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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Foreword
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D 
reconstruction, Modeling and Control of mobile robot, Deep learning applied in autonomous driving, Deep 
reinforcement learning applied in intelligent vehicles. 

Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12, the fifth edition PPNIV'13 was in 
Vilamoura (over 135 attendees) during IROS'13, the sixth edition PPNIV'14 was in Chicago (over 100 attendees) 
during IROS14, the seventh edition PPNIV'15 was in Hamburg (over 150 attendees) during IROS15, the heigth 
edition PPNIV'16 was in Rio de Janeiro (over 100 attendees) during ITSC16, the nineth edition PPNIV17 was in 
Vancouver during IROS17 (over 170 attendees), the 10th edition PPNIV’18 was in Madrid during IROS18 (over 
350 attendees), and this 11th edition PPNIV’19 has gathered over 300 attendees. 

In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), MEPPC08 in 
Nice during IROS’08 (more than 60 registered people), SNODE'09 in Kobe during ICRA'09 (around 70 
attendees), RITS'10 in Anchrorage during ICRA'10 (around 35 attendees),  PNAVHE11 in San Francisco during 
the last IROS11 (around 50 attendees), and the last one WMEPC14 in Hong Kong during the last ICRA14 (around 
65 attendees), 

This workshop is composed with 4 invited talks and 6 selected papers. One round table has gathered specialist in 
Human vehicle interaction. Four sessions have been organized: 

Session I: Machine & Deep Learning Session III: Planning & Navigation 
Session II:  Perception & Situation awareness Session IV: Human vehicle interaction 
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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 

Christian Laugier, Philippe Martinet, Marcelo Ang, Miguel Angel Sotelo and Christoph Stiller 
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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session I 

Machine & Deep Learning 

Keynote speaker: Roland Meertens (AID, Munich, Germany) 
Title: The road towards perception for autonomous driving: methods, challenges, and 
the data required

Title: Transformation-adversarial network for road detection in LIDAR rings, and 
model-free evidential road grid mapping 
Authors: E. Cappelier, F. Davoine, V. Cherfaoui, Y. Li 

Title:  End-to-End Deep Neural Network Design for Short-term Path Planning 
Authors: M.Q. Dao, D. Lanza, V. Frémont 
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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session I 

Keynote speaker: Roland Meertens
(AID, Munich, Germany) 

The road towards perception for autonomous driving: 
methods, challenges, and the data required 

Abstract: Self-driving cars are expected to make a big impact on our daily lives within a 
couple of years. However, first we should solve the most interesting Artificial Intelligence 
(AI) problem of this century: perception. We will look at the problem of perception for 
autonomous vehicles, the sensors which are used to solve this problem, and the methods 
which are currently state of the art. We will also take a look at the available data: a crucial 
thing we need to teach machines about the world. 

Biograpghy: Roland is developing machine learning solutions for the perception problem 
of autonomous vehicles  at AID- Autonomous Intelligent Driving in Munich. He works 
with lidar and camera data to solve challenges such as 3D bounding box detection, semantic 
segmentation, and localisation. Previously he worked on deep learning approaches for 
natural language processing (NLP) problems at Infor, computer vision for drones as a 
researcher at the TU Delft, and social robotics at SpirOps.
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The road towards perception: 
Methods, challenges, and data 
required

Roland Meertens

Topics of today

11/6/2019 AID PPT Master 2019 2

Why do self-driving cars matter to humans and industries? What is AID doing with self-driving cars?
Generic introduction into sensors and methods
3D object detection – progress, methods, challenges I think are interesting
The importance of having the right data for autonomous vehicles – neural networks are data-hungry!
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Who is presenting?

11/6/2019 AID Company presentation 2019 3

Roland Meertens

Studied artificial intelligence in the Netherlands
Worked on autonomous drones at the TU Delft
Working in the perception area on ML algorithms
Roland.meertens@aid-driving.eu

Potential
from

autonomous
driving

Individual mobility
for all

Gain valuable time

Reduce/ avoid road 
accidents

Increase energy
efficiency

Reduced traffic 
congestion

More efficient parking
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ROADMAP FOR AUTONOMOUS DRIVING

06.11.2019 AI for Autonomous Driving 5

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

L0 - Warnings only

L1 - Steering OR acceleration
ACC

L2 - Steering AND acceleration
Tesla Autopilot

L3 - Driver can be inattentive
Audi A8

L4 - No driver needed in specific scenarios
AID, Waymo

L5 - No driver needed
AID, Waymo

Series cars

ROADMAP FOR AUTONOMOUS DRIVING

06.11.2019 AI for Autonomous Driving 6

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Transportation Taxi Fleet

Series cars

L0 - Warnings only

L1 - Steering OR acceleration
ACC

L2 - Steering AND acceleration
Tesla Autopilot

L3 - Driver can be inattentive
Audi A8

L4 - No driver needed in specific scenarios
AID, Waymo

L5 - No driver needed
AID, Waymo
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11/6/2019 Testing United 2019, Vienna 7

Different approaches towards autonomy

Assiste
d Automated Autonomous

…

11/6/2019 AID Company presentation 2019 8

5 levels of autonomy for self-driving cars
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11/6/2019 AID Company presentation 2019 9

AID‘s focus is level 4 & 5 in urban environments only
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The future of mobility
Ownership

Future vehicles

Autonomous | Electrified | 
Connected

Mobility-as-a-service
(MaaS)

Future mobility

Driverless | Fully automated 
delivery |

Electrified | Connected
Today`s vehicle

SUV/CUV trend | ICE/hybrid

Todays private cars

Sharing and mobility on demand

Shared | Electrified | Connected

Shared mobility

Focus of 
AID

D
riv

er
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ss
H

um
an

Vehicle 
control

Business model innovation
Traditional (owned) Revolutionary (shared)

Source: together 2025
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AID was launched in March 2017 
as 100% subsidiary of AUDI AG. 
We are located in the center of 
Munich.

01

Our vision is to create a future where 
Autonomous Driving is embraced by 
all and not just the few.

03

Our mission is to build the universal 
autonomous driving system that 
improves the lives of millions of 
people.

02

AID Focuses on fast-tracking the development of autonomous vehicles 
in urban areas 

11/6/2019 AID PPT Master 2019 12

AID – a true startup atmosphere in the heart of Munich

At AID, we believe that Autonomous Driving needs to work for 
everyone, and we want to ensure that it benefits all people, not 
just the few.
We are aware of the enormous challenge and responsibility in 
creating the standard system for Autonomous Driving. 
That is why we are leading a more human autonomous driving 
company.

> 220 people > 35 
nationalities   > 36 years average 
age
English speaking company

11th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 4th, 2019 

 
PPNIV'19 14



11/6/2019 AID PPT Master 2019 13

Our car fleet
Our fleet or VW eGolfs and Audi e-trons drive daily 
in the city of Munich and in specific areas within 
one of Audi´s plant.
We have the unique advantage of belonging to the 
world´s biggest OEM (VW Group), which gives us 
access to technical knowledge and scalability, but 
having at the same time the agility of a start-up.

11/6/2019 AID Company presentation 2019 14

Video of self-driving behavior in an Audi factory
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The sensors of autonomous driving

11/6/2019 AID PPT Master 2019 16

Sensor abilities & failure modes

Sensor redundancy is crucial to overcome individual failure modes. Radar is most robust but application is 
limited due to low resolution.

Source: 1 - 905nm lidar 2 - non-FMCW lidar

Flat
texture Darkness

Low
reflectivity Fog

Dust,
Dirt Velocity Resolution

Camera

Lidar

1 2

Radar
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LiDAR

11/6/2019 AID Company presentation 2019 17

Sends out a light pulse and measures the time till it 
gets back
Spins around to measure distances all around the 
vehicle

Measures distances with the speed of light

Audi A8: ready for L3 autonomy

11/6/2019 State of the Art in Autonomous Driving 18

Sensor areas for environment observation

Umgebungskamer
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360° environment 
camera

Long-Range-
Radar

Long range radar

Laserscan
ner

Laser scanner

Front-
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Front camera

Ultraschallsenso
ren

Ultra sonic sensor

Umgebungskamer
a

360° environment 
camera

Umgebungskamer
a
360° environment 
camera

Ultraschallsenso
ren
Ultra sonic sensors

Ultraschallsensoren 
seitlich
Side ultra sonic sensors

Mid-Range-
Radar
Mid range radar

Mid-Range-
Radar
Mid range radarUltraschallsensoren 
seitlich
Side ultra sonic sensors

Umgebungskamer
a

360° environment 
camera
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19

AD Sensor Set: LIDAR
EXEMPLARY, 180° AND 360° FOV

06.11.2019 AI for Autonomous Driving

06.11.2019 AI for Autonomous Driving 20

AD Sensor Set: CAMERA
EXEMPLARY 60°, 120° AND 180° FOV
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06.11.2019 AI for Autonomous Driving 21

AD Sensor Set: RAdar
EXEMPLARY, 145° AND 15° FOV

Components of autonomous driving
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Object Detection Localization & Mapping

Behaviour Prediction Trajectory Planning

Core Technologies for Self-Driving Vehicles

24

Safety Path – collision avoidance only – no AI

Compare Compare

Compare

Object
detection

Freespa
ce
detection

Fusion

A B

Interpretatio
n

Predictio
n

Trajector
y

Planning

Control
Lidar

Camera

Rada
r

In the car: taking a modular approach
(note: we don’t do end-to-end learning, might prove useful in the future)

11/6/2019 Testing United 2019, Vienna
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Example of subcomponents

11/6/2019 AID Company presentation 2019 25

3D Object detection

11/6/2019 AID Company presentation 2019 26
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11/6/2019 AID Company presentation 2019 27

Object detection – progress in 2019

11/6/2019 AID Company presentation 2019 28

Object detection – progress 2019

Many improvements in 3D object detection 
methods
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11/6/2019 AID Company presentation 2019 29

Object detection – progress 2019

Many improvements in 3D object detection 
methods
But still a long way to go for pedestrians. 

Representing input 3D bounding box detection

11/6/2019 AID Company presentation 2019 30

Lidar measurements can be seen as 
Unordered set of measurements (e.g. pointnet)
Birds—eye view (e.g. mv3d / pixor)
In terms of lidar sensor intrinsics (lidar front view)
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Representing input 3D bounding box detection – BEV projection

11/6/2019 AID PPT Master 2019 31

Gives cars the same shape and size
Add any constructed features? (e.g. density in MV3D (X. Chen, H. Ma, 
J. Wan, B. Li and T. Xi), map-information in HDNet (Bin Yang, Ming 
Liang, Raquel Urtasun))
Hard to distinguish in lidar-only space between poles and pedestrians

Representing input 3D bounding box detection – Voxels / Pillars

11/6/2019 AID PPT Master 2019 32

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. Yin Zhou, Oncel Tuzel
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Representing input 3D bounding box detection – Frustums

11/6/2019 AID PPT Master 2019 33

e.g. Frustum PointNets for 3D Object Detection from RGB-D Data (Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, Leonidas J. Guibas) 
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection (Zhixin Wang, Kui Jia) -> presented at 
IROS 2019 ;)

11/6/2019 AID Company presentation 2019 34

Where to fuse data for autonomous driving

Object detection FusionImage data

Lidar Data

Radar Data Object detection

Object detection

“Traditional approach”
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11/6/2019 AID Company presentation 2019 35

Where to fuse data for autonomous driving

Object detectionImage data

Lidar Data

Radar Data

RGB-D image? 
XYZIRGB? Point 
cloud?

11/6/2019 AID Company presentation 2019 36

Where to fuse data for autonomous driving

Object detection

Image data

Lidar Data

Radar Data Features

Features

Features

Network trained 
on auxiliary task

Fused representation

Multi-View 3D Object Detection Network for Autonomous Driving 
Xiaozhi Chen , Huimin Ma , Ji Wan , Bo Li , Tian Xia
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11/6/2019 AID Company presentation 2019 37

Where to fuse data for autonomous driving

Object detection

Image data

Lidar Data

Radar Data Features

Features

Features

Network trained 
on auxiliary task

Fused representation

MVX-Net: Multimodal VoxelNet for 3D Object Detection
Vishwanath A. Sindagi , Yin Zhou and Oncel Tuzel

Auxiliary tasks and domain adaptation / simulation

11/6/2019 AID Company presentation 2019 38

Improving your performance with cheap(er) data

Neural networks are still data-hungry
Domain adaptation is a hot and difficult topic. For 
neural networks it’s not known what features 
should be in a simulation environment to transfer 
well to the real world. 

Multi-Task Multi-Sensor Fusion for 3D Object 
Detection Ming Liang, Bin Yang, Yun Chen, Rui Hu, 
Raquel Urtasun
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Closing the simulation gap

11/6/2019 AID PPT Master 2019 39

Very useful for finding the limit of your algorithm in 
a fixed environment
Varying results in academic literature on how to 
make simulated data useful. 

A 3D point cloud as seen through the eyes of Carla

Domain adaptation is a hard task

11/6/2019 AID PPT Master 2019 40

Is an accurate geometry of cars important? 
Do we have to model intensity of lidar? 
And should car-windows return lidar points?
And should windows reflect objects and place them 
inside buildings? 
Should trees in simulation move/sway to solve 
problems with trees becoming dynamic objects in 
the real world? 
How about different seasons?

GANs can be useful to create more hard-to-obtain 
data, but it’s hard to generate data which broadens 
the perception capabilities of networks in a 
reasonable way. 

What features in the world are important?
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Domain adaptation

11/6/2019 AID PPT Master 2019 41

Learning to Drive from Simulation without Real 
World Labels Alex Bewley, Jessica Rigley, Yuxuan
Liu, Jeffrey Hawke, Richard Shen, Vinh-Dieu Lam, 
Alex Kendall
SqueezeSegV2: Improved Model Structure and 
Unsupervised Domain Adaptation for Road-Object 
Segmentation from a LiDAR Point Cloud
Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu
Yue, Kurt Keutzer

Creating a common latent space

11/6/2019 AID Company presentation 2019 42

Estimating, evaluating, and passing along uncertainty across 
components is still an unsolved problem

Safety Path – collision avoidance only – no AI
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Sampling-free Epistemic Uncertainty
Estimation Using Approximated Variance 

Propagation
Huseyin Coskun1Janis Postels1,2

3Google2Autonomous Intelligent Driving GmbH1Technical University Munich

Federico Tombari1,3

Nassir Navab1Francesco Ferroni2

Types of Uncertainty

Epistemicvs

Model uncertainty
Can be explained away by data

?
[1] C. M. Bishop. “Mixture Density Networks.” NCRG/94/004, 1994.

Aleatoric

Inherent to the data
Unavoidable

 Mixture Density Networks [1]
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Epistemic Uncertainty for Large Neural Networks
Stochastic regularization ~ Bayesian Neural Network [1][2][3]

[1] Y. Gal. “Dropout as a bayesian approximation: Representing model uncertainty in deep learning.” ICML, 2016.

[2] D. P. Kingma. “Variational dropout and the local reparameterization trick.” NIPS, 2015. 

[3] S. Wang. “Fast dropout training.” ICML, 2013.

Approach: Train Neural Network with stochastic regularization 
and keep stochastic process at inference. 

Epistemic Uncertainty for Large Neural Networks
Stochastic regularization ~ Bayesian Neural Network [1][2][3]

[1] Y. Gal. “Dropout as a bayesian approximation: Representing model uncertainty in deep learning.” ICML, 2016.

[2] D. P. Kingma. “Variational dropout and the local reparameterization trick.” NIPS, 2015. 

[3] S. Wang. “Fast dropout training.” ICML, 2013.

Approach: Train Neural Network with stochastic regularization 
and keep stochastic process at inference. 

 Requires sampling during inference time
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Solution: Propagate Uncertainties Using Error Propagation

Noise layer (e.g. dropout) places
distribution over activations

 Mean propagated by normal forward 
propagation
Covariance propagated using error
propagation

Results: Semantic Segmentation with 
Bayesian Segnet [1]

[1] A. Kendall. “Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding.” BMVC, 2017.

[2] Y. Gal. “Dropout as a bayesian approximation: Representing model uncertainty in deep learning.” ICML, 2016.

Original Image Ground Truth MC Dropout [2] Our
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Results: Semantic Segmentation with 
Bayesian Segnet [1]

[1] A. Kendall. “Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding.” BMVC, 2017.

Runtime: Uncertainty calibration:

11/6/2019 AID Company presentation 2019 50

Estimating, evaluating, and passing along uncertainty across 
components is still an unsolved problem

Safety Path – collision avoidance only – no AI
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The importance of collecting the right 
data: the long-tail distribution of situations

The importance of collecting the right 
data: the long-tail distribution of situations
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Public datasets

06.11.2019 AI for Autonomous Driving 53

Oxford robotcar
Cityscapes
Kitti
Daimler pedestrian benchmark
Mapillary vistas
Udacity

BEFORE JANUARY 2018

Public datasets

06.11.2019 AI for Autonomous Driving 54

Berkeley DeepDrive
Apolloscape
Comma 2k19
Lyft
Nuscenes
Semantic KITTI
Unsupervised LLamas

AFTER JANUARY 2018: 
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It’s not about the amount of data!
Address the long-tail distribution of situations

Addressing the long-tail distribution of situations

11/6/2019 AID Company presentation 2019 56

The famous KITTI dataset has many cars, but barely any cyclists
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The long-tail distribution of traffic situations

06.11.2019 AI for Autonomous Driving 57

Not only presence is important: the context in which we see the class is also important

Example of rare data

06.11.2019 AI for Autonomous Driving 58
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Understanding situation specific model 
performance

Are missed
close pixels
really as bad

as distant
ones?

Popular Machine Learning KPIs aren‘t representing real-world
performance well

06.11.2019 AI for Autonomous Driving 60

Ground Truth

Car Truck Human Road
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Truck

Human

Road

Classification vs Safety

Ground Truth

Car Truck Human Road

P
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n
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Truck
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Road

Semantic Segmentation vs. Distance Object Detection: Relevance in traffic
context

Safety criticality

Consider safety impact Bin over distance Consider Time-To-Collision (TTC) and 
Closest In-Path Vehicle (CIPV)

Parking cars
are of low
relevance

F1 Score Intersection over Union (IoU) mAP, F1 Score

Better

Comm
on

KPIs
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Model performance depends on environment conditions

06.11.2019 AI for Autonomous Driving 61

Scenarios that are
underrepresented in the
training data cause low

model performance.

Model performance can be
mapped to ODD attributes
to detect these scenarios.

Targeted data collection
provide mitigation.

26% 36% 1% 12% 82%

Wet street Crossing Tunnel Construction site Traffic participants
close

Tag distribution over training dataset

True False

Wet street Crossing Tunnel Construction Site Traffic participants
close

F1 Score distribution over tag presence

True False

Using active learning to identify valuable 
data
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Active learning: knowing where you are weak while selecting data

06.11.2019 AI for Autonomous Driving 63

Active Learning: 
Mechanism that controls training dataset extension according to model performance

For scenarios where model performance is low:
Collect data in the field or simulate corresponding environments

Labeling Training

Assess
model

performanc
e

Active
Learning

Data
collection

Active learning via trained Auto-Tagger

06.11.2019 AI for Autonomous Driving 64

Trained Auto-
taggerData Collection Active Learning 

Selection

Under-
represented

Sample
Training
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The speed at which your AI can adapt will 
be an important factor for autonomous 
driving

The human brain can quickly adapt to new situations

11/6/2019 AID PPT Master 2019 66

Traffic changes over time, and is even seasonal
A self-driving car should be able to adapt to new 
objects appearing over time
A self-driving car should be able to adapt to 
unknown objects

AI should do so too
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AI needs data to adapt to new situations

11/6/2019 AID PPT Master 2019 67

Perceive weird object
Label this object
Train a new model with new data
Verify that this model is abiding everything you 
expect
Deploy a new model

The loop from observation to deployment should be 
as short as possible

Conclusion

11/6/2019 AID PPT Master 2019 68

Self-driving cars will improve the lives of 
humans (and allow dogs to transport 
themselves to the park)
Lidar, camera and radar are the main sensors 
for self-driving cars, and each of them is 
important.
Many advances in methods for 3D bounding 
box detection, but many interesting 
challenges are remaining.
Data is important for autonomous vehicles, 
and adaptability of your AI is an important 
factor. 
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Transformation-adversarial network for road detection in LIDAR rings,
and model-free evidential road grid mapping

Edouard CAPELLIER1,2, Franck DAVOINE2, Veronique CHERFAOUI2, You LI1

Abstract— We propose a deep learning approch to perform
road-detection in LIDAR scans, at the point level. Instead of
processing a full LIDAR point-cloud, LIDAR rings can be
processed individually. To account for the geometrical diversity
among LIDAR rings, an homothety rescaling factor can be
predicted during the classification, to realign all the LIDAR
rings and facilitate the training. This scale factor is learnt
in a semi-supervised fashion. A performant classification can
then be achieved with a relatively simple system. Furthermore,
evidential mass values can be generated for each point from
an observation of the conflict at the output of the network,
which enables the classification results to be fused in evidential
grids. Experiments are done on real-life LIDAR scans that
were labelled from a lane-level centimetric map, to evaluate
the classification peformances.

I. INTRODUCTION

LIDAR sensors are traditionally used within occupancy

grid mapping frameworks, to detect obstacles and infer the

traversability of the environment. Evidential occupancy grid

mapping frameworks usually assume that the ground is fully

traversable, and evaluate the occupancy of cells from strong

geometrical assumptions [1]–[3].

Yet, the applicability of such systems, in the context of

autonomous driving, can be limited. First of all, they might

fail to generate appropriate results, when the geometrical

model they are based on is not satisfied anymore, which

is likely to occur in complex urban areas. For example,

the flat world assumption is not satisfied anymore at a

speed bump. Then, areas that are traversable by an urban

autonomous vehicle usually belong to the road: modelling

the ground is thus not sufficient in most driving situations.

