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Foreword 
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D 
reconstruction, Modeling and Control of mobile robot. 
 
Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12, the fifth edition PPNIV'13 was in 
Vilamoura (over 135 attendees) during IROS'13, the sixth edition PPNIV'14 was in Chicago (over 100 attendees) 
during IROS14, the seventh edition PPNIV'15 was in Hamburg (over 150 attendees) during IROS15, the heigth 
edition PPNIV'16 was in Rio de Janeiro (over 100 attendees) during ITSC16; and the nineth edition PPNIV17 was 
in Vancouver during IROS17 (over 170 attendees). This 10th edition has gathered over 350 attendees. 
 
 
In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), MEPPC08 in 
Nice during IROS’08 (more than 60 registered people), SNODE'09 in Kobe during ICRA'09 (around 70 
attendees), RITS'10 in Anchrorage during ICRA'10 (around 35 attendees),  PNAVHE11 in San Francisco during 
the last IROS11 (around 50 attendees), and the last one WMEPC14 in Hong Kong during the last ICRA14 (around 
65 attendees), 
 
This workshop is composed with 3 invited talks and 20 selected papers (8 selected for oral presentation and 12 
selected for interactive session. One round table has gathered specialist in Autonomous Shuttle and Taxis. Five 
sessions have been organized: 

 Session I: Deep Learning 
 Session II: Navigation, Decision, Safety 
 Session III: Perception 
 Session IV: Interactive session 
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 Session V: Control & Planning 

 
Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 
 
Christian Laugier, Philippe Martinet, Urbano Nunes, Miguel Angel Sotelo and Christoph Stiller 
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ISA2: Intelligent Speed Adaptation from Appearance

Carlos Herranz-Perdiguero1 and Roberto J. López-Sastre1

Abstract— In this work we introduce a new problem named
Intelligent Speed Adaptation from Appearance (ISA2). Tech-
nically, the goal of an ISA2 model is to predict for a given
image of a driving scenario the proper speed of the vehicle.
Note this problem is different from predicting the actual speed
of the vehicle. It defines a novel regression problem where the
appearance information has to be directly mapped to get a
prediction for the speed at which the vehicle should go, taking
into account the traffic situation. First, we release a novel
dataset for the new problem, where multiple driving video
sequences, with the annotated adequate speed per frame, are
provided. We then introduce two deep learning based ISA2

models, which are trained to perform the final regression of
the proper speed given a test image. We end with a thorough
experimental validation where the results show the level of
difficulty of the proposed task. The dataset and the proposed
models will all be made publicly available to encourage much
needed further research on this problem.

I. INTRODUCTION

For years, speed has been recognized as one of the three
main contributing factors to deaths on our roads. In fact, 72
% of road traffic accidents in the city could be prevented
with an adequate vehicle speed, according to the MAPFRE
Foundation [1]. Furthermore, the European Transport Safety
Council (ETSC) claims that speed is the cause of the death
of 500 people every week on European roads [2]. So, to
control the speed of our vehicles, using an Intelligent Speed
Adaptation (ISA) system, should be a high-priority research
line.

A research by the Norwegian Institute for Transport Eco-
nomics [3] advocates the benefits of an ISA system, which
the study found to be the most effective solution in saving
lives. Some studies of the ETSC reveal that the adoption of
the ISA technology is expected to reduce collisions by 30%
and deaths by 20% [4].

Off-the-shelf ISA solutions use a speed traffic sign recog-
nition module, and/or GPS-linked speed limit data to inform
the drivers of the current speed limit of the road or highway.
However, these solutions have the following limitations.
First, GPS information is inaccurate and may not be correctly
updated. For example, an ISA model based only on GPS
information would have difficulties in certain urban scenes
with poor satellite visibility, or in distinguishing whether

*This work is supported by project PREPEATE, with reference TEC2016-
80326-R, of the Spanish Ministry of Economy, Industry and Competitive-
ness. We gratefully acknowledge the support of NVIDIA Corporation with
the donation of a GPU used for this research. Cloud computing resources
were kindly provided through a Microsoft Azure for Research Award.

1The authors are with GRAM research group, Department of
Signal Theory and Communications, University of Alcalá, 28805,
Alcalá de Henares, Spain c.herranz,@edu.uah.es,
robertoj.lopez@.uah.es
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Fig. 1: ISA2 problem. An ISA2 model must be able to
perform a regression of the adequate speed of the vehicle,
inferring it just using the appearance information of the
image. It has to be trained on video sequences providing the
proper speed for the traffic situation, to be able to provide
an estimation of the adequate speed on test images.

the vehicle is in a highway lane or on the nearby service
road, where the speed limit has to be drastically reduced.
It is true that a speed traffic sign recognition module can
mitigate some of these problems, but for doing so we need
to guarantee the visibility of the signs. Second, they provide
only the speed limit of the road, but not the speed appropriate
to the actual traffic situation.

To address all these limitations, in this paper we propose
a new paradigm for the ISA models, called ISA from
Appearance, or ISA2. Technically, as it is shown in Figure
1, we introduce the idea of learning a regression function
able to map the images to a speed adequate to the traffic
situation. For doing so, we need to train and evaluate the
ISA2 solutions using a dataset with video sequences that
show a driving behaviour that is appropriate to the real
traffic situation. The proposed problem is actually very
challenging. Could a human, from a single image, discern
between whether a vehicle should go at 80 or 110 km/h on
a motorway according to the actual traffic?

The main contributions of our work are as follows:

1) To the best of our knowledge, we propose for the first
time the novel problem of inferring the adequate speed
of a vehicle from just an image.



2) We introduce two deep learning based ISA2 models,
which are trained to perform the final regression of the
proper speed for the vehicle. One consists in learning a
deep network to directly perform the speed regression.
The other approach is based on a deep learning model
to obtain a semantic segmentation of the traffic scene.
We then combine this output with a spatial pyramid
pooling strategy to build the features used to learn the
regressor for the proper speed.

3) We also release a novel dataset for the new ISA2

problem, where the proposed models are evaluated.
We conduct an extensive set of experiments and show
that our ISA2 solutions can report an error for the
prediction of the speed lower than 6 km/h.

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III we describe the ISA2

dataset and the evaluation protocol. Our ISA2 models are
detailed in Section IV. We evaluate our models, and analyze
their performance in Section V. We conclude in Section VI.

II. RELATED WORK

Although being able to estimate the appropriate speed for
a vehicle is a key task for the automotive industry, which
year after year is increasing the budget for R&D projects in
its pursuit to achieve a fully autonomous vehicle, there are
no previous works that seek to predict this speed just using
images or visual information.

In the literature, we can find some works that deal with
the different problem of learning a generic driving model,
e.g. [5], [6], [7].

Probably, the closest works we can find to the problem
we are trying to solve, focus on estimating the actual speed
of a vehicle, which is a different problem anyhow. Several
techniques have been proposed for this purpose, from the
design of image processing methods using optical flow [8],
[9], [10] to proposals for motion estimation based on the
subtraction of the background [11]. Chhaniyara et al. [8]
focus on robotics platforms moving over different types of
homogeneous terrains such as fine sand, coarse sand, gravel,
etc. The rest of works [9], [10], [11] have been designed to
estimate the speed of vehicles from video sequences acquired
with a fixed video surveillance camera.

We, instead, propose to estimate the proper speed for a
vehicle, according to the traffic situation, by using a vehicle
on-board camera. While all the works mentioned above aim
to estimate the actual speed at which the vehicle is moving,
our ISA2 models need to estimate the appropriate speed at
which the vehicle should go. Our goal is not to know how
fast a car goes, but how fast it should go.

III. ISA2 DATASET

Here, we introduce the novel ISA2 dataset, which allows
us to train and test different approaches for the new chal-
lenging ISA2 problem.

The database consists of 5 video sequences taken from
both urban and interurban scenarios in the Community of
Madrid, Spain. In total, we provide a set of 149.055 frames,

with a size of 640 × 384 pixels, with the annotation of the
proper speed of the car (km/h). During the driving for the
acquisition of the dataset, in addition to respecting the speed
limits, our driver has carefully tried to adjust the speed of
the vehicle to what he considers to be an appropriate speed,
according to the traffic situation. Figures 2(a) and 2(b) show
some images of both, highway and urban routes, respectively.

To structure the database, both scenarios have been split
into training and test subsets. For the 3 urban recordings,
we use two of them for training/validation, an the third one
for testing. We also provide two highway recordings, one
for training/validation and the other for testing. These splits
between training and testing have been done so that different
scenarios and circumstances are well represented in both sets.
Those scenarios include maximum and minimum speed over
the sequences, stops at traffic lights or entrances and exists on
the highway using service roads, for instance. Finally, with
the aim of evaluating how well the different approaches are
able to generalize, we introduce unique factors in the test
subsets, such as, different weather conditions (rain) in the
urban test set. All these aspects clearly help to release a
challenging dataset. Table I shows the mean speed of the
vehicle for the different subsets described.

TABLE I: Mean speed and standard deviation of the different
sets in the ISA2 dataset

Route Set Mean speed (km/h) Std. deviation (km/h)

Highway Training 84.31 18.15

Highway Test 95.08 12.81

Urban Training 19.55 13.60

Urban Test 19.59 14.78

IV. MODELS FOR ISA2

Our main objective during the design of the ISA2 models
is to propose a strong visual representation that allows the
models to predict the appropriate speed for the vehicle.

The ISA2 problem starts with a training set of images S =
{(Ii, si)}Ni=1, where N is the number of training samples. For
each sample i in the dataset, Ii represents the input image,
and si ∈ R encodes the annotation for the speed.

We first propose to learn a Convolutional Neural Network
(CNN) [12] to directly perform the regression of the adequate
speed. Technically, as it is shown in Figure 3, we use two
different architectures: a VGG-16 [13] or a Residual CNN
[14] (ResNet). Therefore, our networks are trained to learn
the direct mapping from the image to the speed ŝ, a function
that can be expressed as follows,

ŝW = f(W, Ii) , (1)

where, f(W, Ii) : Ii → R represents the mapping that the
network performs to the input images. We encode in W the
trainable weights of the deep architecture. We replace the loss
function of the original network designs, which is no longer
a softmax, but a loss based on the Euclidean distance.



(a) Highway (b) Urban

Fig. 2: Set of images from the ISA2 dataset in highway and urban environments.
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Fig. 3: ISA2 from a CNN based architecture for regression.

The second approach is mainly based on a semantic seg-
mentation model, see Figure 4. Our system starts performing
a dense pixel labeling of the traffic scene. We then use a
spatial pyramid pooling strategy, to build a descriptor for
the image, which is based on the histogram of the different
labels produced by our semantic segmentation model. This
descriptor is used to learn a final regressor, which is the one
in charge of the prediction of the proper speed.

Technically, for this second approach, we first implement
the DeepLab [14] model, using a ResNet-101 as the base
network. We train the DeepLab using a multi-scale input,
using the scale factors {0.5, 0.75, 1}. We then fuse the
prediction for each scale, taking the maximum response
given by the network for each scale. Note that the ISA2

dataset does not provide semantic segmentation annotations,
therefore this model is trained using the Cityscapes dataset
[15].

For the final regression, we evaluate in the experiments
several approaches: linear regressor, lasso regressor, boosting
trees and linear Support Vector Regressors. For all of them,
we evaluate the impact of adding spatial information by using
spatial pyramid pooling of up to 3 levels.
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V. EXPERIMENTS

To evaluate the effectiveness of our models, we use here
the ISA2 dataset. We detail the experimental setup and main
results in the following sections.

A. Experimental setup and evaluation metric

For our CNN-based approaches, VGG and ResNet-101,
we fine-tune pre-trained models on the large-scale ImageNet
dataset [16]. Both networks are trained for 4K iterations with
a learning rate of 10−4 for the first 2K iterations, and of 10−5

for the rest. We use stochastic gradient descent (SGD) with
a momentum of 0.9 and a batch size of 20 images for both
architectures.

With respect to our models based on the semantic seg-
mentation of the images, we cross validate both the specific
parameters of the different regression methods and the spatial
pyramid levels we use.

To measure the performance of the different models, we
use the standard Mean Absolute Error (MAE) metric, which
is defined as the difference in absolute value between the real



speed, sr, and the proper speed estimated by an ISA2 model,
ŝ, averaged for the K images of the test set, according to:

1

K

K∑
i=1

|sri − ŝi|. (2)

We evaluate the MAE independently for the urban and
highway set of images, because this provides a more detailed
analysis of the results.

B. Quantitative results

In Table II we present the results of our ISA2 approaches.
In general, we show that our second approach, that is a
semantic segmentation (SS) plus a regressor, obtains better
results, only for the urban scenarios, than the first model
proposed, where the CNNs directly cast the speed estimation.
In a highway setting, our first approach reports a lower MAE.
Probably, the fact that our first type of approaches have more
parameters, allows them to adjust better the prediction to both
types of environments.

TABLE II: MAE comparison of our different proposed
methods. For each model, we train a unique regressor for
both highway and urban scenarios.

Method
Urban MAE Highway MAE

(Km/h) (Km/h)

VGG-16 12.58 11.57
ResNet-101 11.49 11.87

SS + Linear regression 9.15 15.78

SS + SVR 10.69 16.76

SS + Lasso regression 8.74 18.13

SS + Boosting Trees 9.78 13.86

In this sense, we decide to perform a second experiment.
We proceed to train an ISA2 model for each type of scenario
(urban and highway) separately. Table III shows the results.
Now, models based on the SS perform better for both
urban and highway images. In highway images, boosting
trees are the ones that offer the best results, followed by
the lasso regression and the SVR. On the other hand, in
the urban sequences, a linear regression exhibits the best
performance, followed by the lasso regression and the SVR.
As a conclusion, it is clear that for our models based on SS,
it is beneficial to train a regressor for each type of scenario
separately. Figure 5 shows a graphical comparison of the
results, following the two training methods described.

Finally, Figure 6 shows a graphical comparison between
the proper speed of the vehicle (in blue) and the estimated
speed (in red) by the different ISA2 models proposed. For
each type of scenario, results of the two CNN-based models
used are shown together with the two best models based on
SS + regression.

Interestingly, for the highway test sequence, all our models
detect that it is necessary to reduce the speed halfway along
the route, at a time when the driver leaves the highway
towards a service road, to finally rejoin a different highway.

TABLE III: MAE comparison of our different proposed
methods. For each model, we train an independent regressor
for highway and urban scenarios.

Method
Urban MAE Highway MAE

(Km/h) (Km/h)

VGG-16 11.86 12.48

ResNet-101 9.59 12.79

SS + Linear regression 6.02 9.54

SS + SVR 8.14 9.23

SS + Lasso regression 6.67 8.72

SS + Boosting Trees 8.81 7.76

In general, we can observe that the neural networks have
more difficultly to predict the proper speed, than the SS based
solutions. This is particularly evident in the initial section of
the routes, where the error made by the CNNs exceeds 30
km/h.

For the urban test sequence, it is remarkable that the
CNNs are not capable of reducing the estimated proper speed
when the vehicle is completely stopped, mainly at red traffic
lights. On the other hand, SS-based regressors do adjust such
situations much better.

C. Qualitative results

We show a set of qualitative results in Figure 7. Those
results correspond to the best of our models for each type of
road, i.e. using boosting trees in highway and SS + Linear
regression in an urban environment.

Analyzing these results, we observe some of the difficul-
ties our models have. On highways, for instance, the biggest
errors for the estimation of the proper speed occur when
the vehicle wants to leave the motorway, which leads the
driver to slow down. Obviously, our models, which are based
exclusively on what the vehicle sees at any given time, are
not able to anticipate the driver’s intentions, so they estimate
a speed higher than the real one. However, as soon as the
driver leaves the motorway and change the type of road, the
models do correctly adjust the speed.

In urban environments, the main problem is related to the
presence of stationary vehicles on the road, which implies
that our vehicle has to stop when it reaches them. In those
cases, although there is a decrease in the estimated proper
speed, the models do not come to realize that it is necessary
to completely stop. This does not occur in the presence of
red traffic lights, where the estimated proper speed reaches
0 km/h.

VI. CONCLUSION

In this paper we propose for the first time the ISA2

problem. It is a difficult and interesting problem, that has
not been studied before. We also release a new dataset and
propose an evaluation protocol to assist the research on ISA2.
Finally, we have introduced and evaluated two types ISA2

models, and the results show the level of difficulty of the
proposed task.
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Fig. 5: MAE comparison between all of our different approaches to the ISA2 problem.
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The dataset and the proposed models will all be made
publicly available to encourage much needed further research
on this problem.
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Classification of Point Cloud for Road Scene Understanding with
Multiscale Voxel Deep Network

Xavier Roynard1 and Jean-Emmanuel Deschaud1 and François Goulette1

Abstract— In this article we describe a new convolutional
neural network (CNN) to classify 3D point clouds of urban
scenes. Solutions are given to the problems encountered working
on scene point clouds, and a network is described that allows for
point classification using only the position of points in a multi-
scale neighborhood. This network enables the classification of
3D point clouds of road scenes necessary for the creation of
maps for autonomous vehicles such as HD-Maps.

On the reduced-8 Semantic3D benchmark [1], this network,
ranked second, beats the state of the art of point classification
methods (those not using an additional regularization step as
CRF). Our network has also been tested on a new dataset of
labeled urban 3D point clouds for semantic segmentation.

I. INTRODUCTION
The majority of autonomous vehicles use 3D maps of the

world for localization, perception and navigation tasks. As
these maps improve the robustness of autonomous systems,
we believe that almost all roads will be scanned in the future,
representing for example 8 million km in North America
and 4 million in Europe. Moreover, they must be updated
regularly to take into account changes in the network. This
is why it is important to set up the most automated processes
possible to create and update these maps.

These point clouds must be processed after acquisition
to extract the relevant information for autonomous driving:
moving objects and parked vehicles must be removed, traffic
signs, traffic lights and drivable areas detected. For example,
for the localization task, the classified point cloud can be
used as a map and moving objects can be detected with
differences between the map and the current lidar frame as
shown in figure 1.

To do so, the automatic classification of the data is
necessary and is still challenging, regards to the number of
objects present in an urban scene.

For the object classification task, deep-learning methods
work very well on 2D images. The easiest way to transfer
these methods to 3D is to use 3D grids. It works well when
the data is just one single object [2].

But it is much more complicated for the task of point
classification of a complete scene (e. g. an urban cloud)
made up of many objects of very different sizes and poten-
tially interwoven with each other (e. g. a lamppost passing
through vegetation). Moreover, in this kind of scene, there
are classes more represented (floor and buildings) than others
(pedestrians, traffic signs ...).

This article proposes both a training method that balances
the number of points per class during each epoch, and to

1All authors are with Mines ParisTech, PSL Research University, Centre
for Robotics. xavier.roynard@mines-paristech.fr

Fig. 1. Application of our classified point cloud for map based localization
of an autonomous vehicle (in white, the map point cloud, in color the current
velodyne frame of the autonomous vehicle from blue/close to the map to
red/far to the map)

our knowledge the first multi-scale 3D convolutional neural
network applied to the semantic segmentation of 3D point
clouds via multi-scale occupancy grids. These contributions
significantly improve the state of the art of semantic segmen-
tation methods without regularization of 3D point clouds of
urban scenes.

II. STATE OF THE ART

The focus here is on the semantic segmentation methods
applied to dense registered point clouds used to create maps
as HD-Maps, unlike the very sparse KITTI dataset clouds
which require real-time processing methods.

A. Shallow and Multi-Scale Learning for 3D point cloud
classification

There is a great variety of work for classifying 3D point
cloud scenes by shallow learning methods or without learn-
ing. Methods can generally be classified into one of the two
approaches: classify each point, then group them into objects,
or conversely, divide the cloud into objects and classify each
object.

The first approach is followed by [3] which classifies each
point by calculating multi-scale features, computing the same
kind of features at different scales to capture both context and
local shape around the point. After classifying each point,
the points can be grouped into objects by CRF [4] or by
regularization methods [5].

The segmentation step of the second approach is usually
heuristic-based and contains no learning. [6] segments the



cloud using super-voxels, [7] uses mathematical morphology
operators and [8] makes a region growth to extract the
soil, then groups the points by connected components. After
segmentation, objects are classified by computing global
descriptors that can be simple geometrical descriptors [7],
or mixture of bag-of-words [9].

B. Deep-Learning for 3D point cloud classification

Over the past three years, there has been a growing body
of work that attempts to adapt deep learning methods or
introduces new "deep" approaches to classifying 3D point
clouds.

This is well illustrated by the ShapeNet Core55 challenge
[10], which involved 10 research teams and resulted in the
design of new network architectures on both voxel grids and
point cloud. The best architectures have beaten the state of
the art on the two proposed tasks: part-level segmentation of
3D shapes and 3D reconstruction from single view image.

1) on 2D Views of the cloud:
The most direct approach is to apply 2D networks to

images obtained from the point cloud. Among other things,
we can think of the following projections:
• RGB image rendered from a virtual camera,
• depth-map, from a virtual camera,
• range image, directly from the sensor,
• panorama image[11],
• elevation-map.

These methods can be improved by taking multiple views
of the same object or scene, and then voting or fusing the
results [12] (ranked 5th on reduced-8 Semantic benchmark).
In addition, these methods greatly benefit from existing 2D
expertise and pre-trained networks on image datasets [13],
[14] that contain much more data than point cloud datasets.

2) on Voxel Grid:
The first deep networks used to classify 3D point clouds

date from 2015 with VoxNet [15], this network transforms
an object instance by filling in an occupancy or density grid
and then applies a Convolutional Neural Network (CNN).
Later [16] applied the same type of network to classify
urban point clouds, the network then predicts the class
of a point from the occupancy grid of its neighborhood.
However, we cannot compare with this architecture because
the experimental data has not been published. Best results
on ModelNet benchmarks are obtained using deeper CNNs
[17] based on the architecture of Inception-ResNet [18] and
voting on multiple 3D view of objects.

There are also significantly different approaches on voxel
grids. OctNet [19] uses a hybrid Grid-Octree structure that
allows CNNs to be used on resolved grids of higher reolution.
VoxelNet [20] instead of increasing grid resolution, increases
the size of voxels and the information contained in each voxel
through a network similar to PointNet [21] (called Voxel
Feature Encoding).

3) on Graph:
Another approach is to use graphs, indeed the raw point

cloud having no structure, it is very difficult to derive general
information from it. Whereas a graph gives relations of

neighborhoods and distances between points and allows for
example to make convolutions as in SPGraph [22] or to apply
graph-cut methods on CRF as in SEGCloud [23].

4) on Point Cloud:
For the time being, there are still quite a few methods

that take the point cloud directly as input. These methods
have the advantage of working as close as possible to the
raw data, so we can imagine that they will be the most
efficient in the future. The first method of this type is
PointNet [21] which gets fairly good results on ModelNet
for object instance classification. PointNet is based on the
observation that a point cloud is a set and therefore verifies
some symmetries (point switching, point addition already in
the set...) and is therefore based on the use of operators
respecting these symmetries like the global Pooling, but these
architectures lose the hierarchical aspect of the calculations
that make the strength of the CNN. This gap has been filled
with PointNet++ [24] which extracts neighborhoods in the
cloud, applies PoinNet and groups the points hierarchically to
gradually aggregate the information as in a CNN. Two other
approaches are proposed by [25] to further account for the
context. The first uses PointNet on multiscale neighborhoods,
the second uses PointNet on clouds extracted from a 2D grid
and uses recurrent networks to share information between
grid boxes.

III. APPROACH

A. Learning on fully annotated registered point clouds

Training on scenes point cloud leads to some difficulties
not faced when the point cloud is a single object. For
the point classification task, each point is a sample, so
the number of samples per class is very unbalanced (from
thousands of points for the class "pedestrian" to tens of
millions for the class "ground"). The classic training method
by epoch would be to go through all the points of the training
cloud at each epoch, making the classes with few samples
anecdotal for the network.

We propose a training method that solves this problem.
We randomly select N (for example N = 1000) points in
each class, then we train on these points shuffled randomly
between classes, and we repeat this process at the beginning
of each Epoch.

Once a point p to classify is chosen, we compute a grid
of voxels given to the convolutional network by building an
occupancy grid centered on p whose empty voxels contain
0 and occupied voxels contain 1. We only use n× n× n
cubic grids where n is even, and we only use isotropic space
discretization steps ∆. To reduce neighborhood search time,
we can also sub-sample point clouds from the training set
with a scale less than ∆.

B. Data Augmentation and Training

Some classic data augmentation steps are performed be-
fore projecting the 3D point clouds into the voxels grid:
• Flip x and y axis, with probability 0.5
• Random rotation around z-axis
• Random scale, between 95% and 105%



Fig. 2. Our Multi-Scale Voxel Network architecture: MS3_DeepVoxScene (all tensors are represented as 2D tensors instead of 3D for simplicity).

• Random occlusions (randomly removing points), up to
5%

• Random artefacts (randomly inserting points), up to 5%
• Random noise in position of points, the noise follows a

normal distribution centered in 0 with standard deviation
0.01m

The cost function used is cross-entropy, and the optimizer
used is ADAM [26] with a learning rate of 0.001 and
ε = 10−8, which are the default settings in most deep-
learning libraries. To reduce neighborhood search time, we
can also sub-sample point clouds from the training set with
a scale less than ∆. In our experiments, all point clouds are
subsampled at 2cm. No study has been carried out on the
influence of subsampling on classification quality, but it is
estimated that as long as the subsampling is performed at
a scale below the discretization step of the voxel grid, the
impact is negligible.

C. Test

To label a complete point cloud scene, the naive method is
to go through all the points of the cloud, and for each point:
• look for all the neighboring points that fit into the

occupation grid,
• create this grid,
• infer the class of the point via the pre-trained network.

However, two points very close to each other will have
the same neighborhood occupancy grid and therefore the
network will predict the same class. A faster test method
is therefore to sub-sample the cloud to be tested. This has
two beneficial effects: reduce the number of inferences and
neighborhood searches, and each neighborhood search takes
less time. To infer the point class of the initial cloud, we give
each point the class of the nearest point in the subsampled

cloud, which can be done efficiently if the subsampling
method used retains the correct information.

IV. NETWORK ARCHITECTURE

The choosen network architecture is inspired from [28]
that works well in 2D. Our network follows the architecture:
Conv(32,3,1,0) → Conv(32,3,1,0) → MaxPool(2) →
Conv(64,3,1,0) → Conv(64,3,1,0) → MaxPool(2) →
FC(1024)→ FC(Nc)

1 where Nc is the number of classes,
and each Convolutionnal (Conv) and Fully-Connected (FC)
layer is followed by a Batch Normalization, a Parametric
ReLU and a Squeeze-and-Excitation block [29] except
the last FC layer that is followed by a So f tMax layer.
This network takes as input a 3D occupancy grid of size
32×32×32, where each voxel of the grid contains 0 (empty)
or 1 (occupied) and has a size of 10cm×10cm×10cm.

This type of method is very dependent on the space
discretization step ∆ selected. Indeed, a small ∆ allows to
understand the object finely around the point and its texture
(for example to differentiate the natural ground from the
ground made by man) but a large ∆ allows to understand
the context of the object (for example if it is locally flat and
horizontal around the point there can be ambiguity between
the ground and the ceiling, but there is no more ambiguity
if we add context).

Since a 3D scene contains objects at several scales,
this type of network can have difficulty classifying certain
objects. So we also propose a multiscale version of our
network called MSK_DeepVoxScene for the K-scales version
(or abbreviated in MSK_DVS).

1we denote Conv(n,k,s, p) a convolutional layer that transforms feature
maps from previous layer into n new feature maps, with a kernel of size
k× k× k and stride s and pads p on each side of the grid.



Name LiDAR type Covered Area Number of points (subsampled) Number of classes

Paris-Lille-3D [27] multi-fiber MLS 55000m2 143.1M (44.0M) 9
Semantic3D [1] static LiDAR 110000m2 1660M (79.5M) 8

TABLE I
COMPARISON OF 3D POINT CLOUD SCENES DATASETS. PARIS-LILLE-3D CONTAINS 50 CLASSES BUT FOR OUR EXPERIMENTATIONS WE KEEP ONLY 9

COARSER CLASSES. IN BRACKETS IS INDICATED THE NUMBER OF POINTS AFTER SUBSAMPLING AT 2 cm.

Fig. 3. Example of classified point cloud on Semantic3D test set (blue:
man-made terrain, cerulean blue: natural terrain, green: high vegetation,
light green: low vegetation, chartreuse green: buildings, yellow: hard scape,
orange: scanning artefacts, red: cars).

We take several versions of the previous network without
the fully-connected layer. The input of each version is given
a grid of the same size 32×32×32, but with different sizes
of voxels (for example 5 cm, 10 cm and 15 cm). We then
retrieve a vector of 1024 characteristics from each version,
which we concatenate before giving to a fully-connected
classifier layer. See figure 2 for a graphical representation
of MS3_DeepVoxScene.

V. EXPERIMENTS

A. Datasets

To carry out our experiments we have chosen the 2
datasets of 3D scenes which seem to us the most relevant
to train methods of deep-learning, Paris-Lille-3D [27] and
Semantic3D [1]. Among the 3D point cloud scenes datasets,
these are those with the most area covered and the most
variability (see table I). The covered area is obtained by
projecting each cloud on an horizontal plane in pixels of
size 10cm× 10cm, then summing the area of all occupied
pixels.

1) Paris-Lille-3D:
The Paris-Lille-3D dataset consists of 2 km of 3D point

clouds acquired by Mobile Laser Scanning using with a
Velodyne HDL-32e mounted on a van. Clouds are georef-
erenced using IMU and GPS-RTK only, no registration or
SLAM methods are used, resulting in a slight noise. Because
the scene is scanned at approximately constant speed, the
point density is roughly uniform. The dataset consists of
3 files, one acquired in Paris and two acquired in Lille
including Lille1.ply much larger than Lille2.ply.
To validate our architectures by K-fold method, we cut
spatially Lille1.ply into two folds containing the same

number of points. Cross-validation is thus performed on 4
folds of similar sizes In addition, this dataset contains 50
classes, some of which only appear in some folds and with
very few points. We therefore decide to delete and group
together some classes to keep only 9 coarser classes:

ground buildings poles
bollards trash cans barriers

pedestrians cars natural

Some qualitative results on Paris-Lille-3D dataset are shown
in figure 4. We can observe that some trunks of trees are
classified as poles. It may means that the context is not
sufficiently taken into account (even so the 15 cm grid is
4.8 m large) In addition, the ground around objects (except
cars) is classified as belonging to the object. One can imagine
that cars are not affected by this phenomenon because this
class is very present in the dataset.

2) Semantic3D:
The Semantic3D dataset was acquired by static laser

scanners, it is therefore more dense than a dataset acquired
by MLS as Paris-Lille-3D, but the density of points varies
considerably depending on the distance to the sensor. And
there are occlusions due to the fact that sensors do not
turn around the objects. Even by registering several clouds
acquired from different viewpoints, there are still a lot of
occlusions. To minimize the problem of very variable density,
we subsample the training clouds at 2 cm. This results in a
more uniform density at least close to the sensor and avoids
redundant points. After subsampling, the dataset contains
79.5M points. The training set contains 15 point clouds
which after sub-sampling are of similar sizes, each cloud is
used as a separate fold for cross-validation. Some qualitative
results on Semantic3D dataset are shown in Figure 3.

B. Evaluation Protocol

To confirm the interest of multi-scale CNNs, we compare
the performance of our two architectures on these three
datasets. And on Semantic3D we compare our results with
those of the literature. The metrics used to evaluate perfor-
mance are the following:

F1c =
2T Pc

2T Pc +FPc +FNc

IoUc =
T Pc

T Pc +FPc +FNc

Where F1c and IoUc represent respectively F1-score and
Intersection-over-Union score of class c. And T Pc, T Nc, FPc
and FNc are respectively the number of True-Positives, True-
Negatives, False-Positives and False-Negatives in class c.



Fig. 4. Example of classified point cloud on Paris-Lille-3D dataset. Left: classified with MS3_DVS, right: ground truth (blue: ground, cerulean blue:
buildings, dark green: poles, green: bollards, light green: trash cans, yellow: barriers, dark yellow: pedestrians, orange: cars, red: natural).

Rank Method Averaged Overall

Per class IoU

IoU Accuracy m
an

-m
ad

e
te

rr
ai

n

na
tu

ra
l

te
rr

ai
n

hi
gh

ve
ge

ta
tio

n

lo
w

ve
ge

ta
tio

n

bu
ild

in
gs

ha
rd

sc
ap

e

sc
an

ni
ng

ar
te

fa
ct

s

ca
rs

1 SPGraph[22] 73.2% 94.0% 97.4% 92.6% 87.9% 44.0% 93.2% 31.0% 63.5% 76.2%
2 MS3_DVS(Ours) 65.3% 88.4% 83.0% 67.2% 83.8% 36.7% 92.4% 31.3% 50.0% 78.2%
3 RF_MSSF 62.7% 90.3% 87.6% 80.3% 81.8% 36.4% 92.2% 24.1% 42.6% 56.6%
4 SegCloud[23] 61.3% 88.1% 83.9% 66.0% 86.0% 40.5% 91.1% 30.9% 27.5% 64.3%
5 SnapNet_[12] 59.1% 88.6% 82.0% 77.3% 79.7% 22.9% 91.1% 18.4% 37.3% 64.4%

9 MS1_DVS(Ours) 57.1% 84.8% 82.7% 53.1% 83.8% 28.7% 89.9% 23.6% 29.8% 65.0%

TABLE II
TOP-5 RESULTS ON SEMANTIC3D REDUCED-8 TESTING SET. MS3_DVS IS OUR MS3_DEEPVOXSCENE WITH VOXEL SIZES OF 5 cm, 10 cm

AND 15 cm AND MS1_DVS IS OUR MS1_DEEPVOXSCENE WITH VOXEL SIZE OF 10 cm (ADDED FOR COMPARISON WITH NON MULTI-SCALE DEEP

NETWORK).

Except for Semantic3D benchmark, all results are obtained
by cross-validation by training on all folds except one and
testing on the remaining fold. All our networks are trained
for 100 epochs with 1000 points per class on each fold. No
validation sets are used.

C. Comparison with the state of the art

For a comparison with the state-of-the-art methods
on reduced-8 Semantic3D benchmark see table II. For
MS1_DeepVoxScene several resolutions have been tested,
and by cross-validation on the Semantic3D training set the 10
cm resolution is the one that maximizes validation accuracy.
DeepVoxScene’s choice of MS3_DeepVoxScene resolution
results from this observation, we keep a resolution that
obtains good performance in general, and we add a finer
resolution of 5 cm to better capture the local surface near the
point, and a coarser resolution of 15 cm to better understand
the context of the object to which the point belongs. Our
method achieves better results than all methods that classify
cloud by points (i. e. without regularization).The inference
time of the 23.5 million points of the reduced8 test set sub-
sampled at 2 cm is approximately 32 h. And the propagation
of classes to the nearest points on the original cloud (not
subsampled) takes approximately an hour.

Dataset \ Method MS3_DVS MS1_DVS VoxNet [15]

Paris-Lille-3D 89.29% 88.23% 86.59%
Semantic3D 79.36% 74.05% 71.66%

TABLE III
COMPARISON OF MEAN F1 SCORES OF MS3_DVS, MS1_DVS AND

VOXNET [15]. FOR EACH DATASET, THE F1 SCORE IS AVERAGED ON

ALL FOLDS.

D. Study of the different architectures

To evaluate our architecture choices, we tested this classi-
fication task by one of the first 3D convolutional networks:
VoxNet [15]. This allows us both to validate the choices
made for the generic architecture of the MS1_DeepVoxScene
network and to validate the interest of the multi-scale net-
work. We reimplemented VoxNet using the deep-learning
library Pytorch. See table III for a comparison between
VoxNet [15], MS1_DeepVoxScene and MS3_DeepVoxScene
on the 3 datasets.

See table IV for a comparison per class between
MS1_DeepVoxScene and MS3_DeepVoxScene on Paris-
Lille-3D dataset. This shows that the use of multi-scale
networks improves the results on some classes, in particular



Class
Precision Recall

MS3_DVS MS1_DVS MS3_DVS MS1_DVS

ground 97.74% 97.08% 98.70% 98.28%
buildings 85.50% 84.28% 95.27% 90.65%

poles 93.30% 92.27% 92.69% 94.16%
bollards 98.60% 98.61% 93.93% 94.16%

trash cans 95.31% 93.52% 79.60% 80.91%
barriers 85.70% 81.56% 77.08% 73.85%

pedestrians 98.53% 93.62% 95.42% 92.89%
cars 93.51% 96.41% 98.38% 97.71%

natural 89.51% 88.23% 92.52% 91.53%

TABLE IV
PER CLASS PRECISION AND RECALL AVERAGED ON THE 4 FOLDS OF

PARIS-LILLE-3D DATASET.

the buildings, barriers and pedestrians classes are greatly
improved (especially in Recall), while the car class loses
a lot of Precision.

VI. CONCLUSIONS

We have proposed both a training method that balances the
number of points per class seen during each epoch, as well
as a multi-scale CNN that is capable of learning to classify
point cloud scenes. This is achieved by both focusing on the
local shape of the object around a point and by taking into
account the context of the object in a multi-scale fashion.

We validated the use of our multi-scale network for 3D
scene classification by ranking second on Semantic3D bench-
mark and by ranking significantly better than state-of-the-art
point classification methods (those without regularization).
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Abstract—Automotive systems must undergo a strict process
of validation before their release on commercial vehicles. The
currently-used methods are not adapted to latest autonomous
systems, which increasingly use probabilistic approaches. Fur-
thermore, real life validation, when even possible, often imply
costs which can be obstructive. New methods for validation and
testing are necessary.

In this paper, we propose a generic method to evaluate
complex automotive-oriented systems for automation (perception,
decision-making, etc.). The method is based on Statistical Model
Checking (SMC), using specifically defined Key Performance
Indicators (KPIs), as temporal properties depending on a set of
identified metrics. By feeding the values of these metrics during
a large number of simulations, and the properties representing
the KPIs to our statistical model checker, we evaluate the
probability to meet the KPIs. We applied this method to two
different subsystems of an autonomous vehicles: a perception
system (CMCDOT framework) and a decision-making system.
An overview of the two system is given to understand related
validation challenges. We show that the methodology is suited to
efficiently evaluate some critical properties of automotive systems,
but also their limitations.

I. INTRODUCTION

In the automotive industry the development and testing
of human centric-systems must follow the guidelines of the
ISO26262. In the automotive industry, this kind of testing can
be divided in two:

• Vehicle-in-the-loop platform tests interactions between a
human and the system in dangerous situation [1].

• Hardware-in-the-loop to test interactions between an em-
bedded system, such as the Active Brake Control Sys-
tems [2], and the physics of a vehicle.

For autonomous functionality higher than the level 3 as define
by the SAE, drivers will not be responsible of most of driving
decisions. As these systems will rely on machine learning and
probabilistic methods, conventional methods for validation are
not adapted. The vehicle shall operate in a various range of
scenarios as well as dangerous situations, the validation and
verification operations must be carried on simulations perform.

It allows to reduce cost and increase the coverage of system
testing.

Figure 1. Interactions between the different elements of the proposed
Validation pipeline. Dashed line represents future developments to connect
the decision-and perception

The difficulty for the validation of an autonomous system
are two-fold. First, the complexity and variety scenarios that
autonomous vehicle will face is larger than in Advanced driver
assistance systems (ADAS). Second, multiple systems will
be in constant interaction. In this study we focus on a use-
case that highlights these two difficulties: road intersection
crossing. It is one of the most dangerous part of the road
network with more than 8% of the total road fatalities in
Europe [3]. Furthermore, there exists many variations of each
scenario (number of vehicles, initial velocities, etc.). It is
challenging for the perception because of the limited view
range, partially-observed vehicles and because of the presence
of multiple vulnerable users that could be potentially at risk.
For the decision-making, the interactions between road users



are complex to consider because of wrong behaviour of other
drivers. Road intersection crossing has been identified as one
use-case addressed in the Enable-3 European project [4]. This
industry-driven project aspire to propose methods for vali-
dation and verification of automated cyber-physical systems
(ACPS). The global architecture for validation and verification
has been simplified to match our thematic and is illustrated in
figure 1.

Examples of validation for highly-autonomous systems can
be found in the aerospace domain [5], where formal methods
are used to validate the behavior of a fleet of satellites. In
the robotic domain, benchmarks allow researchers to compare
their results in the same conditions [6], [7]. However bench-
marks are often tailored for one specific kind of problem and
are not representative enough of the variety of situation that an
autonomous system may encounter to actually validate such a
system. Waymo was recently confident enough in their system
to remove the safety drivers for some tests. This was possible
with an effort of 1 billion kilometers driven in a simulated
environment [8]. Another way is to use formal methods to
ensure the safety of the vehicle [9] but it would rather complex
to do in uncertain environment.

The purpose of the paper is to demonstrate the use of a
validation method (SMC) on two different systems that have
been previously developed, namely Perception and Decision.
The requirements for the testing in simulated environment are
discussed for each system. Preliminary results for the decision-
making system are presented as well as discussions on the
challenges caused by the perception system.

Section II presents our validation approach based on sta-
tistical model checking. Section III describes the application
of our approach on the perception system and the difficulty
to find applicable metrics for its validation. Then Section IV
shows a more complete application and interprets the results
for the decision-making system.

II. STATISTICAL MODEL CHECKING

In the context of ACPS, it is not possible to afford validation
through exhaustive techniques, that is by stating a property and
checking that it holds in all reachable states. Indeed, this would
require to model and traverse all the reachable states of the
ACPS. Such a modelling is possible at a very abstract level,
but requires a huge effort to be brought at a more detailed
level. Furthermore, even if a very detailed model of the ACPS
were provided, exploring all its reachable states would not be
possible due to the very large state space. Stochastic algorithm
are complex to validate with conventional methods, thus it is
interesting to use probabilistic methods to evaluate them [10].

Statistical Model Checking (SMC) [11], [12] provides an
intermediate between test and exhaustive verification by re-
lying on statistics. In order to perform SMC, one needs an
executable model and a property to check. The executable
model is expected to be stochastic, that is, to have some
of its transition governed by probabilistic choices. Note that
most ACPS simulations are already modelled as stochastic
processes, because variations in the scenario are defined by

Figure 2. An overview of SMC

probability distributions. The property to check must be de-
cidable on a finite trace.

The execution being stochastic, some traces will satisfy the
property to check and some other will not. Therefore, we
can define the probability that a trace satisfies a property.
The main goal of SMC is to evaluate that probability. Note
that a probability of satisfying a formula gives actually more
information than a yes-or-no answer. Indeed, if the model does
not satisfy the formula, there is an evaluation of how well it
performs.

In order to perform SMC, one needs to be able to

• Generate traces of the execution of the system to validate.
These traces have to be generated according to the
probabilities in the model.

• Write the property to check as a formula that can be
decided on a finite trace, and a procedure for deciding
whether a trace satisfy the property.

We present in Figure 2 an overview of the approach. On
the left we have a simulator that provides stochastic execution
of our system. On the bottom we have the property ϕ to
check. On the top, we have some configuration for the SMC
algorithm, such as the required accuracy. The SMC algorithm
requires some simulations to the simulator. In turn the sim-
ulator provides a trace σ that is fed to the property checker.
Finally the property checker returns its verdict to the SMC
algorithm. At this point, if the SMC algorithm has enough
information to return a result that meets the required accuracy,
it does so. Otherwise, it asks for an additional simulation
and the loop is run again. We give an intuition of SMC by
illustrating it with the Monte-Carlo Algorithm. This algorithm
estimates the probability p that a system satisfies a property
P by checking P against a set of N random executions of the
system. The estimation p̂ is given by

p̂ =
1

N

N∑
1

f(ex i) wheref(ex i) =

{
1 ifex i |= P
0 otherwise

Using the formal semantics of the property language, the
property is checked against each execution trace. The trace
must be long enough to decide whether the property holds.

Of course, the larger is the set of simulations, the more
precise is the result. The confidence bounds of the estimation



are set by two positive real parameters ε and δ. The confidence
is defined by the Chernoff bound that is stated as:

Pr(|p− p̂| ≤ ε) ≥ 1− δ

Assuming that p is value of the probability we want to evaluate
and p̂ is the estimation we compute, the formula means that
the estimation error, i.e. the distance |p − p̂|, is bound by ε
with a probability 1− δ . In other words, the probability that
the error in the estimation is greater that ε is δ. Once δ and
ε have been set, we can compute the number of simulations
N necessary to enforce the above formula. The quality of the
approximation is high (and thus N is high as well) when ε and
δ are close to 0. When ε and δ increase, the estimation is more
approximate but requires less simulations to be computed.

A. Defining KPIs

In order to define and evaluate KPIs based on a set of
simulations, we proceed as follows. We first identify with
peoples in charge of developing the system some KPIs related
to system under test and scenarios. We then express the
KPIs as temporal formulas involving the identified metrics.
Temporal formulas allow a finer formulation of KPIs by taking
into account the evolution of the metrics during time. Let us
consider acceleration as a metric. A rough formulation of a
KPI concerning acceleration might be that the acceleration
should be bounded, i.e. to guarantee the comfort of the pas-
sengers [13]. A finer formulation could be that the acceleration
should generally be bounded, but the bound can be exceeded
for a short period of time.

In order to express such formulas, we rely on BLTL, a
bounded version of LTL [14]. The syntax of BLTL is as
follows: φ ::= p | φ ∨ φ | ¬φ | φU≤t φ | X≤t φ. A BLTL
formula is expressed with respect to a trace. In our case a state
is a sequence of states, one for each simulation step. Each state
contains the value of each of the metrics at that current state.
The symbol p represents a predicate expressed on the current
state, for instance a comparison between a metric and a bound.
The disjunction (∨) and the negation (¬) defined as usual.
Finally, the temporal operators until (U ) and next (X) define
properties about the time. Since we need to be able to decide
whether a property holds on a finite trace, these operators are
parameterized by a time bound t ∈ R. The formula X≤tφ
is true if φ is true in the state reached after t units of time
from the current state. The formula φ1 U≤t φ2 is true if 1)
the formula φ2 becomes true before t units of time from the
current state and 2) the formula φ1 remains true in every state
before the one where φ2 becomes true. For a formal definition
of BLTL semantics, see [15].

In practice, we often use the always (G) and eventually (F )
operators. Eventually is defined as F≤tφ = trueU≤t φ and
means that the formula φ should become true before t units
of time happen. Always is defined as G≤tφ = ¬F≤t¬φ and
means that φ must always hold for the next t units of time.

Figure 3. Data fusion in an occupancy grid. Data from each of the 2 LiDARs
are used to generate occupancy grids using sensor models, which are then
fused by Bayesian fusion.

III. A FIRST VALIDATION APPLICATION: CMCDOT
PERCEPTION SYSTEM

A. Principle of the CMCDOT

The CMCDOT Framework is a perception system, based on
environment representation through probabilistic occupancy
grids, a dense and generic representation [16], [17], and
Bayesian fusion, filtering and inference.

This type of Bayesian formalism [18] allows proper con-
fidence estimation and combination, particularly important
features when confronted with incomplete or even contra-
dictory data coming from different sensors. A major feature
of the system is its highly-parallelized design: from data
fusion, to grid filtering, velocity inference and collision risk
assessment, the methods have been designed to allow massive
parallelization of computations, and so benefit from parallel-
computing devices [19], allowing real-time performances on
embedded devices.

Sensor data is converted to occupancy estimation using
specific sensor model, sensor occupancy estimates are then
combined by Bayesian fusion in every grid cell (Fig. 3). The
Conditional Monte Carlo Dense Occupancy Tracker (CM-
CDOT) [20] itself is a generic spatial occupancy tracker,
which then infers dynamics of the scene through a hybrid
representation of the environment consisting of static and
dynamic occupancy, empty spaces and unknown areas(Fig. 4).
This differentiation enables the use of state-specific models
(classic occupancy grids for motionless components and sets
of moving particles for dynamic occupancy), as well as rele-
vant confidence estimation and management of data-less areas.
The approach leads to a compact model that dramatically
improves the accuracy of the results and the global efficiency
in comparison to previous approaches.

This method is particularly suitable for heterogeneous sen-
sor data fusion (camera, lidars, radars etc. . . ). The occupancy
of each cell over time can be estimated from various sensors
data whose specific uncertainty (noise, measurement errors)
are taken into consideration. Filtered cell estimates are thus
much more robust, leading to a more reliable global occupancy
of the environment, reducing false detections.

While most of risk estimation methods consist in detect-
ing and tracking dynamic objects in the scene [21], [22],
the risk being then estimated through a Time to Collision
(TTC) approach by projecting object trajectories to the future
[23], [24], the grid-based approach used in the CMCDOT
framework[20] instead directly computes estimations of the



Figure 4. Data representation in the CMCDOT formulation. The environment
is divided into cells, to which are associated static, dynamic, empty and
unknown coefficients. The dynamic part is allotted to weighted particles which
sample the velocity space

position in the near future of every static and dynamic part
of the grid, as well as the trajectory of the vehicle. These
estimations are iteratively computed over short time periods,
until a potential collision is detected, in which case a TTC is
associated to the cell from which the colliding element came
from (Fig. 5). In every cell, the associated TTCs are cumulated
over different time periods (1, 2, 3 seconds for example) to
estimate a cell-specific collision risk profile. Risk grids, and
global aggregated risks, are thus generated, and later used
to generate response impulses for the control system. This
strategy[25] avoids solving the complex problem of multi-
object detection and tracking, while integrating the totality of
the available information. It provides a probabilistic estimation
of the risk associated to each part of the scene.

Figure 5. Collision risk estimation over time for a specific cell. The cell
position is predicted according to its velocity, along with the mobile robot.
This risk profile is computed for every cell, and then used to integrate over
time the global collision risk.

B. Method Application

1) Simulation for perception: In this project, the simulation
relies on the use of two frameworks: Gazebo and ROS.
Gazebo allows for the representation and simulation of the
environment, the ego vehicle and its sensors, as depicted in
Figure 6. Each item in these three categories is matched with a
visual representation and physical characteristics (dimensions,
weight, friction, etc). The data acquisition and processing part
of the simulation is carried out in ROS, where the data can be
recorded, stored, and processed by the same code running on

Figure 6. Simulated scenario for the CMCDOT algorithm (top),Output of
CMCDOT (bottom)

the actual vehicle. The communication between the ROS and
Gazebo modules is carried out seamlessly thanks to the native
use of ROS messages. In order for our simulation approach
to be precise and fully exploitable, the simulation framework
must provide the following elements:

• precise volume and shape of each vehicle, and surface
reflectivity.

• atmospheric conditions which might impact the vehicles’
trajectory (wind gusts) or lidar detection (heavy rain or
snow).

• in order to establish the ground truth, a grid indicating the
position of all simulated objects. This grid must reflect
CMCDOT’s occupation grid in the following aspects:
origin position, grid direction, cell size.

Currently, each lidar is simulated with the appropriate
position on the ego vehicle, the same sampling frequency and
the same data format as the physical sensor. To match the
sensing uncertainty, a Gaussian noise can be added.

In order to be able to efficiently generate a large number
of simulated environments, we have perfected a parameter-
based approach which streamlines the process through which
the dimensions and initial position and velocity of non-ego
vehicles are specified.

Our simulation scenario aims at checking the behaviour
of cars at a four-way crossroads. The rule governing this
crossroad is that at any given moment in time, a maximum
of one simulated vehicle is present on the crossroad. To
simulate the different cases, we rely on the random generation
of parameter sets (non-ego vehicle class, initial position and
initial speed). The test cases are then run, and their results
(perception results as in Figure 6) are stored alongside the
parameter sets. The analysis of these datasets enables us to



accurately measure the efficiency of our perception and control
solution.

The strong advantage of this approach is the ease with which
a large number of simulated scenarios can be generated, ran,
and analyzed.

2) KPI definition: Contrary to most perception systems,
outputs of CMCDOT are not a direct list of detected objects,
but dynamic occupancy grid, a rich probabilistic representation
of the entire surrounding space. While object detector metrics
are already not perfectly defined, the topic of evaluation
of occupancy grids (furthermore dynamic occupancy grids,
incorporating at a cell level velocity field estimations) is an
important subject [26].

A first approach is to define a global indicator based on the
direct estimates of the grid, in comparison to the ground truth.
But if by qualitative analysis of results it is quite simple to
evaluate if an occupancy grid is correct or not, an objective
quantification of this quality is particularly complicated, each
metrics focusing on a specific aspect, ignoring others (for
example occupied / free space factor, cell by cell comparison,
convolution-based metrics, etc.).

Another approach is to focus on specific applications of the
method: the validation of the whole system itself is performed
by statistical validation of its usages. In the case of the
CMCDOT framework, a direct application of the perception
system is an automatic braking system, based on aggregated
risk estimates of the system. By comparing the difference in
response of the system and expected behavior according to
the ground truth, a partial evaluation of the system can be
accessed.

In order to assess the correctness of the CMCDOT algo-
rithm, we compare the output of the algorithm to the actual
context of the car in the simulation. We focus on the risk of
collision at 1, 2 and 3 seconds.

In order to evaluate the correctness of this output, we extract
a traces of the simulation containing the following metrics:
cmcdot_riski and real_colli for 1 ≤ i ≤ 3. The
metric cmcdot_riski indicate the probability of a collision
in i s according to the CMCDOT algorithm. The metric
real_colli is a Boolean indicating whether a collision will
occur if object continue to move with their current speed,
according to their speed and position in the simulation.

We define one KPI for each time interval, parameter-
ized by a threshold τ . We formalize our KPI through the
property G≤t(real colli ⇒ (1 − cmcdot risk) < τ) ∧
(¬real colli ⇒ cmcdot risk) < τ). This property states
that if there is a risk of collision, the probability returned by
CMCDOT must be high enough. Conversely, if there is no
risk of collision, the probability returned by CMCDOT must
be small enough.

IV. A SECOND VALIDATION APPLICATION: A
DECISION-MAKING SYSTEM

A. Principle of the POMDP based decision-making

The decision-making system is a key component of an
autonomous vehicle. Its task is to plan the movement of the

Intention

Physical state

Expectation

Physical state

A

Physical state

Expectation

Intention

Physical state

ego vehicle
t+ 1

Other vehicle

Figure 7. The POMDP represented as Bayesian network. The square node
represent the action chosen by the framework

vehicle taking into account the uncertainty in the situation
measurement as well as the uncertain consequences of its
action will have on the situation.

