received SL. For the 802.11b networks working at the
2.4 GHz range,λ is 12.5 cm. This kind of variations are
generated by multipath effect. Small-scale variations in-
troduce a high uncertainty in the system. These variations
make difficult to estimate the device position because
they can be up to 10 dBm for positions around the same
location.

• Large-scale variations: signal strength varies over a long
distance due to attenuation of the RF signal [16]. Large-
scale variations can be used to estimate the distance be-
tween the robot and reference positions (APs locations).

A propagation model [17] is an empirical mathematical
formulation for the characterization of radio wave propagation
as a function of frequency, distance and other conditions.
A single model is usually developed to predict the behavior
of propagation for all similar links under similar constraints.
Created with the goal of formalizing the way in which the
radio waves are propagated from one place to another, such
models typically predict the path loss trough link or the
effective coverage area of a transmitter.

In our system, we use a propagation model to estimate
the distance between the APs and the robot through received
SL. Our work is based on Hata-Okumura propagation model,
which is studied in [18]. The equation (1) describes this model:

d = 10
PT X−PRX+GT X+GRX−Xα+20 log λ−20 log 4π

10n (1)

Where:

• d: is the distance between transceiver and receiver.
• PTX andPRX : are the transceiver and the receiver power

(dBm).
• GTX andGRX : are the transceiver and receiver antenna

gain (dBi).
• Xα: represents the error. It is a normal random variable

with standard deviationα.
• λ: is the wavelength (12.5 cm).
• n: denotes influence of walls and other obstacles. In

outdoors environments with LOS it is defined in the range
from 2 to 3. In [19], the authors determine that the vari-
ablen must be approximately 2 in outdoor environments.

.

III. L OCALIZATION WITH RANGE-ONLY SENSORS

Localization is the technique that estimates the position of
a mobile device using reference positions and the distance
provided by the range-only sensor. In this section we describe
the three techniques that we have compared.

A. Spherical trilateration

This technique estimates the robot position using the APs
positions and the distances between the mobile and the APs.
The algorithm is based on the next constraints:

• The n APs positions are known, and are placed in the
coordinates(x1, y1, z1), (x2, y2, z2), ... (xn, yn, zn).

• The robot position is defined as(xr, yr, zr), and it is the
position to estimate by the algorithm.

• The distances between the robot and each AP are known
r1, r2, ... rn.

The trilateration elements are showed in Figure 1.

Fig. 1. Trilateration elements

The algorithm is based on these constraints to estimate the
robot position using the equations (2), (3), (4) and (5).
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It is possible to show the equations using the matrix way:

AX = B (4)

X =




xr

yr

zr

t




A =




2x1 2y1 2z1 −1
2x2 2y2 2z2 −1
· · · · · · · · · · · ·
2xn 2yn 2zn −1




B =




S

2
1 − r

2
1

S

2
2 − r

2
2

· · ·
S

2
2 − r

2
2


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(5)
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B. Spherical trilateration. Gauss-Newton algorithm

This method is based on the same elements than the
previous trilateration (Figure 1). Moreover, a random position
is used as initial one to estimate the robot positionemp =
(x̂r, ŷr, ẑr).

The distance between the robot and theAPi is defined
according to equation (6).

ri =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 i = 1 . . . n

(6)

Now, we can define the distance between theAPi and the
emp (7).

r̂i =
√

(xi − x̂r)2 + (yi − ŷr)2 + (zi − ẑr)2 i = 1 . . . n

(7)

This method is based on equations (6) and (7) and Gauss-
Newton algorithm. This method is used to solve non-linear
least squares problems like this. It makes possible to minimize
a sum of squared function values through an iterative way
(equation (8)).

F (x̂r, ŷr, ẑr) =

n∑
i=1

(r̂i − ri)
2 =

n∑
i=1

[fi(x̂r, ŷr, ẑr)]
2 (8)

Wherefi is obtained as shown (9):

fi =
√

(xi − x̂r)2 + (yi − ŷr)2 + (zi − ẑr)2 − ri (9)

Deriving the equation (9) respect to(x̂r, ŷr, ẑr) it is possible
to obtain the equation (10).

∂F

∂x̂r

= 2

n∑
i=1

fi

∂fi

∂x̂r

;

∂F

∂ŷr

= 2

n∑
i=1

fi

∂fi

∂ŷr

;

∂F

∂ẑr

= 2

n∑
i=1

fi

∂fi

∂ẑr

;

(10)

Equation (10) can be showed using the matrix way,A ·
∆X = B (equation (11)).

∆X =




∆x

∆y

∆z




A =




(x̂r−x1)
r̂1

(ŷr−y1)
r̂1

(ẑr−z1)
r̂1

(x̂r−x2)
r̂2

(ŷr−y2)
r̂2

(ẑr−z2)
r̂2

...
...

...
(x̂r−xn)

r̂n

(ŷr−yn)
r̂n

(ẑr−zn)
r̂n




B =




(r̂1 − r1)
(r̂2 − r2)

...
(r̂n − rn)




(11)

The system can be solved by least squares and it is possible
to obtain the algorithm increases according to equation (12).

∆X = (AT
A)−1

A

T
B (12)

Finally, the estimated robot position is updated using the
previousemp and the new increase (equation (13)).

empk+1 = empk − ∆Xk (13)

The process continues running until the increases∆X

become acceptable by the system.

C. Particle filter

The particle filter is a sequential Monte Carlo algorithm, i.e.
a sampling method to approximate a distribution that uses its
temporal structure. A ”particle representation” of distributions
is used. In particular, we will be concerned with the distribu-
tion P (Xrt|z0:t) whereXrt = (xrt, yrt, θrt) is the observed
robot state at timet, andz0:t = (r1, r2, ..., rn) is the sequence
of observations from time0 to timet. The transition and sensor
models,P (Xrt|z0:t) are represented using a collection ofN

weighted samples or particles,{X(i)
rt , π

(i)
t }N

i=1 whereπ

(i)
t is

the weight of particleX(i)
rt (equation (14)).

P (Xrt|z0:t) ≈
∑

i

πt−1δ(Xrt − X

(i)
rt−1) (14)

The particles are propagated using the movement model
p(Xrt|Xrt−1, at) and the verisimilitudeP (zt|Xrt).

Firstly, the particles are uniformly distributed at the state
space. Next, the particles are updated by the previous actions
at−1, the actual observationzt and the movement model.
Finally, the updated particles are weighted, so the density
probability function of the particles represents the estimated
robot position.

IV. M APPING WITH RANGE-ONLY SENSORS

Mapping is the process that makes possible to estimate the
APs positions using the distance between them and the robot.
First of all, to map the positions of the reference is needed to
know the trajectory of the mobile, and then estimate the APs
positions using this knowledge. This problem is similar to the
localization one but with a different point of view, we suppose
that the robot position is known and static at different steps,
and then it seems like the APs are moving around it.

A. Spherical trilateration and Gauss-Newton Spherical trilat-
eration

These algorithms are used on mapping in a similar way
than trilateration algorithms are used on the localization. The
main difference between both is the previous knowledge.
Localization algorithms know the APs location and estimate
the robot position, however, mapping algorithms know the
robot trajectory and they estimate the APs position. Figure
2 shows the elements used to estimate the position of one AP.
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Fig. 2. Mapping elements

Finally, the algorithm is based on the equations (2), (3), (4)
and (5), swapping reference(xi, yi, zi) by beacon(xb, yb, zb)
positions.

Work [20] puts forward some situations that can make the
system fails:

• When the reference positions are align.
• If the beacon position and the reference are on the same

plane.
• If the reference position is over one reference.

According to these constraints, close positions of the robot
trajectory are useless to map the APs position because they can
be aligned. Moreover, it is recommended to design a ”zigzag”
path for the robot to avoid the alignment of the reference
positions.

B. Particle filter

A particle filter like III-C is also used to map the APs. The
main difference between both particle filters is the orientation.
In this case, only a measurement of distance is obtained and
then the AP can be everywhere within a circumference. To
adapt the previous filter for mapping some modifications have
been performed. These modifications are:

• Measurement vectorsZ are the distances between the AP
and the robot. The measures depend on the robot location.

• The verisimilitudeP (zt|Xrt) uses a vectorial space to
represent the observations. Thus, we use a circumference
equation based on a vectorial space. It is written in para-
metric form using trigonometric functions as is shown in
equation (15). Then, 360 observations (one per angleφ)
are generated. These observations form a circumference
with radius equal to the distance between the AP and the
robot.