Road detection in LIDAR scans is thus crucial, when aiming

to implement evidential occupancy grid mapping algorithms

in autonomous systems, that are intended to drive in urban

areas. The use of machine learning could leverage the need

for strong geometrical assumptions, as the system could

be able to learn how to behave on edge-cases (speed-

bumps, for instance), instead of relying on strong geometrical

assumptions.

Inspired by the recent PointNet architecture [4] and novel

advances in evidential classification [5], we propose to rely

on a neural network that processes LIDAR rings individually,

and can be used to output evidential mass values for each

LIDAR point. Being able to represent the output of the neural

*This work is supported by a CIFRE fellowship from Renault S.A.S
1Renault S.A.S, 1 av. du Golf, 78288 Guyancourt, France. Contact:

name.surname@renault.com
2Sorbonne Universités, Université de technologie de Compiègne, CNRS,

HeuDiaSyc, Centre de recherche Royallieu, CS 60319, 60 203 Compiegne
cedex, France. Contact: name.surname@hds.utc.fr

Fig. 1: Example of classification result. The grey ego-vehicle drives
towards the road exit. The purpler a point is, the more likely it is
to be on the road.

network as evidential mass values is particularly valuable

when trying to understand what was learnt, since the total

amount of knowledge available at each position can be

quantified. Moreoever, the evidential outputs of the network

can directly be used in a model-free evidential grid mapping

framework.

The paper is organized as follows: in Section II, we

propose a short litterature review ; Section III presents how

evidential mass values can be obtained from a neural network

that was trained on coarse labels ; Section IV presents the

ring-level neural network that we propose to perform road

detection ; Section V presents the data collection and evalu-

ation procedures used to train and evaluate the classifier and

finally, Section VI presents a simple model-free evidential

grid mapping system relying on the proposed classifier.

II. LITTERATURE REVIEW

A. Evidential grid mapping from LIDAR scans

Yu et al. [1] originally proposed an evidential sensor model

to build polar occupancy grids from LIDAR scans. Based

on the angular resolution and the beam divergence of the

sensor, a polar missed detection rate was estimated, and a

false alarm rate was empirically defined. From a ground-

detection step relying on a flat-world assumption, the belief

in the occupancy of each grid cell was then evaluated over

time, according to an evidential framework. Such evidential

polar grids however have to be interpolated, and mapped

into a Cartesian coordinate system to perform fusion over

time, at the cost of a loss in the correctness of the model.

We ourselves proposed in [2] to evaluate a cartesian missed

detection rate, to tackle this limitation while relying again on

a ground detection algorithm and a flat world assumption. We
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however observed that such strong geometrical assumptions

lack of flexibility, and are not always satisfied in practice.

Simple ground detection also often fails to properly capture

the actual drivable area. A road detection step, alongside a

more flexible model, are thus needed to generate evidential

grids from LIDAR scans in a more robust fashion.

B. Road detection from LIDAR scans

State-of-the-art approaches for road detection in LIDAR

scans rely on image processing techniques. Fernandes et

al. [6] proposed to project LIDAR points into a 2D image

plane, to upsample them, and to detect the road in this image

plane via an histogram similarity measure. Caltagirone et

al. [7] proposed to project LIDAR points into a 2D sparse

feature grid corresponding to a bird’s eye view, and to train a

convolutional neural network to predict a dense road region

from this sparse representation. Lyu et al. [8] proposed to

train a neural network on range images generated from the

spherical projection of LIDAR scans, and to fit a polygon

representing a dense drivable area on the predicted road

points. Although those approaches are currently the best

performing LIDAR-only road-detection approaches on the

KITTI dataset, they all aim at predicting a dense road area

from a sparse LIDAR scan, and thus rely on upsampling. All

those approaches then predict the presence of road on loca-

tions where no actual LIDAR measurements were actually

available, which is an undesirable behavior for a LIDAR-only

road detection algorithm. Indeed, gaps or small obstacles

could be present but remain unobserved due to the sparsity

of a LIDAR sensor, in areas where those agorithms would

predict the presence of road. Moreover, due to the limitations

of the KITTI dataset, in which the road is only labelled in a

front camera view, those systems do not detect the road on

complete LIDAR scans. Point-level road detection should be

performed in complete LIDAR scans, so as to only represent

information in areas that are actually observed.

C. PointNet: Machine Learning on raw point clouds

The recent PointNet architecture, introduced by Qi et

al. [4], processes vectors of raw point-clouds, in which

the point corrdinates are directly stored. PointNet applies

a multi-layer perceptron to each individual point, and pro-

duces a feature vector describing the whole point-cloud by

applying a global max operator on the features extracted

from each point. Althought simple, this solution has proven

to approach, or overpass, state-of-the-art performances on

several perception tasks relying on point-clouds. It was

extended in [9], by extracting local features in a point-

cloud at several contextual scales, based on the metric

distances between points. The resulting system outperforms

the original PointNet architecture, at the cost of an increased

complexity and inference time. However, PointNet archi-

tectures suffer from several drawbacks. First of all, they

require a fixed number of input points. Secondly, PointNets

usually expect normalized, relatively dense and constrained

inputs. This makes the architecture improper when aiming to

process large-scale LIDAR scans [10], and often requires to

split large point-clouds into individually processed voxels.

Processing LIDAR points at the ring level could however

leverage these limitations, as LIDAR rings are dense. Yet, a

proper grid mapping framework relying on such a point-level

classification is still to be defined. Especially, a proper way

to represent the outputs of such a classifier into an evidential

framework is still to be defined.

III. EVIDENTIAL REINTERPRETATION OF

BINARY GLR CLASSIFIERS

T. Denoeux, in [5], proposed to reinterpret generalized

logistic regression (GLR) classifiers as performing a fusion

of evidential mass functions. With such a view, it is possible

to construct evidential mass values, from the weights at the

output of a neural network. Thanks to this technique, it

becomes trivial to generate and accumulate evidential road

detection results into an evidential 2D grid from a classifier,

without relying on any explicit geometrical model. This is

what we call model-free evidential road grid mapping.
Let a binary classification problem with X = (x1, ..., xd),

a d-dimensional input vector, and Y ∈ Θ = {θ,¬θ} a

class variable. Let p1(x) be the probability that Y = θ
according to the fact that X = x. Let w be the output of

a binary logistic regression classifier, trained to solve the

aforementioned classification problem ; p1(x) is such that:

p1(x) = S(w) = S(

d∑
j=1

βjφj(xc) + β0) (1)

with S being the sigmoid function, and the β values being

usually learnt alongside those of the potentially non-linear

φi mappings. In Eq. 1, w exactly corresponds to the output

of a deep neural network trained as a binary GLR classifier,

with xc being its input. There exist αj values such that:

d∑
j=1

αj = β0 (2)

w =
d∑

j=1

wj =
d∑

j=1

(βjφj(xc) + αj) (3)

Each wj can then be seen as a piece of evidence towards θ
or ¬θ, depending on its sign. Let w+

j be the positive part

of wj , and let w−
j be its negative part. Let w+ =

∑
w+

j ,

w− =
∑

w−
j . An evidential mass function mLR can be

generated as follows:

mLR = {θ}w+ ⊕ {¬θ}w−
(4)

This means that any binary GLR classifier can be seen as a

fusion of simple mass functions, that can be derived from

the parameters of the final linear layer of the classifier.

However, the αj values in Eq. 2 have to be estimated. Let

α = (αi, ...αd). T. Denoeux proposed to select the α vector

that maximize the sum of the mLR(Θ) mass values over the

training set, so as to get the most uncertain and cautious

solution. This leads to the following minimization problem:

minf(α) =
n∑

i=1

d∑
j=1

(βjφj(xi) + αj)
2

(5)
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with {(xi, yi)}ni=1 being the training dataset.

An exact solution to this minimization problem exists [5],

but it requires to perform an additional post-processing step

after the training, and relies on the assumption that the

parameters obtained after the training are reliable. When

working with unperfect or coarse labels, an approximate

solution is thus needed. We observed in [11] that an approx-

imate solution to the minimization problem in Eq. 5 could

be obtained directly during the training, by considering the

α vector as the bias values of an Instance-Normalization

layer present at the output of the network. Let υ(xc) =
(υ1(xc), ..., υd(xc)) be the mapping modelled by all the

consecutive layers of the classifier but the last one ; let υj
be the mean value of the υj function on the training set, and

σ(υj)
2 its corresponding variance. Then, if it is assumed

that Instance-Normalization is used as the final layer of the

network, Eq. 5 becomes:

minf(α) =

n∑
i=1

d∑
j=1

((βj
υj(xc)− υj√
σ(υj)2 + ε

) +

d∑
j=1

αj)
2

(6)

After development, the following expression is obtained:

minf(α) = n

d∑
j=1

β2
j + n

d∑
j=1

α2
j (7)

By simply applying L2-regularization on the linear param-

eters of the final layer, this expression will be minimized

during the training. The network can then be trained to

generate relevant evidential mass values, even when the

network is optimized on coarse labels.

IV. TRANSFORMATION-ADVERSARIAL

NETWORK FOR POINT-LEVEL ROAD DETECTION

IN LIDAR RINGS

A. Ring-level PointNet

Typically, dense LIDAR sensors rely on stacked lasers

that individually sweep the scene. A LIDAR ring represents

a set of points that is obtained after the sweep of the

environment by a single laser of a LIDAR. To detect the

road in LIDAR scans, without having to transform the raw

points into another representation, a classifier inspired by

PointNet can be used. To leverage the limitations of PointNet

that were exposed in Sec. II, the processing is done at the

ring level. Indeed, the maximum number of points that a

LIDAR ring can include can be computed from the angular

resolution of the LIDAR. Then, contrary to what was done

in [4] and [10], no sampling of the point-cloud is needed.

Moreover, LIDAR rings are often dense, especially at short

range, since each laser sweeps the whole scene, which would

facilitate the reasoning of a PointNet-like network. And in

the event of missing points, the input vector can typically

be padded with an already present point, since the point-

cloud wise max-pooling operation used in PointNet can filter

duplicate point features. Finally, the maximum number of

points in each sweep is relatively small, which means that

the LIDAR rings will be easily processed in parallel.

However, LIDAR rings vary significatively among each

others: a ring acquired by a top laser and a bottom laser

will include points that were acquired at very different

distances. A training scheme, inspired by the recent successes

of generative-adversarial networks (GAN) in the image do-

main [12], was proposed to cope with this issue.

B. Transformation-adversarial network for LIDAR rings

GANs rely on the conjunction of two alternatively trained

systems. The first one, called the generator, is optimized

to generate artificial samples that are as realistic as pos-

sible. The second one, called the discriminator, is trained

to discriminate real and artificial samples. The two systems

are competing against each other: the generator aims at

fooling the discriminator, and the discriminator aims at

detecting samples generated by the generator. Similarly, we

propose a Transformation-adversarial network, or TAdNet,

composed of a Transformation network, and a Classifica-

tion/Discrimination network. In the original PointNet, T-Nets

predict affine transformation matrices applied to the whole

input cloud, and to intermediate features extracted by point-

level MLPs. Those T-Nets are optimized during the training,

alongside the other parameters of the network.

The Transformation network that we propose, which also

applies a transformation predicted by a T-Net to the input,

is optimized separately from the rest of the system. To

cope with the variability among LIDAR rings, the Trans-

formation network also includes an H-Net. This H-Net, or

homothety network, processes the transformed point-cloud

obtained from the transformation predicted by the T-Net,

and predicts an explicit rescaling factor, that is applied

to the coordinates of all the points. The input points are

represented by their Cartesian coordinates (x,y,z), spherical

coordinates (ρ,φ,θ), and their intensity. To account for the

risk of redundancy among the point features, the φ and

θ angles are the uncorrected azimuth and zenith at which

the point was acquired, while the Cartesian coordinates are

obtained after correction. Let h be the scale predicted by the

H-Net. Then, the coordinates of the input points are rescaled

as follows: x∗ = hx, y∗ = hy, z∗ = hz, ρ∗ = hρ. All the

other features are left unchanged.

The Transformation network can then learn to remap all

the LIDAR rings into a constrained range, that is suitable

for the road classification task. We assumed that it should be

difficult to predict the ring ID of properly remapped and

constrained LIDAR rings. The Transformation network is

thus trained alongside a Classification/Discrimination net-

work, and aims at generating similar LIDAR rings. This

Classification/Discrimination network is in fact a multi-task

PointNet, whithout any initial T-Net. It has to both perform

road detection among the LIDAR points, and predict the ID

of the LIDAR ring that it processes. This ring ID is predicted

from the output of a small Pointnet-like subnetwork that

is fed with the vector of concatenated point-level features

and cloud-level features, that can be obtained after the max-

pooling operation that every PointNet-like network uses.

Following the results in Eq. 7, Instance-Normalization is
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Fig. 2: Transformation-adversarial network for road-detection in LIDAR scans

used on the outputs used for road detection. The whole

system is depicted in Fig. 2.

C. Training procedure

A PointNet-like system is typically trained with a multi-

task loss. In the context of this study, the problem is point-

level road detection in LIDAR rings. The loss chosen for

this task, noted Lce was the classical cross-entropy loss. The

second component of the loss used for the training was a

geometrical regularization loss. Let A be the transforma-

tion matrix predicted by the T-Net inside the Classifica-

tion/Transformation network. This 64 by 64 matrix is more

difficult to optimize than the simple transformation matrix

predicted by the first T-Net, but should be as orthogonal as

possible. Then, the loss on A to minimize, noted Lgeo, is:

Lgeo(A) = ||I −AAT ||2 (8)

Finally, the ring ID prediction error is again evaluated from

the cross-entropy loss, calculated from the actual ring ID. We

note this loss Lring . Let LTr, the loss used to optimize the

Transformation network, and LCD, the loss used to optimize

the Classification/Discrimination network. For each ring, let

Proad, Yroad, PRing and YRing be, respectively, the point-

wise predicted probability that each point belongs to the road,

the corresponding road labels, the predicted ring ID and the

corresponding ring label. Then:

LCD = λroadLce(Yroad, Proad)

+ λringLce(YRing, PRing)

+ λgeoLgeo(A)

LTr = λroadLce(Yroad, Proad)

− λringLce(YRing, PRing)

+ λgeoLgeo(A)

The whole system is trained thanks to the algorithm 1. To

facilitate the training, UOut [13] was used. Originally, UOut

was proposed because it was observed that Dropout shifts

the mean and standard deviations of the features, which is

not desirable when using Batch-Normalization, or Instance-

Normalization. Uout, on the other hand, marginally affects

those statistics. As Instance-Normalization is used on the

output features of the network, due to the results of Eq. 7,

UOut is a reasonnable choice to regularize the model.

Algorithm 1 Training of the proposed system

Transformation network: T ;
Classification/Discrimination network: CD ;
N training rings are available ;
for e epochs do

for N/n iterations do
Sample n batches (b0, .., bt) from the training set
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i )
Update CD from LCD

end for
for i in range(n) do

b∗i = T(bi)
RoadClassif, RingID = CD(b∗i )
Update T from LTr

end for
end for

end for

V. EXPERIMENTS AND EVALUATION OF THE

CLASSIFICATION PERFORMANCES

A. Automatic labelling of a LIDAR dataset from a lane-level
map

To properly evaluate the system, a dedicated LIDAR

dataset was needed. No open-source LIDAR dataset includ-

ing 360° point-level road labels was available when conduct-

ing this study. An autonomous perception platform equipped

with a Velodyne VLP-32C running at 10 Hz was thus used

to collect raw LIDAR scans in Guyancourt, France, in order

to create a dataset with point-level road labels in LIDAR

scans. Each LIDAR ring was composed of a maximum of

1800 points. The labelling was done automatically thanks to

a pre-existing lane-level centimetric map, as shown in Fig 3.

The data collection vehicle also included a Trimble BX940

inertial positioning system coupled with an RTK Satinfo

modem, for localization.

A ground detection algorithm [14] was used to label

obvious obstacles with a probability of being road-points

equal to 0. The detected ground-points were projected into

the map plane, for labelling. Following [15], the localization

error was assumed to follow a zero-mean Gaussian model.

Covariance matrices corresponding to the estimated position

were provided by the localization system. The variance of
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(a) Raw point-cloud, and the cor-
responding map available at the
recording position. Green points
belong to the pre-detected ground.

(b) Resulting point-cloud. Red
points are labelled as obstacles ;
the purpler a point is, the most
likely of being a road point it is

Fig. 3: Automatic labelling procedure of a LIDAR point-cloud from
a lane-level centimetric map.

the localization error was assumed to be the maximum

variance on the easting/northing coordinates, noted σ2
xy .

This pessimistic assumption facilitates the computations, and

accounts for possibly undetected timing or calibration errors.

Let a detected ground-point xi, with di the distance between

its projection on the map plane and the closest mapped road-

edge. The labelled probability of xi being a road point yi can

be computed from the cumulative distribution function of the

normal distribution. If xi was projected into a mapped road:

yi =

∫ di

−∞

1

σxy

√
2π

exp
− 1

2 (
x

σxy
)2
dx (10)

Otherwise:

yi = 1−
∫ di

−∞

1

σxy

√
2π

exp
− 1

2 (
x

σxy
)2
dx (11)

To prevent the presence of redundant data, the labelling

procedure was only launched every ten scans. It was also

disabled when the vehicle was stopped. The final dataset was

finally generated from 2334 labelled LIDAR scans acquired

in Guyancourt, France. In practice, when di was larger than

10 ∗ σxy , yi was set to either 0 (the point is not projected

into a road) or 1 (the point is projected into a road). 0-

1 labels represent more than 96,5% of the labels. A 70/30

split was used to create a training and a validation set from

this data. To ensure that the train and validation dataset are

significantly different, the scans were first ordered according

to their recording date. Then, the validation set was created

from the earliest and latest fifteen percents of the dataset.

With such a dataset of automatically and softly labelled

LIDAR scans, being able to generate evidential mass values

while training on coarse labels, as allowed by the use of

Instance Normalization and L2-regularization, is valuable.

B. Evaluation procedure and results

We report the clssification results in Table I. Three systems

were evaluated: the proposed Transformation-Adversarial

Network (TAdNet), a ring-level PointNet, and a scan-level

PointNet, to quantify the interest of the refinements intro-

duced with TAdNet. The point-level MLPs were following

All labels 0-1 labels

Model F1-score Accuracy F1-score Accuracy

PointNet [4] - ring 0.868 0.973 0.907 0.983
PointNet [4] - scan 0.899 0.980 0.933 0.988

TAdNet - ours 0.933 0.987 0.959 0.993

TABLE I: Classification results for PointNet on LIDAR scans and
tings, and for the proposed TAdNet, on the validation set

the original architecture proposed in [4], with a ReLU acti-

vation function and systematic use of Batch Normalisation.

The three systems were implemented in PyTorch. The two

PointNets consisted in exactly the same layers as TAdNet,

except for the H-Net and the ring-ID prediction subnetwork

that were removed. Instance Normalization and UOut were

still used, as the resulting systems were all intended to be

used for model-free evidential road-grid mapping. The Adam

optimizer was used for the three networks, with a learning

rate of 0.0001. Following the recommendations from the

original authors of Uout, the random numbers generated

by the Uout layers were sampled from a [−0.1, 0.1] range.

Empirical observations showed that, instead of only applying

L2-regularization to the final layer of the networks, applying

it to all the parameters led to better numerical stability. Then,

a weight-decay of 0.0001 was applied to all the parameters

of the three networks, except for the parameters of the

Transformation-network in TAdNet, on which a weight-

decay of 0.00001 was applied. All the T-Nets and the H-Net

were initialized with identity transformations. Following [4],

all the parameters of the multi-task losses were set to 1 for

the regular PointNets, and for TAdNet, λring was set to

0.8, λroad was set to 1.2 and λgeo was set to 1. TAdNet

and the ring-level PointNet were trained on mini-batches

including 64 rings, and the scan-level PointNet was trained

on mini-batches of 2 scans, as each scan was composed of

32 rings. We report F1-scores and accuracies on the full

validation dataset, and on only the 96.5% of 0-1 labels. In

the case of non-binary labels, a point was considered to

be labelled as a road-point if its labelled probability was

higher than 0,5. And a point was considered to be classified

as road if the predicted probability was higher than 0,5.

Table I reports the respective results of those approaches in

the validation set. All approaches have satisfactory results,

even if TAdNet outperforms all the approaches in all the

indicators. The interest of the rescaling performed by TAdNet

is obvious, as the ring-level PointNet is by far the worst

performing approach, while TAdNet outperforms the scan-

level PointNet, even though it only processes rings.

VI. MODEL-FREE EVIDENTIAL ROAD GRID

MAPPING FROM THE CLASSIFICATION RESULTS

Evidential road grids can easily be generated from TAd-

Net, and the expression in Equation 4. For each point, three

evidential mass values can be extracted: m({R}), for the

road class ; m({¬R}), for the obstacle class ; and m({R,

¬R}), for the unknown class. Then, a grid can be obtained

by projecting all the LIDAR points into the xy-plane. The
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Fig. 4: Simple model-free evidential road grid mapping algorithm

(a) m({R}) (b) m({¬R}) (c) m({R, ¬R})

Fig. 5: Model-free evidential road grid mapping. The accumulated
evidential grid is overlayed with the point-level evidential mass
values generated from the LIDAR sensor

Dempster-Shafer operator can then be used to fuse the mass

values of all the points that are projected into a given

cell. Finally, the evidential grids can be fused over time

thanks to the algorithm in Fig 4, which follows the approach

in [1] but applies it to evidential mass values generated from

TAdNET, instead of using a geometrical model. Figure 5

presents an example of model-free evidential road grid map

generated from this algorithm, and TAdNet. A (45m×45m)

area around the vehicle was covered by a road grid having

a cell size of (0.1m×0.1m). A decay rate of 0.98 was used,

and the odometry was coming from the IMU present in the

localization system previously used for the collection of the

labelled LIDAR scans. Only the 20 lowest LIDAR rings were

used. A video of a grid accumulation in a roundabout is

available1.

