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Foreword
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D 
reconstruction, Modeling and Control of mobile robot. 

Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12, the fifth edition PPNIV'13 was in 
Vilamoura (over 135 attendees) during IROS'13, the sixth edition PPNIV'14 was in Chicago (over 100 attendees) 
during IROS14, the seventh edition PPNIV'15 was in Hamburg (over 150 attendees) during IROS15, and the 
heigth edition PPNIV'16 was in Rio de Janeiro (over 100 attendees) during ITSC16. 

In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), MEPPC08 in 
Nice during IROS’08 (more than 60 registered people), SNODE'09 in Kobe during ICRA'09 (around 70 
attendees), RITS'10 in Anchrorage during ICRA'10 (around 35 attendees),  PNAVHE11 in San Francisco during 
the last IROS11 (around 50 attendees), and the last one WMEPC14 in Hong Kong during the last ICRA14 (around 
65 attendees), 

This workshop is composed with 4 invited talks and 16 selected papers (7 selected for oral presentation and 5 
selected for interactive session. Five sessions have been organized: 

Session I: Control & Planning 
Session II: Segmentation and reconstruction 
Session III: Simulation & legal issues 
Session IV: Interactive session 
Session V: Perception 
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Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 

Christian Laugier, Philippe Martinet, Urbano Nunes and Christoph stiller 
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Session I 

Control & Planning 

Title: Driving Like a Human: Imitation Learningfor Path Planning using
Convolutional Neural Networks
Authors: Eike Rehder, Jannik Quehl and Christoph Stiller

Title: Autonomous Perpendicular And Parallel Parking Using Multi-Sensor Based
Control
Authors: David Perez-Morales, Olivier Kermorgant, Salvador Dominguez-Quijada and
Philippe Martinet
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Session I 

Keynote speaker: Marcelo H. Ang  
(NUS, Singapore)

Generalized Predictive Planning for Autonomous Vehicles

Abstract: We present a generalized framework for real-time predictive planning in space-time to improve 
autonomous driving performance in dynamic environments. Predictive planning refers to planning around 
predicted obstacle trajectories, where robot velocity profiles are solved in an integrated manner along with spatial 
paths, which is contrasted against traditional motion planning approaches which decouple the velocity and path 
planning problems. Autonomous vehicle deployments are still limited with respect to environmental complexity 
and operating speed, however the real world experimental results show that the proposed predictive planning 
framework can push the bounds of planning capabilities in both aspects. The planning methods are demonstrated 
onboard three classes of vehicles, a road car, buggy and scooter, in both unstructured pedestrian environments and 
on-road environments. Test scenarios include pedestrian crowd navigation, T-junction navigation, defensive 
driving, and overtaking.

Biography: Marcelo H. Ang, Jr. received the B.Sc. degrees (Cum Laude) in Mechanical Engineering and 
Industrial Management Engineering from the De La Salle University, Manila, Philippines, in 1981; the M.Sc. 
degree in Mechanical Engineering from the University of Hawaii at Manoa, Honolulu, Hawaii, in 1985; and the 
M.Sc. and Ph.D. degrees in Electrical Engineering from the University of Rochester, Rochester, New York, in 
1986 and 1988, respectively. His work experience includes heading the Technical Training Division of Intel's 
Assembly and Test Facility in the Philippines, research positions at the East West Center in Hawaii and at the 
Massachusetts Institute of Technology, and a faculty position as an Assistant Professor of Electrical Engineering at 
the University of Rochester, New York. In 1989, Dr. Ang joined the Department of Mechanical Engineering of the 
National University of Singapore, where he is currently an Associate Professor, with a Joint Appointment at the 
Division of Engineering and Technology Management. He also is the Acting Director of the Advanced Robotics 
Centre. His research interests span the areas of robotics, mechatronics, and applications of intelligent systems 
methodologies. He teaches both at the graduate and undergraduate levels in the following areas: robotics; 
creativity and innovation, applied electronics and instrumentation; advanced computing; product design and 
realization. He is also active in consulting work in these areas. In addition to academic and research activities, he 
is actively involved in the Singapore Robotic Games as its founding chairman and the World Robot Olympiad as a 
member of the Advisory Council. 
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2

Why Autonomous Vehicles?
(Singapore Perspectives)

Reduce car ownership
Ride sharing, delivery, logistics

Efficient use of resources
Car, road infrastructure, less parking spaces

Public transportation
Last mile/first mile problem
Urban driving as opposed to highways

Improved Productivity & Safety,
“greener”
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3

Autonomous Mobility on Demand
INTRODUCTION & MOTIVATION

4

Environments

Road
Pedestrian
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5

SMART=NUS Fleet

6

What we can confidently do?
Reactive control with guaranteed safety
(lowest layer – always on)
Mapping and Localization
Local planning

RRT* variant
POMDP

Execution & Control
More accurate path following using kinematic
constraints
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7

Mobility on Demand using
Multi Class Autonomous Vehicles

8

One North:
Jan 2015 – 6 km
route
Sept 2016 – 12
km route
23 June 2017 – 55
km NUS &
Science Pk

8
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9

One North – Live Testing

10

Pedestrian crossing Signalized Intersection

Complex intersection Road construction Road construction and
jay walking

One North – May 2017
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Public Deployment at the
Chinese & Japanese Gardens (Oct 2014)

Long Term Vehicle
Testing
To raise awareness
To gain public
acceptance

6 Days
360 km

500 Visitors
220 Trips

225 Surveys
98% “would ride again”

12
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13

our autonomous mobility scooter

14

Our Planning Framework

Interface planning modules with
perception and control modules
Incorporate acceleration constraints
Establish replanning timing/retriggering
Safety mechanism design for predictive
planning

PREDICTIVE PLANNING FRAMEWORK
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Planning Framework Overview
PREDICTIVE PLANNING FRAMEWORK

16

Planning Framework Overview
Booking System & Mission Planner

Mobile phone access to webserver for handling mission
requests as {Pickup Station, Dropoff Station}
Dijkstra search over directed graph of reference path
segments

Mapping/Localization
Vertical features extracted from 3D point cloud gathered
from 2D LIDAR “rolling window” accumulation over
time

Obstacle Detection
SVM performed over spatio temporal features of object
clusters from 2D LIDAR

PREDICTIVE PLANNING FRAMEWORK
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Planning Framework Overview
Cost Map Generator

Obstacle avoidance cost set for grid locations in a 3D cost
map layered by time dimension, up to a time horizon

Goal Generator
Goal state set at constant distance ahead along route plan

Steering Control
Pure pursuit steering find constant radius arc target to
forward waypoint

Speed Control
Proportional Integral (PI) controller with switching
mechanism for throttle vs. braking

PREDICTIVE PLANNING FRAMEWORK

18

Trajectory Planner
Control and Path Guided RRT* (CPG RRT*)

Use RG, path guided sample biasing, and min jerk edge connection

PREDICTIVE PLANNING FRAMEWORK

Same structure of RRT*,
but redefine subfunctions:

“Nearest” is RG NN search
“SampleFree” uses biasing
“Line” uses an min jerk
profile interpolation along
Dubins car paths
“Steer” and “CollisionFree”
are built off the “Line”
function
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Trajectory Planner: SampleFree

PREDICTIVE PLANNING FRAMEWORK

Retain previous iteration knowledge by i 1

Bias toward route plan by pp

SampleGoal
for greedy
search
RG Sample for
efficient
exploration

20

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

Controllable trajectory generation to enforce:
Minimum turning radius (Dubins curves)
Velocity bounds
Acceleration bounds

Edges are min jerk optimal for comfort
Minimizes
Known to be 5th degree polynomial for position

Trajectory defined over Dubins x Velocity x Time
Configuration space

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

18



21

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

First, solve for Dubins curve in SE(2) space
Then, solve for position, velocity, and
acceleration w.r.t time by system of equations for
boundary conditions:

Known: pinit , vinit , ainit , pfinal , vfinal . set afinal = 0
Solve for constants b0 … b5

22

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

Polynomial solutions found quickly
Bounds checked over time interval at endpoints and roots
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23

Replan Timing

PREDICTIVE PLANNING FRAMEWORK

Each plans is generated while previous plan is executed

24

Safety Checking

PREDICTIVE PLANNING FRAMEWORK

Each solution plan is rechecked against an updated
observation before execution
A new variant of braking Inevitable Collision State (ICSb)
is applied for passive safety:

A braking maneuver must exist from the commit state following
the solution trajectory to satisfy dynamic minimum braking
distance
Otherwise, velocity profile of solution is overridden by constant
deceleration profile up to braking distance

“Clear zone” applied to command stop when obstacles are
very close

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

20



25

Control Interfacing

PREDICTIVE PLANNING FRAMEWORK

Planner must know next commit state as root for plan tree
Control and/or localization error may affect true pose
s1 is expected commit state at end of trajectory 0 , but instead
arrive at s1’
Where to begin plan 2? Introduce pose correction factor!
Start plan 2 from state s2+ w s1 (we use w = 0.5)

26

Control Interfacing

PREDICTIVE PLANNING FRAMEWORK

Pose correction in practice:
Red is odometry trace (series of vectors)
Yellow is commit path
Overlap correlates with velocity undershoot, gap for overshoot
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Summary: Planning Framework
PREDICTIVE PLANNING FRAMEWORK

Predictive planning framework
Real time replanning in space time

Trajectory planning algorithm (CPG RRT*)
Generates min jerk controllable edge connections
Biased sampling for

Near previous solution trajectory
Near pure pursuit steering trajectory to route plan
Near goal
Reachable configuration space

Passive safety assurances through adapted
braking Inevitable Collison State Avoidance (ICSb)

28

Software Overview
VEHICLE PLATFORM DEVELOPMENT
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Software Overview
VEHICLE PLATFORM DEVELOPMENT

30

Hardware Overview
Common Sensor Suite

IMU & wheel encoders for odometry
1 2D LIDAR for Mapping & Localization (M&L) – fuse
w/odom
1 2D LIDAR for Obstacle Detection (OD)

Similar Power Management & Off the shelf
Computers

Ubuntu 14.04, ROS Indigo, i7 processor, 16GB RAM, SSD
Differing Actuation Mechanisms to Control:

Steering
Braking/Throttle
Gear Selection (Forward/Reverse)

VEHICLE PLATFORM DEVELOPMENT

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

23



31

Hardware Overview
Start with a personal mobility scooter, then add…

VEHICLE PLATFORM DEVELOPMENT

32

Hardware Overview
Start with a golf car, then add…

VEHICLE PLATFORM DEVELOPMENT
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Hardware Overview
Start with a road car, then add…

VEHICLE PLATFORM DEVELOPMENT

34

Safety Overrides
User Button
Controls:

Pause
Auto
Manual

E stops, onboard and
remote
Visualizations
onboard show
perception data and
planned path
Audio cues for station
arrival/departure

VEHICLE PLATFORM DEVELOPMENT
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35

Experiment Setup
Look for positive emergent behaviors
Compare against baseline planning method:

Decoupled spatial path and velocity planning
Enlarge obstacle bounds forward based on velocity to
treat environment as static
Trigger replanning only when at a stop due to blockage

Test Scenarios:
Pedestrian navigation
T junction
Defensive driving
Overtaking

VEHICLE PLATFORM DEVELOPMENT

36

Experiment Setup
VEHICLE PLATFORM DEVELOPMENT

Planning visualization
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37

Video available on YouTube: search “FMAutonomy” channel

Predictive Planning Video

https://youtu.be/eVVGZxp03Hc

EXPERIMENTAL VALIDATION

38

Reactive Control – Guaranteed Safety as a
Baseline
Generalize predictive planning

Plans coupled spatial path and velocity
Demonstrated over varied vehicle types and
environments in high risk scenarios

Reachability Guidance
Speed improvement by factor of 9 10

Predictive Planning Framework
CPG RRT* (biased sampling and min jerk edges)
Modified ICSb passive safety assurances

What have we achieved?
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Towards Mapless Navigation

39

You are “here”
(blue circle)
Go to #02 16

What’s Next?

40

Learning how to drive
Cars and people
around
Moving
directions
Relative
positions
Speeds
Intermediate
Goal

40

What’s Next?
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Marcelo H ANG Jr
mpeangh@nus.edu.sg
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Driving Like a Human: Imitation Learning
for Path Planning using Convolutional Neural Networks

Eike Rehder, Jannik Quehl and Christoph Stiller1

Abstract— Human-like path planning is still a challenging
task for automated vehicles. Imitation learning can teach these
vehicles to learn planning from human demonstration. In
this work, we propose to formulate the planning stage as a
convolutional neural network (CNN). Thus, we can employ well
established CNN techniques to learn planning from imitation.
With the proposed method, we train a network for planning in
complex traffic situations from both simulated and real world
data. The resulting planning network exhibits human-like path
generation.