Partially observable Markov decision process (POMDP)
is a mathematical model that formalizes this two kind of
uncertainties and has been used for planning in stochastic
environment [27].

With recent advancement on online-Pomdp solver [28](used
in our work), complex problems such as road intersection
crossing has been addressed in [29]. The key element of our
approach [30] is to take into account the difference between
intention and expectation of drivers approaching an intersec-
tion (inspired from [31]) to enable partial cooperation. The
intention corresponds to the manoeuvre actually performed by
the drivers and could observed with the approach developed
in [32]. The expectation represent what the driver should
do regarding the current situation and traffic rules. Situation
where intention and expectation does not match could result in
risky interactions. These two variables can be inferred from the
physical state (Velocity and distance towards the intersection)
of both vehicles. Our model is represented as a Bayesian
network in Figure 7 that shows the interaction between vari-
ables. The reward function of the model is constructed to take
into account: comfort, velocity, time to collision, traffic rules
and differences between intention and expectation. The system
interacts with the environment by selecting an acceleration that
maximize the current estimations of the sum of future expected
rewards. Because of the stochastic aspect of the model and
its solvers a safe intersection crossing cannot be guaranteed.
Thus, a large number of simulations is required to validate
the model in order to ensure the safety. The two problems



is that the scenario space is large because of the different
regulations, initial speeds or different behaviours. Then, the
parameter space for the model, especially its reward function,
is as large and need to be correctly explored in order to find
the functional range of the system.

B. Method Application

1) Dedicated simulator development: The decision-making
system interacts with the simulation trough observations that
can be made on the situation and selected actions that have to
be realized in the simulated environment. Thus the fidelity, that
is how closely the simulator can generate environmental data
and model the system that are not under test, is important.
In our scenario, the micro-traffic simulation (vehicle state
and interactions between vehicles) is more important than
the macro-simulation (simulation of traffic as a group of
vehicles). As our system selects actions, it expects the other
vehicle to change its behaviour. For the ego vehicle, the
dynamic model of the vehicle does not need to have an high
fidelity but as we want, in the future, to compare results
obtained against field operational testing, the possibility of
having high fidelity model is a plus. The decision could be
of different forms (trajectory, goal points, control input), so
the communication between the system under test and the
simulation models must be adaptable. Figure 8 represents the
different scenarios that have to be tested (yield, stop controlled,
or priority). Thus the simulator must generate the appropriate
behaviour for each of the corresponding situations. Real life
scenarios could be also be imported to increase the validity
of the reproduced situation. It would require the importation
of maps and perception data from other sources. Scaner [33],
an automotive grade simulator, has been chosen to test the
decision-making systems. It has been mostly used for vehicle
in the loop testing. However, most of the features previously
described are available, at various levels of maturity. It has
simple but interactive models for road intersection crossing
and map generation. Scaner features a batch testing function,
that we found too complex to interface with the SMC.

2) KPI definition: In order to evaluate the quality of the
decision algorithm, we define some Key Performance Indica-
tors regarding the crossing of a intersection. First, we define
two areas in the intersection: a critical area, that correspond
to the actual intersection where stopped vehicles would block
all branches of the intersection and a non-critic area, that
correspond to the entry of the intersection where cars usually
stop before crossing the other road. We count the number and
total duration of stops in each area, a smaller number indicates
a better quality of the algorithm. We also measure the total
time needed to cross the intersection, where again a smaller
number indicates a better quality. We measure the acceleration
to evaluate the comfort of the passenger, where again a smaller
number indicates a better quality.

For all metrics m whose smaller value indicates a better
performance, we check whether m is bounded by a bound
b. The formula G≤tm ≤ b, with t corresponding to the time
needed to cross the intersection, states that m is always smaller

Figure 8. Simulated scenario for the decision-making. The ego vehicle (blue)
is controlled by the decision-making system and have to interact with the
other vehicle (white) with respect to the traffic rules

Table I
LIST OF VARIABLES EXTRACTED FROM THE SIMULATIONS.

Name Description Unit
t Timestamp or time elapsed s

nc stops Number of stops in the non-critical area
c stops Number of stops in the critical area

t nc stops Duration of stops in non-critical area s
t c stops Duration of stops in critical area s

acc Acceleration ms−2

crossed True if intersection is crossed

than b. Stating that the acceleration must always be smaller
than a bound might be a constraint too strong. We thus propose
a relaxed version of this KPI where the acceleration is allowed
to be above the bound for a short period of time (1s). This is
stated by the formula G≤tF≤1acc ≤ b. The previous formula
can be read as follows: at any point during the simulation, m
will be smaller than b in less than 1s. In other words, it is not
possible that m > b for more than 1s. The value of the bound
b is defined w.r.t. the metric considered.

Finally, to evaluate whether the intersection is crossed
quickly enough, we set a maximum duration d for crossing
the intersection and require that the intersection is crossed in
less than d seconds, stated by F≤dcrossed .

3) SMC application: In order to obtain results, we selected
for each metric some adequate bounds and plot the probability
that the KPI is met for each bound. The Figure 9 represents the
probability that the acceleration/deceleration remains below a
certain bound when crossing the intersection, both for the strict
(i.e. the bound is never exceeded) and the relaxed version (the
bound is never exceeded for more than 1s). We see that there
is a probability 0 that the acceleration stays below an absolute
value of 0.8m.s−2, and that it is always below 2m.s−2. It
corresponds to an acceptable range for human comfort and
shows that in every scenario the decision-making system took
actions to adapt the behaviour.

Figures 10 and 11 present the probability of respectively
having a bounded number of stops and having a bounded total
stop duration. We see that there is a probability 0.9 that the



Figure 9. Probability that the absolute value of the acceleration remains
bounded, for the strict and the relaxed version.

Figure 10. Probability of bounded occurences of stops, for critical and non-
critical zones.

car does not stop in the critical zone. With that measure it can
be said that most likely the ego vehicle will comply with the
traffic law. However for the 0.1 probability that the vehicle
stop whitin the intersection, causes for the subject to come
to a stop must be investigate in order to find if it correspond
to an emergency manoeuvre or a failure of the system. This
could be done by introducing finer KPIs that would take into
account the temporality of the problem.

In Figure 12 we show the probability to cross the intersec-
tion in less that a given duration. All this new information
tells people in charge of the validation what is the most likely
behaviour of the decision-making system. It also helps people
working on designing the decision-making to find area of
improvement in their systems.

V. CONCLUSION

In this paper we presented and demonstrated a pipeline for
the validation of different ACPS on two different automotive
use-cases. The application of our approach based on Statisti-
cal Model Checking to the decision-making system provides
useful information to the designer of the system and to the
people in charge of the validation. This valuable information

Figure 11. Probability of a stop duration below a given bound, for critical
and non-critical zones.

Figure 12. Probability of crossing the intersection in less than a given time.

is formulated through probability for our system to stay in a
certain range of KPIs.

Future works include the definition of meaningful grid-
based metrics for stating more discriminating KPIs about the
perception system. We also plan to compare results obtained
in the simulated environment with tests on proving ground
to ensure the validity of our approach. Also more KPIs for
the decision and perception could be introduced to accurately
pinpoint the cause of identified failures.
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method and results for the accuracy of an automotive occupancy grid,”
2012 IEEE International Conference on Vehicular Electronics and Safety
(ICVES 2012), pp. 19–24, 2012.

[27] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelligence,
vol. 101, no. 1, pp. 99–134, 1998.

[28] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
in Advances in Neural Information Processing Systems 23, J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 2164–
2172. [Online]. Available: http://papers.nips.cc/paper/4031-monte-carlo-
planning-in-large-pomdps.pdf

[29] W. Liu, S. W. Kim, S. Pendleton, and M. H. Ang, “Situation-aware
decision making for autonomous driving on urban road using online
pomdp,” in 2015 IEEE Intelligent Vehicles Symposium (IV), June 2015,
pp. 1126–1133.

[30] M. Barbier, C. Laugier, O. Simonin, and J. Ibañez-Guzmán, “A pomdp-
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Classifying Driver Behaviors for Autonomous Vehicle Navigation

Ernest Cheung1, Aniket Bera1, Emily Kubin2, Kurt Gray2, and Dinesh Manocha1

Abstract— We present a novel approach to automatically
identify driver behaviors from vehicle trajectories and use them
for safe navigation of autonomous vehicles. We propose a novel
set of features that can be easily extracted from car trajectories.
We derive a data-driven mapping between these features and six
driver behaviors using an elaborate web-based user study. We
also compute a summarized score indicating a level of awareness
that is needed while driving next to other vehicles. We also
incorporate our algorithm into a vehicle navigation simulation
system and demonstrate its benefits in terms of safer real-
time navigation, while driving next to aggressive or dangerous
drivers.

I. INTRODUCTION

Identifying dangerous drivers is crucial in developing
safe autonomous driving algorithms and advanced driving
assistant systems. The problem has been extensively studied
in transportation and urban planning research [1]. However,
prior work usually correlates driver’ behaviors with their
backgrounds (e.g., driver age, response to questionnaires,
etc.). On the other hand, to develop autonomous vehicle
systems, we need to understand the behavior of surrounding
drivers using only the sensor data. As with to a human driver,
an autonomous navigation algorithm that can predict other
vehicle’s driving behavior can navigate safely and efficiently
avoid getting near dangerous drivers.

Prior work in transportation research [2], [1] often charac-
terizes drivers using their levels of aggressiveness and care-
fulness. Several works in modeling pedestrian trajectories
[3] and navigation [4] algorithms have applied psychological
theory to capture human behavior. Current autonomous driv-
ing systems uses a range of different algorithms to process
sensor data. Object detection and semantic understating
methods are applied to obtain trajectory data [5]. Some work
[6] uses end-to-end approaches to make navigation decisions
from the sensor inputs (e.g. camera images, LIDAR data,
etc.).

Main Results: We present a novel approach to automat-
ically identifying driver behaviors from vehicle trajectories.
We perform an extensive user study to learn the relationship
and establish a mathematical mapping between extracted
vehicular trajectories and the underlying driving behaviors:
Trajectory to Driver Behavior Mapping (TDBM). TDBM
enables a navigation algorithm to automatically classify the
driving behavior of other vehicles. We also demonstrate

1Authors from the Department of Computer Science, University of North
Carolina at Chapel Hill, USA

2Authors from the Department of Psychology and Neuroscience, Univer-
sity of North Carolina at Chapel Hill, USA

simulated scenarios where navigating with our improved
navigation scheme is safer.

Our approach takes into account different trajectory fea-
tures. We use five different features, which can be easily ex-
tracted from vehicle trajectories and used to classify driving
behaviors. We show that selecting a subset of these features
is more favorable than selecting the currently used ones
to produce a strong regression model that maps to driving
behaviors.

As compared to prior algorithms, our algorithm offers the
following benefits:

1. Driving Behavior Computation: We present a data-
driven algorithm to compute TDBM. We conducted a com-
prehensive user survey to establish a mapping between five
features and six different driving behaviors. We further
conduct factor analysis on the six behaviors, which are de-
rived from two commonly studied behaviors: aggressiveness
and carefulness. The results show that there exists a latent
variable that can summarize these driving behaviors and that
can be used to measure the level of awareness that one should
have when driving next to a vehicle. In the same study, we
examine how much attention a human would pay to such a
vehicle when it is driving in different relative locations.

2. Improved Realtime Navigation: We compute the
features and identify the driving behaviors using TDBM.
We enhance an existing Autonomous Driving Algorithm [7]
to navigate according to the neighboring drivers’ behavior.
Our navigation algorithm identifies potentially dangerous
drivers in realtime and chooses a path that avoids potentially
dangerous drivers.

An overview of our approach is shown in Figure 1. The
rest of the paper is organized as follows. We give a brief
overview of prior work in Section II. We introduce the
new trajectory features that are used to identify the driver
behaviors in Section III. We present our data-driven mapping
algorithm (TDBM) in Section IV and use it for autonomous
car navigation in Section V.

II. RELATED WORKS

A. Studies on Driving Behaviors

There has been a wide range of work studying drivers’
behaviors in Social Psychology and Transportation. Feng
et al. [2] proposed five driver characteristics (age, gender,
year of driving experience, personality via blood test, and
education level) and four environmental factors (weather,
traffic situation, quality of road infrastructure, and other
cars’ behavior), and mapped them to 3 levels of aggres-
siveness (driving safely, verbally abusing other drivers, and



Fig. 1. Overview of our Algorithm: During the training of TDBM, we extract features from the trajectory database and conduct a user evaluation to find
the mapping between them. During the navigation stage, we compute a set of trajectory and extract the features, then compute the driving behavior using
TDBM. Finally, we plan for real-time navigation, taking into account these driver behaviors.

taking action against other drivers). Aljaafreh et al. [8]
categorized driving behaviors into 4 classes: Below normal,
Normal, Aggressive, and Very aggressive, in accordance to
accelerometer data. Social Psychology studies [9], [10] have
examined the aggressiveness according to the background of
the driver, including age, gender, violation records, power
of cars, occupation, etc. Meiring et al. [1] used several
statistical reports to conclude that distracted behaviors and
drunk behaviors are also serious threats to road safety. Many
of the driver features used by these prior methods cannot
be easily computed in new, unknown environments using
current sensors. Our work uses trajectory data which can
be extracted from sensor data in most autonomous driving
systems and builds on the prior work [11], [12].

B. Trajectories Features

Murphey et al. [13] conducted an analysis on the aggres-
siveness of drivers and found that longitudinal (changing
lanes) jerk is more related to aggressiveness than progressive
(along the lane) jerk (i.e. rate of change in acceleration).
Mohamad et al. [14] detected abnormal driving styles using
speed, acceleration, and steering wheel movement, which
indicate direction of vehicles. Qi et al. [15] studied driving
styles with respect to speed and acceleration. Shi et al.
[16] pointed out that deceleration is not very indicative
of aggressiveness of drivers, but measurements of throttle
opening, which is associated with acceleration, is more
helpful in identifying aggressive drivers. Wang et al. [17]
classified drivers into two categories, aggressive and normal,
using speed and throttle opening captured by a simulator.

Instead of directly analyzing real-world data, many meth-
ods model driving behaviors as input parameters to generate
driving simulations. Treiber et al. [18] proposed a lane

following model, that controls the speed of the car using
desired velocity, minimum spacing, desired time headway,
acceleration, and maximum breaking deceleration. Kesting
et al. [19] proposed a lane changing model, that makes lane
changing decisions based on the speed advantage gained
and the speed disadvantage imposed on the other vehicles,
using a franticness and a politeness factor. Choudhury et al.
[20] proposed a complex lane changing model, composed
of desired speed, desired time gap, jam distance, maximum
acceleration, desired deceleration, coolness factor, minimum
acceptable gap, etc.

We combine a set of selected features proposed by pre-
vious works in terms of behavior mapping and simulation
with two new trajectory features, lane following metric and
relative speed metric. Then, we use variable selection to
select a subset of features that can produce a good regression
model.

C. Autonomous Car Navigation

There is substantial work on autonomous vehicle navi-
gation [?], [21], [22], [23], [24], [25], [26], [27]. Ziegler
et al. [28] presented a navigation approach that is capa-
ble of navigating through the historic Bertha Benz route
in Germany. Numerous navigation approaches [29], [30],
[31], [32] have been proposed in the DAPRA Urban Grand
Challenge and the Grand Cooperative Driving Challenge.
Recent work proposed by Best et al. [7], AutonoVi, presented
an improved navigation algorithm that takes into account
dynamic lane changes, steering and acceleration planning,
and various other factors. Our approach is complimentary to
these methods and can be combined with them.



D. Adaptation to Human Drivers’ Behavior

Sadigh et al. [33] observed that an autonomous car’s action
could also affect neighboring human drivers’ behavior, and
studied how humans will react when the autonomous car
performs certain actions [34]. Huang et al. [35] presented
techniques for making autonomous car actions easily under-
standable to humans drivers. They also proposed an active
learning approach [36] to model human driving behavior by
showing examples of how a human driver will pick their
preference out of a given set of trajectories. While this stream
of work went further to take into account how humans would
react to an autonomous car’s action, it also emphasized the
importance of a robot navigating according to other drivers’
behavior.

III. METHODOLOGY

In this section, we present the two novel trajectory features
that are used to identify driver behaviors. We also compare
their performance with other features and give an overview
of driver behavior metrics used in our navigation algorithm.

A. Features

The goal of our work is to extract a set of trajectory
features that can be mapped properly to driving behaviors.
We assume that the trajectories have been extracted from the
sensor data. Many of the previous works deal with different
driver characteristics: driver background, accelerometer use,
throttle opening, etc., which may not be available for an
autonomous vehicle in new and uncertain environments.
Moreover, in the simulation models described in Section II-
B, a lot of features cannot be measured from trajectories
with insufficient lane-changing samples: comfortable break-
ing deceleration, desired time headway, etc. Therefore, we
derive some variants of features that can be easily extracted
from the trajectories and summarize them in Table I. These
features are further shortlisted with the results from a user
study described in the next section.

Symbol Notation Description
f0 vfront Average relative speed to the car in front
f1 vback Average relative speed to the car in the back
f2 vleft Average relative speed to cars in the left lane
f3 vright Average relative speed to cars in the right lane
f4 vnei Relative speed to neighbors
f5 vavg Average velocity
f6 sfront Distance with front car
f7 jl Longitudinal jerk
f8 jp Progressive jerk
f9 scenter Lane following metric

TABLE I
WE CONSIDERED TEN CANDIDATE FEATURES f0, .., f9 FOR SELECTION.

FEATURES HIGHLIGHTED IN GREEN ARE SELECTED FOR MAPPING TO

BEHAVIOR-METRICS ONLY, AND THOSE IN BLUE ARE SELECTED FOR

MAPPING TO BOTH BEHAVIOR-METRICS AND ATTENTION METRICS.

1) Acceleration: As pointed out in several prior works
[13], [14], [16], [17], acceleration is often correlated with
driver aggressiveness. While previous studies [13] concluded
that longitudinal jerk can reflect aggressiveness better than
progressive jerk, our goal is to use features that also correlate
with all the driving styles, instead of just aggressiveness.
Therefore, we include both longitudinal jerk jl and progres-
sive jerk jp in our computations.

2) Lane following: Previous work [37] proposed a metric
measureing the extent of lane following that depends on the
mean and standard deviation of lane drifting and lane weav-
ing. We propose a feature that also depends on lane drifting,
but distinguishes between drivers who keep drifting left and
right within a lane and those who are driving straight but not
along the center of the lane. Moreover, we compensate for
the extent of lane drifting while performing lane changing
to avoid capturing normal lane changing behaviors into this
metric.

Given yl, which is the center longitudinal position of
the lane that the targeted car is in, and y(t), which is the
longitudinal position of the car at time t, we detect a lane
changing event when the car has departed from one lane
to the another and remained in the new lane for at least k
seconds.

With a set of changing lane events happened at time ti,
C = {t1, t2, ..., tn}, the lane drift metric sC(t) is measured
as below:

sC(t) =

{
0, if ∃t ∈ C s.t. t ∈ [t− k, t+ k],

y(t)− yl, otherwise.
(1)

We use a term that measures the previous τ seconds of
rate of change in drifting to differentiate lane drifts from
those drivers who are driving straight but off the center of
the lane. Our overall lane following metric is illustrated in
Figure 2 and defined as:

scenter =

∫
|sC(t)|

[
µ+

∫ t

t−τ
|s′∅(t)|dt

]
dt, (2)

where µ is a parameter that distinguish drivers who are
driving off the center of the lane and those who are along.

3) Relative Speed: Relative speed has been used to eval-
uate the aggressiveness of drivers [15]. However, directly
measuring the relative speed using vfront, vback, vleft and
vright has many issues. First, such a feature sometimes
does not exist as there may be no car next to the target
car. Second, these features might not be directly related to
the driving behavior of the car. While driving substantially
faster than other cars would be perceived as aggression,
driving slower might not necessarily imply that the driver is
non-aggressive. Third, computing such an average velocity
requires knowledge about the trajectories and range of speeds
of the neighboring vehicles. Given these considerations,
we design the following metric to capture the relationship
between the driving behavior and the relative speed with
respect to neighboring cars:



Fig. 2. Illustration of the lane drift metric (|sc(t)|), and the lane following
metric (scenter). The lane following metric for the trajectories above is the
sum of the area under the plot of s′center . This two example shows that our
lane following metric (scenter) captures the ‘drifting behavior’ in the top
example, but not the ‘driving straight off the center’ and ‘lane changing’
shown in the bottom example.

vnei =

∫ ∑
n∈N

max(0,
v(t)− vn(t)

dist(x(t), xn(t))
)dt, (3)

where N denotes the set containing all neighboring cars
within a large range (e.g., a one-mile radius). x(t), v(t),
xn(t), vn(t) denote the position and the speed of the target-
ing car, and the position and the speed of the neighbor n,
respectively.

B. Driving Behavior Metrics

As discussed in Section II-A, aggressiveness [2], [8],
[38] and carefulness [1], [39], [40] are two metrics that
have been used to identify road safety threats. Typically,
social psychologists add related items into studies to leverage
robustness and the observed effects. Therefore, we would
like to evaluate four more driving behaviors: Reckless,
Threatening, Cautious, and Timid. They are listed in Table
II.

C. Attention Metrics

Observing different maneuvers of other drivers on the
road can result in paying more attention to those drivers.
However, the relative position of such drivers (with respect
to the targeted vehicle) would affect the level of attention
that one is paying to them. For instance, one would pay more
attention to a vehicle in the front making frequent stops, as

opposed to a following vehicle. We would like to understand
how much attention a driver will pay to the targeted car
when the user assumes that he or she is driving in different
relative positions than the target. We study four different
relative positions: preceding, following, adjacent to and far
away from the targeted vehicle, also listed in Table II. These
positions affect the level of attention one would pay when
driving in that relative position.

Symbol Description Symbol Level of Attention when
b0 Aggressive b6 following the target
b1 Reckless b7 preceding the target
b2 Threatening b8 driving next to the target
b3 Careful b9 far from the target
b4 Cautious
b5 Timid

TABLE II
SIX DRIVING BEHAVIOR METRICS (b0 , b1 , ...,b5) AND

FOUR ATTENTION METRICS (b6 , b7 , b8 , b9) USED IN TDBM

IV. DATA-DRIVEN MAPPING

We designed a user study, involving 100 participants to
identify driver behaviors from videos rendered from the In-
terstate 80 Freeway Dataset [41]. The video dataset consists
of 45 minutes of vehicle trajectories, captured in a 1650
feet section on I-80 in California, US. The videos were first
annotated automatically using a proprietary code developed
in the NGSIM program, and then manually checked and
corrected. The raw videos provided in the dataset are low
in quality and divided into seven different segments with
different camera angles. Therefore, we have rendered the
videos using a game engine, Unreal Engine, to provide a
stable and consistent view for the users in the survey. The
virtual cameras have a fixed transform to the targeted car,
which is highlighted in red, and will follow it throughout
the video.

Figure 3 shows snapshots of the videos used in the user
study. The participants were asked to rate the six behaviors
we described in Section III-B on a 7-point scale: {Strongly
disagree, Disagree, Somewhat disagree, Neither agree or
disagree, Somewhat agree, Agree, Strongly agree}. This was
followed by another question on how much attention they
would be paying if they were in different positions relative
to the targeted car, as described in Section III-C, on a 5-point
scale, where -2 indicates not at all, 0 indicates a moderate
amount and 2 indicates a lot.

A. Data Pre-Processing

We perform data augmentation to make sure that the
dataset has a sufficiently wide spectrum of driving behaviors
corresponding to lane changes, fast moving cars, passing
cars, etc. In addition, the features described in Table I
are measured using different units. To improve numerical
stability during the regression analysis, we scale the data
linearly using the 5th and the 95th percentile samples.



Fig. 3. Two example videos used in the user study. Participants are asked
to rate the six driving behavior metrics and four attention metrics of the
target car colored in red.

B. Feature Selection

In Section III-A and Table I, we cover a wide range
of features used in previous studies that can be extracted
from trajectories, along with two new metrics that attempt to
summarize some of these features to avoid strong correlation
between independent variables during regression analysis. In
this section, we apply feature selection techniques to find out
which features are most relevant to the driving behaviors.

We perform least absolute shrinkage and selection operator
(Lasso) analysis on six driving behaviors b0, b1, ..., b5 and
four attention metrics, b6, b7, b8, b9, from the user responses.
The objective function for Lasso analysis conducted on bi is:

min
β′
i,βi

[ 1
N

N∑
j=1

(bi−βi′−fTj βi,j)
]

, subject to
F∑
j=1

|βi,j | ≤ αi,

(4)
where N is the number of survey responses and F is the
number of features.

Lasso analysis performs regularization and feature selec-
tion by eliminating weak subsets of features. The parameter
αi determines the level of regularization that Lasso analysis
imposes on the features. As we increase αi, features fj will
be eliminated in a different order. Unlike regular regression
analysis on a single dependent variable, our goal is to select
two sets of features: one that can produce a strong regression
model for all six driving behavior metrics, and one for all
four attention metrics. We sample different values of αi for
all responses bi, and record the values of αi at which the
component βi,j (which mapping feature fj to response bi)
converges to 0. The results are shown in Figure 4, where
converging values of βi,j are presented in the power of 10.

The directly computed relative speeds of the cars sur-
rounding the targeted car are least favorable for selection for
both regressions for behavior-metrics and attention-metrics.
However, our relative speed metric proposed to capture the
correlation between surrounding cars and the targeted car,
vnei (Equation 3), is more favorable in terms of being
selected. Moreover, our lane following metric, scenter (Equa-
tion 2), tends to be the last one eliminated as a feature in
the variable selection stage.

Fig. 4. The converging value (in the power of 10) of βi,j which maps a
feature fj to a behavior/attention metric bi while performing Lasso analysis.
A larger converging value indicates a higher likelihood that the feature is
favourable in regression analysis, and therefore we select that value for
TDBM.

Our goal is to find two αbehavior and αattention that
shortlist a subset of features for behavior-metric and
attention-metric respectively. Note that αbehavior = αi, ∀i ∈
[0, 5], and αattention = αi, ∀i ∈ [6, 9] for αi defined
in Equation 4. In terms of behavior, we can either pick
{scenter, vnei, sfront} or {scenter, vnei, sfront, vavg, jl}.
Given that the mapping component between vavg and jl
has high converging values, they can produce a stronger
regression model for aggression, and that aggressiveness is
one of the common behaviors as studied in prior literature
discussed in Section II-A. We therefore select the latter set
of features for behavior mapping. For mapping features with
attention regions metrics, we select {scenter, vnei, vavg}.

C. Feature-Behavior Mapping

Using {scenter, vnei, sfront, vavg, jl} and
{scenter, vnei, vavg} as the features, we perform linear
regression to obtain the mapping between these selected
features and the drivers’ behavior. We normalize the data
as described in Section IV-A to increase the numerical
stability of the regression process. The results we obtained
are below. For Bbehavior = [b0, b1, ..., b5]

T , we obtain

Bbehavior =


1.63 4.04 −0.46 −0.82 0.88 −2.58
1.58 3.08 −0.45 0.02 −0.10 −1.67
1.35 4.08 −0.58 −0.43 −0.28 −1.99
−1.51 −3.17 1.06 0.51 −0.51 1.39
−2.47 −2.60 1.43 0.98 −0.82 1.27
−3.59 −2.19 1.75 1.73 −0.30 0.61




scenter
vnei
sfront
vavg
jl
1


(5)

Moreover, for Battention = [b6, b7, b8, b9]
T ,

Battention =


Bback
Bfront
Badj
Bfar

 =


0.54 1.60 0.11 −0.8
−0.73 1.66 0.63 −0.07
−0.14 1.73 0.25 0.15
0.25 1.47 0.17 −1.43



scenter
vnei
vavg
1

 (6)

We further apply leave-one-out cross-validation to the
set of samples S: enumerate through all samples si ∈ S
and leave si as a validation sample, and use the remaining
samples S − si to produce regression models Mi,j for each
behavior bi,j . Using Mi,j , we predict the behaviors bi,j of
si. The mean prediction errors of bi,j using Mi,j are listed
in the table below. The mean prediction error in the cross-
validation is less than 1 in a 7-point scale for all behaviors
and attention metrics predicted, showing that our mappings
described in Equation 5 and 6 are not over-fitted.



b0 b1 b2 b3 b4 b5 b6 b7 b8 b9
0.75 0.94 0.78 0.7 0.6 0.89 0.2 0.49 0.38 0.23

TABLE III
MEAN ERROR IN A 7-POINT SCALE WHEN APPLYING CROSS VALIDATION

OF LINEAR REGRESSION TO MAP FEATURE TO BEHAVIOR AND

ATTENTION METRICS SHOWING OUR MAPPING IS NOT OVER-FITTED.

D. Factor Analysis

Previous studies on mapping walking behavior adjectives
with features used to simulate crowds [3], have applied factor
analysis to find smaller numbers of primary factors that
can represent the personalities or behaviors. We can apply
Principal Component Analysis (PCA) to the survey response.
The percentages of variance of the principal components
are 73.42%, 11.97%, 7.78%, 2.96%, 2.30% and 1.58%. The
results indicate that the Principal Component 1, which has
variance of 73.43%, can model most of the driving behaviors.

We represent each entry of the user study response with
the highest rated behavior and transform these entries into
the space of the Principal Components as shown in Figure
5. If the user did not fully agree to any behavior for a video
(i.e. responses to all questions are below ‘Somewhat agree’),
we consider that there to be no representative behavior from
this entry (i.e. undefined). Also, if a response indicates more
than one behavior as the strongest, then we label those
behaviors as undefined if those adjectives contradict each
other (i.e. one from negative adjectives {Aggressive, Reck-
less, Threatening} and one from positive adjectives {Careful,
Cautious, Timid}). As observed in Figure 5, the distribution
of the data on Principal Component 1, the three negative
behavior adjectives we used in the user study, represented
in warmer colors, are distributed on the negative side, while
the three positive behavior adjectives are distributed on the
positive side. Furthermore, the entries that suggest the users’
responses were ‘Strongly agree’, represented by solid color
plots in Figure 5, have significantly higher magnitudes in
terms of value along Principal Component 1. However, for
Principal Components 2 and 3, such a relationship is not
observed.

Our studies show that there could be one latent vari-
able that is negatively correlated with aggressiveness and
positively correlated with carefulness. We further verify
these results by analyzing the correlation of the Principal
Components with the amount of awareness that the users
indicated they would pay to the targeted car. We take the
average of the level of attention, b6+b7+b8+b9

4 , recorded for
each response and plot these averages as the color on the
PCA results in Figure 6. Similar results have been observed
from this user evaluation, where the drivers worth more
attention have a lower value of Principal Component 1, and
those who worth less attention tend to have a higher value.
Moreover, there is no clear evidences pointing to correlation
between the level of awareness the user rated and Principal
Component 2 or 3.

Therefore, we consider the Principal Component 1 as a

Fig. 5. Principal Component Analysis results for {Principal Components
1(PC1), PC2} (left) and {PC1, PC3} (right). The color of the data point
indicates the highest rated driving behavior adjective as shown in the
legends, and the alpha value indicates the rating of this behavior (solid
for ‘Strongly agree’, and half-transparent for ‘Somewhat agree’). If a user
did not agree to any of the behaviors or indicated multiple contradicting
behaviors, the data point is marked as undefined in green.

Fig. 6. Principal Component Analysis results for {PC1, PC2} (left) and
{PC1, PC3} (right). The color of the data point indicates the average amount
of awareness the user rated on a 5 point scale (-2 for not paying any attention
at all, and 2 for paying a lot of attention).

safety score reflecting the amount of attention awareness that
a driver or an autonomous navigation system should take into
account. TDBM is therefore computed as below:

STDBM =
(
−4.78 −7.89 2.24 1.69 −0.83 4.69

)

scenter
vnei
sfront
vavg
jl
1

 (7)

V. NAVIGATION

In this section, we highlight the benefits of identifying
driver behaviors and how these ensure safe navigation. We
extend an autonomous car navigation algorithm, AutonoVi
[7], and show improvements in its performance by using
our driver behavior identification algorithm and TDBM.
AutonoVi is based on a data-driven vehicle dynamics model
and optimization-based maneuver planning, which generates
a set of favorable trajectories from among a set of possible
candidates, and performs selection among this set of trajecto-
ries using optimization. It can handle dynamic lane-changes
and different traffic conditions.

The approach used in AutonoVi is summarized below: The
algorithm takes a graph of roads from a GIS database, and
applies A* algorithm to compute the shortest global route
plan. The route plan consists of a sequence of actions that is
composed of {Drive Straight, Turn Left, Turn Right, Merge
Left, and Merge Right}. The plan is translated to a static



guiding path that consists of a set of way-points, that exhibits
C1 continuity, and that takes Traffic Rules into account (e.g.,
making a stop at an intersection). AutonoVi then samples the
steering angle and velocity in a desirable range of values to
compute a set of candidate trajectories, and eliminates the
trajectories that lead to possible collisions based on Control
Obstacles [42].

Among the set of collision-free trajectories, AutonoVi
selects the best trajectory by optimizing a heuristic that
penalizes trajectories that lead to: i) deviation from global
route; ii) sharp turns, braking and acceleration; iii) unneces-
sary lane changes; and iv) getting too close to other vehicles
and objects (even without a collision).

To avoid getting too close to other neighboring entities,
AutonoVi proposed a proximity cost function to differentiate
entities only by its class. That is, it considers all vehicles as
the same and applies the same penalization factor, Fvehicle,
to them. Further, it applies a higher factor : Fped and Fcyc to
pedestrians and cyclist respectively. The original proximity
cost used in AutonoVi is:

cprox =

N∑
n=1

Fvehicle e
−d(n) (8)

This cost function has two issues: i) it cannot distinguish
dangerous drivers to avoid driving too close to them, and
ii) it diminishes too rapidly due to its use of an exponential
function. We propose a novel proximity cost that can solve
these problems:

c′prox =

N∑
n=1

c(n) (9)

c(n) =


0 if d ∈ [dt2, inf),

STDBMBfar
dt2−d(n)

dt2
if d ∈ (dt, dt2],

STDBM
[ (dt−d(n))(Br−Bfar)

dt
+Bfar

]
if d ∈ (0, dt].

(10)
where d(n) is the distance between the car navigating with
our approach and the neighbor n, dt is a threshold distance
beyond which neighbors are considered as far away, and dt2
is a threshold distance beyond which neighbors would no
longer have impact on our navigation. STDBM is derived
from Equation 7, Bfar and Br are the attention metrics
computed using the features extracted from the features using
the mapping in equation 6, for r = {back, front, adj} if
the neighboring car is following, preceding, and next to the
navigating car, respectively.

Using this new cost function, we can avoid drivers that
are potentially riskier, and select a safer navigation path.
Examples of scenarios are illustrated in Figure 7 and the
attached video.

VI. CONCLUSION AND FUTURE WORKS

We present a novel data-driven approach to enable safer
real-time navigation by identifying human drivers who are
potentially hazardous. Our studies and findings are based on

Fig. 7. Examples of our approach making better navigation decision than
AutonoVi. The red route is the one selected by our approach while white
is the one selected by AutonoVi. The cost map c(n) is also shown for
each neighbor car n indicating the amount of attention needed. In (a), our
algorithm chooses to switch lane and keep a distance from the car require
more attention. In (b), a car requiring high level of attention tailgates the car
running our approach, and we switch to a slower lane to give way. In (c),
a heavy traffic ahead causing all four lanes move at a similarly low speed,
and our algorithm chooses to the follow the car with the lowest attention
required.

a data-driven mapping computation (TDBM). We conclude
that although humans use different adjectives when describ-
ing driving behavior, there is an underlying latent variable,
STDBM (Equation 7), that reflects the level of attention
humans pay to other vehicles’ driving behavior. Moreover,
we can estimate this variable by a set of novel trajectory
features and other existing features.

Current trajectory data tends to be limited due to human
labeling or the fact that extra efforts may be needed to extract
such annotated data from raw images. With advancement
in object detection and other work in computer vision, one
can expect more trajectory data would be made available
to the autonomous driving research community. Given more
variety of data (e.g., in urban environments or different
cultures), we would like to apply our approach to analyzing
and developing different navigation strategies that adapt to
these new situations and local driving styles.
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VisLab

Group started in mid ‘90s at the University of Parma, Italy
Spin-off launched in 2009
Acquired by Ambarella in 2015

Ambarella

• Chip company working on ultra-HD video



• Starting July 2015 VisLab is working with Ambarella
– Ambarella, a chip company
– VisLab, a computer vision startup

VisLab + Ambarella

Goal

• Design an engine for automotive systems (from 
ADAS to Autonomous Driving):
– High performance
– Low cost
– Low power consumption
– Automotive grade

to handle perception, data fusion, and ultimately 
also path planning



Ambarella CV SoC

• Current CV chip (CV-2):
– 4k images (up to 8 image streams, incl multiscale) @30fps
– IDSP on board, H.265 on board
– Stereo processing @ 30fps (incl multiple stereo)
– Monocular processing @ 30fps (CNNs, vector, serial)
– Power consumption: under 5W
– AEC-Q100

4k Image Resolution

4k, cropped (3840 x 1280) 



Image Quality – Sun 

Image Quality – Night 



4k Stereo Vision

Stereo Calibration

• In the past calibration has been one of the 
major  showstopper for stereo vision, 
especially on vehicles

• A stereo camera is a measurement instrument

• Calibration needs to be maintained… for years



Stereo AutoCalibration

Stereo History

Stereo processing and autocalibration come from 
VisLab’s multi-year history

1998

2005

2010

2013
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4k CNN Classification

EVA – Embedded Vehicle Autonomy



EVA – Embedded Vehicle Autonomy

• Short Range Module:   4x  1080p stereo cameras

EVA – Embedded Vehicle Autonomy

• Long Range Module:   6x  4k stereo cameras



EVA Stereo Vision Sensing

Conclusion

• Visual perception is key for intelligent vehicles

• We are porting advanced tools (like stereo and 
CNNs) into a low-cost, low-power, high performance 
chip

• The CV family: CV-1, CV-2, CV-22,…
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Abstract—Robust 3D mapping has become an attractive field
of research with direct application in the booming domain
of self-driving cars. In this paper, we propose a new method
for feature selection in laser-based point clouds with a view
to achieving robust and accurate 3D mapping. The proposed
method follows a double stage approach to map building. In a
first stage, the method compensates the point cloud distortion
using a rough estimation of the 3-DOF vehicle motion, given
that range measurements are received at different times during
continuous LIDAR motion. In a second stage, the 6-DOF motion
is accurately estimated and the point cloud is registered using
a combination of distinctive point cloud features. We show and
analyse the results obtained after testing the proposed method
with a dataset collected in our own experiments on the Campus
of the University of Alcalá (Spain) using the DRIVERTIVE
vehicle equipped with a Velodyne-32 sensor. In addition, we
evaluate the robustness and accuracy of the method for laser-
based localisation in a self-driving application.

I. INTRODUCTION AND RELATED WORK

The booming field of self-driving cars has ushered in a new

period of development in a number of scientific areas, being

map building one of the most outstanding ones. A great deal

of automotive companies are putting significant amounts of

effort on building accurate 2D maps for automated driving

purpose. Those maps contain information regarding the geo-

referenced position and geometrical configuration of ele-

ments such as intersections, lane markers, road signs, road

signals, etc. However, in order to achieve accurate localisa-

tion, self-driving cars need not only 2D maps but also 3D

maps providing a distinct representation of the environment.

Although some researchers have demonstrated the feasibility

of using vision-only features for accurate localisation, such

as the Daimler-KIT group did in the BERTHA route in

Germany [1], 3D maps for accurate localisation are usually

built using point clouds obtained with laser sensors. This is

the case of Waymo [2] (formerly Google) self-driving cars,

which have been performing automated driving missions in

the Mountain View area in California for almost one decade

already. A similar laser-based localisation approach has been

followed by many researcher groups in the area of automated

driving, such as the National Seoul University [3] or the

SMART program (Singapore-MIT Alliance for Research and

Technology) [4].

Fig. 1. DRIVERTIVE vehicle.

When it comes to automated driving, there is currently a

debate in the scientific community regarding the trade-off

between local perception capability and map dependence.

It seems that further effort on the first topic is definitely

needed, since self-driving cars have to make progress in their

capability to better understand the world they see, very much

in an attempt to mimic human driving style. However, map-

based localisation is still a crucial, and necessary element

in todays automated driving systems. In this regard, the

use of laser for accurate localisation provides a number of

advantages with respect to other sensors, such as vision. It

is well known that vision-based mapping and localisation is

prone to failure at night-time, in low visibility conditions or

under adverse weather conditions. Change of appearance is

another relevant problem. For example, a road diversion can

provoke a failure in a vision-based localisation system if the

new features that the car is finding as it moves have not been

previously stored in the system. A similar problem can occur

during the fall season, when the leaves of trees can fall down

and derive in a situation of strong change of appearance with

respect to the time when the map was built (if it was built

during the spring or summer time).

However, the use of LIDARs for mapping and localisation

does not come without difficulties. Thus, motion estimation

via moving LIDARs involves motion distortion in point

clouds, as range measurements are received at different times



during continuous LIDAR motion. Hence, the motion often

has to be solved using a large number of variables and a com-

putationally heavy optimization algorithm [5]. Scan matching

also fails in degenerate scenes, such as those dominated by

planar areas. Similarly, the localisation method can fail in

situations in which a repetitive pattern is encountered, e.g. a

park with symmetrically located trees, or in cases in which

the amount of moving objects is largely predominant over the

number of features provided by static elements. These diffi-

culties require a further effort from the scientific community

in order to develop really robust and fully operational laser-

based mapping and localisation techniques for self-driving

cars. In this line, Rohde [6] proposes a localisation method

specifically designed to handle inconsistencies between map

material and sensor measurements. This is achieved by means

of a robust map matching procedure based on the Fourier-

Mellin transformation (FMT) for global vehicle pose estima-

tion. Consistency checks are then implemented for localisa-

tion integrity monitoring, leading to significantly increased

pose estimation accuracy. Other approaches [7] segment

moving parts in the sequence of point clouds, being capable

of distinguishing rigid motions in dense point clouds and

cluster those by applying segmentation schemes, such as

graph-cuts into the ICP (Iterative Closest Point) algorithm.

Consequently, the clustering process aims at segmenting

moving vehicles out from the point cloud in an attempt to

improve the accuracy of the laser-based localisation scheme.

In [8], a vision and laser-based odometry system is presented

in which an intelligent pre-selection of point-cloud features

is carried out, using an appropriate distribution of edges and

planes, with a view to increase the accuracy of the map while

removing outliers.

In this paper, we propose a new method for feature

selection in laser-based point clouds with a view to achieving

robust and accurate 3D mapping. Pre-selection of features is

absolutely necessary in order to achieve accurate map making

capacity. Otherwise, the map incorporates artifacts that derive

in loss of accuracy and, consequently, lack of localisation pre-

cision. The proposed method follows a double stage approach

to map building. In a first stage, the method compensates

the point cloud distortion using a rough estimation of the

3-DOF vehicle motion, given that range measurements are

received at different times during continuous LIDAR motion.

In a second stage, the 6-DOF motion is accurately estimated

and the point cloud is registered using a combination of

distinctive point cloud features. The appropriate combination

of such features, reveals to be a powerful tool to achieving

accurate mapping and robustness to aggressive motion and

temporary low density of features. The proposed selection

method has the potential to be applied both at the mapping

and at localisation stages, leading to a significant improve-

ment in terms of accuracy. We show and analyze the results

obtained after testing the proposed method with a dataset

collected in our own experiments on the Campus of the

University of Alcalá (Spain) using the DRIVERTIVE vehicle

equipped with a Velodyne-32 sensor [9]. In addition, we

evaluate the robustness and accuracy of the method for laser-

based localisation in a self-driving application.

The rest of the paper is organized as follows. Section II

provides a description of the mapping algorithm. In section

III, a revision of the localisation method is carried out.

Section IV presents and discusses the experimental results

attained with the DRIVERTIVE automated car. Finally, sec-

tion V analyzes the main conclusions and future work.

II. MAPPING

Outdoor scenes are characterized by being composed of

objects which are placed within a wide range of distances.

While mapping, small angular errors in the order of millira-

dians could lead to 1 meter errors for an object located at 50

meters. In addition, the point cloud is distorted by the vehicle

egomotion during the acquisition. In order to achieve robust

and accurate 3D mapping, a correction procedure of the 3D

point clouds deformation is mandatory previous to the map

creation.

A. 3-DOF sweep correction

Our experimental platform, DRIVERTIVE, consists on

a commercial Citroën C4 modified for automated driving.

DRIVERTIVE GPS-based localisation combines the infor-

mation from an RTK-GPS, CAN bus and a low-cost IMU

(Inertial Measurement Unit) in an 3-DOF EKF (Extended

Kalman Filter) as explained in [9]. A Velodyne-32 sensor

was attached approximately 50 cm over the vehicle’s roof to

perform the mapping and localisation tasks based on LIDAR

odometry. The final purpose is to provide an accurate and

robust localisation not based on RTK-GPS which suffers from

undesired blackouts due to urban canyons, tunnels, trees, etc.

Our Velodyne-32 delivers approximately 10 sweeps of

360 degrees per second. This means that, at normal driving

speeds, the point cloud sustains considerable deformation.

To correct this deformation, the angular and linear velocities

provided by the EKF are considered constant between two

consecutive Velodyne-32 firings. The motion undergone by

the Velodyne-32 between two consecutive firings is compen-

sated to create a single pose reference for a 360 degree sweep

(Fig. 2). It is worth noticing that, as roll and pitch angles

are not taken into account, this initial estimation introduces

errors, specially during sharp turns such as roundabouts and

speed bumps.

This sweep correction is used as an initial rough guess for

the next stage.

Fig. 2. 3-DOF sweep correction. In blue, the corrected Velodyne-32 sweep.
In red, the original sweep.



B. 6-DOF LIDAR odometry

Using the 3-DOF initial guess, a registration technique

will estimate the 6-DOF motion undergone by the vehicle

to create a final corrected point cloud. This cloud will be

used as input for an octomap-based mapping technique. For

the registration process, distinctive point cloud features are

extracted and selected using K-means and RANSAC. Then,

an ICP will estimate the 6-DOF transformation on the fea-

tures that will be used for the correction of the point clouds.

Finally, the corrected point clouds will be used to create a

3D octomap-based representation of the environment.

Fig. 3 shows a block diagram of the algorithm.

Fig. 3. Block diagram of the LIDAR odometry.

1) Linear descriptors extraction: Let us define Csc
k =

{psc1 , p
sc
2 , . . . , p

sc
N } as the corrected point cloud using the

3-DOF sweep correction at time k composed of N world

referenced 3D points psci = {xi, yi, zi}.
Initially, a filtering process is applied to Csc

k to remove

ground points. This will help the clustering process in the

next step. Next, an iterative adaptive k-means algorithm is

applied to the filtered cloud to extract cluster candidates for

the following step. The L2 Euclidean distance used on each

k-means iteration is adapted to account for the sparseness

of far objects. In a similar process to [10], the best fitting

linear descriptor is computed using RANSAC for each one

of the clusters. Only descriptors with a fitting value above

a predefined threshold and with an orientation and size

corresponding to a vertical pole are selected. Finally, these

descriptors will be used in an ICP to estimate the 6-DOF

transformation undergone by the descriptors.

2) 6-DOF LIDAR odometry estimation: An ICP procedure

will estimate the 6-DOF transformation on the descriptors

based on the extracted vertical descriptors. Two sets of

descriptors, new ones and tracked ones, are needed for the

ICP computation. The new set is composed of the vertical

descriptors detected at the current point cloud. The tracked

set is composed of the vertical descriptors tracked or matched

in the previous ICP iteration. Once the ICP transformation

is computed, the vertical descriptors are matched in a brute

force search analyzing the euclidean distance between them.

Those closer to a predefined threshold will be added to the

tracked set.

The ICP obtains the linear and angular transformation

needed to reach the minimum matching error. This trans-

formation is only applied when two or more descriptors are

available in both the new and the tracked descriptors sets.

Otherwise, the ICP geometrical transformation will provide

inaccurate results.

Algorithm 1: LIDAR odometry correction

Input: Csc
k is the point cloud with a sweep

correction.

Result: Clo
k is the point cloud with 6-DOF LIDAR

odometry correction.

Data: S ←− ∅ is the set of segmented point clouds.

Data: D ←− ∅ is the set of linear descriptors at

current time. Where Di = [xi, yi, zi, ~xi, ~yi, ~zi].
Data: Dmap is the set of linear descriptors in the

mapped environment.

Data: Dtarget ←− ∅ is the set of target descriptors

that will be used by the ICP procedure.

begin

for x = {1, ..., 5} L2 Euclidean distance values.

do

S ←− EuclidianCluster(x,CSW
k )

for Si ∈ S do
Daux ←− RANSAC(inliers threshold =
1m,Si) Auxiliary descriptor.

if ~zi > 0.9997 then

D ←− Daux

if First iteration then

Dmap ←− D

else

for i ∈ len(D) do

for j ∈ len(Dmap) do
if EucliDistance(Di, D

map
j ) > 1m

then
Dmap ←− Di

else

Dsource ←− Di

Dtarget ←− D
map
j

6DOF correction←−
ICP (Dsource, Dtarget)
Clo

k ←− 6DOF correction · Csc
k

C. Map creation

The geometrical transformation obtained in the previous

step is now used over the Csc
k point cloud. This way, a

new corrected Clo
k point cloud is obtained using the 6-DOF

LIDAR odometry correction.

A high-resolution 3D map will be created using this new

point cloud as the input for an Octomap algorithm [11]. Fig. 4

depicts the effect of the cloud correction on the map creation.



(a) (b)

Fig. 4. Results of mapping with and without correction. (a) Vertical poles
with correction. (b) Vertical poles without correction.

III. LOCALISATION

Indoor localisation has been traditionally solved by the use

of 2D map representations and 2D sensors. This approach,

which has been proved reliable and accurate indoors, is

not enough to provide accurate outdoor localisation for

autonomous vehicles. As a consequence, our objective is to

obtain high definition 3D maps that are suitable to perform

outdoor localisation.

In this paper, we propose to use a Monte Carlo Localisation

method (MCL) [12], also called Particle Filter (PF), adapted

to use high definition 3D maps and measurements collected

from a high definition 3D sensor (Velodyne-32 LIDAR). A

similar approach has been previously used in [13] using 3D

maps and 2D sensors to perform indoor localisation. In this

method a PF is used to obtain the 6D pose (3D position

(x, y, z) and the roll, pitch and yaw angles (ϕ, θ, ψ)) of a

humanoid robot carrying a Hokuyo laser on the head.

For the autonomous vehicle localisation we adapted these

methods to obtain a 3D pose (2D position (x, y) and the yaw

angle (ψ)) using a ray casting model to evaluate the fitness of

the point cloud over the 3D map. The main idea behind this

method is to keep a set of particles that will represent possible

locations of the vehicle. Each particle is scored according

to the similarity between the real measurements collected

using the Velodyne-32 and the measurements that should

be obtained provided the vehicle was located exactly on a

particle pose. Finally, the vehicle’s location can be estimated

using the pose of the particles with the highest weights. This

method consists of the following steps:

A. Initialisation

During the initialization step, particles have to be dis-

tributed over the map covering all possible vehicle poses.

This area could be thousand square meters in outdoor envi-

ronments making unfeasible the initial distribution of the par-

ticles over the whole map. Therefore, the initial distribution

must be reduced to the poses around the initial position of

the vehicle. This position is obtained using the rough location

provided by a Garmin 18x LVC GPS (accuracy <15 meters,

95% typical), not enough for autonomous vehicles navigation

but enough to initialise the filter. In order to reduce the

initial error, a fixed number of equally weighted particles

are randomly generated covering the area around the initial

position.

B. Update (Weight computation)

At this step, a weight will be computed for each particle

containing the probability of being the real location of the

vehicle. The weight of each particle will be computed by

scoring the similarity between the point cloud collected

using the Velodyne-32 and the measurements that should

be obtained provided the vehicle was located exactly on a

particle pose. This similarity will be scored by using a ray

casting algorithm computed from the position of each particle

(Fig. 5). This way, one beam will be launched in the direction

of each point pi in the point cloud until it intersects with

an object on the map. Then, a score φ(pi) (Eq. 1) will be

calculated depending on the difference d between the distance

to the real point dr and the distance to the intersection with

the map dm. An additional score is added if dr is smaller

than dm (to cover occlusions, highly likely in driving outdoor

scenes).

φ(pi) =















α exp
(

− d2

2σ2

)

, dr ≥ dm

α exp
(

− d2

2σ2

)

+ β
(

exp(λdr)
1−exp(λdm)

)

, dr < dm

(1)

, where σ is the sensor noise and α, β, and λ are weighting

factors.
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Fig. 5. Score given to a point depending on the difference between the real
distance and the distance to the intersection on the map.

The score Φ assigned to each particle will be the sum of

the scores of each point in the point cloud Φ =
∑

φ(pi).
Finally, the particle weights are normalised so they sum up

1.

The point cloud is filtered to reduce the computational

effort required to calculate the weights of the particles. To do

so, an intelligent feature selection is applied: by eliminating

points close to each other (with distances under the map

resolution), by removing the points on the ground (there are

no differential features on the ground plane) and selecting

points on distinctive features such as corners or poles.



C. Pose estimation, resampling and propagation

Once the weight for all the particles is computed, the

most likely pose of the vehicle is estimated as the mean

pose of the particles with the highest weights. Then, during

the resampling stage, the particles with high weights are

replicated while the particles with low weights are removed

to avoid the degeneration of the particle cloud. Finally, the

particles are propagated using the vehicle’s motion model to

continue with the next iteration of the PF.

IV. EXPERIMENTAL ANALYSIS

The final objective of creating a high quality map is to

obtain accurate localisation of the vehicle. However, there

are many factors to take into account in order to evaluate the

map creation accuracy and the localisation performance.