P = Xr0 + r(cos φ, sin φ) (15)

Where:

– Xr0 is the actual robot position.
– r is the radius or the distance between the AP and

the robot.
– φ is the angle.
– P are the observed AP coordinates(xb, yb).
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Fig. 3. Mapping with particle filter

Figure 3 shows the particle filter process, at the beginning
there are 360 possible positions (one per angle) where the
AP can be. Then, the possible positions are less and usually
there are only 2 possible positions: the real AP position and
the ”mirror” one. Finally, only one hypothesis is followed and
this position usually corresponds with the real AP position.

It is important to highlight that this algorithm does not
need to collect a high number of samples to estimate the AP
position. It is a online process and the accuracy is improving
when the time is increasing.

V. I MPLEMENTATION AND RESULTS

This section describes some implementation features and
the experimental results obtained with the designed tests.

A. Test-Bed Environment

The environment to test the localization and mapping sys-
tems is established outdoor and close to the Polytechnic School
at the University of Alcaĺa (UAH).

The environment dimensions are approximately 20x20 me-
tres. Moreover, three APs are used, these APs are located
at coordinates (x, y, z)(5.35,−2.36, 1.70), (14,−2.36, 1.67),
(15.10, 7.4, 1.61). The WiFi antenna is placed at the mobile
robot at 0.71 metres height. The robot trajectory is a pseudo-
rectangle, this path is showed in Figure 4. The localization
process in this work is calculated in 3D, and it has been
necessary to convert the measurements from 3D to 2D to
simplify the problem.

The tests have been performed with a laptop using an
Orinoco Gold PCMCIA card, Linux Kubuntu 8.04, Wireless
Tools v29 and Matlab 2008a. Signal level measure is obtained
by the WiFi interface installed in the laptop. This interface
scans the APs close to the device. Samples are got at 4 Hz,
which is the highest frequency that the interface supports.
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TABLE I

WIFI RANGE ONLY SENSOR SAMPLES

d (m) 2 4 8 12 16 20

µSL (dBm) -44.40 -53.25 -61.44 -66.00 -74.24 -78.04

σSL(dBm) -3 -5 -5 -5 -7 -7

B. WiFi range only sensor

To study the WiFi range only sensor a real test has been
performed, which consists of measuring the signal level at
different distances. The collected samples are processed cal-
culating the mean and the variance of them. Table I shows
the mean and the variance values of the samples for each
distance. The mean values shows how the SL decreases with
the distance, however, the variance increases with the distance.
A high variance in the samples, produced by the noise, makes
difficult to estimate a distance from a SL value.

Based on Table I values, and paying attention to large-scale
variations it is possible to estimate a propagation model. Figure
5 shows an estimated propagation model and a comparison
with Hata-Okumura model (HOM) using a set of training data.
The propagation model has been estimated obtaining the mean
SL of each distance and fitting a polynomial function using
a approximation by least squares. The estimated model (EM)
obtains better results than HOM because it fits perfectly the
training data, however, HOM is a generic model and it can be
adapted to new environments.

Table II shows the error for each distance. In both models
the error tends to increase with the distance. This error is
specially important in the HOM at 12 metres, it is due to a
high noise in the training samples. HOM does not fit well to
the training samples when they contain a huge noise, however,
the EM obtains better results in this case. It is important to
remark that in other cases the samples can contain more or less
noise and the EM will not obtain good results. Then, the EM
is a better choice in an under control environment, however,
the HOM is more general and adaptable to new environments.
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Fig. 5. Large-scale variations on propagation model

TABLE II

PROPAGATION MODELS ERROR

Distance (m) 2 3 4 8 12 16 20

EM error (m) 0.28 0.01 0.00 0.29 3.01 0.83 0.44

HOM error (m) 0.35 1.08 1.41 7.01 19.08 2.09 0.16

C. Localization results

Localization results are showed in Table III. Trilateration
algorithm gets a mean error of 9.04 metres, which is the
highest error of the three algorithms. On the other hand,
Gauss-Newton obtains better results, the mean error is 6.26
metres and the error is more constant than the trilaterationone.
Both algorithms estimate the robot position without previous
information, which decreases the accuracy, but these can be
used with a low computational cost. However, the particle filter
uses the previous information to estimate the position to avoid
high changes in the error. Then, it makes the particle filter the
most accurate algorithm, it gets a mean error of 3.16 metres
and a maximum error of 9.24 metres.

D. Mapping results

The mapping techniques obtain the following results: tri-
lateration algorithm gets the smallest mean error, 9.7 metres,
using 125 reference positions to estimate the AP position. With
a lower number of 100 positions it is impossible to estimate
the position.

Gauss-Newton algorithm uses 125 robot positions to obtain
a mean error of 10.58 metres, this error is higher than the

TABLE III

LOCALIZATION ERROR

Method Trilateration Gauss-Newton Particle filter

Mean (m) 9.04 6.26 3.16

Max (m) 23.48 22.13 9.24

Min (m) 0.56 0.1 0.31
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TABLE IV

GAUSS-NEWTON ERROR

Num pos 5 10 30 50 100 150

Mean (m) 15.92 15.80 15.49 13.48 14.68 9.16

Max (m) 27.10 36.01 41.47 25.40 16.82 9.40

Min (m) 1.99 6.40 5.09 6.13 11.23 8.92

TABLE V

PARTICLE FILTER ERROR

Particles 100 1000 1500 2500 3500 4000

Mean (m) 5.50 4.41 4.10 3.95 3.62 3.51

trilateration one. This method obtains better results in several
situations but in some occasions it finds a local minimum and
then it does not obtain the optimal solution. Moreover, Table
IV shows that this method obtains good results using only
50 robot positions to estimate the AP location. Then, it is
necessary to spend only 12 seconds to localize the AP position.

Both methods are affected by the robot trajectory, this
problem was previously commented and we have obtained
better results using other robot paths in simulation mode.

Finally, the particle filter has been tested varying the number
of particles in 100 experiments. Table V shows the mean
error obtained in 100 experiments, it has been obtained from
the moment that filter converges to the real beacon position.
Sometimes, the filter converges to the mirror position due to
the high noise, this noise is approximately 10 dBm and it can
introduce an error of 10 metres in the observation. Then, in
several executions the observation can be near to the mirror
position. Results show an error that tents to decrease. The
smallest error, 3.51 metres, was obtained using 4000 particles.

VI. CONCLUSIONS AND FUTURE WORKS

In this work has been presented a WiFi range-only sensor
and its application to localization and mapping system. In the
first time, we have analyzed the main variations of this sensor
and we have proposed to use a propagation model to obtain the
distance between the robot and a certain reference positions
(APs). Three different techniques have been compared to
localization and mapping process. Each technique has been
configured and performed to obtain the best possible accuracy.
We have obtained an accuracy of 3.16 metres to localize the
mobile and 3.51 metres to map the environment references. In
the future, we have the intention of improving the accuracy of
the localization and mapping systems using a WiFi range-only
SLAM algorithm and a fusion with an Inertial Measurement
Unit (IMU) to improve the movement model.
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[9] V. Matellán, J. M. Cãnas, and O. Serrano, “Wifi localization methods
for autonomous robots,”Robotica, vol. 24, no. 4, pp. 455–461, 2006.

[10] M. Ocãna, L. M. Bergasa, M.Á. Sotelo, R. Flores, E. Ĺopez, and
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Abstract—One of the requirements for autonomous vehicles 
on off-road is to move harmoniously in unstructured 
environments. It is an undeniable fact that such capacity of 
autonomous vehicles is the most important in an aspect 
considering mobility of the vehicle. So, many researchers use 
contact and/or non-contact methods to detect a terrain whether 
the vehicle can move on or not. In this paper we introduce an 
algorithm to classify terrains using visual information. As 
pre-processing, contrast enhancement technique is introduced 
to improve accurate rate of classification. Also, for conducting 
classification algorithm, training images are grouped as each 
material and Bayesian classification recognizes new images as 
each material using such material groups. Consequently, we 
can confirm the good performance of classification. Moreover, 
we can build Traversability map on which autonomous vehicles 
can predict whether to go or not to go through real friction 
coefficients which are measured by Load-Cell on surfaces of 
various terrains. 

I. INTRODUCTION 
T is important that autonomous vehicles maintain good 
mobility performance on off-road terrain to carry out a 

mission like exploration. The mobility of a vehicle on 
off-road terrain is known to be strongly influenced by the 
interaction between the wheels of the vehicle and the terrain. 
Slip is the result of this complex interaction and, second to 
tip-over hazards, it is the most important factor in traversing 
slopes. Slip ratio on a terrain is closely related to friction 
coefficient of a surface because if friction coefficient on a 
terrain is high, slip ratio is low. So, to avoid slippery areas for 
the mobility of the vehicles, many researchers have tried to 
predict friction coefficient on a terrain using contact and/or 
non-contact methods for measurement of friction coefficient 
on a surface of a terrain.  