I. INTRODUCTION

Motion planning is an essential component of autonomous

agents navigating through the world. Especially in the con-

text of autonomous robots and vehicles that operate in large

open spaces, motion planning is a crucial task.

In research, planning an agent’s actions has been un-

derstood as an optimization problem in which the optimal

actions given a cost function should be selected. Approaches

only differ in the shape of both actions and cost functions.

In terms of actions, one may consider discrete or continu-

ous actions and outcomes. For discrete state spaces, planning

will take the form of graph optimization, e.g. in grid maps

or state lattices [1], [2]. If the state and action space is

continuous, nonlinear optimization has been proposed [3].

Also, one can think of a combination of both [4]. For a

detailed study on models and their solutions, see [5].

In the end, however, all concepts for planning have in

common that the function to be optimized has to be pre-

specified. In most works, this is done by the careful design

by the researcher, e.g. for shortest paths in presence of ob-

stacles or minimum jerk in automated driving. This imposes

demands on the perception of autonomous systems as they

have to be capable of inferring the boundary conditions of

the optimizer at hand.

Thus, some works have aimed to deduct the planning cost

function from given sensor data [6], [7]. In this concept, an

agent learns to plan its motion from imitation of observed

behavior of others, thus called Imitation Learning (IL).

In the area of machine learning, recent advances in Deep

Learning and Convolutional Neural Networks (CNN) have

exceeded all expectations in a broad variety of tasks such as

*The research leading to these results has received funding from the
German collaborative research center “SPP 1835 - Cooperative Interacting
Automobiles” (CoInCar) granted by the German Research Foundation
(DFG).

1Eike Rehder, Jannik Quehl and Christoph Stiller are
with the Institute of Measurement and Control Systems,
Karlsruhe Institute of Technology, Karlsruhe, Germany
{eike.rehder, jannik.quehl, stiller}@kit.edu

image classification and segmentation, optical flow compu-

tation, etc. [8], [9], [10], [11].

With this, it is no wonder that deep learning has also

found its way into planning. While some researches aim

to construct an end-to-end pipeline that can create control

outputs directly from sensor readings, this approach can

only be reactive but not strategic [12]. Recently, long term

planning has been solved using Value Iteration Networks
(VIN) for Markov Decision Processes [13], [14]. While these

works achieve great results, to our understanding, none was

trained directly on observed paths. In the work of Shankar

et al. the planning cost function was static for one network.

Thus, the network could only plan for scenes it had been

trained on.

In this work, we propose to model motion planning of

an intelligent vehicle as Value Iteration Network. We show

how the network can be trained from previously observed

paths. As a training input, we rely exclusively on observed

paths and not on any kind of manually annotated data. We

demonstrate the performance of the network by training a

cost function from aerial images to resemble human driving

behavior.

II. IMITATION LEARNING FOR PLANNING

In this section, we demonstrate how to model the entire

planning task as a connection of recursive neural networks.

This augmentation makes the planning tasks fully differen-

tiable and thus allows for full back propagation. This way,

we can train an underlying cost function network from input

data. In this work, we follow the intuition of both Tamar

et al. as well as Shankar et al. [13], [14] for full Imitation

Learning of path planning.

In this work, planning is executed in a state grid. For

simplicity, the state grid is just a equidistant discretization

of the state space. However, one could easily incorporate

other state variables, such as orientation, by extending the

state grid by additional dimensions. All other steps then scale

accordingly.

A. State Transitions within Grids

Planning within a state grid is commonly modeled as

a graph where the edges of the graph are represented by

neighboring cells in the grid. However, in this work, we aim

to model these transitions as components of a neural network

for differentiability.

For this, we make use of the property of the Dirac Delta

Function. When a Dirac Delta function shifted by a, δ(t−a),
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Non-zero
padding

Transition
filters

Apply
transition cost

Apply
minimum
pooling

Cost
grid

Fig. 1: Value Iteration Module as Recurrent Neural Network. The two layers that define planning behavior are the transition

cost map (blue) and the cost per state and transition (green).

Fig. 2: Transition filters masks for four-connected neighbor-

hood and idle (last). Black cells represent ones, white cells

zeros.

is convolved with a function g(t) the result is the function g
shifted by a

δ(t− a) ∗ g(t) = g(t− a). (1)

The same applies to discrete convolutions. Thus, a shift of a

state in a grid can be modeled as a convolution with a two

dimensional transition filter mask that resembles a discrete

Dirac Delta Function.

In the context of Convolutional Neural Networks, this

means that we can model transitions in a state grid as a

convolutional layer with known filter masks. Examplary filter

masks for the 4-connected neighborhood are depicted in Fig-

ure 2. Note especially that the last filter mask represents the

idle element, a centered dicrete Dirac Function. Convolution

with this mask has no effect on the state grid.

B. Value Iteration Module

The Value Iteration Module computes the cost to reach

each state within the grid map from a given starting point.

For this, it takes the following steps:

1) Initialization - Initialize cost grid with arbitrary but

very large values in every state. Set the cell of the

starting state to zero.

2) Non-zero padding - Pad the state grid with arbitrary

but very high values. Since zero represents the starting

state, zero padding would introduce faulty results in

the border regions.

3) Cost propagation - Execute all possible transitions by

convolving the cost grid with transition filters.

4) Cost accumulation - Add cost per state and transition

as an additive layer.

5) Assign minimum state cost - Compute minimum cost

per state by min-pooling over the transition direction

of the cost grid.

6) Recurse - With the result of 5), restart at 2) until

convergence is reached.

Figure 1 demonstrates this process. At convergence, the

output of 4) (green layer in Figure) stores the transition

policy. This is due to the fact that this stage represents the

cost per state and possible action to end up in that specific

state. An argmin operation in the direction of possible

transition will result in the cheapest possible action to end

up in each state.

C. Path Evaluation Module

The Value Iteration Module only computes the minimum

cost per state. However, it does not compute the optimal path

from starting state to goal state. For this, another recurrent

network has to be introduced. Again, this network consists

of several steps:

1) Initialization - Initialize state grid with all zeros.

Set the cell of the destination state to one. Flip the

transition filters so that they are mirrored around the

centerpoint and input and output directions are ex-

changed. Create a one-hot representation per cell and

action from the argmin of 4) in the Value Iteration

Module. This is the transition selection mask. For full

differentiability, this may also be a softmin operation.

2) Transition selection - Multiply the current state grid

with the transition selection mask. The output will

be a grid with a single one in the cheapest possible

transition into the current state.

3) Zero padding - Pad the state grid zeros. Now, zeros

represent non-occupied states.

4) Propagate state - Convolve with the flipped transition

filters.

5) Recurse - With the result of 4), restart at 2) until

starting state is reached.

This module is equivalent to the optimal predecessor

backtracking in Dijkstra’s Algorithm: the network traces

back the entire optimal actions that led to the goal state. The
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filters
Preceding
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State
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Fig. 3: Recurrent Neural Network to trace back optimal path.

The transition selection layer (green) is the argmin of the cost

map in Figure 1 at convergence

corresponding network is depicted in Figure 3. The transition

selection policy is derived from the cost layer of the network

depicted in Figure 1, both colored in green. For backtracing

of the optimal path, all transitions have to be reversed. This

means that for the filters, we need to flip them in spacial

direction and exchange input for output. Convolutions in

the forward direction mapped from a map of dimension

W×H×1 to W×H×K for K possible transitions. For the

backtracing, since we select 1-of-K possible transitions, the

convolution now maps from W×H×K to W×H×1.

D. Transition Cost Network

To this end, the entire planning process was fully deter-

ministic and predefined by the user. The only parameter to

be changed is the cost per state and action. In this part of the

network, all learning techniques may be applied. Since the

planning network as explained above is fully made up from

CNN components, all well-known techniques and toolboxes

are at hand [15], [16].

Thus, it is left to the user to specify the input data and

network architecture that will generate a cost map. This cost

map then specifies the graph topology that is evaluated in the

planning stage. Please also note that at time of deployment,

this is the only part of the CNN that is still necessary to be a

Neural Network. The planning stage may also be exchanged

for any other shortest path algorithm as long as the cost map

is constrained accordingly.

In this work, to demonstrate the capability of the approach,

we employ a Fully Convolutional Network (FCN) operating

on aerial views of roads. It is trained to predict cost per state

and possible transition to imitate human behavior in traffic.

See Section III for details.

E. Loss Function for Imitation Learning

Path planning can be understood as an image segmentation

task. Parts of the grid may either belong to the class path
or not path. Accordingly, all loss functions that are used for

segmentation can be employed. Specifically, cross entropy

remains available for both paths and trajectories. In the

context of trajectories, one grid is evaluated against ground

truth per planning step. For the path however, one single grid

has to be computed for the entire planning task. Note that

the output of the Path Evaluation Module is a single grid

per planning step. We compute the path from N planning

Fig. 4: Example aerial image from the dataset together with

one sample path from real world trajectories. Image data

from Google Maps [17]

step grids Gi with i = 1, . . . , N . Here, every entry in the

grids Gi is in range [0, 1], where the value 0 is an definitely

unoccupied cell and 1 represents a definitely occupied cell.

Thus, the path grid P can be computed as

P = 1−
N∏
i=1

(1−Gi). (2)

Note that in the case of an argmin operation for transition

selection, every grid per planning step will only feature one

unique one in the entire grid. In case of the softmin operation,

however, the grids can take arbitrary values in [0, 1] which

is necessary for differentiability.

III. EXPERIMENTS

To show the performance of the proposed approach, we

design a network to plan drivable paths from aerial images.

The network is trained on both, real an simulated data. We

then show its capability on new aerial images that were not

included in training.

A. Data

We collected a set of only six aerial images from Google

Maps and created ground paths both in simulation and

from real world data [17]. For the simulation, we manually

annotated roughly 100 possible paths within the images. For

real world data, we recorded vehicle trajectories from the

road side of an intersection. The maps had a total size of

75m×37.5m and paths had varying length.

B. Network Architecture and Training

The Value Iteration Module requires three individual de-

sign aspects: the size of the map, the choice of transition

filters and the computation of transition costs.

In our experiment, we discretize the input maps into

192×96 cells for planning. Thus, each cell respresents a

space of roughly 0.4m×0.4m in the real world. We found

this sufficient for initial proof of concept, however, for more

accurate planning, one might want to increase resolution.

The transition filters in our experiment represent all pos-

sible transitions from one cell to its eight neighbors as well

as the idle transition. This means that the filter masks shown
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Fig. 5: ResNet for cost map computation. Non-linearities are ReLU. The shaded layers perform dilated convolutions with

dilation parameter printed inside. The blue maps that are output are the same as in Figure 1

Fig. 6: Training results. Path planned by network (green) vs.

human paths (red). Image data from Google Maps [17]

in Figure 2 are extended by the four filters representing the

diagonal transitions.

Lastly, we computed the transition cost map from the

aerial images. For this, we trained a fully convolutional

residual network with dilated kernels that predicts cost per

cell and transition (the blue layer in Fig. 1) [11], [18], [19]

The network architecture is depicted in Figure 5. Since our

task is fairly simple and run on low resolution images, we

can use a comparably shallow and narrow network. To keep

the dimensions of the output same as the input dimension

without the need for upsampling we use dilated kernels for

every other residual block. In training, to avoid overfit due

to our very limited data set, we apply dropout of 20% to the

output of the first and second-to-last convolutional layer. All

layers use rectified linear units (ReLU) as nonlinearity.

C. Experimental Results

We split the data into two parts, a training set of five

road scenes and one as the test scene. We select the single

scene for which we have human example paths for the test

set. This has a very simple reason: for planning of paths,

we have no means to evaluate right or wrong. We can only

compare paths to see if they are human-like or not.

Figure 6 shows an example path from the training set

together with the network’s planning result. As it can be

seen, the network in general is perfectly able to replicate

human path planning.

We can now look at planning results for previously unob-

served scenes. For this, we run the network to re-plan paths

that we have previously observed in real life.

Figure 7 shows planning results for two different ma-

neuvers. The first test case is a simple maneuver of lane

(a) Plan for lane following on test data

(b) Plan for right turn with multiple lane changes on test data

Fig. 7: Paths planned on test data by the network (green) vs.

human paths (red). Image data from Google Maps [17]

following as depicted in Fig. 7a. The network performs well

and can actually generate paths very similar to the actual

human behavior.

A more challenging task is depicted in Fig. 7b. Here,

we asked the network to plan a path for a right turn with

integrated lane change. While the human performs both tasks

in one, the network first takes the right turn before taking an

abrupt lane change right at the end of the path (left in Fig

7b). Also note the planning artifacts at the small drive right

at the bend of the planned path.