Firstly, in our system, an RTK-GPS-based EKF is used as

groundtruth, but it is not free of errors as we will show in

the next sections. This implies that corrections made in the

mapping or localisation phases over the EKF data will be

considered as errors in the final results. As a consequence,

and to give a more realistic figure of the mapping accuracy,

street poles positions were manually measured using an RTK-

GPS (Fig. 6). These poles positions were averaged over 500

samples. The mean distance and variance of the mapped poles

positions to the real ones will be used as an indication of the

mapping accuracy.

Secondly, the numeric results of the localisation stage

should be considered as tentative and will have to be val-

idated on autonomous driving experiments where the locali-

sation outputs will be used for navigation tasks.

Fig. 6. Poles position groudtruth represented as red dots.

A. Experimental set-up

The experiments were performed on the Universidad de

Alcalá (UAH) campus located at Alcalá de Henares (Madrid,

Spain). The test area is a semi-industrial compound with wide

open areas and large buildings connected by roundabouts.

Data was collected driving in real traffic conditions for

mapping and localisation on two consecutive runs (Fig. 7).

Mapping data was collected at an approximate speed of 17

km/h in a naturalistic driving (Fig. 7(a)), while localisation

test data was collected, first on a straight line, and then

swerving (Fig. 7(b)).

Finally, the groundtruth was obtained using a 3-DOF EKF

(based on RTK-GPS information) as explained in section

(a) (b)

Fig. 7. Experimental environment and trajectories. (a) Trajectory for map
creation. (b) Trajectory for localisation tests. In blue, straight line, in red
roundabout and in green swerving.

II-A. For the localization stage, the mean euclidean distance

error between the PF estimation and the groundtruth is used

as performance indicator.

B. Mapping results

A reference map, based only on the EKF positions and the

pointcloud without any further pre-processing, was created

to compare the mapping results. In the creation of this map,

the errors observed in the EKF positioning due to loss of

coverage or loss of corrections were manually removed. The

idea was to establish a baseline for comparison. It is worth

reminding that the EKF estimation does not include pitch and

roll angles, and thus, some improvement was expected to be

gained with the 6-DOF LIDAR odometry correction. Table I

shows the mean distance and variance of the poles position

for both maps.

TABLE I
MEAN EUCLIDEAN DISTANCE ERROR AND VARIANCE OF THE POLES

POSITIONS

Mean Euclidean Distance Error Variance

Reference map 22.30 cm 6.00 cm

6-DOF LIDAR odometry 9.74 cm 4.16 cm

As expected, the 6-DOF LIDAR odometry mapping re-

constructs more accurately the poles position by a factor of

almost two. This shows that the 6-DOF LIDAR odometry

technique is able to correct for some of the errors introduced

by the EKF and that pitch and roll angles estimation have a

significant effect in the map creation accuracy.

C. Localisation results

The localisation system described in Section III was

tested on both, the “error free” reference map and the 6-

DOF LIDAR odometry based one. Our purpose was two-

fold: First, to test the effect on localisation of introducing

corrections of pitch and roll angles on the map creation.

Second, to evaluate the performance of a map created relying

on LIDAR odometry. Table II shows the mean localisation

distance errors for both, the reference and the 6-DOF LIDAR

odometry maps in the test trajectory.



TABLE II
MEAN LOCALIZATION DISTANCE ERROR AND VARIANCE (CM)

Lateral Longitudinal Total

Reference map 14.86 ± 0.89 20.65 ± 5.23 28.27 ± 4.60

6-DOF LIDAR 13.63 ± 1.85 21.13 ± 2.42 27.83 ± 2.85

The performance of the localisation on the 6-DOF LIDAR

odometry map is comparable to the “error free” reference

map indicating that is possible achieve similar levels of

accuracy using LIDAR odometry instead of RTK-GPS. Fig.

8 shows an example where the PF is correctly estimating the

vehicle’s position, but the EKF groundtruth is off by about

1 metre. As explained before, some of the localisation error

is accounted for EKF errors caused by RTK-GPS blackouts,

meaning that the final localisation accuracy should be slightly

higher.

Fig. 8. PF (red arrow) and EKF groundtruth (green arrow) localisation
results. The Velodyne-32 hits are represented as red dots.

Although more environments and challenging situations

(i.e. strong occlusions) should be tested, these preliminary

results indicate that the mapping and localisation techniques

are accurate enough for navigation tasks in autonomous

vehicles. This method is a first approach towards the removal

of RTK-GPS from the mapping and localisation stages.

V. CONCLUSION

In this paper, we proposed a new method for feature

selection in laser-based point clouds with a view to achieving

robust and accurate 3D mapping. The proposed method

follows a double stage approach to map building: a 3-DOF

point cloud distortion compensation and a 6-DOF LIDAR

odometry-based motion estimation. Experiments were per-

formed while driving in real traffic conditions in a semi-

industrial compound. The results show that our mapping

technique increases the mapping accuracy by a factor of two,

while maintaing performance on the localisation stage. Our

approach is a first step towards the full removal of RTK-GPS

from both mapping and localisation stages.

As future work, for the localisation stage, we plan to

test on different environments with strong occlusions. For

the mapping stage, we want to introduce additional linear

features and to pitch the Velodyne-32 around 45◦ only for

the map creation. This is expected to reduce sparseness of the

maps and also some of the errors introduced by the furthest

targets.
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Abstract— Relative localization between autonomous vehicles
is an important issue for accurate cooperative localization. It
is also essential for obstacle avoidance or platooning. Thanks
to communication between vehicles, additional information,
such as vehicle model and dimension, can be transmitted to
facilitate this relative localization process. In this paper, we
present and compare different algorithms to solve this problem
based on LiDAR points and the pose and model communicated
by another vehicle. The core part of the algorithm relies on
iterative minimization tested with two methods and different
model associations using point-to-point and point-to-line dis-
tances. This work compares the accuracy, the consistency and
the number of iterations needed to converge for the different
algorithms in different scenarios, e.g. straight lane, two lanes
and curved lane driving.

I. INTRODUCTION

Vehicle detection and tracking are a key features for au-
tonomous driving which have led to many research work [7].
Knowing the relative pose of a detected vehicle in the ego-
vehicle reference frame is essential for tasks such as obstacle
avoidance or platooning.

The emergence of wireless communication capabilities
for vehicles in the recent years has given rise to new
possibilities. Having access directly to information such as
pose or vehicle dimensions, e.g., from the European standard
CAM (Cooperative Awareness Message) [5], a vehicle can
have a better understanding of its surroundings. Moreover,
if a vehicle can receive perception information from other
vehicles, it can have an augmented perception of the envi-
ronment enabling it to see much further. However, in order
to transpose perception information of one vehicle into the
reference frame of another, the relative pose between these
two vehicles is needed.

Many vision based vehicle detection algorithm can be
found in the literature with recent deep learning based de-
tectors having impressive performances [4]. However, these
methods often only return a bounding box in the image
frame and fail at providing a metric estimate of the pose of
the detected vehicle. On the contrary, LiDAR based vehicle
detection are much more adapted for relative pose estimation.
Vehicle detection by fitting a geometrical model such as L-
shape fitting [10] provides a good estimate of the relative
pose. Because the true shape of a detected vehicle is not
known a priori, only simple geometric models, i.e., box, are
usually used for model fitting. However in the context of

R0

Re
Rt

eqt

Fig. 1: The ego-vehicle estimates the rigid transformation eqt
that maps the reference frame Rt of a target vehicle into its own
reference frame Re. The target vehicle communicates an estimate
of its pose along with a polygonal model of its shape (illustrated
in blue with an unavoidable error).

communicating vehicles, it is possible for a vehicle to send
an accurate model of its own geometric shape.

An Iterative Closest Point (ICP) algorithm is often used
for scan matching [3] but can also be used to fit a scan to a
model [9]. ICP provides a good estimate of the relative pose
but the associated covariance matrix is often not computed
which is crucial to obtain an information that can be used
in a data fusion process [2], [8], [1]. With that objective in
mind, we present in this paper several algorithms for rela-
tive localization based on model matching with covariance
estimation.

The paper is organized as follows. In Sec. II we introduce
the relative localization problem. In Sec. III, the iterative
minimization algorithm is presented with four different
matching methods to associate LiDAR points to a geomet-
ric model. We also introduce two different minimization
methods. Finally, the results of the different matching and
minimization methods are compared in Sec. IV.

II. PROBLEM STATEMENT

In this work, we aim to estimate the relative pose between
two vehicles and quantify its uncertainty. We assume that
an ego-vehicle, equipped with a LiDAR sensor, perceives
a target vehicle resulting in set of 2D points P = {pi =
[xi, yi], i = 1, . . . , n}, in the ego-vehicle reference frame
Re. There exists many algorithms in the literature to compute
this cluster of points from a LiDAR point cloud. This
computation is out of the scope of this work. In our study,
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we also suppose that the target vehicle communicates an
estimate of the pose of its reference frame Rt along with a
2D polygonal model, M = {mj = [xj , yj ], j = 1, . . . , N},
representing its geometrical shape (see Fig. 1). The points
mj represent the vertices of the model and the edges are
defined by two consecutive vertices (mj ;mj+1).

This problem can be solved in 3D using a multilayer
LiDAR and a 3D model with facets, e.g. STL model.
Nevertheless a monolayer LiDAR is less expensive and gives
already very good results with smaller computation time
and information to communicate. The 2D hypothesis cannot
always be respected, i.e. if the vehicles are not driving on
a flat road or if the LiDAR scan and the 2D model are not
on the same plane, e.g. when the model is at the height of
the bumper of a truck and the LiDAR at the height of the
bumper of a car. In these cases a 2D polygonal model can
be computed from the intersection of a 3D model and the
plane of the LiDAR scan.

The problem we aim at solving is to estimate the relative
pose eqt = [ext,

e yt,
e θt] (θ being the heading) of the target

vehicle in the reference frame of the ego-vehicle. In other
words, eqt represents the rigid transformation, i.e., translation
and rotation, that maps Rt to Re. Any point pt = [xt, yt] in
Rt can be transformed into Re as

pe = eTtpt =

cos(eθt) − sin(eθt)
ext

sin(eθt) cos(eθt)
eyt

0 0 1

xtyt
1

 (1)

where eTt is the transformation matrix associated to eqt and
p = [pT 1]T is the homogeneous vector associated to p.

This problem can also be formulated as finding the
transformation that would map the target model M to the
perceived set of points pi minimizing a positive scalar error
E:

eq̂t = arg min
q
E (q) = arg min

q

n∑
i=1

d(q; pi,M), (2)

where d(q; pi,M) represents a distance from point pi to the
model M corresponding to the transformation q.
By supposing that the minimization problem is convex, one
can also compute the covariance matrix of the error by using
an empirical estimate of the variance of the residuals, as
proposed in [1]:

eΣt = 2
E(eq̂t)

n− k

(
∂2E

∂q2
(eq̂t)

)−1

, (3)

where k is the dimension of eqt, i.e., k = 3. This computation
needs at least four LiDAR points in the scan ( n ≥ 4).

In this paper, we compare several ways to compute the
distance metric d, two different minimization methods within
an Iterative Closest Point framework and we evaluate the
consistencies of the estimated covariance matrices.

III. COMPUTATION OF THE RELATIVE POSE

ICP is often used to match a LiDAR scan with another
one. We used a similar method to estimate the relative pose
between the model of the target vehicle and the scan. The

(a) Point-to-
point.

(b) Point-to-
projection. (c) Point-to-

line.
(d) Mix-
matching.

Fig. 2: Matching between the LiDAR points (in blue) and the model
(in black). The matched points and lines are illustrated in red.

objective is to find the pose that minimizes the error between
the scan and the shape model.

Algorithm 1 Overview of the proposed method.
1: Compute a first rough relative pose using bounding

boxes of the scan and of the received shape model
Loop

2: Match the clustered scan points with the model
3: Find the pose that minimizes the error
4: Break if the variation of the error divided by the

number of LiDAR points is smaller than a threshold
End loop

5: Compute the covariance matrix

Algorithm 1 summarizes the method. In the following,
we study four matching methods and two minimization
strategies.

A. LiDAR points to model matching

We introduce four different ways to match a set of LiDAR
points to a polygonal model.
• Point-to-point, ICP (Fig. 2a): each LiDAR point is matched
with the closest vertices of the model. This method does
not take into account the edges of the model. A sparsely
discretized model may lead to a large distance between the
LiDAR points and the model.
• Point-to-projection, ICPP (Fig. 2b): to have a tighter
matching, one can match a LiDAR point to the nearest point
of the model considering both its vertices and edges. This
point can be projected onto the model using the smallest
distance : the orthogonal distance to an edge or the Euclidean
distance to a vertex.
• Point-to-line, PLICP (Fig. 2c): by matching a point to
its orthogonal projection may result in an increase of the
error since the matched point remains fixed during the
minimization. One way to take this into account is to match
the point directly to the line defined by its edge matched
using the point-to-projection approach.
• Mix-matching, mixICP (Fig. 2d): the last method is a mix-
matching using point-to-point matching when the smallest
distance to the model is an Euclidean distance to a vertex
and point-to-line matching when it is an orthogonal distance
to an edge.

The difference between mixICP and ICPP is subtle. With
point-matching methods the matched points are constant
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whereas the scan can slide along the model with line-
matching.

In the case of a matching between a LiDAR point pi and
a model point mj (a vertex or an orthogonal projection):

d(M,pi; q) = ‖Tmj − pi‖2 =
∥∥mj − T−1pi

∥∥2 , (4)

where the T is the transformation matrix associated to q.
It should be noted that fitting the model points mj to the
LiDAR points pi using T is equivalent to fit pi to mj using
T−1.
In the case of a matching between a LiDAR point pi and an
edge (mj ;mj+1) with a unit normal nj :

d(M,pi; q) =
((
mj − T−1pi

)
· nj
)2
. (5)

B. Minimization using polynomial roots

The error function (2) to minimize is non linear. Censi
[3] proposed to change the variable q = [x y θ]

T to q4D =
[x y c s]

T
= [x y cos θ sin θ]

T . By doing so, the minimization
of (2) using the distances (4) or (5) can be rewritten as a
constrained quadratic problem:{

minq4D E (q4D) = qT4DAq4D +Bq4D + C

subject to qT4DWq4D = 1
, (6)

where A, B and C depend on the matched points and

W =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (7)

To solve this problem, the Lagrangian multiplier λ can be
used, resulting in the following function to minimize:

L(q4D) = qT4DAq4D +Bq4D +C + λ(qT4DWq4D − 1). (8)

The global minimum can then be found by finding the
roots of a four degree polynomial in λ. Final, a 3D pose can
be computed using

eq̂t = [x y θ]
T

= [x y atan2 (s, c)]
T
. (9)

The expression of the covariance matrix eΣt can be
computed from the derivatives of eΣt(q4D) in function of
eq̂t.

C. Minimization using pseudo-inverse matrix

Another way to solve (2), proposed by Low [6], is to
assume that the angular variation between two consecutive
iterations of the ICP is small. Therefore, we can approximate
cos θ ≈ 1 and sin θ ≈ θ. Using this approximation the
problem becomes a linear least-squares problem:

min
q
E (q) = min

q
‖Aq − b‖2 , (10)

where A and b depend on the matched points. A pseudo-
inverse matrix can be used to solve the minimization problem
10:

ˆeqt = pinv(A)b. (11)

TABLE I: Comparison of the two minimization methods with the
four matchings. The accuracy is evaluated from the mean of the
norms of the position errors ‖ε‖ and the mean of the absolute
value of the orientation error |εθ|.

ICP ICPP PLICP mixICP

Polynomial
Minimization

‖ε‖ (cm) 8.2 7.8 13.7 11.0
|εθ| (°) 2.97 2.84 5.97 5.26

consistency (%) 85.5 58.8 69.8 70.0
Pseudo-
inverse
Minimization

‖ε‖ (cm) 8.2 7.8 11.5 10.8
|εθ| (°) 2.94 2.83 5.64 5.24

consistency (%) 93.5 83.9 91.6 89.8

The covariance matrix as defined by (3) is easy to compute
here (n > 3):

eΣt =
E (q̂)

n− 3

(
ATA

)−1
. (12)

IV. SIMULATION RESULTS1

We used simulated data to test different parameters with
the four matching and the two minimization algorithms.
Within the reference frame of the ego-vehicle, the target
vehicle is placed 10 meters ahead, i.e., eqt = [10 0 0]

T .
Gaussian noise has been added to these poses with the
standard deviation: σx = σy = 0.5 m and σθ = 5°. The
LiDAR points have also been simulated with a Gaussian
noise added to the range of the LiDAR beams, σρ = 0.1 m.

To test the consistency of the estimated covariance matrix
eΣ̂t associated to an estimated relative pose eq̂t at a given
risk α = 5%, we check if the ratio of epochs where the
following inequality holds is equal to 1− α:

(eqt −e q̂t)T ˆeΣt
−1

(eqt −e q̂t) < χ2
3,1−α, (13)

where χ2
3,1−α = 7.81 for a three dimensional problem with

an error probability α = 5% .

A. Comparison of the two minimization algorithms

One can see on table I the average position error ‖ε‖ is
similar for the two minimization methods excepted for the
point-to-line matching where the pseudo-inverse approach is
more accurate. The pseudo-inverse method with the point-to-
line matching becomes also more consistent. ICP converges
to ICPP when the model is very discretized. Its large uncer-
tainty ellipse comes from the minimization error, which is
not computed with the shortest distances to the model, but
with distances to the points of the model.

B. Bounding box model

In the results of table I, we used the polygonal model, in
blue in figure 3. In many works, only the bounding box, in
red in figure 3, is known and used.

One can see in table II that the relative poses found are
less accurate in position but more accurate in orientation.
The back of the bounding box is indeed not curved like
the back of the polygonal model. The LiDAR scan is more

1The Matlab source-code used for this paper is available at: https:
//www.hds.utc.fr/~heryelwa/dokuwiki/en/start

https://www.hds.utc.fr/~heryelwa/dokuwiki/en/start
https://www.hds.utc.fr/~heryelwa/dokuwiki/en/start
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smooth polygon
polygon
box

Fig. 3: Bounding box model, in red, polygonal model, in blue, and
smooth polygonal model used to simulate the LiDAR scan. As this
model is used for platooning, i.e. only the back and the sides of the
vehicle are in the field of view of the LiDAR, only the rear of the
vehicle is detailed in the discretization of these models.

TABLE II: Results with a bounding box. The pose is supposed
to be found when the covariance matrix can be computed without
numerical singularity, when the problem has enough constraints.

ICP ICPP PLICP mixICP

Polynomial
Minimization

‖ε‖ (cm) 12.1 9.5 9.9 9.9
|εθ| (°) 2.36 3.39 2.97 2.97

consistency (%) 99.9 31.1 59.9 59.9
found (%) 100 100 56.4 56.4

Pseudo-
inverse
Minimization

‖ε‖ (cm) 17.1 9.5 11.0 11.0
|εθ| (°) 2.39 3.41 4.32 4.32

consistency (%) 78.1 60.1 64.5 64.4
found (%) 100 100 99.6 99.6

constrained in orientation and less constrained in position
when a bounding box is used instead of a polygonal model.

When using a bounding box model, the problem is less
constrained and only one segment can be matched by all
the LiDAR points. In this case, the point-to-line matching is
not appropriate for the first minimization. With this model
and this matching, the pseudo-inverse approach found a pose
with a computable covariance matrix more often.

C. Convergences of different iterative methods

Figure 4 shows an example of convergence for one epoch
for the four different matching methods. When a threshold of
1cm2 is used, all the matching methods converge with three
or four iterations on average. The ICP error is larger because
it does not use the smallest distance to the model like the

50 100 150 200 250

ICP                        (E-E-1)/n > 1cm2

ICP         1cm2 >= (E-E-1)/n > 0cm2

ICPP                     (E-E-1)/n > 1cm2

ICPP       1cm2 >= (E-E-1)/n > 0cm2

PLICP                   (E-E-1)/n > 1cm2

PLICP     1cm2 >= (E-E-1)/n > 0cm2

mixICP                  (E-E-1)/n > 1cm2

mixICP    1cm2 >= (E-E-1)/n > 0cm 2

0 5 10
0.01

0.015

0.02

0.025

0.03

0.035Error 
E/n (m2)

Iteration

Fig. 4: Convergences of the minimization errors for the second
minimization method and the four different matchings methods. The
dark color corresponds to the error before the convergence, for the
1cm2 threshold used to stop the algorithm. The variation of the
error between two iterations divided by the number matched LiDAR
points is compared to this threshold. The light color shows the error
before the convergence if the threshold is 0cm2.

(a) ICP (b) ICPP (c) PLICP (d) mixICP

Fig. 5: LiDAR points convergence on the geometrical polygonal
model for the different matchings. The model is shown in black
and the LiDAR points change from red, before the first iteration, to
green, once the algorithm has converged. 0.0001 used as threshold.

other methods. Sometimes, the ICPP seems to converge but
after a small variation of the error during several iterations,
a smaller error may still be found. When the threshold is
0cm2, the ICPP need 243 iterations on average to converge.
Indeed, the point-to-point matching methods like the ICP
or the PLICP limit the motion of the LiDAR points during
the minimization of one iteration. The ICPP recomputes
the points to match at every iteration, these points are
increasingly closer to the final result, but the error is also
increasingly smaller. When point-to-line matchings are used
in the PLICP, the LiDAR points have more freedom and the
convergence is faster.

Figure 5 shows the convergence of the LiDAR points for
the four matchings. When a point-to-line matching is used
in the PLICP or in the mixICP, the LiDAR points can slide
along the model as shown by subfigure c.

D. Scenarios
Three different scenarios have been tested on a straight

road, a two lanes road and curved road. In the straight road,
only the back of the vehicle is detected. The back is slightly
curved, a rotation and translation invariance are present. The
problem is here badly conditioned. The estimated pose is
therefore not very accurate and it is more difficult to obtain
the consistency. In a curved road driving, the back and one
side of the vehicle are in the field of view of the LiDAR.
The estimated pose is accurate. In the two lanes scenario,
the back and one side of the vehicle are detected (like for
the curved road) and the results are similar.

Figure 6 validates the previous hypothesis. The accuracy
for y and θ increases largely when two faces of the vehicle
are in the field of view of the LiDAR, e.g., in the two lanes
and the curved lane scenarios.

In the figure 7, one can see that the consistency is higher
for the two lanes driving than for the two other scenarios.

E. Inter-distance dependency
The previous results has been computed for an inter-

distance between the leader vehicle and the follower of
10m. We have also tested the dependency of the error and
the consistency for different inter-distances. When the inter-
distance increases, the number of LiDAR points on the leader
decreases. The error and the consistency become larger (Fig.
8).
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Fig. 6: Mean of the absolute value of the errors for x, y and θ for the four matchings and for the straight lane, the two lanes and the
curved lane drivings.
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Fig. 7: Consistency for the four matchings and for the three
scenarios: the straight lane, the two lanes and the curved lane
drivings.
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Fig. 8: Mean of the norm of the relative position error ‖ε‖ and
consistency for the four matchings depending on the inter-distance.

F. LiDAR noise dependency

The previous results are tested with a range noise on the
LiDAR points with a standard deviation of 10cm. We test
in this section the error and the consistency when the Li-
DAR becomes more accurate. The error and the consistency
increase when the LiDAR noise increases. (Fig. 9).

G. Noise on the poses of the leader and the follower

The standard deviations [σx σy σθ] = [0.5m 0.5m 5°] are
applied on the poses of the follower and the leader vehicles
on the previous results. We test here the effect of less
accurate poses on the error and the consistency. Even if
the initial localization corrects greatly the position error, the
iterative minimization is very sensitive to the orientation
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Fig. 9: Mean of the norm of the relative position error ‖ε‖ and
consistency for the four matchings depending on the LiDAR range
noise with a standard deviation σρ.
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Fig. 10: Mean of the norm of the relative ‖ε‖ and consistency
for the four matchings depending on the noise apply to the
poses of the follower and the leader vehicles with the standard
deviations: [σx σy σθ] = [0.5 0.5 5], [σx σy σθ] = [2.5 2.5 10] and
[σx σy σθ] = [5 5 20] ([σx] = [σy] = m and [σθ] = °).

noise. When it increases, the error increases (Fig. 10a)
and the consistency decreases drastically (Fig. 10b). If the
relative orientation error becomes very large (near 45°) some
ambiguity can appear and the LiDAR points can match on
the wrong side of the vehicle.

In this simulation, only one other vehicle was present.
If two or more vehicles are present the position error can
creates some ambiguity when the algorithm has to choose
which points matches with which vehicles.
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Fig. 11: Real platooning scenario on the test track Seville, Com-
piègne, France, in black. The ground truth of the two vehicles are
shown in black with their models. The pose and the model are in
red for the leader and in blue for the follower.

TABLE III: Real platooning scenario errors ‖ε‖ and consistency
for the four matchings, for second minimization method.

ICP ICPP PLICP mixICP
‖ε‖ (cm) 8.5 5.3 7.1 6.8

consistency (%) 75.1 68.6 92.5 91.8

H. Real platooning scenario

The relative localization have been tested on a real
platooning scenario. Two vehicles of the laboratory were
driving together on a test track (Fig. 11). This track has two
roundabouts and one straight lane between them.

Both vehicles were equipped with an IMU (Span CPT)
with a GNSS receiver using RTK corrections for the ground
truth. In practice, we have noticed that this ground truth was
not accurate enough for relative localization compared to
the high quality of the LiDAR measurements. Therefore,
the LiDAR of the follower was not used but simulated
to correspond perfectly with the pose given by the GNSS
receiver. The poses of the follower and of the leader used
for the relative localization algorithms were the ground truth
with Gaussian noise such as : [σx σy σθ] = [0.5m 0.5m 5°].
The LiDAR was simulated with a Gaussian range noise with
a 10cm standard deviation.

In this scenario, the inter-distance was evolving between
6m and 16m. The vehicles were following each other on the
curved road of the roundabout and on the straight lane.

The consistency and the accuracy are similar to the other
results : 92.5% of consistency and 71 mm of error for the
point-to-line matching.

V. CONCLUSION

This work has presented different relative localization
methods based on LiDAR points. An estimated pose received
from the detected vehicle is used for initialization. A first
localization is computed using the bounding boxes of the
LiDAR points and of the communicated model. This is

used to reduce the position error, the orientation error being
unchanged in this stage. An iterative minimization algorithm
is then applied using this first localization. We have presented
and compared two minimization methods and four different
points to polygonal model matchings. First, we have noticed
on different scenarios that the second minimization method
using the pseudo-inverse matrix gives a better accuracy and
consistency. Secondly, a point-to-line matching allows a bet-
ter estimation of the covariance matrix. This matching gives
more freedom to the LiDAR points which can slide along
the model. Moreover, this matching needs less iterations to
converge. We have also observed that, when two sides of a
vehicle are in the field of view of the LiDAR, the problem
is better conditioned and the accuracy is higher.

In future work, we will use these algorithms to compute
the absolute pose of the follower using the estimated pose
of the leader like a deported GNSS antenna. We will test
these algorithms with experimental data with two vehicles
and more.
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Abstract—In recent years, unmanned aerial vehicle (UAV) 

has been increasingly applied to traffic monitoring field, 

especially the vehicle detection. However, there are many 

challenges for vehicle detection in the UAV aerial video, such as 

camera shake, interferential targets and a wide range of change 

of scene. To solve these problems, a new vehicle detection system 

which is suitable for detection in UAV aerial video is proposed. 

We use the bit plane to extract the lane surface and use the 

extracted lane surface to limit the detection area. We improve 

the Vibe algorithm so that it can be used in rapidly changing 

scenes. In addition, the moving target screening strategy is 

proposed to screen moving vehicles. This paper is the first one to 

introduce bit plane into detection method. Our novel detection 

system is another major contribution. Experiments show that 

our system outperforms existing detection algorithms in terms 

of accuracy and computation time.  

I. INTRODUCTION 

In recent years, with the prosperity of the transportation 
industry, lane detection, vehicle detection and vehicle 
classification, etc. have become the most popular areas in the 
field of traffic monitoring [1]. At the same time, unmanned 
aerial vehicles (UAV), as a platform for collecting data, have 
been increasingly applied to traffic monitoring and other fields.  

The application of UAV in vehicle detection has a series of 
advantages, such as flexibility, friendliness, adjustable traffic 
monitoring range, and on-demand image acquisition. However, 
there are also a series of challenges: (1) During flight, UAV 
could be affected by the weather. The UAV will shake and 
drift, so the aerial video will be swaying and distorting. (2) Due 
to the wide shooting range of UAV, aerial video will inevitably 
be introduced into the large background area, which will 
interfere with vehicle detection [2]. (3) UAV moves quickly 
and flexibly, resulting in rapid changes in background. (4) 
There are pedestrians and other moving interference targets. 
Because of these problems, the detection in aerial video needs 
to be robust, anti-interference and real-time. 

 In dynamic scenarios, motion based methods, such as the 
optical flow method and the motion vector based method, are 
expensive in computing and difficult to detect real-time. In the 
feature based method, the simple feature method is less robust, 
and the subarea method is complex, which is not suitable for 
real time detection. Deep learning based method, such as 
HDNN [3] and CNN system combined with SVM classifier 
[4], are used to detect in UAV images rather than aerial video. 
The background modeling method has faster detection speed 
than the feature based and motion based methods, and detect 
the moving target accurately. 
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In this paper, we study the best real-time algorithm in the 
current detection algorithm [20], the Vibe algorithm [14]. 
Many researchers have studied and optimized the algorithm. 
Li, et al. [5] integrated the adjacent frame difference with Vibe 
algorithm to remove the ghost area. The PBAS algorithm 
combined the advantages of the SACON algorithm and the 
Vibe algorithm, and optimized on these basis [6]. Ehsan 
Mahoor, et al. changed the pixel value in the sample set to the 
frame difference value, so even if the camera is jitter, their 
algorithm is still effective [7]. Jin and his colleges fused the 
improved Canny operator with the Vibe algorithm to get a 
more accurate foreground region [8].  

Unfortunately, most of the improved Vibe algorithms are 
still limited to detect targets in static scenes, which is not 
suitable for detecting targets in moving aerial video. As 
mentioned, due to the large range of aerial video, the moving 
background area can be easily detected as the foreground 
target. In order to reduce the background complexity, we used 
lane information to restrict the detection area dynamically. 
Because of dramatic changes in the scene, we improved the 
Vibe algorithm to enable it to detect in a rapidly changing 
environment. There are interference targets, such as 
pedestrians. We proposed a series of vehicle screening criteria 
to screen these targets. To the author’s knowledge, this paper 
is the first one to introduce bit plane into detection method. In 
addition, the design of our vehicle detection system, which is 
suitable to detect in aerial video, is the paper’s main 
contribution as well.  

II. DYNAMIC DETECTION AREA 

The scene in UAV aerial video often changes, and the 
detection area should be changing accordingly. In order to 
reduce the background complexity and limit the shooting 
range, the detection area should be limited to the lane surface. 
The traditional fixed ROI areas are not suitable for aerial video 
for they are updated very slowly or not updated. Therefore, we 
propose our dynamic detection area using the lane information.  

The current lane detection methods include feature-based 
methods and model-based methods. In the model-based 
methods, the mathematical models of lane lines are established 
and optimized, such as line model, two degree curve model 
and hyperbolic model, etc.[9].Feature-based methods use the 
color, texture, margin, etc. to extract lane. Most lane detection 
algorithms are designed according to the specific system tasks 
and application environments [10] [11] [12]. These algorithms 
are not universal when it comes to harsh environments such as 
raining or nightscape. Therefore, we design a lane detection 
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algorithm based on bit plane, which is composed of lane 
surface extraction, lane detection and lane tracking.  

A. Lane Surface Extraction 

For further lane detection, frames are usually thresholding 
to generate the binary images, and edges are extracted by 
Canny operator on the binary images. In the thresholding, the 
integrity of the lane surface is damaged, which will affect 
further lane detection. Therefore, we introduce bit planes to 
maintain road integrity. The bit plane describes the grayscale 
attribute of the image. The grayscale of a m bit image can be 
expressed as a polynomial: 

 𝑃𝑚 = 𝑎𝑚−12
𝑚−1 + 𝑎𝑚−22

𝑚−2 +⋯+ 𝑎02
0 (1) 

𝑎𝑖(𝑖 = 0,1, …𝑚 − 1) is the coefficient of the bit planes. 
An 8 bits image can be considered as 8 planes of 1 bit, 
including 4 high-older planes and 4 low-older planes. The 
high-older planes contains important information, such as the 
contours. The low-older contains the details of the image, as 
shown in Figure 1. In aerial video, the details of images change 
greatly, which is considered to be interference in dynamic area 
detection. In order to avoid small grayscale changes 
influencing the lane surface extraction greatly, we only use 
high old bit plane to get the dynamic area.  

 In different application scenarios, we choose bit planes 
according to illumination conditions. The 8th bit plane is 
usually used to extract the road surface. In raining or night 
scape, we use the 7th bit plane. Even in bad weather and night 
scenes, the lane surface extraction results of bit plane are still 
better than the Ostu results. The experimental section will 
introduce the details of the experiment. 

On the selected bit plane, we calculate the vanishing point 
of the road, i.e. where the lane vanishes. By calculating the 
average grayscale 𝜇𝑖  of row 𝑖  in the image (m  rows and n 
columns), we get the vanishing point of lane.  

 𝜇𝑖 =
∑ 𝑣𝑖,𝑗
𝑛
𝑗=0

𝑛𝑖
, (𝑖 = 1,2, …𝑚, 𝑗 = 1,2,… 𝑛) 

(2) 

𝑣𝑖,𝑗 represents the pixel grayscale. On the vanishing point, 

the average grayscale 𝜇𝑖 decrease sharply: 

 |𝜇𝑖−1 − 𝜇𝑖| > 𝑇1 (3) 

The threshold 𝑇1 is set according to the specific application 
scenario. The pixels above the horizon are undesired and these 
pixels will be set to zero.  

B. Lane Detection 

After extracting the lane surface, the Canny operator is 
used to detect edges on the binary 8th bit plane images. After 
the probability Hough transform, the straight line can be 
expressed as: 𝜌 = 𝑥 ∙ 𝑐𝑜𝑠𝜃 + 𝑦 ∙ 𝑠𝑖𝑛𝜃. 𝜌 is the distance from 
the line to the origin of the coordinate system. 𝜃 is the angle 
between the line and the 𝑥 axis. 

𝑙 = {
𝑙𝑓      𝜃𝜖(90°, 180°)

𝑙𝑟           𝜃𝜖(0°, 90°)
     𝑖𝑓 𝜃 < 0°, 𝜃 = 𝜃 + 180° 

(4) 

According to the angle 𝜃  , the straight line would be 
determined whether it belongs to the left lane 𝑙𝑓or the right 

lane 𝑙𝑟  , and the two lateral lines are collected respectively. 
Angle information is used to screen out the outermost lane on 
both sides. Finally, the outmost point 𝑃𝐿 , 𝑃𝑅  of the outermost 
lanes of the left and right sides are used as the rectangle corners 
to achieve the dynamic detection area. The use of rectangles 
instead of other curves is to facilitate lane tracking and limit 
computation complexity. 

C. Lane Tracking 

Due to the jitter and mutation in aerial video, the dynamic 
detection areas between adjacent frames will change greatly. 
Therefore, the object located at the edge of the lane can be 
easily detected as a vehicle. Here, we use Kalman filtering to 
limit area variance [13]. Traditionally, Kalman filter is used to 
track 𝜌  and 𝜃  of lanes [21]. In our method, we track the 
outermost point of the lane. Take the left lane for example. 
Kalman filter uses previous state and current measurement to 
predict the optimal state. Lane tracking system can be 
described by linear stochastic differential equation: 

 𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝐵𝑈𝑘 +𝑊𝑘     𝑍𝑘 = 𝐻𝑋𝑘 + 𝑉𝑘 (5) 

The position and its variants are defined as the state vector 
𝑋, and the position is defined as the measurement vector 𝑍: 

 X = [𝑋𝑃𝑙  𝑌𝑃𝑙   𝑋𝑃𝑙
′ 𝑌𝑃𝑙

′]𝑇     Z = [𝑋𝑃𝑙  𝑌𝑃𝑙]
𝑇 (6) 

This 4 × 4 state updating matrix A is set to the unit matrix. 
The measurement matrix 𝐻 is set to the identity matrix. Both 
𝑊𝑘  and 𝑉𝑘  are respectively Gaussian white noise, i.e. 

Figure 1. The binarization results for lane surface extraction. The top left is the original image. The bottom left is the binary image by the 

Otsu threshold. The others are the binary images by bit planes, ranging from bit plane 1 to bit plane 8. The high-older bit planes contains 

the main information of lane and the low-older bit planes contains the details. 

Original image 

Otsu threshold 

Bit plane 1 Bit plane 2 Bit plane 3 Bit plane 4 

Bit plane 5 Bit plane 6 Bit plane 7 Bit plane 8 



  

𝑊𝑘~𝑁(0, 𝑄), 𝑉𝑘~𝑁(0, 𝑅). The Kalman filter is used to track 
the outmost points of lanes as follows. 

The current state is predicted by using the optimization 
result of the former state 𝑋𝑘−1|𝑘−1. There is no control, so the 

𝑈𝑘  is set to 0. Q represents the noise matrix of the system, 
which is set to the identity matrix in the application. The 
measurement noise matrix 𝑅 is set as an identity matrix. The 
specific calculation steps are as follows: 

 𝑋𝑘|𝑘−1 = 𝐴𝑋𝑘−1|𝑘−1 +𝑊𝑘 (7) 

 𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴
𝑇 + 𝑄 (8) 

 𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝐻𝑋𝑘|𝑘−1) (9) 

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇 (𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅)⁄  (10) 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻) 𝑃𝑘|𝑘−1 (11) 

Through these steps, lane tracking is completed by the 
predicting of the outmost points of the lanes. Since each 
Kalman prediction requires only one iteration, the time cost is 
negligible. By designing the dynamic detection area, the 
background is effectively eliminated. The complexity of 
vehicle detection is reduced. 

III. IMPROVED VIBE ALGORITHM 

To the best of our knowledge, Vibe algorithm is used for 
the video surveillance in static background. When applied to 
the detection of dynamic scenes, there will be slow 
background updates and ghost problems [14] [15]. Therefore, 
we improved the Vibe algorithm and applied it to the dynamic 
scenes. 

In Vibe, only one frame is needed to build the background 
model. By using adjacent pixels with spatial consistency, 𝑁 
samples are randomly selected from the eight neighborhoods 
as their sample set. The sample set of the whole image pixel is 
the initial background model. The sample set of any pixel 
𝑀(𝑥, 𝑦, 𝑡) in the image is 𝑀(𝑥, 𝑦, 𝑡) = {𝑣1, 𝑣2, … , 𝑣𝑖 , … 𝑣𝑁} , 
 𝑣𝑖(𝑖 = 1,2, …𝑁) is the pixel value of  the sample set point. 

The pixel 𝑀1(𝑥, 𝑦, 𝑡) in the current frame is defined as the 
center of a circle, and the R is defined as the radius of the circle 
recorded as 𝑆𝑅(𝑀1). Compare 𝑀1(𝑥, 𝑦, 𝑡) with the pixel of 
the same position in the previous frame 𝑀. If the intersection 
point is greater than the threshold 𝑇𝑉𝑖𝑏𝑒 : #{𝑆𝑅(𝑀1)⋂𝑀} >
𝑇𝑉𝑖𝑏𝑒 , the current point 𝑀1(𝑥, 𝑦, 𝑡) is the background point, 
and enter the background update step. 

When the current pixel is determined as a background pixel, 
it has a probability of 1 𝜑⁄  to update itself (𝜑 is usually set 
to16), i.e., a pixel value 𝑣𝑖  is randomly selected from the 𝑁 
samples to be updated. It also has a probability of 1 𝜑⁄  to 
update the neighbor pixels. The probability of sample point 
remained in the sample set decreases exponential over time. 
The background model can be updated quickly and effectively. 
When a pixel is continuously determined as foreground pixel 
of multi frames, it is updated to background pixel. That is to 
prevent the phenomenon of deadlock. 

A. Improvement 

In static environment, the background is almost unchanged, 
and the Vibe algorithm is robust. However, when the UAV 
moves quickly, the camera jittering, the background changes 
drastically, and the amount of the foreground increases sharply. 
The ghost appears, and the false objects are eliminated very 
slowly. We use morphological open operation to eliminate the 
noise and then we use morphological close operation to fill the 
holes. At the same time, the previous scene model is not 
suitable for the current scene, so we set different update rates 
of 1 𝜑⁄  based on the complexity of the scene to speed up the 
elimination of false targets. In the current frame, the number 

of foreground targets is defined as ∑𝑡
𝑖 : 

1 𝜑⁄ = {

1/16,                      ∑𝑡
𝑖 ≤ 10

1 4,            10 < ∑𝑡
𝑖 < 20⁄

1 2,                       ∑𝑡
𝑖 ≥ 20⁄

 

(12) 

As shown in Table 2, the scene updates faster with the 
increase of 1 𝜑⁄ . 

IV. VEHICLE SCREENING METHOD 

After detection in dynamic detection area, a series of 
moving targets will appear. Therefore, we filter the moving 
targets to get vehicles. In aerial video, the widely used vehicle 
screening features, such as color, texture, shadow, texture, 
symmetry, are easily affected by illumination and other factors. 
Therefore, we provide our screening criteria: scale criteria, 
shape criteria, and direction criteria. 

A. Scale Criteria 

Vehicle detection is usually carried out at a fixed scale, and 
the scale characteristics of vehicles are generally ignored. The 
size of moving target in aerial video is related to the flight 
height of UAV. When the flight altitude is low, the moving 
target will be correspondingly large, and the smaller 
foreground target is the unwanted object, and vice versa. 
Therefore, UAV flight height can be used to determine the size 
of vehicle. Let 𝑉(𝑥, 𝑦, 𝑡) represent the current moving target 
area. 𝑉𝐿 and 𝑉𝐻  are low threshold and high threshold of the 
vehicle area. 𝐻 is defined as the flight height. 𝑉𝐿 and 𝑉𝐻 are 
the functions of 𝐻. We use pinhole camera models to build the 
projection models.  

The corresponding relation between the point coordinates 
in the real world coordinate system 𝑃(𝑥, 𝑦, 𝑧) and the image 
pixel coordinates system (𝑢, 𝑣, 𝑑)  (d is depth data) can be 
described as: 

𝑠 [
𝑢
𝑣
1
] = 𝐶 ∙ (𝑅 ∙ [

𝑥
𝑦
𝑧
] + 𝑇)     𝑑 = 𝑧 ∙ 𝑠 

(13) 

𝐶 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 
(14) 

𝑅 and 𝑇 are the camera attitudes. 𝑅 represents the rotation 
matrix and 𝑇  represents the translation matrix. 𝐶  represents 
the internal parameter matrix of the camera. 𝑠  refers to the 
scale factor of depth. 𝑓𝑥, 𝑓𝑦 represent the camera focal length 

on the 𝑥 𝑎𝑛𝑑 𝑦 axis in the camera coordinate system. 𝑐𝑥 , 𝑐𝑦 

refer to the camera aperture center.  𝑓𝑥, 𝑓𝑦 ,𝑐𝑥 ,  𝑐𝑦  could be 



  

obtained by camera calibration. Since the pod can be self-
stabilized, we set the pod to always look down, and the optical 
axis of the pod is perpendicular to the ground. Therefore, the 
camera does not rotate and translate. 𝑅 is set to a unit matrix 𝐼, 
and 𝑇 is set to zero. The above formula can be simplified to: 

 u = 𝑥 ∙ 𝑓𝑥/𝑧 + 𝑐𝑥     v = 𝑦 ∙ 𝑓𝑦/𝑧 + 𝑐𝑦  (15) 

We use the laser on the UAV to obtain the distance 𝑧 
between the pod and the ground, which is similar to the flight 
height 𝐻. Utilizing actual vehicle width and height, the vehicle 
size threshold 𝑉𝐿 and 𝑉𝐻 in the image can be obtained. If the 
size of current target is: 

 V ≪ 𝑉𝐿 orV ≫ 𝑉𝐻     𝑉𝐿 = 𝑓(𝐻), 𝑉𝐻=𝑓(𝐻) (16) 

It wouldn’t be the candidate vehicle targets. Remove 
current targets. The threshold 𝑉𝐿 and 𝑉𝐻 are set according to 
the specific application scenarios. 

B. Shape Criteria 

It is generally believed that the shape of the target vehicle 

is rectangular. Therefore, the ratio of target length 𝑙𝑡
𝑖  and target 

width 𝑤𝑡
𝑖can be used to filter targets: 

 𝑟 = 𝑙𝑡
𝑖/𝑤𝑡

𝑖 (17) 

When 𝑟 > 6 or 𝑟 < 0.5, it is not a candidate vehicle target. 

C. Direction Criteria 

In the lane where there is no crossing, the vehicles don’t 
move back and forth, so we propose the direction criteria: the 
motion direction of the candidate vehicle is monotonous. We 
introduce cross products to determine the direction. The 
algorithm is illustrated as follows: 

Algorithm The direction criteria 

1: Take the target 𝑡 of frame 𝑖 as 𝑃𝑡
𝑖(𝑥𝑡

𝑖 , 𝑦𝑡
𝑖)  

( 𝑖 = 1,2,3……𝑁 − 2, 𝑁 is the amount of frames); 

2: Take the same moving target 𝑡 of adjacent frames 

as𝑃𝑡
𝑖+1(𝑥𝑡

𝑖+1, 𝑦𝑡
𝑖+1) and 𝑃𝑡

𝑖+2(𝑥𝑡
𝑖+2, 𝑦𝑡

𝑖+2) calculate 

the cross product: 

 c𝑝𝑖 = |
𝑃𝑡
𝑖 𝑃𝑡
𝑖+1

→    ×
𝑃𝑡
𝑖+1𝑃𝑡

𝑖+2
→      | and record the result; 

3: If c𝑝𝑖 is different from the sign of posterior cross 

product c𝑝𝑖+1 , the direction of movement are 

different. The target isn’t considered as vehicle. 

4: Repeat for the frames. 

V. EXPERIMENT 

We carried out several experiments to evaluate our vehicle 
detection system on aerial video and changedetection.net 
(CDnet) [21]. CDnet is one of the most widely used dataset for 
moving object detection. Experiment results are as follows. 

A. UAV Platform 

The UAV is designed and assembled independently by us. 
We use the DJI S900 UAV frame and 16000mAh, 6S LiPo 
battery. Flight control system consists of the STM32F427VI 
and TLC algorithm [16] [17] [18] [19]. The IMU unit uses the 
Xsens MTI-G-700. IMU and GPS collect data and calculate 
the necessary speed, position, angular velocity and attitude of 
UAV, so as to provide necessary data for flight control. The 

XBee module realizes real-time data exchange between 
ground station and UAV. The distance between UAV and 
moving target is obtained by using SF11 laser altimeter. The 
image acquisition device is a double axle pod, and the image 
processing algorithm is completed on the airborne PC104. The 
overall UAV system and parameters are shown in Figure 2 and 
Table 1. 

Table 1. Hardware system parameters. 

Frame Weight Diagonal 

Wheelbase 

Max Distance of 

Propeller 

3300g 900mm 1200mm 

Load Height Wind Resistance 

2000g 480mm F-5 

Working Temperature Max Speed 

-10 °C ~ +40 °C 10m/s 

Max Flight Time 

25min（16000mAh/6s/1900g） 

 

 

Figure 2. UAV physical map and UAV hardware diagram. 

B. Lane Surface Extraction Experiment 

As shown in Figure 1, the result of lane surface extraction 
based on bit plane is superior to the Ostu binarization result on 
the highway dataset (1700 frames). In order to verify the 
performance of the lane surface extraction method based on 
the bit plane in different environments, we test on traffic 
datasets (1570 frames) and fluidHighway dataset (1364 
frames). Even if the scene of these datasets is night and the 
image quality is terrible, the bit plane can still extract the 
relatively complete lane surface.  

C. Dynamic Detection Area Experiment 

The dynamic detection area results are shown in Figure 3. 
Aerial video was taken in 5m, 10m, and 20m. The black line 
represents the outmost lanes. The blue rectangle is the 
detection area obtained from the outmost points, and the purple 
rectangle is the final detection area after Kalman filtering. It 
can be seen that the detection area can be effectively reduced. 

D. Improved Vibe Algorithm Experiment 

The results of the improved Vibe algorithm are shown in 
Table 2. With the change of background pixel update rate, 
background removal becomes faster and more effective. The 
improved algorithm can be applied to dynamic environment. 



  

Table 2. Frame number for updating with different 𝝋 value. 

Update rate 1 𝜑⁄  1 16⁄  1 8⁄  1 4⁄  1 2⁄  

Required frame amount for updating 100 70 60 50 

E.  Aerial Video Experiment 

We compare our algorithm with Vibe algorithm, GMM 
algorithm and PBAS algorithm, because the Vibe is the basis 
of our algorithm, the GMM is frequently cited and utilized. 
The PBAS is nearly the best detection algorithms in recent 
years [20]. We add simple morphological operation to the 
original Vibe and GMM to eliminate noise. The experiment 
results are shown in Figure 4.  

The images in Figure 4 are the Vibe results, GMM results, 
PBAS results and our system results. The average time cost 
per frame for the four algorithm is 23 milliseconds, 40 
milliseconds, 42 milliseconds and 30 milliseconds. Our 
detection system is superior to other algorithms. After 
combining the dynamic detection area, the improved Vibe 
algorithm and the vehicle screening strategy, the vehicle 
detection system can detect the moving vehicles accurately in 
the dynamic large-scale environment.  

F. CDnet Experiment 

We test our method on the twoPositionPTZCam dataset, 
which belongs to the PTZ category in CDnet. As proposed in 
[21], detection algorithms have the lowest performance on the 
PTZ category due to the camera jitter, and the camera jitter is 
inevitable in aerial video. The main advantage of this 

comparison is that we can easily compare our method with 
many most advanced methods which have been ranked 
according to the following measures. The evaluation used by 
the CDnet is in Table 3 and the results are in Table 4. 

 

VI. CONCLUSION 

In this paper, an UAV airborne vehicle detection system is 
proposed. We use the bit plane to limit dynamic detection area, 
reduce the background complexity and improve detection 
efficiency. Then the Vibe algorithm is improved so that it can 
be applied to dynamic scenes. Finally, the foreground targets 
are filtered to get the moving vehicles. Experiments show that 
the vehicle detection system is accurate, robust and real-time.  

Table 3. Evaluation. 
TP (True Positive) Pixel number labeled as foreground correctly. 

FP (False Positive) Pixel number labeled as foreground incorrectly. 

FN (False Negative) Pixel number labeled as background 

incorrectly. 

TN (True Negative) Pixel number labeled as background correctly. 

Re (Recall) TP / (TP + FN) 

Sp (Specificity) TN / (TN + FP) 

FPR  FP / (FP + TN) 

FNR FN / (TP + FN) 

Precision TP / (TP + FP) 

PWC  100 * (FN + FP) / (TP + FN + FP + TN) 

F-Measure (2 * Precision * Re) / (Precision + Re) 

Average ranking 

(used to rank by CDnet) 

(Re + Sp + FPR + FNR +PWC +  

F-Measure + Precision) / 7 

Figure 4. The images from left to right are the detection result of the Vibe algorithm, the GMM algorithm result, the PBAS algorithm 

result and our system result. 

Figure 3: The black straight lines are detected by the probability Hough transform and selected as the outermost lanes. The blue box is 

the dynamic detection area fitted by the outermost lanes. The purple box is the filtered dynamic detection area obtained by Kalman filter. 



  

Therefore, the system has a broad application prospect. 
Because of the outdoor working environment, improving the 
robustness of lighting is a good direction for future work. 
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MOMDP solving algorithms comparison for safe path planning
problems in urban environments

Jean-Alexis Delamer1 and Yoko Watanabe2 and Caroline P. Carvalho Chanel3

Abstract— This paper tackles a problem of UAV safe path
planning in an urban environment where the onboard sensors
can be unavailable such as GPS occlusion. The key idea
is to perform UAV path planning along with its navigation
an guidance mode planning where each of these modes uses
different set of sensors and whose availability and performance
are environment-dependent. It is supposed to have a-priori
knowledge in a form of gaussians mixture maps of obstacles and
sensors availabilities. These maps allow the use of an Extended
Kalman Filter (EKF) to have an accurate state estimate. This
paper proposes a planner model based on Mixed Observability
Markov Decision Process (MOMDP) and EKF. It allows the
planner to propagate such probability map information to the
future path for choosing the best action minimizing the expected
cost.

I. INTRODUCTION

Safe navigation of autonomous vehicles in urban environ-
ment is a challenging problem. These vehicles rely on their
onboard sensors to navigate through the environment. Their
navigation performance depends directly on the onboard
sensors whose availability and precision can vary with the
environment. For example, the GPS localization precision
depends on the satellites constellation and their visibilities.
It is, however, possible to predict its localization precision,
called Dilution of Precision (DOP), for a given environment
[12]. Such information can be used as a priori knowledge in
the path planning task, to ensure the safety under uncertainty.

In this context, this paper tackles such safe path planning
problem for autonomous vehicles in urban environments,
in particular for UAVs (Unmanned Aerial Vehicles). [18]
and [1] have addressed UAV path planning problems, by
considering the localization uncertainty which is propagated
along a planned path in function of its environment. For
instance, [18] applies the A* algorithm and makes use of
uncertainty corridor to evaluate the plan for choosing the
most efficient and safe path. [7] and [1] propagate the
position uncertainty during path search by using RRBT
algorithm. However, any of these approaches consider the
complete GNC (Guidance, Navigation, and Control) closed-
loop vehicle kinematics model into the decisional process.

The UAV safe path planning problem, addressed in this pa-
per, is modeled as a particular Mixed-Observability Markov
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Decision Process (MOMDP) [16]. MOMDP is an extension
of the classical Partially Observable Markov Decision Pro-
cess (POMDP) [11], that allows the factorization of the state
variables into fully and partially observable state variables. It
holds in a smaller belief state space dimension, accelerating
policy computation. The transition and observation functions
of the MOMDP are built on the vehicle GNC model, and
on the a priori knowledge of the environment given as
probability grid maps of obstacles or sensor availabilities, re-
spectively. Through these complex functions which combine
continuous state variables transitions with discrete grid maps
for sensor availability observations, the resulting updated
belief state has a particular form. To address this difficulty,
the belief state is approximated by a Gaussian Mixture Model
(GMM) using the Expectation-Minimization (EM) algorithm
[2].