The remainder of this paper is organized as follows. First, 
in chapter 2, algorithms for terrain classification using visual 
information is described. In chapter 3, pre-processing 
method is introduced for classifying terrains in detail. 
Chapter 4 shows performance of classification algorithm and 
the results of the experiments are presented with 
Traversability map by real friction coefficients in chapter 5. 
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Finally, conclusions and future work are provided in chapter 
6.  

II. ALGORITHMS FOR TERRAIN CLASSIFICATION 

A. Characteristic Data Extraction in a Terrain 
In this section we describe a method to extract 

characteristic data in a terrain with visual image. 
Characteristic data includes information of each material in a 
terrain. Also, such material information is used to make a 
group of each material (soil, small gravel, big gravel, and 
asphalt) and classify new terrain as one of groups later. 

First step to extract characteristic data is dividing image 
into homogeneous regions which have homogeneous 
material. It is almost impossible to determine the material of 
one pixel. Because of this reason, we tried to divide the 
image into small region which have meaningful feature and 
extract that feature from each region for recognition. Hoeim 
et al. used over-segmentation method of Felzenszwalb et al. 
for same purpose of us. This over-segmentation method 
generates good result in merging similar pixel to one segment, 
although the shape and size of segment is sensitive. However, 
because the purpose making super-pixel is just to extract 
material information from homogeneous region, the exact 
shape of that material does not matter. 

 Fig. 1 is result when we applied over-segmentation 
method of Felzenszwalb et al. We used Felzenszwalb’s 
source code. In the result image, the pixels of each segment 
have almost similar color. So, we can assume that each 
segment is composed of same material. Actually, there are 
some regions which are divided into different segments even 
if they are same material. However, it does not matter 
because we can predict they can be classified into same 
material at classifying step.  

   

Fig. 1. Over-segmentation result (small gravel terrain). 

As shown in Fig. 2, there is a characteristic data set of six 
materials (sky, soil, small gravel, big gravel, asphalt, and 
forest) in a segment of over-segmentation image. Data value 
of each material is calculated by comparing between 
materials using over-segmentation method.  Thus, we can 
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confirm that a segment is recognized as S. gravel material 
because the data figure of S. gravel is the lowest in 
comparison with other materials. 

 
Fig. 2. Characteristic data in a segment of an image. 

B. Grouping Method 
This section introduces a method to group each material in 

terrains using characteristic data. First of all we assumed that 
input data (characteristic data sets) is Gaussian distribution. 
Considering such Gaussian distribution, representative 
values are estimated by equation (1) and (2).  
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ix : Characteristic data sets  
n  : The number of segments recognized as same material  
T  : Transpose matrix 
k  : The number of groups  
 

Here, kμ̂ is mean value (4×1 matrix) and kΣ̂ is covariance 
(4×4 matrix) of k group. Consequently, groups of same 
materials which are decided using over-segmentation method 
are made by estimated kμ̂ and kΣ̂ . 

C. Bayesian Classification 

To classify new terrains into specified terrains grouped, 
we use Bayesian theory. Bayesian theory is a fundamental 
statistical approach to the problem of pattern classification. 
Thus, we classify new terrains as analyzing pattern of 
characteristic data of new terrains into specified terrains 
grouped by using Bayesian classification. 

To compute posterior probabilities X)P( |kω  is the heart of 
Bayesian classification. Here, posterior probabilities 

X)|P( kw  represent probabilities for classifying segments of 
new terrains into specified materials groups.   

Bayes formula allows us to compute these probabilities 
from the prior probabilities )P( kw  and the class-conditional 
densities )|P(X kw . Here, prior probabilities )P( kw  are the 
same value as characteristic data of each material in one 

segment, because characteristic data is probability of each 
material in one segment as mentioned above.  

The class-conditional densities )|P(X kw  are calculated by 
equation (3).  
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k  : The number of groups

  T  : Transpose matrix 
d  : Dimension of input data 
X : New terrain information 

kw : Identifier of k group 
 

If we again let D denote the set of samples, then we can 
emphasize the role of the samples by saying that our goal is to 
compute the posterior probabilities D)X,|P( kw . From these 
probabilities we can obtain the Bayes classifier. 

Given the sample D , Bayes formula then becomes 
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c  : The number of groups 
D : The set of samples (each data of existing groups) 
 

As this equation suggests, we can use the information 
provided by the training samples to help determine both the 
class-conditional densities and the prior probabilities. Here, 
we can separate the training samples by class into 
c subsets 1D ,…, cD , with the samples in iD belonging to 

kw . If we again let class denote an existing group, then a 
number is given to an existing group by identifier kw . When 
existing or new terrain information, just characteristic data, is 
inputted to equation (4), posterior probabilities   D)X,|P( kw  
is computed by calculating the class-conditional densities 

D)|P(X ,kw and prior probabilities D)|P( kw as comparing 
existing or new terrain information with existing groups. 
Thus, characteristic data of segments of terrains is classified 
into specified material groups as posterior probabilities   

D)X,|P( kw by identifier kw . 

III. PRE-PROCESSING 
We use pre-processing method to improve classification 

performance. Basically, we use contrast enhancement 
techniques as pre-processing method.  

In Fig. 3 we can know that original image of B. gravel 
terrain is rather blurry as we see. Actually, if autonomous 
vehicle is moving on this terrain, it is very difficult that the 
vehicle exactly recognize whether a surface of this terrain is 
composed of any materials using this image due to 
classification errors. So, to compensate this error rate, the 
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images is enhanced by contrasting a bright color with a dark 
color in order that two sides are so far apart. Fig. 4 is 
modified image by contrast enhancement method. We can 
confirm that modified image is more vivid and brighter than 
original image. 

 

 
Fig. 3. Original image (B. gravel terrain). 

 

 
       Fig. 4. Modified image by contrast enhancement. 

 
We applied contrast enhancement algorithm widely 

known to pre-processing for enhancement. Basic that 
algorithm turns images into other images by selecting 
passively contrast values. The range of basic contrast values 
is from zero (0) to two (2). When contrast value is the zero, 
the color of entire image is dark. On the contrary, when 
contrast value is the two, the color of entire image is white. 
So, for selecting optimum value at which accurate rate of 
classification is the highest, we tried to make an algorithm 
which selects automatically optimum value considering 
accurate rates of classification.  

Fig. 5 is flow chart of such an algorithm to select optimum 
value. As mentioned above, an image is enhanced by specific 
value in the range of contrast value using image processing. 
As the next step, characteristic data in the modified image are 
extracted by over-segmentation method. And then 
covariance of data which is a measure of how much variables 
change together in probability theory and statistics is 
calculated and is stored every contrast values. As a final step, 
minimum covariance is decided by MIN algorithm. Finally, a 
value which has minimum covariance is selected as optimum 
value. The more covariance is close to minimum, the greater 

materials are recognized exactly because segments in an 
image are smaller than before and classification algorithm 
can compare similar degree between segments in detail. 

Fig. 5. Flow chart of an algorithm to select optimum value. 

IV.PERFORMANCE TEST 

A. Review of Entire Classification Algorithm 
 

Fig. 6 shows the entire classification algorithm. First 
above all, training steps in left side are a process for 
autonomous vehicles to get information of various terrains 
like being intelligent as a person gets much knowledge. As a 
first step of training step, training images which are made 
with off-line are transmitted to central computer. Training 
images collected with off-line are separated as small parts. Its 
small parts are learning images. Learning images are entered 
to over-segmentation algorithm and each learning image is 
used as a standard of comparison with other entered images 
to extract characteristic data of a terrain. As a final step of 
training step, each material information of training images 
are grouped using the grouping method which is introduced 
in chapter II-B. 

Classification steps in right side are a process for 
autonomous vehicles to classify new terrain, not the terrain 
trained, into specific material. This algorithm is operated 
with on-line. Once new images through over-segmentation 
method via pre-processing are entered to Bayesian 
classification step, new images are classified into material 
groups which are made in training steps by Bayesian 
classification. Actually, the number of material groups is 
determined by the number of learning images. Currently, we 
have used materials of six categories (sky, soil, small gravel, 
big gravel, asphalt, and forest) as shown in Fig. 2. However, 
sky and forest materials are not grouped because sky and 
forest are the region that a vehicle can’t move on. Thus, we 
use four material groups (soil, S. gravel, B. gravel, and 
asphalt) in classification algorithm. Consequently, new 
images are classified into specific groups by Bayesian 
classification and then Traversability map where a vehicle 
can move on a surface of a terrain without disturbance is 
made. 
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Fig. 6. Flow chart for grouping and classification 

B. The Result of Performance Test 
In this section we verify the algorithm as accurate rate 

which is a result to classify a terrain. We use one of training 
images which are grouped in training steps to confirm 
accurate rate of Bayesian classification. From a 
common-sense point of view, the result of classification will 
naturally be almost exact.  