VII. CONCLUSION

We presented TAdNet, a Transformation-adversarial net-

work inspired by PointNet that performs road detection in

LIDAR rings. The classification results can be used to gen-

erate evidential road grid maps without needing an explicit

geometrical model, as showed by some experiments done

on real-life data, and a TAdNet trained on coarse LIDAR

labels obtained from a map. The next step will consist in

evaluating other approaches for model-free evidential road

grid mapping, in a more reliable fashion. To do so, a dataset

of 368 LIDAR scans was already finely labelled by hand,

and will be used for validation purposes in the future.

1https://drive.google.com/file/d/1R7WuZaIvUqPHVRbplDLglea5b46zugE5/view?usp=sharing
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End-to-End Deep Neural Network Design
for Short-term Path Planning

Minh Quan Dao1, Davide Lanza1 and Vincent Frémont1

Abstract— Early attempts on imitating human driving be-
havior with deep learning have been implemented in an
reactive navigation scheme which is to directly map the sensory
measurement to control signal. Although this approach has suc-
cessfully delivered the first half of the driving task - predicting
steering angles, learning vehicle speed in an end-to-end setting
requires significantly large and complex networks as well as
the accompanying dataset. Motivated by the rich literature in
trajectory planning which timestamps a geometrical path under
some dynamic constraints to provide the corresponding velocity
profile, we propose an end-to-end architecture for generating a
non-parametric path given an image of the environment in front
of a vehicle. The level of accuracy of the resulting path is 70%.
The first and foremost benefit of our approach is the ability of
incorporating deep learning into the navigation pipeline. This
is desirable because the neural network can ease the hardness
of developing the see-think-act scheme, while the trajectory
planning at the end adds a level of safety to the final output
by ensuring it obeys static and dynamic constraint.

I. INTRODUCTION

Motion planning methods for autonomous vehicles are

classically developed to sequentially perform path planning,

obstacles avoidance, and trajectory optimization [1], [2],

[3]. Path planning module, which can be implemented by

RRT [4], A* [5], Lattices and motion primitives [6], or

function optimization [7], takes into account the geometry

characteristic of the environment to produce a collision-

free (with regard to static obstacle) non-parametric path. On

the other hand, the trajectory optimization module, which

subsumes the obstacles avoidance, aims to optimize both

way points and the corresponding velocity profile so that

they respect vehicle’s kinematics and dynamic obstacles [8],

[7].

Deep learning can help simplify the path planning and

trajectory optimization pipeline above with just a deep neural

network which learns human driving behavior in a supervised

manner. The first successful example traces back to ALVINN

[9], where a shallow network was used to calculate the

steering angle directly from images. This work is revised

in the deep learning era in [10], the authors went beyond a

mere pattern recognition, learning the entire steering angle

prediction pipeline for autonomous cars by building a map-

ping from images obtained by a forward camera to steering

angle with a deep CNN. Taking the similar approach but

with different input, [11] used visual information obtained by

an event-based camera to train their steering model. A more

global approach to motion planning using deep learning is to

1Authors are with Centrale Nantes, LS2N - UMR 6004 Nantes, France
email: vincent.fremont@ec-nantes.fr

learn a spatial traversability maps [12], [13]. In these works,

rather than just predict a single steering angle, the model is

designed to learn a cost function with can be later used for

path planning. The common shortage of these works is their

inability of addressing vehicle speed.

To solve this problem by the end-to-end learning, [14]

uses recurrent layers together with CNN network to learn a

complete driving policy (steering angle and vehicle speed).

Though this work has showed its capability and robustness, it

comes with the cost of an extremely large dataset and fairly

complex network as well as the training process. Taking

a different approach, [15] proposed an integrated solution

where a CNN is trained on monocular image data (as in [10])

to output a path, this path is then used as the initial guess

for a Particle Swarm Optimization algorithm [16] which in

turn transforms the path to a complete trajectory.

Another method to infer vehicle speed is to calculate it

proportional to the collision probability [17]. The network

designed in this work is made of three consecutive ResNet

blocks following by two parallel fully-connected layers,

which respectively output the steering angle and a collision

probability. The steering prediction is learned through a re-

gression problem, while the collision prediction is addressed

as a binary classification problem.

In this paper, we propose and evaluate a deep neural

network architecture inspired by DroNet for short-term path

planning which is to predict a sequence of steering angles

directly from an image obtained by forward camera, hence an

end-to-end model. The main difference between [17] and our

work is the statement of steering angle prediction problem.

In fact, as mentioned in [18], it can be transformed from a

regression problem of continuous values to a classification

problem where the steering angle range is tessellated into

discrete spans with width of 0.01 radians. Such choice of

span width is justified by the jitter of steering angle applied

by a human driver in straight road. Moreover, the calculated

steering sequence is mapped into a non-parameterized path

and, once the path is output, any motion planning algorithm

can be implemented to timestamp the path.

The rest of this paper is organized as follows. Sec.II

adapts the DroNet architecture for learning a single steering

angle through a classification problem. In Sec.III, we further

modify the resulted architecture and the used dataset to

enable the network to learn a geometrical path in an end-

to-end setting. The performance of the path planning model

derived in the Sec.III is evaluated in Sec.IV. Then Sec.V

describes the short-term path generation using the steering

angles sequence and car-like vehicles motion constraints.
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Concluding remarks are made in Sec. in VI.

II. LEARNING STEERING ANGLES

Taking a different approach compared to the majority of

researches in end-to-end learning for autonomous driving

which formulates the prediction of steering angles as a

regression problem [9], [10], [17], our model is designed

to be a classifier. The reason of our choice stems from

the fact that for a regression-based network, there is a

continuous range of angles to infer, but only a finite number

of samples with which to train against. By tessellating the

range of steering angles into discrete bins, the requirement

of infinite training samples to fully cover such continuous

range is no longer effective. Moreover, Sec.IV shows that

with sufficiently small bins, our classifier can outperform

the DroNet - a regression-based model.

A. Network Architecture

[17] has showed that their the architecture responds

strongly to ”line-like” features in the forward images which

has a strong relation with the resulted steering angles. Moti-

vate by this work, we design our model out of their ResNet-

made body and put a classifier on top of it. This classifier is

made of 2 dense layers. The first has 800 neurons activated

by ReLU, while the second has 227 neurons (equal to the

number of classes) and is activated by Softmax function. The

conceptual architecture is shown in Fig.1. Each ResNet block

in this figure is comprised of 3 convolutional layers: 2 on

the main path and 1 on the shortcut (see Fig. 2).

The hyperparameters of each ResNet block are shown in

Tab. I.

Stage Layer Number Kernel Stride Padding
of kernels size Stride Padding

1 Conv2D a 32 3 2 same
1 Conv2D b 32 3 1 same
1 Conv2D c 32 1 2 same
2 Conv2D a 64 3 2 same
2 Conv2D b 64 3 1 same
2 Conv2D c 64 1 2 same
3 Conv2D a 128 3 2 same
3 Conv2D b 128 3 1 same
3 Conv2D c 128 1 2 same

TABLE I

MODIFIED RESNET CNN BODY PARAMETERS

The intuition behind our model is that the ResNet-made

body should learn better how to output useful feature maps

which probably contains roads shape and drivable area, while

the classifier on its top should learn how to output the

steering angle given the provided feature map.

B. Data Preparation

The dataset used to train our model is Udacity dataset

challenge 21. This dataset contains several hours of driving

on suburban road in good weather and lightning condition.

1https://github.com/udacity/self-driving-car/
tree/master/datasets/CH2

After processing, the dataset is organized as a time-order list.

An element of this list contains an image captured by front-

facing camera, the associated steering angle, GPS coordinate

of the vehicle at this time step and other information.

To decide the class of any steering angle, a histogram of

all steering angles in the dataset ranging from −2.051 to

1.903 radian is built (see Fig.4). The width of every bin

of this histogram is 1 degree. The class of an angle is the

index of the bin it belongs to. As can be seen in Fig.4, the

distribution of collected steering angles among these classes

is imbalance. To ensure the network does not overlook the

less frequent classes during the training process, class i
is assigned a weight w(i) based on the median frequency

balancing method in [19].

w(i) =
median frequency of the dataset

frequency of this class
(1)

Here, the numerator is the ratio between the number

of samples in class i and the total number of samples

in the dataset. The denominator is the median of the all

frequencies. The resulted weight w(i) is later used to scale

the contribution of every sample in class i to the total loss

function.

C. Model Training

The model’s weights are initialized randomly and the

network is trained by minimizing the cross entropy loss func-

tion using Adam optimizer with default parameters. After

training for 100 epochs with 1200 batch size, our model’s

accuracy on validation set peaks at 66% before dropping

due to over fitting. With this level of accuracy, its qualitative

performance measured by Root Mean Square Error (RMSE)

and Explained Variance score (EVA) are respectively 0.1083
and 0.8338. These values are competitive, compared to recent

development in end-to-end learning model: DroNet [17] and

[11]. The details comparison is carried out in Sec.IV.

III. LEARNING A GEOMETRICAL PATH

As shown in the previous section, a single steering an-

gle can be learned through a classification problem. Nev-

ertheless, knowing the steering angle is just half of the

autonomous driving task. The other control signal to be pro-

vided, is the vehicle’s speed. There are no means of inferring

a vehicle speed given a single steering angle at the same

time instance. However, the rich trajectory planning literature

suggests that a geometrical path can be timestamped to

generate a velocity profile [20] such that it can satisfy some

dynamic constraint. Therefore, in this section, we modify the

resulted architecture from the previous section and the used

dataset to enable the network to learn a geometrical path.

A. Network Architecture

Inspired by [15], a path can be encoded as a sequence of

steering angles, each of which is applied to a predefined

traveling distance. Based on this insight, a network can

learn a path by learning a sequence of steering angles. This

leads to the replacement of a single classifier on top of the
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Fig. 1. Modified DroNet architecture [17]

Fig. 2. Components of a ResNet block.

architecture in Sec.II by an array of 5 classifiers having the

same number of neurons and activation function. Putting the

ResNet-made body and the array of classifiers together, the

complete architecture is shown in Fig. 3. Here, a block Head
i is a 2-dense-layer classifier.

B. Dataset Preparation

The new model’s output is interpreted as a sequence of

5 steering angles. Each angle is applied to 2 meters of

traveling distance. As a result, a training sample is prepared

as following:

• X: an image of the environment in front of the vehicle

• y: a list of one-hot vectors. This first vector denotes the

class of the steering angle associates with the frame

represented by X. The i − th vector represents the

steering angle of the frame i × 2 meters away from

X .

Such definition of y suggests that the data set used to train

path planning model needs to explicitly contain the distance

information between two adjacent labels. This distance can

be retrieved from the GPS coordinate of each frame provided

in the original Udacity dataset. Upon completely being

generated, the whole dataset is divided into training set and

validation set with respectively 19000 and 2350 samples.

C. Model Training

Since the ResNet-made body is the same the model which

predicts a single steering angle in Sec.II, the weight of

the ResNet-made body of the path planning model in this

section is trained from the best weight obtained in Sec.II.

Conversely, all classifiers’ weight are initialized randomly.

The loss function is chosen to be the cross-entropy and is

minimized by the Adam optimizer. The choice of hyper-

parameters is the same as in Sec. II.

After training for 50 epochs, each of 5 five classifiers in

our model achieves at least 70% of accuracy.

IV. MODEL PERFORMANCE

A. Quantitative Performance

Using the same approach of [17], [11], the quantitative per-

formance is measured by Root Mean Square Error (RMSE)

and the Explained Variance score (EVA). The performance

over these metrics of 5 classifiers in our path planning model

compared to a constant estimator, which always predicts

0 as steering angle, a random one, the DroNet [17], and

the model taking input from an event-based camera [11] is

shown in Tab. II. All classifiers in our model outperform the

DroNet in both RMSE and EVA, while fall behind event-

based model with a small margin in RMSE. This shows by

tessellating the range of steering angle into sufficiently small

intervals, a classification-based model can deliver a better

result, compared to a regression-based one.

Model RMSE EVA

Constant baseline 0.2129 0
Random baseline 0.3± 0.001 −1.0± 0.022
DroNet 0.1090 0.7370
Event-based Model 0.0716 0.8260
Head 0 0.0869 0.8933
Head 1 0.0920 0.8781
Head 2 0.1052 0.8382
Head 3 0.0820 0.9012
Head 4 0.0851 0.8943

TABLE II

PATH PLANNING MODEL QUANTITATIVE PERFORMANCE

B. Qualitative Performance

The comparison between the histograms of predicted angle

classes and their ground truth on validation set are shown

in Fig.4. This figure indicates a relative match between the

predicted distribution and the true distribution.

In addition, the normalized confusion matrix of the first

classifier is shown in Fig.5. This matrix features a clear, large

magnitude main diagonal. This means the majority of pre-

dicted angle classes is actually the true class. Nevertheless,

there are a few strong cells in the bottom of Fig.5 implying
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Fig. 3. Path planning architecture (CNN part)

Fig. 4. Predicted angle classes distribution of each classifier compared to
their ground truth

that the classifier fails to predict the class of extreme right

angles.

C. Layer Activation Visualization

In an attempt to understand how our model produces

its prediction, the outputs of each ResNet block in the

path planning model are displayed in Fig.6. This figure

shows that the first block recognizes lane mark and vehicles,

while the second block segments the drivable area. The last

block learns a down-sampled mapping. Together, these three

ResNet blocks learn useful feature maps which contains

roads shape and drivable area, while the classifiers on the

top learn to calculate the steering angle given those feature

maps.

V. INTERPRETING A STEERING SEQUENCE AS A

PATH

Since the motion of car-like vehicles is constrained to be

circular around its Instantaneous Center of Rotation (ICR)

Fig. 5. Normalized confusion matrix of the first classifier.

(see Fig. 7), a sequence of steering angles can be interpreted

as a geometrical path (i.e. sequence of way points) by

applying each angle in the sequence to a predefined traveling

distance of s meters.

In Fig.7, L is the distance between the front and rear axle.

δi(i = 0 . . . N) is a steering angle (N + 1 is the length of

steering angles sequence). At each time instance, the pose

of the vehicle is represented by the pose of the local frame

attached to the center of its rear axle - Oixiyizi(i = 0 . . . N).
xi goes from the rear axle to the front axle, and is perpendic-

ular to these axles. zi is orthogonal to the plane of motion,

and pointing outward. yi is defined such that Oixiyizi is

right-handed. The target is to calculate the position of the

center of the front axle relative to the local body frame at

the presence - O0x0y0z0. Assuming that the vehicle’s motion

is planar, the transformation from frame Oixiyizi to frame

Oi+1xi+1yi+1zi+1 is described by:

iTi+1 =

[
Rotz,φi

iti+1

01×2 1

]
(2)

Here, iti+1 is the coordinate of Oi+1 in frame i, and
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Fig. 6. Output of each ResNet block with respect to different input images. From left to right, the images are respectively the input image, output of the
first, second, and third block.

Fig. 7. Car-like vehicle’s motion diagram with two different value of
steering angles. Each of these angles is applied to an arc distance of s
meters.

Rotz,φi is the matrix represents the rotation around the z-

axis by an angle φi. The radius of the circular motion around

ICRi is calculated as

Ri =
L

tan δi
(3)

Eq.3 implies that when the steering angle is close to zero

(i.e. the steering wheel is kept at the neutral position), the

radius of motion approach infinity, hence a straight motion.

Given Ri, the coordinate of Oi+1 in frame i is

iti+1 = 2Ri sin

(
φi

2

)⎡⎣cos
(

φi

2

)
sin
(

φi

2

)
⎤
⎦ (4)

φi is the angle between xi and xi+1. As shown in Fig.7,

this angle can be calculated by:

φi =
s

Ri
=

s tan δi
L

(5)

With Eq. 5 and Eq. 4. The transformation from frame i to

frame i+1 in Eq. 2 is now fully defined. The local position

of the center of the front axle in homogeneous form is:

iLi =
[
L, 0, 1

]T
(6)

This position is transformed into the local frame at the

present time by the following equation

0Li =
0Ti

iLi =

i∏
j=1

j−1Tj
iLi (7)

To test the quality of the predicted path and its ground

truth, the trained path planning model is used to infer

path from forward images taken from Udacity dataset. The

inference process is implemented on a laptop equipped

with an NVIDIA GeForce MX130, an Intel Core i7-8650U

(1.90GHz), and 16GB of RAM. The inference time for 1

sample (i.e. 1 image) is 1 millisecond. Examples of path

generated by both true and predicted sequence of steering are

shown in Fig.8, while the extended video of path planning

model’s output compared to ground truth can be found in

this link: https://youtu.be/X2fi2xVr2jE. Fig.8 as

well as the video shows a good match between the predicted

path and its ground truth, which in turn proves the quality

of the prediction of our model.

VI. CONCLUSIONS

In this paper, we explored an end-to-end learning approach

to path planning for autonomous vehicles. In details, a

neural network made of three ResNet blocks and an array of
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Fig. 8. Display of the predicted path. Left: Images captured by front-facing
camera. Right: Path in cartesian coordinates

classifiers is trained to output a sequence of steering angles

which is later interpreted into a geometrical path.

The advantage of this approach is that it pays the way

for the integration of deep neural network into the mo-

tion planning framework. Specifically, the geometrical path

learned by the network is then timestamped using trajectory

optimization technique to finally produce a parameterized

path (a path with a velocity profile). Beside providing two

crucial control signals of the driving task (steering angle and

velocity), this integrated approach enhances the reliability

of the predicted trajectory while ensures it is natural and

consistent with vehicles’ kinematic.

For the future work, the accuracy of the array of classifiers

needs to be improved. Furthermore, the network general-

ization should be evaluated on other autonomous vehicles

datasets with different camera parameters. Since a sequence

of steering angles implies a time order, it might be helpful if

the network can learn a temporal relation among the steering

angles. This can be done by exploring the application of

recurrent layers such as LSTM cells to enable the model

learning such time relation.

The code used in this paper is hosted on GitHub in Minh-

Quan Dao’s ECN-E2E repository: https://github.
com/quan-dao/ECN-E2E.
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AADS: Augmented autonomous driving simulation
using data-driven algorithms[1]

11th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 4th, 2019 

 
PPNIV'19 70



CARLA[1] AirSim[2]

Our AADS

From VR Simulation

To AR Simulation
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Sidewalk

Our method can also combine different datasets into a single scenario.

Characters: cars and pedestrians

Agent Number: 80 and 50

Time Performance: 0.0319 s/f

Dataset: [NGS 2013]                
(trajectories)

[Zhang et al. 2012]    
(trajectories)

Input Data
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LiDAR simulation

Velodyne VLS-128 Velodyne HDL-64E Velodyne VLP-16

AADS Simulation Captured Data CARLA Simulation
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Deep Reinforcement Learning
Deep learning can build an end-to-end map from raw sensor to command without any hand-crafted 
rules
Reinforcement Learning have the potential ability of surpass human-level intelligence
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Sim-to-Real
Learning collision avoidance policy

transfer

Real world
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Mobile Platform Actuator

Apollo Extension
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Feature Generator Layer for Semantic Segmentation Under Different
Weather Conditions for Autonomous Vehicles

Özgür Erkent1, Christian Laugier1

Abstract— Adaptation to new environments such as semantic
segmentation in different weather conditions is still a chal-
lenging problem. We propose a new approach to adapt the
segmentation method to diverse weather conditions without
requiring the semantic labels of the known or the new weather
conditions. We achieve this by inserting a feature generator
layer (FGL) into the deep neural network (DNN) which is
previously trained in the known weather conditions. We only
update the parameters of FGL. The parameters of the FGL are
optimized by using two losses. One of the losses minimizes the
difference between the input and output of FGL for the known
weather domain to ensure the similarity between generated and
non-generated known weather domain features; whereas, the
other loss minimizes the difference between the distribution of
the known weather condition features and the new weather
condition features. We test our method on SYNTHIA dataset
which has several different weather conditions with a well-
known semantic segmentation network architecture. The results
show that adding an FGL improves the accuracy of semantic
segmentation for the new weather condition and does not
reduce the accuracy of the semantic segmentation of the known
weather condition.

I. INTRODUCTION

Semantic information of the environment provide valuable

data for the navigation and planning in intelligent vehicles.

Recent developments in deep learning methods make them

dominant in semantic segmentation such as DeepLabV3 [1]

and SegNet [2]. Furthermore, they can be integrated with

spatial 2D maps of the environment [3], [4] to produce 2D

spatial semantic maps of the surroundings [5]. However,

adaptation to new environments such as varying weather

conditions is still a challenging problem.

Deep learning methods need a tremendous amount of

supervised data to train. Although datasets with labeled

images exist for semantic segmentation of RGB images taken

from autonomous vehicles at pixel level for classes such

as road, car, pedestrian, etc. (e.g. [6], [7]), providing a

dataset for each separate weather condition is exhaustive.

Thus, we focus on the problem of unsupervised adaptation

to new weather conditions and use the same deep neural

network (DNN) model to semantically segment successfully

both known weather condition and the new weather condition

images.

In unsupervised domain adaptation, the known weather

condition for which we have the labels is called as the source
domain data and the new weather condition without labels

is called as the target domain data. We assume that we

already have an initial DNN model to estimate the semantic

1 INRIA, Chroma Team, Rhône-Alpes, France. Correspondence:
ozgur.erkent@inria.fr

Fig. 1: A general overview. The initial model M̂ is trained

with source domain images xs and labels ys. Then, it adapts

to the new weather condition by only using the source

domain images xs and target domain images xt. No labels

are used during adaptation training. Green lines represent the

flow of data used for training, black straight lines represent

the flow for the segmentation of source domain and red

dashed lines represent the flow for the segmentation of target

domain. Note that the holes on the road segmentation at

night diminish after adaptation while the segmentation of

the daylight condition remains intact.

segmentation of the RGB images trained on source domain
data as shown in Fig. 1. We propose to obtain a new DNN

model by inserting a feature generator layer (FGL) such

that the accuracy of the network improves with respect to

the original DNN model for target domain segmentation

and its accuracy does not degrade for the source domain

segmentation. This implies that the same model can be used

in different weather conditions for autonomous vehicles,

which would be an advantage since the weather conditions

can change during driving, e.g. it can start and stop raining

during the same ride.