Moreover, another particularity of this planning problem
arises with the cost function proposed in this paper. It
holds in having a non piecewise linear and convex (non-
PWLC) value function [11], which prevents from using
classical MOMDP solvers [16], [3]. Consequently, this paper
presents two algorithms which do not require the PWLC
property. The first algorithm is based on (L)RTDP (Labelled
Real-Time Dynamic Programming) [5] and RTDP-bel [6]
algorithms. (L)RTDP [5] improves the convergence of RTDP
(and RTDP-bel in consequence) by labeling the already
converged states. RTDP-bel use an hash-table only defined
for belief states visited during policy learning. The second al-
gorithm is based on POMCP [17], a Monte-Carlo tree search
algorithm for partially observable environments. POMCP,
as UCT (Upper Confidence bounds applied to Trees) [13],
applies the UCB1 (Upper Confidence Bounds) greedy action
selection strategy. POMCP approaches the value of a belief
state by the average of evaluated costs during simulations
which have started from this belief state, allowing this to
generate a policy tree.And, as far as we know, RTDP-bel and
POMCP are the only POMDP [11] algorithms that allows to
approximate a value function in any format.

This paper is organized as follows: firstly the MOMDP
model for this application case is presented. After, the
belief state GMM representation learning is discussed. Then,
the two algorithms: (L)RTDP-bel and POMCP-based are
proposed; the results are shown in order to compare their
performances. Finally, future work is discussed.

II. UAV SAFE PATH PLANNING PROBLEM

This paper addresses a problem of finding a naviga-
tion and guidance strategy (path and modes) which makes



Policy Navigation
module

Guidance
module

Sensors

Vehicule
motion
model

Belief state
update

Maps

bsc
sv

Observation
s′v

b
s′v
a

a

GNC

sv

bs′c

p(s′v | s′c)

Fig. 1: System architecture diagram. The GNC closed-loop vehicle
model is incorporated into the MOMDP transition function. Apriori
information forms a set of probability grid maps of the environment
and the sensor availabilities.

autonomous vehicles reach a given destination safely and
efficiently in a cluttered environment. Autonomous vehicles
are equipped with different sensors, such as INS and GPS,
which are used in its GNC system to execute a path (Fig.
1). The work here presented can be applied to any type of
autonomous vehicles, as long as their GNC model is well-
defined. To illustrate the approach, this paper focuses on
the UAV model proposed by [10], where the GNC closed-
loop system is modeled as a transition function of the
continuous vehicle state vector x (position, velocity, etc.).
The navigation filter estimates this state x and its error
covariance P for a selected navigation mode (or sensor).
The guidance and control module executes a selected path
by using (or not, depending on a selected guidance mode) the
navigation solution. The execution precision is given by the
execution error covariance Σ, which may depend on P . A
priori knowledge on the environment is assumed to be given
as a set of probability grid maps of obstacles and availability
of each of the sensors. These maps are used in planning task
to predict the path execution accuracy, and then to evaluate
obstacle collision risk with respect to it given a path.

III. MOMDP MODEL

The Mixed Observability Markov Decision Process
(MOMDP) proposed by [3] and [16] is a variant of the
POMDP (Partially Observable Markov Decision Process).
The state is not partially observable, but a part of the state is
known at each epoch. In this problem, an UAV always knows
the current sensor availabilities which are considered as a
part of the state. Consequently, MOMDP is applied to model
this problem. But, in contrast to a classical MOMDP model
[16], there is no partial observable state in this application
case. The vehicle state vector x is unobservable from the
planning model point of view, since there is neither partial
nor direct observation on it. The only outputs considered
from the GNC closed-loop model is the localization and
execution error covariances P and Σ. Figure 1 illustrates
the system architecture with different modules.

The MOMDP is defined as a tuple
{Sv,Sc,A,Ω, T ,O, C, b0}, where Sv is the bounded
set of fully observable states; Sc is the bounded set of
non observable continuous states; A is the bounded set
of actions; Ω is the bounded set of observations; T is
the state transition function; O is the observation function
such as : O(o, a, s′c, s

′
v) = p(o|s′c, s′v, a) = 1 if o =

s′v, or 0 otherwise; C : B×B×A→ R is the cost function,

with B, the belief state space defined over |S|= |Sv|×|Sc| ;
and b0 = (s0

v, b
0
Sc), where b0Sc ∈ Bc is the intial probability

distribution over the non observable continuous states,
conditioned to s0

v ∈ Sv , the initial fully observable state.
The visible state sv ∈ Sv is defined as a tuple containing

the fully observable booleans of the sensor availability [0; 1],
with N the number of sensors, the boolean on the collision,
and the P the localization error covariance matrix propagated
by the navigation module in function of a selected navigation
sensor/mode in a given decision step. The sv is define such
as sv = {Fsensor1, . . . , FsensorN, FCol, P}. It is assumed that
the collision flag FCol is observable either by measuring or
estimating a force of contact.

The non observable continuous state sc ∈ Sc is defined
such as sc = x, recalling that x is the continuous vehicle
state vector (position, velocity, etc.).

An action a ∈ A is defined as a tuple {d,mn,mg}: the
discretized path direction d ∈ D; the navigation mode mn ∈
Mn and the guidance mode mg ∈Mg .

The transition function T (sv, s
′
v, a, s

′
c, sc) is composed of

two functions: a transition function TSc such as:

TSc(sc, sv, a, s
′
c) = fs′c(s

′
c|sc, sv, a) ∼ N(s̄′c,Σ

′(sv)),

which is based on the GNC closed-loop model, given that
the probability distribution of a predicted state s′c follows
a normal distribution N(s̄′c,Σ

′(sv)), which in turn, is a
function of the previous state sc and the action a; and
a transition function TSv such as TSv (s′c, s

′
v) = p(s′v|s′c),

which represents the transition to s′v and depends on the
sensor availability maps and therefore depends only on the
next state s′c. Concretely,

TSv (s
′
v |s′c) =

N+1∏
i=1

p(s′v(i)|s′c) (1)

where N is the number of sensors, thus N+1 is the number
of flags (booleans) in sv , and s′v(i) the i-th flag. Then, the
transition function becomes:

T (sv , s
′
v , a, s

′
c, sc) = TSc (sc, sv , a, s

′
c)× TSv (s

′
c, s

′
v)

= p(s′v |s′c)fs′c (s
′
c|sc, sv , a)

(2)

Note the execution error covariance matrix Σ from the GNC
transition model represents the uncertainty envelope of the
unobservable state sc ( represented by bsc in the Fig. 1),
instead of P , the localization error covariance matrix. The
belief state is updated after an action a followed by a
perceived visible state o′ = s′v . The belief state update is
decomposed into two functions. The first one corresponds to
the GNC closed-loop transition function belief propagation:

bs′c (s
′
c) =

∫
Sc
fs′c (s

′
c|sc, sv , a)bsc (sc)dsc (3)

The second one is the probability of s′v (given by the
probability grid maps) that is computed based on bs′c :

p(s′v |b, a) =
|G|∑
i=1

p(s′v |s′c ∈ ci)p(s′c ∈ ci|b, a) (4)
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where ci corresponding to the ith cell of the probability map
and |G| is the number of cells in the map. Finally, the belief
state update function is defined as :

b
′s′v
s′c,a

(s′c) =
p(s′v |s′c)

∫
Sc fs′c (s

′
c|sc, sv , a)bsc (sc)dsc

|G|∑
i=1

p(s′v |s′c ∈ ci)p(s′c ∈ ci|b, a)
(5)

a) Why a MOMDP model instead of a classical
POMDP model?: The choice of modelling this application
case as a MOMDP instead a POMDP (Partially Observable
Markov Decision Process) is twofold: (i) the MOMDP model
offers the possibility of factorizing the state space, resulting
the policy computation complexity, as the belief state prob-
ability distribution can be defined over a small belief state
space Bc (which refers to the Sc space instead of the com-
plete S space, such that b = (sv, bSc)) – see Fig. 2 ; (ii) as
the state space is factorized, one can factorize the observation
space too. In this particular application case, the observation
set which corresponds to Sc is empty. Therefore, the only
observation set relies on Sv . Given that O(o, a, s′c, s

′
v) =

p(o|s′c, s′v, a) = 1 iff o = s′v, or 0 otherwise, one can
compute expectations directly over this variable (cf. Eq. 4
and 5).

A. Belief state representation learning

Figure 3a illustrates a belief state update step. The future
belief state ba is calculated after an action a from an initial
belief state b (see also Fig 1). If b is Gaussian, ba returned
by the GNC transition function is also Gaussian. Then, in
this example, an observation sv is perceived, such that a
probability p(sv|ba) > 0 only in the blue shaded cells. By
using this observation and (Eq. 5), the belief state ba is
updated to bsva . The shape of this new belief is no longer
Gaussian. Consequently, future belief states will not be
Gaussian neither.

Gaussian belief states allow algorithmic simplifications.
The Gaussian property allows planning algorithms to handle
belief states directly, unlike previous works which approach
belief states with Monte-Carlo particle filters [4], [17], thus
reduces computation time. Therefore, this paper proposes to
apply a machine learning technique to calculate a Gaussian
Mixture Model (GMM) to approximate the new belief bsva .

The EM algorithm [2] is used in this work. EM learns
a GMM belief state representation for a fixed number Ng

of Gaussian functions. The ideal Ng is unknown; then it is
necessary to compare the GMMs learned for different Ng’s.
So firstly, a sufficient number of samples sc is generated from
bsva . Then, for each Ng , the GMM is trained (it runs the EM
algorithm). To decide on which GMM best fits the belief
state, the Bayes Information Criterion (BIC) [2] is used,
due to its interesting property of penalizing the complexity
of the learned model (i.e., Ng). The GMM with smallest
BIC score is selected. Note that the maximum Ng and the
number of samples are problem-dependant and need to be
tested empirically beforehand. Figures 3b and 3c show an
example of the GMM learning result, where the initial belief
state ba (black dotted ellipse) is updated by an observation
sv of non-collision (the white part of the figure 3b).Then
EM is applied to learn GMMs with different Ng from 1 to
7, and that with Ng = 2 (shown in red and blue ellipses) was
selected according to the BIC score comparison (Fig 3c).

B. Cost function

The GMM approximation allows us to analytically com-
pute the cost C of the belief state transition. The cost function
calculates the volume of the uncertainty corridor (see [18] for
more details on this volume computation) between two belief
states (ensuring the safety and efficiency of the path). A fixed
collision penalty cost multiplied by collision probability is
also added to the cost function. Then:

C(bt, bt+1) =
∑
g∈bt

∑
g′∈bt+1

U(g, g′)p(g′ | b′sva , g)w(g)w(g′)

+K × s′v(Collision)).

(6)

where bt is the initial GMM belief, bt+1 is the learnt GMM
belief, U(g, g′) is the volume of the uncertainty corridor
between two Gaussian functions from the mixtures, p(g′ |
b′sva , g) the probability of being in g′ after an action a from
g, w(g) the weight of the Gaussian function provided by
the EM algorithm and K the collision cost. Note the GMM
approximation helps to compute the belief state transition
cost (Eq. 6). The cost can be analytically computed, avoiding
the application of particles filtering or Monte-Carlo cost
evaluation.

C. Value function

The value function V π(b) is defined as the expected total
cost (weighed by time using γ) the agent will receive from
b0 when following the policy π [11].

V
π

(b) = Eπ
[ ∞∑
t=0

γ
tE [C(bt, bt+1, π(bt))] |b0 = b

]
. (7)

As the value function is built based on an expected sum of
costs, one needs to pay attention to the form of the cost

b

bsva

ba
a

(a) Deformation of the
ba during update.

(b) GMM learning result
with Ng = 2.

(c) BIC score for different
Ng’s

Fig. 3: Example of the GMM learning algorithm result.



function. Also note that the cost function does not directly
depend on the action, but this last has an indirect impact:
the uncertainty of a state depends on the execution error
covariance Σ affected by the navigation and guidance modes
chosen. The optimal policy π∗ is defined by the optimal value
function V π∗, such as :

V
π∗

(b) = min
π∈Π

E
[ ∞∑
t=0

γ
tE [C(bt, bt+1, π(bt))] |b0 = b

]
(8)

Opening the sum in (Eq. 8), it holds to a Bellman’s equation,
which allows the application of dynamic programming. For
example:

V (b) = min
a∈A

E
[
C(b, bsva ) + γV (b

sv
a )
]

= min
a∈A

∑
sv∈Sv

p(sv|b, a)(C(b, bsva )) + γV (b
sv
a )),

(9)

when the value (Eq. 9) converges for all reachable belief
states, within an ε error, one can extract the related optimized
(partial-)policy [14].

IV. ALGORITHMS

The cost function defined in (Eq. 6) depends on belief
state transitions and is no more piecewise linear and con-
vex (PWLC). In this case, the use of classical MOMDP
algorithms, such as SARSOP [14] which uses α-vectors to
represent the value function, is no more possible.

A. (L)RTDP-bel

The proposed algorithm is based on (L)RTDP and RTDP-
bel, because RTDP-like algortihms do not require to have
a PWLC value function. The idea is to directly evaluate
the belief states (and not the states as in RTDP-bel) while
exploring the convergence improvement of (L)RTDP.

Therefore, some functions and definitions need to be
adapted. In particular, the residual function which calculates
the difference between the value of the belief state and the
result of the Q-value of b for a greedy action a. Then the
residual is defined as :

R(b) =

∣∣∣∣∣∣V (b)− min
a∈A

∑
sv∈Sv

p(sv|b, a)(C(b, bsva )) + γV (b
sv
a )

∣∣∣∣∣∣ (10)

As in (L)RTDP, it is considered that a belief state has con-
verged (and consequently solved being marked as Labelled)
if the following definition is verified.

A value function V (b) converges for a given belief state
b relative to parameter ε > 0 when R(b) ≤ ε.

(L)RTDP-bel, shown in Alg. 1, takes in entry an initial
belief state b0 and an ε parameter. While the initial belief
is not solved, it will continue to simulate the greedy policy
(performing trials). A trial in (L)RTDP-bel is very similar
to the one of (L)RTDP, but there is an important difference
(besides working with belief states instead of the states):
during the update of the belief state of (L)RTDP-bel, the
EM algorithm is used to learn a Gaussian mixture model
to represent the belief state. When the goal is reached1 the
algorithm checks if each of the value of the belief states has

1it considers that it has reached the goal when the position of the goal
belongs to the ellipsoid (3σ) defined by the current belief state.

Algorithm 1: (L)RTDP-bel
1 Function (L)RTDP-BEL(b0,ε)
2 while b0 not solved do
3 (L)RTDP-BEL-TRIAL(b0,ε)

4 return π∗b0
5 Function (L)RTDP-BEL-TRIAL(b0,ε)
6 visited ←− ∅; b←− b0
7 while b not solved do
8 visited ←− b
9 if b /∈ Goal then

10 abest ←− argmin
a∈A

QVl (b, a)

11 Vl(b)←− QVl (b, abest)
12 ba ←− execute abest in b
13 sv ←− sample sv from p(sv|ba)
14 bsva ←− update(ba, sv)
15 b←− bsva

16 while visited 6= ∅ do
17 b←− pop(visited)
18 if !CHECK-SOLVED(b,ε) then
19 break

converged (i.e solved). This check is done by the Check-
Solved algorithm which does not differ from the Check-
Solved algorithm of (L)RTDP. To obtain more details on
these algorithms, please refer to [5], [6].

B. POMCP

The POMCP algorithm [17] is a Monte-Carlo Tree Search
algorithm for partially observable environments. POMCP
works by sampling a state s in the current belief state
(belief node or history h) and simulating sequences of action-
observation (rollout procedure) to construct a tree, then
calculates the average reward (or cost) for a belief node based
on the average reward of children nodes. The algorithm keeps
in memory the number of times a node was explored N(h)
and the number of times an action was chosen N(ha) in
this given node. As UCT [13], it applies the UCB1 greedy
action selection strategy that is based on a combination of
two characteristics: an approximation of the action’s Q-value
and a measure (given by c

√
logN(h)
N(ha) ) of how well-explored

the action is, given this history (or belief node).
However, due to the particularities of the model addressed

in this work and to the fact that this is a goal-oriented prob-
lem, the POMCP algorithm needs to be modified. Starting
with an initial belief state b0 (line 3), the algorithm (Alg.
2) will expands the tree for a given timeout duration. If the
belief state is the goal (line 6), it returns, else it tests if the
belief state is in the tree. If not, (line 8) the belief state is
added. For each pair of action-observation, the next belief bsva
is also added to the tree (line 11). Note that, contrary to the
classical POMCP algorithm, no state is sampled because the
algorithm works directly on the belief state (specially for cost
and Q-value functions computation). Thus, the next action is
chosen using the UCB1 greedy action selection strategy (line
12). After, an observation sv is sampled, and the belief state
is updated (EM algorithm). The tree is expanded with this
new belief state, and the Q-value (recursively) updated.



Algorithm 2: POMPC
1 Function POMPC(b0, c, γ)
2 while !Timeout do
3 Expand(b0, c, γ)

4 a∗ ← argmin
a∈A

V (b0)

5 Function Expand(b, c, γ)
6 if b ∈ Goal then
7 return 0

8 if b /∈ T then
9 for a ∈ A do

10 for sv ∈ Sv do
11 T (bsva )← (Ninit(b

sv
a ), Vinit(b

sv
a ), ∅)

12 ā← argmin
a∈A

Q(b, a)− c
√

logN(b)
N(bā)

13 sv ∼ G(bā) /* Random generator */
14 bsva ← update(bā, sv)
15 Expand(bsvā , c, γ)
16 N(b)← N(b) + 1
17 N(bā)← N(bā) + 1
18 Q(b, ā)′ ←

∑
sv∈Sv

p(sv|b, ā) (C(b, bsvā ) + γV (bsvā ))

19 Q(b, ā)← Q(b, ā) +
Q(b,ā)′−Q(b,ā)

N(bā)

20 V (b)← min
a∈A

Q(b, a)

C. Belief state value initialization

As the MOMDP value function results from the appli-
cation of dynamic programming minimization operator, the
expert needs to ensure that the initial value of a belief state
(or initialization heuristic value, as in Alg. 2 with Vinit) must
be an upper bound (or lower bound for a maximization
operation) in order to preserve algorithm convergence - in
particular the contraction property [8].

The belief state value initialization proposed in this paper
explores the A* shortest path solution on the obstacle grid
map. The execution error Σ is propagated over this path for
the navigation and guidance modes with sensors most likely-
available. Then the cost-minimizing navigation and guidance
mode is selected among all the available modes. This value
approximation gives a tighter upper bound than a worst-case
navigation and guidance strategy.

V. SIMULATION RESULTS

The two MOMDP algorithms have been tested on a
benchmarking framework for UAV obstacle field navigation
2 [15], which provides environments with different obstacle
configurations. The UAV model (is the one model described
in Section III). Here two different maps have been selected:
”Cube baffle” which contains two cube obstacles and ”Cube”
which contain one cube obstacle both with a grid size of
100×100×20. To perform these tests, it has been considered
only two sensors onboard an UAV: INS and GPS. While INS
is known to be available anywhere, a probability grid map of
GPS availability was created based on a DOP map calculated
by using a GPS simulator. For each test the initial belief
state was b0 = (s̄c,Σ, sv), where s̄c = [5, 5, 7, 0, 0, 0, 0, 0, 0],
Σ = diag(1, 1, 4, 0.01, 0.01, 0.04, 0.01, 0.01, 0.01), sv =
[1, 1, 0, P ], with P = Σ (note this is true only on initial
belief state, even after the first action Σ and P differs) and

2benckmark framework from: www.aem.umn.edu/people/
mettler/projects/AFDD/AFFDwebpage.htm

CubeBaffle Cube
(L)RTDP-bel POMCP (L)RTDP-bel POMCP

Success Rate 96% 95% 96% 96%
Average cost 3393.84 3072.67 5892.91 4093.24
Average cost in % 0% -9.47% 0% -30.54%

TABLE I: Performance comparison between (L)RTDP and POMCP.

the goal was in (90, 90, 7). To obtain representative results,
1000 simulations have been run for each algorithm policy
on two different maps. The parameters for the (L)RTDP-
bel were γ = 0.9,K = 1000 and for the POMCP policy :
γ = 0.9, T ime = 180min, c = 200,K = 1000.

The average simulation results are given in Table I. In
terms of performance, the success rate is almost similar for
each algorithm and map. However the average path cost is
different between the algorithms, it can be seen that POMCP
is more efficient than (L)RTDP. For the ”Cube baffle” map
the difference is smaller than for ”Cube,” POMCP reduces
the cost of 9.45% for the first counter 30.54% to this last.

In Figure 4 some simulated paths are illustrated. The first
column (Figures 4a, 4c, 4e and 4g) represent the simulated
paths in 2D and the second column (figures 4b, 4d, 4f
and 4h) represent the belief states of the most likely path.
Regardless of the test map, the paths are perfectly within
the bounds of the belief state calculated with the policies.
The only exception is for the figures 4a and 4b, where
different observations were perceived by the UAV during the
simulations resulting in different paths. Thus for the sake of
understanding only the belief states of the most likely path
have been represented on the figure 4b. This supports the
idea that representing belief states as GMM is a good idea
to simplify cost computation and ensure the generalization
of the MOMDP model with the GNC model.

Moreover, the paths simulated with the two algorithms
are almost similar. This is because the test maps are sim-
ple and thus the shortest and safest path is straightfor-
ward to compute. However, it can be observed that the
simulated trajectory with the POMCP policy is smoother.
And more specifically with the ”Cube” map, the POMCP
has better-anticipated sensor availability and collision risk
than (L)RTDP-bel. It was expected, because (L)RTDP-bel
is greedier during policy computation and do more local
optimization. (L)RTDP-bel optimizes better for belief states
are closer to the obstacle than the POMCP which explores
more uphill in the search tree. In the ”Cube” map case the
path simulated with the POMCP policy starts to avoid the
obstacle much sooner resulting in lesser cost than the paths
simulated with the (L)RTDP policy.

The 2D representation gives a good idea of the paths
simulated, but it is interesting to analyze them in a 3D
perspective. Figure 5 presents the simulated paths on the
”Cube baffle” map Fig. 5a shows the paths obtained with
the (L)RTDP-bel policy and Fig. 5b those with the POMCP
policy. The first consideration is the paths are more scattered
in height than in width. It is expected in these tests because
GPS uncertainty is four time higher on height than on the
other axes. It explains why the policies computed do not push
the UAV to go above the obstacles because the maps are
limited in height. Another consideration is that the POMCP



(a) Path simulated with the (L)RTDP
policy on ”Cube baffle”.

(b) Beliefs state representation of the
(L)RTDP results.

(c) Path simulated with the POMCP
policy on ”Cube baffle”.

(d) Beliefs state representation of
POMCP results.

(e) Path simulated with the (L)RTDP
policy on ”Cube”.

(f) Beliefs state representation of the
(L)RTDP.

(g) Path simulated with the POMCP
policy on ”Cube”.

(h) Beliefs state representation of
POMCP results.

Fig. 4: Path simulated on the two maps for each algorithms.

policy (Fig. 5b) anticipate uncertainty around the obstacle by
avoiding it and getting high.

From these results, it is possible to say that both algorithms
compute an acceptable policy. But POMCP has calculated a
more effective policy due to its better convergence properties
[17].

VI. CONCLUSION AND FUTURE WORK

This paper presented a MOMDP model to solve safe
path planning problem in urban environments, a belief state
representation as Gaussian Mixture Models is presented, two
algorithms are proposed, and results are compared. This
problem can be viewed as a large MOMDP domain, as the
non-observable state is continuous. Even when considering
a discrete set of actions the problem is complex. The current
results show that with goal-oriented algorithms it is possible
to obtain significant results on simple maps. More evalua-
tions are necessary, especially on real urban environments

(a) Path simulated with the (L)RTDP
policy on ”Cube baffle”.

(b) Path simulated with the POMCP
policy on ”Cube baffle”.

Fig. 5: 3D representing of the path simulated with each policy on
the ”Cube baffle” map.

[15].
Further work will include an extension to deal with a

continuous action space. It is also planned to apply learning
algorithms for value function and policy representation. So
that, one can generalize the value (or policy) for belief states
not visited during the optimization phase. Gaussian Process
Dynamic Programming [9], for example, could be a potential
solution to this interesting point.
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Abstract— In many robotics applications path planning has 

safety implications that need to be addressed and understood. 

Approaches based purely on learning algorithms have today no 

strong guarantees that the path found, even given perfect 

environment model, is safe. In contrast, search based methods 

have strong theoretical guarantees but are significantly slower 

and hard to parallelize. In this paper we present a method of 

obtaining heuristics for search based algorithms targeting to 

reduce the search complexity by combining the strengths of the 

two paradigms. We show that a complexity reduction of more 

than 30% is achievable with less than 1% drop in path 

optimality. As a consequence of the complexity reduction we 

also measure a performance boost of more than 30%.  

 

I. INTRODUCTION 

Comprehensive environment models are an essential part 

of robotics application and driver assistance. A significant 

number of publications [1,2,3,4] have concentrated on 

developing strategies for producing predictive environment 

models that incorporate information from multiple sensors. 

The typical approach in robotics has been based on the sense 

– plan – act paradigm, where environment models 

constructed based on the sensed information are used in the 

planning phase. Other paradigms, based on reactive control 

need also a representation of the environment yet 

concentrate more on reaction timeliness than on environment 

model correctness [5]. 

Path planning has been studied extensively in the past 

years and many of the algorithms have been implemented 

and tested in various robotics applications [6]. Most of the 

modern strategies perform well in environments where no 

adversarial interaction occur or/and where sensing is still 

acceptable accurate. In driver assistance systems for instance 

path planning based on a grid based representation of the 

environment is very often used. Such a representation allows 

the designer to choose from multiple methods of path 

planning as for instance probabilistic roadmap, rapidly 

exploring random trees, search based methods (e.g. variants 

of A*) , reinforcement learning methods etc.  

In automotive application functional safety is one of the 

critical aspects needed to be considered in system design. 

The ISO26262 [7] gives guidelines and requirements at the 

system level, defining the framework on how hardware and 

software is built. The framework does not mandate specific 

implementation features, so the designer has the freedom 

and the responsibility of how to achieve the functional safety 

for the final product. Typically, the system safety goals are 

 
 

achieved by decomposing the system and applying 

redundancy and fault detection mechanisms. In such systems 

multiple environment models are used, different modalities 

for path planning are employed to achieve the system level 

safety goals. One possible architecture is presented in Figure 

1, where two different environment models are used, 

different possible paths are obtained and then the cross 

check between environment paths is performed. Note that 

typically a significant number of paths is produced by each 

path planner (e.g. 100), with different characteristics and 

after validating this paths one both environment models one 

path will be selected for the execution.   

 
 

Figure 1: Functional safety decomposition of the planning and 

environment modeling   

 

The algorithmic diversity is a very important part of the 

architecture that allows such a decomposition to be valid. 

For instance, different methods of path planning can be used 

or different heuristics can be employed. For the environment 

model different settings can be used such that one 

environment model has a longer aggregation time while the 

other is more refined for quick environment changes.  

In this paper we will concentrate mainly on search based 

path planning and propose methods on how to reduce the 

search complexity by producing search heuristics based on 

convolutional neural networks. We will study also the 

tradeoff between complexity reduction and optimality. It is 

expectable that such heuristics might louse the optimality 

guarantees yet in such systems the optimality is in itself very 

hard to quantify. For autonomous driving applications the 

optimality does not only imply the shortest path but might be 

formulated as a combination of shortest path, lowest energy 

consumption and comfort. 

Due to the increased number of paths that need to be 

found a reduction in search complexity is highly desirable. 

Typically neural networks run best on accelerators while 

search based schemes have better run times on cores 
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relevant applications 
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allowing for a pipelining of producing heuristics and 

searching a path as depicted in Figure 2. To be noted is also 

that if on the target hardware multiple neural network 

compute accelerators and cores are available the process can 

be parallelized and so provide more diversity to the solution 

and potentially faster runtime. 

 

 
 

Figure 2: Pipelining the neural network execution with the A* 

search. Each neural network (NN1, NN2...) produces a new 

heuristic denoted as h that is used by A* to produce the paths 

Path0, Path1 etc.   

 
The search scheme based on A* has strong guarantees 

since it test each cell if it is occupied or not and is as such 
guaranteed not to have in the path produced any obstacle, as 
long as the environment model is accurate. Mitigation of the 
sensorial imperfections and adversarial behaviors is typically 
based on continuous and timely replanting. The practical 
assumption is that the sensors get more accurate as the robot 
is approaching the obstacle and that the physical constraints 
of the other agents prohibits them from changing strategies 
with a very low time granularity (the behavior is stationary in 
the re-planning interval). This assumptions are reasonable for 
most use-cases and can be fairly accurate for instance in 
parking use-cases. Approaches such in [7] have no guarantee 
on correctness of the path and generally reinforcement 
learning approaches are very susceptible to catastrophic 
forgetting and can be used in practice only after a validation 
step where correctness and physical constraints are taken into 
consideration. 

II. EXPERIMENTAL SETUP 

For our experiments we have constructed a dataset of 

500000 occupancy grids of size 32x32 where each cell is 

marked either as free or as occupied (the probability of a cell 

to be occupied is 0.4, an example is provided in Figure 3). 

The starting location and the goal are encoded also as a grid 

with one in the respective locations and zero in the rest. An 

agent is placed in the start location and is able to take an 

action from the action set A = {left, right, up, down, left-up, 

right-up, left-down, right-down}. A move up, down, left or 

right is associated with a cost of one while a move 

diagonally has a cost of 1.41. The path cost is the summation 

of the cost of the individual moves. The data set contains 

also the Euclidian distance heuristic encoded as grid and the 

optimal heuristic that is found after running the A* 

algorithm from every location to the goal. As can be 

expected, computing the optimal heuristic is the most 

demanding part in the dataset generation and takes a few 

weeks on our system setup. We also keep the number of 

opened nodes by A* for the Euclidian distance heuristic. 

 

 
Figure 3: Occupied grid cells are marked with orange, the path 

from start to goal is marked with light orange   

 

Comparing the complexity associated with two heuristics 

implies comparing the number of open nodes during the A* 

search. The second dimension of interest is the optimality of 

the path; it is well known that in case the heuristic 

overestimates the cost to the goal there are no optimality 

guarantees. We have used the following two performance 

criteria to assess the quality of the new heuristic: 

  

       (1) 

       (2) 

, WHERE: 

OE = Number of opened nodes by A* given Euclidian 

distance as heuristic  

ONN = Number of opened nodes by A* given output of the 

neural network as heuristic 

OD = optimal path length 

DNN = path length found by A* given the heuristic obtained 

with a neural network 

The summation if (1) and (2) are over the test dataset. 

 In our experiments we obtain new heuristics with a neural 

network that has as input three channels (Figure 4): 

- Start – Goal channel that has the same dimensions as 

the grid with one in the start and goal location and 

zero everywhere else 

- Grid channel that has one in every cell where an 

obstacle is present and zero where no obstacle is 

present 

- Euclidian distance channel that has the Euclidian 

distance from each cell to the goal. This channel 

can be obtained in an offline computation. 

The network output is a matrix of the same size as the grid 

in that each element represents an estimate of the path length 

from that specific location to the goal. This matrix is used as 
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a heuristic for A* and used to compute the performance 

metrics presented in (1) and (2). 

 

 
Figure 4: Input channels to the neural network: a) Start-Stop 

channel, b) Grid Channel, c) Euclidian distance channel 

III. OBTAINING NEW HEURISTICS 

The goal is to obtain a new heuristic that is less complex 

and that loses as less as possible from the optimality 

characteristic. Complexity and optimality cannot be obtained 

directly by a differential function that can be introduced in 

the neural network so we will concentrate on finding cost 

functions that are correlated to this indicators such that 

optimizing this cost functions will improve the two hidden 

indicators.  

In [8] Theorem 12 from Chapter 3 indicates that given 

two admissible heuristics  and  for that 

 for every n imply that an A* search using  

is more efficient than A* search using  (this is intuitively 

obvious since we have a better approximate of the optimal 

heuristic). It is also shown in [8], Chapter 7, that when non-

admissible heuristics are used the accuracy with that we 

approximate the optimal path is not the most critical aspect 

since less accurate estimations can lead to more informed 

heuristics (this is somehow surprising but has as background 

the idea that overestimates outside the path can be benefic to 

the search complexity). Given the insides above and the fact 

that the neural network is not guaranteed to produce an 

admissible heuristic it is clear that a simple formulation of 

the cost function where we try to approximate as much as 

possible the optimal path is prone to produce uncorrelated 

results to the complexity and optimality metrics. 

In our experiments we test the following cost functions: 

 

          (3) 

  (4) 

 

, where: 

- The optimal heuristic, true distance to the goal 

  - Output of the neural network 

 - Euclidian distance heuristic 

 

The denominator in  encourages the output of the neural 

network to be greater than the initial Euclidian heuristic 

while the numerator in   is responsible for guiding the 

network towards the optimal policy and penalizes severe 

overestimates. We use in the computation of the loss all cells 

that are not occupied and give equal weighting to cells that 

are on path and off path.  

 is constructed out of two terms , the first term 

encourages the output of the neural network to be close to 

the optimal heuristic while the second term pushes the 

output to be higher than the Euclidian distance heuristic.  

We have experimented also with several other loss 

function formulations where the terms of the loss function 

are weighted or where we treat the loss differently if it is off 

the minimal path or on the minimal path (inspired by the fact 

that overestimate on path can be highly detrimental to 

complexity). The results obtained where similar to the 

vanilla formulation from (3) and (4) but the training 

procedure was observed to be more unstable. 

The neural network architecture used in our experiments 

is depicted in Figure 5 and has a contracting part and an 

expending part similar to topologies employed in pixel 

labeling applications. The intuition behind comes from [9] 

where the grid is split into blocks and the planning is done 

hierarchically, first between blocks and then inside blocks. 

Similarly, the network contracts the information into blocks 

given by the receptive field of the convolution and pooling 

and in the later stage incorporates more fine grained 

information. The parameters for the topology are detailed in 

Table 1. As it is custom we have split the data set into 

training, validation and test and optimized the network with 

the Adam optimizer with learning rate 1e-4. The batch size 

used throughout the experiments is 128.     

 

 
Figure 5: Neural network topology used in the experiments. 

Conv1:5 are two dimensional convolution layers while Deconv1:2 

are two dimensional transpose convolutions 

 

Layer Kernel 

Size 

Stride Out 

Channels 

Input - - 3 

Conv1+Relu 3x3 1 32 

Max Pooling 3x3 2 32 

Conv2+Relu 3x3 2 16 

Max Pooling 3x3 2 32 

Conv1 + Relu + Max pooling 

Conv2 + Relu + Max pooling 

Conv3 + Relu 

Deconv1 

Concatenate 1 

Deconv2 

Concatenate 2 

Conv5 

Conv4 

h 



  

Conv3+Relu 3x3 2 8 

Deconv1 3x3 2 8 

Concatenate 1 - - 24 

Conv4 3x3 1 8 

Deconv2 3x3 2 8 

Concatenate 2 - - 40 

Conv5 3x3 1 1 
 

Table 1: Neural network parameters 

IV. RESULTS 

One of the first questions that arise is if the loss functions 

are correlated with the algorithmic complexity and 

optimality of the A* algorithm. In Figure 6 and 7 the 

training process statistics are shown (last 105 epochs of the 

training), the correlation between (1) , (2) and the  and 

respectively   loss functions are immediate to spot since as 

the loss decreases the complexity reduction has an 

increasing trend while the loss in optimality decreases. The 

metrics of (1) and (2) are computed over the validation test 

that represents about 5% of the overall dataset. 

 

 
Figure 6: Upper plot is the  loss; middle plot the complexity 

reduction (1); lower plot the optimality lost (2). The x axis for all 

plots represents the training epoch 

 

 
 

Figure 7: Upper plot is the   loss; middle plot the complexity 

reduction (1); lower plot the optimality lost (2). The x axis for all 

plots represents the training epoch 

 

The metrics (1) and (2) for the two loss functions are 

presented in Table 2 and are obtained based on the test 

subset that has 128000 grid samples. The computational time 

gain as measured on our system is presented in the 3rd 

column of the Table 2 and it is based on the formula (5). As 

can be observed the computational time reduction follows 

closely the complexity reduction. In our experiments we run 

first the A* algorithm for the heuristic obtained with the 

neural network and after the search based on the Euclidian 

distance heuristic. While the data cache is flushed in 

between the runs of A* the instruction cache is not flushed 

making it highly likely that the run of the Euclidian distance 

based search benefits from a better hit ratio, nevertheless the 

runtime is reduced by more than a 3rd. 

 

        (5) 

, where: 

 – Runtime for the Euclidian distance heuristic A* 

 – Runtime for the neural network heuristic A* 

 

 

Loss 

Function 

C[%] O[%] T[%] 

   37.64 1.01 36.32 

   35.82 0.71 32.45 

Table 2: Performance metrics for   and    

V. CONCLUSION 

In this paper we have shown a novel method of obtaining 

new heuristics for A* that have lower complexity than the 

starting Euclidian distance with a minimal loss in 

complexity. The loss functions used follow the intuitions 

obtained from theoretical results obtained in [8]. We show 

that such indirect cost functions are correlated to the hidden 

variables in the A* algorithm and that joint optimization is 

possible. 

Future work will investigate higher dimensional graphs 

and introduce robot poses in the search process. 
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Enhancing the educational process related to autonomous driving

Nikos Sarantinoudis1, Polychronis Spanoudakis2, Lefteris Doitsidis3,
Theodoros Stefanoulis2, Nikos Tsourveloudis2

Abstract— Autonomous driving is one of the major areas of
interest for the automotive industry. This constantly evolving
field requires the involvement of a wide range of engineers with
complementary skills. The education of these engineers is a key
issue for the further development of the field. Currently in the
engineering curriculums, there is a lack of related platforms
that can assist the engineers to train in and further develop the
required dexterities. The current practice is using either small
robotic devices or full scale prototypes in order to understand
and experimentate in autonomous driving principals. Each
approach has disadvantages ranging from the lack of realistic
conditions to the cost of the devices that are used. In this paper
we present a low cost modular platform which can be used
for experimentation and research in the area of autonomous
cars and driving. The functionality of the suggested system is
verified by extensive experimentation in - very close to- real
traffic conditions.

I. INTRODUCTION
In recent years, autonomous driving has emerged as a

major innovation in the automotive industry. Currently the
technology has matured and commercialisation is expected
in the following years. Autonomous driving, refers to the
ability of a vehicle to perceive its surroundings with various
attached sensors, evaluate the conditions and navigate to an
exact location safely without the interference of a human
driver, taking into consideration the ever-changing and unpre-
dictable environment. Due to the broadness of the term au-
tonomy, SAE International has explicitly defined the levels of
automation to characterize the extent to which a vehicle can
drive autonomously [1], [2]. Explaining autonomy further,
like every robotic system, autonomous vehicles utilize the
”sense-plan-act” design. They use a combination of sensors
to perceive the environment including but not limited to
lidar (light detection and ranging), radar, cameras, ultrasonic
and infrared. The information gathered is fused and used
for decision making. As far as it concerns localization a
combination of the Global Positioning System (GPS) and
Inertia Measurment Units (IMU) is currently used [3].

Autonomous driving has significant internal (user) and
external (external actors) impact. It provides a stressful
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environment for the driver and increases its productivity
during the time spend inside the car, as well as it provides
the option to non-drivers (or incapable to drive people) to
commute. On the external side, increased safety (reducing
crash risks and high-risk driving), increased road capacity
and reduced costs, increased fuel efficiency and reduced
pollution are equally important [4].

Even though the related technology has made significant
advances on the domain, the cost of developing and ex-
perimenting with autonomous cars still remains high. Apart
from the standard platform cost, there is a significant cost
related with the actual sensors and processing unit which are
essential for autonomous capabilities.

The aforementioned cost makes it difficult for a platform
to be adopted in the educational and research activities of
higher education institutes. There is always the option of
small autonomous robotic vehicles [5], [6], [7], [8], [9]
which are adequate for understanding the basic concepts
of autonomous driving, or even inexpensive RC-car based
autonomous car testbeds but few attempts have been made
to provide low cost realistic platforms for research and
education. A detailed comparison between our approach and
the other available vehicles is presented in Table I.

TABLE I
COMPARISON OF VARIOUS EDUCATIONAL PLATFORMS

Comparison of Educational Platforms
Platform Camera LiDAR Ultrasonic GPS IMU Scale

Duckietown 3 7 7 7 7 Radio Conrtrolled
Donkey Car 3 7 7 7 7 Radio Controlled

BARC 3 7 7 7 3 Radio Controlled
MIT Racecar 3 3 7 7 3 Radio Controlled

F1/10 3 3 7 7 3 Radio Controlled
Tucer 3 3 3 3 3 Urban Mobility Vehicle

This paper proposes an approach that will allow the
educational process on the domain of autonomous driving
to become viable and inexpensive, providing students the
ability to apply the principles related to autonomous driving
in a realistic low cost platform using tools that will minimise
the development time and maximise the efficiency, gaining
important hands-on experience. The platform is based on
a single seater, urban concept vehicle, that has previously
competed in Shell Eco Marathon Europe competition [10],
with TUCer Team [11] from Technical University of Crete
(TUC). The aforementioned platform has been in constant
development and has been used as the testbed for research
in automotive engineering [12], [13], [14], [15]. It has been
modified from a hydrogen fuel cell powered car to a battery
powered autonomous vehicle. In order to achieve this goal
a series of hardware and software solutions were adopted



and several devices were installed. Stepper motors have been
fitted for steering and braking control as well as various
sensors for perception (Stereo Camera, Lidar, Ultrasonic) and
localization (GPS, IMU) along with an embedded computer.
All of the above sensors are off-the-shelf components, easy
to acquire and use and suitable for entry-level approach on
the autonomous vehicle domain. Our architecture is simple,
yet efficient, and the combination of Nvidia’s Jetson TX2
(main processing unit) along with a set of microcontrollers
can support from plain digital and analog inputs to even
CAN (automotive standard) connectivity. More details will
be provided in Section II. The functionality of the proposed
approach is highlighted through simple yet realistic experi-
ments that highlight the efficiency of our approach.

The rest of the paper is organised as follows, in section II
the testbed is described in detail including the powertrain,
the steering and braking system, the processing unit, the
sensors used as long as the software sollutions adopted. In
section III experimental test cases are presented that proves
the functionality of the proposed approach. Finally in section
IV concluding remarks and future directions for research and
development are presented.

II. TESTBED

The testing platform is based on a single-seater custom
vehicle, designed, developed and manufactured at the Tech-
nical University of Crete. The chassis of the car consists of
aluminum tubing and the cover is made from carbon fiber.
Its dimensions measure 2.5 x 1.25 x 1m (L x W x H) and
its curb weight 108 kg. In Fig. 1 the prototype vehicle, and
the position of all the major components is depicted, while
in Fig. 2 we present all the major electronic components and
the motor of the vehicle. In this section we will describe in
detail the proposed testbed and its core components.

Fig. 1. The prototype autonomous vehicle

A. Powertrain

The vehicle is equipped with PGM132, a permanent mag-
net direct current brushed motor from Heinzmann. At 24V it
outputs 1.8kW at 1100 rpm with rated torque of 15Nm (peak
38Nm) and 90A current. This motor is capable of inputs up to
60V, raising power to 5.1kW adding to our platform various
performance profiles. The motor is controlled by an Alltrax

Fig. 2. The electronics and the motor of the testing platform

AXE 4834 permanent magnet motor controller delivering
135Amps rated and 300Amps peak, more than enough for
the motor paired with.

The propulsion system is supplied by two 12V-40Ah
rechargeable lead-acid batteries, providing adequate power
for propulsion to urban mobility speeds (∼50km/h) with
sufficient range (for testing purposes) before recharging.
Additionally, a separate battery pack, consisting by 2 12V-
7.2Ah rechargeable lead acid batteries supplies the various
sensors and the on-board computer as described in II-C
and II-D respectively. The reason for the separate supplies,
even though the voltage is the same, lies to the fact that
the common supply of motors and electronic devices, adds
substantial electromagnetic noise to the circuit disrupting
the integrity of sensor readings. Furthermore, motor’s inrush
current or sudden load changes (acceleration or hill climbing)
could potentially cause voltage drops disrupting the constant
power application needed by the electronic devices on board
the vehicle. The power from the motor is transmitted to the
wheels via a fixed gear ratio with one gear directly attached
to the motor’s rotating axle and the other to the wheel axle.

B. Steering and Braking System

Steering and braking control has been utilized with stepper
motors, incorporated in the already existing steering mech-
anism and brake pedal, providing the ability to the driver
to take control in a moments notice quiting the autonomous
navigation if necessary or do not engage it at all and drive the
vehicle manually. Both braking and steering stepper motors
are powered by the propulsion batteries at 24V and controlled
from Jetson TX2 GPIO ports.

The steering mechanism on this car is an implementation
of the Ackerman steering geometry. A stepper motor is
placed on the steering rack, using a pair of gears with fixed
gear ratio rotating it directly to the desired direction. The
hybrid stepper motor from Motech Motors with 1.26Nm
of torque and step of 1.8o is controlled by a Wantai Mi-
crostepping Driver. The driver is set up to further enhance
the precision of the motor resulting in steps of just 0.225o.
In the end of the steering rack, a rotary magnetic modular



encoder is attached providing information about steering’s
exact position.

The vehicle is equipped with Shimano hydraulic bike
pistons and disk brakes on the wheels. The braking control
utilizes a similar design. A stepper motor with 4Nm of torque
and 1.8o steps actuate the brake pedal. A microstepping
driver is set to the same level of precision for ease of
programming and coherence between braking and steering
steps. Braking stepper motor packs higher torque due to the
needs of the lever pulling design for brake actuating.

C. Processing Unit

The central processing unit installed on the vehicle is an
NVIDIA Jetson TX2 Developer Kit. It is an embedded ARM
architecture equipped with a Quad ARM A57 processor plus
a Dual Denver processor, 8GB of LPDDR4 memory and
256 CUDA cores of NVIDIA’s Pascal Architecture, able
to deal with the most computational intensive processes. It
supports CAN, UART, SPI, I2C, I2S protocols as well as
plain GPIO. For higher level communication WLAN, Gigabit
Ethernet and Bluetooth is supported together with USB 3.0
and USB 2.0 ports. Internal memory is 32GB eMMC, but
SATA connectivity and SD Card port are available too. In
our setup the a 240 GB Sandisk Extreme II Solid State
Disk is used for speed and extended storage capabilities.
Additionally, a TP-Link 7-port powered USB 3.0 hub is
attached to the USB 3.0 port, for easier multiple peripherals
connectivity and uninterrupted power supply, since built-in
ports are able to deliver 900mA of current, not enough for
the attached USB devices. The Jetson TX2 was selected for
two main reasons: (i) the extended capabilities that provides
for a reasonably low cost and (ii) the ability to rapidly
prototype solutions and test them in a the real testbed using
standard tools which are widely used in the education process
(i.e. Maltab, libraries provided by NVIDIA or other open
resources etc.).

D. Sensors

A wide range of sensors for perception and localization
have been used. The overall set-up is presented in Fig. 1. As
far as it concerns the perception sensors, a ZED stereo cam-
era from Stereolabs is mounted at the center of the vehicle. It
consists of two 4 Megapixels cameras, with wide-angle dual
lenses, field of view at 90ox60ox110o (HxVxD) and f/2.0
aperture. Sensors are 1/3” with backside illumination capable
of high low-light sensitivity and have a native 16:9 format
for a greater horizontal field of view. USB 3.0 connectivity
allows for high resolutions (up to 2.2K@15 FPS). Equally
important are the depth recognition capabilities of the ZED
camera, achieving the same resolution as the video with
range from 0.5m to 20m and the motion sensing with 6-
axis Pose Accuracy (Position:+/- 1mm and orientation: 0.1o)
using real-time depth-based visual odometry and SLAM
(Simultaneous Localization and Mapping). Our choice was
further backed by the fact that Sterolabs provide an SDK for
the Jetson TX2, our main processing unit.

The second sensor responsible for perceiving the environ-
ment is a Scanse Sweep lidar. It consists of a LIDAR-lite
v3 sensor from Garmin, in a rotating head, thus providing
360o scans of the surroundings. It has a range of 40m and
a sample rate of 1000 samples per second. It scans on a
single plain (2 dimension lidar scanning) and is suitable
for Robotics and UAVs. The counterclockwise rotating head
emits a beam with 12.7mm diameter which expands by
approximately 0.5o. Scanse Sweep pairs it with and SDK
for easy implementation to projects, as well as a visualizer
app for graphical representation of the measurements.

Apart from the aforementioned sensors there are also for-
ward mounted, two Maxbotix MB1010 Lv-MaxSonar-EZ1
ultrasonic sensors. With a range from 15cm to 645cm and a
refresh rate of 20Hz, they are capable of accurately detect
and measure the distance from objects in front of the vehicle.
They have multiple connectivity protocols such as analog,
pulse width and serial output for easier sensor integration
to different platforms. Due to cross-talk issues between the
two sensors, a chaining between them is required, triggering
sensors one after another eliminating the interference on the
measurements of each individual sensor.

Both the Stereo Camera and the Lidar are connected to the
USB hub and then directly to Jetson TX2. For the ultrasonic
sensors, the analog output is selected to be used. Since
Jetson TX2 has no analog inputs, a microcontroller is used
as middleware between the sensors and the processing unit
improving input-output capabilities of the system.

For localization purposes an Adafruit Ultimate GPS Ver-
sion 3 is used. Capable of using up to 66 channels and having
-165dBm sensitivity, the achieved accuracy is adequate to
position our vehicle in the real world with pinpoint accuracy.
For more robustness and better satellite reception, an external
GPS antenna is used (instead of the built-in) with the
u.FL connector provided in this board. The serial output of
the GPS sensor, similarly to the ultrasonic sensors, uses a
microcontroller as a middleware between the device and the
processing unit. Complementing the GPS an IMU module
is also used. The Sparkfun Razor IMU is a 9 Degrees-of-
Freedom sensor, able to measure the absolute orientation,
angular and linear acceleration, gravity vector and magnetic
field strength. The Razor IMU, connects directly to the Jetson
TX2 via USB with the help of an FDTI breakout board. Apart
from the aforementioned configuration several other smaller
electronic systems are used to support the functionalities of
the custom vehicle.

E. Software

A key issue for the adaption of the proposed system in the
education and research process, apart from the actual capa-
bilities of the vehicle, is the ease of use and the time needed
to develop and test new approaches for autonomous driving.
Based on that, we have developed a modular approach which
minimizes the development time and allows the user to speed
up the development process.

A series of software modules responsible for the control of
the devices onboard the vehicle have been developed using



C++ . These modules are implemented onboard the NVIDIA
Jetson TX2 and there are also responsible for data logging
for post processing analysis.

The devices on board the vehicle have to communicate
with the main computer. Some of them, such as the LiDAR
have their own SDK that handles connectivity via a serial li-
brary and have predefined functions for use. Regarding GPS,
IMU and Ultrasonic Sensors, similar architecture modules
have been developed using a C++ serial library (LibSerial)
for sending command and receiving data. For easy of wiring
the serial communication has been established via the USB
interface. Respectively software libraries for handling the
GPIOs of the Jetson have been used responsible for selecting
direction (in/out) and logic level(0/1) of the pins for control-
ling the stepper drivers.

The external code development is performed using Matlab
and by adopting the GPU Coder we have the ability to gen-
erate optimized CUDA code from MATLAB code for deep
learning, embedded vision, and autonomous navigation. The
generated code is portable across NVIDIA GPUs and can be
compiled and executed on an NVIDIA Jetson platform. This
approach is user friendly, and most of the students attending
a related engineering curriculum are familiar with using it,
therefore make the platform easily adaptable for educational
purposes. The data acquired from experimentation can be
easily extracted and used for post processing analysis and
further development. The proposed approach is depicted in
Fig. 3.

Fig. 3. Software development circle

III. RESULTS - PROOF OF CONCEPT

To validate our approach several tests have been con-
ducted. In this section we will present two test cases that
highlight the functionality of the proposed system. Initially
we will demonstrate the ability of the vehicle to move in a
predefined path based on the readings from the GPS sensor.
This test case emulates, the operation of a real autonomous
vehicle in a urban environment which has to operate and
navigate in an unknown area using the GPS coordinates. The
second test case will demonstrate the ability of the proposed
platform to perceive the environment, using the available

sensors, identify an obstacle (in our case a pedestrian) and
safely avoid it.

To assure that our vehicle is capable of following the
desired waypoints we have used a simplification of an
ackerman steered vehicle commonly known as the bicycle
model. For path tracking we have used the pure pursuit
method as it is described in detail in [16]. This approach
although simplified provides reliable results that have been
verified with extensive experimentation.

It has to be emphasised, that the following experiments
have a dual goal. To prove the functionality of the proposed
approach and also highlight its robustness which is essential
for using it as an educational tool. Therefore our goal wasn’t
to demonstrate novel approaches in autonomous driving, but
adopt well established techniques to prove its functionality.

A. Test Case 1

In the first test case we present the ability of the vehicle to
follow a predefined path autonomously without human inter-
vention. Initially we prerecorded a path taking GPS readings
and we used this measurements so that we can validate the
autonomous operation based on pure pursuit method. Sample
trajectories that the vehicle has followed inside the Technical
University of Crete’s Campus are depicted in Fig. 4 and Fig.
5.

Fig. 4. Vehicle’s trajectory inside the TUC campus (Test 1)

B. Test Case 2

In the second test case we present the ability of the vehicle
to perceive the environment and avoid a moving obstacle,



Fig. 5. Vehicle’s trajectory inside the TUC campus (Test 2)

in our case a pedestrian. For this process the vehicle is
using the stereo camera and the lidar sensor. For pedestrian
detection we have used the pedestrian detection network
provided by Matlab. With the help of the GPUCoder, the
above network is converted to CUDA code for direct and
fast use in the embedded vehicle computer. The results of
the identification process are presented in Fig. 6. These
are combined heuristically with lidar measurements and as
soon as the vehicle detects an obstacle (pedestrian) in a
distance smaller that a certain threshold the vehicle stops
its operation until the path is clear. A shapshot of the lidar
readings is depicted in Fig. 7, where the arrow represents the
actual heading of the vehicle, while the readings inside the
red eclipse correspond to the pedestrian detected in Fig. 6.
This approach also simplistic demonstrates the ability of the
testing platform to handle unexpected events as they occur
during the autonomous operation of the vehicle.