Fig. 7 shows classification result of training image (B. 
gravel terrain). This training image is composed of big gravel 
materials on a surface. Thus, we can know that the big gravel 
area is widely classified. We separate only big gravel region 
to confirm quantitatively accurate rate of classification result 
like Fig. 8. The area of big gravel materials is divided by 
same size mask. Accurate rate of classification is calculated 
by counting the number of each pixel of the area separated. 
Consequently, accurate rate of Bayesian classification is 
95.05%. It is reasonably good result.  As the result, we can 
confirm that the performance of Bayesian classification is 
great. 

 

  

Fig. 7. Classification result of training image (B. gravel 
terrain). 

 

Fig. 8. Separation of only big gravel. 

V.  EXPERIMENTAL RESULT 

A. Friction Coefficient Experiment 
We make an experiment on measurement of friction 

coefficient. We used Load Cell for this experiment.  Load 
Cell is an electronic device that is used to convert a force into 
an electrical signal. Other equipment is traction car and 
experimental vehicle. Fig. 9 shows experimental equipment 
and processes. Traction car pulls experimental vehicle. At 
the instance when the experimental vehicle starts to slip, we 
collect the data of Load Cell. The collected data include the 
information of friction between wheel and ground. 

 

 
Fig. 9. Experiment to measure friction coefficient  

 

 
Fig. 10. Experiment terrains. Soil terrain (top left), Small 
gravel terrain (top right), Big gravel terrain (bottom left), and 
Asphalt terrain (bottom right). 
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The experiment is performed in four terrains. As shown in 
Fig. 10, each terrain is soil, S. gravel, B. gravel, and asphalt 
terrain. Table I shows friction coefficients calculated on a 
surface of each terrain.  As expected, the friction coefficient 
of asphalt is the highest among them. Such friction 
coefficients of each terrain are used for autonomous vehicles 
to avoid a slippery area and to change kinematic or dynamic 
parameters to move quickly and slowly for vehicles which 
have known features on a surface of a terrain. In this paper, 
we used real friction coefficients to predict whether a surface 
of a terrain is slippery or not. 

B. Classification Result of New Terrain 
In this section we explain classification result and 

traversabilty map of new image. Fig. 11 is new terrain which 
is not grouped by training steps. As shown in Fig. 12, green is 
asphalt materials and sky-blue is big gravel materials. Finally, 
blue is soil materials. Here, dark color presents sky and forest 
materials. As mentioned above, sky and forest is a terrain 
which autonomous vehicles can’t move on. So, once a 
segment is recognized as sky and forest materials, the 
segment is displayed as dark color. 

In chapter Ⅴ-A, we measured friction coefficient of each 
material. Therefore, we applied friction coefficient to the 
result of classification in Fig. 12. Fig. 13 shows 
Traversability map which autonomous vehicles can predict 
slippery area on. And the vehicles can plan a path efficiently 
by predicting a condition of a surface in such a terrain. In Fig. 
13 a color is displayed on Traversability map among 
magnitude of friction coefficients. 

 

 
Fig. 11. New terrain ( asphalt terrain )  

 
 
Fig. 12. Bayesian classification result. 
 

 
Fig. 13. Traversability map. 

 

VI. CONCLUSION 
 

In this paper we propose an algorithm to classify terrains 
into each material. As pre-processing, contrast enhancement 
technique is introduced to improve accurate rate of 
classification. Also, for conducting classification algorithm, 
training images are grouped as each material and Bayesian 
classification recognizes new images, not training images, as 
each material using such material groups. Consequently, we 
can confirm the good performance of classification. 
Moreover, we can build Traversability map on which 
autonomous vehicles can predict whether to go or not to go   
through real friction coefficients which are measured by 
Load-Cell on surfaces of various terrains.     

This algorithm can be useful for autonomous vehicles. By 
using this information, it can make a meaningful decision 
such as where to go and how to go. 

 
 

TABLE I 
FRICTION COEFFICIENT ON EXPERIMENT TERRAINS 

TERRAIN Friction Coefficient [μ] 

 
Soil Terrain 
 
Small Gravel Terrain 
 
Gravel Terrain 
 
Asphalt Terrain 

 
0.9 

 
0.74 

 
0.82 

 
1.2 
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the intension of the other vehicles or agents and a predictive view of further traffic state evolvement. Because of 
uncomplete observation and uncertainties  the estimation and sensor fusion process has an important  role. With 
the help of learning methods in terms of learning from example the vehicle will be able to learn from ist 
observations which allows the estimation of dangerous situations and a predictive view of its environment which 
allows the continuation of driving. Furthermore it is necessary to make according the actual situation and drive 
intension behavioural  decisions considering it´s effects and results. Also here uncertainty has to be considered to 
enable predictive driving. A predictive behavioural decision process in combination with a learning process will be 
presented which allows to enhance the decision performance. A dynamic risk map is used to support algorithms 
for motion planning of the vehicle. Finally the vehicle should be able to execute maneuvers such as passing a 
crossing, lane changing, collision avoidance, overtaking and turning off, processing information about the actual 
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Abstract— Automated electric vehicles available in free access
constitute a promising very efficient and environment-friendly
“urban transportation system”. An additional functionali ty that
could enhance this transportation service is vehicle platoon-
ing. In order to avoid oscillations within the platoon when
completing this task, a global control strategy, supportedby
inter-vehicle communications, is investigated. Vehicle absolute
localization is then needed and is here derived from monocular
vision. These data are however expressed in a virtual vision
world, slightly distorted with respect to the actual metric one.
It is shown that such a distortion can accurately be corrected
by designing a nonlinear observer relying on odometric data. A
global decentralized control strategy, relying on exact lineariza-
tion techniques, can then be designed to achieve accurate vehicle
platooning. Simulations and full-scale experiments demonstrate
the performance of the proposed approach.

Index Terms— automatic guided vehicles, platooning, nonlin-
ear control, observer, monocular vision, urban vehicles

I. INTRODUCTION

Traffic congestion in urban areas, with correlated pollution
and waste of time, is currently a serious concern. Automated
electric vehicles, available in free access from distributed
stations within some given zone, appear as an attractive
alternative solution. The large flexibility that can be obtained
(commutation at any time and along any route) is definitely
a decisive feature which should meet user expectations.
An additional functionality of special interest is vehicle
platooning, i.e. several automated vehicles moving in a single
line. Such a functionality allows to easily adapt the transport
offer (via platoon length) to the actual need, and can also
ease maintenance operations, since only one person can then
move several vehicles at a time (e.g. to bring them back to
some station). Moreover, an enhancement in safety and an
increase in traffic can be expected from such a cooperative
navigation. Platooning is therefore considered in this paper.

Different approaches can be proposed. They can be classi-
fied into two categories, according to the information used for
vehicle control. The most standard approaches rely onlocal
strategies, i.e. each vehicle is controlled exclusively from
data relative to the neighboring vehicles. The well-known
leader-follower approachconsiders only the immediate front
vehicle. For instance, visual tracking has been proposed
in [2] and generic control laws have been designed in [12]
and [5]. Alternatively, neighboring vehicles (and not only

the preceding one) are taken into account when usingvirtual
structure approaches: a structural analogy, characterized by a
serial chain of spring-damper, is for instance proposed in [13]
and a control law is then derived from the combined front
and rear virtual forces.

These strategies present however some drawbacks, the
most concerning one being error accumulation: the servoing
errors, induced by sensor noises and/or actuator delays, are
inevitably growing from the first vehicle to the last one,
leading to unacceptable oscillations. Such problems can be
overcome by consideringglobal strategies, i.e. each vehicle
is now controlled from the data received from all vehicles.
Most of the virtual structure approachesbelong to this
category. In [4], a mechanical analogy is used to design
feedback controllers to achieve straight line motion. A single
virtual rigid structure is also considered in [6], relying on
graph theory. Nevertheless, these techniques aim at imposing
some pre-specified geometric pattern, and not that each
vehicle accurately reproduces the trajectory of the first one.
In contrast, in previous work [3], a trajectory-based strategy
has been proposed relying on nonlinear control techniques:
lateral and longitudinal control are exactly decoupled, so
that lateral guidance of each vehicle with respect to the
same reference path can be achieved independently from
longitudinal control, designed to maintain a pre-specified
curvilinear vehicle inter-distance.