We insert the FGL after the initial feature extraction layers

of the DNN, which corresponds to the “encoder” part of
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the network. We only update the parameters of FGL for

adaptation. We define two losses to optimize FGL. One loss

is the difference between the distribution of the source and

target domain data. We investigate three alternatives for this;

Wasserstein distance [8], Jensen-Shannon divergence [9] and

maximum mean discrepancy (MMD) [10]. The other loss

measures the difference between the output and input of the

FGL for source domain. We require the output of FGL to be

similar to its input for the source domain.

The contributions of this paper can be listed as follows:

• To use only the source domain data without labels,

target domain data without labels and pre-trained DNN

model;

• To update only the parameters of the inserted FGL

which results in faster adaptation training;

• To obtain an adapted DNN model with an improved

accuracy for the target domain and a similar accuracy

to the pre-trained model for source domain data;

• To report the accuracy of the adapted model for both

domains.

We evaluate our approach by adapting the SegNet [2]

for varying weather conditions since it is fast and does

not require much memory which are important criteria for

autonomous vehicles. We test it in Winter, Spring and Night

conditions on SYNTHIA [7].

The rest of the paper is organized as follows. First, in

Section. II, we discuss briefly the literature related to the

domain adaptation. Then, In Section. III, we explain our

solution by inserting a FGL with three alternative distance

measures for data distribution. In Section. IV, we evaluate

our method with SYNTHIA under two different weather

conditions. Finally, we conclude the paper with a brief

summary and possible future directions of research.

II. RELATED WORK

One of the approaches to unsupervised domain adaptation

is to use images with incremental changes in the target

domain. Dai et al. [11] train a network with the images

obtained at different times of the twilight with incremental

darkness to adapt to darkness. The labels for the first twilight

time zone are estimated with the original network which

was trained with daylight images are accepted as “target
domain ground truth” labels. The network is re-trained with a

mixture of source and “target domain ground truth” labels.

Wulfmeier et al. [12] use an other incremental approach.

They train a separate encoder for target domain data with

generative adversarial network (GAN) [9] to make the target

domain features similar to source domain features. Although

the performance is improved for the target domain, one of

the concerns is the requirement of incremental data collection

which will not be feasible for various weather/illumination

conditions for autonomous vehicles.

Another approach is to transform the input images from

the target domain to the source domain so that they are

similar in appearance. Porav et al. [13] obtain a dataset

with a special stereo camera to capture the image of the

scene both with rain and without rain and train a network

to convert the rainy images into de-rainy ones. The rainy

condition is maintained with a glass with water droplets.

The requirement of the exactly same scenes under different

weather conditions is difficult to obtain for each weather

condition. Cycada method [14] uses generators at different

parts of the network. The usage of multiple generators ensure

a cyclic transformation. Requirement of multiple generators

makes this approach computationally expensive.

Another group of studies focus on minimizing the dis-

tribution in the output of the network. Vu et al. [15]

implement adversarial entropy minimization for the outputs

of the source and target domains. Wu et al. [16] find the

geodesic loss [17] on the output of the network and back-

propagate it for optimization. Zhang et al. [18] implement

a super-pixel and label generator to transform the target

domain output into the source domain output. The output is

converted into a higher-dimensional feature space to be used

with adversarial training, which may not always guarantee

to represent the difference of the distribution between source

and target domains. Furthermore, another problem with this

group of approaches is that the necessary information to

transform target domain into source domain data may have

already been lost in the initial layers of the network.

Finally, we consider studies that compare the distributions

of the features in both domains. The features generally

have a high-dimension; therefore, adversarial training can

be directly used. Tzeng et al. [19] proposed one of the

early unsupervised domain adaptation in DNNs. They adapt

a DNN by inserting a generator into the network and train it

by using the MMD [20] to measure the discrepancy between

the source and target domain features. Long et al. [21]

also propose a similar architecture, but with multiple MMD

kernels instead of single, and without additional adaptation

layer. Additionally, both use the labels of the source domain

to optimize the parameters of the network. Ganin et al. [22]

used GANs [9] to adapt. In some other variants, GANs

[9] are used for adaptation in semantic segmentation by

deploying a discriminator at different layers of the network to

measure the difference in distribution between the source and

domain data features and the output (e.g. [23], [24], [25]).

Peng et al. [26] and Hong et al. [27] insert a generator into

the network to transform the distribution of target feature

distribution into source domain feature distribution. Peng et
al. [26] train based on W-GANs [8] with penalty gradient

[28] while Hong et al. [27] use a GAN [9] based approach.

We covered the domain adaptation approaches that can be

applied to DNNs by considering the computational complex-

ity and the memory requirements for autonomous vehicles.

It should be noted that some of the mentioned methods are

used for adaption from the simulator domain to the real

world domain; however, we will focus only on the new

weather condition adaptation. We propose an approach which

is different from the mentioned methods in three aspects.

Firstly, we develop a method which does not require the

source domain labels for adaptation. Secondly, it is usually a

common practice to report the accuracy of the target domain

with the new trained model [10]; since we propose to use
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Fig. 2: First, the initial model M̂ is trained with source

domain ground truth labels ȳs. The training of the initial

model is shown with red straight lines. Then, FGL layer

G is inserted into this model and the parameters of G is

optimized by using the source domain and target domain

features fs and ft. The training of adaptation is shown with

black straight lines. The blue dotted lines are not used for

back-propagation.

the same model in different weather conditions, we provide

the performance of the same network in both target and

source domains. Our final difference is that we don’t update

the parameters of the pre-trained model. We only update

the parameters of the generator which significantly reduces

memory and time requirements for training.

III. DOMAIN ADAPTATION

In classical unsupervised domain adaptation, source domain

data with its labels S = {(xi
s, y

i
s

)}ns
i=1 and target domain

data Xt = {
(
xj
t

)
}nt
j=1 are provided where ns and nt are the

number of source and target domain samples respectively.

In our problem, we consider that only source data Xs =
{(xi

s

)}ns
i=1, target data Xt and a previously learned deep

neural network model M̂γ̂ with parameters γ̂ to predict the

labels yis which can minimize the source cost cs

(
M̂γ̂

)
=

Pr(x,y)∼p

[
M̂γ̂(x) �= y

]
are available. The source and target

domains have probability distributions of Prp and Prq respec-

tively. Our objective is to obtain a model such that it can min-

imize the target cost ct (Mγ) = Pr(x,y)∼q [Mγ(x) �= y] and

source cost cs (Mγ) = Pr(x,y)∼p [Mγ(x) �= y] simultaneously

using available source data , target data and the previously

learned model.

We divide the neural network M̂γ̂ into two: encoder Êθ̂

and the decoder F̂α̂ such that M̂γ̂(x) = F̂α̂(Êθ̂(x)) as shown

in Fig. 2. We propose a method where we insert a feature

generator layer Gϑ between F̂α̂ and Êθ̂. All the parameters

are kept constant except Gϑ. The output of the new adapted

layer becomes f = Gϑ(Êθ̂(x)). The inputs and outputs of the

layer are same in size. We require the generator to produce

the target domain features ft similar to the source domain

features fs in distribution and in addition, we need the source

domain features to be generated with minimal change, which

can be formulated as the following optimization:

inf
G(.)∈G

D(Pr(f̂)∼p, Pr(G(f̂))∼q) + λlg(f̂s,G(f̂s)) (1)

where G is the set of all possible generators, D measures

the distance between the target and source domain feature

distributions, λ > 0 is a regularization hyperparameter and

lg measures the cost between the source domain features

f̂ is = Êθ̂(x
i
s) and generated source domain features G(f̂ is).

We use the mean squared error (MSE) lg(f̂s,G(f̂s)) =

||f̂s − G(f̂s)||22. We hold on the assumption that features

{
(
f jt

)
}nt
j=1 sampled from the target distribution Pr(G(f̂))∼q

contain necessary and sufficient information to classify the

target domain data similar to the source data.

We propose three different distribution distance measures

for D(Pr(f̂)∼p, Pr(G(f̂))∼q):

W-GAN proposal: First, we start with Wasserstein GANs

[8]. m−th order Wasserstein distance between two distribu-

tions can be defined as follows:

Wm(Pr(f̂)∼p, Pr(G(f̂))∼q) = inf
Prf̂s∼p,G(f̂t)∼q

E

[
||f̂s − G(f̂t)||m

]
(2)

where the minimization is over all joint distributions. Then,

Eq. 1 can be rewritten as follows:

inf
G(.)∈G

inf
Prf̂s∼p,G(f̂t)∼q

E

[
||f̂s − G(f̂t)||m

]
+ λlg(f̂s,G(f̂s)) (3)

the second part of the optimization deals with the loss in the

source domain. Hence its optimal value is not affected by

the target domain, we solve it as a minimization problem

in the source domain only. However, the first part needs

to consider the joint distribution of both source and target

domains for optimization. It is an optimal transport problem

and a linear programming problem, therefore it always has a

dual formulation (Kantorovich-Rubinstein) [29]. Arjovsky et
al. [8] proposed an adversarial network for m = 1 and

its variant with gradient penalty has been introduced by

Gulrajani et al. [28]. We describe the implementation of

the generative method with W-GANs in Algorithm.1.

GAN proposal: Secondly, we use the GANs based on

Jensen-Shannon (JS) distance implemented by Goodfellow et
al. [9] JS distance between Pr(f̂)∼p and Pr(G(f̂))∼q can be

defined as follows:

JS = KL(Prf̂s∼p||Prf̂∼r) +KL(PrG(f̂t)∼q||Prf̂∼r) (4)

where KL is the Kullback-Leibler divergence and Prf̂∼r =
(Prf̂s∼p + PrG(f̂t)∼q)/2 is the mixture. We describe the

implementation of the generative method with GANs in

Algorithm.1.

MMD proposal: Finally, we use maximum mean dis-

crepancies which was used in domain adaptation problems

with DNNs (e.g. Long et al. [21]). It maximizes the two-

sample test power and minimizes the Type II error. If Hk is

the reproducing Hilbert space (RKHS) with a characteristic

positive-definite reproducing kernel k and the mean embed-

ding of distribution p in Hk is a unique element μk(p) such

that Ex∼pf(x) = 〈f(x), μk(p)〉H, ∀f ∈Hk; then, we define

D(Pr(f̂)∼p, Pr(G(f̂))∼q) to be the MMD between distributions

p and q which is the RHKS distance between the mean
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Algorithm 1: Feature Generator Domain Adaptation

Require: Xs, Xt, Gϑ,Dβ , λ > 0, Ê, n: Mini-batch size,
A ∈ {WGAN,GAN,MMD}, ncrit, λp > 0: Penalty gradient

if (A = WGAN) OR (A = GAN) then
initialize the parameters of Dβ and Gϑ

else
provide a characteristic positive-definite kernel k and

initialize the parameters of Gϑ

while (β,ϑ) not converged do
Sample {(xi

s

)}ni=1 ∈ Xs, {(xi
t

)}ni=1 ∈ Xt

Compute f̂ is = Ê(xi
s), f

i
t = G(Ê(xi

t)),f
i
s = G(Ê(xi

s));
if A = WGAN then

for k = 1, · · · , ncrit do
Sample a random number ε ∼ U [0, 1];

f̃ i = εf̂ is + (1− ε)f it ;
Update D by ascending

1

n

n∑
i=1

D(f̂ is)− D(f it )− λp(||∇f̄D(f̃ i)||2 − 1)2

Update G by descending

1

n

n∑
i=1

D(f it ) + λlg(f
i
s, f̂

i
s)

else if A = GAN then
for k = 1, · · · , ncrit do

Update D by ascending

1

n

n∑
i=1

logD(f̂ is) + log(1− D(f it ))

Update G by descending

1

n

n∑
i=1

λlg(G(f is, f̂
i
s)− log(D(f it ))

else if A = MMD then
Update G by descending

1

n

n∑
i=1

λlg(f
i
s, f̂

i
s) +

1

n(n− 1)

∑
l �=j

k(f lt , f
j
t ))

+
1

n(n− 1)

∑
l �=j

k(f̂ ls, f̂
j
s ))− 2

n2

∑
l,j

k(f lt , f̂s
j
))

embeddings of p and q. Using the Kernel trick, MMD can be

computed with the expectation of kernel functions as follows:

MMDk(Prp, Prq) = Ef̂s,f̂s′
k(f̂s, f̂s′) + Eft,ft′k(ft, ft′)

− 2Ef̂s,ft
k(f̂s, ft)

(5)

where fs, fs′ ∼ p, ft, ft′ ∼ q which means that fs′ and ft′
are sampled from source and target domains respectively and

they are not same samples with fs and ft. We explain the

implementation of the method in Algorithm. 1. Since MMD

has an unbiased U-statistic estimator, it can be used with a

stochastic gradient descent (SGD) method to optimize the

parameters of a deep neural network [21]. It is important to

remind that MMDs require a large number of samples and

a high computation time to optimize the parameters of the

network.

Input

1 1 2

Output

Indices

...

Block 1

Block 5

1 1 21

Block 6

1 1 1

Block 10

512

3 1 1

...512

4 4 4 4 4 4 3

5

(a) FGL in SegNet

Input

6
76

c c c0 1 2

7

(b) Discriminator

Fig. 3: (a) FGL is inserted after Encoder Ê and before

decoder F̂. D measures the distance between the distributions

of generated source and target domain features and used

only during adaptation training. The labels for the layers

are as follows: 1: 2D Convolution and Batch Normalization

(BN) and ReLU, 2: Max-Pooling, 3: Upsampling, 4: 2D

Convolution and ReLU, 5: Softmax. The generator has 512

input channels and 512 output channels. (b) Input has c0
channels. After second convolutional layer, it is reduced to

c2 channels. Layer labels: 6: 2D Convolution and Instance

Normalization, 7: Fully Connected Layer. The final output d
is a scalar value.

IV. EXPERIMENTS

The number of datasets for the semantic segmentation with

specific weather conditions is limited. Although datasets may

contain examples from different weather conditions, the label

of the weather condition for each image is not available.

SYNTHIA is a synthetic dataset obtained for semantic

and instance segmentation of the surroundings of a vehicle

[7]. We use only the frontal left RGB images and its

semantically annotated label images for the ground truth.

We use three different weather conditions in two different

subway scenarios: Spring, Winter and Night from Sequence

01 and 06. We train our initial SegNet model with the labels

and RGB images of Spring-01 which contains 1188 images.

The encoder layers of SegNet use convolution layers sim-

ilar to VGG-16 [30]. The initial parameters of the network

are taken from a pre-trained version of VGG-16 network for

classification of ILSVRC/Imagenet [31].

We use Stochastic Gradient Descent for optimization of

initial SegNet model with Spring as source domain and a

learning rate of 1× 10−4 and a momentum of 0.9. The mini-

batch size is 6. Approximately 198 epochs are necessary to

cover all the images in the training set. We train until the

loss converges or the maximum number of iterations is 2000.

Once the network converges, the parameters are kept constant

and the FGL is inserted into the network after the encoder

layer as shown in Fig. 3a. FGL has six 2D convolution layers

with same size of input and outputs and a kernel size of

3×3. Each convolution is followed by a rectified-linear non-

linearity (ReLU) unit. We use a network for the discriminator

when we use W-GAN [8] or GAN [9] to measure the differ-

ences in the distributions of the features. The Discriminator

network is shown in Fig. 3b. It has two 2D-convolutional

layers followed by the instance normalization layer [32]. Two

fully connected (fc) layers follow these convolutional layers

where the first fc is followed by a ReLU. The parameters
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TABLE I: Adaptation to Winter for SYNTHIA with SegNet

% Init FGL+W1 FGL+JS FGL+MMD
Spring-06 59.8(0) 59.4( -0.7) 59.5(-0.4) 59.7(-0.2)
Winter-01 55.9(0) 61.7( 10.4) 60.6( 8.4) 59.6( 6.6)
Winter-06 47.8(0) 48.5( 1.4) 48.5( 1.4) 48.5( 1.5)

TABLE II: Adaptation to Night for SYNTHIA with SegNet

% Init FGL+W1 FGL+JS FGL+MMD
Spring-06 59.8(0) 59.7(-0.1) 59.9(0.2) 60.0(0.4)
Night-01 53.7(0) 58.6( 9.1) 58.2(8.4) 57.5(7.0)
Night-06 35.6(0) 38.8( 8.9) 38.3(7.6) 38.4(7.8)

are c0 = 512, c1 = c2 = 64. For GAN, additional ReLu

and softmax layer is added to the end of the discriminator.

The initial parameters are chosen randomly from a normal

distribution. To optimize the parameters of the Generator and

the Discriminator network, we use Adam for optimization

with hyperparameters α = 1× 10−4, β1 = 0.7 and β1 = 0.9.

The hyperparameters for GAN and W-GAN are λp = 0.1,

λ = 10, ncrit = 1 and a mini batch size of 128 is used.

For the characteristic kernel k in MMD, we used an inverse

multiquadratics kernel k(ft, fs) = C/(C+||ft − fs||22) where

C = 2dfσf . df is the dimensionality of the features. For

MMD, the hyperparameters are λ = 100, σf = 1 and a mini

batch size of 64 is used. The number of maximum iterations

is 10000 for GAN and W-GAN and 5000 for MMD. The

training takes approximately 4.8 h for W-GAN and GAN,

and 13.7 h for MMD. The input size of the images are

downsampled to 380 × 500 pixels. For analysis, the output

image is later upsampled to the size of the SYNTHIA dataset

ground truth label images. The inference time is around 1.3

ms on the GPU, this doesn’t include the transfer time of

the image to the GPU. All computation time evaluations are

made on an Nvidia GTX 1080Ti.

We adapt the network to two different new weather con-

ditions: winter and night. For adaptation, we use the images

from sequence Winter-01 for winter with 1027 images and

from sequence Night-01 for night with 935 images. After

we obtain the adapted model, we test the source weather

condition with images from Spring-06 to test the amount of

accuracy degradation in the source domain after adaptation;

with the target images used to adapt the network Winter-

01 (or Night-01) and with the images that were not used

for adaptation training, Winter-06 (or Night-06) to test the

performance of the network with the unobserved target

domain images. We believe that these cases are in accordance

with a real scenario for an autonomous vehicle. The weather

may change during driving and the incoming images will be

the ones that were not used during adaption.

The results are shown in Table. I and Table. II. We use

the mean of intersection over union (mIoU), which is widely

used in semantic segmentation analysis. The first value is the

mIou, while the value in parenthesis is the amount of change

with respect to the initial model after the adaptation method

is applied. We compare three measure distances after the

insertion of FGL and the initial model without FGL (Init).

It can be seen that the accuracy of the initial model

trained with Spring-01 degrades when the weather conditions

change. When the road path sequence is different from the

initially trained Sequence-01, the degradation is even higher

(for the Sequence 06). Furthermore, the accuracy drop in

Night-06 condition is higher. After adaptation in the same

sequence, the accuracy increases for all the measures under

the new weather condition. However, the accuracy increase

for Winter-06 is not as high as the original sequence. To

understand its reason better, we trained initial SegNet model

with Winter-01 and tested Winter-6 with this new model.

Even in this case, the mIou is only 53.9%. Therefore, the

capacity of the SegNet may not be sufficient to segment the

Winter conditions for SYNTHIA. It should be noted that

the accuracy still increases slightly for Sequence-06 after

adaptation. Interestingly, the accuracy for Winter-01 is better

than the source domain which can be due to the similar struc-

tures in the same sequence. For the Night condition, even

the accuracy of the Spring-06 increases slightly for some

distance measures. Probably this is due to the improvement

of the segmentation of the dark regions such as inside the

tunnel after adaptation to Night. For Night condition, the

accuracy increases for both Sequences. For both Winter and

Night conditions, Wasserstein critic for the distance measure

gives a better result for the adaptation domains. Therefore, it

can be concluded that for the network with a small capacity,

W-GAN approach can be used with FGL to adapt to a new

weather condition.

The qualitative results are shown in Fig. 4. The segmen-

tation of Spring is not affected after adaptation (Fig. 4a) to

the initial model for Winter condition. In Fig. 4b, the results

are shown after the model is adapted with images from

Winter-01 without any labels from either domains. In GT,

the right side of the road is covered with undefined region.

However, the initial model falsely segments this region as

the sky. After adaptation with W-GAN, the region wrongly

labeled as sky is reduced significantly. It should be noted

that W-GAN is more effective for this case. In Fig. 4c, the

Winter-06 is tested on the same model used in Winter-01,

model which is adapted to the Winter condition based on

the initial model on Spring-01 and adapted with the images

from Winter-01 only. After segmentation with the original

model, there is a hallucination of a vehicle segmentation in

front of our vehicle (on the 3rd column). This diminishes

after adaptation. For Night condition, we adapt the initial

model by using the images from Night-01 and it is used

for segmenting all the Night images. As it can be seen in

Fig. 4d, there are holes on the road after segmentation with

the initial model; however, they disappear after adaptation for

all adaptation approaches. We use the same adapted model to

segment the images of Night-06. As it can be seen in Fig. 4e,

the right side of the road is undefined in the GT; however,

the initial model segments this region as road, which is

dangerous if the vehicle decides to drive towards this area.

After adaptation with W-GAN, the wrong segmented area

disappears. It reduces in size after adaptation with GAN, but

MMD approach is not very effective in this case. Finally,

we show a failed case in Fig. 4f. The road is covered with
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(a) Spring-06

(b) Winter-01

(c) Winter-06

(d) Night-01

(e) Night-06

(f) Winter-06

Fig. 4: Visual result samples for SYNTHIA dataset. From left to right: RGB, Ground Truth (GT), Result with the initial

model (initial), Adaptation with W-GAN, Adapted with GAN and Adaptation with MMD.

snow and none of the methods segment the road successfully.