From these results, we conclude that the network trained

on such a small dataset may perform reasonably for very

simple driving situations. However, it does not yet generalize

well for more complex tasks.

As a final sanity check, we may look at the feature filter

masks trained in the lowest layer of the network. The filter

bank is depicted in Fig. 8. Note that the network was not

initialized from any existing net but instead was trained from

scratch on the five training images.

Judging from the filter masks, the network bases its
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Fig. 8: Trained filter masks in lowest layer

decision in planning on two kinds of features. For once there

are filter masks that represent gray-scale and blueish edges.

These kinds of features are found on roads. The blueish hue

of filters may stem from the blue haze of shadow areas. The

other strong feature focus lies on green colors. This is due

to roads being bounded by terrain and vegetation.

IV. CONCLUSION

In this work, we proposed a neural network architecture

to execute planning. We trained a Value Iteration Network to

imitate human motion planning behavior. A Network trained

on simulated trajectories showed the capability to reproduce

human actions in simple driving situations. It is especially

noteworthy that this result could be achieved from simulated

paths in only five different road layouts. We expect the

network to generalize well if more training trajectories are

provided. In general, we have shown that it is possible to

replicated human planning using a unified Neural Network

Architecture. This implies that intelligent vehicles might

learn strategic planning while in operation in real traffic.
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Autonomous Perpendicular And Parallel Parking
Using Multi-Sensor Based Control*

David Pérez-Morales1, Olivier Kermorgant1, Salvador Domı́nguez-Quijada1 and Philippe Martinet1

Abstract— This paper addresses the perpendicular and par-
allel parking problems of car-like vehicles for both forward
and reverse maneuvers in one trial by improving the work
presented in [1] using a multi sensor based controller with a
weighted control scheme. The perception problem is discussed
briefly considering a Velodyne VLP-16 and a SICK LMS151 as
the sensors providing the required exteroceptive information.
The results obtained from simulations and real experimentation
for different parking scenarios show the validity and potential
of the proposed approach.

I. INTRODUCTION

Even for experienced drivers, parking can be a difficult

task, especially in big cities were the parking spots are often

very narrow. The search for an increase in comfort and safety

when parking has lead to a quite extensive literature [2],

having explored many different approaches to automate this

bothersome task.

Despite the fact that the automobile industry has already

started to roll out some commercial implementations of

active parking assistants capable of actively controlling ac-

celeration, breaking and steering [3], the research interest in

the topic remains strong.

Path planning approaches have been heavily investigated

in recent years. Among the different planning techniques

it is possible to distinguish between geometric approaches,

with either constant turning radius [4], [5] using saturated

feedback controllers, or continuous-curvature planning using

clothoids [6]; heuristic approaches [7] and machine learning

techniques [8]. It is worth to note that parking maneuvers

with forward motions are seldom considered, with [9] for

the parallel parking case and [10] for the perpendicular case

being some of the few works on this regard.

A well known drawback of path planning and tracking is

its dependence on the localization performance. An interest-

ing alternative that does not rely on the localization is the

use of a sensor based control approach. It has been proven

to be valid for navigation [11], dynamic obstacles avoidance

[12], and for parking applications [1].

*This work was supported by the Mexican National Council for Science
and Technology (CONACYT). This paper describes work carried out in the
framework of the Valet project, reference ANR-15-CE22-0013-02.

1 David Pérez-Morales, Olivier Kermorgant, Salvador Domı́nguez-
Quijada and Philippe Martinet are with LS2N, Laboratoire des Sciences du
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1 Olivier.Kermorgant@ec-nantes.fr
1 Salvador.DominguezQuijada@ls2n.fr
1 Philippe.Martinet@ec-nantes.fr

The contribution of this paper is an improvement on the

approach described in [1], this time considering multiple

sensors, a better suited sensor feature set that allows to park

in one maneuver not only in perpendicular spots but also in

parallel ones with either reverse or forward motions with only

some minor changes, and improved constraints for collision

avoidance.

In the next section the models considered as well as the

notation used are presented. In Section III the perception

problem is briefly addressed showing how the sensor data

is processed in order to extract the empty parking spot to

latter in Section IV describe the interaction model and how

to extract the required sensor features from the computed

empty parking spot. Afterwards, the controller is presented in

Section V and the obtained results from simulation and real

experimentation for different parking scenarios are shown

in Section VI. Finally, some conclusions are given in Sec-

tion VII.

II. MODELING AND NOTATION

Given that parking maneuvers are low speed motions, a

kinematic model can be considered as accurate enough.

A. Car-like robot model and notation

The kinematic model considered is the one used to repre-

sent a car with rear-wheel driving:⎡
⎢⎢⎣

ẋ
ẏ

θ̇

φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ
sin θ

tanφ/lwb

0

⎤
⎥⎥⎦ v +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ φ̇, (1)

where v and φ̇ are the longitudinal and steering velocities.

Table I presents the different parameters used in the paper.

TABLE I: Parameters definition

Parameteres Notation Value
Wheelbase: Distance between the
front and rear wheel axles

lwb 2.588 m

Rear overhang: Distance between the
rear wheel axle and the rear bumper

lro 0.657 m

Maximum steering angle φmax 30◦
Total length of the vehicle lve 4.084 m
Total width of the vehicle wve 1.945 m
Maximum (desired) longitudinal ve-
locity

|vmax| 2 km/h

Maximum acceleration increment Δacc sign(v) 0.2 Ts

Maximum deceleration increment Δdec sign(v) 2.5 Ts

Maximum φ increment Δφ 2◦ Ts

The point M is located at the mid-distance between the

passive fixed wheels (rear) axle and the distance between the
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rear and the front axle is described by lwb. The generalized

coordinates are q = [x, y, θ, φ]T where x and y are the

Cartesian coordinates of the point M, θ is the orientation

of the platform with respect to the x0 axis and the steering

angle of the steerable wheel(s) is described by φ (Fig. 1a).

From the kinematic model it is possible to extract the

following relation between φ and θ̇:

φ = atan(
θ̇ lwb

v
) (2)

The vehicle used for experimentation and simulation is

a Renault ZOE (Fig. 1b). It is represented by its bounding

rectangle.

x
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(a) Kinematic model diagram (b) Robotized Renault ZOE

Fig. 1: Kinematic model diagram for a car-like rear-wheel

driving robot and vehicle used for simulation and real

experimentation

B. Multi-sensor modeling

Following our previous work [1], where a novel sensor

based control technique based on the framework described in

[13] was proposed, in this paper we explore a different sensor

features set to park in one maneuver into perpendicular and

parallel spots considering multiple sources for the sensor

signals.
1) Kinematic model: Let us consider a robotic system

equipped with k sensors (Fig. 2) that provide data about the

robot pose in its environment. Each sensor Si gives a signal

(sensor feature) si of dimension di with
∑k

i=1 di = d.

F0

Fm

F1

F2 FO
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S2
control 
frame
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sensor
signal

sensor
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Fig. 2: Multi-sensor model

In a static environment, the sensor feature derivative can

be expressed as follows:

ṡi = Livi = Li
iWmvm (3)

where Li is the interaction matrix of si and iWm is the screw

transformation matrix that allows to express the sensor twist

vi with respect to the robot twist vm.

Assuming that the vehicle to which the sensors are rigidly

attached to evolves in a plane and that the sensors and vehicle

have vertical parallel z axes, Li is of dimension di × 3 and

the screw transformation matrix takes the following form:

iWm =

⎡
⎣ c (mθi) s (mθi) tix s (

mθi)− tiy c (
mθi)

−s (mθi) c (mθi) tix c (
mθi) + tiy s (

mθi)

0 0 1

⎤
⎦
(4)

where mti = [tix , tiy ]
T and mθi are, respectively, the

position and orientation of Si with respect to Fm expressed

in Fm, with c (mθi) = cos (mθi) and s (mθi) = sin (mθi).

Denoting s = (s1, . . . , sk) the d-dimensional signal of the

multi-sensor system, the signal variation over time can be

linked to the moving vehicle twist:

ṡ = Lsvm (5)

with:

Ls = LWm =

⎡
⎢⎣

L1 . . . 0
...

. . .
...

0 . . . Lk

⎤
⎥⎦
⎡
⎢⎣

1Wm

...
kWm

⎤
⎥⎦ (6)

Nevertheless, since in our application the control frame

Fm is attached to the vehicle’s rear axis with origin at the

M point (Fig. 1a), it is not possible to generate a velocity

along ym on the vehicle’s frame due to the nonholonomic

constraint of the kinematic model (1). Assuming that there

is no slipping nor skidding (i.e. vym = 0), the robot twist

vm = [vxm , vym , θ̇]T can be reduced to:

vm = [vxm
, θ̇]T (7)

where vxm
= v and considering as well the consequent

reduction of Ls, being now of dimension d× 2.

2) Weighted error: We consider the weighted multi-sensor

error signal, as described in [13], which is defined as:

eH = He (8)

where e = s − s∗ is the difference between the current

sensor signal s and its desired value s∗ and H is a diagonal

positive semi-definite weighting matrix that depends on s
with its associated interaction matrix being LH = HLs.

Making a distinction between task and constraints features,

H = diag(Ht,Hc) and s = [st, sc]
T . Each component hi

of H may or may not vary in order to optimize the system

behavior, ensure specific constraints, manage priorities or add

or remove a sensor or a feature from the control law.

Task features st, as their name suggest, are used to perform

the task by driving et to 0. On the other hand, since

the constraints features sc are used only to ensure certain

constraints, we don’t care about ec as the desired value s∗c
is meaningless.
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III. PERCEPTION

We focus the perception on the detection of parked cars.

They can be approximated by boxes considering that, when

viewed from the top, have a rectangular-like shape.

The vehicle used (Fig. 1b) has been equipped with many

sensors (Velodyne VLP-16, SICK LMS151, GPS, cameras

in the front, etc.) to observe its environment, a computer

to process the data and actuators that can be computer

controlled. Since our application requires exteroceptive in-

formation from all around the vehicle at, potentially close

distances, the VLP-16 and SICK LMS151 were the sensors

chosen to work with.

Because both sensors provide information of a very similar

nature, the data can be fused by simply converting the

LaserScan data provided by the LMS151 to PointCloud2 and

then transforming the point cloud from LMS151’s frame to

the VLP-16’s frame so it can be added to the point cloud

provided by the latter sensor. For this, it is assumed that the

time difference between the data provided by each sensor is

reasonably small, i.e. the data is sufficiently synchronized.

The complete point cloud obtained from the two sensors

is first filtered with a couple of crop boxes. The first crop

box is keeps only the data that is close enough to the

car to be relevant in a parking application and that does

not represent the floor and afterwards and the second one

is used to filter out the points that belong to the car’s

body (self-collision sensor readings). Then, an Euclidean

Cluster Extraction algorithm is used to have each obstacle

represented as a cluster. The orientation of each cluster is

extracted by fitting a line model to the points belonging

to the contour of the cluster using a RANSAC algorithm.

The orientation of the bounding box will be equal to the

orientation of the fitted line. After, we proceed by finding

the rotated bounding box of the cluster using the previously

found orientation.

The empty parking place (green rectangle in Fig. 3) is

extracted using the approach described in [1]. The sensor

features required for the controller are extracted from this

computed parking place.

IV. INTERACTION MODEL

For the interaction model, we rely on the perception of

several lines Lj and points from several sensors. Since the

sensor data is expressed in the Cartesian space, it can be

easily transformed from one frame to another, thus allowing

us to use virtual sensors placed at will.

The sensor’s placement can be seen in Fig. 3. S1 corre-

sponds to the VLP-16 while S2 to the LMS151. S3 to S5 are

virtual sensors placed on the corners of the car’s bounding

rectangle. All the frames of the virtual sensors have the same

orientation as the control frame.

To illustrate the feature extraction approach, the case of

a reverse perpendicular maneuver is now detailed. As it can

be seen in Fig. 3, points p1 to p4 correspond to the corners

of the parking spot while p5 and p6 are, respectively, the

midpoints between (p1, p4) and (p2, p3). L1 is a line that

passes through p5 and p6, i.e. it passes through the center

of the parking spot. L2 is a line that passes through p1 and

p4 thus corresponding to the depth limit of the parking spot.

L3 is a line that passes through p3 and p4. All the lines are

parametrized using normalized Plücker coordinates.