Fig. 1: Experimental vehicles: a Cycab leading two RobuCab

The potentialities of this last control approach have been
demonstrated with the experimental vehicles shown in Fig.1
relying, as a first step, on RTK-GPS receivers for vehicle
localization [3]. These sensors are however not reliable in
urban applications, since satellite signals can be masked by
tall buildings. Cameras appear as more appropriate, since the
buildings offer a rich environment from an image processing
point of view (in addition, they are definitely cheaper).
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Accurate absolute localization can indeed be obtained from
monocular vision, relying on a structure from motion ap-
proach, but it is then expressed in a virtual vision world,
roughly related to the actual metric one via a scale factor.
Alas, this scale factor is not perfectly constant, so that the
vision world appears slightly distorted with respect to the
metric one. This alters noticeably the estimation of inter-
vehicle distances, and therefore impairs longitudinal control
performances. In previous work [1], the local distortions are
estimated from the actual distance between two vehicles,
measured with a laser rangefinder. This information is then
shared with the whole platoon and longitudinal control
performances can actually be improved. However, on one
hand the combined use of telemetric and visual data is quite
intricate, and on the other hand the corrections are not as
accurate as possible, since they are only averaged corrections
(related to the inter-vehicle distance). In this paper, a non-
linear observer, relying solely on standard odometric data, is
designed to correct in an easier way, and more accurately,
the distortions of the virtual vision world.

This paper is organized as follows: the platooning control
strategy is first sketched in Section II. Then, absolute local-
ization from monocular vision is discussed in Section III.
Next, the local correction to the visual world is presented
in Section IV. Finally, experiments reported in Section V
demonstrate the capabilities of the proposed approach.

II. GLOBAL DECENTRALIZED CONTROL STRATEGY

A. Modeling assumptions

Urban vehicles involved in platooning applications are
supposed to move at quite low speed (less than 5m.s−1) on
asphalted roads. Dynamic effects can therefore be neglected
and a kinematic model can satisfactorily describe their be-
havior, as corroborated by extensive tests performed with
our experimental vehicles shown in Fig. 1. In this paper,
the kinematic tricycle model is considered: the two actual
front wheels are replaced by a unique virtual wheel located
at the mid-distance between the actual wheels. The notation
is illustrated in Fig. 2.

Fig. 2: Tricycle model description

• Γ is the common reference path for any vehicle, defined
in an absolute frame[A, XA, YA].

• Oi is the center of theith vehicle rear axle.
• Mi is the closest point toOi on Γ.
• si is the arc-length coordinate ofMi alongΓ.
• c(si) is the curvature of pathΓ at Mi, andθΓ(si) is the

orientation of the tangent toΓ at Mi w.r.t. [A, XA, YA].
• θi is the heading ofith vehicle w.r.t.[A, XA, YA].

• θ̃i = θi − θΓ(si) is the angular deviation of theith

vehicle w.r.t.Γ.
• yi is the lateral deviation of theith vehicle w.r.t.Γ.
• δi is the i

th vehicle front wheel steering angle.
• L is the vehicle wheelbase.
• vi is the i

th vehicle linear velocity at pointOi.

B. Vehicle state space model

The configuration of theith vehicle can be described
without ambiguity by the state vector(si, yi, θ̃i). The current
values of these variables can be inferred on-line by compar-
ing vehicle absolute localization to the reference path. Itcan
then be shown (see [10]) that tricycle state space model is:















ṡi = vi
cos θ̃i

1− yi c(si)

ẏi = vi sin θ̃i

˙̃
θi = vi

(

tan δi

L
− c(si) cos θ̃i

1− yi c(si)

)

(1)

Platooning objectives can then be described as ensuring
the convergence ofyi and θ̃i to zero, by means ofδi,
and maintaining the gap between two successive vehicles
to a fixed valued⋆, by means ofvi. It is considered that
yi 6= 1

c(si)
(i.e. vehicles are never on the reference path

curvature center). In practical situations, if the vehicles are
well initialized, this singularity is never encountered.

C. Control law design

In previous work [3], it has been shown that exact lin-
earization techniques offer a relevant framework to address
platoon control: equations (1), as most of kinematic models
of mobile robots, can be converted in an exact way into a so-
called chained form, see [10]. Such a conversion is attractive,
since the structure of chained form equations allows to
address independently lateral and longitudinal control.

Steering control lawsδi can first be designed to achieve
the lateral guidance of each vehicle within the platoon w.r.t.
the common reference pathΓ. In these control laws,vi just
appears as a free parameter. Since conversion of equations (1)
into chained form is exact, all nonlinearities are explicitly
taken into account. High tracking performances (accurate to
within ±5cmwhen relying on an RTK GPS sensor) can then
be ensured, whatever initial errors or reference path curvature
are. Details can be found in [11].

Control variablesvi can then be designed to achieve
longitudinal control. In nominal situation, the objectivefor
the i

th vehicle is to regulatee1
i = s1 − si − (i − 1) d

⋆,
i.e. the arc-length longitudinal error w.r.t. the leader. This
control objective is attractive, since the locations1 of the
leader represents a common index for all the vehicles into the
platoon, so that error accumulation and inherent oscillations
can be avoided. In addition, since it is an arc-length error,this
control objective remains consistent whatever the reference
path curvature is (in contrast with euclidian inter-distances).
Nevertheless, for obvious safety reasons, the location of the
preceding vehicle cannot be ignored. Therefore, in previous
work [3], the longitudinal control law has been designed to
control a composite error: a smooth commutation function

ICRA10 International workshop on Robotics and Intelligent Transportation System 134/142



gives the predominance either to the global errore

1
i or to

the local onee

i−1
i = si−1 − si − d

⋆ according to some
security distance. Once more, exact linearization techniques
have been used, so that nonlinearities in equations (1) are
still explicitly accounted, ensuring high accurate regulation.
More details, as well as experiment results carried out with
Cycab and RobuCab vehicles (see Fig. 1), relying on RTK
GPS sensors for vehicle localization and WiFi technology
for inter-vehicle communications, can be found in [3].

III. L OCALIZATION WITH MONOCULAR VISION

The implementation of the platooning control laws pre-
sented in previous section requires that some sensors can
provide each vehicle with its absolute localization, in a
common reference frame (in order that the composite errors
could be evaluated). RTK GPS receivers can supply such
a localization, with a very high accuracy (±2cm). They
have successively been used in [3]. However, they are quite
expensive sensors, and above all they are not appropriate to
urban environments, since satellite signals are likely to be
frequently masked by tall buildings. In previous work [8],
absolute localization from monocular vision has been alter-
natively proposed, and satisfactory accurate lateral guidance
of a sole vehicle along a given reference path has been
demonstrated. An overview of the localization approach is
sketched in Section III-A, and its limitations with respectto
platooning applications are discussed in Section III-B.

A. Localization overview

The localization algorithm relies on two steps, as shown
in Figure 3.

Fig. 3: Localization with monocular vision

First, the vehicle is driven manually along the desired
trajectory and a monocular video sequence is recorded with
the on-board camera. From this sequence, a 3D reconstruc-
tion of the environment in the vicinity of the trajectory
is computed. Because only one camera is used, this is a
structure from motion problem well-known in the computer
vision community. The computation of the reconstruction is
done off-line with a method relying on bundle adjustment.
The trajectory is thus referred in a non-metric virtual vision
world. However, the total covered distance supplied by

on-board odometers, when compared to the same quantity
evaluated from vision algorithms, enables to propose a global
scale factor such that this virtual vision world is nevertheless
close to the actual metric world.

The second step is the real time localization process.
Interest points are detected in the current image. These
features are matched with the features stored in the visual
memory as part of the 3D reconstruction. From the corre-
spondences between 2D points in the current frame and 3D
points in the visual memory, the complete pose (6 degrees
of freedom) of the camera is computed. Then, the pose
of the vehicle on the ground plane is deduced, and finally
the vehicle state vector(si, yi, θ̃i) and the curvaturec(si)
required in control laws can all be inferred. More details
and localization performances can be found in [9].

B. Distortion in the virtual vision world

Platoon control in urban environment requires vehicle
localization to be accurate to within some centimeters. The
global scale factor computed from odometric data cannot
guarantee such an accuracy: first, odometers cannot supply a
covered distance accurate to within some centimeters when
the reference trajectory length comes up to few hundred
meters. Secondly, the distortion between the two worlds
is alas varying along the trajectory. These limitations are
illustrated in Fig.4: the top graphs show the same vehicle
trajectory recorded from monocular vision (Fig.4-a) and from
an RTK-GPS sensor (Fig.4-b). The error between the arc-
length distances computed from monocular vision and from
RTK-GPS data is reported in Fig.4-c: it can be noticed
that, on one hand the drift in odometric measurement does
not allow a proper evaluation of the global scale factor, so
that the total arc-length distance is erroneous in the vision
world (the error is 1.72m, although the trajectory is only
115m-long), and on the other hand the distortion between
the two worlds is largely varying, since the error comes up
to 7.48m in the mid-part of the trajectory. The presence of
local distortions between the two worlds can also be observed
in Fig.4-d, since no global rotation and/or dilatation permits
to superpose the two trajectories shown in Fig.4-a/b.
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These distorsions in the virtual vision world are not a
concern as long as only lateral guidance is considered: since
the sign of the lateral and angular deviationsyi and θ̃i

supplied by vision algorithms is always correct, these dis-
torsions act only as control gain modifications. Asymptotic
convergence ofyi andθ̃i to 0 is therefore always guaranteed,
and very satisfactory path following results can be obtained,
as reported in [8].