IV. DISCUSSION AND CONCLUSIONS

The proposed testbed aims to promote the educational
procedure on the domain of autonomous vehicles. Having
that in mind, we are planning to provide public access to the
software in its final form. In addition, electronic schemat-
ics, mechanical blueprints and detailed bill of materials, to
replicate the platform, will also be available. Our long term
vision is to provide a robust open platform for education and
research purposes to the community. We are also planning
to fully integrate Robotics Operating System (ROS) in our

Fig. 6. Pedestrian detection using stereo camera

Fig. 7. Data acquired from the lidar sensor

platform, since currently it can be supported with slight
modifications (Jetson TX2 is ROS enabled), and all the
sensors selected are ROS compatible. The approach, which
we currently followed, was not to install a middle-ware for
simplicity and ease of prototyping.

An update version of the proposed system is under
development, were we are also considering the need for
additional computational power so that we can implement
more complicated strategies. The Jetson TX2 has proven
robust enough for our purposes. But, in order to keep up with
the increasing demands of an autonomous vehicle navigating
in a dense environment performing complex functions, other
options can also be integrated. For that we have already
considered the Drive PX2 which apart from the additional
power can also accommodate the already developed CUDA
code with minor tweaks and modifications. As far as it
concerns perception we are planning on upgrading from the
2D lidar to a 3D capable of scanning at greater distances and
providing a 3D representation of the real world.

Ultimately, we are planning to adopt the aforementioned



platform in the educational process (as an experimental
testbed in undergraduate and graduate courses) and asses its
functionality and usability based on the students’ feedback.
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Abstract—CoMapping is a framework to efficient manage,
share, and merge 3D map data between mobile robots. The
main objective of this framework is to implement a Collaborative
Mapping for outdoor environments where it can not use all the
time GPS data. The framework structure is based on 2 stages.
The first one, the Pre-Local Mapping Stage, each robot constructs
in real-time a pre-local map of its environment using Laser
Rangefinder data and low cost GPS information only in certain
situations. Afterwards, in the Local Mapping Stage, the robots
share their pre-local maps and merge them in a decentralized way
in order to improve their new maps, renamed now as local maps.
An experimental study for the case of decentralized cooperative
3D mapping is presented, where tests were conducted using 3
intelligent cars equipped with lidars and GPS receiver devices in
urban outdoor scenarios. We also discuss the performance of all
the cooperative system in terms of map alignments.

I. INTRODUCTION

Mapping challenge can be complex since in certain sit-
uations, e.g. for scenarios of large regions, it can require
the usage of a group of robots that build the maps in a
reasonable amount of time considering accuracy in the map
construction [1]. So, a set of robots extends the capability of a
single robot by merging measurements from group members,
providing each robot with information beyond their individual
sensors range. This allows a better usage of resources and
executes tasks which are not feasible by a single robot. Multi-
robot mapping is considered as a centralized approach when
it requires all the data to be analysed and merged at a single
computation unit. Otherwise, in a decentralized approach, each
robot builds their local maps independent of one another and
merge their maps upon rendezvous.
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Fig. 1. Scheme of our CoMapping System considering a decentralized case

Figure 1 depicts the scheme of work proposed in this article
for a group of robots where it was assumed that ZOE robot
have direct exchange of data (as pose, size and limits of maps)
with FLUENCE and GOLFCAR. And by contrast, FLUENCE

and GOLFCAR are in a scenario of non-direct communication,
that is possible in cases where the robots have limited access
conditions to a same environment, avoiding to define a meeting
point for map sharing between these mobile units.

Following this scenario, this paper presents the development
and validation of a new Cooperative Mapping framework
(CoMapping) where:
• In the first stage named “Pre-Local Mapping”, each indi-

vidual robot builds its map by processing range measure-
ments from a 3D lidar moving in six degrees of freedom
(6-DOF) and using low cost GPS data (GPS/GGA).

• For the second stage named “Local Mapping”, the robots
send a certain part of their pre-local maps to the other
robots based on our proposed Sharing algorithm. The
registration process includes an intersecting technique of
maps to accelerate processing

This decentralized system is deployed in an outdoor en-
vironment without continuous GPS service. Our proposal has
been tested and validated in realistic situations. Results include
maps developed with data acquired on the surroundings of the
ECN (École Centrale Nantes) campus.

II. RELATED WORKS

In a scenario of cooperative mapping, robots first operate
independently to generate individual maps. Here the regis-
tration method plays a fundamental role. Many registration
applications use Lidar as a Rangefinder sensor for construction
of maps [2]. However, a high lidar scan rate compared to
its tracking can be harmful for this task, since it is possible
the apparition of distortion in the map construction. For those
cases, ICP [3] can be applied to match different scans. 2D and
3D lidar implementations with geometric structures matches of
a generated local point group were presented in [4] [5]. Those
methods use batch processing to build maps with accuracy and
hence are not applicable to real-time map construction. In the
first stage of our implementation we reconstruct maps as 3D
pointclouds in real-time using 3-axis lidar by extraction and
matching of geometric features in Cartesian space based in [6]
initially. Then our system uses GPS position data to localize
that cloud in a global frame.

Once all the maps have been placed in a global frame,
they have to be merged together to form a global map. In
this context, in [7] proposed a method for 3D merging of



occupancy grid maps based on octrees [8] for multi-robots.
Simulation results were presented using Gazebo tool. Maps
generated by each simulated robot are stored in files and finally
merged offline. For the merging step, an accurate transforma-
tion between maps was assumed as known, nevertheless in real
applications, that information (the transformation) is not accu-
rate, since in many cases it is obtained by means of uncertain
sensor observations that may not offer a reliably information.
Contrary, we preformed real experiments for a multi-robot
application without supposed known the map transformation.
Later, in [9] using an technique pre-merging, which consists in
extract from of each map the subset of points included in the
common region between maps bounding. Then, a centralized
merging process refines the transformation estimate between
maps by ICP registration [3] We use a variation of that method
[9] but previously we include a efficient technique to exchange
maps between robots in order to optimize bandwidth resources
of multi-robot network.

On the other hand, other different solutions can be used in
order to merge maps for a group of robots. For instance, cases
with centralized approach, where the merging is computed on a
unit or processing center once the entire environment has been
explored by the vehicles, as is presented in [10], [9]. The other
approach is the decentralized option, where map merging is
executed in different units while traversing the environment, in
which this approach considers a meeting point for the vehicles
in order to exchange their maps and other data [11], [1], [12].
This last approach is experimentally studied in this paper.

III. METHODOLOGY

A. Pre-Local Mapping Stage

Each mobile robot executes a Pre-Local Mapping system
using data provided by a LidarSLAM node. We just use GPS
position to project the generated map on a global frame,
in order to reduce project implementation costs, a beneficial
cheap GPS service was used, specifically GPS/GGA(Global
Positioning System Fix Data) at an accuracy of about 2
to 7 meters. Another advantage of our Pre-Local Mapping
Stage is its versatile configuration, since it is not depend on
a specific LidarSLAM method. A modified version of the
LOAM technique 1 [6] was chosen as LidarSLAM method
for this article because it currently ranks first in the KITTI
evaluation table 2.
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Fig. 2. Architecture of Pre-Local Mapping Stage

Figure 2 illustrates the block diagram of this stage, where
P̂ is the raw point cloud data generated by a laser scan

1LOAM: https://github.com/laboshinl/loam velodyne
2KITTI ranking: http://www.cvlibs.net/datasets/kitti/eval odometry.php

in the beginning. For each sweep, P̂ is registered in the
lidar coordinates {L}. The combined point cloud during each
sweep k generates Pk. This Pk is processed by an algorithm
named Lidar Odometry, which runs at a frequency around
10Hz and receives this point cloud and computes the lidar
motion (transform Tk) between two consecutive sweeps. The
distortion in Pk is corrected using the estimated lidar motion.
The resulting undistorted Pk is processed at a frequency of
1Hz by an algorithm knows as Lidar Mapping, which performs
the matching and registration of the undistorted cloud onto a
map. At last, using the GPS information of the vehicle pose
during previous algorithm, it is possible to coarsely project the
map of each robot into common coordinate frame for all the
robots. This projected cloud is denoted as the Pre-Local Map.

1) Lidar Odometry step: The step begins with feature
points extraction from the cloud Pk. The feature points are
selected for sharp edges and planar surface patches. Let us
define S as the set of consecutive points i returned by the
laser scanner in the same scan, where i ∈ Pk. A parameter
proposed in [6] evaluates the smoothness of the local surface
as following,
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where XL
(k,i) and XL

(k,j) are the coordinates of two points
from the set S.

Moreover, a scan is split into four subregions to uniformly
distribute the selected feature points within the environment.
In each subregion is determined maximally 2 edge points and
4 planar points. The criteria to select the feature points as
edge points is related to maximum c values, and by contrast
the planar points selection to minimum c values. When a point
is selected, it is thus mandatory that none of its surrounding
points are already selected. Other conditions are: selected
points on a surface patch can not be approximately parallel
to the laser beam, or on boundary of an occluded region.

When the correspondences of the feature points are found
based on the method proposed in [6], the distances from
a feature point to its correspondence are calculated. Those
distances are named as dE and dH for edge points and planar
points respectively. The minimization of the overall distances
of the feature points will allow to obtain the lidar odometry.
That motion estimation is modelled with constant angular and
linear velocities during a sweep.

Let us define Ek+1 and Hk+1 as the sets of edge points and
planar points extracted from Pk+1, for a sweep k+1. The lidar
motion relies on establishing a geometric relationship between
an edge point in Ek+1 and the corresponding edge line:

fE(X
L
(k+1,i), T

L
k+1) = dE , i ∈ Ek+1, (2)

where TL
k+1 is the lidar pose transform between the starting

time of sweep k + 1 and the current time ti. TL
k+1 con-

tains data about the sensor rigid motion in 6-DOF, TL
k+1 =

https://github.com/laboshinl/loam_velodyne
http://www.cvlibs.net/datasets/kitti/eval_odometry.php


[tx, ty, tz, θx, θy, θz]
T , wherein tx, ty , and tz are translations

along the axes x, y, and z from {L}, respectively, and θx, θy ,
and θz are rotation angles, following the right-hand rule.

Similarly, the relationship between an planar point in Hk+1

and the corresponding planar patch is:

fH(XL
(k+1,i), T

L
k+1) = dH , i ∈ Hk+1, (3)

Equations (2) and (3) can be reduced to a general case for
each feature point in Ek+1 and Hk+1, obtaining a nonlinear
function, as:

f(TL
k+1) = d, (4)

in which each row of f is related to a feature point, and d
possesses the corresponding distances. Levenberg-Marquardt
method [13] is used to solve the Equation (4). Jacobian
matrix (J) of f with respect to TL

k+1 is computed. Then, the
minimization of d through nonlinear iterations allows to solve
the sensor motion estimation,

TL
k+1 ←− TL

k+1 − (JT J + λdiag(JT J))−1JT d, (5)

where λ is the Levenberg-Marquardt gain.
Finally, the Lidar Odometry algorithm produces a pose

transform TL
k+1 that contains the lidar tracking during the

sweep between [tk+1 , tk+2] and simultaneously an undis-
torted point cloud P̄k+1. Both outputs will be used by the
Lidar Mapping step, explained in the next section.

2) Lidar Mapping step: This algorithm is used only once
per sweep and runs at a lower frequency (1 Hz) than the
Lidar Odometry step (10 Hz). The technique matches, registers
and projects the cloud P̄k+1 provided by previous step (Lidar
Odometry) as a map into the own coordinates system of a ve-
hicle, defined as {V }. To understand the technique behaviour,
let us defined Qk as the point cloud accumulated until sweep
k, and TV

k as the sensor pose on the map at the end of sweep
k, tk+1. The algorithm extends TV

k for one sweep from tk+1 to
tk+2, to get TV

k+1, and projects P̄k+1 on the robot coordinates
system {V }, denoted as Q̄k+1. Then, by optimizing the lidar
pose TV

k+1, the matching of Q̄k+1 with Qk is obtained.
In this step the feature points extraction and the finding

feature points correspondences are calculated in the same way
as in previous step (Lidar odometry), the difference just lies
in that all points in Q̄k+1 share the time stamp, tk+2.

In that context, nonlinear optimization is solved also by
the Levenberg-Marquardt method [13], registering Q̄k+1 on
the a new accumulated cloud map. To get a points uniform
distribution, down-sampling process is performed to the cloud
using a voxel grid filter [14] with a voxel size of 5 cm cubes.

Finally, since we have to work with multiple robots, we use
a common coordinates system for their maps, {W}, coming
from rough GPS position estimation of the 1st accumulated
cloud frame Qk.

B. Local Mapping Stage

In this section the Local Mapping is detailed, considering
that the process is executed on the robot “i” with a shared map
by robot “n” (see Figure 3).
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Fig. 3. Architecture of Local Mapping Stage for one robot “i”, receiving
map data from another robot “n”.
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Fig. 4. Graphical representation of the Map Sharing technique (Top view
of plane XY). Aminx, Amaxx, Bminx and Bmaxx represent the point
cloud limits along the x-axis.

1) Map Sharing Step: When the generation of Pre-Local
Maps is done, the robots would have to exchange their maps
to start the maps alignment process. In several cases the
sharing and processing of maps of large dimensions can affect
negatively the performance of the system with respect to
runtime and memory usage. A sharing technique is presented
in order to overcome this problem, in which each vehicle
builds only sends a certain part of its map to the other robots.
When the maps are ready for transferring, they are compressed
in octree format using OctoMap library [8] in order to optimize
the robot-communication.



The proposed sharing technique is based on the method
developed in [15]. Figure 4 depicts the behaviour, wherein
point clouds A and B represent the Pre-Local Maps from two
robots “i” and “n” respectively. In each robot the algorithm
first receives only information about the 3D limits of the
maps (i.e. bounding cubic lattice of the point clouds) and then
decides what part of its map will be shared to the other robot.
These limits were determined previously using the function
GetBounds() that returns two vectors: in the first one Amin,
their components represent the lowest displacement from the
origin along each axis in the point cloud; and the other vector
Amax is related to the point of the highest displacement.

Algorithm 1: Selection of Point Cloud to share with another
robot.

Pseudo-code of the map sharing step is described in Al-
gorithm 1. Inside the code, the function GetV alues() sorts
in ascending order the array of components along each axis
of the vectors Amin, Amax, Bmin, Bmax and returns the
2nd and 3rd values from this sorted array, denoted (V 2) and
(V 3) respectively. Next, for each axis, the average of the
two values obtained by the function GetV alues() is used
in order to determine the Cartesian coordinates (Cx,Cy ,Cz)
of the geometric center of the sharing region (S). Actually,
this map sharing region is a cube whose edge length 2L is
determined iteratively. Points from A contained in this cube
region are extracted to generate a new point cloud Asel. In
each iteration the cube region is reduced until the number
of points from Asel is smaller than the manual parameter

Npmax, which represents the number of points maximum that
the user wants to exchange between robots. Once the loop
ends, Asel is sent to the other robot. Similarly on the other
robotic platform “n”, the points from B included in this region
are also extracted to obtain and share Bsel with the another
robot “i”. Then, it is worth to remind, the clouds Asel and Bsel

are encoded and sent in octree format to reduce the usage of
bandwidth resources of the multi-robot network. Then maps
are decoded and reconverted in 3D point cloud format to be
used in the next Registration step. Pointcloud-octree encoding
and decoding were realized using ROS nodes supported on
OctoMap library [8].

2) Registration Step: The intersecting volumes of the two
maps Asel and Bsel are computed and denoted as Aint and
Bint, obtained from the exchanged map bounds [9]. In order
to improve the computation speed, point clouds Aint to Bint

first go through a down-sampling process to reduce the number
of points in the alignment of our clouds. Feature descriptors
as surface normals and curvature are used to improve the
matching, which is the most expensive stage of the regis-
tration algorithm [16]. These generated normal-point clouds
AintN and BintN are then used by Iterative Closest Point
(ICP) algorithm [17]. This method refines an initial alignment
between clouds, which basically consists in estimating the best
transformation to align a source cloud BintN to a target cloud
AintN by iterative minimization of an error metric function.
At each iteration, the algorithm determines the corresponding
pairs (b’, a’), which are the points from AintN and BintN

respectively, with the least Euclidean distance.
Then, least squares registration is computed and the mean

squared distance E is minimized with regards to estimated
translation t and rotation R:

E(R, t) =
1

Npb’

Npb’∑
i=1

‖ a’i − (R b’i + t) ‖2, (6)

where Npb′ is the number of points b’.
The resulting rotation matrix and translation vector can be

express in a homogeneous coordinates representation (4×4
transformation matrix Tj) and are applied to BintN . The
algorithm then re-computes matches between points from
AintN and BintN , until the variation of mean square error
between iterations is less than an defined threshold. The final
ICP refinement for n iterations can be obtained by multiplying
the individual transformations: TICP =

∏n
j=1 Tj . Finally the

transformation TICP is applied to the point cloud Bsel to
align and merge with the original point cloud A, generating
the Local Map AL then. Each robot thus performed its own
merging according to limited data shared from other agents
within communication range.

IV. RESULTS

In this section we show results validating the presented
concepts and the functionality of our system. As we consider
ground vehicles, the ENU (East-North-Up) coordinate system
is used as external reference of the world frame {W}, where



Fig. 5. Vehicles used in the tests: ZOE, FLUENCE and GOLFCAR.

Fig. 6. Paths followed by ZOE (green one), FLUENCE (red one) and
GOLFCAR robot (blue one) during experiments. Image source: Google Earth.

y-axis corresponds to North and x-axis corresponds to East,
but coinciding its origin with the GPS coordinates [Longitude:
-1.547963; Latitude: 47.250229].

In this article, our proposed framework was validated con-
sidering three vehicles for experiments, a ZOE Renault, a
FLUENCE Renault and a GOLFCAR (see Figure 5) cus-
tomized and equipped with a Velodyne VLP-16 3D lidar, with
360◦ horizontal field of view and a 30◦ vertical field of view.
All data come from the campus outdoor environment in an
area of approximately 1000m x 700m. The vehicles traversed
that environment following different paths and collected sen-
sor observations about the world, running pre-local mapping
process in real-time.

For the validation, the vehicles build clouds from different
paths (see Figure 6). Results of the Pre-Local Mapping of this
experiment are shown in Figure 7.

Fig. 7. Top view of unaligned Pre-Local Maps generated by ZOE (green
one), FLUENCE (red one) and GOLFCAR robot (blue one) projected on
common coordinate system

Figure 7 also depicts the “sharing region” determined during
the map exchange process in each robot. It was assumed that
all the vehicles have the constraint of exchanging the number
of points maximum Npmax of 410000 to simulate restrictions

in resources of bandwidth network or memory usage in robots.
The tests were divided in two. In the first one, test A, ZOE and
FLUENCE car define a meeting point to transfer their maps.
Once, ZOE car exchanges and updates its local map, a new
point of rendezvous for map sharing is determined by ZOE
and GOLFCAR in the following test B.

Since we study a decentralized case, then each robot per-
forms a relative registration process considering its Pre-Local
map as target cloud for alignment reference. The systems of
each robot executes the intersecting algorithm and then an ICP
refinement to obtain an improved transform between each map.
Figures 8 and 9 depict the intersection between the shared
point clouds during the alignment process in each robot. In
the yellow box the alignment is more appreciated. Once the
refined transformation is obtained, it is then applied to the
shared map.

Fig. 8. Test A: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the FLUENCE map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

Fig. 9. Test B: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the GOLFCAR map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

Quantitative alignment results of the ICP transformation
relatives to each robot are shown in Tables I and II. All
the ICP transformations are expressed in Euler representation
(x, y, z, roll, pitch, yaw) in meters and radians. For instance,
first row of Table I corresponds to the merging process in ZOE,
when this robot received the map shared by FLUENCE and
it aligned that map to its own pre-local map. The decentral-
ized system demonstrated alignments in opposite directions
for both robots, since we have to consider that each robot
performs the merging process considering its Pre-Local map
as target cloud for alignment reference. For instance, on Table
II for ZOE vehicle the algorithm converged to the value of
displacement of -0.1782 m and -3.2605 m along the x-axis and



y-axis respectively. On the other hand on the GOLFCAR robot,
the algorithm converged to a value of displacement of 0.2213
m and 3.3857 m along the x-axis and y-axis respectively,
reconfirming relative alignments in opposite directions.

TABLE I
TEST A: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND FLUENCE ROBOT

Robot x y z roll pitch yaw
ZOE -1.6517 3.0966 -9.9729 0.0132 0.0730 0.0022
FLU. 4.5748 -4.4556 6.6061 -0.0054 -0.0624 -0.0084

TABLE II
TEST B: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND GOLFCAR ROBOT

Robot x y z roll pitch yaw
ZOE -0.1782 -3.2605 1.7771 -0.0516 0.0115 0.0356
GOL. 0.2213 3.3857 -2.6070 0.0411 -0.0256 -0.0380

Fig. 10. Final 3D Local Map of ZOE robot

Figure 10 shows one of the merging results corresponding
to the ZOE robot, in which the cloud represents the final
3D local map projected on a 2D map in order to make
qualitative comparisons. Experiments showed the impact of
working with intersecting regions, since it can accelerate
the alignment process by decreasing the number of points
to compute. In the same way, tests demonstrated that our
proposed map sharing technique developed a transcendental
position in the performance of the entire mapping collaborative
system by reducing the map size to transmit. Finally, the
sharing algorithm remains a suitable candidate to exchange
efficiently maps between robots considering the use of clouds
of large dimensions.

V. CONCLUSION AND FUTURE WORK

A framework, CoMapping, was presented for decentralized
3D mapping system for multiple robots. The work has showed
that maps from different robots can be successfully merged,
from a coarse initial registration and a suitable exchange of
data volume. The system uses initially range measurements
from a 3D lidar, generating a pre local maps for each robot.
The complete system solves the mapping problem in an
efficient and versatile way that can run in computers dedicated
to three vehicles for experiments, leading to merged maps
independently on each vehicle for GPS-denied environments
all the time. Future work will focus on the analysis of maps

alignment in decentralized cases, studying the direct impacts
on the consistence of maps generated by each robot.
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[11] N. E. Özkucur and H. L. Akin, “Supervised feature type selection
for topological mapping in indoor environments,” in 21st Signal
Processing and Communications Applications Conference, SIU 2013,
Haspolat, Turkey, April 24-26, 2013, 2013, pp. 1–4. [Online]. Available:
http://dx.doi.org/10.1109/SIU.2013.6531556

[12] J. Zhang and S. Singh, “Aerial and Ground-based Collaborative Map-
ping: An Experimental Study,” in The 11th Intl. Conf. on Field and
Service Robotics (FSR), Sep 2017.

[13] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[14] R. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011.

[15] L. Contreras, O. Kermorgant, and P. Martinet, “Efficient Decentralized
Collaborative Mapping for Outdoor Environments,” in 2018 IEEE Inter-
national Conference on Robotic Computing (IRC), Laguna Hills, United
States, Jan 2018 - In Press.

[16] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in Third International Conference on 3D Digital Imaging and Modeling
(3DIM), Jun. 2001.

[17] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., Feb. 1992. [Online].
Available: http://dx.doi.org/10.1109/34.121791

http://dblp.uni-trier.de/db/conf/smc/smc2012.html#DinnissenGS12
http://dblp.uni-trier.de/db/conf/smc/smc2012.html#DinnissenGS12
http://dblp.uni-trier.de/db/journals/arobots/arobots34.html#PomerleauCSM13
http://dblp.uni-trier.de/db/journals/arobots/arobots34.html#PomerleauCSM13
http://dblp.uni-trier.de/db/conf/fsr/fsr2012.html#ZlotB12
http://dblp.uni-trier.de/db/conf/fsr/fsr2012.html#ZlotB12
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1109/SIU.2013.6531556
http://dx.doi.org/10.1109/34.121791


Single-View Place Recognition under Seasonal Changes

Daniel Olid, José M. Fácil and Javier Civera

Abstract— Single-view place recognition, that we can define
as finding an image that corresponds to the same place as
a given query image, is a key capability for autonomous
navigation and mapping. Although there has been a consid-
erable amount of research in the topic, the high degree of
image variability (with viewpoint, illumination or occlusions
for example) makes it a research challenge.

One of the particular challenges, that we address in this
work, is weather variation. Seasonal changes can produce
drastic appearance changes, that classic low-level features do
not model properly. Our contributions in this paper are twofold.
First we pre-process and propose a partition for the Nordland
dataset, frequently used for place recognition research without
consensus on the partitions. And second, we evaluate several
neural network architectures such as pre-trained, siamese
and triplet for this problem. Our best results outperform
the state of the art of the field. A video showing our results
can be found in https://youtu.be/VrlxsYZoHDM.
The partitioned version of the Nordland dataset at
http://webdiis.unizar.es/˜jmfacil/pr-nordland/.

I. INTRODUCTION

Visual place recognition consists on, having a query im-
age, retrieving from a database another image that corre-
sponds to the same place, see Fig. 1. Place recognition plays
a relevant role in several applications, e.g. mobile robotics.
To name a few, place recognition can be used for topological
mapping [1], for loop closure and drift removal in geometric
mapping [2], and for learning scene dynamics in lifelong
localization and mapping [3].

Place recognition for robotics presents multiple challenges.
For example, most of the times the places databases are
huge and the retrieval time is constrained by the real-time
operation of robots. Another relevant challenge, which is the
one we will address in this paper, is the variability in the
visual appearance of the places. The appearance variations
might have different sources: viewpoint and illumination
changes, occlusions and scene dynamics.

The appearance changes coming from different viewpoints
and illumination conditions, assuming a static scene, have
been addressed quite successfully. Local point features (e.g.,
SIFT, SURF and ORB), based on image gradients, show
a high repeatability and descriptor invariance to moderate
levels of illumination and viewpoint changes. Checking the
geometric and sequential compatibility of such local features
can improve even further their robustness [4]. Global image
features have been also used for place recognition [5],

This work was partially supported by the Spanish government (project
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T45 17R/FSE
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INPUT IMAGE

REFERENCE IMAGES

RECOGNISED 
PLACE 

PLACE
RECOGNITION
ALGORITHM 

Fig. 1. Place recognition overview. The inputs are two; a database of
images taken in different places, and query view imaging the place to
recognize. The output is an image of the database showing the place of
the query image.

[6], showing better scalability but lower performance under
viewpoint changes or occlusions.

The classical approaches based on hand-designed low-
level features are, however, limited for the representation
of dynamic scene changes. There has been several works
aiming at designing descriptors with higher invariance to
certain transformations, either based on models (e.g., [7])
or based on learning from data (e.g., [8]). The most recent
approaches use Convolutional Neural Networks (CNNs), due
to their higher potential to learn image patterns. In this
work we explore the use of CNNs for place recognition
in the particular case of seasonal changes. Our specific
contributions over the state of the art are:

• We have trained a weather-invariant place recognition
method, based on CNNs. We use CNNs to extract
image descriptors, that we compare using the Euclidean
distance. Fig. 2 depicts some of the weather variations
considered.

• We have designed a dataset using images extracted from
the Nordland videos [9]. We propose our Nordland
dataset partition as a common framework for evaluating
place recognition.

• We have compared our results in the Nordland dataset
against other state of the art techniques. Our method
is capable of correctly recognizing 98% of the input
places in 80km routes under favorable conditions and
86% under drastic appearance changes like the ones
occurring between summer and winter.

The rest of this paper is structured as follows. Section
II analyzes the related work in place recognition. Section
III explains the development of the dataset. Section IV
introduces the neural network architectures that we have
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Fig. 2. Images from the same place in different seasons. From top-left and
clockwise: winter, summer, fall and spring. Notice the appearance change
due to different weather conditions. The images have been extracted from
the videos of the Nordland dataset.

used. Section V presents our results. Finally, in section VI
we summarize our conclusions.

II. RELATED WORK

The most common approaches to place recognition are
based on local image features using classic extractors and
descriptors. Two of the most relevant among these techniques
are FAB-MAP [10] and DBoW [4]. The performance of
these algorithms is excellent for moderate viewpoint and
illumination changes, but it decreases for other types of
appearance variations.

An alternative approximation consists in using neural
networks as feature extractors. Sünderhauf et al. analyzed
in [11] the use of neural networks for the purpose of place
recognition with promising results. [11], [12] and [13] were
the first ones to use neural networks for this purpose but
[14] and [15] were the first ones to specifically train neural
architectures to attack this problem. There is no consensus
on what kind of architecture is better for this task.

In this work we compare three different techniques that
can be considered state of the art in place recognition:
Unsupervised linear learning techniques for visual place
recognition [16], deep learning features at scale for visual
place recognition [15] and CNN for appearance-invariant
place recognition [14].

The first method [16] applied principal components anal-
ysis to reduce the dimensionality of the feature vector,
eliminating the dimensions that are affected by appearance
changes. The second method [14] used a triplet neural
network architecture to fine-tune a pre-trained model and im-
prove the robustness of the extracted features. Their network
learned to map images to a vector space where euclidean
distance represents similarity. The third method [15] trained
a deep neural network to classify the place that appeared in
a dataset of images taken from surveillance cameras.

training set
test set
discarded data

Fig. 3. Proposed dataset partition for the Nordland dataset. Top:
Geographical representation of the training (red) and test (yellow) sets.
Bottom: Index representation of the distribution, w.r.t. frame index in the
videos.

This work develops a technique similar to the one imple-
mented in [14]. As a novelty, we also train siamese neural
networks and consider different pre-trained networks.

III. THE NORDLAND DATASET: PRE-PROCESSING AND
PARTITIONS

In this work, we have used the Nordland railroad videos.
In 2012, the Norway broadcasting company (NRK) made
a documentary about the Nordland Railway, a railway line
between the cities of Trondheim and Bod. They filmed the
729km journey with a camera in the front part of the train
in winter, spring, fall and summer. The length of each video
is about 10 hours and each frame is timestamped with the
GPS coordinates.

This dataset has been used by other research groups in
place recognition, for example [14] and [16]. Each group
uses different partitions for training and test, making difficult
to reproduce the results. In this work we propose a specific
partition of the dataset and a baseline, to guarantee a fair
comparison between algorithms. Our intention is to release
the processed dataset if the paper is accepted.

A. Data pre-processing

The first step, creating the dataset, was to extract the
maximum number of images from each video. Moreover,
GPS data corruption was fixed and we also eliminated
tunnels and stations. After these steps, grabbing one frame
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place 1
place 2

place 3

Fig. 4. A sliding window of five images is considered in this work as the
same place. Notice the similarity of consecutive images. The figure is best
viewed in electronic format.

per second, we obtained 28, 865 images per video. We used
speed information from the GPS data to filter stations and a
darkness threshold to filter tunnels.

B. Dataset partitions

Fig. 3 illustrates the partition of the whole image set in the
Nordland dataset. We decided to create the test set with three
different sequences of 1, 150 images (a total of 3, 450, yellow
in the figure). The rest of the images were used for training
(24, 569, red in the figure). By using multiple sections,
the variety of places and appearance changes contained in
the test set increases. We also left a separation of a few
kilometers between each test and train section by discarding
some images in order to guarantee the difference between
test and train data.

C. Place labels

Given the similarity between consecutive images, in this
work we propose to consider that two images are of the same
place if temporally they are separated by 3 images or less.
We applied a sliding window of 5 images over the whole
dataset in order to group images taken from five consecutive
seconds. This process can be seen in Fig. 4.

IV. NEURAL NETWORK ARCHITECTURES

Fig. 5 shows the functional blocks of the proposed place
recognition method. Our goal was to train a network to ex-
tract feature vectors that are close to the ones extracted from
images of the same place, even in the presence of appearance
changes. Our similarity metric is the Euclidean distance. We
acknowledge that the distance function plays an important
role in the feature space distribution, loss and optimization
convergence. However, we preferred to focus our efforts on
other parts of the problem rather than experimenting with
other alternatives, e.g., the cosine distance.

We studied three different ways of using neural networks.
First of all, we evaluated the performance of features ex-
tracted by pre-trained networks. We then proceeded to train
siamese and triplet architectures specifically for the problem
of place recgonition.

A. Pre-trained networks

In [11], Sünderhauf et al. studied the performance of
features from different neural networks for the purpose of
place recognition. In this work, we analyzed the features
extracted by some layers of the popular VGG-16 model [17],
which was trained on Imagenet. Fig. 6 shows the structure

NEURAL 
NETWORK 

MATCHING 

NEURAL
NETWORK 

REFERENCE
FEATURE VECTORS

INPUT 
FEATURE VECTOR 

INPUT IMAGE

REFERENCE IMAGES 

RECOGNISED 
PLACE 

Fig. 5. Overview of the place recognition algorithm. First, we extract
a descriptor for every (visited place) image in the database. Second, for
every new image (query) we extract its descriptor and compare it with
those extracted from the database. The retrieved place will be the one with
the most similar descriptor.

pool 4 
dimension:

100352

CONV 1 - CONV4
pool 5 

dimension:
25088

fc 6 
dimension:

4096

fc 7 
dimension:

4096

output 
layer 

fc 8 
dimension: 

1000

CONV 5

Fig. 6. VGG-16 Layers. In red: Layers not used. In green: Used layers.

Pool 4
100352

added 
fully connected 

layer 

EUCLIDEAN 
DISTANCE 

Fig. 7. Siamese architecture used in our work. We show in gray the pre-
trained CNN blocks. The fully-connected layer added has 128 neurons.

of the model and the layers that we have evaluated. We
have also evaluated the performance of the same architecture
trained for scene recognition on the Places dataset.

In the rest of this paper, by extracted feature vector we
refer to the output of the neural network at the chosen layer
after the non-linear activation. In the case of convolutional
layers, we flattened the output tensor.

B. Siamese networks

Siamese neural networks, proposed in [18], are capable of
improving the robustness of pre-trained descriptors for place
recognition. We modified the VGG-16 model in order to
use a siamese architecture and added a new fully-connected
layer (without activation function) after the one that showed
the best performance in the pre-trained experiments. The
final structure is showed in Fig. 7. Training was done for 5
epochs with 834, 746 positive pairs (two images of the same
place with different appearance) and 834, 746 negative pairs
(two images of different places) taken from the previously
mentioned training dataset. We used the contrastive loss [19].
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C. Triplet networks

As mentioned in Section II, Gómez-Ojeda et al. [14] were
the first ones to train triplet networks with this purpose.
Triplet neural networks improve the results of siamese archi-
tectures by training positive and negative pairs at the same
time. Moving closer the descriptors from the same place and
apart the descriptors from different places in the same instant
leads to a more stable and efficient learning process.

In order to use a triplet architecture, we modified the
VGG-16 pre-trained model by adding a new fully-connected
layer (without activation function) after the layer that per-
formed better in the pre-trained experiments. We trained the
new layer with 834, 746 image triplets for 5 epochs. The loss
function used in this case was the Wohlhart-Lepetit loss. This
loss, proposed in [20] was also used in [14]:

E = max

{
0, 1− dn

margin+ dp

}
(1)

Where E is the loss error, dp is the distance between the
positive and neutral input, dn is the distance between the
neutral and negative input and margin is a parameter that
limits the difference between the distances.

In this function, the loss is zero when the positive pair is
closer than the negative pair plus the margin. Moreover, the
loss value is limited between 0 and 1. We set the margin
value to 1 in all our experiments.

V. EXPERIMENTAL RESULTS

In order to evaluate our deep models, we used the images
from one season as reference and images of a different season
as query (summer against winter, winter against fall, etc.).
Each image is processed by the neural network to produce
the feature vector. After the extraction, each feature vector
is compared with every feature vector of every reference
season, and the closest one is considered the place predicted
by the algorithm. This process is repeated for each one of the
3, 450 test images. The number of times that the closest place
is the correct one gives the the fraction of correct matches
fc, which is the metric that we have used.

fc =
# of correct predicted places

# of evaluated places
, (2)

It is important to note that we consider a match is correct
when the closest feature vector corresponds to a place within
a 5-frames window. The distance between the feature vectors
measures the confidence of the result and a distance threshold
can be applied to obtain precision-recall curves. We have
preferred to focus our analysis on the robustness of the
extracted features.

A. Pre-trained

Fig. 8 shows the results obtained from the original VGG-
16 pre-trained model. Out of all the studied layers, we found
that features extracted from the fourth pooling layer (pool4)
had the highest fraction of correct matches in all the season
combinations. The results are worse as the layers are closer
to the VGG-16 output. The main reason might be that, as the
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Fig. 8. Fraction of correct matches using the pre-trained VGG-16 layers
as feature extractors with summer as reference season and the other seasons
as input.
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Fig. 9. Fraction of correct matches using features from the pool4 layer of
VGG-16. We compare the Imagenet pre-trained version vs the Places dataset
pre-trained one. We show the results with summer as reference season and
the other seasons as input.

dimension of the layer decreases, some of the information
that is robust to appearance changes is lost. Moreover, the
last layers of the model contain semantic information which
is specific to the original problem.

After that, we compared the performance of the origi-
nal VGG-16 model to the VGG-16 model trained on the
Places dataset by evaluating the features extracted from
the pool4 layer. We observed that the model trained for
scene-recognition achieved better results in all the studied
combinations, as shown in Fig. 9. The main reason behind
this is that, in order to classify scenes, the internal layers
of the model have learned to extract features that are more
useful for place recognition.

In the rest of our experiments, we decided to use the fourth
pooling layer of the VGG-16 trained on the Places dataset
as the starting point. The extracted feature vectors have a
dimension of 100, 352.

B. Siamese and triplets

After several experiments, we observed that a descriptor
size of 128 is sufficiently discriminative for place recogni-
tion. Increasing the size of the layer increases the computa-
tional cost without a significant improvement in the accuracy.
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Fig. 10. Fraction of correct matches using different strategies: Pre-trained,
siamese and triplet networks (with and without fine-tuning). Top: Results
with summer as reference season and the other seasons as input. Bottom:
Results with winter as reference season and the other seasons as input.

Fig. 10 compares the results obtained with the pre-trained,
siamese and triplet architectures. The pre-trained network
only outperformed the siamese architecture in some com-
binations where summer images were used as reference. It
should be noted that the siamese feature vector has 128
dimensions, while the pre-trained one has 100, 352. Even
if the siamese network has not outperformed all the pre-
trained results, the siamese architecture has learnt to extract a
much smaller feature vector, while keeping the discriminative
information.

On the other hand, the triplet network outperformed the
siamese and pre-trained models in all the studied combina-
tions. The triplet results that we show in Fig. 10, belong
to two different experiments. In our first experiments, we
trained the newly added layer (triplet fc128 - loss Wohlhart
Lepetit). We then proceeded to train the layer while fine-
tuning the rest of the VGG-16 pre-trained structure (triplet
fc128 - loss Wohlhart Lepetit - fine-tuned). It can be observed
that the accuracy of the fine-tuned model is higher.

We conclude that the best results were obtained with
the fine-tuned triplet network, starting from the weights of
the pre-trained VGG-16-Places and adding a fully-connected
layer with an output dimension of 128.

Table I shows the fraction of correct matches achieved for
every possible combination of reference-input seasons.

C. Comparison against other approaches

Fig. 11 shows the comparison between our results, the
PCA technique of [16] and the two neural network models

TABLE I
FRACTION OF CORRECT MATCHES FOR EVERY SEASON COMBINATION.

input \reference summer fall winter spring

summer — 0.8548 0.8591 0.9545
fall 0.9777 — 0.8583 0.9562

winter 0.8597 0.9771 — 0.9545
spring 0.9336 0.94 0.8388 —
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Fig. 11. Fraction of correct matches comparison: our work, Hybridnet,
Amosnet and the unsupervised PCA technique. Top: Results with summer
as reference season and the other seasons as input. Bottom: Results with
winter as reference season and the other seasons as input.

trained in [15] (Hybridnet and Amosnet). The comparison
is made using summer and winter as the reference seasons.
Notice that our model matches or outperforms the other tech-
niques in almost every combination, and particularly in those
with drastic appearance changes. In the most challenging
cases (the ones with winter as reference) the best result is
obtained with summer and fall as input seasons, where our
model achieved 86% of correct matches while the second
best, the unsupervised PCA [16], obtained less than 66%.

The unsupervised PCA results were obtained from their
original paper [16]. For Hybridnet and Amosnet, we down-
loaded the models from the authors of [15] and tested their
performance in the test partition of our dataset.

Finally, Fig. 12 shows two examples of correct matches.
Notice that our method is robust to strong changes produced
by snow and illumination. Fig. 13 shows two examples of
incorrect matches. Notice that both are difficult even for a
human. The similarities in the geographical features of those
places make them look like the same place.
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matchinput

Fig. 12. Places correctly recognized by our algorithm. The index in the
sequence is shown at the bottom of each image.

matchinput

Fig. 13. False positive examples from our algorithm. The index in the
sequence is shown at the bottom of each image. Notice that these particular
places are difficult even for a human.

VI. CONCLUSIONS

In this work we have implemented a place recognition
method which is robust to appearance changes, in particular
to those caused by weather conditions. Our proposal works
by training a neural network to extract a descriptor, that can
be compared with others using the Euclidean distance.

Our experiments show that siamese and triplet neural
networks learn robust features to appearance changes. Triplet
neural networks achieved better results than siamese ones.

We show that a VGG-16 model trained on the Places dataset
shows a reasonable performance, improved by fine-tuning.
Finally, we have shown that our method achieves state-of-
the-art results in place recognition on the Nordland dataset.
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Future Depth as Value Signal for Learning Collision Avoidance

Klaas Kelchtermans1 and Tinne Tuytelaars1

Abstract— The constant miniaturization of robots reduces
the array of available sensors. This raises the need for robust
algorithms that allow robots to navigate without collision based
solely on monocular camera input. Towards this goal, we
propose a new learning-based method for the task of obstacle
avoidance. We propose a neural network policy for monocular
collision avoidance with self-supervision that does not require
actual collisions during training. To this end, we demonstrate
that a neural network is capable of evaluating an input image
and action by predicting the expected depth in the future. In this
sense, the future depth can be seen as an action-value-signal. In
comparison with our baseline model that is based on predicting
collision probabilities, we show that using depth requires less
data and leads to more stable training without need for actual
collisions. The latter can be especially useful if the autonomous
robot is more fragile and not capable to deal with collisions (e.g.
aerial robots). The proposed method is evaluated thoroughly in
simulation in a ROS-Gazebo-Tensorflow framework and will
be made available on publication2.

I. INTRODUCTION

Collision avoidance is one of the core tasks of autonomous
navigation besides road following and destination pursuing.
Smaller robots solely equipped by a light-weight camera
and a small GPU are capable of performing more and
more complex tasks. General collision avoidance remains
however challenging. Methods based on tracking keypoints
and keeping a map combined with path-planning have gained
impressive results [1]. However, these methods are unreliable
in case of blurred images, abrupt motions or lack of features
to track. In order to build an algorithm that can deal with
new situations and that can adjust its features in a data-driven
fashion without having to tweak many parameters, we look
at learning algorithms. These systems have the benefit of
learning and adapting from their mistakes which makes them
more suitable for dynamic environments[2].

Deep neural networks (DNN) have succeeded at increas-
ingly more complex tasks in computer vision and rein-
forcement learning [3], [4], [5], [6]. Convolutional neural
networks (CNN) can handle high dimensional input data,
like monocular RGB images, thanks to the parameters shared
spatially. Earlier attempts to use CNNs to predict control
relied on imitation learning in order to learn models to
imitate an expert (human) that collected the data [7]. Other
work succeeded at training a CNN to learn a quadcoptor
to follow forest trails based on a big dataset collected
with a straight-, left- and right-looking camera . The CNN
was trained with supervised learning [8] on this set of
labeled data. In [9], an iterative procedure (DAGGER) was

1The authors are with KU Leuven, ESAT-PSI, imec, Belgium.
firstname.lastname@esat.kuleuven.be

2Project page: kkelchte.github.io/depth-q-net

demonstrated, using a dataset that was partially collected by
a human and partially by the policy being trained, resulting in
an aggregated dataset. Both methods required a big amount
of annotated data which is impractical in most applications.
Moreover, using a demonstration flight to represent collision
avoidance might not be the best setup as there can be many
equally valid routes.

Alternatively, one can decouple feature extraction and
control. For instance, in Michel’s car [10] a CNN is used to
estimate depth upon which a separate reinforcement learning
algorithm is applied. Similarly, in [11], estimated depths
are used as input for a behavior arbitration algorithm in
order to extract a policy for indoor navigation. The behavior
arbitration algorithm however needs a number of parameter
tweaking steps that differ for each environment and robot.

Recent work by Kahn et al. [12] comes closest to this
work. They succeed at making a deep recurrent neural
network (RNN) perform monocular autonomous navigation
through a lengthy corridor. They introduce a reinforcement
learning method, called generative computation graph, that
is learned with a self-supervised reward signal. The reward
is negative for each collision. This collision is detected by
a sudden change of inertia coming from the IMU. As the
labeling happens without human intervention we refer to this
as self-supervision. The neural network evaluates a number
of series of future actions by estimating the probability of a
collision within the next horizon of frames.

The main drawback of this system however is the need for
collisions. For many robots, this is impossible or at least very
expensive, especially if you want to apply it to aerial robots.
In this work, we therefore explore an alternative system
that uses depth as a self-supervised reward. This avoids
the requirement for numerous collisions and might actually
learn in a more stable way than predicting sparse collision
probabilities. If the goal is to avoid any close obstacle, a
depth scan seems to be very indicative of which direction is
to be preferred. Following this reasoning one could think of
the depth scan as an objective that should be maximized. To
simplify the setup in this exploratory phase of the project,
we decided to work with a LiDAR as depth sensor rather
than an estimated depth map. This suffices as a proof-of-
concept. At a later stage this LiDAR could be substituted
with a depth estimation network taking monocular camera
as input. Although this might seem to be a big assumption,
[10] and [11] already indicated the potential of estimated
depth maps as well as most recent work [13].

The research question we investigate in this work is
whether depth seen at future time-steps can be used as a
value-function for evaluating the current state-action-pair for



Fig. 1. Shared architecture of collision and depth prediction network.

the application of collision avoidance. In order to demon-
strate potential benefit we compare our method with a
baseline model that uses real collisions as in [12]. Besides
overcoming the need for collisions, we demonstrate how
predicting action-dependent future depth leads to more stable
learning behavior requiring much less training data.

In the remainder of the paper we first describe the general
background (Section II). Section III describes our method in
more detail as well as our baseline model. Section IV shows
the experimental setup as well as the results. In the appendix
the reader can find more details on the training procedure.

II. BACKGROUND
The annotation as well as most of the formulas are based

on [2] although simplified for readability. In reinforcement
learning, an agent interacts with its environment by perform-
ing actions. The agent tries to find a policy π that maps
current state s to an action a at time t in order to maximize
the expected accumulated discounted reward G, named the
return. This is estimated by the state-action value function
or Q-value:
Qπ(st, at) = Eπ,T [

∑H
k=0 γ

kRt+k+1|st, at]
in which γ represents the discount factor and R the

expected reward. The value-function depends on the one
hand on the environment bringing the agent to the next state
according to a transition model, T (st+1|st, at), and on the
other hand the policy π(at|st) picking the action from that
next state.

Our algorithm is model-free in the sense that it does
not try to model the transition function T explicitly. By
definition, the value-function Q should be the sum over
infinitely many time steps. However, it is often preferred to
work with a finite horizon H . A specific set of algorithms
are called myopic, which means that they only care about
the immediate reward, Qπ(st, at) = Eπ,T [Rt+1|st, at]. This
corresponds to a horizon H of 1.

In deep reinforcement learning (DRL), the value-function
is approximated by a neural network. The neural network
is then trained on experiences the agent has collected by
interacting with its environment: (st, at, rt, st+1). Sampling
batches of experiences in order to train the algorithm is called
experience replay. The value-function can then be updated
using the bellman-equation in a temporal difference setting:
Q(st, at) ← Q(st, at) + α[R(st, at) + γQ(st+1, at+1) −

Q(st, at)]
In this situation Q(st+1, at+1) is referred to as the boot-

strap. If the experience is collected by the policy being
trained, the bootstrap can be estimated for the same policy.
In this case the algorithm is called on-policy. In some

Fig. 2. Evaluation of a batch over different actions in one forward pass.

algorithms the data can be collected by a different policy
in which case they are referred to as off-policy. This is very
beneficial as it allows collected data to be reused for training
multiple agents overcoming excessive amounts of experience
collection. Our proposed method can be trained off-policy.

III. METHOD

In this section we first explore the feasibility of using
depth as a reward or a value-signal in a collision-avoidance
setting. Later we explain the architecture of our Depth-Q-net.
In the end, we explain our baseline model based on collision
prediction inspired by the work of Kahn [12].

Feasibility of Depth as Value- or Reward-signal

It appears that when using depth as a reward or return
function, both lead to a surprising contradiction:

Let’s first look at a situation where the difference in depth
is given as a reward. This means that an increase in depth
corresponds to a positive reward. However, mathematically
this leads to a value-function, Vt, that is similar to the
negative of the depth:
Vt = rt + γrt+1 + γ2rt+2 + ...
Vt = Dt+1−Dt+γ(Dt+2−Dt+1)+γ

2(Dt+3−Dt+2)+...
Vt = −Dt + (1− γ)Dt+1 + γ(1− γ)Dt+2 + ...
Vt ≈ −Dt

Note that we made abstraction of the relation of the value-
function with a policy. Previous derivation only holds in case
of navigating straight in the direction of the camera. From a
general policy iteration point of view, this would mean that
a state with closer objects and lower depth corresponds to
a higher value function so it is preferred over a state with
objects further away. This is of course not what we want.

Alternatively, we could assume the absolute depth as a
value-signal. This means according to the Bellman equation
that a decrease in depth, for instance by navigating towards
an object, corresponds to a positive reward. For now, we
leave out the discount factor γ, in order to avoid clutter in
the equation.
D

′

t = rt +D
′

t+1 ⇒ rt = D
′

t −D
′

t+1

This should not come as a surprise as the depth is then
seen as the amount of +1 rewards per traveled distance in
that direction up until the moment of collision. If the agent
learns to focus on the short term reward, the agent will be
drawn towards collisions rather than the other way around.

Obstacle avoidance is a reactive behavior. This means that
the optimal control should be predictable given solely current
view of the robot. This holds in cases with little drift and
large enough field-of-view. Using a myopic agent simplifies
the use of depth as a reward signal in reinforcement learning



Fig. 3. Canyon example. Left: Turtlebot, middle: RGB input, right: top-
down view of successful trajectory.

significantly. In this case the agent only cares about the
immediate reward, picking actions that make the maximum
reward most likely. In this setting the value-function corre-
sponds to the immediate reward, in our case the depth map at
the future time step. This does also resolve the contradiction
explained above.
Q(It, at) = rt = Dt+1

In this case the model learns to predict the depth seen at
the next frame Dt+1 given current frame It and proposed
action at. In this paper we provide the future depth with a
LiDAR at the next time step. However, the depth map could
also be provided by a CNN depth-estimator as the label is
allowed to be noisy. In that case the future depth network
can be learned from the depth prediction on the next frame
and the learning becomes fully monocular.

Depth-Q-Net

In figure 1, you can see the architecture of the network.
A mobilenet-0.25 [14] convolutional neural network extracts
Imagenet-pretrained [15] features from the current view of
the robot. The action is concatenated to the extracted feature
before it is fed to a fully-connected prediction layer of
4096 nodes and 1 fully-connected output layer of 26 nodes,
corresponding to 26 depth bins from the LiDAR smoothed
over 4deg from a forward field-of-view of 104deg.

The prediction layers are trained on batches of experiences
in a supervised fashion with an absolute loss.

The policy is extracted by evaluating the future depth
predictor on the current frame concatenated with different
actions in one forward pass (see figure 2). The policy selects
the action for which the predicted future depth scan has the
maximum minimum depth:
π(It) = argmaxat(min(Dt+1(It, at)))
This means that the policy only focuses on the closest

obstacle and takes the action that makes this closest obstacle
as far as possible. This allows us to simplify the training of
the future depth prediction in the sense that we only care
about the closest depth. Therefore we clip the depth in our
experiments at 2m.

Baseline: Coll-Q-Net

In order to explore the feasibility of using depth rather than
collisions as self-supervised reward signal, we implement
a similar baseline model named Coll-Q-Net. The DNN
models a value-function that approximates the probability

of a collision within the next H frames given current input
frame and an action, similar to [12].
Q(It, at) =

∑H
k=1 P (collisiont+k|It, at)

In our experiments the horizon H is taken as 5 time steps.
The prediction layers of figure 1 contain one fully-

connected layer of 4096 nodes and one fully-connected layer
of 25 nodes. This results in approximately the same amount
of parameters as the Depth-q-net. The fully-connected output
layer has one node which contains a sigmoid activation
function in order to map the output within the range of [0, 1]
to represent a probability. The prediction layers are trained
with a cross-entropy loss. Experiments indicated the cross-
entropy loss to be more stable than the mean-squared error
or absolute loss.

The policy is extracted in a similar fashion, evaluating
the action-value-function for a batch of actions as visible in
figure 2. The action with the lowest probability of collision
in the near future is selected:
π(It) = argminatQ(It, at)

Training

The prediction layers of the Depth-Q-Net and Coll-Q-
Net are trained in an off-policy manner. This is beneficial
as a single dataset can be collected from which multiple
models can be trained in parallel, avoiding the need for data
collection during training.

All experiences (It, at, yt, dt+1) are saved in a dataset and
used to train the models in a supervised fashion. At each
collision, the simulated environment is restarted and the last
H frames get a future collision label yt = 1, similar to the
previous work of Kahn et al. [12]. The Depth-Q-Net does
not require any collisions, therefore the last H frames of
each run are discarded when training Depth-Q-Net. The data
is collected by an exploration policy that randomly picks a
continuous action (yaw-turn) in the range [-1:1] according
to an Ornstein-Uhlenbeck process [16] to impose temporal
correlation.