This is probably due to the unrealistic visualization of the

winter conditions where the snow resemble the lanemarks

and most of it is recognized as landmark. Also, probably the

target features do not contain sufficient information for the

road with snow to be classified as road similar to the source

domain data.

V. CONCLUSION

We showed that an unsupervised adaptation method can

be used to improve the accuracy of semantic segmentation

of a DNN for different weather conditions without using the

labels of the source domain to modify the parameters of a

pre-trained DNN model. We used SegNet [2] due to its speed

and accuracy and a synthetic dataset with different weather

conditions. As part of the future work, we will evaluate

the method with real images in different weather conditions

and develop the approach to be used with more complicated

network architectures.
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An Edge-Cloud Computing Model for Autonomous Vehicles

Yu Sasaki1, Tomoya Sato1, Hiroyuki Chishiro1,

Tasuku Ishigooka2, Satoshi Otsuka2, Kentaro Yoshimura2, and Shinpei Kato1,3

Abstract— Edge-cloud computing for autonomous driving has
been a challenge due to the lack of fast and reliable networks to
handle a large amount of data and the traffic cost. The recent
development of 5th Generation (5G) mobile network allows us
to consider an edge-cloud computing model for autonomous
vehicles. However, previous work did not strongly focus on
the edge-cloud computing model for autonomous vehicles in
5G mobile network. In this paper, we present an edge-cloud
computing model for autonomous vehicles using a software
platform, called Autoware. Using 1 Gbit/s simulated network as
an alternative of 5G mobile network, we show that the presented
edge-cloud computing model for Autoware-based autonomous
vehicles reduces the execution time and deadline miss ratio
despite the latencies caused by communications, compared to
an edge computing model.

I. INTRODUCTION

In recent years, autonomous driving has captured the

attention from all over the world, such as the DARPA

Urban Challenge [1], and many manufacturers have been

working to realize autonomous vehicles. As the state-of-the-

art embedded computers lack in scalability, most products are

either used in restricted and controlled space or developed

to handle partial functions, such as an emergency brake [2].

SAE Standards J3016 [3] defines Level of driving: Level

0 being normal driving and Level 5 being completely auto-

mated driving. Level 4 and Level 5 driving analyzes moving

objects from a camera and predicts their paths in real time

and, therefore, demands a large amount of computation

resources.

In such situations, distributed computing is common in

many fields. There are two main distributed system models

for autonomous driving: edge-cloud computing model and

cloud-based vehicular network (CVN) model.

The edge-cloud computing model for autonomous vehicles

deploys edge devices in the vehicle to reduce latency and

power consumption and cloud servers to provide a large

amount of computation resources. There are a few studies of

the edge-cloud computing model for autonomous vehicles.

Kumar et al. [4] introduced a cloud-assisted system, called

Carcel, and experimented with a golf cart and six iRobot

Create robots. Although this study suggested the usefulness

of edge-cloud computing for autonomous driving, Carcel

required sensors on multiple locations and the car was driven

at 2m/s.

1Graduate School of Information Science and Technology, The University
of Tokyo, Japan

2Hitachi Ltd., Japan
3Tier IV, Inc., Japan
We thank Akito Ohsato for his help in Autoware modification and

providing ROSBAG data to test.

Another distributed model, CVN, is a model where multi-

ple vehicles create a wireless link network, called Vehicular

Ad hoc Networks (VANETs) [5], through which vehicles

share data or computational resources. Although CVNs have

been studied in previous works, VANETs are only useful in

platoon vehicles and difficult to use if the vehicle is driven

alone.

Edge-cloud computing models for autonomous driving

are rarely analyzed due to the unreliable mobile network.

For example, mobile networks such as the 4th Generation

(4G) and Wi-Fi have an unreliable and narrow network

bandwidth. The prior work noted that the mobile network

was insufficient and its latency was critical for edge-cloud

computing [4].

5th Generation (5G) mobile network has 20 Gbit/s band-

width [6] in theory and much faster than the 4G network,

which has 1 Gbit/s bandwidth at best [7]. 5G mobile network

is beneficial to autonomous vehicles in various ways and

provides sufficient bandwidth to send a large amount of

data and receive the result with little latency. Thanks to

5G mobile network, vehicle vendors can use scalable cloud

servers to execute heavy tasks while running light tasks

in edge devices. This is both energy-efficient and cost-

effective, therefore, energy-efficient offloading in 5G mobile

network are studied in other fields such as mobile edge

computing [8]. Meanwhile, the practicality of applying edge-

cloud computing models to autonomous driving in 5G mobile

network is an unsolved matter.

In this paper, we present an edge-cloud computing model

for autonomous vehicles in 5G mobile network. We create

1 Gbit/s ethernet network between an NVIDIA DRIVE

PX2, an NVIDIA’s automotive computer, and a desktop

machine to simulate 5G mobile network between an edge

device and a cloud server. Since 5G has 20 Gbit/s at best

and the target bandwidth is 1.2Gbit/s, 1 Gbit/s ethernet

network is enough to simulate the bandwidth of 5G mobile

network. We quantitatively evaluate the effectiveness of the

presented edge-cloud computing model in Level 4 and Level

5 autonomous driving, called Autoware [9].

In the rest of the paper, the background is introduced

in Section II. The overview of the presented edge-cloud

computing model is explained in Section III. The evaluations

of the presented edge-cloud computing model are introduced

and the results are discussed in Section IV. We compare our

work with related one in Section V and conclude this paper

in Section VI.
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Fig. 1. Publisher/subscriber model in ROS

II. BACKGROUND

A. ROS

The most of automated driving applications use Robot

Operating System (ROS) [10] as a main framework. ROS

is an open-source meta-operating system for robots and

provides extensive tools and libraries designed for processing

data from sensors and actuators. An ROS process is called

a node, and developers can easily specify which node runs

on which machine.

Fig. 1 shows a publisher/subscriber model in ROS. A

node communicates with another node using a message

queue called topic. A system using ROS framework creates

a directed acyclic graph structure where a vertex represents

a node and an edge of two vertexes represents a communica-

tion between two nodes. The communication between nodes

is sent by TCPROS protocol which uses persistent, stateful

TCP/IP socket connections. Hence, even when two nodes are

on different machines, one node can seamlessly acquire the

topic data over the network.

B. Autoware

Autoware [9] is an ROS-based open-source platform de-

veloped for autonomous vehicles. Autoware collects the

signals from various sensors such as camera, IMU, LiDAR,

and GNSS, then, estimates the location of the vehicle, plans

the path, and controls the vehicle. Autoware is designed

for Level 4 and Level 5 autonomous driving and tested in

demonstrated experiments in Japan [11], [12]. Now Auto-

ware is maintained by the Autoware Foundation [13], which

is a non-profit organization and composed of more than 20

global members. We use Autoware to simulate the real-world

autonomous driving situation.

III. PRESENTED EDGE-CLOUD COMPUTING MODEL

In this section, we explain the presented edge-cloud com-

puting model. Before explaining the model, our simulation

model and ROS component model are introduced.

Fig. 2 shows the actual 5G cloud model and simulation

model. The actual 5G cloud model uses edge devices in the

vehicle and cloud servers connected with 5G mobile network.

In contrast, the simulation model uses an NVIDIA DRIVE

PX2 and Desktop PC as an edge device and a cloud server,

respectively.

We consider the situation where a vehicle runs on actual

roads, and focus on two main features in Autoware [9]: the

self-localization and path planning. We use Normal Distribu-

tions Transform (NDT) matching [14] and A* path planner

Edge Cloud

5G (Wireless)

(a) Actual 5G cloud model

DRIVE PX2 Desktop

LAN (Wired)

(b) Simulation model

Fig. 2. Actual 5G cloud model and simulation model

10Hz

velodyne
nodelet 
manager  

ray ground
filter  

voxel grid
filter  

ndt
matching  

points2
costmap  

grid map
filter  

astar navi  

grid map
filter

visualization  

0.5Hz

play  

Fig. 3. Overview of our ROS component model

[15] as the self-localization and path planning, respectively,

because these features are mainly used for Autoware-based

autonomous vehicles.

Fig. 3 shows the overview of our ROS component model.

astar navi has the period of 0.5Hz (2,000ms) and other

components have the period of 10Hz (100ms). Our ROS

component model is composed of the following 9 compo-

nents.

1) play reads point clouds from ROSBAG data (record-

ing and playing back data).

2) velodyne nodelet manager creates 360 degree

point clouds by Velodyne LiDAR data.

3) voxel grid filter downsamples the point cloud

data (Velodyne LiDAR data in this case) by taking a

spatial average of the points in the cloud.

4) ndt matching handles NDT matching, which is

used as the self-localization algorithm. NDT is a laser

scan matching algorithm of self-localization that uses

two point cloud data. One is made beforehand (ref-

erence scan) and the other is acquired from vehicle

sensors (input scan).

5) ray ground filter removes ground from point

clouds.

6) points2costmap creates 2D projection from 3D

point clouds.

7) grid map filter creates non-entering area from

2D obstacle points.
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Fig. 4. Presented edge-cloud computing model

8) astar navi handles A* planner, which heuristically

calculates the shortest path from the start point to the

goal point.

9) pure pursuit is responsible for controlling vehicle

actuators.

Fig. 4 shows the presented edge-cloud com-

puting model. The edge devices execute play,

velodyne nodelet manager, ray ground filter,

points2costmap, voxel grid filter, and

pure pursuit. In contrast, the cloud servers execute

grid map filter, ndt matching, and astar navi.

Preliminary Evaluations: The reason why the presented

edge-cloud computing model is suitable for Autoware-based

autonomous vehicles is because we have conducted the

preliminary experiments with several edge-cloud comput-

ing models. In these edge-cloud computing models, these

components are assigned to an edge device or a cloud

server, respectively, in order to evaluate the execution time

and communication cost. The results of the preliminary

evaluations show that ndt matching on DRIVE PX2

has the worst case execution time of 283ms. In addi-

tion, astar navi on DRIVE PX2 often takes more than

10,000ms. The results indicate that DRIVE PX2 cannot

execute NDT matching or A* planner within respective dead-

lines: 100ms and 2,000ms. Therefore, we conclude that the

main processes of NDT matching (ndt matching) and A*

planner (grid map filter and astar navi) should be

run on the cloud server. Under this condition, we have chosen

this model because of the lowest traffic (40 to 100MiBs).

Other edge-cloud computing models exceeded 120MiB and

1 Gbit/s ethernet network could be the bottleneck. Therefore,

these models would not be suitable.

We have made several modifications to Autoware, which

TABLE I

SPECIFICATION OF EDGE DEVICE AND CLOUD SERVER

Edge Cloud
CPU 2x Tegra X2 1x Core i7-8700

Architecture 2x NVIDIA Denver + Intel x86 6 Core
4x ARM Cortex A57 (12 Thread)

CPU Frequency 2.0GHz (Denver) + 3.2GHz
2.0GHz (Cortex A57)

Memory 16GB LPDDR4 32GB DDR4
GPU 1x Pascal GPU 1x GTX1080

Total CUDA Core 512 1280
GPU Memory 4GB GDDR5 8GB GDDR5
Linux Kernel 4.9.38-rt25-tegra 4.16.5-041605-generic

Ubuntu Version 16.04
ROS version kinetic

Autoware version 1.9.1

are a mere fix to run on two machines. We do not modify the

actual data processing algorithm that might compromise the

execution time. Our main modification is creating the sync
node to observe the message queue in each experiment and

evaluate the execution time. Our implementation is available

at https://github.com/pflab-ut/distributed-autoware.

IV. EVALUATIONS

A. Setups

The evaluations use the edge device and cloud machine,

which are connected to the same network with 1 Gbit/s

ethernet to simulate 5G mobile network. Table I shows the

specification of the edge device and cloud server.

We use the simulation feature in Autoware. The simulation

data used in the evaluations are those obtained by using

the Velodyne HDL-32E LiDAR which covers 360 horizontal

Fields Of View (FOV). The Velodyne HDL-32E LiDAR has

32 channels and covers +10 to 30 vertical FOV. The scan

frequency is 10Hz and scan matchings are executed with

100ms period.

The input scan data used for simulations are available

on ROSBAG STORE (https://rosbag.tier4.jp/index/), #178.

These data are taken around Nagoya University, Japan, and

the vehicle in this simulation travels in the same path for 3

minutes.

We denote the experiments, which are executed on the

edge machine as Eedge, those on the cloud machine as

Ecloud, and those under the edge-cloud computing model

as Eec.

Since our ROS component model has two different periods

as shown in Fig. 3, we use A* planner and NDT matching

because these features are mainly used for Autoware-based

autonomous vehicles.

B. A* Planner

The execution time of A* planner depends on the location

of the vehicle and the location of the goal. Therefore, we

make four cases in which one autonomous vehicle parks on

the campus street in Nagoya University, Japan, and starts to

drive. These cases set the same start point and different goal

points, and measure the execution time of A* planner to find

the path to each goal.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 5. Start, goal, and results of A* planner of case 1, 2, 3, and 4. The
green arrow denotes the start point and the blue arrow denotes the goal
point. The white line represents the presented path of A* planner. Red,
green, and yellow points represent points acquired from LiDAR sensors.

Fig. 5 shows the start, goal and, results of A* planner of

case 1, 2, 3, and 4. The green arrow denotes the start point

and the blue arrow denotes the goal point. We execute 100

trials of each case and measure the execution time to find

the path to each goal. The white line represents the generated

path of A* planner.

Fig. 6 shows the execution time of A* planner of case 1,

2, 3, and 4. For goal 1, the execution time of A* planner is

within 2,000ms deadline in every model. Eedge misses the

deadline in the goal 2 while Ecloud and Eec are well within

the deadline. For goal 3, Eedge is 24,037ms and Ecloud

is 2,450ms. However Eec is within the deadline, 1,949ms.

Finally, for goal 4, although Eec misses the deadline, Eedge

has about 10.4 times longer execution time compared to Eec.

As A* planner is a CPU dependent task, Ecloud and Eec have

significant advantages against Eedge. Furthermore, since the

computation is distributed into two machines, the results also

show that Eec performs better than Ecloud, up to 8%.

These results strongly clarify the contribution of the

presented edge-cloud computing model. In addition, they

address the importance of the model because even the slight

change of the goal point will result their execution time to

be varied drastically.

C. NDT Matching

In NDT matching, the specific parameters must be defined

with considering the trade-off between execution time and

accuracy. Our parameters of NDT matching are as follows.

The voxel size is 1 meter. The maximum step size of

Newton’s method is 100. Convergence threshold is 0.0001.

The input point clouds from these LiDARs are downsampled

by voxel grid filter. When downsampled, input point

cloud spaces are divided into a cubic voxel. The size of

Fig. 6. Execution time of A* planner of case 1, 2, 3, and 4. The red dotted
line represents 2000ms, the deadline of A* planner.

Fig. 7. Round-trip execution model

each cubic voxel, called leaf size, is set to 2.0. For pa-

rameters of A* planner, the resolution is 0.2, the maximum

distance of grid map filter is 1 meter, and the filter

is points2costmap. We measure two metrics in NDT

matching: execution time and deadline miss ratio.

(i) Execution Time: We measure the round-trip execution

time that takes to complete NDT matching. Fig. 7 shows

the round-trip execution time (edge-cloud-edge) in NDT

matching, as shown in Fig. 4. We run 2,000 scans of NDT

matching for Eedge, Ecloud, and Eec.

Fig. 8(a) shows the round-trip execution time of every

scan. On average, Ecloud takes 13.9ms and Eedge takes

55.4ms, while Eec takes 35.1ms, 57% faster than Eedge. In

Fig. 8(b), the worst case execution time of Eedge is 348ms

and that of Eec is 103ms. This indicates that the presented

edge-cloud computing model reduces the execution time

compared to the edge computing model and slightly increases

the execution time compared to the cloud computing model.

On Eec, only 2 of 2,000 scans are longer than 100ms.

This implies that even with unpredictable traffic cost, the

presented edge-cloud computing model has more clustered



(a) Individual execution time (b) Execution time box plot

Fig. 8. Round-trip execution time of NDT matching

(a) Individual deadline miss ratio (b) Deadline miss ratio box plot

Fig. 9. Deadline miss ratio of NDT matching

execution time than the edge computing model. The ex-

istence of outlier is fatal in NDT matching because the

accuracy of the algorithm heavily relies on the previous data.

When the execution time of a certain scan is longer than

100ms, the next scan cannot use the previous data and make

self-localization less accurate and longer to compute, which

leads to another overload in NDT matching. This supports

the fact that some of the spikes in Fig. 8(a) are clustered.

(ii) Deadline Miss Ratio: At the same time, we measure

the deadline miss ratio of NDT matching as the following

definition.

Deadline Miss Ratio = 1− Npp

Nvel
, (1)

where Npp is the number of message pure pursuit
received and Nvel is the number of message

velodyne nodelet manager sent.

The deadline miss ratio can be derived from the

overview of the message queue. Since the message

queue size of the every topic is set to 1, and

velodyne nodelet manager tries to send new data

every 100ms. If the component of ndt matching misses

its deadline (100ms), it does not fetch the latest data from

velodyne nodelet manager. This causes the overflow

of the queue when velodyne nodelet manager tries

to send the data in the next scan. Thus, the number of queue

overflows equals to the deadline miss ratio. One scenario

runs 2,000 scans like Fig. 8(a) as one trial. We run 100

trials of the scenario and measure the deadline miss ratio in

each trial. Therefore, the total number of measurements is

200,000 (= 2,000 scans * 100 trials).

Fig. 9(a) shows the deadline miss ratio of each model.

Out of 100 trials, Eec achieves 98 trials without any deadline

miss, which is almost the same as Ecloud. Meanwhile, Eedge

has the maximum of 3% deadline miss ratio and every set

has at least one deadline miss. As Fig. 9(b) shows, the best

case in Eedge is 0.35%, which is worse than the worst case in

the edge-cloud computing model (0.20%). This experiment

ensures us the stability in the execution time of the presented

edge-cloud computing model. Only 6 of 200,000 measured

are longer than 100ms deadline, which puts the success ratio

(Npp/Nvel) of the presented edge-cloud computing model as

99.997%.

V. RELATED WORK

Edge-cloud computing is an uprising field due to the

widespread use of IoT and mobile devices. One of the well-

known applications is mobile edge computation offloading
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(MECO) [16], which is used in mobile applications. Mobile

devices have constraints in their computation power of

mobile devices and their battery life. Many applications,

depending on their uses, offload some of their computation

on to their servers over the internet. There are many opti-

mization methods introduced which parts of the application

are offloaded to the cloud. Mao et al. focused on energy

consumption and computation power [17], while Huang et

al. focused on network latency and computation power [18].

Kumar et al. focused on the edge-cloud computing model

for autonomous vehicles [4]. They introduced an ROS-based

cloud-assisted system, Carcel, and conducted demonstrated

experiments with a golf cart and six iRobot Create robots.

Carcel collects data by the UDP connection from the vehicle

and sensors placed in multiple locations, analyzes the data,

calculates the path using RRT* algorithm [19] at a cloud

server, and returns the result to the vehicle. Carcel reduced

the average time to detect obstacles such as pedestrians

by 4.6 times compared to contemporary systems without

access to the cloud. While Carcel requires multiple sensors

as roadside infrastructures, our system does not require any

additional sensors other than map data and sensors on the

vehicle, and hence its use is flexible.

Another distributed model, CVN, is a model where mul-

tiple vehicles create a wireless link network to communicate

with each other, called VANETs [5]. Through VANETs, a

vehicle can share map data and computational resources to

improve vehicle infrastructures, or a vehicle can share its

positions to other vehicles to improve inter-vehicle com-

munication and safety of passengers. Since VANETs re-

quire multiple vehicles, they are difficult to use when non-

autonomous vehicles are involved, especially when a heavy

vehicle between vehicles leads to frequent disconnection

problems called shadowing [20]. Unlike VANETs, this paper

focuses on improving standalone autonomous vehicles by

utilizing scalable cloud servers to compute heavy tasks.

VI. CONCLUSION

We presented the edge-cloud computing model for au-

tonomous vehicles. The presented edge-cloud computing

model assigns ROS components to edge devices or cloud

servers, respectively, in order to satisfy the requirement of

the execution time and communication cost. We use 1 Gbit/s

simulated network as an alternative of 5G mobile network.

The simulation results by ROSBAG data demonstrate that the

presented edge-cloud computing model reduces the execution

time and deadline miss ratio compared to the edge computing

model and slightly increases them compared to the cloud

computing model.

In future work, we will investigate the behavior of the

presented edge-cloud computing model in actual 5G mobile

network, especially focusing on the schedulability analysis

considering communication delay and losses that would

occur under mobile networks are desirable. In addition, we

will add the cloudlet (micro datacenters in close to proximity

to edge devices) [21] to the presented edge-cloud computing

model for more realistic use cases.
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Session III 

Keynote speaker: : Danwei Wang 
(NTU, Singapore) 

Intelligent Perception, Navigation and Control for Multi-robot Systems

Abstract: While tremendous progress have been made in the development of localization and 
navigation algorithms for single robot, the operation of the multi-robot systems has recently 
garnered significant attention. This talk aim to report recent advancements in multi-robot systems 
research, which are developed by Prof Wang Danwei’s Group at Nanyang Technological 
University, Singapore. Emphases are placed on intelligent perception, navigation and control 
technologies that enable autonomous systems to operate in cluttered and GPS-denied 
environments. The talk will introduce a systematic multi-robot framework that contains core 
functions such as multi-sensor data fusion, complex scene understanding, multi-robot localization 
and mapping, moving object reasoning, and formation control. 