The situation is different when longitudinal control is ad-
dressed: the distortions in the virtual vision world lead toin-
accurate inter-vehicle distance evaluation, and therefore poor
longitudinal control performances with respect to the metric
world. However, the analysis of experimental results reveals
that the distorsions are definitely repeatable: lateral guidance
along the 115m-long trajectory shown in the upper-left part
in Fig.5 has been carried out with several vehicles and with
different cameras. For each trial, the set of local scale factors
ensuring consistency, on successive 2m-long segments, be-
tween the arc-length distance obtained by monocular vision
and the actual one supplied by an RTK-GPS sensor, has been
computed off-line. Two of these sets are reported in Fig.5. It
can be observed that they present a very similar profile, and
so do the other sets. More precisely, it can be noticed that
the local scale factors are roughly constant in the straight
line parts of the trajectory (in magenta), and fast varying
in the curved parts (at the beginning and at the end of the
cyan segment). As a conclusion, since distortions between
the virtual vision world and the actual metric one are clearly
repeatable, accurate longitudinal control relying solelyon
monocular vision appears attainable, provided that the setof
local scale factor could be precisely estimated.
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Fig. 5: Off-line local scale factor computation

IV. CURVILINEAR DISTANCE ESTIMATION

Local scale factor estimation requires that some distances
in the virtual vision world could also be accurately evaluated
in the actual metric world. Very precise measurements in
the metric world can be obtained from RTK-GPS receivers.
However, these sensors cannot be considered, since on one
hand they are not reliable in urban environments due to
canyon effects, and on the other hand they are quite expen-
sive when a large fleet of urban vehicles has to be equipped.
In previous work [1], it is proposed to rely on a laser
rangefinder to obtain a reference measurement in the metric

world: the distance between the leader and the first follower
vehicles supplied by this sensor is compared with the same
inter-distance derived from monocular vision. The local scale
factors can then be inferred and propagated to the rest of
the fleet. This approach presents however some drawbacks:
first, from a practical point of view, combining telemetric and
visual data is quite intricate. But, the major limitation isthat
distortion corrections thus obtained are necessarily averaged
corrections, computed along segments whose lengths are the
distance between the two first vehicles, that is to say several
meters. The local distortions between the virtual vision world
and the metric one might then not be accurately represented,
especially in the curved parts of the trajectory, where the
local scale factors are supposed to change abruptly, see Fig.5.
To relax these limitations, an alternative approach, basedon
observer theory, and relying solely on standard odometric
data, is proposed below.

A. Observer design

In the proposed approach, the reference measurement in
the metric world to be used to infer local scale factors is
the vehicle linear velocityvi supplied by the odometers. In
the sequel, let us denote(si, yi, θ̃i), (ṡi, ẏi,

˙̃
θi) andc(si) the

i

th vehicle state vector, state vector derivative and reference
path curvature atsi expressed in the actual metric world,
and (sv

i , y

v
i , θ̃

v
i ), (ṡv

i , ẏ
v
i ,

˙̃
θ

v
i ) andc

v(sv
i ) the same quantities

expressed in the virtual vision world. Then, in view of the
reference measurement to be used, a relevant way to describe
the local scale factor at curvilinear abscissas

v
i is the function:

λ(sv
i ) = ṡi / ṡ

v
i (2)

The distortions in the virtual vision world can realistically be
assumed to be locally homogeneous, i.e. the two dimensions
in the plane of motion are similarly distorted. Therefore, the
following relations can also be written:

λ(sv
i ) = ẏi / ẏ

v
i (3)

θ̃

v
i = θ̃i (4)

y

v
i c

v(sv
i ) = yi c(si) (5)

Then, injecting relations (2) to (5) into model (1), the vehicle
state space model expressed in the virtual vision world can
be written as:















ṡ

v
i =

vi. cos θ̃v

i

λ(sv

i
).(1− yv

i
cv(sv

i
))

ẏ

v
i =

vi. sin θ̃v

i

λ(sv

i
)

˙̃
θ

v
i = ˙̃

θi

(6)

Model (6) describes the vehicle motion from the variables
actually available, i.e. the vehicle localization in the vision
world and its linear velocity in the metric world. The
objective now is to design an observer to estimateλ(sv

i )
from model (6). Since distortions are the result of a complex
and unpredictible optimization process, the time derivative
of the variableλ(sv

i ) to be observed is completely unknown.
Consequently,λ(sv

i ) cannot be incorporated into the state
vector with the aim to design a standard Luenberger observer.
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It is here proposed, just as in [7], to rely on the duality
between control and observation to design the observer. More
precisely, mimicking the first equation in (6), let us introduce
the following observation model:

˙̂
s

v
i =

vi. cos θ̃

v
i

ui.(1 − y

v
i c

v(sv
i ))

(7)

with ŝ

v
i the observed curvilinear abscissa in the virtual vision

world, y

v
i , θ̃

v
i and c

v(sv
i ) measured quantities in the vision

world, vi a measured quantity in the metric world, andui a
control variable to be designed. Then, the observer principle
can be described as follows: if the control variableui of
the observation model (7) could be designed such that the
observed statêsv

i converges with the measured ones

v
i , then

the control variableui would be representative of the local
scale factorλ(sv

i ) (in view of equations (6) and (7)).
Such a convergence can easily be imposed, by designing

ui straightforwardly as:

ui =
vi. cos θ̃

v
i

(ṡv
i − K.ǫ)(1 − y

v
i .c

v(sv
i ))

(8)

with ǫ = (ŝv
i − s

v
i ) andK a positive gain to be tuned, since

injecting (8) into (7) leads to :

ǫ̇ = −K · ǫ (9)

Equation (8) can then be regarded as an accurate estimation
of the local scale factor at the curvilinear abscissas

v
i . If the

observer statêsv
i is properly initialized, then|K ·ǫ| is largely

inferior than|ṡv
i | (directly related to the vehicle velocity), and

observer equation (8) proposes no singularity.
Finally, if Γ(τ) = (Γx(τ), Γy(τ) ) denotes the 2D-

parametric equations of the reference trajectoryΓ in the
absolute vision frame, then the corrected curvilinear abscissa
at s

v
i can be computed according to:

ŝi =

∫ τ(sv

i
)

0

λ(τ)

∣

∣

∣

∣

∣

∣

∣

∣

∂Γ

∂τ

(τ)

∣

∣

∣

∣

∣

∣

∣

∣

d τ (10)

where τ(sv
i ) is the parameter value of the 2D-curveΓ(τ)

(here, a B-Spline) associated with the curvilinear abscissa s

v
i .

B. Simulations

To investigate the performances of observer (8), a single
vehicle has been simulated. The simulation parameters have
been tuned in order to be representative of actual conditions:

• The vehicle velocity in the metric world isv = 1m.s

−1,
and the standard deviation of the odometric data is
σodo = 0.015m.s

−1.
• Local scale factors similar to those obtained in Fig. 5

have been generated, thanks to piecewise continuous
line segments, see Fig. 6.

• Visual data are provided with a15Hz sampling fre-
quency and two standard deviationsσv = 0m and
σv = 0.02m have been considered.

• Observer gain isK = 2, to achieve a compromise
between a fast convergence and small oscillations. The
observed local scale factor is logically initialized at 1.

The top graph in Fig. 6 shows that observer convergence is
achieved within3m (dotted black line). Without any noise on
visual data (i.e.σv = 0m), the convergence is very smooth
and the average value of the errorǫ is less than2.4mm,
excepted when the local scale factor changes abruptly (cyan
area): then, a very limited3cm overshoot can be noticed.
When visual data are corrupted by noise (i.e.σv = 0.02m),
the observer error remains inferior than7cm, with an average
value less than17.6mm. Finally, it can noticed in the bottom
graph in Fig. 6 that the observed local scale factor accurately
reproduces the simulated one, as desired.
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Fig. 6: Simulated scale factor estimation (on-line process)

V. EXPERIMENTAL RESULTS

In order to investigate the capabilities of the proposed
approach, several experiments have been carried out in
Clermont-Ferrand on “PAVIN Site”, an open platform de-
voted to urban transportation system evaluation.