Although it did not have a big influence, it appeared that
keeping the feature extracting part of the Mobile-0.25 net
fixed was beneficial for the robustness against overfitting.

IV. EXPERIMENTS

We first discuss the simulated environment after which the
results follow.

Environment

The experiments are done on a small turtlebot burger in
a simulated canyon made with ROS [17] and Gazebo [18].
The simulated canyons are generated randomly during data
collection. You can see an example of such a canyon in figure
3. The camera is set up on the same axis as the laser scan in
order to ensure that the field-of-views between the LiDAR
and the camera are aligned. The camera works at 10fps and
provides frames of size 410x308 covering a field-of-view of
104deg.

The goal of the policy is to navigate the turtlebot through
unseen canyons while it is driving at a fixed speed (0.5m/s)



TABLE I
ONLINE PERFORMANCE IN SIMULATED CANYON

Data Average Distance(std) Success rate(std) Imitation loss(std) Cross-Entropy(std) Abs Diff(std)
#runs CQN DQN CQN DQN CQN DQN CQN DQN

50 1.07 (1.72E-05) 1.68 (0.113) 0.0 (0.0) 0.0 (0.0) 1.03 (9.54E-03) 2.42 (9.32E-02) 0.57 (0.128) 0.08 (3.91E-03)
100 1.04 (1.28E-04) 4.91 (0.458) 0.0 (0.0) 0.7 (0.5) 1.22 (1.13E-02) 1.50 (1.23E-02) 0.75 (3.09E-02) 0.08 (2.33E-03)
200 2.69 (1.28) 12.19 (1.03) 0.0 (0.0) 8.0 (1.4) 1.80 (0.307) 0.97 (3.82E-02) 0.85 (0.269) 0.06 (2.91E-03)
500 6.72 (0.937) 21.96 (0.247) 2.7 (1.2) 20.0 (0.0) 1.46 (6.59E-02) 0.60 (3.54E-02) 0.36 (9.37E-02) 0.05 (8.67E-04)
700 8.32 (1.31) 22.21 (0.106) 4.7 (2.1) 20.0 (0.0) 1.25 (6.15E-02) 0.56 (2.61E-02) 0.26 (2.19E-02) 0.05 (2.43E-03)
900 14.14 (3.04) 22.30 (0.153) 11.3 (3.8) 20.0 (0.0) 1.04 (0.107) 0.55 (3.66E-02) 0.18 (4.27E-02) 0.04 (1.19E-03)

by steering with the yaw velocity [−1, 1] for a collision free
distance of 15m. At test time, we only use 3 quantization
levels for possible actions: -1, 0, 1. The networks are tested
in 20 canyons unseen in the training data. The only difference
in training Depth-Q-Net and a Coll-Q-Net is the learning-
rate (0.1 and 0.01) and the selection of the loss (absolute
and cross-entropy).

More detailed information on the training datasets and
hyperparameters can be found in table II and the appendix.

Results

We want to investigate the benefit of using depth as a self-
supervised reward signal over collisions. Besides the benefit
of avoiding the need for real collisions, we are curious if the
reward signal leads to more robust training for instance in
the setting of having less training data.

Figure 5 shows the convergence of the absolute loss for
the Depth-Q-Net and the cross-entropy loss for the Coll-Q-
Net on both training and validation data for networks trained
on different sizes of data.

Experience showed how not only the validation loss but
especially the variance of the validation loss over a batch
demonstrates potential overfitting. For the Depth-Q-Net this
is visible for a dataset of 100 runs or less while for the
Coll-Q-Net this is already visible at a dataset of 200 runs.

Table I gives details on the performance of the different
networks. The standard deviation is calculated on 3 networks
initialized with different seeding. The performance of each
network is evaluated in 20 canyons. This results in an average
collision free distance as well as a success rate (number of
times the distance was more than 15m). Because this work
solely focuses on the task of collision avoidance we do not
evaluate on the time spend to travel a certain distance. The
canyon however is made small enough to avoid spinning on
a local spot.

The imitation loss is calculated as the MSE between
the action picked by the network and the action provided
by a heuristic based on the behavior arbitration algorithm
taking depth as input[11]. The value is added as it gives a
better measure on how the performance appears similar to
an expert.

Although the reward signal is of a higher dimension and
the networks are trained on less data (leaving out the col-
lision), our method, Depth-Q-Net outperforms the baseline,
Coll-Q-Net significantly on all different evaluation strategies
when trained on a large enough dataset (500 runs).

Fig. 4. Depth-Q-Net qualitative result. Left in red: ground truth scan, left
in blue: future depth for left turn(up), straight(middle) and right turn(down).
Right: position of robot in canyon.

In case there is not enough data, the Depth-Q-Net could
still manage to pass through the canyon a number of times
when trained solely on 200 or 100 runs. This is not the case
for the baseline Coll-Q-Net. Although the imitation loss is
less bad for the Coll-Q-Net when trained on 50 or 100 runs,
the network could not drive much more than 1m without a
collision.

Figure 4 gives a snapshot of the evaluation of a Depth-Q-
Net in the canyon. On the left you can see in red the ground-
truth lazer scan. For each action, the future depth is predicted
by the network. As the Turtlebot is slightly heading to the
left wall, there is an increase in overall depth for turning to
the right and a decrease for turning to the left. Depth-Q-Net
is only trained to predict values up until 2m while the actual
depth is at 4m. Although this is far from accurate in absolute
values, it is good enough to extract a working policy from.

V. CONCLUSION

In this work we explore the feasibility of using depth
as a self-supervised value/reward-signal instead of collisions
detected by an IMU for learning collision avoidance (as in
[12]). We demonstrate that the use of depth not only leads
to better performance (less collisions), it also requires less
data. This is because the labels of collisions are more sparse,
giving relevant feedback only at the end of each run while
the Depth-Q-Net can be trained on any consecutive pair of
images.

In future work the depth could be provided with a monoc-
ular depth-estimation network, in which case it would not
require any additional sensors besides the RGB camera. The



Fig. 5. Convergence difference for different networks trained on different sizes of datasets.

TABLE II
DETAILS DIFFERENT SIZES OF DATASETS

# runs # samples # without collision
50 2214 1858

100 4258 3945
200 8854 7797
500 23361 20517
700 33303 29152
900 42424 38032

Depth-Q-Net will learn to predict the estimated depth at the
next step given current RGB image and proposed action.

On the other hand, a real-world experiment could even fur-
ther demonstrate the benefit of training a Depth-Q-Net over a
Coll-Q-Net as acquiring data in the real world is much more
difficult especially if it requires collisions. Unfortunately
lack of time did not allow us to include these experiments
although the simulated results already demonstrate clearly
the feasibility of our method.

Although depth-value-signals are probably not the full
solution for monocular collision avoidance, it can be inter-
esting to add in the form of intrinsic motivation for general
autonomous robots provided with a camera.

In the current work we only look at the next frame. With a
recurrent neural network more aggressive behaviors might be
learned where planning over multiple time steps is required.
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VI. APPENDIX

Training deep neural networks can be tedious. In order to
reproduce the results we share our hyperparameters. They
can also be found in the code itself on the project page:
kkelchte.github.io/depth-q-net.

• Dropout of 0.5 after the output of the Mobilenet-0.25.
• Batch size of 64.
• Weight decay of 4e-5.
• Adadelta optimizer.
• Xavier initialization.
• Ended after 1000 epochs (≈ 3h) .
Coll-Q-Net had to be trained with a lower learning rate

(0.01) than Depth-Q-Net (0.1). As mentioned in the paper,
Coll-Q-Net trained best with a cross-entropy loss and Depth-
Q-Net with an absolute difference.
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Abstract— As automated vehicles are getting closer to becoming
a reality, it will become mandatory to be able to characterise the
performance of their obstacle detection systems. This validation
process requires large amounts of ground-truth data precisely
describing the pose and kinematics of the obstacles surrounding
the vehicle. The creation of such datasets currently requires the
lengthy and arduous process of manually interpreting sensor
data. In this paper, we propose a novel methodology to generate
ground-truth kinematics datasets for specific objects in real-
world scenes. Our procedure requires no annotation whatsoever,
human intervention being limited to sensors calibration. We
present the recording platform which was exploited to acquire
the reference data, then fully describe our data generation pro-
cess. A detailed and thorough analytic study of the propagation
of errors in our procedure is also performed. This allows us
to provide detailed precision metrics for each and every data
item in our datasets.
The main contributions of this paper reside in the data-
generation methodology, the analysis of the error propagation,
and in the creation of a new dataset.

I. INTRODUCTION

Object detection and tracking both play a crucial role in au-
tonomous driving. They are low-level functions upon which
many other increasingly high-level functions are built. These
functions include Intention prediction, Obstacle avoidance,
Navigation and planning. Being depended on by so many
functions, the task of obstacle detection and tracking must
be performed with a high level of accuracy and be robust to
varying environmental conditions. However, the generation
of ground truth data to evaluate obstacle detection and
tracking methods usually involves manual annotation, either
of images, or of LIDAR point clouds [1][2][3].
This paper showcases a method which takes advantage of the
multiplication of autonomous driving platform prototypes in
research structures to generate precise and accurate obstacle
ground truth data, without requiring the usual phase of
painstaking manual labelling of raw data.
Firstly, the methodology applied to generate this data will
be described in general terms, and some specific technical
topics such as the sensors time-synchronisation method used
to collect data will be presented. Then, a thorough analysis
of errors propagation is performed. Finally some plots of the
collected data are given together with potential applications.

II. GENERAL METHOD DESCRIPTION

The proposed method requires two or more vehicles to
generate obstacles dynamics ground truth data. The first

vehicle -the ego-vehicle- is equipped with a high-precision
positioning system (for example GNSS with Real Time
Kinematics (RTK) corrections coupled with an IMU), and
various environment perception sensors (for example LI-
DARs, cameras or RADARs). The other vehicles -the target
vehicles- only need to be equipped with a high-precision
positioning system, similar to that of the ego-vehicle. By
simultaneously recording the position and dynamics of all
vehicles, it is possible to express the kinematics of all
equipped vehicles present in the scene, in the ego-vehicle
frame of reference, and therefore to generate reference data
for these vehicles. This reference data can then be used
to evaluate the performance of obstacle detection methods
applied to the environmental sensors data collected on the
ego-vehicle.

III. DATA COLLECTION SETUP

This section, presents in details the set of sensors which
were available for the data collection, and details the method
applied to ensure the synchronicity of the recording process
taking place in different vehicles. Three vehicles were used
during this data collection campaign : the ego-vehicle was a
Renault Scenic equipped to acquire environment perception
data with a high accuracy. The target vehicles were Renault
ZOEs, modified to be used as autonomous driving research
platforms, and therefore equipped with precise positioning
systems.

A. Ego-vehicle perception sensors

To record perception data, the ego-vehicle is equipped with
two PointGrey 23S6C-C colour cameras, a Velodyne VPL-
16 3D laser scanner (16 beams, 10Hz, 100m range, 0.2◦

horizontal resolution), a cocoon of five Ibeo LUX laser
scanners (4 beams, 25Hz, 200m range, 0.25◦ horizontal
resolution) covering a field of view of 360◦ around the
vehicle.
The cameras are positioned inside the car, behind the wind-
screen with a baseline of approximately 50cm. The Velodyne
VLP-16 is positioned on the roof of the vehicle at a position
and height that minimise the occlusion of the laser beams
by the vehicle body. The Ibeo LUX are all mounted at the
same height of approximately 50cm, two on each front wing
(one pointing forward, one to the side), and one at the back,
pointing backwards (see Figure 2 ).



Fig. 1. The perception vehicle used : two ibeo LUX, the VLP16, GNSS
antenna and the precision odometer are visible

Fig. 2. Ibeo LUX cocoon setup

B. Precise localisation system

The accuracy of the data generated using our method relies
entirely on the accuracy of the vehicles’ positioning systems.
Therefore, each vehicle was equipped with state of the art
positioning sensors : a choke-ring GNSS antenna feeding
a GNSS-RTK receiver coupled with a high-grade, fibre
optic gyroscopes-based iXblue Inertial Measurement Unit.
Additionally, the perception vehicle is equipped with a high-
accuracy odometer mounted on the rear-left wheel, while the
target vehicles are equipped with a Correvit R© high-accuracy,
contact-less optical odometer. The data emanating from these
sensors is fused using a Kalman Filter-based robust observer
which jointly estimates the IMU and external sensors biases.
The performance of this system can be further improved in
post-processing by employing accurate ephemeris data and
smoothing techniques. Table I provides an overview of the
combined performance of our positioning system and of the
the aforementioned post-processing.

C. Time synchronisation

One of the biggest challenges of performing data collection
distributed across multiple vehicles is to precisely synchro-
nise the clocks used for time-stamping the data in each
platform. This is especially true when acquiring data in high-
speed scenarios. Highway scenarios, in which the absolute

TABLE I
POSITIONING SYSTEM PERFORMANCE

Heading
(deg)

Roll/Pitch
(deg)

Position
X,Y (m)

Position
Z (m)

Nominal
GNSS signal 0.01 0.005 0.02 0.05

60 sec GNSS
outage 0.01 0.005 0.10 0.07

300 sec GNSS
outage 0.01 0.005 0.60 0.40

value of the relative velocity of vehicles may reach 70m/s,
require the synchronisation of the vehicle clocks to be at
least accurate to the millisecond. This inaccuracy induces an
incompressible positioning error, which adds to that of our
positioning system (see Subsection VI-A).
To achieve such a precise synchronisation, a Network Time
Protocol (NTP) server fed with the pulse-per-second (PPS)
signal provided by our GNSS receivers was installed in each
vehicle to synchronise the on-board computers in charge of
recording all the data. Prior to any recording session, the
NTP servers and computer clocks were allowed 12 hours to
converge to a common time.

IV. SENSORS CALIBRATION

Generating ground truth data requires very accurate sensors
calibration. Given the difficulty of calibrating LIDAR sensors
relatively to cameras[1], we propose the following calibration
pipeline : first, the positioning system is calibrated, then
the cameras are calibrated intrinsically, and finally the rigid
transformations relating cameras and LIDARs to the vehicle
frame are estimated. To take into account any potential effect
of the sensors positioning on their calibration, all sensors
intrinsic parameters estimation processes take place once the
sensors are installed in the vehicle.

A. Positioning system calibration

The calibration of the positioning system consists in calculat-
ing the position and attitude of all positioning sensors (GNSS
antenna, optical odometer) in the frame of reference of the
IMU. After a phase of initialisation during which the vehicle
remains static to allow the estimation of all sensors biases
and the convergence of the RTK, the vehicle is manoeuvred.
By comparing the motion information emanating from each
sensor and comparing it to that of the IMU, one is then able
to determine the rigid transformation between the said sensor
and the IMU.

B. Cameras calibration

To estimate the intrinsic parameters of our cameras, and
the relative pose of our stereo pair, we sweep the space in
front of the cameras at three different depths, making sure
to cover the whole field of view of each camera. We then
use a mixture of Geiger’s checkerboard pattern detector [4]
and of the sub-pixellic corner detector from openCV to
extract the corners of the checkerboard. These are then fed to
openCV’s stereoCalibrate function to jointly estimate



the intrinsic parameters of each camera and their relative
pose. The set of parameters thus obtained typically yields
re-projection errors of less than 0.3 pixel.
The position and orientation of our cameras are obtained
in a semi-automatic fashion. It involves minimising the
reprojection error of a known pattern in the images. Using
laser tracers, the position of the cameras in the vehicle, and
the position and orientation of the vehicle relative to the
ground pattern are precisely measured. The orientation of the
cameras in the vehicle frame is then estimated by minimising
the reprojection error of the pattern characteristic points
in the image using a Levenberg-Marquardt minimisation
method.

C. LIDARs calibration

1) Velodyne VLP-16 calibration: The objective of the Velo-
dyne to IMU calibration process is to determine the rigid
transformation TV el→IMU between the Velodyne reference
frame and that of the IMU. Our Velodyne to IMU calibration
process is fully automated. Using Iterative Closest Point, we
match the 3D point clouds acquired during the calibration
manoeuvre one to another to generate a trajectory. Then,
the pose of the IMU is re-sampled to the timestamps of the
Velodyne scans. The estimation of TV el→IMU knowing both
trajectories is similar to the hand-eye calibration problem.
This estimation is performed using a non-linear optimisation
process applied to 1000 pose samples [5]. This rigid trans-
formation estimate is then refined by repeating the process,
using TV el→IMU and the linear and angular velocities of
the vehicle to correct the motion-induced distorsion of the
Velodyne point clouds. This process usually converges in just
one iteration.
2) Ibeo LUX: The calibration of an Ibeo LUX cocoon is
slightly more complicated than that of a single Velodyne, as
it involves simultaneously calibrating all the sensors. Indeed,
calibrating each LUX separately will almost certainly result
in a poorly consistent point cloud when aggregating clouds
from all sensors. Likewise, precisely calibrating one sensor,
and then calibrating all sensors relative to their neighbour
will also lead to such poor results. A simple way to ensure
the global coherence of the cocoon calibration is to use the
point cloud from a calibrated Velodyne as a reference, and
to calibrate all Ibeo LUX sensors relative to this spatially
coherent reference.

V. GROUND-TRUTH DATA GENERATION

The objective of the ground-truth generation process is,
at every instant, to precisely and accurately describe the
position, orientation and kinematics of an observed obstacle
in the frame of reference of the ego-vehicle. This data can
then be used to estimate the accuracy and precision of an
obstacle detection method or sensor.

A. Notations

Let Xk
i = (x, y, vx, vy, ψ)ki be the state of vehicle i, with

(x, y)ki the position of its reference point, (vx, vy)ki its

velocity vector, and ψki its yaw angle, all expressed in the
frame of reference k.
In the rest of the paper, ·e and ·t respectively denote state
variables of the ego and of the target vehicle, and ·UTM
and ·ego respectively denote a variable expressed in the
Universal Transverse Mercator and in the ego-vehicle frame
of reference.

B. Processing

Generating a set of obstacle ground truth data from high
accuracy positioning recordings is a two step process :
• generate the relative position and dynamics of the

obstacles relative to the ego-vehicle,
• generate data carrying obstacle semantics from the

previously generated data.
For each sensor recording, a whole set of ground truth data
is generated, so as to provide ground truth synchronised
with the sensor data. At each sensor data timestamp, the
position and dynamics of each vehicle are estimated from
the positioning system recording using temporal splines
interpolation.
From this, simple kinematics and velocity composition for-
mulae allow the computation of the relative position and
dynamics of the target vehicles in the ego-vehicle frame of
reference :[

x
y

]ego
t

= R(−ψUTMe )

[
xt − xe
yt − ye

]UTM
(1)

[
vx
vy

]ego
t

= R(−ψUTMe )

[
vxt − vxe + ψ̇e(yt − ye)
vyt − vye − ψ̇e(xt − xe)

]UTM
(2)

ψegot = ψUTMt − ψUTMe (3)

Where R(α) denotes a rotation in SO2 of angle α

C. Exploitation

The reference relative positioning data thus obtained can
then be used to generate ground truth perception data. One
can for example generate the bounding box of the target
vehicle in the ego-vehicle frame of reference to evaluate
the performance of LIDAR or image-based object detection
and tracking algorithms. Another possibility is to use 3D
models of the target vehicles and to project them in the
camera images to automatically generate a partial image
segmentation.

VI. UNCERTAINTY PROPAGATION ANALYSIS

In this section, a sensitivity analysis of the proposed ground
truth generation process is performed, to characterise the
accuracy and precision of the generated data, depending on
the performance of our positioning systems, and the clock
shift between the vehicles.
The inputs of the generation process are made of position, ve-
locity and heading estimates provided by a GNSS-INS fusion



system. These can be modelled as independent, Gaussian
random variables[6].
Therefore, the position, velocity and yaw angle are treated
separately, so as to limit the calculation hurdle.

A. Position

Equation (1) yields :[
x
y

]ego
t

= F (dxUTM , dyUTM , ψUTMe )

with :

F (dx, dy, ψe) =

[
dx cosψe + dy sinψe
dy cosψe − dx sinψe

]
.

Lemma 1: Let Ω be a Gaussian random variable such that
Ω ∼ N (mΩ, σ

2
Ω). Then:

E(cos(Ω)) = cos(mΩ) e−σ
2
Ω/2

E(sin(Ω)) = sin(mΩ) e−σ
2
Ω/2

Proof: Using the explicit expression of the character-
istic function of a Gaussian variable yields:

E(cos(Ω) + i sin(Ω)) = E(eiΩ) = eimΩ−σ2
Ω/2

The real and imaginary part of this expression yield the
desired result.

Under the assumption that Var(dx) = Var(dy) = σ2
dx, and

noting Var(ψe) = σ2
ψ :

Cov(F (dx, dy, ψe)) =

[
a c
c b

]
With :

a = σ2
dx + E(dx)2Var(cosψe) + E(dy)2Var(sinψe)

− E(dx)E(dy) sin (2E(ψe))e
−σ2

ψ (1− e−σ
2
ψ )

b = σ2
dx + E(dx)2Var(sinψe) + E(dy)2Var(cosψe)

+ E(dx)E(dy) sin (2E(ψe))e
−σ2

ψ (1− e−σ
2
ψ )

c =
1

2
sin (2E(ψe))e

−σ2
ψ (1− e−σ

2
ψ )(E(dx)2 − E(dy)2)

− E(dx)E(dy) cos (2E(ψe))e
−σ2

ψ (1− e−σ
2
ψ )

Therefore, under the assumption that the variance of the
position error is similar from one vehicle to another, and
along North and East axes (σ2

x = σ2
y = σ2

pos = 1
2σ

2
dx), and

that the maximal distance between the ego-vehicle and an
obstacle is dmax, we propose the following upper bound for
the position error covariance matrix:

a ≤ 2σ2
pos + 2d2

max(1− e−σ
2
ψ ),

b ≤ 2σ2
pos + 2d2

max(1− e−σ
2
ψ ),

c ≤ 3

2
d2
max(1− e−σ

2
ψ/2).

B. Velocity

Equation (2) yields :[
vx
vy

]ego
t

= G
(

(dx, dy, dvx, dvy, ψe, ψ̇e)
UTM

)
with G(dx, dy, dvx, dvy, ψe, ψ̇e) equal to :[

cosψe(dvx + ψ̇edy) + sinψe(dvy − ψ̇edx)

cosψe(dvy − ψ̇edx)− sinψe(dvx + ψ̇edy)

]
Using the independence of the input variables, it
is possible to express the covariance matrix of
G(dx, dy, dvx, dvy, ψe, ψ̇e) as a function of the first
and second order moments of the input variables. Due to
space limitations, we only give bounds for the elements of
this matrix. Similarly to Section (VI-A), these bounds tend
to 0 as the variances of the input variables tend to 0.
Lemma 2: Let X and Y be two independent random vari-
ables with means mX and mY and variances σ2

X and σ2
Y . Let

Ω be a Gaussian random variable N (mΩ, σ
2
Ω) independent

of X,Y . Let Z = cos(Ω)X + sin(Ω)Y . Then :

Var (Z) ≤ σ2
X + σ2

Y + (1− e−σ
2
Ω)(|mX |+ |mY |)2

Proof: Using Lemma 1, we have the following bound:

Var(Z) ≤ σ2
X + σ2

Y +m2
XE(cos2(Ω)) +m2

Y E(sin2(Ω))

− e−σ
2
Ω(m2

X cos2(mΩ) +m2
Y sin2(mΩ))

−mXmY sin(2mΩ)e−σ
2
Ω(1− e−σ

2
Ω)

Using the identity cos2(Ω) = 1+2 cos(Ω)
2 and again Lemma 1,

we get :

m2
XE(cos2(Ω))− e−σ

2
Ωm2

X cos2(mΩ) ≤ m2
X(1− e−σ

2
Ω)

The same identity holds with X replaced with Y and cos
replaced with sin. This gives the desired bound.

Let us denote the mean and variance of a Gaussian variable
Z respectively by mZ and σ2

Z . Under the assumption that
Var(dvx) = Var(dvy) = 2σ2

vel and Var(dx) = Var(dy) =
σ2
dx, we have :

Var(dvx + ψ̇dy) = 2σ2
vel + σ2

dxσ
2
ψ̇

+m2
ψ̇
σ2
dx +m2

dyσ
2
ψ̇

Var(dvy − ψ̇dx) = Var(dvx + ψ̇dy)

Let
[
a c
c b

]
be the covariance matrix of

[
vx
vy

]ego
t

. Using

the previous results, the upper bounds for a, b and c are:

a, b ≤ 4(σ2
vel + σ2

posσ
2
ψ̇

+ ψ̇2
maxσ

2
pos) + 2d2

maxσ
2
ψ̇
,

+ 4(1− e−σ
2
ψ )(vmax + dmaxψ̇max)2

c ≤
√
a2
√
b2,

where vmax is an upper bound for dvx and dvy and ψ̇max
is an upper bound for ψ̇.



C. Yaw angle

The variance of the relative yaw estimate ψegot is trivially
derived from equation (3). Considering that the heading error
covariance is similar in the target and ego-vehicle (σ2

ψUTMt
=

σ2
ψUTMe

= σ2
ψ), we get:

Var(ψegot ) = 2σ2
ψ

D. Results

Using the analytic upper bounds for the covariance matrices
of the generated ground truth position, speed and yaw angle
data calculated in the previous sections, we can estimate the
precision of the data generated using the process described
in section V.
The following values will be used :

σpos 0.02 m

σvel 0.02 m.s−1

σψ 1.75.10−3 rad

dmax 50 m

vmax 36 m.s−1

ψ̇max 1 rad.s−1

They are representative of the performance of our positioning
system, of the distance at which obstacles become truly
observable, and of the maximal dynamics of the vehicle in
typical use cases.
These values, when injected in the upper bounds of the
position and velocity covariance matrices yield the following
results :

‖Cov((x, y)egot )‖1/2F ≤ 0.12 m

‖Cov((vx, vy)egot )‖1/2F ≤ 0.30 m.s−1

These values represent the root mean square error on the
position and velocity information yielded by our ground
truth generation process. We stress the fact that they are
obtained by taking extreme values for all variables describing
the dynamics of both vehicles, which can never actually be
encountered simultaneously in real life situations.

VII. DATA VISUALISATION

In this section some figures of the acquired data are given.
These data were collected during a tracking scenario on a
track located in Versailles France. The track has approxima-
tive length of 3.2 km and is represented in Figure 3 together
with the starting and arriving points of the vehicles.
The following figures show temporal variations of the relative
positions x, y, relative velocities vx, vy and orientation ψ of
the tracked vehicle, as estimated by our LIDAR’s firmware
(in the ego vehicle frame), and the corresponding ground
truth values deduced from RTK sensors as explained in the
previous section. All these quantities are in the International
System of Units.
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VIII. APPLICATION TO THE EVALUATION OF PERCEPTION
ALGORITHMS

This section gives some potential applications of ground
truth data to the conception and evaluation of perception
algorithms.
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A. Clustering Lidar raw data:

Robust obstacle detection using sensors such as Lidar is a
key point for the development of autonomous vehicles. Lidar
performance mainly depends on its low level processing (the
clustering methods used for its raw data, estimations of the
bounding boxes, velocities of the representative points of the
clusters, etc.). The methodology presented in the paper can
be used to evaluate the performance of the main outputs of
a Lidar raw data clustering algorithm.

B. Lidar-Radar-Camera Fusion:

Lidars, Radars and Cameras are complementary sensors.
Lidars are very accurate on obstacles positions and less
accurate on their velocities. On the other hand, Radars are
more precise on obstacles velocities and less precise on
their positions. Cameras provide images and can be used
to perform classification tasks. Fusion between these sensors
aims at combining the advantages of each sensor to provide
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permanent and more robust data (see for example [7], [8],
[9], [10], [11]). In particular, the recent work [7] proposes a
Lidar-Radar fusion algorithm with evaluation on the database
generated in the present paper.

C. Dynamic models and prediction of obstacles motions:

Robust tracking of obstacles detected by sensors such as
Lidars, Radars and Cameras is crucial for a good func-
tioning of autonomous cars. Kalman filters are among the
most used methods to track obstacles. These methods are
usually coupled to preset models such as constant velocity,
acceleration or curvature. Ground truth allows to learn true
dynamic models of obstacles using statistics, neural networks
etc. The learnt models are to be compared with the preset
ones.

IX. SUMMARY AND FUTURE DEVELOPMENTS

In this paper, we have presented a method for automatically
generating sets of ground truth data to support advances
in the field of obstacle detection and tracking. We hope
this methodology will help contributors of this area of
research to challenge their approaches, and contribute to
the development of robust and reliable algorithms. In the
future, we intend to propose a complete benchmark to unify
the usage of this dataset and the performance estimation of
obstacle detection and tracking techniques.
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Abstract— This paper presents an autonomous navigation 
system using only visual sparse map. Although a dense map 
provides detail information of environment, most information of 
the dense map is redundant for autonomous navigation. In 
addition, the dense map demands the high cost for storage, 
transmission and management. To tackle these challenges, we 
propose the autonomous navigation using a visual sparse map. 
We leverage visual Simultaneous Localization and Mapping 
(SLAM) to generate the visual sparse map and localize a robot 
in the map. Using the robot position in the map, the robot 
navigates by following a reference line generated from the visual 
sparse map. We evaluated the proposed method using two robot 
platforms in indoor environment and outdoor environment. 
Experimental results show successful autonomous navigation in 
both environments. 

I. INTRODUCTION 

Autonomous navigation is an essential component for a 
robot to reach a goal location. For autonomous navigation, 
dense maps have been typically used [4 - 15]. However, there 
are a couple of challenges of dense map based autonomous 
navigation. First, most points of a dense map are redundant for 
localization and navigation. Second, the dense map needs to 
be updated periodically if environment changes. Thus, high-
cost map management and computation follows and a high 
transmission bandwidth is required to update the dense map. 
Third, a large memory is needed to store the dense map as the 
map size increases. 

To tackle these challenges of dense map based autonomous 
navigation, we propose an autonomous navigation system 
using visual sparse map as shown in Fig. 1. The autonomous 
navigation system using visual sparse map has two phases; 1) 
map generation and 2) autonomous navigation. 

 
Figure 1.  Overview of autonomous navigation using visual sparse map 

In the map generation phase, color images and depth images 
from a RBG-D camera are used to generate a visual sparse map 
by Simultaneous Localization and Mapping (SLAM). As the 
visual sparse map includes only visual feature points and 
keyframes as shown in Fig. 2, the map size can be reduced 
considerably. Each visual feature point has the 3D position of 
the visual feature point. Each keyframe has 3D position and 
3D orientation.  
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Figure 2.  Example of visual sparse map (Datase I). Blue points represent 
the keyframe of the map. Green lines represent the visibility among 
keyframes. Black points represent visual feature points. 

In the autonomous navigation phase, only color images are 
used for localization. A SLAM algorithm computes the robot 
pose using a color image and the visual sparse map. Using the 
robot pose and keyframes in the visual sparse map, the 
waypoint follower computes a translation velocity and a 
angular velocity to enable the robot to follow the reference 
line, a list of keyframes in the map. 

This paper is organized as follows. Section II reviews 
related works. Section III briefly describes the SLAM 
algorithm. Section IV explains the waypoint follower. Section 
V presents experimental results and the paper is concluded in 
Section VI. 

II. RELATED WORK 

A couple of maps have been introduced for autonomous 
navigation. Metric map is one of the popular maps for 
autonomous navigation. In a metric map, positions of 
landmarks or objects in an environment are stored in a map 
with respect to a global coordinate system. Metric map can be 
classified by continuous map and discrete map [1]. While the 
former represents the environment using lines or polygons [2, 
3], the latter represents the environment using cells, points, 
Surfel, Voxel, and features. Discrete map can be classified as 
dense map and sparse map according to map density. Cell, 
point, Surfel and Voxel have been used for dense map and 
features have been used for sparse map.  

Occupancy grid map is a typical map using cells for 
autonomous navigation [4 - 6]. Each cell of an occupancy grid 
map represents whether a space is occupied by objects or not. 
A path for navigation is planned on the occupancy grid map. 
However, the occupancy grid map typically represents the 
environment in 2D space. For 3D space, a point cloud map has 
been used [6 - 10]. As the point cloud map densely represents 
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the environment as many points, the size of the point cloud 
substantially increases as the map area grows. To reduce the 
size of point cloud map, Surfel [11, 12] and Voxel [4, 13 - 15] 
are introduced. However, Surfel and Voxel still need high 
computational cost for post-processing for generating Surfel 
and Voxel. In addition, most information of the dense map is 
redundant for autonomous navigation. Thus, a sparse map has 
been proposed. 

The sparse map can be represented as features (e.g. visual 
feature descriptors) [16 - 21]. As each visual features can be 
generated from corners or blobs in the image, the number of 
visual feature points is much smaller than the number of points 
in the point cloud map. However, most works on sparse map 
have focused on mapping and localization. There has been a 
little attention for autonomous navigation using a sparse map 
[29]. Although  [29] uses a spare map generated by Harris 
corner detector, it uses a point cloud map not visual feature 
descriptors for a map. Thus, this paper presents the 
autonomous navigation system using visual sparse map.   

III. MAPPING AND LOCALIZATION 

We leverage ORB-SLAM2 [22] for building a visual 
sparse map and localization. This section gives the brief 
summary of mapping and localization of ORB-SLAM2 and 
additional methods we implement for the proposed system. 
Further details of ORB-SLAM2 can be found at [22].  

A. Mapping 
ORB-SLAM2 consists of three modules; 1) Tracking, 2) 

Local mapping, and 3) Loop closing. When a new image is 
captured, the tracking module checks if a local map is 
available. If there is no map available, a local map is 
initialized. If the local map is available, the tracking module 
predicts a relative pose between the new image and the local 
map using the motion model. If the motion model is not 
available, the relative pose is predicted using visual odometry 
with respect to the last keyframe.  If neither motion model nor 
visual odometry predicts the relative pose, relocalization 
predicts the relative pose. Relocalization finds similar 
keyframes using visual vocabulary in the map and estimates 
the relative pose to the most similar keyframe. If the relative 
pose is successfully estimated by motion model, visual 
odometry or relocalization, the relative pose is refined with the 
local map. If the relative pose of the new image is successfully 
computed, the tracking module determines if the new image is 
a new keyframe. If the number of matched points between the 
current image and the last keyframe is smaller than a threshold, 
the new image is determined as the new keyframe. 

If a new keyframe is generated by the tracking module, the 
new keyframe is added to the local map. Given the new 
keyframe, the local map module optimizes the local map using 
a local Bundle Adjustment (BA). To limit the size of the local 
map, the local map deletes redundant keyframes in order to 
maintain a compact local map. If a keyframe has 90% of the 
map points which has been seen in at least other three 
keyframes, the keyframe is determined as a redundant 
keyframe and deleted in the local map. 

Given the new keyframe, the loop closing module checks if 
the new keyframe is the revisited image. The loop closing 
module recognizes the revisited place using a place 

recognition database consisting of visual vocabulary. If the 
new keyframe is found in the visual vocabulary, the loop 
closing module optimizes the entire map using pose graph 
optimization and global BA. Otherwise, the visual vocabulary 
of the new keyframe is added to the place recognition database. 

As ORB-SLAM2 does not provide a method to save and 
load the map into a file, we implemented the method to save 
and load the map. The visual sparse map generated by ORB-
SLAM2 contains visual feature points, keyframes and a pose 
graph. Each visual feature point has the index and 3D position 
in the map. Each keyframe has the index, 3D pose and visual 
feature descriptors. The pose graph represents connectivity 
among keyframes using vertices and edges. In the pose graph, 
vertices represent keyframes and edges represent visible 
connection among keyframes.   

B. Localization 
Given the map, only the tracking module is used in the 

localization mode. The local map and the map database is not 
updated in the localization mode. In addition, the place 
recognition database is not updated. Whenever the new image 
is captured, the tracking module computes the relative pose of 
the camera with respect to the origin of the map. The camera 
pose !"	is composed of the camera position [%, ', (] and 
orientation [*+,,, -./0ℎ, '23] in the map. The coordinate of 
the map locates at the pose of the first keyframe in the map.  

IV. WAYPOINT FOLLOWER 

Using the camera pose and a reference line from the visual 
sparse map, the waypoint follower module computes the 
translation velocity and the angular velocity to control the 
robot. We assume !"  is identical to the robot pose !4 because 
the reference line is generated with assuming !"  is identical to  
!4. When a new image is captured, !4 is computed by the 
tracking module of ORB-SLAM2.  

The reference line is generated from the map. The reference 
line is represented as the list of the keyframe positions 

                       54 = {!8, !9 … , !;<9, !;}                       (1) 

where !; = [%, ', (] is the >?@ keyframe position in the map. 

If !4 is successfully computed by the tracking module, the 
nearest keyframe !A from !4 is founded in 54. A keyframe 
ahead with a pre-defined distance from !A is determined as a 
temporary target waypoint !B . Transitional difference CD and 
angular difference ED between !4 and !B  can be  computed by 

                                    CD = 	‖CB −	C4‖                               (2) 

                                    ED = 	 |EB −	E4|                               (3) 

Where CB = [%, ', (] and C4 = [%, ', (] are robot positions at 
the target waypoint and the current position respectively. EB  
and E4 are orientations of the robot at target waypoint and 
current position respectively in 2D space. 

To control the robot, we computes the translational velocity 
IB  and the rotational velocity IJ by 
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where LM is the desired maximum translational speed of the 
robot. E@ is a threshold of angular difference for reducing IB .  
If ED is larger than E@, IB  is reduced by half.  ] is an empirical 
coefficient for computing IJ using ED. 

V. EXPERIMENTAL RESULTS 

We evaluated the proposed autonomous navigation system 
using Robotis Turtlebot 2 [23] with Orbbec Astra Pro [24] in 
indoor environment and Clearpath Husky [25] with Logitech 
C920 Pro [26] in outdoor environment.  

A. Experimental platforms 

 We installed one RGB-D camera, Orbbec Astra Pro, on 
the Turtlebot in indoor environment as shown in Fig. 3. 
Orbbec Astra Pro has a resolution of 640 ´ 480 pixels in 
both a color image and depth image. 

 
Figure 3.  Robotis Turtlebot 2 with Orbbec Astra Pro for indoor 
environment 

As the RGB-D camera is not working in outdoor 
environment, we use Logitech C920 Pro instead of Orbbec 
Astra Pro. We use only 640 ´ 480 color images for both 
mapping and localization in outdoor environment. In 
addition, we use Clearpath Husky for safe and robust 
mobility in outdoor environment as shown in Fig. 4. The 
autonomous navigation systems in both robot platforms are 
built on ROS [27]. 
 

 
Figure 4.  Clearpath Husky with a Logitech C920 for outdoor environment 

B. Localization accuracy with Map data 
We evaluated localization accuracy with map data before 

evaluating autonomous navigation. We use the same map data 
for evaluating localization accuracy. However, we use only 
color images for localization while both color images and 
depth images are used for building a map in indoor 
environment. 

 

     
                     (a)                                  (b)                                   (c) 
 

        
                    (d)                                   (e)                                 (f) 

Figure 5.  Snapshots of offices and hallway for datasets in indoor 
environment. (a) office A, (b) hallway between office A and elevator, (c) 
elevator at the end of hallway, (d) glass door to office B, (e) narrow gate to 
office B and (f) office B. 

We collected three datasets in office environment as shown 
in Fig. 5. The first dataset is collected in office A which 
includes desks, chairs and shelves. The robot starts near the 
first shelf and returns to the start position. The second dataset 
is collected in Office A and a hallway. The robot starts from 
Office A, runs along the hallway and stops in front of an 
elevator at the end of the hallway. The third dataset is 
collected in Office A, the  hallway and Office B. The robot 
starts from Office A, runs along the hallway and stops at 
Office B. There is a 1 meter-wide narrow gate between the 
hallway and Office B. Table I shows the path length and 
environment of each dataset. Fig. 6 shows maps and 
trajectories of dataset II and III. The map and trajectory of 
Dataset I is shown in Fig. 2.  

TABLE I.  DATASETS IN INDOOR ENVIRONMENT 

Dataset Length [m] Environment 

I 17.41 Office A 
II 41.38 Office A, hallway 
III 49.40 Office A and B, hallway 

 
 



  

  
               (a) Dataset II                                  (b) Dataset III 

Figure 6.  Maps and trajectories in Dataset II and III  

Table II shows the localization error with map datasets. 
Although the same map dataset is used for evaluating 
localization accuracy, the average Root Mean Square Error 
(RMSE) is 0.031 meter because ORB-SLAM2 randomly 
generates visual features from a color image for localization. 
However, the average RMSE is acceptable for autonomous 
navigation because the minimum width of path is 1 meter. 
Fig. 7 shows map and localization trajectories on dataset I. As 
RMSE is 0.036 meter, the localization trajectory overlays the 
map trajectory. 

TABLE II.  LOCALIZTION RMSE WITH MAP DATA 

Dataset RMSE [m] 

I 0.036 
II 0.03 
III 0.03 

Average 0.031 
 

We also evaluated localization accuracy in environment 
changes because the environment can be changed after 
generating the map. We changed about 30% of objects in the 
same place in dataset I and collected a new dataset for 
evaluating localization. Given the map generated from dataset 
I, localization RMSE is 0.116 ± 0.111 meter [mean ± standard 
deviation]. Although environment changes increase 
localization RMSE slightly, the RMSE in environment 
changes is still acceptable for autonomous navigation.  
 

TABLE III.  LOCALIZTION RMSE IN AUTONOMOUS NAVIGATION 

Dataset RMSE [m] 

I 0.065 ± 0.045 

II 0.166 ± 0.127 
III 0.117 ± 0.075 

Average 0.116 ± 0.082 
 
 

 
Figure 7.  Map and localization trajectories with Dataset I. Red line 
represents the map trajectory and blue line represents the localization 
trajectory. 

C. Localization accuracy in autonomous navigation 
We evaluated localization error when the robot runs in the 

autonomous navigation phase. The waypoint follower enables 
the robot to follow a reference line as close as possible. We 
compute the localization error by finding the closest waypoint 
from the estimated position by ORB-SLAM2 localization as 
shown in Table III. 

 

 
               (a) Dataset I                       (b) Dataset II            (c) Dataset III 

Figure 8.  Map and localization trajectories in autonomous navigation. Red 
lines represent trajectories of maps and bule lines represent trajectories of 
localization. 

Experimental results show that: 1) the average localization 
RMSE is 0.116 ± 0.082 meter [mean ± standard deviation]; 
2) the robot successfully navigates in three different 
environments even there are challenge environments such as 
a feature-spare long hallway (length: 25 meter) and the 1 
meter-wide narrow gate; 3)  there are relatively larger error 
when the robot turns; 4) the feature sparse long hallway 
increases localization error. Fig. 8 shows map and localization 
trajectories in autonomous navigation. 

D. Environment changes in outdoor environment 
We evaluated localization error with environment changes 

in outdoor environment. Datasets are collected along the 



  

sidewalk around JD.com office, Santa Clara, California, 
USA. The path consists of straight, curved and winding 
sidewalks under trees as shown in Fig. 9.   
 

    
                (a)                        (b)                         (c)                        (d) 

Figure 9.  Snapshots of outdoor environment. (a) start position, (b) curved 
sidewalk, (c)  winding sidewalk and (d) goal position.                         

The map dataset is collected at 15:04 on December 13, 
2017.  The path length of the map is 114.70 meter. We 
collected six datasets as shown in Table IV: 1) dataset IV to 
VII are collected at different time in sunny days; 2) dataset 
VIII is collected in a cloudy day;  3) dataset IX is collected in 
a rainy day. 

TABLE IV.  LOCALIZATION ANAYSIS WITH ENVIRONMENT CHANGES IN 
OUTDOOR ENVIRONMENT 

Dataset Weather Date/Time 
Failure  

ratio 

Failure time [sec] 

Max Mean Std. 

IV Sunny 2018-01-19-09-57-51 48% 36.15 1.55 4.29 

V Sunny 2018-01-11-14-12-09 10% 0.57 0.22 0.13 

VI Sunny 2018-01-12-15-32-45 3% 0.33 0.07 0.06 

VII Sunny 2018-01-12-16-51-56 12% 2.40 0.44 0.52 

VIII Cloudy 2018-01-17-11-39-49 17% 3.43 0.99 1.30 

IX Rainy 2018-01-03-11-40-42 12% 9.80 0.55 1.30 

 
We use two metric, failure ratio and failure time, for 

evaluating localization performance. Failure ratio is the ratio 
of localization failure over all localization tries. Failure time 
is the time from the localization failure to the next localization 
success. As the dataset is collected by manual driving, 
localization accuracy is not evaluated.  

As shown in Table IV, experimental results show that: 1) 
dataset VI has the smallest failure ratio because dataset VI is 
collected at similar time and weather to the map; 2) dataset IV 
has the largest failure ratio because the illumination of dataset 
IV is quite different from the map due to the position of the 
sun; 3) failure time has proportional relationship with failure 
ratio in sunny day but the proportional relationship between 
failure ratio and failure time is not valid in the rainy day and 
the cloudy day; 4) in the rainy day, failure time is larger than 
the cloudy day while failure ratio is smaller than the cloudy 
day. Fig. 10 shows trajectories of map and localization in 
dataset IV, VI, VIII and IX. 
 

  
                  (a) dataset IV                                          (b) dataset VI 

 
                   (a) dataset VIII                                       (d) dataset IX 

Figure 10.  Map and localization trajectories with environment changes in 
outdoor environment. Red lines represent trajectories of maps and bule stars 
represent positions of successful localization. 

 
E. Autonomous navigation in outdoor environment 

As mentioned in the previous section,  ORB-SLAM2 is not 
robust at different time and different weather in outdoor 
environment. Thus, we evaluated autonomous navigation at 
15:02 on January 11, 2018, a sunny day, which is similar time 
and weather to the map.  

Experimental result shows the robot ran successfully on the 
sidewalk and localization RMSE is 0.246 ± 0.151 meter 
[mean ± standard deviation]. The width of sidewalk is about 
1.5 meter. Fig. 11 shows trajectories of map and localization 
in autonomous navigation. We note that the robot is rarely 
localized in the curved sidewalk because most visual features 
come from the distant objects.  
 

 
Figure 11.  Map and localization trajectories in autonomous navigation in 
outdoor environment. Red line represents trajectories of map and bule stars 
represents positions of successful localization. 

VI. CONCLUSION 
We proposed an autonomous navigation system using only 



  

visual sparse map for indoor environment and outdoor 
environment. ORB-SLAM2 is used for mapping and 
localization. Waypoint follower enables the robot to follow 
the reference line. We evaluated the proposed system in 
indoor environment and outdoor environment using two robot 
platforms.  

Experimental results show that: 1) localization errors with 
the map datasets are acceptable for the robot to run 
autonomously indoor environment; 2) the robot successfully 
ran in three indoor environments including environment 
changes; 3) environment changes in outdoor apparently 
increases  localization failure ratios; 4) the robot successfully 
ran in similar time and weather to the map in outdoor 
environment.  

We will investigate for robust localization with 
environment changes in outdoor environment. In addition, 
sensor fusion with  additional sensors such as IMU, GPS and 
Lidar will be investigated. We will also extend the proposed 
system by including obstacle avoidance and path planning. 
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Socially Invisible Navigation for Intelligent Vehicles
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Abstract— We present a real-time, data-driven algorithm to
enhance the social-invisibility of autonomous vehicles within
crowds. Our approach is based on prior psychological research,
which reveals that people notice and–importantly–react nega-
tively to groups of social actors when they have high entita-
tivity, moving in a tight group with similar appearances and
trajectories. In order to evaluate that behavior, we performed
a user study to develop navigational algorithms that minimize
entitativity. This study establishes mapping between emotional
reactions and multi-robot trajectories and appearances, and
further generalizes the finding across various environmental
conditions. We demonstrate the applicability of our entitativity
modeling for trajectory computation for active surveillance
and dynamic intervention in simulated robot-human interaction
scenarios. Our approach empirically shows that various levels
of entitative robots can be used to both avoid and influence
pedestrians while not eliciting strong emotional reactions, giving
multi-robot systems socially-invisibility.

I. INTRODUCTION

As robots have become more common in social environ-
ments, people’s expectations of their social skills have
increased. People often want robots to be more socially
visible–more salient social agents within group contexts [17].
This social visibility includes being more capable of drawing
the attention of humans and evoking powerful emotions [21].
Cases of social visibility include tasks in which robots must
work collaboratively with humans. However, not all contexts
require socially visible robots. There are situations in which
robots are not used to collaborate with people but instead
used to monitor them. In these cases, it may be better for
robots to be socially invisible.

Social invisibility refers to the ability of agents to escape
the attention of other people. For example, psychological
research reveals that African Americans often go unnoticed
in social environments[10], especially reactions related to
threat. Evolution has attuned the human brain to respond
rapidly to threatening stimuli, thus the less a person–or
a robot–induces negative emotion, the less likely it is to
be noticed within a social milieu. The social invisibility
conferred by not inducing emotion is especially important in
surveillance contexts in which robots are expected to move
seamlessly among people without being noticed. Noticing
surveillance robots not only makes people hide their behav-
ior, but the negative emotions that prompt detection may
also induce reactance [8], which may lead to people to lash
out and harm the robots or even other people [11] Research

1Authors from the Department of Computer Science, University of North
Carolina at Chapel Hill, USA

2Authors from the Department of Psychology and Neuroscience, Univer-
sity of North Carolina at Chapel Hill, USA

reveals a number of ways of decreasing negative emotional
reactions towards social agents [9], but one element may
be especially important for multi-robot systems: entitativity
[12], “groupiness”) is tied to three main elements, uniformity
of appearance, common movement, and proximity to one
another. The more agents look and move the same, and the
closer agents are to each other, the more entitative a group
seems, which is why a marching military platoon seems more
grouplike than people milling around a shopping mall.

The threatening nature of groups means that the more entita-
tive (or grouplike) a collection of agents seem, the greater the
emotional reaction they induce and the greater their social
visibility. As maximizing the social invisibility of collections
of agents requires minimizing perceptions of threat, it is im-
portant for multi-robot systems to minimize their entitativity.
In other words, if multi-robots systems are to move through
groups without eliciting negative reactions [16], they must
seem more like individuals and less like a cohesive and
coordinated group.

Main Results: We present a novel, real-time planning
algorithm that seeks to optimize entitativity within pedestrian
environments in order to increase socially-invisible navi-
gation (by minimizing negative emotional reactions). First,
we conduct a user study to empirically tie trajectories of
multi-robot systems to emotional reactions, revealing that–as
predicted–more entitative robots are seen as more unnerving.
Second, we generalize these results across a number of
different environmental conditions (like lighting). Third, we
extract the trajectory of each pedestrian from the video and
use Bayesian learning algorithms to compute their motion
model. Using entitativity features of groups of robots and
the pedestrians, we perform long-term path prediction for
the pedestrians. To determine these entitativity features we
establish a data-driven entitativity mapping (EDM) between
the group robot motion and entitativity measure from an
elaborate web-based perception user study that compares the
participants’ emotional reactions towards simulated videos
of multiple robots. Specifically, highly entitative collections
of robots are reported as unnerving and uncomfortable. The
results of our mapping are well supported by psychology
literature on entitativity [33]. Our approach is an extension
of the approach presented in [5]. We refer the readers to read
[5] for the technical details.

We highlight the benefits of our data-driven metric for use
of multiple robots for crowd surveillance and active interfer-
ence. We attempt to provide maximally efficient navigation
and result in maximum social invisibility. In order to pursue
different sets of scenarios and applications, we highlight the



Fig. 1: Multi-robot navigation systems (vehicles (cx) marked by yellow trajectories) navigate amongst crowds. Our novel
navigation algorithm takes into account various levels of physical and social constraints and use them for: (a) Active
Navigation in the presence of pedestrians (teal trajectories) while moving through them with no collisions; (b) Dynamic
intervention where the robots try to influence the crowd behavior and movements and make the pedestrians avoid the area
marked by a dark blue overlay.

performance of our work in multiple surveillance scenarios
based on the level of increasing social interaction between
the robots and the humans.

Our approach has the following benefits:

1. Entitativity Computation: Our algorithm accurately pre-
dicts emotional reactions (entitativity) of pedestrians towards
robots in groups.

2. Robust computation: Our algorithm is robust and can
account for noise in pedestrian trajectories, extracted from
videos.

3. Fast and Accurate: Our algorithm involves no pre-
computation and evaluates the entitativity behaviors at in-
teractive rates.

The rest of the paper is organized as follows. In Section 2,
we review the related work in the field of psychology and
behavior modeling. In Section 3, we give a background on
quantifying entitativity and introduce our notation. In Section
4, we present our interactive algorithm, which computes
the perceived group entitativity from trajectories extracted
from video. In Section 5, we describe our user study on the
perception of multiple simulated robots with varying degrees
of entitativity.

II. RELATED WORK

Human beings are inherently social creatures, making inter-
acting with and perceiving others an important part of the
human experience. Complex interactions within brain regions
work harmoniously to navigate the social landscape [36].
Interesting patterns emerge when attempting to understand
how humans view groups of people.

A. Psychological Perspectives on Group Dynamics

A long-standing tenet of social psychology is that people’s
behaviors hinge upon their group context. Importantly, the
impact of social dynamics is highly influenced by group

contexts [39]–often for the worse. Decades of psychological
research reveals that people interact more negatively with
groups than with individuals [33], expressing more hostility
towards and feeling more threatened by a group than an
individual [16].

B. Human-Aware Robot Navigation

Many approaches have been applied towards the navigation
of socially-aware robots [30], [25], [29], [19], [26], [24],
[7], [41], [32]. This type of navigation can be generated by
predicting the movements of pedestrians and their interac-
tions with robots [26]. Some algorithms use probabilistic
models in which robots and human agents cooperate to
avoid collisions [40]. Other techniques apply learning models
which have proven useful in adapting paths to social conven-
tions [27], [31], [34], [14]. Yet other methods model personal
space in order to provide human-awareness [1]. This is one
of many explicit models for social constraints [38], [23],
[13]. While these works are substantial, they do not consider
psychological constraints or pedestrian personalities.

C. Behavior Modeling of Pedestrians

There is considerable literature in psychology, robotics, and
autonomous driving on modeling the behavior of pedestrians.
Many rule-based methods have been proposed to model
complex behaviors based on motor, perceptual, behavioral,
and cognitive components [37], [15]. There is extensive
literature focused on modeling emergent behaviors [35].
Other techniques have been proposed to model heteroge-
neous crowd behaviors based on personality traits [6], [2],
[22], [3].