Biography: WANG, Danwei received and his Ph.D and M.E.S. degrees from the University of 
Michigan, Ann Arbor, USA, in 1989 and 1986, respectively, and his B.E. degree from the South 
China University of Technology, China, in 1982. Currently, he is a professor, School of Electrical 
and Electronic Engineering, NTU, Director, ST Engineering-NTU Corporate Lab. He also served 
as Director, EXQISITUS, Centre for E-City, and Deputy Director of the Robotics Research 
Centre. From 2005 to 2011, he served as Head, Division of Control and Instrumentation, a 
member of School Management Committee and a senator in NTU academic council. He is also a 
facilitated faculty member in Singapore Arm Force - Nanyang Technological University Academy 
(SNA).

He was awarded the Alexander von Humboldt Fellowship in Germany from 1996-1997. He is an 
Associate Editor for the International Journal of Humanoid Robotics since 2003, Member, 
Editorial Board, International Journal of Vehicular and Autonomous Systems and Advisor for 
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ASME Book Series in Robotics Engineering. He has served as guest editors for various journals, 
including Journal of Field Robotics. He has been invited to deliver keynote speeches in 9 
international conferences and workshops and he was awarded the best conference paper award or 
in the final list of best conference paper award. He has served in the International Program 
Committees for IEEE IROS 2006 (Technical Co-Chair) and many recent IEEE IROSs and IEEE 
ICRAs as Associate Editor. He is a senior member of IEEE and active in conference organization 
(as general chair, technical chair, keynote chair, etc).

He is actively involved in teaching and research related to robotics and control. He has developed 
and taught postgraduate and undergraduate courses on engineering mathematics, control 
engineering and robotics. As at Oct 2013, he has completed research projects with total fund of 
13million SGD (USD/SGD=1.25) and has on-going research project fund of 30million SGD. Dr 
Wang has been working on robotics/control since 1985. He is a recognized expert on iterative 
learning/repetitive control theory and applications. He has been working on outdoor mobile 
robotics since 1995 and was a team leader in a collaboration project with PSA. He led two teams 
of professors and researchers to pass the qualifying rounds and participate in the Finals of both 
TechX Challenge 2008 and 2013, respectively, which are outdoor autonomous robot 
competitions. He was instrumental in the developments of two laboratories for outdoor mobile 
robots and intelligent robotics in the school of EEE. In recent years, he has successfully developed 
a framework of fault diagnosis and isolation for complex and hybrid systems. He has also made 
substantial contributions to the field of satellite formation flying and satellite attitude fault tolerant 
control. He is the supervisor for 29 Ph.D theses, 38 Master theses and 27 post-doctorates/visiting
researchers. He has published 4 books, 7 book chapters, 6 patents (5 published and 1 filed) and 
over 400 technical papers and articles in international refereed journals and conferences. His 
research interests include a wide range of topics: robotic manipulators and force control, advanced 
control design, intelligent systems, learning control, mobile robotics, mobile robot path and 
trajectory control, satellite formation flying and fault tolerant attitude control, fault diagnosis and 
prognosis for complex systems, traffic light control. SCI citations to his papers amount to 3614 as 
of Feb 2017.
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miniSAM: A Flexible Factor Graph Non-linear Least Squares
Optimization Framework

Jing Dong1 and Zhaoyang Lv2

Abstract— Many problems in computer vision and robotics
can be phrased as non-linear least squares optimization prob-
lems represented by factor graphs, for example, simultaneous
localization and mapping (SLAM), structure from motion
(SfM), motion planning, and control. We have developed an
open-source C++/Python framework miniSAM, for solving such
factor graph based least squares problems. Compared to most
existing frameworks for least squares solvers, miniSAM has (1)
full Python/NumPy API, which enables more agile development
and easy binding with existing Python projects, and (2) a wide
list of sparse linear solvers, including CUDA enabled sparse
linear solvers. Our benchmarking results shows miniSAM offers
comparable performances on various types of problems, with
more flexible and smoother development experience.

I. INTRODUCTION

Solving non-linear least squares is important to many

areas in robotics, including SLAM [1], SfM [2], motion

planning [3], and control [4], [5]. Furthermore, researchers in

these areas often use factor graphs, a probabilistic graphical

representation to model the non-linear least squares problem.

Dellaert and Kaess [1] first connected factor graphs to non-

linear least squares, and the graph inference algorithms to

sparse linear algebra algorithms.

There are existing libraries for solving non-linear least

squares problems. Existing widely used frameworks by

SLAM and SfM communities include Ceres [6], g2o [7],

and GTSAM [8]. In particular, GTSAM uses factor graph

to model the non-linear least square problems, and solves

the problems using graphical algorithms rather than sparse

linear algebra algorithms. However, for performance reasons

all existing frameworks are implemented in C++ and there-

fore have the disadvantage that they require complex C++

programing, especially when users merely want to define or

customize loss functions.

We introduce a flexible, general and lightweight factor

graph optimization framework miniSAM†. Like GTSAM,

miniSAM uses factor graphs to model non-linear least square

problems. The APIs and implementation of miniSAM are

heavily inspired and influenced by GTSAM, but miniSAM

is a much more lightweight framework, and that extends the

flexibility of GTSAM as follows:

• Full Python/NumPy API, with the ability to define

custom cost functions and optimizable manifolds to

*This work was mostly finished when both authors were PhD students
at College of Computing, Georgia Institute of Technology, Atlanta, USA.
We would like to thank Prof. Frank Dellaert and Dr. Mustafa Mukadam
giving suggestions on this work. This work received no financial support.

1thu.dongjing@gmail.com
2zhaoyang.lv@gatech.edu

†https://github.com/dongjing3309/minisam

Fig. 1: Example problems solved by miniSAM. Top: bundle

adjustment problem Trafalgar [9], camera poses are shown

in blue and landmarks are shown in red. Bottom (from left to

right): 2D pose graph problem M3500 [10], 3D pose graph

problem Sphere [10], Barrett WAM arm motion planning

problem [3].

enable faster and easier prototyping.

• A wide list of sparse linear solver choices, including

CUDA supported GPU sparse linear solvers.

• It is lightweight and requires minimal external de-

pendencies, thus making it great for cross-platform

compatibility.

In this paper, we first give an introduction to non-linear

least squares and the connection between sparse least squares

and factor graphs. Then, we introduce the features and basic

usage of miniSAM, finally we show benchmarking results of

miniSAM on various SLAM problems.

II. INTRODUCTION TO NON-LINEAR LEAST SQUARES

AND FACTOR GRAPHS

A. Non-linear Least Square Optimization

Non-linear least squares optimization is defined by

x∗ = argmin
x

∑
i

ρi
( ‖ fi(x) ‖2Σi

)
, (1)

where x ∈ M is a point on a general n-dimensional

manifold, x∗ ∈ M is the solution, fi ∈ R
m is a m-

dimensional vector-valued error function, ρi is a robust

kernel function, and Σi ∈ R
m×m is a covariance matrix.

The Mahalanobis distance is defined by ‖ v ‖2Σ .
= vTΣ−1v

where v ∈ R
m and Σ−1 is the information matrix. If we
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factorize the information matrix by Cholesky factorization

Σ−1 = RTR, where R is upper triangular, we have

‖ v ‖2Σ= vTΣ−1v = vTRTRv =‖ Rv ‖2 . (2)

If we consider the simplified case where ρi is identity and

define hi(x)
.
= Rifi(x), then Eq. (1) is equivalent to

x∗ = argmin
x

∑
i

‖ hi(x) ‖2 (3)

as per Eq. (2). If we define a linearization point x0 ∈ M,

and the Jacobian matrix of hi(x)

Ji
.
=

∂hi(x)

∂x

∣∣∣
x=x0

(4)

then the Taylor expansion is given by

hi(x0 +Δx) = hi(x0) + JiΔx+O(Δx2), (5)

which we can use to solve the least square problem by

searching a local region near x0, and find the solution by

iteratively solving a linearized least squares problem

Δx∗ = argmin
Δx

∑
i

‖ JiΔx+ hi(x0) ‖2, (6)

where Δx∗ ∈ R
n, and the solution is updated by

x∗ = x0 +Δx∗. (7)

If M is simply a vector space R
n then the above procedure is

performed iteratively in general by setting x0 of next iteration

from x∗ of current iteration, until x∗ converges. Trust-region

policies like Levenberg-Marquardt can be also applied when

looking for Δx∗.

When M is a general manifold, we need to define a

local coordinate chart of M near x0, which is an invertible

map between a local region of M around x0 and the local

Euclidean space, and also an operator ⊕ that maps a point in

local Euclidean space back to M. Thus Eq. (7) on general

manifolds is

x∗ = x0 ⊕Δx∗. (8)

A simple example of ⊕ is for the Euclidean space where it

is simply the plus operator.

To solve the linear least squares problem in Eq. (6), we

first rewrite Eq. (6) as

Δx∗ = argmax
Δx

‖ JΔx+ b ‖2, (9)

where J is defined by stacking all Ji vertically, similarly

b is defined by stacking all hi(x0) vertically. Cholesky

factorization is commonly used solve Eq. (9). Since the

solution of linear least squares problem in Eq. (9) is given

by the normal equation

JTJΔx∗ = JT b, (10)

we apply Cholesky factorization to symmetric JTJ , and we

have JTJ = RTR where R is upper triangular. Then solving

Eq. (10) is equivalent to solving both

RT y = JT b (11)

RΔx∗ = y (12)

in two steps, which can be both solved by back-substitution

given that R is triangular. Other than Cholesky factorization,

QR and SVD factorizations can be also used to solve

Eq. (9), although with significantly slower speeds. Iterative

methods like pre-conditioned conjugate gradient (PCG) are

also widely used to solve Eq. (10), especially when JTJ is

very large.

B. Connection between Factor Graphs and Sparse Least
Squares

Dellaert and Kaess [1] have shown factor graphs have

a tight connections with non-linear least square problems.

A factor graph is a probabilistic graphical model, which

represents a joint probability distribution of all factors

p(x) ∝
∏
i

pi(xi), (13)

where xi ⊆ x is a subset of variables involved in factor i,
p(x) is the overall distribution of the factor graph, and pi(xi)
is the distribution of each factor. The maximum a posteriori

(MAP) estimate of the graph is

x∗ = argmax
x

p(x) = argmax
x

∏
i

pi(xi). (14)

If we consider the case where each factor has Gaussian

distribution on fi(xi) with covariance Σi,

pi(xi) ∝ exp
(− 1

2
‖ fi(xi) ‖2Σi

)
, (15)

then MAP inference is

x∗ = argmax
x

∏
i

pi(xi) = argmax
x

log
(∏

i

pi(xi)
)
, (16)

= argmin
x

∏
i

−log
(
pi(xi)

)
= argmin

x

∑
i

‖ fi(xi) ‖2Σi
.

(17)

The MAP inference problem in Eq. (17) is converted to the

same non-linear least squares optimization problem in Eq. 1,

which can be solved following the same steps in Section II-

A.

There are several advantages of using factor graph to

model the non-linear least squares problem in SLAM. Factor

graphs encode the probabilistic nature of the problem, and

easily visualize the underlying sparsity of most SLAM

problems since for most (if not all) factors xi are very small

sets. We give an example in the next section, which clearly

visualizes this sparsity in a factor graph.

C. Example: A Pose Graph

Here we give a simple example of using factor graph to

solve a small pose graph problem. The problem is shown in

Fig. 2a, where a vehicle moves forward on a 2D plane, makes

a 270 degrees right turn, and has a relative pose loop closure

measurement which is shown in red. If we want to estimate

the vehicle’s poses at times t = 1, 2, 3, 4, 5, we define the

system’s state variables

x = {x1, x2, x3, x4, x5}, (18)
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(a) Problem

(b) Factor graph

Fig. 2: An example 2D pose graph problem, with pose

variables (shown as white circles), a prior (shown as a

blue factor), four odometry measurements (shown as black

factors) and a single loop closure measurement (shown as a

red factor).

where xi ∈ SE(2), i = 1, 2, 3, 4, 5 is the vehicle pose at

t = i. Then the factor graph models the pose graph problem

as

p(x) ∝ p(x1)︸ ︷︷ ︸
prior

p(x1, x2)p(x2, x3)p(x3, x4)p(x4, x5)︸ ︷︷ ︸
odometry

p(x2, x5)︸ ︷︷ ︸
loop closure

(19)

which is shown in Fig. 2b. As shown in Eq. (19) and Fig. 2b,

there are three types of factors: (1) A prior factor, which gives

a prior distribution on first pose, and locks the solution to a

world coordinate frame. (2) Odometry factors, which encode

the relative poses odometry measurements between t = i
and t = i+ 1. (3) A loop closure factor, which encodes the

relative poses measurement between t = 2 and t = 5.

The sparsity of the example problem is clearly shown by

the factor graph: all the factors are unary or binary. This is

actually true for all pose graph optimization problems. We

can further show the sparsity of the underlying linear system

we solve in Eq. (9) and Eq. (10)

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

J11
J21 J22

J32 J33
J43 J44

J54 J55
J62 J65

⎞
⎟⎟⎟⎟⎟⎟⎠

prior

odometry

loop closure

,

(20)

H = JTJ =

⎛
⎜⎜⎜⎜⎝

H11 H12

H21 H22 H23 H25

H32 H33 H34

H43 H44 H45

H52 H54 H55

⎞
⎟⎟⎟⎟⎠ . (21)

We can clearly see both J and JTJ have block-wise sparse

structures.

TABLE I: Features comparison across frameworks.

Ceres g2o GTSAM miniSAM
C++: Custom cost/factor • • • •
C++: Numerical jacobian • • •
C++: Auto-diff jacobian • • •
C++: Custom manifold • • • •
MATLAB: API binding •
Python: API binding •1 •1 • •
Python: Custom cost/factor •
Python: Numerical jacobian •
Python: Auto-diff jacobian
Python: Custom manifold •

1by third-party.

III. SOLVING NON-LINEAR LEAST SQUARE PROBLEMS

WITH MINISAM

In this section we give some details about our miniSAM

library and the basic introduction of how to use miniSAM.

miniSAM is implemented with C++11, and provides both

native C++ API and Python API provided by pybind11 [11].

miniSAM is a very lightweight library: the core implemen-

tation has only 8k lines of C++ code, plus 4k lines of test

code and 2k lines of Python wrapper code. Also miniSAM

requires minimal external dependencies (only Eigen [12]

linear algebra library is required). This makes miniSAM

great for cross-platform compatibility. Currently miniSAM

compiles with most major compliers (GCC, Clang, Microsoft

Visual C++) on most major OSs (Linux, macOS, Windows).

One of the most important features of miniSAM is its

high flexibility with the Python interface, which provides

the ability to create custom factors and manifolds directly

in Python. Although most existing frameworks provide (or

by third-parties) binding to script languages (like Python

and MATLAB) that enable them to define graph structures,

they all lack ability to directly define factors and manifolds

in script languages. To use custom factors or manifolds in

script languages, users need to first define them in C++,

then bind the interfaces to script languages, which is in-

convenient. Table I gives a comparison of multiple features

in C++/Python/MATLAB between miniSAM and existing

frameworks.

In the rest of this section we discuss three major use cases

of miniSAM: how to define and solve factor graphs/least

square optimization problems, create custom factors/cost

functions, and create custom optimizable manifolds.

A. The Pose Graph Example

Here we give an example on how to use miniSAM to solve

the pose graph example discussed in Section II-C. Example

Python code solving this pose graph example in Fig. 2 is in

Snippet 1 in the Appendix.

In the first step we construct the factor graph. In miniSAM

data structure FactorGraph is used as the container for

factor graphs. In miniSAM each variable is indexed by a

key, which is defined by a character and an unsigned integer

(e.g. x1). Each factor has its key list that indicates the

connected variables, and its loss function that has covariance

Σi and optional robust kernel ρi (Cauchy and Huber robust
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loss functions have been implemented in miniSAM). In the

pose graph example two types of factors are used: unary

PriorFactor and binary BetweenFactor.
In the second step we provide the initial variable values

as the linearization point. In miniSAM variable values are

stored in structure Variables, where each variable is in-

dexed by its key. Finally, we call a non-linear least square

solver (like Levenberg-Marquardt) to solve the problem.

Result variables are returned in a Variables structure with

status code.

B. Define Factors
Here we discuss how to define a new factor in miniSAM.

As mentioned defining a new factor can be done in both

C++ and Python in miniSAM, by inheriting from Factor

base class. The implementation of a factor class includes

an error function error() that defines fi(xi), which re-

turns a Eigen::VectorXd in C++, or a NumPy array in

Python. And Jacobian matrices function jacobians() that

defines ∂fi(xi)/∂xi for each variable in xi, which return

a std::vector<Eigen::MatrixXd> in C++, or a list of

NumPy matrices in Python. We show an example prior factor

on SE(2) in Python in Snippet 2.
Analytic Jacobians ∂fi(xi)/∂xi is usually quite complex

for non-trivial factors, and is the main bottleneck for faster

prototyping. miniSAM provides a solution by inheriting

from NumericalFactor base class, numerical ∂fi(xi)/∂xi

through finite differencing will be evaluated during op-

timization, thus saving developer’s time deriving analytic

Jacobians. We leave automatic differentiation for Jacobian

evaluation as future work.

C. Define Optimizable Manifolds
miniSAM already has build-in support for optimizing

various commonly used manifold types in C++ and Python,

including Eigen vector types in C++, NumPy array in Python,

and Lie groups SO(2), SE(2), SO(3), SE(3) and Sim(3)
(implementations provided by Sophus library [13]), which

are commonly used in SLAM and robotics problems.
We can also customize manifold properties of any C++ or

Python class for miniSAM. In Python this is done by defin-

ing manifold-related member functions, including dim()

function returns manifold dimensionality, and local() and

retract() functions defines the local coordinate chart.

An example of defining a vector space manifold R
2 in

Python is in Snippet 3. In C++ we use a non-intrusive

technique called traits, which is a specialization of template

minisam::traits<> for the type we are adding manifold

properties. Using traits to define manifold properties has two

advantages: (1) optimizing a class without modifying it, or

even without knowing details of implementation (e.g. adding

miniSAM optimization support for third-party C/C++ types),

(2) making optimizing primitive type (like float/double)

possible.

IV. EXPERIMENTS

To test the performance of miniSAM, we run a benchmark

on multiple problems of different types and scales, and

TABLE II: Optimization times in second of different frame-

works with different sparse linear solvers, grouped by single-

thread or multi-thread.

2D-PG 3D-PG BA

Ceres + Eigen LDLT 0.090 2.735 54.96

g2o + Eigen LDLT 0.059 2.697 63.66

GTSAM + Multifrontal Cholesky 0.228 2.002 83.67

GTSAM + Sequential Cholesky 0.207 2.836 83.85

miniSAM + Eigen LDLT 0.088 3.341 64.38

Ceres + CHOLMOD 0.080 0.941 28.17

g2o + CHOLMOD 0.064 0.821 35.68

miniSAM + CHOLMOD 0.090 1.107 39.24

miniSAM + cuSOLVER Cholesky 0.458 1.791 49.77

compare with multiple existing frameworks. We choose three

SLAM and SfM problem for benchmarking, from small to

large.

• 2D pose graph problem M3500 [10], which contains

3500 2D poses and 5453 energy edges.

• 3D pose graph problem Torus [10], which contains

5000 3D poses and 9048 energy edges.

• Bundle adjustment problem Dubrovnik [9], which con-

tains 356 camera poses, 226730 landmarks and 1255268

image measurements.

For all problems we use Levenberg-Marquardt algorithm to

solve, and fix the number of iterations to 5.

We run the benchmark with the following frameworks and

sparse linear solvers

• Ceres [6] with Eigen simplicial LDLT solver, and

CHOLMOD [14] Cholesky solver.

• g2o [7] with Eigen simplicial LDLT solver, and

CHOLMOD Cholesky solver.

• GTSAM [8] with built-in multi-frontal and sequential

graph elimination solvers.

• miniSAM with Eigen simplicial LDLT solver,

CHOLMOD Cholesky solver, and CUDA cuSOLVER

GPGPU Cholesky solver.

For miniSAM, all factors and manifolds are implemented

natively in C++. All frameworks in benchmarking are com-

piled in single-thread, except CHOLMOD and CUDA cu-

SOLVER solvers are compiled in multi-thread (using all 12

available CPU threads during benchmarking, and GPU is

used with CUDA). The benchmarking is performed on a

computer with Intel Core i7-6850K CPU, 128 GB memory,

and a NVIDIA TITAN X GPU with 12GB graphic memory.

The results are shown in Table. II, and are grouped by single-

thread or multi-thread.

We can see in Table. II that when the same sparse linear

solver is used, miniSAM has slightly worse runtime compare

to Ceres and g2o, but (except for 3D pose graph case)

has better runtime compared to GTSAM, which does not

use third-party sparse linear solvers. The extra overhead of

miniSAM compare to Ceres and g2o are mainly due to two

major miniSAM design choices:

• miniSAM avoids using any compile-time array or ma-

trix, and all internal vectors and matrices are dynam-
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ically allocated. The use of dynamic size arrays in-

volves extra memory allocation overhead and forbids

any compile-time optimization by modern CPU SIMD

instructions.

• miniSAM avoids using any raw pointer and manual

memory management.

The reason to make above design choices is that to make

miniSAM have a Python API consistent with C++ API, and

to make Python interface possible to implement, since Python

does not have machinery to support template programming

or explicit memory management.

We also found CUDA cuSOLVER is not as fast as

CHOLMOD CPU solver when using all 12 available CPU

threads, and it is particularly slow on small problems.

Finally, CUDA cuSOLVER has an one-time launch delay

of about 350ms, once per executable launch. Given such

circumstances using CUDA cuSOLVER is currently only

good for large problems.