Fig. 3: Sensors’ configuration and sensor features

The exact definition of the sensor features varies depend-

ing on the parking scenario although in any case, L∗
1 should

be collinear with xm and L∗
2 should be parallel to ym and be

behind the car for reverse maneuvers and in front for forward

ones. In this paper we only detail the actual features used

for a specific case, but deducing the features that should be

used for other cases isn’t complicated.
Considering the previously mentioned assumption that the

vehicle to which the sensors are attached to evolves in a plane

(sensors and vehicle with parallel z axes), the sensor signal

siLj
and interaction matrix LiLj

for the line Lj observed by

Si are defined respectively by (9) and (10)

siLj
=
[
iuj(1),

iuj(2),
ihj(3)

]T
(9)

LiLj
=

⎡
⎣ 0 0 iuj(2)

0 0 −iuj(1)
−iuj(2)

iuj(1) 0

⎤
⎦ (10)

where iuj = iuj/||iuj || with iuj �= 0 denoting the

orientation of Lj and ihj =
iwj/||iuj || with iwj containing

the coefficients of the interpretation plane equation [14]. In

the 2D configuration considered, the components of iuj and
ihj that don’t appear in (9) are equal to 0 thus ihj(3) can

be interpreted as the distance to the line.
It should be noted that the weighting and constraints

required to park safely change depending on the type of

parking spot (parallel, perpendicular or diagonal) and on

which side the parking spot is placed with respect to the

car at the beginning of the maneuver.

A. Task sensor features
The control features required to perform the parking task

are defined by (11), with t = 1 for forward maneuvers and

t = 2 for the reverse case.

st = [stL1
, stL2

]T (11)

A 2nd order approximation of the form (12) is used for

the interaction matrix.

Lt =
LLj + L∗

Lj

2
(12)
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The weighting matrix Ht is defined by (13). The variable

components ht
i are computed using a smooth weighting

function (Fig. 4) based on the one presented in [15].

Ht = diag(ht
1, h

t
2, h

tconst
3 , ht

4, h
t
5, h

tconst
6 ) (13)

s- ss- ss+ s+
hi-

hi+

Fig. 4: Weighting function ht
i

With this weighting function and considering the weight-

ing parameters (31), si ∀ i = {2, 4, 5} could be seen as

bounded constraints but in fact they are task features, given

that we do care about the value of their corresponding ei.
If only s3 and s6 were considered as task features, the

car may finish the maneuver with a bad orientation even

if e3 ≈ e6 ≈ 0 because just 2 features are not enough to

control the car’s DOFs.
Due to space constraints, only the case of a reverse

perpendicular parking maneuver with the spot placed on the

right will be considered for the rest of this section.

B. Constraints sensor features
The constraints are defined by (14).

sc = [s3, s4, s5]
T (14)

For the constraints sensor features we are interested only

in the components of (9) related to the distance to the feature

itself, therefore:

s3 = 3h3(3) (15)

s4 = [4h2(3),
4h3(3)]

T (16)

s5 = [5h2(3),
5dym

]T (17)

with 5dym
being the difference dym

= ρcorner − ρlat
measured with the sensor S5, expressed in the sensor frame

(Fig. 5) if φ < 0, defined as:

5dym
=

√
(5x2 + t5x)

2
+
(
5y2 + t5y − ρm

)2
+ ρm − t5y

(18)

with ρm = lwb/tanφ and, when φ ≥ 0, being simply the

distance from S5 to p2 along ym measured with S5, it is

defined as:
5dym = 5y2 (19)

with 5p2 = (5x2,
5y2) being the point p2 measured with S5.

The corresponding interaction matrices are:

L3 =
[ −3u3(2)

3u3(1) 0
]

(20)

L4 =

[ −4u2(2)
4u2(1) 0

−4u3(2)
4u3(1) 0

]
(21)

L5 =

[ −5u2(2)
5u2(1) 0

0 −1 −5x2

]
(22)

Since the constraints are used for collision avoidance, only

one side of the interval [s−c , s
+
c ] (25) has to be defined for

each feature.

Fig. 5: Lateral constraint d

V. CONTROL

When considering the constraints presented in Sec. IV-

B (particularly (18)), a chattering problem appears if the

controller presented in [1] is used, even with very small

weights. For this reason, that controller had to be adapted to

the quadratic programming form [16] with only inequality

constraints (23):

vm = argmin||LHt
.vm + λ.et||2

s.t. Avm ≤ b
(23)

with:

A = [LHc
,−LHc

]T (24)

b = [α(s+c − sc),−α(s−c − sc)]
T (25)

where α is a gain constant, λ is the control gain, Hc is an

identity matrix (i.e. there is no weighting on the constraints)

and [s−c , s
+
c ] is the interval in which we want to keep sc.

To limit the speed of the vehicle as it approaches to the

parking spot, a deceleration profile, based on the velocity

profile shown in [5], is used. It is defined by (26)

if e(6) < e(6)th

vmax = (|vmax| − v0max)(e(6)/e(6)
th) + v0max

(26)

with v0max being the maximum desired velocity when the

sixth component of the error vector e(6) tends to zero and

e(6)th is a threshold value for e(6). Since the low level

velocity controller is not capable of reaching very small

values, v0max = 0.2 km/h.

The control signals v and φ are bounded by their respective

maximum desired values as shown below:

|v| < |vmax| (27)

|φ| < φmax (28)

To avoid large changes in the control signals at time k that

may cause uncomfortable sensations for the passengers or

surrounding witnesses, they are bounded by some increments

(29) (30) with respect to the control signal at k − 1.

(vk−1 −Δdec) ≥ vk ≤ (vk−1 +Δacc) (29)

(φk−1 −Δφ) ≥ φk ≤ (φk−1 +Δφ) (30)
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To solve (23), a generic solver is used. To improve the

stability and computation time, the optimization variables

are [v, φ] and not vm, although inside the objective function

θ̇ is computed from φ so (23) can be solved. When using

φ instead of θ̇ one can easily impose the bounds (28) at

the solving step instead of solving (23) directly with vm as

optimization variables and hope for the value of φ computed

from θ̇ to fall inside the bounds (28).

VI. RESULTS

To show the potential of our approach, several parking

scenarios are presented below, all of them using the final

form of the controller (23). The unconstrained cases were

computed in MATLAB, using fmincon as solver. For the

constrained cases, NLopt with the SLSQP algorithm was

used.

A. Unconstrained cases - MATLAB

To evaluate the performance of the proposed approach, it

was first tested in unconstrained cases with a sampling time

Ts = 0.1. As it can be seen in Figs. 6-10, the presented

technique allows to perform parking maneuvers for many

different scenarios (perpendicular and parallel with either

reverse or forward motions) just by adjusting the weighting

parameters and the specific definition of the sensor features.

The final errors for all of these cases are in the order of

×10−3 or smaller.

As an example of the weighting approach, for the case of

a reverse perpendicular parking maneuver with the parking

spot placed on the right, h+
i = 5, h−

i = 0, htconst
3 = 1,

htconst
6 = 0.75 and:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ss
+

1 = s+1 = ∞
ss

−
1 = 0.001 + s∗1
s−1 = −0.001 + s∗1
ss

−
i = s−i = −∞ ∀ i = {2, 4, 5}
ss

+

i = −0.001 + s∗i ∀ i = {2, 4, 5}
s+i = 0.001 + s∗i ∀ i = {2, 4, 5}

(31)

These weighting parameters allow to prioritize the error

in position over the orientation for the most part of the

maneuver and, when iu
∗
j (a) is almost reached, smoothly

increase the corresponding weights so we can gradually

switch the priority from positioning the vehicle to orientate

it to avoid finishing the maneuver with a bad orientation.

It can be seen how, for all shown cases, the weights (Figs.

6d-10d) push φ towards 0 (Figs. 6b-10b) once iu
∗
j (a) is

almost reached when close to the completion of the maneuver

to keep the orientation close to the desired value.

Unlike our previous work [1], which required to perform

gain-tunning for different initial conditions, this newly pre-

sented approach allows to park successfully for different

(reasonable) initial positions and orientations of the same

parking case using the same weighting parameters, although

it should be mentioned that the stability, specially when

constraints are considered, is still under study.

In Fig. 10, it can be seen how even if the car is placed

considerably farther from the parking spot than in Fig. 6 and

not exactly perpendicular to the spot, the vehicle is able to

park correctly using the same weighting parameters, showing

the stability of the presented approach.
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Fig. 6: Unconstrained perpendicular reverse parking maneu-

ver
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Fig. 7: Unconstrained perpendicular forward parking maneu-

ver

B. Constrained cases
1) Fast prototyping environment: A homemade fast pro-

totyping environment using the same software architecture

as the one embedded inside the car is used for simulation

purposes. This homemade environment is interfaced with

Gazebo to simulate the exteroceptive sensors.
The case of a reverse perpendicular parking maneuver with

the spot placed on the right is shown below. The weighting

parameters remain the same as for the unconstrained case

while the constraints are defined with s+7 = −0.1, s−8 =
0.15, s+9 = −0.1, s−10 = 0.15, s+11 = −0.075 and Ts = 0.05.
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Fig. 8: Unconstrained parallel reverse parking maneuver
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Fig. 9: Unconstrained parallel forward parking maneuver
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Fig. 10: Unconstrained perpendicular reverse parking maneu-

ver from far

As it can be seen in Figs. 11-12, the car is able to

park successfully while respecting the constraints in spite of

the sensor noise and the less than perfect system response.

The evolution of the many different signals, especially

for the longitudinal velocity (Fig. 12a), is very similar

to the unconstrained case (Fig. 6b). The fast deceleration

at the end (Fig. 12a) is due to a stopping condition in

the implementation related to et. Regarding the evolution

of φ, it can be seen how, contrary to the unconstrained

case, it doesn’t saturate; this behavior is caused by the

constraints, particularly s11 (Fig. 12d). The final error is et =
[−0.0003,−0.0096, 0.0207,−0.0096, 0.0003, 0.0569]T .

Fig. 11: Constrained perpendicular reverse parking maneuver
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Fig. 12: Constrained perpendicular reverse parking maneuver

signals

2) Real experimentation: Real experimentation was con-

ducted for the same parking case (Fig. 13) as with the

fast prototyping environment shown above. The weighting

parameters and constraints definition remain the same.

Fig. 13: Experimental car parking in a perpendicular spot

It is obvious that the response of the system, particularly

for the linear velocity (Fig. 14a), is less than ideal, reaching
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Fig. 14: Constrained perpendicular reverse parking maneuver

signals

a speed more than twice as fast than what the controller

indicates. This behavior can be attributed to the low-level

velocity controller, which still requires some tunning to

improve the performance at low velocities, therefore it has

no relation to the presented technique.

Despite of the erratic response of the system in addition

to the noise coming from the sensors, the constraints were

respected during the whole maneuver (Fig. 14d), getting no

closer than 33.88cm (s9) to L3.

Furthermore, the evolution of et (Fig. 14b) is very

similar to the simulated case (Fig. 12b), although the

final error is not as good, being in this case et =
[0.0054, 0.0743,−0.1436, 0.0743,−0.0054,−0.0833]T .

The smallest ||et|| was achieved at T = 12.6399s, with

et = [0.0025, 0.0429,−0.0851, 0.0429,−0.0025, 0.0207]T

and [v, φ]T = [0, 0]T from the controller starting at T =
12.42s.

VII. CONCLUSIONS

Following our previous work [1], we showed how a better

choice of the sensor features allows to improve the perfor-

mance, stability and versatility of the presented sensor based

approach, this time not only being able to deal successfully

with perpendicular parking maneuvers but also with parallel

ones with both reverse and forward motions with just some

minor adjustments for each type of parking. The stability,

specially when constraints are considered, is still under study.

Preliminary results obtained from real experimentation

validate the robustness and effectiveness of the presented

approach, considering that, despite of the erratic response of

the system due to the low-level velocity controller, the car

parked successfully while respecting the constraints during

the whole maneuver.