III. SOCIAL INTERACTION

In this section, we present our interactive algorithm for
performing socially-invisible robot navigation in crowds.
Our approach can be combined with almost any real-time
pedestrian tracker that works on dense crowd videos. Figure



Fig. 2: Our method takes a live or streaming crowd video as an input. We extract the initial set of pedestrian trajectories
using an online pedestrian tracker. Based on the level of social invisibility we want to achieve, we compute motion model
parameters of the robot group using a data-driven entitativity mapping (which we compute based on a user-study(Section
IV)).

2 gives an overview of our approach. Our method takes a
live or streaming crowd video as an input. We extract the
initial set of pedestrian trajectories using an online pedestrian
tracker. Based on the level of social invisibility we want to
achieve, we find motion model parameters of the robot group
using a data-driven entitativity mapping (which we compute
based on a user-study(Section IV)).

A. Entitativity

Entitativity is the perception of a group comprised of in-
dividuals as a single entity. People sort others into entities
like they group together objects in the world, specifically by
assessing common fate, similarity, and proximity [12]. When
individuals are connected by these properties, we are more
likely to perceive them as a single entity. Larger groups are
more likely to be perceived as entities, but only when there
is similarity among the groups individual members [28].

Entitativity is the extent to which a group resembles a
single entity versus of collection of individuals; in other
words, it is the groups “groupiness” or “tightness” [12], [20].
Overall, entitativity is driven by the perception of three main
elements:

1. Uniformity of appearance: Highly entitative groups have
members that look the same.

2. Common movement: Highly entitative groups have mem-
bers that move similarly.

3. Proximity: Highly entitative groups have members that
are very close to each other.

B. Notation and Terminology

The motion model is the local navigation rule or scheme that
each agent uses to avoid collisions with other agents or obsta-
cles and has a group strategy. The parameters of the motion
model is denoted P ∈ R6. We based our model on the RVO
velocity-based motion model [42]. In this model, the motion
of each agent is governed by these five individual pedestrian

characteristics: Neighbor Dist, Maximum Neighbors, Plan-
ning Horizon, (Radius) Personal Space, and Preferred Speed
and one group characteristic: Group Cohesion. We combine
RVO with a group navigation scheme in Section 4.2. In our
approach, we mainly analyze four parameters (GP ∈ R4):
Neighbor Dist, (Radius) Personal Space, Group Cohesion,
and Preferred Speed.

Trajectories extracted from real-world scenarios are likely to
have incomplete tracks and noise [18]. Therefore, the state of
each agent is computed using a Bayesian inference technique
in order to compensate for such errors.

Entitativity Metric: Prior research in psychology takes
into account properties such as uniformity, common move-
ment, and proximity, and models the perception of entitativity
using the following 4-D feature vector:

E =


Friendliness
Creepiness
Comfort
Unnerving

 (1)

Friendliness, Creepiness, Comfort and Unnerving (ability to
unnerve) are the emotional impressions made by the group on
observers. Using Cronbach’s α (a test of statistical reliability)
in pilot studies we observed that the parameters were highly
related with α = 0.794, suggesting that they were justifiable
adjectives for socially-invisible navigation.

IV. DATA-DRIVEN ENTITATIVITY MODEL

We performed a user study to understand the perception of
multiple pedestrians and vehicles with varying degrees of
entitativity. For the details of the user study, we refer the
readers to read [5].

Given the entitativity features obtained using the psychology
study for each variation of the motion model parameters, we
can fit a generalized linear model to the entitativity features
and the model parameters. We refer to this model as the
Data-Driven Entitativity Model. For each video pair i in the
gait dataset, we have a vector of parameter values and a



vector of entitativity features Ei. Given these parameters and
features, we compute the entitativity mapping of the form:Friendliness

Creepiness
Comfort
Unnerving

 = Gmat ∗


1
14
(Neighbor Dist− 5)
1
3.4

(Radius− 0.7)
1
2
(Pref. Speed− 1.5)

1
1.8

(Group Cohesion− 0.5)


(2)

We fit the matrix Gmat using generalized linear regression
with each of the entitativity features as the responses and
the parameter values as the predictors using the normal
distribution:

Gmat =


−1.7862 −1.0614 −2.1983 −1.7122
1.1224 1.1441 1.7672 −0.2634
−1.0500 −1.2176 −2.1466 −0.9220
1.1948 1.7000 0.9224 0.3622

 .

(3)

We can make many inferences from the values of Gmat. The
negative values in the first and third rows indicate that as the
values of motion model parameters increase, the friendliness
of the group decreases. That is, fast approaching and cohesive
groups appear to be less friendly. This validates the psycho-
logical findings in previous literature. One interesting thing
to note is that creepiness increases when group cohesion
decreases. When agents/pedestrians walk in a less cohesive
group, they appear more creepy but they may appear less
unnerving.

We can use our data-driven entitativity model to predict
perceived entitativity of any group for any new input video.
Given the motion parameter values GP for the group, the
perceived entitativity or group emotion GE can be obtained
as:

GE = Gmat ∗GP (4)

A. Socially-Invisible Vehicle Navigation

To provide socially-invisible navigation, we use the enti-
tativity level of robots. We control the entitativity level
depending on the requirements of the social-invisibility. We
represent the social-invisibility as a scalar s ∈ [0, 1] with
s = 0 representing very low social-invisibility and s = 1
representing highly socially-invisible robots. Depending on
the applications and situations, the social-invisibility can be
varied.

We relate the desired social-invisibility (s) to entitativity
features GE as follows:

s = 1− ‖GE−GEmin‖
‖GEmax −GEmin‖

(5)

where GEmax and GEmin are the maximum and minimum
entitativity values obtained from the psychology study.

According to Equation 5, there are multiple entitativity fea-
tures GE for the desired social-invisibility s. This provides
flexibility to choose which features of entitativity we wish
to adjust and we can set the desired entitativity GEdes that
provides the desired social-invisibility level. Since Gmat is

invertible, we can compute the motion model parameters
GPdes that achieve the desired entitativity:

GPdes = Gmat
−1 ∗ Edes (6)

These motion model parameters GPdes are the key to
enabling socially-invisible collision-free robot navigation
through a crowd of pedestrians. Our navigation method
is based on Generalized Velocity Obstacles (GVO) [43],
which uses a combination of local and global methods. The
global metric is based on a roadmap of the environment.
The local method computes a new velocity for each robot
and takes these distances into account. Moreover, we also
take into account the dynamic constraints of the robot in
this formulation - for example, mechanical constraints that
prevent the robot from rotating on the spot.

V. APPLICATIONS

We present some driving applications of our work that are
based on use of multiple autonomous car navigation systems.
In these scenarios, our method optimizes multi-robot systems
so that they can interact with such crowds seamlessly based
on physical constraints (e.g. collision avoidance, robot dy-
namics) and social invisibility. We simulate our algorithm
with two sets of navigation scenarios based on the level
of increasing social interaction between the robots and the
humans:

1) Active Navigation: This form of navigation includes au-
tonomous robots that share a physical space with pedestrians.
While performing navigation and analysis, these robots will
need to plan and navigate in a collision-free manner in real-
time amongst crowds. In this case, the robots need to predict
the behavior and trajectory of each pedestrian. For example,
marathon races tend to have large populations, with a crowd
whose location is constantly changing. In these scenarios,
it is necessary to have a navigation system that can detect
shifting focal points and adjust accordingly.

In such scenarios, the robots need to be highly socially-
invisible (s = 0). We achieve this by setting the entitativity
features to the minimum E = Emin (Equation 5).

2) Dynamic intervention: In certain scenarios, robots will
not only share a physical space with people but also influence
pedestrians to change or follow a certain path or behavior.
Such interventions can either be overt, such as forcing people
to change their paths using visual cues or pushing, or subtle
(for example, nudging). This type of navigation can be used
in any scenario with highly dense crowds, such as a festival
or marathon. High crowd density in these events can lead to
stampedes, which can be very deadly. In such a scenario,
a robot can detect when density has reached dangerous
levels and intervene, or “nudge” individuals until they are
distributed more safely.

For dynamic intervention with pedestrians or robots, we
manually vary the entitativity level depending on urgency
or agent proximity to the restricted area. In these situations,



we restrict the entitativity space by imposing a lower bound
smin on the social-invisibility (Equation 5):

smin ≤ 1− ‖E− Emin‖
‖Emax − Emin‖

. (7)

A. Performance Evaluation

We evaluate the performance of our socially-invisible nav-
igation algorithm with GVO [43], which by itself does
not take into account any social constraints. We compute
the number of times a pedestrian intrudes on a designated
restricted space, and thereby results in issues related to
navigating through a group of pedestrians. We also measure
the additional time that a robot with our algorithm takes
to reach its goal position, without the pedestrians intrud-
ing a predesignated restricted area. Our results (Table I)
demonstrate that in < 30% additional time, robots using our
navigation algorithm can reach their goals while ensuring
that the restricted space is not intruded. Table I also lists the
time taken to compute new trajectories while maintaining
social invisibility. We have implemented our system on a
Windows 10 desktop PC with Intel Xeon E5-1620 v3 with
16 GB of memory.

Dataset Additional Time Intrusions Avoided Performance
NPLC-1 14% 3 3.00E-04 ms
NDLS-2 13% 2 2.74E-04 ms
IITF-1 11% 3 0.72E-04 ms

NDLS-2 17% 4 0.98E-04 ms
NPLC-3 14% 3 1.27E-04 ms
NDLS-4 13% 2 3.31E-04 ms
IITF-2 11% 3 1.76E-03 ms

TABLE I: Navigation Performance for Dynamic Inter-
vention: A robot using our navigation algorithm can reach
its goal position, while ensuring that any pedestrian does
not intrude the restricted space with < 15% overhead.
We evaluated this performance in a simulated environment,
though the pedestrian trajectories were extracted from the
original dataset [4]. In all the videos we have manually
annotated a specific area as the restricted space.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Drawing from work in social psychology, we develop a
novel algorithm to minimize entitativity and thus maxi-
mize the social invisibility of multi-robot systems within
pedestrian crowds. A user-study confirms that different en-
titativity profiles–as given by appearance, trajectory and
spatial distance–are tied to different emotional reactions,
with high entitativity groups evoking negative emotions in
participants. We then use trajectory information from low-
entitative groups to develop a real-time navigation algorithm
that should enhance social invisibility for multi-robot sys-
tems.

Our approach has some limitations. Although we did gen-
eralize across a number of environmental contexts, we note
that motion-based entitativity is not the only feature involved
in social salience and other judgments. People use a rich set
of cues when forming impressions and emotionally reacting

to social agents, including perceptions of race, class, religion,
and gender. As our algorithm only uses motion trajectories,
it does not exhaustively capture all relevant social features.
However, motion trajectories are an important low-level fea-
ture of entitativity and one that applies especially to robots,
who may lack these higher-level social characteristics.

Future research should extend this algorithm to model the
appearances of robots in multi-robot systems. Although many
social cues may not be relevant to robots (e.g., race), the
appearance of robots can be manipulated. Research suggests
that robots that march will have higher entitativity and
hence more social visibility. This may prove a challenge
to manufacturers of autonomous vehicles, as mass produc-
tion typically leads to identical appearances. Another key
future direction involves examining the interaction of the
perceiver’s personality with the characteristics of multi-robot
systems, as some people may be less likely to react nega-
tively to entitative groups of robots, perhaps because they
are less sensitive to general threat cues or, more specifically,
have more experience with robots.
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[31] N. Pérez-Higueras et al. Robot local navigation with learned social
cost functions. In 2014 11th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), volume 02, pages
618–625, Sept 2014.

[32] Mark Pfeiffer, Ulrich Schwesinger, Hannes Sommer, Enric Galceran,
and Roland Siegwart. Predicting actions to act predictably: Coop-
erative partial motion planning with maximum entropy models. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, pages 2096–2101. IEEE, 2016.

[33] George A Quattrone and Edward E Jones. The perception of variability
within in-groups and out-groups: Implications for the law of small
numbers. Journal of Personality and Social Psychology, 38(1):141,
1980.
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Abstract—A fast obstacle avoidance algorithm is a necessary
condition to enable safe flights of Unmanned Aerial Vehicles
(UAVs) eventually at high-speed. Large UAVs usually have a lot
of sensors and available computational resources which allow
complex algorithms to run fast enough to navigate safely. On the
contrary, small UAVs gather many difficulties, like computation
and sensors limitations, forcing algorithms to retain only a
few keys points of their environment. This paper proposes
an obstacle avoidance algorithm for quadrotor using a single
depth camera. Taking advantage of the possibilities offered by
embedded GPUs, a cubic world representation centered on the
robot - called Egocubemap - is used while the whole obstacle
detection and avoidance algorithm is light enough to run at
10Hz on-board. Numerical and experimental validations are
provided.

I. INTRODUCTION

For some years now, the increase of interest for autonomous
navigation of Unmanned Aerial Vehicles (UAVs) has led to
the development of many autopilot systems. In order to make
a safer one, an avoidance layer is needed under its global
navigation control scheme. This is especially true in crowded
environments, where the dangerousness of these systems is a
big obstacle to concrete applications.

Autonomous obstacle avoidance for UAVs, generally, and
quadrotors, especially, is not particularly new [1, 2]. For its
simplicity and its low cost, lots of existing works, including
ours, focus on a single looking-ahead passive depth sensor [3, 4]
which raises three major issues. First, the range of the depth
information of those sensors is limited to, typically, distances
of 10 meters. Secondly, the angular region of space in which we
have depth information is limited to the Field Of View (FOV)
of the sensor. Thirdly, whether we use an RGBD camera or
whether we apply a stereo-vision algorithm to a pair of stereo-
vision images, the extracted depth map is more noisy than a
LIDAR point cloud. Those three issues need to be addressed
somehow.

The main way to solve the range issue is to have a high
frequency obstacle avoidance algorithm to check for obstacles
as soon as they enter the perception range. This solution also
allows to fly fast with a limited input depth range [3]. We
consider that reaching a frequency of 10Hz is the minimum
to allow avoidance at high speed and to give ourselves a chance
when considering moving obstacles.

The reduced FOV issue is usually addressed with some kind
of onboard memory of the environment. Closely following the
idea of Brockers et al. in [5] who presented an Egocylinder
type of vision, a cubic world representation centered on the

drone - called Egocubemap - is used in this paper to map the
environment.

Finally, the lack of precision of the depth map is addressed
by implementing a Configuration Space expansion (C-Space)
[6] and adding a margin to it. The idea of a C-space expansion
is to enlarge any object of the environment by a volume V . At
any position in the C-Space expanded environment, it becomes
possible to check if there are collisions between the volume
V and the environment only by verifying if the center of
the volume is occupied by an obstacle. If the chosen volume
includes a body, it is therefore possible to check for collisions
between this body and the environment in a single operation.
Adding a margin in the volume V of the C-Space and making it
include the body plus some extra-space will ensure that, if there
is no collision in the C-Space, the body is at least at this margin
from any obstacle. By adding a margin linked to the error in the
depth map, the lack of precision of the depth map will have a
reduced impact.

The rest of the paper is organized as follows. In Section II a
short review of existing works is given. Section III presents the
main contribution of the paper, that is the proposed algorithm.
In Section IV, the results obtained during more than 100 km of
simulated flight are given. Section V presents the experimental
validation in the context of an hardware in the loop implementa-
tion. A real UAV is flying and its position obtained by a motion
capture system enables us to make it fly in a virtual simulated
environment with fictive obstacles. The obstacle avoidance
algorithm then runs based on the simulated images. The paper
ends with some conclusions and perspectives.

II. RELATED WORKS

Obstacle avoidance consists in a set of functions. If those
functions can change depending on the algorithm, two of
them are always necessary: creating a world representation
from the depth inputs and generating trajectories or direct
control commands of the robot. We briefly spoked about other
existing avoidance algorithms in the introduction, in this part
we will focus on those two important functions of an obstacle
avoidance algorithm.

For world representation, there are multiple possibilities.
From the simplest one, taking only the raw depth sensor
data at the current frame, to the most complex, 3D mapping
with SLAM techniques, there is the possibility to keep in
memory only a few key points [3, 4], to build a 2D 360◦ depth
representation [5] or to use odometry techniques. There is
obviously a tradeoff to find between the computational cost of



a spatial representation and its precision. This is why most of
the fastest obstacle avoidance algorithms are keeping only a
few key points in memory. In [4], Barry even reduced its stereo
algorithm to a single distance pushbroom stereo-vision in order
to reduce his processing time. Our goal is to have at least a
360◦ representation of the world while still running above
10Hz onboard a quadrotor which weights less than 1 kg.

For the trajectory generation, there are two main possibilities
which are to generate the trajectories on-line or to generate
off-line a library of trajectories and to pick one among
them on-line. In both cases, trajectories can be linked to a
corresponding control to apply on the robot either in open-loop
or by implementing some closed-loop control to track it.

In order to generate some trajectories beforehand, it is
necessary to discretize the state-space of the quadrotor, and
then to generate trajectories for each of the discretized states
that allow the quadrotor to go in different directions [7].
Relying on a precise model of their quadrotor, some works
even focused on the uncertainty of the generated trajectories
[8].

Generating trajectories on-line has one main drawback
which is that the generation must be very fast (typically less
than a millisecond) in order to be able to generate more than
one trajectory and to leave time for the rest of the process.
With a precise model, one of the fastest method still uses
2ms to generate a 500ms trajectory [9]. It therefore means
that it is mandatory to use a simplified model to generate the
trajectories. Historically, on-line trajectories have consisted on
steering commands or geometric trajectories. Then, Mellinger
& Kumar in [10] introduced a method using the differential
flatness of the quadrotors which has become the new standard
for on-line trajectory generation. Recently, [11] added to a
flatness based generation a few efficient tests to check the
compatibility of the generated trajectory with a quadrotor
dynamic. Due to the constraints of our project which aims
at developping a generic, ’plug and play’ and working for a
wide range of quadrotor, algorithm, we have to generate our
trajectories online which is why we adpoted the method from
[11].

III. DESCRIPTION OF THE ALGORITHM

The goal is to reach Wi ∈ R3×n, i ∈ [1, n] an ordered
list of n high level way-points according to the sequence of
the ordered list. We consider a way-point Wi reached when the
distance between it andX(t) ∈ R3, the cartesian position of the
quadrotor at time t, is inferior to µi ∈ R+, a distance parameter
depending on the precision needed by the high level navigation.
If no path to a way-point is found, the avoidance algorithm is
expected to search for one for 10s before asking the navigation
layer for a new high level way-point.

A. Overview of the algorithm

Figure 1 represents the main steps of the proposed algorithm
which runs at each new depth acquisition. Its starting point is
the depth map acquisition. Many kind of sensors can provide
data that are or can be transformed into depth maps. With

Fig. 1. Overview of the algorithm

stereo-vision cameras, this transformation step consists in run-
ning a stereo-vision algorithm, whereas with a direct depth sen-
sor like laser sensors, this step is straightforward. The second
step of the algorithm is the construction of the Egocubemap. It
starts by the estimation of the displacement between the last
two frames. Then an ego centric cubic representation of the
environment, the Egocubemap itself, is computed. Finally, it
ends with the C-space expansion, which consists in increasing
the volume of each depth measure to face unprecise and non
dense depth maps. This representation of the environment is the
first step to figure out how the next way-point can be reached
without colliding with the obstacles. For that purpose, a new
frame-specific goal, that may not coincide with the position
of the way-point in the frame, is computed. In that frame,
trajectories reaching that goal or a neighbourhood of it are
generated. Among them, we select the “best” one that will be
given as input to the closed loop controller of the quadrotor. The
following subsections explain those steps in more detail.

B. Egocubemap Construction

The Egocubemap is a world representation shaped in a cube
and centered on the quadrotor. Each pixel of the Egocubemap
stores the distance from the quadrotor to the closest obstacle
in its direction. It is a light dense 360Â◦ representation of the
world. Its construction is as follows:

At each new frame, the ego motion between the last used
frame and the new one is estimated. To do so, we use a
keyframe-based dense visual odometry mixing the real-time
visual odometry from dense RGB-D images detailed in [12]
while adding the keyframe feature proposed in [13]. Once the
motion is estimated, we move the old Egocubemap according to
it. Each pixel from the previous Egocubemap is back projected,
displaced from the reverse motion and reprojected to the new
estimated Egocubemap. In this step, each pixel is considered
as the rectangular area between its corner coordinates in order
to have a dense output. There is necessarily some overlapping
during the reprojection on the new Egocubemap, which is why



a Z buffer test mechanism is used to keep only the closest depth
per pixel.

The new depth data coming from the sensor is then added to
the estimated Egocubemap by overwriting the old data with the
newly acquired one.

Finally a spheric C-space expansion is applied which means
that all the pixels, considered as obstacles, are enlarged by a
sphere. We chose to use a spheric C-Space despite the nearly
planar volume occupied by a quadrotor considering that it will
tilt in space during the flight. Using a sphere allows to check
for collisions without the need to recompute the quadrotor
angle at each point of the trajectory. To build the C-Space,
each pixel is considered as a single point, back projected and
enlarged to a sphere. The smallest rectangle overlapping the
sphere in the direction of its center is computed (see Figure 2)
and reprojected.

Fig. 2. C-Space reconstruction

The idea behind the C-Space is to check the quadrotor
trajectories as its center trajectory instead of the sum of the
trajectories of all its components. By reducing the needed
checks to only a point instead of a volume at each point of
each tested trajectories, we will be able to fasten the checks and
therefore to check more trajectories at a reduced cost. 3.a and
3.b are two consecutive planar projections of the Egocubemap
enlarged by the C-space.

(a) (b)

Fig. 3. (a) and (b) show two spherical projections of two successive
Egocubemaps with Configuration Space

C. Frame-Specific Goal Computation
At this point, we have a representation of our environment,

the quadrotor corresponding state and the high level way-
point Wi we currently want to reach. We need to define more
precisely where we want to go at this specific frame. To do
so, we define a new frame-specific goal G. If a trajectory has
been defined on the previous frame, the frame-specific goal G
is the mean point between the end position of the trajectory and
the way-point Wi. By using the previous trajectory in the new
goal definition, we stabilize the direction in which we are going
and avoid some instabilities in this direction. If no previous
trajectory was defined, the frame-specific goal G is simply the
high level way-point Wi.

D. Directions Preselection

Now knowing this frame goal G, we select some directions
which could potentially lead closer to this goal. To do so,
we first truncate the Egocubemap to the distance between our
quadrotor and G. We then compute the distance between each
point of this truncated Egocubemap and G and finally, among
the closest points of the truncated Egocubemap to G, we ran-
domly pick a hundred points El. The severity of the restriction
on the closeness to G creates a trade off between converging
to the frame specific goal and obtaining some diversity in the
directions to find at least one path compatible with the flight
dynamic.

E. Trajectory Generation

The previously selected points give a hundred different di-
rections that are potentially interesting to reach the goal G and
the high level way-pointWi, but we now need to verify how far
it is possible to reach in those directions without colliding with
the environment. By generating quadrotor feasible trajectories
at multiple distances on those directions and projecting them
on the Egocubemap, we will be able to check for collisions.
To generate the trajectories, we are using the motion primitive
generation proposed by Mueller et al. [11]. This method is a
trade off between purely geometric methods and dynamically
very accurate methods. It creates quadrotors feasible trajecto-
ries with the assumption that angular rate commands are tracked
perfectly, an assumption which is obviously not exact but from
which we are not very far considering the low angular inertia of
a quadrotor.

Mueller et al. choose the trajectory as the one that minimizes
their cost function, which is the integral of the squared jerk
on the trajectory for a given input state, output state and time
between those two states. To guarantee the feasibility, it is
checked that the required thrust and angular velocity to follow
the trajectory are reachable by the quadrotor. Since Mueller
et al. found an expression of the minimum of this cost function,
this method is really fast and allows the generation of almost a
million primitives per second.

It is also worth noting that the cost function can be seen as an
upper bound on the average of a product between the thrust and
the angular velocity and that it reflects the dynamic difficulty of
the trajectory. Therefore, it is interesting to define trajectories
that have the same cost because we can expect the precision of
the control on those trajectories to be pretty similar. Even if it
is not possible to define a cost directly using Mueller et al.’s
method, it is still possible to find trajectories with a precise cost
using a binary search on the time since the cost depends solely
on it for defined input and output states.

In order to avoid obstacles for each of the 100 preselected
directions, we try to reach El for a few different costs Cm.
The lowest cost corresponds to the targeted flight dynamics
and the highest cost is chosen at the limit of the quadrotor
dynamics in case of emergency. If we can reach El at Cm

without collision, we generate the next trajectory which is either
the same goal El with a lower cost or a next goal. If we
noticed a collision during the projection of the trajectory on
the EgoCubemap, we try to reach a new point Eln at the same
cost Ci. This point is in the direction of the point El but at



Fig. 4. View of a 2D (100 vertical cylinders) and a 3D (90 vertical or
horizontal cylinders) simulated test

a distance reduced by a 0.75 factor. We repeat this operation
until ‖Eln − X(tk) < min dist‖, with min dist being the
minimum distance of forward progress which depends on the
distance between the quadrotor and the frame specific goal.

Finally, all the generated trajectories include a null velocity
and acceleration in their final state. This ensures that the last
trajectory given to the control will always be a safe one if a
hardware failure was to happen. Adding this and the perception
limit of 10m creates a velocity limit for the quadrotor for a
defined cost. This limit is the one that allows the quadrotor to
stop from this initial velocity to a null velocity in 10m for a
particular cost. In the following, those velocity limits will be
used to characterize the different targeted trajectory cost.

F. Best trajectory Selection

For all obstacle-free generated trajectories, we select the best
trajectory TrajBest as a trade off between the trajectory cost
CTrajl and the distance from its final state position FTrajl
to the local goal Gk with more emphasis on the distance :

∀ l 6= Best,
CTrajBest

CTrajl
∗
(
‖Gk − FTrajBest‖
‖Gk − FTrajl‖

)2

< 1 (1)

In a few cases, we might not find any valid trajectory. This
can mainly happen for 2 reasons : an obstacle is closer than
min dist or it is impossible to avoid the impact with a newly
detected object (in case of a dynamic object for example). If
no valid trajectory exists, we issue a stop command which is
treated in a specific way by the controller in order to stop the
UAV as fast as possible.

G. Trajectory Tracking

In order to keep our system ”plug and play”, we use the most
common control scheme for quadrotors: a cascade controller.
From the trajectory, we use the desired position, velocity and
yaw to feed a first PID in position which outputs an acceleration
command on the X , Y , Z axes and the desired yaw rate. Using
the quadrotor dynamics, the accelerations are converted into the
desired thrust, pitch and roll. Those are then fed to a second
PID in angle which outputs a pitch rate and a roll rate. The
command, which now consists of a thrust, a pitch rate, a roll
rate and a yaw rate, can then be mathematically converted into
the power needed in each rotor. This control scheme has not
been designed to track trajectories and creates errors during
the tracking, but it is the most common one. In our project,
we wanted to show that even using this control scheme, our
algorithm allows to efficiently avoid obstacles. We also keep
this control scheme when we issue a stop command but we
nullify the proportional term of the PID in position.

H. Computing Time

We implemented all the image processing steps on an embed-
ded GPU card using Cuda and OpenGL. The motion estimation
takes 15ms on an NVIDIA Jetson-TX1, our processing card
for onboard computations, while the rest of the process, for
a 128×128×6 cubemap, takes 35ms on the same card. All
the trajectory related steps take less than 20ms on a single
CPU core@3.0GHz and less than 55ms on an NVIDIA Jetson-
TX1. The control scheme takes less than 1ms on both device.
Hence in total the algorithm takes less than 70ms on a ground
station and less than 105ms on an NVIDIA Jetson-TX1. Since
we worked only using a ground station, and since we were
already above 10Hz on our ground station, there has been
no emphasis on improving the performances of the algorithm,
especially for all the trajectory related steps. By parallelizing
the trajectory related steps, whether on the GPU or on the
CPU, we feel confident about reaching 10Hz performances
on an NVIDIA Jetson-TX1, thus enabling real-time aggressive
motion planning.

IV. SIMULATION

A. The Setup

We decided to work with ROS since it is very widely used
and allows easily to exchange packages in the same ”plug and
play” spirit that we followed. The use of the Gazebo simulator
was then pretty straight forward considering that it had all the
features we needed and the quality of its ROS integration.

We are using a simulator based on the fcu sim ROS package
from BYU-MAGICC. This package offers Gazebo/ROS sen-
sors plug-ins and a quadrotor dynamics simulator. The idea
of this simulator is to define the quadrotor as a simple 6DOF
rigid body on Gazebo and then to add the forces, torques and
saturations that differ between a quadrotor and a 6DOF rigid
body of same mass and inertia as described in [14].

Our simulated quadrotor has a radius of 0.5m, weights
3.52 kg. This quadrotor is around five times heavier and two
times larger than the one we will use when doing real hardware
experimentations, but our algorithm is supposed to be scalable
and we did not want to change the native model which would
have probably led to more approximation on the modeling.

The tests have been designed so that the previously defined
quadrotor travels 100m in an unknown environment filled with
randomly positioned obstacles. The obstacles consist in 16cm
radius cylinders which cross the whole scene in specific axes.
The tests are run 100 times with different maximum velocities
and obstacle number which means that the quadrotor flies at
least 10 km in each configuration. Taking into account the fact
that, in the earth frame, the quadrotor dynamics on the Z axis
are different from the dynamics on the X and Y axes, which
are similar due to symmetries, we designed two different tests.
The first one involves only theX and Y axes (2D test) while the
other one involves all three axes (3D test). The only difference
between both tests is the direction of those cylinders which is
only along the Z-axis in the 2D case and which is along the X ,
Y or Z axes in the 3D test. On Figure 4 are represented specific
configurations of a 2D and a 3D test with respectively 100 and
90 cylinders.



Test directions 2D 2D 2D 3D 3D 3D
Obstacle Number 50 100 150 30 90 150

Max Velocity: 3,3 m/s
Collisions/km 0.0 0.1 0.8 0.0 0.1 0.3

Max Velocity: 5 m/s
Collisions/km 0.1 0.4 0.7 0.0 0.1 1.0

TABLE I
RESULTS OF THE TESTS IN SIMULATION USING THE SIMPLE MODEL.

B. Results
Figure 5 is a view from above of the quadrotor trajectory

from a typical case of a test with 100 vertical (2D test)
cylinders.

Fig. 5. A view from above of the quadrotor trajectory during a simulated
2D test with 100 cylinders. In green, the quadrotor trajectory. In blue, the
trajectories generated each time the avoidance algorithm is called.

Table I gives the results of the different configurations tested
in our simulated environment. The different maximum veloci-
ties have been defined depending on the time horizon of the per-
ception of the quadrotor. With a 3.33ms−1 maximum velocity,
given a 10m max depth perception, the time horizon is at least
3 s. That duration is reduced to 2 s with a 5ms−1maximum
velocity. The C-Space radius was 70cm which constitutes a
margin corresponding to 40% of the quadrotor radius.

There are two main results :
• Reaching very low or null errors in multiple cases, even in

very crowded environments, validates our choices while
building the algorithm.

• In the very crowded 2D 150 obstacles environments, our
algorithm get stuck in local minimums. In all cases, the
quadrotor stops in front of the obstacles during 10s, as
expected, after which it could be tasked to land.

V. EXPERIMENTAL VALIDATION
A. The Setup

The experimental validation was carried out on a homemade
quadrotor represented on Fig. 6. It weights 303g and has a 33cm

Fig. 6. A photo of our custom quadrotor

diameter including its 5” blades. It embarks brushless motors, a
NAZE32 flight controller flashed with ROSflight [15] and it is
powered by a 7.4V LIPO battery. The NAZE32 IMU was used
to feed the ROSflight attitude controller and we used a motion
capture system (MOCAP) to feed the avoidance algorithm and
the position controller on the quadrotor state.
For the tests, all the avoidance related computations are done
on a ground station. Embedding a NVIDIA Jetson-like process-
ing card for onboard computations would necessitate a bigger
frame, which is impossible in our motion capture room which
useful volume is a 3m×2.5m×2m cuboid. The quadrotor is not
equipped with any depth sensor. To provide such measurements
to the quadrotor, a virtual clone of the quadrotor, with the same
position and orientation as the real one in the MOCAP room,
evolves in a Gazebo world. A depth image can then be created
in this virtual environment. Virtual obstacles or clones of the
real ones can be added to this world. Due to the limited size of
the MOCAP volume compared to the quadrotor size, we could
only create a scene with 6 or less cylinders. As in simulation,
the cylinders are randomly spawned.

B. Results

Figure 7 is a summary from above of an hardware-in-the-
loop test with 6 cylinders.

Fig. 7. A view from above of the quadrotor trajectory from a hardware-in-
the-loop test with 6 vertical cylindrical obstacles. In green, the quadrotor
trajectory. In blue, the trajectories generated each time the avoidance
algorithm is called



Table II gives the results of the hardware in the loop tests.

Test directions 2D 2D 2D
Max Theorical Velocity 3.3 m/s 5 m/s 3.3 m/s
Number of obstacles 4 4 6
Number of tests 10 10 10
Successful tests 10 10 10

of which local minimum stops 1 2 3
TABLE II

RESULTS OF THE HARDWARE IN THE LOOP TESTS

Due to the size limitation of the MOCAP room, we were
only able to test with a maximum of 6 vertical obstacles. Even
with this few obstacles, 20% of the tests ended in a local
minimum but it’s worth noticing that the quadrotor correctly
hovered, waiting for a new high-level waypoint. Also, since
the algorithm has a zero velocity and acceleration constraint
at the end of each generated trajectory, because of the size
limitation of the MOCAP room and the short trajectories, the
maximum velocity of the quadrotor was never above 1m/s
despite theoretically being able to go above it in the tested
configurations. Testing it in larger environment will increase
the velocity of the quadrotor and is clearly the next step we
have to take. Despite this limitation, the algorithm reacted as
expected during those flights and there have been only a few
differences between the simulated results and the hardware-in-
the-loop ones. The main difference resides in the quality of the
trajectory tracking. Even at those low velocity, the cascade PID
scheme shows some of its limit due to an 80ms latency in the
loop. We expect this delay to be reduced in a fully embedded
scenario and therefore an improvement of the control.

VI. CONCLUSIONS

We presented an obstacle avoidance algorithm solely based
on a single facing ahead depth input with a field of view
corresponding to what is expected from a pair of stereo vi-
sion cameras. Using an Egocubemap world representation,
we successfully and consistently avoided obstacles whether in
simulation or in a hardware-in-the-loop setup and in differently
crowded environments. Our next step will be to attempt outdoor
and fully embedded flights with our algorithm.

Due to the uniqueness of the tests of each published paper,
comparing our results to other existing works is also really
complicated at the moment. In order to make this easier, we
are currently creating an avoidance benchmark. We believe that
it could help highlighting on the strengths and weaknesses of
each approach.
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Abstract— In this paper, a machine learning setup that 

provides the obstacle detection system with a method to 

estimate the distance from the monocular camera to the 

object viewed with the camera is presented. In particular, 

the preliminary results of an on-going research to allow 

the on-board multisensory system, which is under 

development within H2020 Shift2Rail project SMART, to 

autonomously learn distances to objects, possible 

obstacles on the rail tracks ahead of the locomotive are 

given. The presented distance estimation system is based 

on Multi Hidden-Layer Neural Network, named DisNet, 

which is used to learn and predict the distance between 

the object and the camera sensor. The DisNet was trained 

using a supervised learning technique where the input 

features were manually calculated parameters of the 

object bounding boxes resulted from the YOLO object 

classifier and outputs were the accurate 3D laser scanner 

measurements of the distances to objects in the recorded 

scene. The presented DisNet-based distance estimation 

system was evaluated on the images of railway scenes as 

well as on the images of a road scene. Shown results 

demonstrate a general nature of the proposed DisNet 

system that enables its use for the estimation of distances 

to objects imaged with different types of monocular 

cameras. 

I. INTRODUCTION 

Reliable and accurate detection of obstacles is one of the 
core problems that need to be solved to enable autonomous 
driving. In the past decades, significant work has been done to 
address the problem of obstacle detection [1][2]. Besides the 
emerging of novel algorithms, technology development also 
enables progress in autonomous obstacle detection. Different 
onboard sensors such as radars, mono/stereo cameras, LIght 
Detection And Ranging - LiDAR, ultrasonic sensors and 
others, implemented in so-called Advanced Driving 
Assistance Systems (ADAS), are rapidly increasing the 
vehicle’s automation level [3][4].  

Many approaches have been presented for different 
application fields and scenarios. Whereas other transport 
modes have been quick to automate certain operations, rail 
runs the risk of lagging behind. One of the key challenges, 
which has so far hindered automation of rail systems, is the 
lack of a safe and reliable onboard obstacle detection system 
for trains within existing infrastructure [5]. In recent years, 
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there is a tendency to use experience from obstacle detection 
both in the automotive and the aviation sector for the 
development of autonomous obstacle detection in railways 
[6]. While the main principle of obstacle detection in front of 
a vehicle from the automotive sector can be applied to railway 
applications, there are also specific challenges. One of the key 
challenges is long-range obstacle detection. Sensor 
technology in current land transport research is able to look 
some 200 m ahead [7]. The required rail obstacle detection 
interfacing with loco control should be able to look ahead up 
to 1000 m detecting objects on and near track which may 
potentially interfere with the clearance and ground profile.  

The method for long-range obstacle detection presented in 
this paper is developed within project “SMART-SMart 
Automation of Rail Transport”, funded by the Shift2Rail Joint 
Undertaking under the European Union’s Horizon 2020 
research and innovation programme [8]. The main goal of this 
project is to increase the effectiveness and capacity of rail 
freight through the contribution to automation of railway 
cargo haul at European railways by developing of a prototype 
of an autonomous Obstacle Detection System (ODS). Project 
SMART will contribute to the long-term vision for an 
autonomous rail freight system, by the development, 
implementation and evaluation of a prototype integrated on-
board multi-sensor system for reliable autonomous detection 
of potential obstacles on rail tracks, which could assist drivers 
and in long term could be used for autonomous initialization 
of braking of the freight train.  

As illustrated in Fig. 1, the SMART ODS combines 
different vision technologies: thermal camera, night vision 
sensor (camera augmented with image intensifier), multi 
stereo-vision system (cameras C1, C2 and C3) and laser 
scanner (LiDAR) in order to create a sensor fusion system for 
mid (up to 200 m) and long range (up to 1000 m) obstacle 
detection, which is independent of light and weather 
conditions. 

 

Figure 1. Concept of the SMART multi-sensor ODS. (Top) Front view of 
the sensors mounted on a locomotive. (Bottom) Side view of the range 

sensors and an obstacle detection scene. 
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The main idea behind the multi-sensory system is to fuse 
the sensor data as sensors individually are not yet powerful 
enough to deal with complex obstacle detection tasks in all 
the SMART defined application scenarios, which include day 
and night operation and operation in poor visibility condition. 
Because of this, the development of an adequate data fusion 
system, which effectively combines data streams from 
multiple sensors, is required. The data fusion approach will be 
designed based on sensor data availability. Namely, 
independently of the illumination condition, sensor data from 
the thermal camera and laser scanner will be always available, 
where the implemented laser scanner data will be reliably 
available only in the certain range of up to 100 m. In contrast 
to that, the stereo camera system fails to generate data under 
poor illumination conditions, and the night vision camera 
cannot operate during the day. After obtaining fused data, 
based on the individual advantages of each sensor, the 
resulting data stream will be used for detection of obstacles 
on the rail tracks and for calculation of the distances from the 
locomotive to detected obstacles. While for stereo cameras 
traditional depth extraction can be used for thermal camera 
and night vision camera, estimation of distances from single 
camera shall be performed. 

In this paper, initial results on object distance estimation 
from monocular cameras are shown using a novel machine 
learning based method named as DisNet – a multilayer neural 
network for distance estimation. Although the presented 
method has been originally developed for autonomous 
obstacle detection in railway applications, it can be applied to 
road scenes as well, as it is illustrated in the evaluation section 
of this paper. 

II. RELATED WORK 

One of the crucial tasks in autonomous obstacle detection 
nowadays is finding the solutions to the combination of the 
environment perception sensors, where vision-based obstacle 
detection is still considered irreplaceable [9]. Besides its 
cheaper price, vision is also known as much evolving 
technology where most of its data is usable as compared to 
radar and LiDAR [10]. 

Obstacle detection in computer vision is most commonly 
done via stereo vision, in which images from two stereo 
cameras are used to triangulate and estimate distances to 
objects, potential obstacles, viewed by cameras [11]. Besides 
the individual use of stereo vision, in a number of obstacle 
detection systems stereo vision is combined with other range 
sensors. For example, in [3], an obstacle detection system was 
developed based on a fusion system consisting of computer 
vision and laser scanner. The laser provided a point cloud (PC) 
from which the system extracted the obstacles (clusters of 
points). These clusters were used both for the region of Interest 
(ROI) generation for computer vision and as information for 
obstacle classification, based on machine learning.  

Beyond stereo/triangulation cues, there are also numerous 
monocular cues such as texture variations and gradients, 
defocus, and colour/haze, which contain useful and important 
depth information. Some of these cues apply even in regions 
without texture, where stereo would work poorly. Because of 
this, some authors follow the idea of human perception of 
depth by seamlessly combining many of stereo and 
monocular cues. In [1], a Markov Random Field (MRF) 

learning algorithm to capture some of these monocular cues is 
applied, and cues are incorporated into a stereo system. It was 
shown that by adding monocular cues to stereo (triangulation) 
ones, significantly more accurate depth estimates than is 
possible using either monocular or stereo cues alone is 
obtained. In [13], supervised learning to the problem of 
estimating depth maps only from a single still image of a 
variety of unstructured environments, both indoor and 
outdoor, was applied. However, depth estimation from a 
single still image is a difficult task, since depth typically 
remains ambiguous given only local image features. Thus, the 
presented algorithm must take into account the global 
structure of the image, as well as use prior knowledge about 
the scene. 

In this paper, a novel method for object distance 
estimation from a single image, which does not require either 
a prior knowledge about the scene or explicit knowledge of 
the camera parameters, is presented. The presented distance 
estimation system is based on Multi Hidden-Layer Neural 
Network, named DisNet, which is used to learn and predict 
the distance between the object and the camera sensor. 

III. NEURAL NETWORK-BASED OBJECT DISTANCE 

ESTIMATION FROM MONOCULAR CAMERA 

The architecture of the DisNet-based distance estimation 
system is illustrated in Fig. 2. The camera image is input to 
the Object Classifier which is based on a state-of-the-art 
computer vision object detector YOLO (You Only Look 
Once) [14] trained with COCO dataset [15]. YOLO is a fast 
and accurate object detector based on Convolution Neural 
Network (CNN). Its outputs are bounding boxes of detected 
objects in the image and labels of the classes detected objects 
belong to. The objects bounding boxes resulted from the 
YOLO object classification are then processed to calculate the 
features, bounding boxes parameters. Based on the input 
features, the trained DisNet gives as outputs the estimated 
distance of the object to the camera sensor. In the system 
architecture illustrated in Fig. 2, an example of the estimation 
of distances of two persons on the rail tracks is shown. 

 

Figure 2. The DisNet -based system used for object distance estimation from 
a monocular camera 

 



  

For the training of DisNet, a supervised learning 
technique was used. This method required a collected dataset 
including both inputs and outputs, i.e. the ground truth. In the 
presented system, training dataset was collected manually by 
manual extraction of 2000 bounding boxes of different 
objects in the images recorded by RGB cameras at different 
distances together with the ground truth, which was the 
accurate laser scanner measurement of the distances to objects 
in the recorded scene. The details of the structure and training 
of DisNet are given in the following sections. 

A.  DisNet training - Dataset 

In the presented work, the objective is that DisNet is 
trained for the estimation of an object’s distance to the 
onboard sensory obstacle detection system. More formally, 
the task is to estimate the distance to an object in the laser’s 
reference frame, which is on the same distance from the 
object as the camera reference frame, given an input also 
called feature vector v. In the presented work, v contains the 
features of the bounding box of the object detected in camera 
images and the ground-truth is the distance to the object as 
measured by the laser scanner. 

In order to build the dataset, the objects positions and their 
bounding boxes in the RGB images were manually extracted 
and 2000 input feature vectors were created. In order to 
achieve sufficient discriminatory information in the dataset, 
different objects at different distances, which could be present 
in a railway scene as possible obstacles on the rail tracks, 
were considered. Some of the objects recorded at different 
distances and their bounding boxes from the dataset are 
shown in Fig. 3.   

 
Figure 3. Examples from the DisNet dataset of different object bounding 

boxes in the RGB images 

 
For each extracted object bounding box, a six-dimensional 

feature vector v was calculated:  

                𝒗 = [1/𝐵ℎ  1/𝐵𝑤  1/𝐵𝑑  𝐶ℎ 𝐶𝑤 𝐶𝑏] (1) 

where the coordinates of vector v, features, are: 

 

The ratios of the object bounding box dimensions to the 
image dimensions Bh, Bw and Bd enable the reusability of 
DisNet trained model with a variety of cameras independent 
of image resolution. Ch, Cw and Cb in (1) are the values of 
average height, width and breadth of an object of the 
particular class. For example for the class “person” Ch, Cw 
and Cb are respectively 175 cm, 55 cm and 30 cm, and for 
the class “car” 160 cm, 180 cm and 400. The features Ch, Cw 
and Cb are assigned to objects labelled by YOLO classifier as 
belonging to the particular class in order to complement 2D 
information on object bounding boxes and so to give more 
information to distinguish different objects. 

The relationships of the calculated features of object 

bounding boxes in 2D image, Bh, Bw and Bd, and the real 

distance to the image measured by laser scanner in the range 

0-60 m, are given in Fig. 4. Geometrically, by the projective 

transformations, the object bounding box size is expected to 

get smaller the further away the object is, so the inverse of 

bounding box size is expected to increase as the distance 

increases. Inspection of the data confirms that this is the case 

and suggests that the relationship is approximately linear, 

which gives a clear motive to use it for the dataset used for 

training of DisNet. 

 

 
Figure 4. DisNet features vs. distance 

 

For training the network the input dataset was firstly 

randomly split into a training (80% of the data), validation 

(10% of the data) and test set (10% of the data). 
The DisNet was trained using the backpropagation 

method with Adam optimizer [16] on the dataset collected. 

B. DisNet structure 

In order to find the appropriate number of hidden layers 
experiments with various numbers of hidden layers (1,2,3,5 
and 10) were performed assuming that each hidden layer had 
100 neurons. Fig. 5 (a) shows the accuracy of distance 
estimation over 1000 epochs achieved for different number of 
hidden layers. As obvious, DisNet with one hidden layer 
achieves the lowest distance estimation accuracy. It is also 
obvious that there is no significant difference in distance 

Height, 𝐵ℎ=(height of the object bounding box in 
pixels/image height in pixels) 
Width, 𝐵𝑤=(width of the object bounding box in 
pixels/image width in pixels) 

Diagonal, 𝐵𝑑=(diagonal of the object bounding box in 
pixels/image diagonal in pixels) 

 

 



  

estimation accuracy achieved with 2,3,5 and 10 hidden layers.  
For this analysis, a reduced dataset was used. The networks 
were trained on the 80% dataset and the estimation accuracy 
reported is on the 10% validation set.  

Similar behaviour can also be seen in Fig. 5(b) where the 
Mean Absolute Error over 1000 epochs achieved for a 
different number of hidden layers is shown. As obvious, the 
Mean Absolute Error is largest for the DisNet with one 
hidden layer, while there is no significant difference in the 
Error achieved with 2,3,5 and 10 hidden layers.  

Even though the smallest values of Mean Absolute Error 
were achieved for 10 hidden layers and the distance accuracy 
was highest for 10 hidden layers, a trade-off was made 
between the computational time and accuracy/error and 
finally, DisNet with 3 hidden layers was chosen. 
 

                      
  (a)                 (b) 

Figure 5. (a) Distance Estimation Accuracy and (b) Mean Absolute Error 
achieved for different numbers of hidden layers 

After making a decision on network with 3 hidden layers, 
in order to find the appropriate number of neurons for the 
hidden layers experiments with various numbers of hidden 
neurons were performed. Fig. 6 (a) shows the accuracy of 
distance estimation over 1000 epochs achieved for different 
number of neurons per hidden layer. As obvious, the distance 
estimation accuracy achieved with 10 hidden neurons is very 
low, much lower than distance estimation accuracy achieved 
with 30, 100 and 200 hidden neurons. The magnified diagram 
in Fig. 6 (b) shows that distance estimation accuracy with 30 
hidden neurons is lower than with 100 and 200 neurons. 
Bearing in mind that there is no significant difference in 
distance accuracy estimation with 100 and 200 hidden 
neurons, in order to reduce the complexity of DisNet, finally, 
100 neurons per hidden layer were chosen. 

                    
  (a)                 (b) 

Figure 6. Distance Estimation Accuracy achieved for different number of 

hidden neurons per hidden layer in 3-hidden layers neural network DisNet 

The final structure of DisNet having 3 hidden layers with 
100 hidden neurons per layer is shown in Fig. 7. 

 
 

Figure 7. The structure of DisNet used for object distance prediction 

 

DisNet input layer consists of 6 neurons corresponding to 
6 features, parameters of output layer consists of only one 
single neuron. The output of this node is the estimated 
distance between the camera and the object viewed with the 
camera. 

IV. EVALUATION 

The DisNet-based system for distance estimation was 
evaluated on images recorded in the field tests within the 
H2020 Shift2Rail project SMART [8]. The sensor data, 
which were used for the evaluation of a DisNet-based system 
for object distance estimation, were recorded in the field tests 
on the straight rail tracks in different times of the day and 
night on the location of the straight rail tracks (Fig. 8). 
Monocular RGB cameras were mounted on the static test-
stand, together with the laser scanner in the locations which 
resemble their intended locations in the final integrated 
SMART obstacle detection (Fig. 8). During the performed 
field tests, the members of the SMART Consortium imitated 
potential static obstacles on the rail tracks located on 
different distances from the SMART test-stand. 

 

 Figure 8. Field tests performed on the straight rail tracks; Test-stand with 

the SMART sensors viewing the rail tracks and an object (person) on the rail 

track  



  

A. Railway Scene - Distance estimation from the single 

RGB camera image 

Some of the results of the DisNet object distance 
estimation in RGB images are given in Fig. 9. The estimated 
distances to the objects (persons) detected in the images are 
given in Table I. 

TABLE I.  ESTIMATED DISTANCES VS. GROUND TRUTH 

Figure Object 

Rail Scene 

Ground Truth Distance estimated from DisNet 

9 (a) 
Person 1 

100 m 
101.89 m 

Person 2 99.44 m 

9 (b) 

Person 1 50 m  54.26 m  

Person 2 150 m 167.59 m 

Person 3 100 m 132.26 m 

Person 4 300 m 338.51 m 

 

 
(a) 

 

 
(b) 

Figure 9.  DisNet estimation of distances to objects in a rail track scene from 

the RGB camera image. (a) Distance estimation of detected persons at 100 

m and (b) Magnified RGB image overlaid with bounding boxes and distance 
estimation of detected persons at 50, 100, 150 and 300 m respectively.  

 

As obvious from Fig. 9, YOLO based object detection in 
images is reliable in spite of the fact that YOLO classifier 
was used in its original form trained with COCO dataset 
[15], without re-training with the images from the SMART 
field tests. Also, it is obvious that achieved distance 
estimation is satisfactory in spite of the fact that DisNet 
database did not contain object boxes from the real rail tracks 
scenes. This, in the first place, means that the objects in real 
field tests scenes were at larger distances from the sensors 
than in the recording tests used for dataset building. Also, the 
distances of the objects in field tests were outside the laser 
scanner range used for the training of DisNet. The difference 
in estimation of distances of persons at 100 m (Fig. 9(a) and 
9(b)) indicates the need for improvement of objects bounding 
boxes extraction. Namely, the person at 100 m in Fig. 9(b) is 
not fully bounded with the bounding box as the lower part of 
the person is occluded by a board. Also, in future work, 
novel features with a higher correlation score with respect to 
distance will be investigated and will be used to improve the 
accuracy of distance estimation in SMART obstacle 
detection system.  

A. Road Scene - Distance estimation from the single RGB 

camera image 

Although presented DisNet-based method for distance 
estimation from the monocular camera has been originally 
developed for autonomous obstacle detection in railway 
applications, it can be applied to road scenes as well. To 
demonstrate this, presented method was applied to the image 
of a different resolution than images used for training of 
DisNet. The image of a road scene was recorded within the 
project HiSpe3D-Vision presented in [11][17]. The main 
goal of HiSpe3D-Vision was to develop a high speed, low 
latency stereo vision based collision warning system for 
automotive applications. The obstacle detection and distance 
calculation for collision warning were based on the 
segmentation of the disparity map created from the car-
mounted stereo-vision system. The result of object detection 
and distance estimation in a dynamic environment (moving 
car and moving object-obstacle) is shown in Fig. 10, where 
original image is overlaid with the bounding cuboid for the 
object closest to the car (person on the bike). Distance for 
this object, as estimated by the HiSpe3D-Vision method, is 
given in the left upper corner of the image in Fig. 10, as well 
as in Table II.   

In contrast to HiSpe3D-Vision method, which detected 
only the object closest to the car, the presented DisNet 
method recognized different objects in the scene recorded by 
the car-mounted camera: person, bicycle, car and track. The 
bounding boxes of the recognized objects are overlaid on the 
image in Fig. 10 together with distances estimated by 
DisNet.  The objects distance estimation achieved by DisNet 
vs. the distance estimation achieved by HiSpe3D stereo 
vision method is given in Table II. 
 