V. CONCLUSION

We gave a brief introduction to miniSAM, our non-linear

least squares optimization library. We demonstrate the basic

usage of miniSAM, show its flexibility in fast prototyping

in Python, and its performance in benchmarking of multiple

types of problems in SLAM and robotics applications. We

recognize miniSAM has a relatively small performance loss

compared to other state-of-the-art frameworks, mostly due

to miniSAM’s design to adapt Python API, so currently

miniSAM is not great for performance-critical applications.

But hopefully we can solve the problem in the future

by porting better sparse linear solvers (like GPU-enabled

iterative solver) to mitigate this issue.
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APPENDIX: PYTHON EXAMPLE CODE SNIPPETS

Snippet 1. A pose graph optimization in Python
import numpy as np
from minisam import *
from minisam.sophus import *

# build factor graph for least square problem
graph = FactorGraph()
loss = DiagonalLoss.Sigmas(np.array([1.0, 1.0, 0.1])) # loss function of sensor measurement model
graph.add(PriorFactor(key(’x’, 1), SE2(SO2(0), np.array([0, 0])), loss)) # prior as first pose
graph.add(BetweenFactor(key(’x’, 1), key(’x’, 2), SE2(SO2(0), np.array([5, 0])), loss)) # odometry measurements
graph.add(BetweenFactor(key(’x’, 2), key(’x’, 3), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 3), key(’x’, 4), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 4), key(’x’, 5), SE2(SO2(-3.14/2), np.array([5, 0])), loss))
graph.add(BetweenFactor(key(’x’, 5), key(’x’, 2), SE2(SO2(-3.14/2), np.array([5, 0])), loss)) # loop closure

# variables initial guess, with random added-on noise
init_values = Variables()
init_values.add(key(’x’, 1), SE2(SO2(0.2), np.array([0.2, -0.3])))
init_values.add(key(’x’, 2), SE2(SO2(-0.1), np.array([5.1, 0.3])))
init_values.add(key(’x’, 3), SE2(SO2(-3.14/2 - 0.2), np.array([9.9, -0.1])))
init_values.add(key(’x’, 4), SE2(SO2(-3.14 + 0.1), np.array([10.2, -5.0])))
init_values.add(key(’x’, 5), SE2(SO2(3.14/2 - 0.1), np.array([5.1, -5.1])))

# solve least square optimization by Levenberg-Marquardt algorithm
opt = LevenbergMarquardtOptimizer()
result_values = Variables() # results
status = opt.optimize(graph, init_values, result_values)
if status != NonlinearOptimizationStatus.SUCCESS:

print("optimization error :", status)

Snippet 2. A minimal Python prior factor example on SE(2)
import numpy as np
from minisam import *

# python implementation of prior factor on SE2
class PyPriorFactorSE2(Factor): # or inherit from NumericalFactor

# constructor
def __init__(self, key, prior, loss):

Factor.__init__(self, 3, [key], loss)
self.prior_ = prior

# make a deep copy
def copy(self):

return PyPriorFactorSE2(self.keys()[0], self.prior_, self.lossFunction())
# error vector
def error(self, variables):

curr_pose = variables.at(self.keys()[0]) # current variable
return (self.prior_.inverse() * curr_pose).log()

# jacobians, not needed if inherit from NumericalFactor
def jacobians(self, variables):

return [np.eye(3)]

Snippet 3. A minimal Python 2D point optimizable manifold
import numpy as np

# A 2D point class (x, y)
class PyPoint2D(object):

# constructor
def __init__(self, x, y):

self.x = float(x)
self.y = float(y)

# local coordinate dimension
def dim(self):

return 2
# map manifold point other to local coordinate
def local(self, other):

return np.array([other.x - self.x, other.y - self.y], dtype=np.float)
# apply changes in local coordinate to manifold, \oplus operator
def retract(self, vec):

return PyPoint2D(self.x + vec[0], self. + vec[1])
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Linear Camera Velocities and Point Feature Depth Estimation Using
Unknown Input Observer

R. Benyoucef, L. Nehaoua, H. Hadj-Abdelkader and H. Arioui

Abstract— In this paper, we propose a new approach to
estimate the missing 3D information of a point feature during
the camera motion and reconstruct the linear velocity of the
camera. This approach is intended to solve the problem of
relative localization and compute the distance between two
Unmanned Aerial Vehicles (UAV) within a formation. An
Unknown Input Observer is designed for the considered system
described by a quasi-linear parameter varying (qLPV) model
with unmeasurable variables to achieve kinematic from motion
estimation. An observability analysis is performed to ensure
the possibility of reconstructing the state variables. Sufficient
conditions to design the observer are derived in terms of
Linear Matrix Inequalities (LMIs) based on Lyapunov theory.
Simulation results are discussed to validate the proposed
approach.

Keywords: Nonlinear Observers, qLPV Systems, Feature
Depth Estimation, LMI constraints, Lyapunov Theory,
Kinematic from Motion.

I. INTRODUCTION

Many works have been conducted to solve the localization

problem when a team of robots cooperate with each other

to achieve some defined tasks. For example in [17], this

problem is solved for two terrestrial robots using exterocep-

tive sensors. Also In [18], a visual localization modules is

proposed to estimate the relative positions of agents within

a fleet of Unmanned Aerial Vehicles (UAVs).

The challenging problem of 3D structure estimation using

the visual information has attracted more interest recently,

we can find in literature various techniques to tackle this

problem which can refer to Simultaneous Localization And

Mapping (SLAM) in robotics [1] and Structure from Motion

(SfM) in computer vision [2] [19].

In earlier work, researchers have addressed this problem

using Stereo Vision Algorithms [3], which consists on re-

constructing the depth of a feature point from two images of

the same scene using triangulation. But later on, the idea of

using a single camera lead to multiple other approaches, one

can cite [4], where the observation of the point feature depth

is achieved using the persistency of excitation lemma that

results from the adaptive control theory [5], [6] and [7]. One

of the major disadvantage of all these cited works is the fact

that their analysis is based on the assumption of neglecting a

disturbance term which affects the dynamic behavior of the

system. Furthermore solutions based on Extended Kalman

Filter (EKF) have been proposed in [8] [9]. However the

main drawback of this approach is that they involve a certain

All authors are with IBISC Lab, Evry Val d'Essonne (UEVE), Paris
Saclay University, 43 Rue du Pelvoux, 91080 Courcouronnes. France
rayane.benyoucef@univ-evry.fr

degree of linearization which contradicts most of the studied

system dynamics. In the present paper, we achieve the

estimation of the 3D information of a feature point together

with recovering the linear velocity of the camera with respect

to x and y axis assuming a perfect knowledge of the angular

velocity of the camera and the linear velocity with respect to

its z axis. The system is described with qLPV representation

[13][14] and based on the new description of the system, An

unknown input observer (UIO) is designed, which allows

estimating the state of the system in presence of unknown

inputs.

Obtaining an accurate linear velocity have a significant

effect on the control of autonomous vehicles and drones.

The straight forward method to estimate the velocity is

to use data fusion [10] where Global Positioning System

(GPS) and Inertial Measurement Unit (IMU) are used for

this purpose. But this method fails when it comes to indoor

tasks or limited sensor resolution. Moreover, we can find

in literature some other approaches. For example in [11],

an Extended Kalman filter (EKF) is employed to estimate

linear and angular velocity of an object during its free flight,

on the other hand in [12], Riccati observer is used to solve

this problem. This work focuses on solving the relative

localization problem for coordination and control of multiple

autonomous aerial agents using the data provided by the on-

board cameras of the UAVs to estimate the relative distance

from the other agents with respect to its camera reference

frame and reconstruct the relative velocity of the camera.

This information is essential for data fusion or to give an

accurate estimate of the absolute velocity of the vehicle.

The main contribution of this work can be summarised in

two points the first one is introducing a novel description

of the relation between the variation of the feature extracted

from an image and the linear/angular velocities of the camera

using qLPV representation, based on which a nonlinear

observer is designed to estimate the depth, and the second

point consists on reconstructing the camera linear velocity

with respect to its x axis and y axis during its motion.

This paper is structured as follows: in section II, basic

definitions are highlighted and the nonlinear model of ca-

mera is described. In section III, the new description using

qLPV representation is explained for the nonlinear model of

camera. In Section IV the design of the nonlinear observer

is presented and the sufficient conditions are given in terms

of LMIs based on Lyapunov theory. Simulation tests are

conducted to discuss the performances of the proposed obser-

ver in section V. Finally, section VI draws some conclusions

regarding our work.
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II. MATHEMATICAL BACKGROUND

In this section, we first provide some basic definitions

and lemmas needed for the development of the proposed

approach. Then, we recall the conventional camera model.

A. Notations and basic definitions

We represent matrices in upper case bold letters X and

vectors in lower case bold letters x otherwise, the remaining

notations represent scalars (x or X).

We recall in the following the theorems used in the analysis

of the observer convergence:

Theorem 1 (Strong Detectability Condition): For every

matrix A ∈ R
n×n, F ∈ R

n×q and C ∈ R
m×n. We consider

the following Linear Time Invariant (LTI) system:

{ ẋ(t) =Ax(t) +Fd(t)
y(t) =Cx(t) (1)

where x ∈ Rn, y ∈ Rm and d ∈ Rq are respectively the state

vector, the unknown input vector and the output vector. The

system (1) is strongly detectable if:

lim
t→∞

y(t) = 0⇒ lim
t→∞

x(t) = 0 (2)

regardless of the input and the initial state. Algebraically this

is equivalent to:

rank(R(p)) = n + q (3)

where p represents the pole of the system and R denotes the

Rosenbrock matrix of system (1), given by:

R = [ pI −A −F
C 0

] (4)

Lemma 1: For every matrix G=GT > 0, X and Y with

appropriate dimensions, the property below holds:

XTY +YTX ≤XTGX +YTG−1Y (5)

Lemma 2 (Schur complement lemma): Consider the fol-

lowing convex nonlinear inequalities:

R > 0, T − SR−1ST > 0 (6)

where the matrices T = TT , R = RT and S are of

appropriate dimension. Hence, the previous inequalities can

be written in the following form:

[ T S
ST R

] > 0 (7)

Note that the previous mathematical properties for the LTI

systems hold for the case of qLPV systems considering the

case of frozen parameter vectors.

B. Conventional camera model

Let P be a 3-D point of coordinates p = (X Y Z)⊺
defined in the camera frame Fc. Its projection onto the image

plane is obtained through the well-known Pinhole model.

More precisely, the 3-D point p is projected in the image

as a 2-D point with homogeneous coordinates given by the

vector m as:

m = (x y 1)⊺ = 1

Z
p (8)

The velocity of the 3D point p is related to the camera special

velocity by:

ṗ = −υ + p × ω = (−I [p]×) u (9)

where []× refers to the skew-symmetric matrix of a given

vector, u = (υ⊺ ω⊺)⊺ is the spatial velocity of the camera

motion, with υ = (υx υy υz)⊺ and ω = (ωx ωy ωz)⊺ are

respectively, the instantaneous linear and angular velocities

of the camera frame. From (9), the dynamics of the inverse

of the depth
1

Z
is given by:

d

dt
( 1

Z
) = (0 0 − 1

Z2
− y
Z

x

Z
0) u (10)

The time derivative of the image point m is linked to the

camera spatial velocity u by the following interaction matrix

[13]:

ṁ = (− 1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x) u (11)

Let us now define the state vector as X = (s⊺, χ) with s =
(x y)⊺ ∈ R

2 is a measurable vector, and χ = 1

Z
∈ R is the

unmeasurable 3D data that we want to estimate. Using (11)

and (10), the dynamics of the state vector X is given by:

{ ṡ = fm(s,u) +ΩT(s,u) χ
χ̇ = fu(s, χ,u) (12)

where the vectors ΩT(s,u) ∈ R
2, fm(s,u) ∈ R

2 and

fu(s, χ,u) ∈ R are generic and sufficiently smooth w.r.t their

arguments and they are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm(s,u) = ( xy −(1 + x2) y
1 + y2 −xy −x)ω

Ω(s,u) = (−υx + xυz −υy + y υz)
fu(s, χ,u) = υzχ

2 + (y ωx − xωy)χ
(13)

In the upcoming sections, the dynamic model given in (12)

will be expressed in a qLPV form in order to design a

proper nonlinear Unknown Input (UI) Observer to estimate

the depth information χ and recover the linear velocities

with respect to the x and y axis of the camera.
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III. POLYTOPIC FORMULATION & DETECTABILITY

ANALYSIS

We express in this section, the vision system model

(13) into qLPV structure and analyze the existence of the

nonlinear UI observer.

The objective of this paper is to estimate the depth informa-

tion
1

Z
and reconstruct the linear velocities during the camera

motion using a nonlinear unknown input observer. For this

purpose, we represent the system (12) in a state space form

as follows:

{ Ẋ = A(X,u) X +B(y) ω +Fd
y = CX

(14)

where:

A(X,u) =
⎛⎜⎜⎝

0 0 xυz
0 0 yυz

yωx xωy χυz + ωxy − xωy

⎞⎟⎟⎠

B(y) =
⎛⎜⎜⎝

xy −(1 + x2) y
1 + y2 −xy −x−xy −xy 0

⎞⎟⎟⎠

F =
⎛⎜⎜⎝
1 0
0 1
0 0

⎞⎟⎟⎠ d = (−χυx−χυy)

and y represents the output of the system with:

C = (1 0 0
0 1 0

)
Using the sector nonlinearity approach, the previous system

(14) can be represented in the polytopic form as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẋ = r∑

i=1
μi(X)(Ai X +B(y) ω +Fd)

y = CX

(15)

where Ai ∈ R3×3, B(y) ∈ R3×3 and μi, i = 1, . . . , r are the

weighting functions with r is the number of sub-models that

depends on the number of nonlinearities in the system (in our

case we have five nonlinearities). These weighting functions

satisfy the following convex sum property on the considered

compact bounds of the nonlinearities of the system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ⩽ μi ⩽ 1
r∑

i=1
μi = 1

(16)

Note that in hereafter we are going to consider the discrete-
time form of the continuous-time system (15) represented
before and keep the same notations. Using Forward Euler
Approximation for state space models, the previous system
will have the following form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(k + 1) = r∑

i=1
μi(X(k))(Ai X(k) +B(y(k))ω(k) +Fd(k))

y(k) =CX(k)
(17)

with k is the sampling instant.

The new description of the model enables us to synthesis

a proper nonlinear unknown input observer to estimate the

depth information and reconstruct the linear velocities. This

type of observer exists under the following conditions:

1) rank(CF) = rank(F).

2) the system (14) is strong detectable, that means, it

satisfies the condition stated in theorem (1)

After verifying the two conditions above, we can state that

the UI observer exists. In the next section, we discuss the

observer design.

IV. DESIGN OF THE UI OBSERVER

In this section we present the UI Observer design given

in the form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z(k + 1) = r∑

i=1
μi(X̂(k))(NiZ(k) +Gi ω(k) +Li y(k))

X̂(k) = Z(k) −Ey(k)
(18)

where Z ∈ R
3 is the state of the observer and X̂ ∈ R

3 the

estimated state and the matrices Ni, Gi, Li and E are the

matrices gains to be computed such that the state estimation

error given by (19) converges to zero.

e(k) = X(k) − X̂(k)
= (I +EC) X̂(k) − Z(k) (19)

With T = I +EC, the error will be defined as:

e(k) = T X̂(k) − Z(k) (20)

For sake of simplicity, in what follows we put: e(k) = ek.

Thus, the expression of the estimation error is equivalent to:

ek+1 = T X̂k+1 − Zk+1 (21)

= r∑
i=1

μi(X̂k)(Niek + (TAi −KiC−
Ni)Xk +TFdk + (TBi −Gi)ωk) +Δ

with Δ = T (μi(Xk) − μi(X̂k))(Ai Xk +Bi ωk +Fdk) and

Ki =NiF −Li.

We assume that all the elements in Δ are growth bounded
with respect to ek. Thus we can say that Δ fulfills the
calmness property at the origin:

ΔTΔ =∥(Δ∥2 < α2∥X̂k − Xk∥2 = α2∥ek∥2 (22)

The notation∥∥ represents the 2-norm and α2 > 0 is constant

of Lipschitz.

To ensure the stability of the error dynamics (21), the

following conditions must be satisfied ∀i = 1, . . . ,32:

1) The system defined by: Ni = r∑
i=1

μi(X̂k)Ni.

is stable where: ek+1 = Niek +Δ.

2) TAi −KiC −Ni = 0

3) TBi −Gi = 0

4) TF = 0
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The first condition implies that Ne is Hurwitz subject to a

vanishing disturbance Δ i.e: Δ → 0 when X̂ → X and to

demonstrate that [16] , we consider the following quadratic

Lyapunov function:

V = eTkPek P = PT > 0 (23)

It follows that:

Vk+1 − Vk = eTk+1Pek+1 − eTkPek (24)

= eTk N T
e PNeek +ΔT

k (X, X̂)PNeek +
eTN T

e PΔ +ΔTPΔ

To ensure the stability of the system the time derivative of
the Lyapunov function must satisfy:

eT
k N T

e PNeek +ΔT
k (X, X̂)PNeek + eT

k N T
e PΔ+
ΔTPΔ < 0 (25)

To attenuate the disturbance’s effect Δ on the estimation

error ek in the L2-gain sense, we define:

sup
∥Δ∥≠0

∥ek∥∥Δ∥ < γ2 (26)

which leads to the following inequality:

eTk ek − γ2ΔTΔ < 0 (27)

This expression can be simplified using lemma 1, the resul-
ting inequality is given by:

ΔTPNeek + eT
k N T

e PΔ < εΔTΔ + 1

ε
eT
k N T

e PTPNeek (28)

Then the following inequality is deduced:

Vk+1 − Vk < eT
k (N T

e PNe −P + I + 1

ε
N T

e PTPNe)ek+
ΔT (εI + γ2I +P)Δ (29)

It follows:

eT
k (N T

e PNe −P + I + 1

ε
eT
k N T

e PTPNe)ek+
ΔT (εI − γ2I +P)Δ < 0 (30)

Taken into account the Lipschitz condition (22), the follo-

wing inequality holds:

eTk (N T
e PNe −P + I + 1

ε
eTk N T

e PTPNe+
αεI − α2γ2I + α2P)ek < 0 (31)

The inequality (31) holds if and only if:

N T
e PNe−P+I+ 1

ε
eTk N T

e PTPNe+α2εI−α2γ2I+α2P < 0

(32)

Using Schur lemma 2, the inequality (32) can be expressed

in an equivalent manner with the LMI constraints as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − α2γ2I αP N T
e P N T

e P
αP P 0 0
PNe 0 −εI 0
PNe 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (33)

Substituting the term Ne in the previous equation (33) yields:

r∑
1

μi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − α2γ2I αP NT
i P NT

i P
αP P 0 0
PNi 0 −εI 0
PNi 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(34)

The inequality (34) is equivalent to following in more

conservative manner, for all i = 1, . . . ,32:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − αγ2I αP NT
i P NT

i P
αP P 0 0
PNi 0 −εI 0
PNi 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (35)

From the second condition to ensure the stability of the

error dynamics, one can write: Ni = TAi − KiC. After

substituting Ni, We proceed to the following changing of

variables: λ̄ = α2γ2, η̄ = α2ε, Q = αP and Wi = PKi the

inequality (35) becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + η̄I − λ̄I Q ΨTP ΨTP
Q −P 0 0
PΨ 0 εI 0
PΨ 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (36)

where Ψ = TAi +WiC.

Then the system (1) is stable if there exist a positive

definite symmetric matrices P ∈ R3×3, Q ∈ R3×3, matrices

Wi ∈ R3×2, positive scalars η̄ and λ̄ so that the LMIs in

(35) are satisfied and the resulting observer gains are given

by Ki = P−1Wi

Note that in order to have feasible solution of the LMIs,

the pair (TA,C) should be observable or at least detec-

table, we study the detectability of the system by analysing

the poles. As a consequence, to fulfil the requirement of

detectability the following condition must be satisfied:

y ωx + χυz − xωy + 1 < 0 (37)

To summarize, after ensuring the existence of the observer,

we proceed to its design according to the given steps below:

1) deduce E from the equation (4) Since the condition

rank(CF) = rank(F) holds.

2) calculate the matrix E, the matrix T is computed

directly from (3) as well as the matrices Gi from the

equation (2).

3) ensure that the pair (TA,C) is at least detectable

and solve the LMIs constraints (35) to get the gains

Ki = P−1Wi.

4) Finally, compute the gain matrices: Ni = TAi−KiC
and Li =Ki −NiE.

The linear velocities in the x and y directions of the camera
are expressed in the disturbance part of the system and they
can be recovered once the estimated states converge to the
real ones.

yk+1 = C
r

∑
i=1

μi(Xk)(Ai Xk +B(yk)ωk +Fdk) (38)
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It follows that:

d̂k = (CF)−1 [yk+1 −C
r∑

i=1

μi(X̂k)(Ai X̂k +B(yk)ωk) ]
(39)

The unknown input has the given form:

dk = (−χυx−χυy) (40)

The estimate of linear velocity with respect to x and y axis

of the camera is obtained as follows:

(v̂x
v̂y
) = −d̂k χ̂−1 (41)

V. SIMULATION RESULTS

In order to validate the proposed approach, we consider

two sets of synthetic images generated at a rate of 20fps
using a known camera motion. The real depth information

χ of the tracked point feature as well as the linear velocities

υx and υy are compared with the estimated ones and used

in the discussion of the observer performance.

The LMIs conditions derived previously are solved and

yield the following result:

ε = 2.7666, λ̄ = 4.5048, η̄ = 1.6908

P =
⎛⎜⎜⎝
2.1209 0 0

0 2.1209 0
0 0 1.1217

⎞⎟⎟⎠

Q = 10−11
⎛⎜⎜⎝
0.0093 0.1220 −0.0001
0.1220 0.0296 −0.0035−0.0001 −0.0035 0

⎞⎟⎟⎠
The first set where original and final images are shown in

figure (1), is generated using the following linear/angular

velocities of the camera:

υx = 0.2 sin (πt) υy = −0.2 + 0.1t υz = −0.7
ωx = 0.1 ωy = −0.2 ωz = 0

The red dot in the images represents the tracked point that

we want to estimate its depth.