It is important to mention that, due to visibility constraints

and in order to keep the results obtained with the fast

prototyping environment as close to the reality as possible,

only reverse parking maneuvers have been tested outside

MATLAB with the presented sensor feature set. Neverthe-

less, the multi-sensor framework gives a high expandability,

allowing for future upgrades to the perception capabilities of

the system.
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Abstract: Autonomous driving has become a blooming topic among car makers and research centers all across the 
globe in the past years since the announcement of Google’s self-driving car in 2010. The demonstration of 
Google’s car ability to autonomously drive on highways and urban areas changed many people’s minds in the 
automotive industry, creating a new cohort of what could be coined as self-driving believers. Since then, the 
interest of car makers in self-driving has not ceased to grow and, as a matter of fact, autonomous driving 
developments and publications have soared worldwide. Despite rapid technological development, a number of 
issues, not only legal, have still to be seriously addressed before autonomous cars can robustly, safely, and 
efficiently circulate and mix with manually-driven vehicles in real traffic. On the one hand, experts in the field 
agree that autonomous vehicles will become more robust as they develop further cooperation capabilities. In other 
words, cooperation with traffic infrastructure, as well as with other vehicles, will make autonomous vehicles more 
robust and reliable, given that it is widely accepted that standalone self-driving is by far less robust than 
cooperative automated driving. On the other hand, self-driving cars must have the ability to predict other traffic 
agents’ intentions, including other vehicles and Vulnerable Road Users (VRU), namely pedestrians and cyclists. 
This talk describes the design and development of DRIVERTIVE, a DRIVERless cooperaTIVE vehicle, which 
aims to advance cooperative automation. DRIVERTIVE competed successfully in the Grand Driving Cooperative 
Challenge (GCDC) in the Netherlands in 2016. Twelve international teams participated in GCDC 2016 performing 
a number of cooperative manoeuvers in highways and intersections. In addition, the talk provides deep insights 
into the interaction with Vulnerable Road Users (VRU) by means of short-term intention recognition and accurate 
trajectory prediction as a means to go a step further in terms of safety and reliability, since it definitely makes the 
difference between effective and non-effective intervention. In contrast to trajectory-based approaches, the 
consideration of the whole pedestrian or cyclist body language has the potential to provide early indicators of the 
VRU intentions, much more powerful than those provided by the physical parameters of a trajectory. Experimental 
results show that accurate path prediction can be achieved at a time horizon of up to 1.0 s. 
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• Despite the great development in the past years, there
are still some major limitations in Autonomous
Driving:
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Legal frameworkLegal frameworkLegal framework

NavigationNavigationNavigation ReliabilityReliabilityReliability
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9th Workshop on Planning, Perception, and Navigation for Intelligent Vehicles. Vancouver, Canada, 24th Sept. 2017 4

• Navigation:
- Enriched maps are needed (2 Gb/Km).

- International Consortia: BMW, Daimler, Audi (HERE).

- Online data acquisition and map building.

Limitations of Autonomous Vehicles
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• Reliability:
- Improvement in sensorial capabilities (adverse weather).

- Development of Cooperative Systems.

• Efficiency:
- Human-like decision making and maneuvering.

- Emulation of human driving by means of prediction of
intentions of other traffic agents, such as pedestrians and
other vehicles.

- There is a need for enhanced cooperation and
interaction capabilities.

Limitations of Autonomous Vehicles
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• Techniques:
- Cooperation with other vehicles (autonomously or manually

driven) and with the infrastructure.

- Cooperation with VRUs (Vulnerable Road Users) by
prediction their intentions and trajectories.

Autonomous Cooperative Driving

• Limitations:
- Strong dependency on penetration rate.

• Goal:
- Increase reliability and efficiency of autonomous vehicles.

9th Workshop on Planning, Perception, and Navigation for Intelligent Vehicles. Vancouver, Canada, 24th Sept. 2017 8

• GCDC 2016 (three tests):
- Platooning + Merging.

- Management of T-intersections.

- Management of emergency vehicles.

• Initiatives:
- European Commission: funding of research projects on

Cooperative Systems and Autonomous Driving (FP7 and
H2020).

- Grand Cooperative Driving Challenge (GCDC):
International Competition on Autonomous Cooperative
Driving in Helmond (The Netherlands) in 2011 and 2016.

Autonomous Cooperative Driving
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• GCDC 2016: Platooning + Merging

Autonomous Cooperative Driving
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• GCDC 2016: Management of T intersections

Autonomous Cooperative Driving
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• GCDC 2016: Management of emergency vehicles

Autonomous Cooperative Driving
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• DRIVERTIVE – General Architecture

Autonomous Cooperative Driving
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• Data Fusion - Localization Example

Autonomous Cooperative Driving
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• Communications System (ITS G5 V2V standard)

Messages types

• CAM (Cooperative Awareness Message): position, geometry and
vehicles dynamics.

• DENM (Decentralized Environmental Notification Message):
asynchronous messages from infrastructure o from other vehicles (e.g.
emergency vehicles approaching).

• iCLCM (iGame Cooperative Lane Change Message): messages for
interaction protocol in different scenarios.

Autonomous Cooperative Driving
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• Scenario 1: Platooning + Merging

Autonomous Cooperative Driving
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• Scenario 1:

Platooning + Merging

Behavior on the left
lane is different from
that on the right lane

Autonomous Cooperative Driving
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• Scenario 2: Management of T-intersections

Autonomous Cooperative Driving
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• Scenario 2:

T-Intersections

A safety distance must
be kept at all times w.r.t
the preceding vehicle

Autonomous Cooperative Driving
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Analysis of the communication channel (CCDF –
Complementary Cumulative Distribution Function)

Autonomous Cooperative Driving
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Mean and Variance of UD (Car)

Autonomous Cooperative Driving
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Mean and Variance of UD (Truck)

Autonomous Cooperative Driving
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Analysis of the communication channel

- For some vehicles, the probability of large delays is
significant (>10%).

- The UD degrades with distance.

- Occlusions have a strong effect on delays:

- Trucks are less occluded given that their
antennas are located at a height of 3 meters.

- Other findings: DCC in a highly congested channel 
is making some of the vehicles get stuck in Restrictive 
state and are not able to regularly access the channel.

- CAM and DENM in GCDC at 25 Hz.

Autonomous Cooperative Driving
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Effect of UD on Emergency Braking during CACC

Autonomous Cooperative Driving

- There is a probability between 0.01 – 0.001 of
collision with the leading vehicle is only
communications are used for CACC in a fleet of more
than 4 vehicles.

- The channel load is responsible for low
reliability.

- An additional sensor is needed (radar).
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• DRIVERTIVE – University of Alcalá’s team
- Autonomous Cooperative Vehicle (Velodyne, Radar, 3D Vision, Laser,

DGPS, CANBus, Communications, fully automated)

Autonomous Cooperative Driving
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DRIVERTIVE at GCDC 2016

GCDC Results
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DRIVERTIVE – Winner of the Prize to the Best Team with
Full Automation in GCDC 2016

GCDC Results

9th Workshop on Planning, Perception, and Navigation for Intelligent Vehicles. Vancouver, Canada, 24th Sept. 2017 28

GCDC 2016

GCDC Results
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Motivation

• Pedestrian Path Prediction in the Automotive:
– Further improvement in state-of-the-art ADAS by means
of action classification

– Walking, Stopping, Starting, Bending-in

– Improvement of accuracy in 30-50 cm:

– Difference between effective and non-effective
intervention in emergency braking systems

– Initiation of emergency braking 0.16 s in advance can
potentially reduce severity of accidents injuries by 50%

– Early recognition of pedestrians stopping actions can
provide more accurate last-second active interventions

Strong gains are expected in the 
performance and reliability of active 

pedestrian protection systems

Strong gains are expected in the 
performance and reliability of active 

pedestrian protection systems

Strong gains are expected in the 
performance and reliability of active 

pedestrian protection systems
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Proposed Approach

Global Scheme

Off-line Motion Capture 
System

Recovery of 3D 
pose and position

Lateral 
predicted 
position

On-line

Probabilistic 
Training

Knowledge of 
Pedestrians 
dynamics

Stereo 
Cameras

Transformation 
to latent space + 

prediction

Geometric 
processing

3D Pedestrian 
Pose

Estimation
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Pedestrian Pose Measurement

Pedestrian Skeleton considered in this research
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Pedestrian Pose Measurement

Method for Joints Extraction - Example
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Pedestrian Pose Measurement

Method for Joints Extraction – Results
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Pedestrian Pose Measurement

Body parts detection using Deep Learning
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General Method - Overview
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Activity Recognition - Example
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Experimental Results

Detection Delay - Summary
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Experimental Results

Probabilistic Action Classification
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Experimental Results

Probabilistic Action Classification
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Experimental Results

Video sequence showing prediction results
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Intelligent Interface with VRUs

GRAIL – GReen Assistant Interfacing Light
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Intelligent Interface with VRUs

GRAIL – GReen Assistant Interfacing Light
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Conclusions and Future Work

Conclusions
- Autonomous Cooperative Systems will pave the way to the massive 

and robust deployment of self-driving cars. 

- The V2V communication link is still a weakness that needs further 
attention from the scientific community in order to provide real-time 
and robust communication capability among large fleets of vehicles.

- Anticipating the intentions of other traffic participants, such as VRUs 
and vehicles, is essential for mimicking human drivers behavior.  

Future Work
- Enhancement of V2V communication channel for large fleets of 

vehicles (antenna placement, frequency of data, etc.). 

- Context-based action prediction using Probabilistic Graphical 
Models (Bayesian Networks) is under development for VRUs and 
vehicles. 

- Gaze direction, group behavior.
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Cooperative Autonomous Driving and 
Interaction with Vulnerable Road Users 
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A new metric for evaluating semantic segmentation:
leveraging global and contour accuracy

Eduardo Fernandez-Moral1, Renato Martins1, Denis Wolf2, and Patrick Rives1

Abstract— Semantic segmentation of images is an important
problem for mobile robotics and autonomous driving because
it offers basic information which can be used for complex
reasoning and safe navigation. Different solutions have been
proposed for this problem along the last two decades, and a
relevant increment on accuracy has been achieved recently with
the application of deep neural networks for image segmentation.
One of the main issues when comparing different neural
networks architectures is how to select an appropriate metric
to evaluate their accuracy. Furthermore, commonly employed
evaluation metrics can display divergent outcomes, and thus
it is not clear how to rank different image segmentation
solutions. This paper proposes a new metric which accounts
for both global and contour accuracy in a simple formulation
to overcome the weaknesses of previous metrics. We show with
several examples the suitability of our approach and present
a comparative analysis of several commonly used metrics for
semantic segmentation together with a statistical analysis of
their correlation. Several network segmentation models are
used for validation with virtual and real benchmark image
sequences, showing that our metric captures information of the
most commonly used metrics in a single scalar value.

I. INTRODUCTION

The problem of semantic segmentation consists of associ-

ating a class label to each pixel of a given image, resulting in

another image of semantic labels, as shown in figs. 1a and 1b.

This problem of image understanding is highly relevant in

the context of mobile robotics and autonomous vehicles, for

which accurate information of the objects in the scene may

be applied for decision making or safe and robust navigation

among others [1].

Semantic segmentation has seen a rapid progress over the

past decade. Recent advances achieved by training different

types of Convolutional Neural Networks (CNN) have im-

proved notably the accuracy of state-of-the-art techniques

[2], [3], [4], [5], [6], [7], [8]. Among the many CNN architec-

tures available, convolutional encoder-decoder networks are

particularly well adapted to the problem of pixel labeling.

The encoder part of the network creates a rich feature map

representing the image content and the decoder transforms

the feature map into a map of class probabilities for every

pixel of the input image. Such operation takes into account

the pooling indices to upsample low resolution features into

the original image resolution. The advantages of this class of

network were presented in [5], [6]. The approach in [6] was

later extended to a Bayesian framework in [7] to provide the

1Lagadic team. INRIA Sophia Antipolis - Méditerranée.
2004 Route des Lucioles - BP 93, 06902 Sohpia Antipolis,
France. Email: eduardo.fernandez-moral@inria.fr,
renato-jose.martins@inria.fr, patrick.rives@inria.fr

2 University of Sao Paulo - ICMC/USP, Brazil. denis@icmc.usp.br

(a) Colour image

(b) Annotated image of classes

(c) Image of class borders (θ = 5)

Fig. 1: Extraction of class borders from an annotated image

of labels from the Virtual KITTI dataset [12].

probabilities associated to the pixel labels. Apart from end-

to-end CNNs, Conditional Random Fields (CRFs) have also

been used for scene semantic segmentation [9], [3], [10].

In [11], a CNN model is used to extract features which are

feed to a Support Vector Machine-based CRF to increase the

accuracy of image segmentation.

The recent availability of 3D range sensors and RGB-D

cameras has also been exploited for semantic segmentation

[13], [2], [14], [8]. An initial exploration of adding geometric

information besides color (e.g., depth images) was addressed

in [13], but the global accuracy improvement was marginal.

Later, [2] presented an approach where depth information is

encoded into images containing horizontal disparity, height

above the ground and angle with gravity, which outperforms

previous solutions using raw depth for indoor scenes. A

different strategy for the same problem is presented in [8],

which proposes to fuse depth features and color features in

the encoder part of an encoder-decoder network. Another

CNN-based approach for joint pixel-wise prediction of se-

mantic labels, depth and surface normals was presented in

[15].

The appearance of public datasets and benchmarks for

semantic segmentation, both from virtual and real scenarios
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[16], [12], [17], facilitates the comparison of solutions, and

promotes the standardization of comparison metrics. Still, the

choice of the most appropriate metrics to evaluate semantic

segmentation is a problem itself, which gains relevance with

the increase of performance and complexity of semantic

segmentation techniques.