  

 
 

Figure 10. Road scene image overlaid with objects recognition and distance 
estimation results achieved by proposed DisNet and by stereo-vision based 

HiSpe3D method [17] 

TABLE II.  OBJECTS DISTANCES ESTIMATED BY DISNET VS. OBJECTS 

DISTANCES ESTIMATED BY HISPE3D-VISION METHOD [17] 

Object 

Road Scene 

Distance estimated by 

HiSpe3D-Vision 
Distance estimated by DisNet 

Person 6.24 m 6.12  m 

Bicycle - 5.39 m 

Car - 27.64 m 

Truck - 30.25 m 

 
As obvious, DisNet outperforms HiSpe3D-Vision 

method in a number of different objects recognized in the 
recorded scene. The person distance estimation by both 
methods is comparable. The difference in distances for the 
person and the bicycle, estimated by DisNet, indicates the 
need for improvement of objects bounding boxes extraction. 
In future work, the YOLO classifier will be replaced with 2D 
image processing based classifier and bounding box 
extractor, which is under development in the SMART 
project. 

V. CONCLUSION 

In this paper, the initial results of DisNet – a machine 

learning-based distance estimation from the monocular 

camera, achieved by obstacle detection system under 

development within Shift2Rail project SMART-Smart 

Automation of Rail Transport, are presented. Presented 

results illustrate reliable estimation of distances from a single 

RGB camera to objects in static railway scenes recorded by 

cameras. General nature of the presented distance estimation 

method is demonstrated by the result of distance estimation 

in a dynamic road scene captured with different types of 

cameras. This indicates that in future work presented method 

can be used for object distance estimation from different 

types of monocular cameras integrated into the SMART on-

board obstacle detection system, thermal camera and night 

vision camera. Further, the presented obstacle detection 

system will be evaluated in dynamic field tests when 

mounted on a locomotive in motion. The presented results 

from dynamic road scene justify the expectation that DisNet-

based obstacle detection system will work on real 

experimental images when the train is in motion. 
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Multi-Sensor-Based Predictive Control for
Autonomous Backward Perpendicular and Diagonal Parking

David Pérez-Morales1, Olivier Kermorgant2, Salvador Domı́nguez-Quijada3 and Philippe Martinet4

Abstract— This paper explores the feasibility of a Multi-
Sensor-Based Predictive Control (MSBPC) approach for ad-
dressing backward nonparallel (perpendicular and diagonal)
parking problems of car-like vehicles as an alternative to more
classical (e.g. path planning based) approaches. The results of a
few individual cases are presented to illustrate the behavior and
performance of the proposed approach as well as results from
exhaustive simulations to assess its convergence and stability.
Indeed, preliminary results are encouraging, showing that the
vehicle is able to park successfully from virtually any sensible
initial position.

I. INTRODUCTION

Even though the research on autonomous parking started
more than 20 years ago, leading to a quite extensive literature
[1] and in spite of the fact that the automobile industry has
already started to roll out some commercial implementations
of active parking assistants capable of actively controlling
acceleration, braking and steering [2], the research interest
in the topic remains strong. This is, partially at least, due
to the ever-growing size of many cities around the world,
leading to an increment in the number of automobiles in the
streets and thus causing parking to become an increasingly
difficult and dangerous task.

Path planning approaches have been heavily investigated
in recent years. Among the different planning techniques
it is possible to distinguish between geometric approaches,
with either constant turning radius [3], [4] using saturated
feedback controllers, or continuous-curvature planning using
clothoids [5], [6]; heuristic approaches [7] and machine
learning techniques [8].

A well-known drawback of path planning is that it is ne-
cessary to have knowledge about the free and occupied space
of the whole environment beforehand if online replanning is
not feasible, potentially leading to costly infrastructure requi-
rement. Moreover, it is known that path planning algorithms
that consider some kind of space exploration step (such as
A*, RRT, etc.) have to make a compromise between compu-
tation time and exploration’s completeness. Furthermore, the
tracking performance of a given path is highly dependent on
the localization performance which might get degraded on

1 David Pérez-Morales, 2Olivier Kermorgant and 3Salvador Domı́nguez-
Quijada are with LS2N, Laboratoire des Sciences du Numérique de Nantes,
École Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France
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certain environments (e.g. underground parking lots without
any special infrastructure) or after a few maneuvers leading
to non-negligible differences between the planned path and
the performed one [5], [6].

An interesting alternative is the use of a sensor-based
control approach. It has been proven to be valid for navi-
gation [9], dynamic obstacle avoidance [10] and for parking
applications [11], [12]. It should be noted that an important
limitation of a purely sensor-based control approach is the
possibility of getting trapped in local minima – i.e. if the
car is not able to park in one maneuver from the initial pose
then the parking maneuver won’t be successful.

A. Reasoning and contribution

A natural goal for a human driver when parking would be
to try to make the vehicle’s longitudinal axis to be collinear to
the main axis of the parking spot (i.e. to be centered lateral-
wise) and finish the maneuver at a certain distance from the
rear boundary of the parking spot while avoiding collision
with surrounding obstacles during the whole maneuver.

Assuming that the vehicle is capable of perceiving sur-
rounding free parking spots, it is possible to park without
any path planning using a Multi-Sensor-Based Predictive
Control (MSBPC) approach by minimizing the error between
the current value of a certain set of sensor features (i.e. a
line collinear to the parking spot’s main axis and another
collinear to the rear boundary of the parking spot) and its
desired value while avoiding collision by imposing certain
constraints on another set of sensor features (lines defining
the boundaries of the parking spot, points at the corners of
said spot, etc.). It is worth noting that, since the presented
approach is based on the features perceived at each time
instant and a certain desired fixed value for each feature, no
localization is inherently required for it to be stable in spite
of the prediction step considered.

The contribution of this paper is the exploration of a
MSBPC approach for backward perpendicular and diagonal
parking, being able now to park with multiple maneuvers. It
should be noted that, in order to decouple the performance
of the controller from the perception, the sensory data is
generated virtually and assumed to be available all the time.

B. Contents of the paper

In the next section the kinematic model of the vehicle
and the multi-sensor modeling are presented. Section III
describes the interaction model allowing to formalize the
parking tasks and the constraints for collision avoidance.
Afterwards, the controller is presented in Section IV. The



obtained results are presented in Section V: a few cases in
two different simulation environments are presented as well
as exhaustive simulations results for assessing the conver-
gence performance of the presented approach for the two
different types of parking maneuvers addressed are shown.
Finally, some conclusions are given in Section VI.

II. MODELING AND NOTATION

Given that parking maneuvers are low-speed motions, a
kinematic model can be considered as accurate enough.

A. Car-like robot model and notation

The considered kinematic model is a car with rear-wheel
driving: 

ẋ
ẏ

θ̇

φ̇

 =


cos θ
sin θ

tanφ/lwb

0

 v +


0
0
0
1

 φ̇, (1)

where v and φ̇ are the longitudinal and steering velocities.
The point M is located at the mid-distance between the

passive fixed wheels (rear) axle and the distance between the
rear and the front axle is described by lwb. The generalized
coordinates are q = [x, y, θ, φ]T where x and y are the
Cartesian coordinates of the point M, θ is the orientation
of the platform with respect to the x0 axis and the steering
angle of the steerable wheel(s) is denoted by φ (Fig. 1a).

The turning radius ρm around the instantaneous center of
rotation (ICR) can be defined as:

ρm =
lwb

tanφ
(2)

The vehicle used for experimentation and simulation,
represented by its bounding rectangle in Fig. 1a, is a Renault
ZOE (Fig. 1b). Its relevant dimensional parameters are
presented in Table I.

TABLE I
DIMENSIONAL VEHICLE PARAMETERS

Parameters Notation Value
Wheelbase: Distance between the front and
rear wheel axles

lwb 2.588 m

Rear overhang: Distance between the rear
wheel axle and the rear bumper

lro 0.657 m

Total length of the vehicle lve 4.084 m
Total width of the vehicle wve 1.945 m

B. Multi-sensor modeling

The considered multi-sensor modeling is recalled in this
subsection.

1) Kinematic model: Let us consider a robotic system
equipped with k sensors (Fig. 2) that provide data about the
environment. Each sensor Si gives a signal (sensor feature)
si of dimension di with

∑k
i=1 di = d.

In a static environment, the sensor feature derivative can
be expressed as follows:

ṡi = L̆iv̆i = L̆i
iT̆mv̆m (3)
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Fig. 1. (a) Kinematic model diagram for a car-like rear-wheel driving
robot. (b) Robotized Renault ZOE used for real experimentation
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Fig. 2. Multi-sensor model

where L̆i is the interaction matrix [13] of si
(dim(L̆i) = di × 6) and iT̆m is the 3D screw
transformation matrix that allows expressing the sensor
twist v̆i (which is expressed in its corresponding frame Fi)
with respect to the robot twist v̆m (expressed in the control
frame Fm).

Denoting s = (s1, . . . , sk) the d-dimensional signal of the
multi-sensor system, the signal variation over time can be
linked to the moving vehicle twist:

ṡ = L̆sv̆m (4)

with:
L̆s = L̆T̆m (5)

where L̆ and T̆m are obtained by concatenating either
diagonally or vertically, respectively, matrices L̆i and

i
T̆m

∀ i ∈ [1 . . . k].
Planar world assumption: Assuming that the vehicle

to which the sensors are rigidly attached evolves in a plane
and that the sensors and vehicle have vertical parallel z axes,
all the twists are reduced to [vxi

, vyi , θ̇i]
T hence the reduced

forms Ľ, Ľs, Ľi, v̌m and iŤm of, respectively, L̆, L̆s, L̆i,
v̆m and iT̆m are considered.
Ľi is of dimension di×3, v̌m = [vxm

, vym , θ̇m]T and iŤm

is defined as:

iŤm=

 cos(mθi) sin(mθi) xi sin(mθi)− yi cos(mθi)

− sin(mθi) cos(mθi) xi cos(mθi) + yi sin(mθi)

0 0 1


(6)

where mti = [xi, yi]
T and mθi are, respectively, the posi-

tion and orientation of Si (frame Fi) with respect to Fm
expressed in Fm.



(a) Sensors’ configuration and sensor features (b) Task features (c) Constrainted features illustration

Fig. 3. (a) General sensors’ configuration and sensor features. (b) Features considered for the parking task. (c) Example of the constrained sensor features

Furthermore, since in the considered model the control
frame Fm is attached to the vehicle’s rear axis with origin
at the point M (Fig. 1a), it is not possible to generate a
velocity along ym on the vehicle’s frame and assuming that
there is no slipping nor skidding (i.e. vym = 0), the robot
twist v̌m can be further reduced to:

vm = [vxm
, θ̇m]T (7)

with vxm
= v and θ̇m = θ̇ according to the model (1), thus

it is possible to write:

ṡ = Ls vm (8)

where Ls is composed of the first and third columns of Ľs.

III. INTERACTION MODEL

For the interaction model, we rely on the perception of
several lines Lj and points from several (virtual) sensors
placed at in convenient frames in order to simplify the
sensor features definitions and their interaction matrices. The
usefulness of virtual sensors can be exemplified as follows:
if the car is parking into perpendicular spot with a backward
motion (Fig. 3a), the risk of collision with the obstacle on
the left is the highest for the car’s rear left corner, therefore it
would be convenient to have a virtual sensor (S6) placed on
said corner to measure directly the distance to left boundary
(6L3) of the parking spot.

The sensor’s placement can be seen in Fig. 3a. S1 corre-
sponds to the VLP-16 while S2 to the 2D LiDAR placed on
the rear (LMS151). S3 to S6 are placed on the corners of
the car’s bounding rectangle and have the same orientation
as the control frame.

As it can be seen in Fig. 3a, points p1 to p4 correspond
to the corners of the parking spot while p5 and p6 are,
respectively, the midpoints between (p1, p4) and (p2, p3).
L1 is a line that passes through p5 and p6, i.e. it passes
through the center of the parking spot. L2 is a line that passes
through p1 and p4 thus corresponding to the rear boundary
of the parking spot. L3 is a line that passes through p3 and
p4. All the lines are parametrized using normalized Plücker
coordinates.

A. Line parametrization

Given two distinct 3D points ipf and ipg in homogeneous
coordinates, with

ipf = [iXf ,
iYf ,

iZf ,
iWf ]T (9a)

ipg = [iXg,
iYg,

iZg,
iWg]

T, (9b)

a line passing through them can be represented using nor-
malized Plücker coordinates as a couple of 3-vectors [14]:

iLj = [iuj ,
ihj ]

T (10)

where iuj = iuj/||iuj || (with iuj 6= 0) describes the orien-
tation of the line and ihj = irj/||iuj || where irj encodes
the plane containing the line and the origin (interpretation
plane) and the distance from the origin to the line. The two
3-vectors iuj and irj are defined as [15]:

iuT
j = iWf [iXg,

iYg,
iZg]− iWg[

iXf ,
iYf ,

iZf ] (11a)

irTj = [iXf ,
iYf ,

iZf ]× [iXg,
iYg,

iZg] (11b)

Due to the planar world assumption considered in this
paper, the third element of iuj and the first and second
elements of ihj are equal to zero, i.e. iuj(3) = ihj(1) =
ihj(2) = 0, therefore the sensor signal siLj and interaction
matrix ĽiLj for the line iLj observed by Si are defined
respectively as:

siLj =
[
iuj(1), iuj(2), ihj(3)

]T
(12)

ĽiLj =

 0 0 iuj(2)
0 0 −iuj(1)

−iuj(2) iuj(1) 0

 (13)

B. Task sensor features

The set of task sensor features st is defined as:

st = [st1, . . . , s
t
9]T = [st1, s

t
2]T = [s1Loff

1

, s2L1 , s2L2 ]T, (14)

where 1Loff
1 is simply 1L1 with an offset to the right with

respect to the parking spot (Fig. 3b).



The idea behind considering s1Loff
1

in addition to st2 as part
of the set of task sensor features is to have some features that
will pull the vehicle out of the parking spot with a forward
motion, like a human driver would likely do, in order to
escape from local minima therefore being able to park with
multiple maneuvers.

The interaction matrix Ľt1 for the features observed by S1

is computed at each iteration and is defined by (13) while,
for the features observed by S2, the corresponding interaction
matrix Ľt2 is computed by a 2nd order approximation [16]
of the form:

Ľt =
ĽL + Ľ∗L

2
(15)

where ĽL = [ĽiL1 , ĽiL2 ]T and Ľ∗L is equal to the value of
ĽL at the desired pose.

Considering the definition of iL1 and iL2, a sensible
choice would be for iL∗1 to be collinear with the vehicle’s
longitudinal axis (xm-axis) and iL∗2 to be parallel to ym-axis
at a safe distance from either the rear boundary of the vehicle.

C. Constrained sensor features

The set of constrained sensor features (Fig. 3c) used for
collision avoidance sc is defined as:

sc = [sc1, . . . , s
c
10]T = [s3, s5, s6]T (16)

with

s3 = [3h2(3), 3h4(3), 3X2,
3Y2,

3dlat2 ]T (17a)

s5 = 5h3(3) (17b)

s6 = [6h2(3), 6h3(3), 6X3,
6Y3]T (17c)

where the difference of raddi idlata is defined as:
idlata = iρpa − ρlat, (18)

with:
iρpa =

√
(iXa + xi)2 + (iYa + yi − ρm)2, (19)

ρlat = |ρm| −
wve

2
. (20)

The interaction matrices ĽiXa
and ĽiYa

associated, re-
spectively, to iXa and iYa are:

ĽiXa
=
[
−1 0 iYa

]
(21)

ĽiYa
=
[

0 −1 −iXa

]
(22)

while interaction matrix associated to idlata is defined as:

Ľid =
[

0
i%y
iρ2pa

iXa
i%y

iρ2pa

]
(23)

with i%y = −|iYa + yi − ρm|. The interaction matrices
associated to the rest of the features used as constraints can
be deduced from the third row of (13).

The corresponding interaction matrix Ľcs is computed at
each iteration.

It should be noted that some constraints must be deacti-
vated under certain conditions in order to be able to park
successfully. For instance, the constraints on 3X2 and 6X3

are used to avoid collision, respectively, with points 3p2 and
6p3, but they would prevent the vehicle from entering the
parking spot if they remain active all the time. Thus, if the
vehicle is in a configuration where it can safely enter the par-
king spot without colliding with the aforementioned points,
the previously mentioned constraints should be deactivated.
Some other constraints must be deactivated under certain
circumstances in order to ensure a successful, collision-free
parking maneuver. The equations detailing the deactivation
conditions (relying only on the sensor features and control
signals) used to obtain the results presented in this work can
be found in the appendix.

IV. CONTROL

The control input of the robotized vehicle is defined as:

vr = [v, φ]T (24)

with φ, considering (1) and (2), being mapped to θ̇ by

θ̇ =
v

ρm
. (25)

The MSBPC approach being explored is based on the
Visual Predictive Control (VPC) described in [17].

A. Structure

−+
s∗(n)

−+
sd(n)

Optimization System
vr(n)

Model
+−

smp(n)
smp(n)

ε(n)

s(n)

Fig. 4. Control structure [17]

The control structure is based on the internal-model-
control (IMC) structure [18] (Fig. 4). The system block
contains the robotized vehicle system and sensors whose
input is the control variable vr and output s is the current
value of the sensor features. The reference s∗ is the desired
value of the task sensor features. The error signal ε represents
all the modeling errors and disturbances between the current
features and the values that were predicted from the model:

ε(n) = s(n)− smp(n) (26)

where n is the current time.
The optimization algorithm minimizes the difference be-

tween the desired value sd and the predicted model output
smp. According to Fig. 4:

sd(n) = s∗(n)− ε(n) = s∗(n)− (s(n)− smp(n)) (27)

from where it is possible to deduce

sd(n)− smp(n) = s∗(n)− s(n) (28)

Therefore, to track s∗ by s is equivalent to track sd by smp.
To predict the behavior of smp over a finite prediction

horizon Np, the interaction model described in Sec. III is



used. The difference between sd and smp is used to define
a cost function J to be minimized with respect to a control
sequence ṽr over Np. It should be noted that only the first
component vr(n) of the optimal control sequence is actually
applied to the vehicle.

B. Constraint handling

Model-predictive-control strategies are capable of expli-
citly take into into account constraints in the control-law
design.

The longitudinal velocity v and steering angle φ are
bounded by its maximum values as follows:

|v| < vmax (29a)

|φ| < φmax (29b)

where vmax is an adaptive saturation value imposing a dece-
leration profile based on the velocity profile shown in [4] as
the vehicle approaches the final pose. Furthermore, to avoid
large changes in the control signals at the current iteration n
that may cause uncomfortable sensations for the passengers
or surrounding witnesses and, to consider to some extent the
dynamic limitations of the vehicle, the control signals are
saturated as well by some increments with respect to the
previous control signals (at iteration n− 1) as shown below:

(vn−1 −∆dec) ≤ vn ≤ (vn−1 + ∆acc) (30a)

(φn−1 −∆φ) ≤ φn ≤ (φn−1 + ∆φ). (30b)

(φ̇n−1 −∆φ̇) ≤ φ̇n ≤ (φ̇n−1 + ∆φ̇). (30c)

The sensor features considered for collision avoidance (16)
are constrained as follows:

scmin ≤ sc ≤ scmax (31)

By writing the constraints (30) and (31) as nonlinear
functions:

C(vr) ≤ 0 (32)

a constraint domain C can be defined.

C. Mathematical formulation

The MSBPC approach can be written in discrete time as
follows:

min J(vr)
ṽr ∈ C

(33)

with

J(vr) =

n+Np∑
j=n+1

[sd − stmp(j)]TQ(j)[sd − stmp(j)] (34)

and

ṽr = {vr(n),vr(n+1), . . . ,vr(n+Nc), . . . ,vr(n+Np−1)}
(35)

subject to

stmp(j) = stmp(j − 1) + Lts(j − 1)Tsvm(j − 1) (36a)

scmp(j) = scmp(j − 1) + Lcs(j − 1)Tsvm(j − 1) (36b)

si- sis
- sis

+ si+
wi-

wi+

Fig. 5. Weighting function wti

The weighted matrix Q remains constant along the pre-
diction horizon and, in order to automatically adapt the
influence of each task feature, is defined as:

Q =

[
Q1 diag(wt1, . . . , w

t
3) 03×6

06×3 Q2 diag(wt4, . . . , w
t
9)

]
(37)

where wt1-wt3, wt6 and wt9 are constant while the values of
wti ∀i = {4, 5, 7, 8} and Q2 are computed using a smooth
weighting function (Fig. 5) based on the one presented
in [19], while:

Q1 =

{
0 if ‖s2L1 − s∗2L1 ‖ < εL1

1−Q2 otherwise
(38)

where εL1
is a small positive scalar value.

Since in the parking scenarios considered, the error et1 =
st1−st

∗

1 would be generally minimized with a forward motion
(particularly when the vehicle is close to the boundaries of
the parking spot) while et2 = st2 − st

∗

2 with a backward one,
by regulating the influence of each set of sensor features
(by means of Q1 and Q2, respectively) the controller can
automatically maneuver the vehicle with the appropriate
direction of motion that would allow to have a successful
parking maneuver. Regarding the use of εL1

, it serves to
nullify Q1 (and consequently the influence of st1) when the
vehicle is close to be collinear to L1.

It should be noted that, from vr(n+Nc) to vr(n+Np−1),
the control input is constant and is equal to vr(n + Nc),
where Nc is the control horizon.

V. RESULTS

For the results shown in this section, the parameters in
Table II are considered. The value of φmax corresponds to
the maximum steering angle of the real vehicle while the
rest of the parameters were determined by empirical testing,
nevertheless some guidelines on how to tune them can be
given:
• The maximum longitudinal velocity vmax and the incre-

ments ∆v , ∆φ and ∆φ̇ should be large enough so that
the vehicle can park in a reasonable amount of time
(without a feeling of sluggishness) but not so large that
the passengers and surrounding witnesses feel unease
during the maneuver.

• A larger control horizon Nc allows the system to
maneuver the vehicle more freely at the expense of a
larger computation effort.

• Np should be large enough so that a collision-free
motion can be guaranteed (i.e. Np ≥ vmax/∆v) but
small enough to be able to meet the computational time
requirements.

• The threshold value εL1
used to determine whether or

not Q1 should be equal to zero has influence on the



total number of maneuvers required to park and on the
convergence of the controller. In general, a smaller value
of εL1 enforces a smaller final error at the expense of an
increase on the number of maneuvers required to park.

The nonlinear solver used for MATLAB implementations
is fmincon with a Sequential Quadratic Programming (SQP)
algorithm while for C++ implementations the solver NLopt
with a Sequential Least Squares Programming (SLSQP)
algorithm is used.

TABLE II
CONTROL-RELATED VEHICLE PARAMETERS

Parameteres Notation Value
Control horizon Nc 4
Prediction horizon Np 20
Sampling time Ts 0.1s
Maximum steering angle φmax 30◦

Maximum longitudinal velocity vmax ≤ 0.6944m/s
Maximum velocity increment ∆v 0.35m/s Ts
Maximum φ increment ∆φ 2◦ Ts
Maximum φ̇ increment ∆φ̇ 0.8 Ts
Threshold value to nullify Q1 εL1

0.125

A. MATLAB simulations
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Fig. 6. Backward perpendicular parking maneuver. Initial pose = (8m,
4.6m, 0◦)

To illustrate the behavior of the MSBPC approach, a
perpendicular (Fig. 6) and a diagonal (Fig. 7) maneuvers
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Fig. 7. Backward diagonal parking maneuver. Initial pose = (1.3m, 4.5m,
0◦)

are shown. It can be clearly seen that, for both cases, the car
is able to park successfully with generally smooth control
signals (thanks to (30)) while satisfying the constraints on the
sensor features at each time instant. Furthermore, it can be
seen how, generally, when Q2 is larger than Q1, the vehicle is
moving backward and when Q1 is larger a transition towards
a forward motion occurs, allowing the vehicle to perform
multiple maneuvers in order to park successfully.

B. Exhaustive simulations

To assess the stability and convergence of the presented
approach, various convergence analyses for the different
parking cases were conducted by means of exhaustive simu-
lations. Due to paper length constraints, for the two shown
cases (Figs. 8a-8b), the initial orientation of the vehicle is 0◦.

Since the exhaustive simulations are an aggregation of the
results obtained from several simulations (like those shown
in Figs. 6a and 7a), each figure consists of a parking spot
(represented by 3 lines) adapted to each case and a scatter
plot of the initial position of the vehicle (with a sampling step
of 10cm), whose color depends on the final value of ||et||.
The green portion of each scatter plot corresponds to the
region of attraction (ROA) and the red one represents the
initial positions that are outside of the ROA.

It can be clearly seen that, thanks to the capability of
the MSBPC approach of performing automatically multiple
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(a) Backward perpendicular case.
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(b) Backward diagonal case.

Fig. 8. Exhaustive simulations. Initial orientation = 0◦. Parking spot
length = 4m and width = 2.7m

maneuvers, the car is able to park from almost any initial
position in the analysis window with the exception of a small
portion on the diagonal case (Fig. 7a) where the vehicle is
already violating the constraints from the initial position.

C. Fast prototyping environment

Fig. 9. Backward perpendicular parking maneuver in simulation using a
homemade fast prototyping environment
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Fig. 10. Backward perpendicular parking maneuver signals

A homemade fast prototyping environment using the same
software architecture as the one embedded inside the car is
used for simulation purposes. In addition to behaving nearly
identically (from a software architecture point of view) to
the real vehicle, this fast prototyping environment simulates
as well the dynamics of the vehicle, leading to more realistic
simulations than the MATLAB environment used for the
results presented in the previous subsections.

As it can be seen in Figs. 9-10, the car is able to park
successfully into the parking spot (represented by a green
rectangle) in three motions while satisfying the constraints
during the whole maneuver, with the evolution of the many
different signals being very similar to the MATLAB cases
in spite of the slight discrepancy between the control signals
and the response of the vehicle (Fig. 10a). The fast decele-
ration at the end (Fig. 10a) is due to a stopping condition in
the implementation related to et.

VI. CONCLUSIONS

Following our previous work [12], we’ve shown how the
use of a prediction step makes possible to overcome the
main limitation of the previously presented Multi-Sensor-
Based control approach - being able to park with only one
maneuver. Indeed, thanks to the prediction step considered,
the presented MSBPC approach is able to successfully deal
with backward perpendicular and diagonal parking problems
(using the same formalism) in multiple motions from virtu-
ally any sensible initial position.

It is worth noting that the modifications in the interaction
model with respect to the MSBC approach are minor.

APPENDIX

The constraints deactivation conditions used to obtain the
results presented in this work are now detailed (Table III).
To simplify the content of the table, the following notation is
considered: subscripts min denotes a minimum radius when
turning with the maximum steering angle (φmax), ipCart

a des-
cribes the point ipa in Cartesian coordinates, the superscript
c(angle) denotes a multiplication of the base by cos(angle)
with angle expressed in degrees and, εlong and εlat are small
positive values considered for constraints that are mostly
related to, respectively, the longitudinal or lateral motions
(εlong = 0.05 and εlat = 0.1). Furthermore, it should be
noted that the conditions should be verified at each prediction
step along the whole prediction horizon with the appropriate
predicted value for each feature and corresponding control
signal.

TABLE III
CONSTRAINTS DEACTIVATION CONDITIONS

Constraint Deactivate if
3h4(3) !(3Y2 < 0 and 6Y3 > 0) or 3X2 < 0
3X2

3x2 < −2vabs
max or 3Y2 < −εlong

3dlat2
φ ≥ 0 or (v < 0 and 3X2 > −xi) or

(|5h4(3)| > ρc45
mmin

and 3pCart
2 > ρc45

mmin
)

6h3(3)
3Y3 < −εlat or (6Y3 < εlat and 6X3 < 0) or

(6X3 > 0 and 3Y3 < 0)

6X3

3Y3 < 0 or 6Y3 > εlong or (3h4(3) > 0 and
3Y3 < 0)

6Y3 5X3 > 2vabs
max or 6X3 < 0 or 6Y3 > εlat

ACKNOWLEDGMENT

This work was supported by the Mexican National Council
for Science and Technology (CONACYT). This paper des-



cribes work carried out in the framework of the Valet project,
reference ANR-15-CE22-0013-02.

REFERENCES

[1] W. Wang, Y. Song, J. Zhang, and H. Deng, “Automatic parking of
vehicles: A review of literatures,” International Journal of Automotive
Technology, vol. 15, no. 6, pp. 967–978, 2014.

[2] Y. Song and C. Liao, “Analysis and Review of State-of-the-Art Auto-
matic Parking Assist System,” in 2016 IEEE International Conference
on Vehicular Electronics and Safety, Beijing, China, 2016, pp. 61–66.

[3] P. Petrov, F. Nashashibi, and M. Marouf, “Path Planning and Steering
control for an Automatic Perpendicular Parking Assist System,” in
7th Workshop on Planning, Perception and Navigation for Intelligent
Vehicles, PPNIV’15, Hamburg, Germany, 2015, pp. 143–148.

[4] P. Petrov and F. Nashashibi, “Saturated Feedback Control for an
Automated Parallel Parking Assist System,” in 13th International Con-
ference on Control, Automation, Robotics and Vision (ICARCV’14),
Marina Bay Sands, Singapore, 2014, pp. 577–582.

[5] H. Vorobieva, N. Minoiu-Enache, S. Glaser, and S. Mammar, “Ge-
ometric Continuous-Curvature Path Planning for Automatic Parallel
Parking,” in 2013 10th IEEE International Conference on Networking,
Sensing and Control (ICNSC), Evry, France, 2013, pp. 418–423.

[6] Y. Yi, Z. Lu, Q. Xin, L. Jinzhou, L. Yijin, and W. Jianhang, “Smooth
path planning for autonomous parking system,” in 2017 IEEE Intelli-
gent Vehicles Symposium (IV), no. Iv. IEEE, 2017, pp. 167–173.

[7] C. Chen, M. Rickert, and A. Knoll, “Path planning with orientation-
aware space exploration guided heuristic search for autonomous par-
king and maneuvering,” in 2015 IEEE Intelligent Vehicles Symposium,
Seoul, Korea, 2015, pp. 1148–1153.

[8] G. Notomista and M. Botsch, “Maneuver segmentation for autono-
mous parking based on ensemble learning,” in 2015 International Joint
Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015, pp.
1–8.

[9] D. A. de Lima and A. C. Victorino, “Sensor-Based Control with Digital
Maps Association for Global Navigation: A Real Application for
Autonomous Vehicles,” in 2015 IEEE 18th International Conference

on Intelligent Transportation Systems, Las Palmas, Spain, 2015, pp.
1791–1796.

[10] Y. Kang, D. A. de Lima, and A. C. Victorino, “Dynamic obstacles avoi-
dance based on image-based dynamic window approach for human-
vehicle interaction,” in 2015 IEEE Intelligent Vehicles Symposium (IV),
Seoul, South Korea, jun 2015, pp. 77–82.
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Towards Uncertainty-Aware Path Planning for Navigation
on Road Networks Using Augmented MDPs

Lorenzo Nardi Cyrill Stachniss

Abstract— Although most robots use probabilistic algorithms
to solve state estimation problems such as localization, path
planning is often performed without considering the uncertainty
about robot’s position. Uncertainty, however, matters in plan-
ning. In this paper, we investigate the problem of path planning
considering the uncertainty in the robot’s belief about the
world, in its perceptions and in its action execution. We propose
the use of an uncertainty-augmented Markov Decision Process
to approximate the underlying Partially Observable Markov
Decision Process, and we employ a localization prior to estimate
how the uncertainty about robot’s belief propagates through the
environment. This yields to a planning approach that generates
navigation policies able to make decisions according to different
degrees of uncertainty while being computationally tractable.
We implemented our approach and thoroughly evaluated it on
different navigation problems. Our experiments suggest that
we are able to compute policies that are more effective than
approaches that ignore the uncertainty and also to outperform
policies that always take the safest actions.

I. INTRODUCTION

Over the past decades, there has been a great progress in
autonomous robot navigation and today we find lots of robots
that navigate indoors and outdoors. Although most robots use
probabilistic algorithms for localization or mapping, most
path planning systems assume to know the position of the
robot while computing a path. Ignoring position uncertainty
during planning may be acceptable if the robot is precisely
localized, but it can lead to suboptimal navigation decisions
if the uncertainty is large. Consider for example the belief
about robot’s position represented in Fig. 1 by the black
shaded area (the darker the more likely). The robot could be
at intersection A or B, but the localization system is not able
to disambiguate them. Ignoring the uncertainty, we could
assume the robot to be at the most likely position B. Thus, it
should turn to the right to reach the goal through the shortest
path (blue). However, if the robot is at A (less likely, but
possible), going right would lead it to a detour (red).

In this paper, we investigate the problem of path planning
under uncertainty. Uncertainty-aware plans reduce the risk to
make wrong turns when the uncertainty is large. For example,
in Fig. 1, the robot could navigate towards intersection C,
which has distinctive surrounding and, thus, the robot is
expected to localize better. There, it can safely turn towards
the goal avoiding the risk of long detours (green). A gen-
eral formalization for this type of problem is the Partially
Observable Markov Decision Process (POMDP). POMDPs,
however, become quickly intractable for real-world applica-
tions. Our goal is to investigate an approximation that is still
able to consider the localization uncertainty.

All authors are with the University of Bonn, Germany.
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Fig. 1: Example of robot navigation with high pose uncertainty. The black
shaded area is the belief about robot’s position (the darker, the more likely).
A, B, C are the road intersections (in detail on the right side). The paths
from each intersection are colored respectively in red, orange and green.
The black arrows indicate the roads’ directions.

The main contribution of this paper is a novel approach
that is a step forward in planning routes on road networks
considering the uncertainty about robot’s position and action
execution. It relies on the Augmented Markov Decision
Process (A-MDP) [15], which approximates a POMDP by
modeling the uncertainty as part of the state. We employ a
localization prior to estimate how robot’s belief propagates
along the road network. The resulting policy minimizes the
expected travel time while reducing the mistakes that the
robot makes during navigation with large position uncer-
tainty. As a result, our planning approach, first, explicitly
considers the robot’s position uncertainty, and thus it is
able to take different actions according to the degree of
uncertainty; second, in complex situations, it leads to plans
that are on average shorter than a shortest path policy
operating under uncertainty but ignoring it.

II. RELATED WORK

Although planning under uncertainty has received substan-
tial attention, most robotic systems such as Obelix [10] or the
Autonomous City Explorer [11] still use A∗ to navigate in
urban environments. Navigation in urban environments often
exploits topological or topo-metric maps [9]. These maps can
be stored compactly as a graph and free maps of most cities
exist, for example, through OpenStreetMap.

The Markov Decision Process (MDP) allows for optimally
solving planning problems in which the actions are noisy
but the state is fully observable. If the state is not fully
observable, the problem turns into a Partially Observable
Markov Decision Process (POMDP). However, in POMDPs,



(a) OSM map. (b) Traversability grid map X . (c) Roads graph G. (d) Localizability map Z .

Fig. 2: Environment representation X ,G and localizability map Z extracted from OpenStreetMaps (a). In (b), the traversable roads are in white, blue refers
to non-traversable areas and buildings are in dark blue. In (c), the orange arrows are the roads E and the red dots are their intersections V . In (d), the
darker the pixels along the roads, the smaller the localizability covariance.

the computational complexity is often too high to provide
useful results for real-world problems [12]. Roy et al. [15]
proposed the Augmented Markov Decision Process (A-
MDP) to approximate the state space of a POMDP. A-
MDPs formalize POMDPs as MDPs with an augmented
state representation including the uncertainty. Thus, A-MDPs
can be solved using the tools of the MDP world. A-MDPs
have been used by Hornung et al. [6] for planning while
minimizing the motion blur of its camera, and by Kawano [8]
to control under-actuated blimps. In this paper, we use A-
MDPs to plan routes on road networks taking the uncertainty
about robot’s position into account.

Approaches that incorporate the robot’s uncertainty into
the planning process are usually referred to as planning in
belief space. The belief roadmap [14] and the FIRM [1]
generalize probabilistic roadmap algorithm to plan in the
belief space. Platt et al. [13] assume maximum likelihood
observations to define the belief space. The LQG-MP [2]
plans using a linear-quadratic controller with Gaussian uncer-
tainty. Most of these approaches compute a fixed path offline
and execute it without considering any sensor or process
noise. Our approach generates offline a policy that deals
with different degrees of uncertainty, and selects online the
optimal action given the current belief of the robot.

Candido et al. [4] and Indelman et al. [7] approach
planning in belief space in the continuous domain. However,
these approaches are computationally expensive. On the
contrary, we consider a discrete space representation and
use a compact representation of the robot’s belief similar
to Bopardikar et al. [3] to tackle larger environments and,
thus, to take a step towards real world applications.

III. PLANNING AND LOCALIZATION IN ROAD NETWORKS

A. Metric-Topological Maps

Most probabilistic approaches for robot localization rely
on occupancy grid maps, whereas topology graphs are an
effective representation for planning. We combine these two
representations and represent the environment using a metric-
topological map, similar to the hierarchical maps [9].

We define our environment representation by extracting
information about buildings and roads from publicly avail-
able map services such as OpenStreetMap (OSM) (see for
example Fig. 2a). We store this data in a 2D grid map X in
which each cell contains information about its traversability

(Fig. 2b). We use X to estimate the position of the robot
assuming it always moves along the roads. In addition to
that, we define a topological graph G = (V,E) over the
discretized metric space of X in which the vertexes V ⊂ X
are the road intersections and the oriented edges E are the
roads connecting them (Fig. 2c). We use G for planning
routes. Note that an edge of G corresponds to the sequences
of traversable cells in X representing the corresponding road.

B. Localization System

We consider a mobile robot equipped with a 360-degree
range sensor that uses a Markov localization system [5]
to localize in X . Markov localization estimates the robot’s
position by considering a probability distribution over X in
form of a histogram over all cells of the grid map, without
requiring probabilities to be restricted to any particular class
of distributions. As the robot moves and acquires a new scan
from the laser range finder, the localization system uses the
scan and the wheel odometry to estimate the new position
of the robot using Bayes filter.

C. Localizability Map

Given the buildings’ footprints and the sensor model of
the laser range finder, we can compute an estimate of how
scans fired at a location will affect the localization. We
compute this prior using the method proposed by Vysotska
and Stachniss [16]. It simulates at each location a virtual
laser scan by ray-casting the map of the buildings. Then,
it translates/rotates the virtual sensor and estimates the error
between the scan and the map around its firing location. Con-
sidering these errors, it computes a covariance matrix that
estimates how well the scan matches the map under position
uncertainty. At locations where the surrounding environment
has a distinctive structure, the resulting covariance is small,
whereas it is large if the surrounding environment is not
informative or ambiguous. We compute this prior for each
traversable cell in X and we refer to this as the localizability
map Z (see for example Fig. 2d).

D. MDP-based Planning

Given our representation of the environment G, we can
plan routes using a Markov Decision Process (MDP) in
which the states are the road intersections V and the actions
correspond to selecting roads E at intersections. The tran-
sition function allows for transitions between intersections



if a road connecting them, and the rewards correspond
to the length of the roads. Solving this MDP generates
navigation policy that leads the robot to the goal through
the shortest path. However, MDPs assume to always know
the location of the robot, and this is often not the case in
robot navigation. Thus, following a MDP policy in situations
with high position uncertainty may lead the robot to take the
wrong way and thus to reach the goal through a longer path.

IV. OUR APPROACH TO PLANNING IN ROAD NETWORKS
CONSIDERING LOCALIZATION UNCERTAINTY

We propose to improve decision making at intersections
by integrating into the planning process the uncertainty about
robot’s position provided by the localization system. We
formulate this planning problem using Augmented MDP (A-
MDP) [15]. It efficiently approximates a POMDP by aug-
menting the conventional MDP state with a statistic about
the uncertainty, such as its entropy or covariance. Due to the
augmented state representation, transition and reward func-
tions become more complex, but, in their final formulation,
A-MDPs have an analogous representation as MDPs, except
for a larger number of states. Thus, they can be solved by
using the same algorithms as MDPs such as policy iteration.

A. States

Even though our localization system can potentially gen-
erate any kind of probability distribution due to its non-
parametric nature, we approximate the uncertainty about
robot’s position during planning by a Gaussian distribution
with isotropic covariance, and we augment the MDP states
with the corresponding variance. Therefore, we define an
augmented state s as the pair s = (v, σ2) that corresponds
to the normal distribution N (v, Σ) defined over X with
Σ =

[
σ2 0
0 σ2

]
. This representation keeps the state space

compact by augmenting it by only one dimension and, thus,
avoids planning to explode in complexity. As the state s
represents a distribution over the discrete space X , we also
refer to it as the probability mass function p(x | N (v,Σ))
or, equivalently, p(x | s).

The set of augmented states S is

S = {(v, σ2) | v ∈ V, σ2 ∈W}, (1)

where W is a set of variances that discretizes the possible
degrees of uncertainty.

B. Actions

In our A-MDP, performing an action corresponds to take
a direction at a road intersection, analogously as in MDPs.
We assume that every road intersection is a junction of up to
4 roads corresponding to the four cardinal directions. Thus,
the set of actions is A = { ↑, ↓, ←, →}.

C. Transition Function

The A-MDP transition function T (s′ | s, a) takes as input
an augmented state s ∈ S and an action a ∈ A, and maps it to
a probability distribution of possible A-MDP end states s′ ∈
S. As our A-MDP states represent probability distributions,

Fig. 3: Estimated uncertainty about robot’s position (blue circles) at inter-
sections vj , vk, vl (red dots) when the robot takes action a =′→′ in vi
represented in the grid map X underlying the road graph G.

the transition function is more complex to define compared
to standard MDPs. We define T in three steps:
1) We compute the posterior probability about robot’s po-

sition given that it executes a from an intersection v,
to which we refer as the posterior from an intersec-
tion p(x | v, a).

2) We compute the posterior from a state p(x | s, a) given
that the belief about the input position of the robot is
represented by the state s by combining the possible
posteriors from intersections according to s.

3) We map the posterior from a state into our A-MDP state
representation to define the state transitions T (s′ | s, a).

Posterior from an intersection: First, we compute the
posterior probability about robot’s position p(x | v, a), x ∈
X given that it executes a at v without considering any
uncertainty in its input position.

To this end, we simulate the robot taking action a at v and
moving along the corresponding road in X according to

xt = g(xt−1, ut) + εt, εt ∼ N (0, Mt), (2)

where g is a linearizable function, ut is the one-step control
corresponding to action a and Mt is the motion noise.
Assuming that the belief about robot’s position can be
approximated as a Gaussian distribution, we estimate the
position of the robot while navigating along a road using
the prediction step of the Extended Kalman Filter (EKF)

p(x̂t | xt−1, ut) = N (µ̂t, Σ̂t) (3)

where µ̂t = g(µt−1, ut), Σ̂t = GtΣt−1G
>
t + Mt, and Gt

is the Jacobian of g. As we simulate robot navigation, we
do not have measurements to correct the EKF prediction.
Instead, we estimate how position uncertainty propagates
along the road by combining Σ̂t with the localizability co-
variance Σµ̂t,Z that estimates how much informative would
be a measurement at µ̂t to localize the robot:

p(xt | xt−1, ut,Z) = N (µ̂t, (Σ̂−1t + Σ−1µ̂t,Z)−1). (4)

If intersection vj is reachable from vi through an action a
as in Fig. 3, we estimate the posterior probability about
robot’s position of executing this action as the Gaussian
distribution N (vj ,Σj|ia) that we compute by recursively
applying Eq. (4) along the cells of X belonging to the
corresponding road.

We explicitly model the possibility that the robot might
miss an intersection and end up in a successive one while
navigating with high position uncertainty. For example,



in Fig. 3, while navigating rightwards from vi, the robot
could fail to detect vj and end up in vk or in vl. We compute
the probability to detect the intersection vj so that the smaller
the uncertainty Σj|ia, the higher the probability to detect it:

pdetect(vj | vi, a) = p(x = vj | N (vj ,Σj|ia)). (5)

We compute the posterior p(x | vi, a) of taking action a at
intersection vi by considering the probability to end up in
each of the reachable intersections taking action a:

p(x | vi, a) =
∑|J|

j=1
p(x | N (vj ,Σj|ia)) pdetect(vj | vi, a)

·
∏j−1

k=1
(1− pdetect(vk | vi, a)), (6)

where J is the ordered set of |J | subsequent intersections that
the robot may reach by missing the previous intersections.
The probability that the robot ends up in each of the J inter-
sections decays according to the probability that a previous
one has been detected. If no road exists for executing a at v,
we set the posterior to be equal to the input intersection v.

Posterior from a state: Given the posteriors from the
intersections, we compute the posterior probability of taking
action a given that input belief about the position of the robot
is the probability represented by A-MDP state s ∈ S. As the
input is a probability distribution about the robot’s position,
the posterior from a state should represent all of the possible
transitions that might occur by executing action a. Thus, we
compute the posterior from a state as the weighted sum of
the posteriors from the intersections according to the input
state s:

p(x | s, a) = η
∑|V |

i=1
p(x | vi, a) p(x = vi | s). (7)

State Transitions: We define the transition probability
between the A-MDP states by computing a correspondence
between the posteriors from the states and the A-MDP
states S using the Bhattacharyya distance. The Bhattacharyya
distance DB(p, q) measures the similarity between two dis-
tributions p and q over the same domain. We define the
state transition T (s′ | s, a) with s, s′ ∈ S according to
the Bhattacharyya distance over the domain X between the
posterior p(x | s, a) and the distribution represented by s′:

T (s′ | s, a) = η e−DB(p(x|s,a),s′), (8)

where η is a normalization factor and we use the softmax
function to transform the distances into probabilities.

D. Reward Function

We define the A-MDP reward function such that the result-
ing policy makes uncertainty-aware decisions that lead the
robot to the goal in average in the minimum time or, equiva-
lently, maximum negative time. Similarly as for the transition
function, we first compute the rewards without uncertainty
in the input and end position, that we call reward between
intersections rṪhen, we combine the rewards between the
intersections to define the A-MDP reward function R.

Assuming that the robot moves with unitary velocity, we
define the reward r(vi, a, vj) of taking action a ∈ A from vi
to vj with vi, vj ∈ V similarly to the MDP reward:

r(vi, a, vj) = −`road(vi, a, vj), (9)

where `road(vi, a, vj) indicates the length of the road that
connects vi to vj taking action a. If vj is not reachable
from vk by taking the action a, we give a penalty as reward

r(vi, a, vk) = rnoroad, rnoroad < 0. (10)

For each intersection vi that brings the robot to the
goal vgoal ∈ V through action a, we give a positive reward

r(vi, a, vgoal) = rgoal − r(vi, a, vj), rgoal ≥ 0. (11)

We define the reward of taking action a from the A-
MDP state s to s′, with s, s′ ∈ S, by combining the
rewards between intersections r according to the distributions
corresponding to the input and end states to reflect the
uncertainty of the transitions:

R(s′, a, s) =
∑|V |

i=1
p(x = vi | s)

·
∑|V |

j=1
p(x = vj | s′) r(vi, a, vj).

(12)

E. Solving the A-MDP
In our planning problem we deal in general with non-

deterministic transitions. Thus, we compute a policy that
tells the robot which action to select at any intersection
it might reach. As the A-MDP formulation allows for
solving our planning problem as an MDP, we compute
the optimal policy π∗ using the policy iteration algorithm.
Solving A-MDPs has the same computational complexity
as MDPs but A-MDPs require a larger number of states,
|S| = |V | · |W |. POMDPs are PSPACE-complete [12], thus
A-MDPs are practically and theoretically much more effi-
cient than POMDPs.

F. Navigation Following an A-MDP Policy
At each step of the robot, the localization system computes

an estimate bel(x) over X about the robot’s position as
described in Sec. III-B. When the robot recognizes to be at an
intersection, it has to make a decision where to navigate. In
order to make decisions according to our optimal policy π∗,
we transform bel(x) into the A-MDP state s ∈ S with the
minimum Bhattacharyya distance:

sbel = argmin
s∈S

DB(bel(x), s). (13)

Thus, the robot takes the action corresponding to the optimal
policy a∗ = π∗(sbel) and keeps navigating along the selected
road until it detects the next intersection.

V. EXPERIMENTAL EVALUATION

The objective of this work is a planning approach for robot
navigation on road networks that explicitly takes the uncer-
tainty about robot’s position into account. Our experiments
aim at showing that our planner makes different effective
navigation decisions depending on the robot’s uncertainty,
the environment, and the goal location to reach. We further-
more provide comparisons to two baseline approaches.



Fig. 4: Environment of Exp. 1: In the graph representation G, intersections
are the red dots denoted by letters, whereas road edges are the orange arrows.
Buildings are colored in blue. Localizability information Z along roads is
represented such that the darker, the higher the expected localization.
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Fig. 5: Avg. travel time of Exp. 1 to the goal F (left) and G (right).

A. Simulator and Baseline
All experiments presented here are simulation experi-

ments. The simulator uses a grid map containing buildings
and road information. The robot navigates along the roads
and uses building information to simulate laser range ob-
servations as well as to compute the localizability map as
described in Sec. III-C. The scans and the odometry are
affected by noise. The navigation decisions at the intersec-
tions are non-deterministic and the probability of missing
an intersection is proportional to the variance of the robot’s
belief. The robot localization system implements Markov
localization as described in Sec. III-B.

For comparisons, we consider a shortest path policy sim-
ilar to the one described in Sec. III-D that assumes the
robot to be located at the most likely position given by the
localization system. We compare our approach also against
a safest decision policy that considers the localizability
information to reduce the expected uncertainty about robot’s
position and by selecting always safe actions.

B. Situation-Aware Action Selection
The first experiment (Exp. 1) is designed to show that

our approach reacts appropriately to the situation given the
planning problem. Fig. 4 depicts an environment together
with the localizability information Z along the roads. Ac-
cording to the localizability information, the robot expects
to localize well along some roads such as JK,KC, but finds
little structure to localize in others as AB,BC causing a
growth in the position uncertainty. Given the initial belief that
the robot is at A, B, I, or J with uniform probability (green
ellipse), we sample accordingly the actual initial location,
and consider two different navigation tasks to show how
our approach adapts the action selection depending on the
planning problem.

Fig. 6: Environment of Exp. 2: Same notation as in Fig. 4.

First, we set F as the goal location. The shortest path
policy seeks to navigate rightwards to reach the goal fast,
whereas the safest path policy seeks to go through JK where
the localizability is high. The policy generated by our planner
performs similarly to the shortest path one. In fact, although
the robot cannot localize perfectly along AE, it is expected
to relocalize along EF and thus to reach safely the goal
even following a greedy plan. Fig. 5 (left) shows the average
travel time of the three policies. Our policy presents the same
performances as the shortest path and outperforms the safest
path policy.

The situation changes if we set G as the goal and assume
a time penalty corresponding to a long detour if the robot
navigates towards O or N. The safest path policy seeks again
to go through JK to reduce the uncertainty and take the
correct turn at D. Whereas, the shortest path policy leads the
robot rightwards to quickly reach D and make the turn to the
goal. However, navigating along AD, the uncertainty about
robot’s position grows and, thus, it increases the probability
that the robot takes the wrong turn or misses the intersec-
tion D. This leads to an overall suboptimal performance,
see Fig. 5 (right). As reaching D with large uncertainty may
lead the robot to long detours, our planner seeks to reduce
the uncertainty before making the turn and, thus, in this case,
behaves similarly to the safest path policy. This shows that
our planner adapts to the situation by picking the best of
both the shortest and the safest path worlds.

C. Uncertainty-Aware Action Selection

The second experiment (Exp. 2) is designed to illustrate
how our approach deals with different degrees of uncertainty.
To do so, we consider the environment depicted in Fig. 6.
The robot starts from A, B, and C with different initial levels
of position uncertainty and navigates to the goal G.

Trivially, the shortest path to the goal is to navigate
upwards and make a right turn to the goal at E. When the
robot is accurately localized, following this path leads it fast
and safely to the goal. However, as there is little structure to
localize in the environment along AE, the uncertainty about
the robot’s position upon reaching E grows. Reaching E
with large uncertainty increases the probability to mismatch
the intersections D and E. If the robot expects to be at E
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Fig. 7: Avg. travel time of Exp. 2 (Fig. 6) to reach the goal G starting from A, B, C respectively with different uncertainty levels σ.

whereas it is actually at D, the shortest path policy makes
the robot turn right leading it to a long detour through L.
Large uncertainty increases also the probability that the robot
misses to detect E or even F leading also to detours.

The safest path policy seeks to make safe turns at inter-
sections in which the robot is expected to localize well, for
example, at the end of the roads or where the localizability is
high. Therefore, to reach the goal, it leads the robot upwards
to H and makes a safe right turn towards I. From I, it
moves the robot rightwards to J, turns to K and, finally,
to the goal G. However, the safest path policy always makes
safe decisions ignoring the uncertainty about the robot’s
position while executing the plan. Therefore, it leads the
robot through a conservative (and often longer) path also
in the situations in which the position uncertainty is small.

Our approach makes decisions by explicitly considering
the uncertainty about the position of the robot provided by
the localization system. Thus, depending on the degree of
uncertainty, it selects the action that leads the robot to the
goal trading off safety and travel time.

Fig. 7 shows the performance of the three algorithms in
Exp. 2. We considered 18 different levels of uncertainty
with σ ranging from 1 to 50 meters and performed for
each initial location and uncertainty 200 runs. The safest
path policy presents in average similar travel time when
varying the initial uncertainty. The shortest path policy shows
short travel time when the uncertainty is small but, when
the uncertainty grows, it takes in average longer than the
safest path to reach the goal. Our approach follows a strategy
similar to the shortest path when the uncertainty is small
and thus mistakes are unlikely. However, in tricky situations
when the uncertainty becomes large, our approach makes
decisions similarly to the safest path, thereby avoiding long
detours. Therefore, our approach is able to take the appropri-
ate navigation action according to the degree of uncertainty,
overall outperforming the shortest and safest path policies.

VI. CONCLUSION

In this paper, we presented a step towards efficient path
planning under uncertainty on road networks. We formulate
this problem as an augmented Markov Decision Process that
incorporates the robot’s position uncertainty into the state
space but does not require solving a full POMDP. We define
the transition function of the A-MDP by estimating how the
robot’s belief propagates along the road network through the
use of a localization prior. During navigation, we transform
the belief provided by the robot’s localization system into

our state representation to select the optimal action. Our
experiments illustrate that our approach performs similarly
to the shortest path policy if the uncertainty is small, but
outperforms it when the uncertainty is large and the risk of
making suboptimal decisions grows. Therefore, our approach
is able to trade off safety and travel time by exploiting the
knowledge about the robot’s uncertainty.
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