(a) (b)

Fig. 1: (a) the original and (b) the final images of the first

set of images.

To better verify the performance of the observer, we consider

now a second set of images where the original and final
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Fig. 2: (a) Estimation error (b) Real and estimated depths of

the selected image point.
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Fig. 3: Real an estimated linear velocities: (a) υx and (b) υy .

images are shown in figure (4). The set of images is

generated using the linear/angular velocities of the camera

defined below:

υx = 0.4 cos (2πt) υy = 0.5 cos (πt) υz = −0.7 cos (πt)−0.3
ωx = 0.1 ωy = −0.1 ωz = 0.1

(a) (b)

Fig. 4: (a) the original and (b) the final images of the second

set of images.

Note that the initial value of the estimated depth informa-

tion χ̂ is restricted by the Lipschitz condition (22). Therefore,

a close initial value to the real value of the depth is required

for the estimation as shown in figures (2b) and (5b).

It can be noticed from the evolution of the estimation error

for the first and the second set depicted in figures (2a) and

(5a) respectively, that the convergence is achieved within

approximately 2.5 sec.
Figures (3) and (6) highlight the reconstructed velocities

along the x and y axis respectively for both sets. From

the depicted figures one can see that the velocities are
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Fig. 5: (a) Estimation error (b) Real and estimated depths of

the selected image point.
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Fig. 6: Real an estimated linear velocities: (a) υx and (b) υy .

well recovered when the the estimated depth information χ̂
converges to the real value.

Note that, to correctly estimate the depth, the velocity

should be perfectly known however, In real experiments,

there are very few use cases where a perfect knowledge is

available, so it is required to have velocities measurements

close to accurate using different techniques of filtering or

data fusion for the approach to work. Usually standard tri-

angulation techniques used in computer vision don’t require

strong assumptions to recover the 3d structure but with the

proposed approach the linear velocity of the camera along

the x and y axis can be reconstructed while estimating the

depth.

VI. CONCLUSIONS

In the present paper, we have proposed a solution to

estimate the depth information of a feature point and to

recover the linear velocities of the camera with respect to x
and y axis. The nonlinear system describing the relationship

between the feature point time variation and the camera

spatial velocity has been represented by a discrete time

Takagi-sugeno model. An adequate Unknown Input Observer

has been designed to estimate the depth information and

reconstruct the camera velocities. The convergence of the

state estimation error has been analysed using the Lyapunov

theory and the convergence conditions have been formulated

as LMIs constraints. The performances of the proposed

observer have been validated using two sets of synthetic

images. Simulation results have shown the good convergence

of the observer.

In future works, the proposed technique will be used to

compute the relative distance between the considered UAV

and the other flying robots with respect to its camera refe-

rence frame in a group formation, as well as to reconstruct

the linear velocities of the UAV.
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Abstract: The feasibility of incorporating new technology-driven functionality to vehicles has 
played a central role in automotive design. The overall diffusion in the application of digital 
technologies presents the possibility of designing systems, the functioning of which is based on 
intelligent technologies that simultaneously reside in multiple, interconnected applications. 
Consequently, the development of intelligent road-vehicle systems such as cooperative advanced 
driver assistance systems (co-ADAS) and with them the degree of vehicle automation is rapidly 
increasing. The advent of vehicle automation promotes a reduction of the driver workload. 
However, depending on the automation grade consequences for the passengers such as out-of-the-
loop states can be foreseen. Also the protection of Vulnerable Road Users (VRUs) has been an 
active research topic in recent years. A variety of responses that exhibit several levels of trust, 
uncertainty and a certain degree of fear when interacting with driverless vehicles has been 
observed. In this context, P2V (Pedestrian-to-Vehicle) and V2P (Vehicle-to-Pedestrian) have 
become crucial technologies to minimize potential dangers, due to the high detection rates and the 
high user-satisfaction levels they achieve. This presentation gives an overview of the impact of 
such technologies on traffic awareness towards improving driving performance and reducing road 
accidents. Furthermore, the benefits and potential problems regarding vehicle automation will be 
outlined. 

Biography: Prof. Dr. Cristina Olaverri-Monreal received her PhD from the Ludwig-Maximilians 
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internationally in the industry and in the academia, in her current position as full professor and 
holder of the BMVIT endowed chair sustainable transport logistics 4.0 at the Johannes Kepler 
University Linz, in Austria her research aims at studying solutions for an efficient and effective 
transportation focusing on minimizing the barrier between users and road systems. To this end, 
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The Effect of Vehicle Automation 
on Road Safety

11th Workshop on Planning, Perception and 
Navigation of Intelligent Vehicles

2019 IROS 2019
MACAU, CHINA

Univ. Prof. Dr. Cristina Olaverri-Monreal

Drifting warning
alerts by lane deviation

Collision avoidance
Radar-, laser-, or camera-based 

Blind-spot detectors
camera or radar-based

Enhanced cruise control
adapted distance to vehicle ahead 

Self parking
camera or sonar-based 

2Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Vehicular Robots
Self-Driving Technologies in Use
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Driving Task Complexity
DDriving Subtasks

3

1

4

DDriving Subtasks

Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Speed
Distance
Steering
Traffic observation
Decision making

Car controls
In-vehicle information
Traffic signs 
Rules awareness
Risk evaluation

servation
making

Car control
In-vehicle in
Traffic signs
Rules awar
Risk evalua

http://ec.europa.eu/transport/road_safety/specialist/knowledge/alcohol/effects_of_alcohol_consumption/effects_on_driver_capabilities_en.htm
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By giving 
examples and 

training the 
vehicle

Recording data from 
humans sitting on 

vehicle

Vehicle 
learning

Speed
Driving tasks 

Longitudinal direction
Lateral  direction

All driving subtasks
merging into moving 
traffic, 
driving in roundabouts
negotiating
intersections
avoiding obstacles

Interaction with other 
road users

humans sitting on
vehicle

5

Driving Instruction for Autonomous
Vehicles
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DDriving Instruction for Autonomous
Vehicles

Perception
Expectations
Judgement
Memory
Planning
Decision making
Risk assessment

Human
Behavior

https://www.dolmanlaw.com/motorcyclists-steer-clear-aggressive-drivers/

Unexpected situations 
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Driving Instruction for Autonomous
Vehicles

Emotional artificial 
intelligence through human 
monitoring and analysis

gesture capture
eye tracking
head pose
face detection
body posture
voice recognition 
vocal emotion

hesitations, frequency, 
variation, pitch, 
energy, speed

http://novacriminalattorney.com/aggressive-driving/aggressive-driving-and-the-consequences-in-virginia/
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Unclear
situations

Sudden
events

How drivers 
respond to 

traffic 
situations

Human Errors

http://www.4autoinsurancequote.com/uncategorized/top-10-secrets-for-getting-cheap-car-insurance
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Driving Instruction for Autonomous
Vehicles
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Information interpretation

https://www.fiveaa.com.au/news/SA-Police-Are-Cracking-Down-On-Running-Yellow-Lights

9Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Processing and Decision Making

Traffic Light Assistance System
Retrieves the traffic light timing program 
to calculate the optimal speed while 
approaching an intersection

Shows recommended velocity based on:

speed,
phase state of traffic light
remaining phase duration

Olaverri-Monreal, C., Errea-Moreno, J., Diaz-Alvarez, A. (2018) "Implementation and Evaluation of a Traffic Light Assistance System in a Simulation 
Framework based on V2I Communication;, Journal of Advanced Transportation, Special Issue Cooperative Systems for Autonomous Vehicles
Hindawi Publishing Corporation.

CO-ADAS based on V2I 
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Olaverri-Monreal, C., Errea-Moreno, J., Diaz-Alvarez, A. (2018) "Implementation and Evaluation of a Traffic Light Assistance System in a Simulation Framework based on V2I Communication;, Journal of Advanced Transportation, Special Issue Systems for Autonomous (CSAV), Hindawi Publishing Corporation.

Increase in driving efficiency after the drivers adjusted 
their velocity to the speed calculated by the system

improvement of traffic flow
reduced gas emissions 
waiting time at traffic lights

CO-ADAS based on V2I 
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Interaction in a Vehicular
Environment

2

Communication and Information Flow 

12

2
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Social Traffic

Vehicular units  
share space
take each other 
into account 
avoid a collision 

©CristinaOlaverriMonreal

13Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Interaction in a Vehicular Environment 
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Information Flow 

Capacity of attentional resources 
and demand
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Olaverri-Monreal, C., Krizek, G.C., Michaeler, F., Lorenz,R eneration Computer Systems (FGCS) 
Journal. Special Issue on "Advanced Technologies and Systems for collaboration" https://doi.org/10.1016/j.future.2018.01.050 | Olaverri-Monreal, C., Lorenz, R., Michaeler, F., Krizek, G., Pichler, M. (2016) "Tailigator: 
Cooperative System for Safety Distance Observance", Proceedings 2016 International Conference on Collaboration Technologies and Systems, Orlando, Florida, USA, Nov. 2016, pp. 392 - 397. 
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Communication while Driving 
Information Location

Krizek, G. C., Hausleitner, R., Böhme, L., Olaverri- Analysis of Safe Distance 
Calculation by the Stereoscopic Capturing and Processing of Images through the Tailigator
Journal

Olaverri-Monreal, C., Gvozdic, M., Muthurajan, B. (2017) "Effect on Driving Performance of Two Visualization Paradigms for Rear-End Collision Avoidance", Proceedings IEEE Intelligent Transportation Systems Conference, Yokohama, Japan, October 2017, pp. 37-42.

16Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Communication while Driving
Information Location
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Claverri- of In-Vehicle Displays Location Preferences and Transportations Systems (IEEE T-ITS). Special Issue Factors in Intelligent Vehicles Issue 4, pp. 1770 1780 | Olaverri-
Monreal, C., Lehsing, C., Trübswetter, N., Schepp, C. A., Bengler, K. (2013) "In-Vehicle Displays: Driving Information Prioritization and Visualization", Proceedings IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, pp. 660 665.
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Communication while Driving
Information Location

Connected and Automated
Technologies
Driving and Interaction with other 
Road Users 

18

3
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Validi, A., Ludwig, T., Olaverri-Monreal, C. (2017) "Analyzing the Effects of V2X and ADAS-ACC Penetration Rates on the Level of Road Safety in Intersections; Evaluating Simulation Platforms SUMO and Scene Suite", IEEE 2017 International Conference on Vehicular Electronics and Safety (ICVES 2017), Vienna, Austria, pp. 38 43
| Validi, A., Ludwig, T., Hussein, A., Olaverri-Monreal, C. (2018) "Examining the Impact on Road Safety of Different Penetration Rates of Vehicle-to-Vehicle Communication and Adaptive Cruise Control", IEEE Intelligent Transportation Systems Magazine

V2X and ADAS effect on Road Safety

Technologies and applications that use 
data collected by sensors located in other 
vehicles, infrastructure or road users 
(V2X) to assist the driver 

Key step toward a significant reduction of 
accidents

19Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Automation

Autonomous vehicles represent an 
opportunity to continue working for 
increased road safety

Human Intervention not required

Congestion and air pollution 
reduction (platooning)

Automation will be in charge of 
driving sub tasks 

20

Olaverri-Monreal, C. (2016) "Autonomous Vehicles and Smart Mobility Related Technologies", In Infocommunications Journal. June 2016, Volume 8, Nr. 2, pp. 17-24.
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Adapted from SAE InTERnATIOnAl'S lEVElS Of DRIVIng AuTOMATIOn fOR On-ROAD VEhIclES. Issued January 2014, http://www.sae.org/misc/pdfs/automated_driving.pdf 

Automation Levels
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Construction zones, orange signs, cones etc.
Railroad crossing
Cars stopped in the road 
Pedestrians, cyclists

Narrow paths (mountain roads)
Lidar problems due to sunlight
Interferences with other 
electronic devices

Allamehzadeh, A.,Olaverri-Monreal, C. (2016) "Automatic and Manual Driving Paradigms: Cost-Efficient Mobile 
Application for the Assessment of Driver Inattentiveness and Detection of Road Conditions", Proceedings IEEE 
Intelligent Vehicles Symposium, IV '16, Gothenburg, Sweden. June 19-22, pp 26-31.

22Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Take Over Request (Level 3)

11th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 4th, 2019 

 
PPNIV'19

 
157



Hit Detection Response Task (HDRT) 
performance prior to and after a spelling 
task  per signal and phases (before, 
during and post) spelling task (N = 31) 

It takes about 0.8 seconds for a driver to 
shift attention so that their eyes are on the 
road
It takes even longer to assess the 
situation to make a helpful response.

Drivers can be distracted up to 27 

distracting task and up to 15 seconds 

Strayer talking to your car or smartphone: Distraction
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Winzer, O. M., Conti, A. S., Olaverri-Monreal, C., Bengler, K. (2017) "Modifications of driver attention post-distraction: a detection response task study ", In: Nah FH., Tan 
CH. (eds) HCI in Business, Government and Organizations. Interacting with Information Systems. HCIBGO 2017. Lecture Notes in Computer Science, vol 10293. Springer, 
Cham

http://www.nationaltruckdrivingjobs.com/node/362
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Take Over Request (Level 3)

Conditional
Automation

Task 
monotony

Road
vigilance

decrement

Reduced
driver

workload

Driving
performance

decrease

Allamehzadeh, A., Olaverri-Monreal, C. (2016) "Automatic and Manual Driving Paradigms: Cost-Efficient 
Mobile Application for the Assessment of Driver Inattentiveness and Detection of Road Conditions", 
Proceedings IEEE Intelligent Vehicles Symposium, IV '16, Gothenburg, Sweden. June 19-22, pp 26-31
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Hypovigilance (Level 3)
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Hex
#B7D4BD

Luminescence-based unobtrusive method 

Relying on peripheral vision, which is 
processed subconsciously

Çapalar, J. and Olaverri-Monreal, C. (2017) "Hypovigilance in Limited Self-Driving Automation: Peripheral Visual Stimulus for a Balanced Level of
Automation and Cognitive Workload", Proceedings IEEE Intelligent Transportation Systems Conference, Yokohama, Japan, October 2017, pp. 14-18.

Tendency to respond faster to a TOR when  
peripheral vision detected stimulus
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Hypovigilance (Level 3)

Olaverri-Monreal, C., Kumar - Interactive Automation Control System to Enhance Situational Awareness in Conditional Intelligent
Vehicles Symposium 2018.

26Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Take Over Request (Level 3)

Baseline conditions: No IDCS 
system activated
Scenario 1: TOR display 
activated
Scenario 2: IDCS informs the 
driver through the three 
display panels 
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Olaverri-Monreal, C., Kumar - Interactive Automation Control System to Enhance Situational Awareness in Conditional
IEEE Intelligent Vehicles Symposium 2018.

Take Over Request (Level 3)

Significant decrease in

response time to TOR 
number of collisions

27Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

Baseline conditions: No IDCS 
system activated
Scenario 1: TOR display 
activated
Scenario 2: IDCS informs the 
driver through the three 
display panels 

Take Over Request (Level 3)

Allamehzadeh, A., Olaverri-Monreal, C. (2016) "Automatic and Manual Driving Paradigms: Cost-Efficient Mobile Application for the Assessment of Driver Inattentiveness and Detection of Road Conditions",
Proceedings IEEE Intelligent Vehicles Symposium, IV '16, Gothenburg, Sweden. June 19-22, pp 26-31.
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Vulnerable Road Users (VRU)

Pedestrian detection by pose estimation using Open-
Pose

Morales-Alvarez, W., Gomez-Silva, M. j., Fernandez-Lopez, G., Garcia-Fernandez, F., Olaverri-Monreal C. (2018) "Automatic Analysis of Pedestrian's Body Language in the Interaction with Autonomous Vehicles", Proceedings IEEE Intelligent Vehicles
Symposium 2018, Changshu, China.

Pedestrians crossing from both sides

29Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

30

Morales Alvarez, W., de Miguel, M.A,, Garcia, F., Olaverri-Monreal, C. (2019) Analysis of VRUs response to communication signals from autonomous vehicles, IEEE ITSC 2019 Auckland, New Zealand
de Miguel, M.A., Fuchshuber, D., Hussein, A., Olaverri-Monreal, C. (2019) Perceived Pedestrian Safety: Public Interaction with Driverless Vehicles, IEEE IV 2019, Paris, France

22 videos documented pedestrian 
behavior of 49 pedestrians in a 
marked crosswalk

VRUs Response to Autonomous Vehicles

Vehicle equipped with optical wheel 
encoders, a stereo-vision camera, 
a laser-range finder, a compass 
and GPS sensor
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31

Morales Alvarez, W., de Miguel, M.A,, Garcia, F., Olaverri-Monreal, C. (2019) Analysis of VRUs response to communication signals from autonomous vehicles, IEEE ITSC 2019 Auckland, New Zealand |
de Miguel, M.A., Fuchshuber, D., Hussein, A., Olaverri-Monreal, C. (2019) Perceived Pedestrian Safety: Public Interaction with Driverless Vehicles, IEEE IV 2019, Paris, France

VRUs Response to Autonomous Vehicles

Many pedestrians involved in the 
manipulation of their smartphones

Vehicle attracted attention and 
curiosity

Testing whether the vehicle really 
stopped

Some pedestrians did not dare to 
approach it 

Uncertainty

hesitation before crossing

Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019
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Morales Alvarez, W., de Miguel, M.A,, Garcia, F., Olaverri-Monreal, C. (2019) Analysis of VRUs response to communication signals from autonomous vehicles, IEEE ITSC 2019 Auckland, New Zealand
de Miguel, M.A., Fuchshuber, D., Hussein, A., Olaverri-Monreal, C. (2019) Perceived Pedestrian Safety: Public Interaction with Driverless Vehicles, IEEE IV 2019, Paris, France

VRUs Response to Autonomous Vehicles

Crossing uncertainty due to:

lack of knowledge about detection 

whether the vehicle was going to 
slow down 

not trusting the functioning of the 
sensors
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33

Morales Alvarez, W., de Miguel, M.A,, Garcia, F., Olaverri-Monreal, C. (2019) Analysis of VRUs response to communication signals from autonomous vehicles, IEEE ITSC 2019 Auckland, New Zealand
de Miguel, M.A., Fuchshuber, D., Hussein, A., Olaverri-Monreal, C. (2019) Perceived Pedestrian Safety: Public Interaction with Driverless Vehicles, IEEE IV 2019, Paris, France

70% of people preferred the eyes image compared 
with 30% that selected the color coded.

No statistically significant differences (2(1, N = 21) = 
7.54, p = .006).

VRU Response to Communication Signals
from Autonomous Vehicles

Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

VRU Response to Communication Signals from 
Vehicular Robots

34

Morales-Alvarez, W., Gomez-Silva, M. J., Fernandez-Lopez, G., Garcia-Fernandez, F., Olaverri-Monreal, C. (2018) "Automatic Analysis of Pedestrian's Body Language in the Interaction with Autonomous Vehicles", Proceedings IEEE Intelligent Vehicles Symposium 2018, Changshu, China. 
Morales Alvarez, W., de Miguel, M.A,, Garcia, F., Olaverri-Monreal, C. (2019) Analysis of VRUs response to communication signals from autonomous vehicles, IEEE ITSC 2019 Auckland, New Zealand

Distributions of 
walked or stopped 

variables with red or 
closed eyes not 

statistically significant

The kind of display did 
not affect TTC neither 
the distance at which 

pedestrians crossed in 
front of the AV

Visual 
communication
cues for are not 

necessarily
required for a 

shared space in 
which informal 

traffic rules apply
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CSL Elite Wheel BaseClubSport Pedale V3 ClubSport steer
wheel Classic

ClubSport steering wheel 
Universal Hub

ClubSportrt Shifter SQ V 1.5
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3D Simulation Trigger Events V2V / V2P

37Cristina Olaverri-Monreal - Keynote PPNIV / IROS 2019

V2X Traffic Simulation 

Unity interacts with SUMO 
via TraCi

Traffic Simulation + V2XT

Visualization of Sumo 
with Unity
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Unity as 
Simulation Tool 
for ROS

Unity as 
Visualization Tool 
for ROS

Autonomous
Driving Based on 
AutoWare
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Thank You!
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Univ.-Prof. Dr. Cristina Olaverri-Monreal
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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Round table 

Human vehicle interaction 

Henriette Cornet (TUMCREATE, Singapore) 

Li Haizhou (National University of Singapore) 

Cristina Olaverri (Johannes Kepler Universitat, Austria) 

Juraj Kabzan (Nutonomy, Singapore) 
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2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 
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Design for Autonomous Mobility

Dr Henriette Cornet

Principal Investigator ‘Design for Autonomous Mobility’

henriette.cornet@tum-create.edu.sg

04.11.2019

2

TUMCREATE’s mission: Improve the travel experience for people of Singapore 
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Design for Autonomous Mobility

3

Human-Machine Interfaces:
• AV to pedestrians communication Safety
• AV to passengers communication Trust
• Robot and Virtual Companion for customer care Trust

Early design 
concepts

Operational
requirements

Placed in technical context 
Validated through simulation

Placed in context 
with human

Design-
driven

Tech-
driven

Two human-centred approaches:
Emotional Design Virtual Design Lab

4
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Providing an Interface for Humans to 
Understand Machines

Haizhou Li (
Dept of Electrical and Computer Engineering, NUS

1

2

Understanding Artificial Intelligence

Humanly Rationally

Thinking

Associate with 
human thinking, 
problem solving, 
decision making

The study of mental 
faculties through 

computational models

Acting
Turing Test

(pattern classification, 
dialogue, translation)

Systems that act 
rationally
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3

Virtual Bus Captain

ST Engineering launches 12m-long 
driverless bus; public trials to start on 
Jurong Island next year. The Straits 
Times-22 Oct 2019
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