A. Contribution

In this paper, we investigate the problem of finding a

single accuracy metric that accounts for both global pixel

classification and good contour segmentation. We propose

a new metric based on [18] and [19] which makes use of

the Jaccard index to account for boundary points with a

candidate match belonging to the same class in the target

image. As we show in our experiments, this metric blends

the characteristics of the Jaccard index (which is the de facto
standard in semantic segmentation) and the border metric BF

in a simple formulation, thus allowing to compare easily the

outputs of different segmentation solutions.

B. Outline

The reminder of the paper is organized as follows. Section

II-A reviews related works. In section II-B, we introduce the

traditionally used segmentation evaluation metrics and their

limitations. Section III describes our proposed metric. We

present the different CNN architectures and the experimental

results in section IV, considering simulated and real bench-

mark image sequences, such as the virtual KITTI and KITTI.

Finally, in section VI, we draw conclusions and highlight

future improvements and perspectives.

II. SEMANTIC SEGMENTATION METRICS

In this section, we review some recent related works and

the background on commonly used evaluation metrics for

semantic segmentation.

A. Related works

Comparing the accuracy of different semantic segmenta-

tion approaches is commonly carried out through different

global and class-wise statistics, such as, global precision,

class-wise precision, confusion matrix, F-measure or the

Jaccard index (also called “intersection over union”). These

metrics are described in more detail in section II-B. Global

metrics like the precision may be a good indicator to evaluate

different solutions when the different semantic categories

have a similar relevance (both in terms of frequency of

appearance and practical importance). But this is not the

case in most applications, where objects which have fewer

pixels may be significantly more relevant than others (e.g.,

“traffic light” or “cyclist” classes versus the “sky” in the

context of autonomous vehicles). On the other hand, class-

wise metrics (e.g., [6], [8]) avoid the previous limitation,

but computing accuracies for each class individually means

that we cannot compare different segmentation solutions

directly (without specifying quantitatively the relevance of

each class). An alternative metric is to average the chosen

class-wise metric m according to the total number of classes

n (e.g., m = ∑n
i=1 mi/n). This class-wise average is less

affected by imbalanced class frequencies than global metrics.

Another relevant aspect when evaluating segmentation ap-

proaches is to measure the quality of the segmentation around

class contours. [20] proposes to measure the ratio between

correct and wrong classified pixels in a region surrounding

the class boundaries, instead of considering all image pixels.

Other contour-based metrics include the Berkeley contour

matching score [18], the boundary-based evaluation [21] and

the contour-based score [19]. All these measures are based

on the matching between the class boundaries in the ground

truth and the segmented images. [21] computes the mean

and standard deviation of a boundary distance distribution

between pairs of boundary images. [18] computes the F1-

measure from precision and recall values using a distance

error tolerance θ to decide whether a boundary point has a

match or not. [19] proposes an adaptation of [18] to multi-

class segmentation, where the score (BF) is computed as

the average of F1 scores over the classes present in the

segmented image.

The trade-off between global and contour segmentation is

an important issue since both: a high rate of correctly labeled

pixels and a good contour segmentation are desirable. For

instance, in the context of autonomous navigation, we are

interested in segmenting accurately the borders of the road

and sidewalk in order to delimit the navigable space for each

agent. In [19], the authors suggest to use both the Jaccard

index and BF as accuracy metrics to capture different aspects

of the segmentation quality (global and contour). However,

when the problem consists in ranking different segmentation

approaches based on their results, it is required to rely on

a single measure so that different solutions can be directly

compared. This problem is highly relevant, for instance,

while using CNNs for semantic segmentation, because we are

often interested in finding the set of hyperparameters which

produce the best accuracy. This requires the comparison of

multiple models using a single score. Besides, accuracy met-

rics which are also influenced by the quality of boundaries

are interesting as loss functions to train the segmentation

models.

B. Standard accuracy metrics

This section describes the most common metrics used for

semantic segmentation. For reference, a general analysis of

accuracy metrics for classification tasks can be found in [22].

The “accuracy”, or the ratio of the correctly classified

elements over all available elements can be calculated as

follows:

Accuracy =
TP+TN

TP+TN+FP+FN
, (1)

whose notation is detailed in table I.

The “precision”, or positive predictive value (PPV), is the

relation between true positives and all elements classified as

positives:

Precision =
TP

TP+FP
. (2)
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TABLE I: Class confusion matrix and notation.

Predicted class
Positive Negative

True class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The “Recall”, or true positive value (TPV), is the relation

between true positives and all positive elements:

Recall =
TP

TP+FN
. (3)

The F-measure [23] is a widely used metric to evaluate

classification results, which consists of the harmonic mean

of precision (2) and recall (3) metrics:

Fβ =
(β 2 +1)TP

(β 2 +1)TP+β 2FN+FP
(4)

where β is scaling between the precision and recall. Consid-

ering β = 1, leads to the widely used F1-measure:

F1 =
2TP

2TP+FN+FP
. (5)

Another common metric to evaluate the results of classi-

fication is the Jaccard index (JI):

JI =
TP

TP+FN+FP
. (6)

Global accuracy metrics are not appropriate evaluation

measures when class frequencies are unbalanced, which is

the case in most scenarios both in real indoor and outdoor

scenes, since they are biased by the dominant classes. To

avoid this, the metrics above are usually evaluated per-class,

and their result is averaged over the total amount of classes.

The confusion matrix (C), is a squared matrix where each

column represents the instances in a predicted class while

each row represents the instances in an actual class. Thus,

a value Ci j represents the elements of the class i which are

classified as the class j:

Ci j = |Si
gt ◦S j

ps| (7)

where Si
gt and S j

ps are the binarized maps of the ground truth

class i and predicted class j respectively, (◦) represents the

element-wise product and (| · |) is the L1 norm. Note that the

confusion matrix is also useful to compute the above metrics

in a class-wise manner, e.g.:

JIk =
Ckk

∑n
i=1 Cik +∑n

j=1 Ck j −Ckk
. (8)

III. A NEW METRIC FOR SUPERVISED

SEGMENTATION

This section describes a new metric for supervised seg-

mentation which measures jointly the quality of the seg-

mented regions and their boundaries. Our metric is inspired

by the BF score presented in [19], which is defined as

follows. Let’s call Bc
gt the boundary of the binary map of

the Sc
gt of class c in the ground truth and likewise, Bc

ps for

its predicted segmentation. For a given distance threshold θ ,

the precision for class c is defined as:

Pc =
1

|Bc
ps| ∑

x∈Bc
ps

[[d(x,Bc
gt)< θ ]] (9)

and the recall

Rc =
1

|Bc
gt | ∑

x∈Bc
gt

[[d(x,Bc
ps)< θ ]] (10)

with [[·]] the Iversons bracket notation, where [[z]] = 1 if

z=true and 0 otherwise, and d(·) the Euclidean distance

measured in pixels. The Fc
1 measure for class c is given by:

BFc = Fc
1 =

2 ·Pc ·Rc

Pc +Rc . (11)

The BF in (11) has two main drawbacks. Firstly, it disre-

gards the content of the segmentation beyond the threshold

distance θ under which boundaries are matched. Secondly,

the results of this metric depends on a discrete filtering

of the distribution of boundary distances, so that the same

score is obtained for different segmentations (with different

perceptual quality) as far as the same amount of boundary

pixels are within the distance θ . This is shown in table

II, which shows different infra and over-segmentations with

their corresponding scores.

In order to handle these shortcomings, we compute the

distances from the boundary binary map to the binary map

of the predicted segmentation Bc
gt → Sc

ps for a given class

c to obtain the amount of true positives (TPc
Bgt

) and false

negatives (FNc). Similarly, we compute the distance from the

boundary of the predicted segmentation to the binary map of

the ground truth Bc
ps → Sc

gt for class c to obtain the amount

of true positives (TPc
Bps

) and false positives (FPc). The total

number of true positives is defined as (TPc = TPc
Bgt

+TPc
Bps

).

Note that while the BF measure is based on boundary-to-

boundary matches, our proposed BJ score is boundary-to-

object. To avoid the second shortcoming, we propose to

measure the values above with a continuous measure of the

boundary distances, so that the following values are defined:

TPc
Bgt = ∑

x∈Bc
gt

z with z=

{
1− (d(x,Sc

ps)/θ)2 if d(x,Sc
ps)< θ

0 otherwise.

(12)

FNc = |Bc
gt |−TPc

Bgt (13)

TPc
Bps = ∑

x∈Bc
ps

z with z=

{
1− (d(x,Sc

gt)/θ)2 if d(x,Sc
gt)< θ

0 otherwise.

(14)

FPc = |Bc
ps|−TPc

Bps (15)

Then, the score for class c, which we call Boundary Jaccard
(BJc) is defined according to the Jaccard index:

BJc =
TPc

TPc +FPc +FNc . (16)

This new score is not zero when the ground truth and

the predicted segmentation for a given class have some
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TABLE II: Examples of infra-segmentation and over-segmentation of a pedestrian from the Cityscapes dataset. The ground

truth corresponds to figure in the center.

0 .12 .45 .64 .86 ← JI → .88 .77 .66 .54 .30
0 0 0 0 .99 ← BF → .99 0 0 0 0
0 .20 .46 .47 .77 ← BJ → .79 .64 .50 .50 .48

Fig. 2: Per-class scores of the segmented circle (top-right) for

different levels of infra/over segmentation. The parameter θ
is set to 4 pixels for both BF and BJ, which corresponds to

0.0075 of the image diagonal.

overlapping (|Sc
gt ∪ Sc

gt | > 0 ⇒ BJc > 0). This behavior is

similar for the metric JIc but not for BFc. On the other hand,

the BJc score increases when the boundaries of ground truth

and predicted segmentation get closer, like for BFc, but with

a more continuous behavior than the latter. Figure 2 shows an

example to illustrate the behavior of the metrics BJc, BFc and

JIc for different levels of infra/over segmentation, as showed

in table II.

Finally, in order to compute the per-image BJ score, we

average the BJc scores over all the classes present either in

the ground truth or in the predicted segmentation. The score

for a given image sequence is obtained as the average of

per-image BJ’s over the number of images contained in the

sequence. It is worth to mention that per-image scores are

more interesting than scores obtained over the full dataset

(i.e., where a single BJc score is computed) for several

reasons, as discussed in [19]. To mention some of these: i)
per-image scores reduce the bias wrt. very large objects, and

ii) they allow the statistical analysis about the performance

of different segmentation frameworks in different parts of the

dataset.

IV. EXPERIMENTAL ANALYSIS OF ACCURACY

METRICS

This section presents a number of qualitative and quan-

titative results showing the accuracy of different types of

CNN trained and tested on the Virtual KITTI [12] and KITTI

[17] datasets and the comparison of the different evaluation

metrics. The results confirm that measuring accuracy in

the neighborhood of class borders is useful to compare

different solutions without the need to provide class weights.

Furthermore, the proposed metric BJ is correlated with both

JI and BF, i.e., it captures the performance of these two

scores. Note that in the following experiments, we focus

our attention to the point of evaluating different accuracy

metrics as it’s the aim of this paper, rather than evaluating the

suitability of different network architectures to the problem

of semantic segmentation in urban scenes.

A. CNN architectures for semantic segmentation from RGB-
D data

Using color and depth information has proven to be useful

for semantic segmentation [2], [14], [8]. However, it’s not

clear yet how these two types of data should be fed into

the CNN, and which network architecture is optimal for

the problem. Without trying to solve this problem, we just

describe here several solutions in order to compare later

the suitability of different accuracy statistics. The network

models analyzed in the next section are FuseNet [8], SegNet

[6], and some modified versions of the latter that we describe

here.

We introduce a modification of the VGG16 topology [24]

employed by SegNet (see fig. 3a) to obtain a more compact

network which we call Compact Encoder Decoder Convolu-

tional Neural Network (CEDCNN), which is illustrated in fig.

3b. This network model increases the number of parameters

of the filters in each resolution to produce higher dimen-

sional feature maps, and reduces the number of consecutive

convolution filters (convolution+batch normalization+ReLU)

to reduce the complexity and non-linearity of the model. We

also employ a modification of SegNet which is similar to

[14], called SegNet2, with two separate networks for color

and geometric information, whose result is concatenated

and filtered by an additional convolution layer as shown

in figure 3c. In the same way as for SegNet2, we also

modify our model CEDCNN to obtain a new network, called
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CEDCNN2, with two different pipelines to extract feature

maps from color and geometric information separately.