1) Experimental set-up:The experimental vehicles are
shown in Fig. 1. They are electric vehicles, powered by lead-
acid batteries providing 2 hours autonomy. Two(resp. four)
passengers can travel aboard the Cycab(resp. the RobuCab).
Their small dimensions (length 1.90m, width 1.20m) and
their maximum speed (5m.s−1) are appropriate to urban
environments. Vehicle localization algorithms and platoon
control laws are implemented in C++ language on Pentium
based computers using RTAI-Linux OS. The cameras supply
visual data at a sampling frequency between 8 and 15Hz,
according to the luminosity. The inter-vehicle communica-
tion is ensured via WiFi technology. Since the data of each
vehicle are transmitted as soon as the localization step is
completed, the communication frequency is similar to the
camera one. Finally, each vehicle is also equipped with
an RTK-GPS receiver, devoted exclusively to performance
analysis: its information are not used to control the vehicles.

2) Experimental results:The experiment reported below
consists in platoon control, with three vehicles, along the
115m-long reference trajectory shown in Fig. 5. The local
scale factors computed on-line by the leader vehicle (whose
speed is 1m.s

−1) are shown in green in Fig. 7. In order to
ease the comparison with the local scale factors computed
off-line in Section III-B (and reported in blue in Fig. 7), the
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ones obtained on-line have also been averaged on2m-long
segments and then shown in red in Fig. 7. It can be noticed
that local scale factors computed on-line with observer (8)
are as satisfactory as those computed off-line and very close
to the actual ones evaluated from RTK-GPS measurements.
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Fig. 7: On-line scale factor estimation

Finally, platoon control performances with corrected vi-
sion data are evaluated in Fig. 8. The vehicle inter-distance
errors (investigated from RTK-GPS measurements) when
longitudinal control relies solely on monocular vision data is
as accurate as previously when RTK-GPS data were used to
control the vehicles (see [3]): the longitudinal errors remain
within ±10cm. Performances are just slightly depreciated
during the abrupt scale factor variation, whens1 ∈ [70, 80]m.
Nevertheless, the inter-distance errors do not exceedresp.
14cm and 17cm. If the distortion corrections proposed by
observer (8) were not applied to raw localization vision data,
then vehicle inter-distance errors would be those displayed in
Fig. 9. These large errors (resp.1m and1.7m) show clearly
the significance and the relevance of observer (8).
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Fig. 8: Vehicle inter-distance errors with corrected vision data
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Fig. 9: Vehicle inter-distance errors with raw vision data

VI. CONCLUSION

In this paper, vehicle platooning in urban environments has
been addressed. First, a global decentralized control strategy,
taking advantage of inter-vehicle communications, has been
proposed, in order to avoid error accumulation inherent

to local control approaches. Moreover, nonlinear control
techniques have been considered, in order to take explicitly
into account the nonlinearities in vehicle models, so that the
same high accuracy can be expected in any situation (for
instance, whatever the reference trajectory curvature).

Vehicle absolute localization has been derived from an
on-board camera, since it is a very appropriate sensor in
urban environments. However, it has been pointed out that
the localization thus obtained is expressed in a virtual vision
world slightly distorted with respect to the actual metric
one, and relying on raw vision data would impair platooning
performances. A nonlinear observer, only supported by odo-
metric data, has then been designed to estimate on-line local
scale factors, and enable accurate platooning relying solely
on monocular vision.

Full scale experiments, carried out with three vehicles,
have finally demonstrated the efficiency of the proposed
approach. Further experiments, involving vehicles led by a
manually guided vehicle have to be conducted to empha-
size the benefits of on-line corrections when the reference
trajectory is being created.
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Abstract— This paper deals with the navigation of a mobile
robot in unknown environment. The robot has to reach a final
target while avoiding obstacles. It is proposed to break the task
complexity by dividing it into a set of basic tasks: Attraction to a
target and obstacle avoidance. Each basic task is accomplished
through the corresponding elementary controller. The activation
of one controller for another is done according to the priority
task. To ensure the overall stability of the control system,
especially at the switch moments, properties of hybrid systems
are used. Hybrid systems allow switching between continuous
states in presence of discrete events. In this paper, it is proposed
to act on the gain of the proposed control law. The aim is to
ensure the convergence of a common Lyapunov function to all
the controllers. This ensures the stability of the overall control.
Simulation results confirm the theoretical study.

I. INTRODUCTION

The control of a mobile robot navigating in a cluttered
environment is a fundamental problem and is receiving
much attention in the robotics community. The purpose
is mainly to ensure to the mobile robot a suitable and a
safe navigation (avoiding a risk of collision, respecting its
structural constraints, etc..)

Some of the literature considers that the robot control
is entirely based on the methods of path planning while
involving the total or partial knowledge of its environment:
Voronoi diagrams and visibility graphs [1] or Artificial
potential fields functions containing all the information on
the target [2] and the robot environment are among these
methods. Another community is interested by the ability
of the robot to achieve the control laws according to its
constraints (structural constraints, jerk-control, etc.). Even
if cognitive methods of path planning and replanning [3],
[4], can also be found here, more reactive methods (based
on sensors information rather than a prior knowledge of the
environment) are more common [5], [6] or [7]. The proposed
work falls into the latter approach.

To ensure the robot’s ability to accomplish a reactive task,
it is proposed to explore behavioral control architectures
originally proposed by Brooks [8]. This kind of architecture
of control breaks the complexity of the overall task by
dividing it into several basic tasks. Each basic task is ac-
complished with its corresponding controllers. There are two
major principles of coordinating them: the action selection
[8] and merging actions [9]. In the first, only one controller
selected from the basic controllers is applied to the robot at
every sample time. In the second case, the control applied

to the robot is a result of merging all or a part of available
controllers in the control architecture.

We note that the action selection is more interesting.
Indeed, one controller is applied to the mobile robot at a
given time. It is then easier to examine individual stability of
each controller. However, random switch from one controller
to another (avoiding obstacles, follow a trajectory, reaching
a target, etc.) may cause instability of the global control law,
even if each individual controller is stable [10].

Stability proof of this kind of control architecture has
been little explored in the literature: in [5], a merging action
node is introduced to the control automaton in order to
smoothly switch between the two controllers. The advantage
of studying each controller alone is then lost, since we have
also to study the merging action node. Controlling a mobile
robot to follow a trajectory in presence of obstacles, based
on the theorem of multiple Lyapunov functions [10] was
established in [11]: A third secondary controller was then
introduced to satisfy this theorem. However, this control
architecture is not suitable for any cluttered environment.

Finding a common Lyapunov function to the basic systems
forming a hybrid system is not a simple task [12]. In this
paper, we propose to deal with this problem by ensuring
overall stability of our control architecture with a single
Lyapunov function. Here we are interested by a mobile
robot reaching a target while avoiding obstacles: this task
is then divided into two basic tasks: attraction to a target
and obstacle avoidance.

The rest of the paper is organized as follows: in next
section, the basic controllers and the proposed control law
are introduced. The proposed control architecture is exposed
in Section III. Simulation results are given in IV. Finally, we
conclude and give some prospects in Section V.

II. ROBOT MODEL AND TASKS TO ACHIEVE

Before introducing attraction to the target controller, ob-
stacle avoidance and the proposed control law, we recall that
the kinematic model of the used unicycle mobile robot used
is expressed by the well-known equations:

ẋ = vcos(θ)
ẏ = vsin(θ)

θ̇ = ω
(1)

With

ICRA10 International workshop on Robotics and Intelligent Transportation System 139/142



  

Target (xT,yT)

Robot

 

~ 
θ Ym Xm 

d 

RT 

Om (x, y) 

θd 
θ 

Yw 

Ow Xw 

Fig. 1. Controller for attraction to target.

• (x, y) are the world coordinates of the robot axle center
Om (cf. Figure 1).

• θ is the world robot orientation.
• v and ω are respectively linear and angular velocities.

A. Attraction to target controller

The robot has to reach a given target of radius RT and
coordinates center (xT , yT ) (cf. Figure 1).

Position errors are defined as

ex = xT − x = d cos(~θ)

ey = yT − y = d sin(~θ)
(2)

d is the distance of the robot to the target and can then be
expressed as

d =
√
e2x + e2y (3)

~θ is the orientation error, such that : ~θ ∈]− π, π] is

~θ = tan�1(
yc − y

xc − x
)− θ (4)

Its derivative ~̇θ is then

~̇θ =
˙

(
ey
ex

)/(1 + (
ey
ex

)2)− ω (5)

After computation using the kinematic model
(cf. Equation 1) and equations in (2) we obtain

~̇θ = ωr − ω (6)

Where
ωr = v

sin(~θ)

d

B. Obstacle avoidance controller

The objective of this controller is to control the robot to
avoid obstacles that hinder its attraction to the target. To
focus on the proposed control architecture, this controller is
briefly described. The theoretical details are available in [13].