(a) SegNet (VGG16 without Fully SegNetnnected layers)

(b) CEDCNN (60% less parameters than SegNet)

(c) SegNet2 (Color+Geometry)

Fig. 3: CNN topologies employed in our experiments: a)

SegNet, b) CEDCNN, c) SegNet2.

B. Comparison of different metrics

Firstly, we provide a qualitative analysis of the behavior of

different metrics with infra-segmented and over-segmented

objects, as shown in fig. 2. We produce synthetic segmen-

tations of the ground truth of different object classes of

interest, e.g., “traffic sign” or “pedestrian”. For instance,

using the “pedestrian” class shown in table II, we produce

infra-segmented objects by removing layers of labeled pixels

of its boundary, such as the segmentations at the left of

table II. Conversely, we produce over-segmented objects by

adding layers of labeled pixels beyond the boundary, see the

images at the right of table II. Figure 2 shows the score

of different per-class metrics: JI, BF, the average of JI and

BF, and BJ. The horizontal axis represents the amount of

infra-segmentation (negative values) and over-segmentation

(positive values) according to the number of 1-pixel layers

removed or added to the ground truth, which is represented

at the center of this graph, where all scores are 1.

We see that the Jaccard index has the most gradual behav-

ior, since it depends only on the amount of pixels correctly

and wrongly classified. The BF score measures the quality

of the segmented boundaries, it shows a discontinuous trend

according to the threshold parameter used to distinguish

inliers from outliers. The previous measures may be averaged

to obtain a score that accounts for both: the number of pixels

correctly labeled and the quality of contours of the segmenta-

tion. While the discontinuity of this metric is less severe than

for BF, it is still something undesirable because the score

depends highly on the threshold value θ . Finally, the BJ score

shows a continuous behavior because it’s value depends on

the distance, instead of a filter, so that the θ parameter has

less influence on its value. The BJ score is higher than JI

for infra-segmented objects, which is interesting because to

avoid miss-classifications. The BJ score is close to 0.5 for

over-segmented objects with bad contour segmentation. This

effect is reasonable, since an over-segmentation is always

preferable to a miss-classification. Besides, the effect of over-

segmentations penalizes the BJ scores of the surrounding

objects in the image.

C. Semantic segmentation of RGB and Depth on Virtual
KITTI

This experiment makes use of the Virtual KITTI dataset

[12] for training and testing different models for semantic

segmentation. This dataset contains RGB, depth and labeled

images with 13 classes: sky, sidewalk, tree, vegetation, build-
ing, road, guard rail, traffic sign, traffic light, pole, car, van
and truck. It is composed of 5 virtual scenarios resembling

those from the KITTI dataset [17], generated by simulating

different illumination and weather conditions. Our training

data is composed of 3846 observations chosen along different

parts of the 5 scenarios contained in the dataset, scattering

the selected images through the different sequences with

different conditions (clone, fog, morning, overcast, rain and

sunset). Each model is trained independently from scratch

from the same training data. The test data used to produce

the results shown in the following tables is composed of 1266

images selected from different sections of the same dataset.

First, we evaluate different ways to feed geometric infor-

mation into SegNet, which is trained from images of different

types: color (RGB), raw depth (D) encoded in one channel

with 16 bits for centimeter precision, normal vectors plus

depth (ND), and normal vectors plus elevation from the

ground (NE). The images ND and NE are encoded as 3-

channel images with 8 bits per channel, with 2 channels

containing the first two components of the normal directions

and the third channel containing depth or elevation, accord-

ingly scaled to 8 bits [2].

Table III presents the accuracy measured as the recall (R),

the mean recall of all classes, the mean JI and considering

the metric BJ. The best scores are highlighted in bold. The

first 5 rows of the table (white background) correspond to

SegNet for different inputs. We observe that the combination

of surface normal directions plus depth or elevation achieve

the best results, with slightly better accuracy for ND. These

outperform the accuracy obtained using RGB, raw depth, and

the case of 4-channel RGBD input which concatenates RGB
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with raw depth (with 8 bits for each color channel and 16 bits

for depth) 1. Regarding the accuracy of the model SegNet2

(see fig. 3c), the use of input data from RGB-ND achieves

the best results, for which all the global accuracy metrics

indicate that it is the best model. Note that recall measured

on the class borders are very close to the mean recall. In fact,

both measures are quite similar because computing the recall

only on class borders leverages the effect of unbalanced

frequencies of the different classes, while being more stable

to the presence of low-frequency (“rare”) classes with lower

class-wise accuracy.

TABLE III: Semantic segmentation accuracy of SegNet and

SegNet2 using color and geometric information (in %).

Model \ Metric recall m. R m. JI BJ
SegNet (RGB) 81.7 61.9 41.2 61.7

SegNet (D) 85.8 65.2 47.0 67.1
SegNet (ND) 88.6 70.2 51.1 69.8
SegNet (NE) 88.5 71.5 48.9 69.5

SegNet (RGBD) 78.1 64.1 41.8 60.7

SegNet2 (RGB-D) 88.5 71.0 49.4 70.5
SegNet2 (RGB-ND) 90.3 71.8 52.9 71.7

We analyze next other network architectures like FuseNet

[8], together with the network topologies introduced in

section IV-A: SegNet2, CEDCNN and CEDCNN2. Table IV

shows the accuracy measured with the same global statistics

of the previous table. For easier reference, this table also

shows the results of SegNet for RGB and SegNet2 for RGB-

ND in the two first rows. The results show that FuseNet,

which was designed for semantic segmentation of indoor im-

ages from RGB-D data, achieves a performance comparable

with SegNet. The authors of FuseNet argued in [8] that the

relevant geometric features can be learned from raw depth

by the CNN without the need of previous transformations.

However, we observe a relevant improvement by comparing

the results of FuseNet using RGB-D vs. RGB-ND, for which

the surface directions contribute to improve the accuracy.

For this case, the images are “virtually” acquired from a

forward facing camera mounted in a car. Therefore, the

surface directions have some invariants, such as the angle

with gravity, that constitute a relevant source of information.

TABLE IV: Global accuracy of different types of networks

using color and geometric information (in %).

Model \ Metric recall m. R m. JI BJ
SegNet (RGB) 81.7 61.9 41.2 61.7
SegNet2 (RGB-ND) 88.6 70.2 51.1 69.8

FuseNet (RGB-D) 85.2 65.9 45.8 64.9
FuseNet (RGB-ND) 88.1 64.6 47.2 68.9

CEDCNN (RGB) 88.8 72.8 48.6 70.5
CEDCNN2 (RGB-D) 90.1 79.7 60.0 77.5
CEDCNN2 (RGB-ND) 92.6 81.7 64.7 80.0

We remark that the different models achieve the best

semantic segmentation depending on the class, while the best

1Note that the virtual dataset has “perfect” geometry, which explains the
high accuracy rates using only geometric information.

model overall (according to BJ) is CEDCNN2 with RGB-

ND, which has a considerable better performance segmenting

classes with lower frequencies, such as “traffic light” or

“truck”, while the scores of large frequency classes like

“sky”, “tree” or “road” are generally more stable across the

different models. This fact is depicted in fig. 4 with confusion

matrices for three different architectures. Note that if we need

to choose between one of the FuseNet models, we need to

consider the metric for all classes. Having unbalanced class

frequencies has a great influence on the final score, because

multi-resolution CNN are well suited by design to segment

large homogeneous classes, but they are harder to train in

order to achieve similar scores on low frequency classes,

which sometimes are more important for many practical

applications like for the case of autonomous driving.

Regarding the different accuracy metrics, we observe that

the mean recall and the mean JI are less stable across

the different experiments. This occurs because the accuracy

of low frequency classes have a large variability even for

similar models, and this variability is also reflected in their

mean values. This effect is also observed in the normalized

confusion matrices, see fig. 4, where the diagonal elements

correspond to recall of each class, and where the JI for the

i-th class is related to the values contained the i-th row and

i-th column. On the other hand, BJ presents a more stable

behavior for similar models, where even little changes on its

value seem to be a good indicator to choose the best model

according to the visualization of the predicted segmentation.

V. CORRELATION OF DIFFERENT METRICS

This section measures the correlation of the different

metrics evaluated in the previous experiment. We compute

the per-image score on the segmented test sequence of Vir-

tual KITTI (RGB-ND) obtained with the model CEDCNN2,

and measure the correlation of the different metrics for

ranking the quality of each segmented image. We employ

the Spearmans rank correlation (ρ), which is a nonparametric

measure of rank correlation, defined as the Pearson correla-

tion coefficient between the ranked variables. It is used here

to measure the statistical dependence between the ranking of

different accuracy metrics. For a sample of size n, with the n
raw scores Xi,Yi, the Spearman’s rank correlation is defined

as

ρ =
cov(rgX ,rgY )

σrgX σrgY

(17)

where rgX ,rgY are the ranks of the score distributions X ,Y .

Since we choose integer values for the rank, the formula is

simplified to

ρ = 1− 6∑n
i=1(rgXi − rgYi)

2

n(n2 −1)
(18)

Table V shows the ranking correlations among metrics,

where we can see that the BJ score is correlated to both JI and

BF, showing that they capture similar information. Notice

that the correlations with BJ are higher than the correlations

among other pairs of scores.
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(a) SegNet (RGB) (b) FuseNet (RGB-D) (c) CEDCNN2 (RGB-ND)

Fig. 4: Normalized confusion matrices (in %) of semantic segmentation in the real KITTI dataset with: a) SegNet (RGB),

b) FuseNet (RGB-D) and c) CEDCNN2 (RGB-ND).

TABLE V: Spearmans rank correlation of different segmen-

tation scores.

metric JI BF (JI+BF)/2 BJ
JI - 0.48 0.59 0.63

BF - - 0.68 0.65
(JI+BF)/2 - - - 0.73

VI. CONCLUSIONS

This paper addresses the problem of measuring the ac-

curacy of semantic segmentation of images, which is an

essential aspect when comparing different segmentation ap-

proaches. The global recall, mean recall and mean JI statis-

tics have been traditionally employed to evaluate different

image segmentation results, however, these metrics are not

satisfactory enough when the classes frequencies are very

unbalanced. We present a simple and efficient strategy to

compute the recall on border regions of the different classes

which leverages unbalanced frequencies, and is a good

indicator to measure class segmentation. Our proposed metric

encodes jointly the rate of correctly labeled pixels and

how homeomorphic is the segmentation to the real object

boundaries. We also present results for several different CNN

architectures using two state-of-the-art benchmark datasets.

Though we address this problem in the context of urban

images segmentation, our results can also be extended to

other contexts, like for indoor scenarios.

The research in this paper was partly motivated by the

need of segmentation solutions with better segmentation of

contours, for which traditional metrics were not suitable. In

our future research, we plan to study how to give more

importance to the segmentation of such contours during

the training phase of the CNN and on obtaining optimal

CNN designs for semantic segmentation of complex dynamic

outdoor scenes.
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Abstract—Multibody Visual SLAM has become increasingly
popular in the field of Computer Vision during the past decades.
Its implementation in robotic systems can benefit numerous appli-
cations, ranging from personal assistants to military surveillance
to autonomous vehicles. While several practical methods use
multibody enhanced SfM techniques and monocular vision to
achieve scene flow reconstruction, most rely on short baseline
stereo systems. In this article, we explore the alternative case of
wide baseline and multi-focal stereo vision to perform incremen-
tal multibody reconstruction, taking inspiration from the increas-
ingly popular implementation of heterogeneous camera systems
in current vehicles, such as frontal and surround cameras. A new
dataset acquired from such heterogeneous camera setup mounted
on an experimental vehicle is introduced in this article, along with
a purely geometrical method performing incremental multibody
reconstruction.

I. INTRODUCTION

This article is related to the automotive industry and focuses

on driving aid systems and autonomous navigation. Multibody

SLAM techniques often rely on expensive and difficult-to-

integrate sensors, such as lidar systems [23]. By contrast, dig-

ital video cameras have been extensively developed during the

last decades, rapidly becoming small, efficient and inexpensive

products. Most of the vehicles currently available dedicate

these sensors to provide the driver a convenient visualization

of the vehicle surroundings. Recently, more specific tasks

involving video cameras (road sign and pedestrian detection,

automatic emergency braking, line departure warning, blind

spot monitoring, etc.) have been introduced. Besides, precisely

calibrated cameras allow for the tridimensional reconstruction

of an observed scene, which extends the potential applica-

tions of these systems. Some are straightforward, like visual

odometry or visual simultaneous localization and mapping, but

it is also possible to dynamically evaluate the road context

related to this information to further enable the autonomous

capabilities of a vehicle, which have been explored in appli-

cations such as scene understanding, obstacle avoidance or

path planning [2], [4]. Moreover, behavior modeling of mobile

objects could further improve the detection of dangerous

situations (pedestrian crossing, brutal stop of another vehicle,

excessive speed, bad road positioning, right of way violation,

etc.). While several practical methods use multibody enhanced

SfM techniques and monocular vision to achieve scene flow

reconstruction, most rely on short baseline stereo systems. In

this article, we explore the alternative case of wide baseline

and multifocal stereo vision to perform incremental multi-

body reconstruction, taking inspiration from the increasingly

popular implementation of heterogeneous camera systems in

current vehicles, such as frontal and surround cameras.