This controller is based on the limit cycle methods [14],
[15]. The differential equations representing the desired
trajectory of the robot are given by the following system

ẋr = ayr + xr(R
2
c − x2

r − y2r)
ẏr = −axr + xr(R

2
c − x2

r − y2r)
(7)

With a = ±1 according to the optimal direction of avoid-
ance (clockwise or counterclockwise direction). (xr, yr) are

the relative robot coordinates with respect to the obstacle.
The latter is characterized by a circle of radius Rcl =
Ro + Rr + ϵ where: Ro is the obstacle radius, Rr is the
robot radius and ϵ is a safety margin (cf. Figure 2).

The algorithm for obstacle avoidance is summarized in the
following

• The nearest hindering obstacle is detected.
• The direction of avoidance is chosen according to the

sensor information.
• The robot avoids the obstacle while following a limit

cycle which has a radius Rc = Rcl−ξ (attraction phase).
• The robot avoids the obstacle while following a limit

cycle which has a radius Rc = Rcl+ξ (repulsive phase)
(cf. Figure 2). Where ξ is a small value and (ξ ≪ ϵ).
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Fig. 2. Obstacle avoidance controller.

C. The proposed control law

It is interesting to notice that only one control law is
applied to the robot even if its architecture of control contains
two different controllers (attraction to the target and obstacle
avoidance). Only the set points change according to the
applied controller.

The proposed control law is expressed as follows:

v = vmax e�
1
d cos(~θ) (a)

ω = ωr + k1~θ (b)
(8)

where
• vmax is the maximum linear velocity.
• k1 is a constant such that k1 > 0.
• d is the distance robot-target (cf. Equation 3). The robot

reaches the target when 0 < d ≤ RT (cf. Section II-A).
To study the stability of the proposed control law, consider

the Lyapunov function

V =
1

2
~θ2

The control law is asymptotically stable if V̇ < 0.

V̇ = ~θ ~̇θ

By replacing (6) in (8.b), we get

~̇θ = −k1~θ (9)

and V̇ becomes
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V̇ = −k1~θ
2 < 0 (10)

and V̇ becomes for every ~θ ̸= 0.
The controller is then asymptotically stable.
Once each basic task and the control law are defined, the

proposed architecture of control which coordinates them is
given in next section.

III. THE PROPOSED ARCHITECTURE OF CONTROL

Even if each controller is individually stable, it is impor-
tant to constrain switch between them to avoid instability of
the overall system, see [10]. Here, it is proposed to generalize
the Lyapunov function previously defined (cf. Section II-
C) for the overall control system. Indeed, it was proved
(cf. Section II-C) that this function is strictly decreasing.
However, the problem arises (as for all hybrid systems) at
switching moments where the set point is discontinuous.
This means that there is an unavoidable jump of the error
~θ at these moments. This naturally leads to jumps in the
Lyapunov function after the switch and this jump may lead
to increasing it.

Hence, It is proposed to adjust the gain k1 of the control
law (cf. Equation 8) at the switch moments so that even if the
value of the Lyapunov function increases during the switch,
it returns to its value before switch V (tbs) in a finite time
Tmax. (tbs is the moment just before switch).

In addition, the robot should not navigate more than a dis-
tance dmax when (V (t) > V (tbs)) in order to insure stability
criterion as soon as possible. Also, when the robot performs
the obstacle avoidance task, it is necessary that (dmax < ϵ)
(cf. Section II-B) to avoid collision with the obstacle. Notice
that ϵ is the minimal distance separating the robot from the
obstacle once this one is detected (cf. Section II-B).

Attraction to Target 

Obstacle Avoidance 

P 
E 
R 
C 
E 
P 
T 
I 
O 
N 
 

C  
 AS 

 

 
Gain  

adaptation 
Yes 

No Robot 
Transition 

phase 

Fig. 3. The proposed architecture of control.

A. Adaptating the control law gain

The adjustment of the gain k1 (cf. Equation 8) is triggered
if one of the following events occurs

• The control of the robot switches from one controller
to another.

• Obstacle avoidance controller switches from an obstacle
to another.

• Obstacle avoidance moves from attraction phase to
repulsive phase (cf. Figure 2).

To insure that V decreases in a finite time Tmax that we
can impose, we have to get

V (ts + Tmax) ≤ V (tbs) (11)

Where ts is the switch moment.
The resolution of the differential equation (9) gives the

orientation error with respect to time ~θ

~θ(t) = ~θ(ts)e
�k1(t�ts) (12)

Equation (12) allows to easily deduce the Lyapunov func-
tion :

~θ2(t) = ~θ2(ts)e
�2k1(t�ts) (a)

V (t) = θ̃2(ts)
2 e�2k1(t�ts) (b)

V (t) = V (ts)e
�2k1(t�ts) (c)

(13)

Thus, k1 is expressed as

k1 =
ln(V (t)/V (ts))

−2(t− ts)
(14)

Note that k1 is always positive. Indeed, V (t) ≤ V (ts) (cf.
Equation 13) and then ln( V (t)

V (ts)
) ≤ 0.

The value of k1 allowing to reach V (tbs) in a finite time
Tmax is

k1 =
ln(V (tbs)/V (ts))

−2Tmax
(15)

Note that the restriction on Tmax is necessary especially in
the case of obstacle avoidance. Indeed, the stability criterion
of hybrid systems (cf. Equation 11) must be satisfied in
minimal time. Moreover, the distance achieved during Tmax

has to be (dmax ≤ ϵ) (cf. Section II-B) to avoid collision
with the obstacle. It is easy to see that the minimum
necessary time to achieve this distance is

tmin =
ϵ

vmax

corresponding to a straight robot navigation to the obstacle
center with its maximum linear velocity. (15) becomes then

k1 =
ln(V (tbs)/V (ts))

−2tmin
(16)

Note that k1 is not defined if V (tbs) = 0. The notion of
weak stability [16] allows to define a threshold Vmin such
that if V (t) < Vmin, then the system is (weakly) stable
without comparing V (t) to V (tbs). It means that

k1 =
ln(Vmin/V (ts))

−2tmin
(17)

Thus, k1 is recalculated in this way and replaced in (8.b).
We can then summarize the proposed control architecture

as in figure (Fig. 3).

B. The mechanism of the architecture of control

The block AS (for Action Selection) selects the suitable
controller to apply to the robot according to the environment:
if no obstacle is detected, Attraction to the target task is
accomplished. If there is a discrete event (switching from one
controller to another, transition from attraction to repulsive
phase, etc.), the block transition phase prevents the control
from affecting the robot’s actuators, until the block adapta-
tion gain recalculates the gain k1 as previously highlighted.
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Fig. 5. Robot trajectory in presence of obstacles.

IV. SIMULATION RESULTS

To estimate the relevance of the proposed control archi-
tecture, it is proposed to simulate a mobile robot navigation
to reach a target in presence of obstacles. Simulation is
made twice. In the first case, the used control law has a
constant gain during all the navigation (k1 = 1) (there is no
gain adjustment in the switch moments). Switching control
indicating the active controller can be seen in figure (Fig. 4).

In the second case, the proposed control architecture is
implemented on the robot. In the two cases, the robot
reaches its target while avoiding obstacles. However, by
comparing Tmax1, Tmax2 which are convergence times for
obstacle avoidance controller in figures (Fig. 4 ) and (Fig. 6),
it is noticed that the Lyapunov function of the proposed
architecture of control converges faster than the architecture
with a constant gain. Evolution of the gain k1 is given in
the same figure (Fig. 6). Note that attraction to the target
controller converges fastly in the two cases even if in the
proposed architecture, we can see that it is slightly faster.

V. CONCLUSION

A control architecture based on hybrid systems has been
proposed. With these systems, it is possible to divide the
control architecture into a set of elementary controllers to
examine each controller separately. Even if each individual
controller is stable, global stability is not necessarily guaran-
teed. In this paper, the overall stability was established thanks
to a single Lyapunov function. The proposed idea is to adjust
the gain of the control law in order to accelerate convergence
of the Common Lyapunov Function CLF after each switch.
The simulation results have confirmed the theoretical study.
In future works, it is proposed to introduce the gain k1 as a
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Fig. 6. Variation of the Lyapunov function and the gain k1 with the
proposed architecture of control.

dynamical gain. Thus, once the lyapunov function converges,
it returns to its nominal value without disturbing the control.
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