Figure 1. Example of trajectories reconstruction. In this sequence, the
acquisition vehicle is following another moving vehicle. The blue trajectory
is from the acquisition vehicle, while the red trajectories correspond to the
red points on the moving vehicle visible in the two views on the right.

II. RELATED WORK

Intelligent vehicles today can be considered as the practice

field of many computer vision algorithms. Indeed, research on

the subject has led to several applications such as visual odom-

etry [16] or visual simultaneous localization and mapping

[3]. However, most methods focus on the reconstruction of

static, rigid environments. Dynamic parts of the scene are often

considered as outliers and filtered out using robust statistical
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methods like RANSAC. Such approach could seem inappro-

priate in the context of driving aid systems and autonomous

vehicles, as most hazardous traffic situations involve mobile

objects, but one can then consider that the high complexity and

computational cost of such dynamic reconstruction algorithms

have been the limiting factors of their practical expansion.

Multibody VSLAM refers to the ensemble of techniques

used to reconstruct and track the static and mobile objects of

a dynamic scene in three dimensions with vision. However,

while some techniques rely on global data optimization, this

article focuses on incremental reconstruction, which allows

its online use in actual moving vehicles. These incremental

techniques can further be divided into two categories, mainly

depending on the number of cameras used for reconstruction.

Monocular methods are the most challenging ones, in that

they have to compensate the camera ego-motion parameters

to retrieve the independent motion of each mobile object of

the scene. Many incremental monocular methods [17], [8],

[19] extend classical Structure-from-Motion theory [7] to the

challenging case of dynamic scenes involving multiple rigid-

body motions. The different elements to consider for such

frameworks involve features matching and clustering based

on their estimated motion, also known as subspace clustering

[22], the tracking and independent reconstruction of these

feature clusters with respect to their relative camera pose and

finally the aggregation of all the reconstructed elements to

scale.

The second category of methods used to perform multibody

VSLAM involve multiple camera systems, generally under

the form of identical stereo camera pairs which allow for

dense reconstruction and segmentation of mobile objects using

depth maps from optical flows [13], [18], [1], [24]. While

short baseline stereo has been well studied in the context of

autonomous navigation, it is not the case of multifocal and

wide baseline stereo cameras pairs. The method presented in

this article is intended to address this case on a heterogeneous

multi-camera system.

Figure 2. Overview of the framework used in our method.

III. FRAMEWORK

An overview of the framework presented in this article is

shown in figure 2. After an initial offline step of intrinsic

and extrinsic camera calibration following the method intro-

duced in [9], feature points are then extracted, matched and

undistorted for each frame using the unified camera model

presented in [5] and then fed to the visual SLAM module,

which estimates the ego-motion parameters of the multi-

camera system. These parameters are then used to compute the

multi-view geometric constraints of the segmentation process

which filters and reconstructs the static and mobile features.

Following the SLAM and segmentation procedures, the recon-

structed points and camera poses are further refined by two

dedicated optimization steps minimizing the reprojection error

with bundle adjustment.

A. Sparse feature extraction and matching

Dense feature matching from stereo camera pairs has been

well studied for the case of dynamic scene reconstruction.

These techniques often involve the use of dense flow fields to

detect and segment the rigid-body motions of the scene [13].

By contrast, while obtaining disparity maps from wide baseline

systems has proven achievable [21], the current methods are

not appropriate for time-constrained scenarios. The approach

used in this article, while conventional, produces accurate

extraction and matching of sparse features in the case of wide

baseline and multifocal stereo.

To account for the heterogeneous focal lengths of our

system, the frames obtained from cameras with longer focal

lenses are downsampled and slightly blurred to adjust for

the different size (pixelwise) of the elements in the scene

that are simultaneously seen by cameras with shorter focal

lenses. These downsampled frames are then used for feature

extraction.

The SIFT feature detector and descriptor [11] has been

chosen for feature detection and description as it produces

a large number of relatively stable points.

The feature extraction process is divided into three parts

for each frame. SIFT feature detection is first performed on

the entire frame to get an initial feature set. The frame is

then divided into blocks of an n by n grid, while the features

belonging to each block are grouped into clusters. The best

features are finally retained for each cluster. This first part

allows for a good feature repartition on the frame. The second

part is designed to enhance the temporal detection of previ-

ously triangulated features. We used the Lucas Kanade method

as introduced in [12] to track these features on consecutive

frames and thus increase the chances to detect the same 3D

point for a longer period of time. The last part finally merges

the two sets of features, eliminating duplicates based on their

respective euclidean distance. The result of this extraction

process is a feature set fi,t for each frame, where i ∈ 0 . . .m
and t ∈ 0 . . . n correspond respectively to the camera and time

of observation.

The feature matching process between two sets fi,t and fi′,t′
then rely on two geometric constraints. A locality constraint

Lc and the epipoplar constraint Ec.

The locality constraint Lc is used for the temporal matching
of features seen in frames acquired with the same camera at

different times. This constraint allow for a feature x ∈ fi,t
to be matched with a feature x′ ∈ fi,t′ if the euclidean

distance dE between x and x′ is inferior to a threshold dLc.

Each potential match p(x, x′) must then satisfy the following

equation

p(x, x′) ⇐⇒ dE(x, x
′) < dLc
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The epipolar constraint Ec is used for the stereo matching of

features seen in frames acquired simultaneously by different

cameras with overlapping fields of view and whose extrinsic

parameters are known beforehand. This constraint allow for

a feature x ∈ fi,t to be matched with a feature x′ ∈ fi′,t if

the euclidean distance to their respective epipolar lines l′ and

l is inferior to a threshold dEc. Each potential match p(x, x′)
must then satisfy the following equation

p(x, x′) ⇐⇒
{
dE(x, l

′) < dEc

dE(x
′, l) < dEc

where l = FT
i,i′x

′, l′ = Fi,i′x and Fi,i′ is the fundamental

matrix between cameras i and i′.
Following these two constraints, when more than one poten-

tial match p(x, x′) exists for either feature in their respective

sets, the best match m(x, x′) retained is the one for which the

euclidean distance dE , or L2, between each feature descriptor

(not the distance in pixels) is minimal min(dE(x, x
′)).

Finally, the multi-camera matching scheme allows each

camera to be stereo matched with the other ones for which

there is an overlapping field of view and temporally matched

at consecutive times of observation. That last point is of crucial

importance for the tracking of features, meaning that a feature

must at least be matched once temporally at the current time

of observation to be tracked in subsequent frames.

Figure 3. Reconstruction of the rigid environment generated by the visual
SLAM module and its corresponding trajectory.

B. Visual SLAM

The visual SLAM module is independent of the following

segmentation process proposed in this article. Its main pur-

pose is to estimate the ego-motion parameters of the multi-

camera system in order to efficiently compute the geometric

constraints used in the segmentation process. The approach

chosen is a bundle adjustment visual SLAM, as presented in

[14], in opposition to filter based approaches such as [3] for

its higher accuracy [20]. Briefly, the initial epipolar geometry

is computed by the 5-point algorithm [15] with RANSAC for

the first three frames and the subsequent poses are determined

by camera resection [6], [10]. During this incremental process,

the 3D points are reconstructed with the mid-point algorithm

and some sets of frames, referred as key frames, are selected

for local optimization by bundle adjustment to further refine

their respective camera poses and associated 3D points. A full

sequence reconstruction and its associated trajectory, generated

by the visual SLAM module, are shown in figure 3.

C. Mobile 3D points segmentation and tracking

A 3D point X must at least be associated with a couple of

observations (oXi,t, o
X
i′,t′), each from a specific camera i, i′ ∈

0 . . .m at a specific time t, t′ ∈ 0 . . . n, for its reconstruction.

These observations can either be temporal (i = i′ ∧ t �= t′)
or stereo (i �= i′ ∧ t = t′) and correspond to feature matches

m(x, x′) obtained from the feature matching module. A 3D

point can also be associated with more than two observations,

all of which form the set oX of the observations associated

with the 3D point X . One should note that at this point, all

observations are retained from the feature matching module

to allow for mobile object detection, contrary to most SLAM

methods which eliminate the outliers that do not satisfy the

main epipolar geometry of the scene. The objective of the

mobile segmentation module is then to determine from these

observations the class of their associated 3D point, which can

either be static (X ∈ S), mobile (X ∈ M ) or into the outlier
class (X ∈ O).

1) 3D point consistency: A 3D point is considered as

consistent when it satisfies the consistency constraint Cc. This

constraint specifies that the reprojection error of this point for

all its observations is inferior to a certain threshold tCc, which

translates as

Cc(oX) ⇐⇒ ∀oXi,t ∈ oX , (oXi,t − Pi,tX) < tCc

where Pi,t is the projection matrix of the ith camera at time

t. Incidentally, a static 3D point (X ∈ S) must be consistent

for all of its associated observations.

2) 3D point mobility: On the opposite, a mobile 3D point

might not be consistent for all its temporal observations.

However, each 3D point can be split temporally and must

remain consistent for each of its temporalities, which allow

for different positions of the point at different times. Then,

the first mobility constraint Mc1 specifies that

Mc1(oX) ⇐⇒ ∀t, ∀oXi,t ∈ oXt , (oXi,t − Pi,tX) < tMc1

where oXt is the set of observations associated to the point

X at time t. Considering that the point X is moving, only

stereo observations allow for its reconstruction at time t. There

must then be at least two stereo observations (oXi,t, o
X
i′,t) for

each temporality t. This leads to the second mobility constraint

Mc2, which states that

Mc2(oX) ⇐⇒ ∀t, |oXt | ≥ 2

Finally, the detection of a mobile point being only possible

from several temporal observations, there must at least be two
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temporal observations (oXi,t, o
X
i,t′) in the set oX . Hence the third

mobility constraint which states that

Mc3(oX) ⇐⇒ ∃(oXi,t, oXi,t′) ∈ (oX)2, t �= t′

In practice, while the minimum of temporal observations

is two, a minimum of three has been used to mitigate false

positives by ensuring that the trajectory of these observations

is consistent (see III-C5), meaning that a mobile 3D point has

to be tracked in at least three consecutive frames.

3) Segmentation algorithm: Using the consistency and mo-

bility constraints, the segmentation process then proceeds with

the following algorithm for each 3D point X to determine its

class C (static, mobile or outlier).

Algorithm 1 Segmentation algorithm

Input: oX

Output: class C of X: (C = S) ∨ (C = M) ∨ (C = O)
1: if (Cc(oX)) then
2: C = S
3: else
4: if (Mc1(oX) ∧Mc2(oX) ∧Mc3(oX)) then
5: C = M
6: else
7: C = O
8: end if
9: end if

10: return C

Each 3D point is first checked for consistency and consid-

ered as static if consistent. If not, the point is further tested

for mobility, in which case it is considered as mobile if all

mobility constraints are satisfied and as an outlier if not. The

outliers are then discarded at this point.

4) 3D point splitting for optimization: Following the seg-

mentation algorithm, each mobile point is then split temporally

as a set of individual points Xt which correspond to the

different positions of the point X at each temporality t.
This step allows for a generic optimization of all 3D points

regardless of their class (C = S or C = M ), which is

performed on all mobile 3D points Xt by minimizing their

reprojection error for all their observations oXt with bundle

adjustment.

5) Trajectory consistency: As a final step and to further

refine the segmentation, the trajectory of each mobile point

X composed of the individual points Xt is checked for

its consistency. Several constraints of smoothness for speed

and changes in direction are used. The constraint for speed

specifies that the euclidean distance allowed between each

pair of consecutive points (Xt, Xt′) is comprised between

dmin < dE(Xt, Xt′) < dmax. Similarly, as each mobile object

is assumed to rest on the ground plane, the change in elevation

allowed between each pair of consecutive points (Xt, Xt′)
must not exceed a threshold dElevation. As for the changes

of direction, the angle formed by each triplet of consecutive

points (Xt, Xt′ , Xt′′) projected on the ground plane must not

exceed a threshold α. All these constraints on the trajectory

of each mobile point X allow for the detection and dismissal

of erratic movements generated by false matches occurring in

the feature matching module.

D. Parameter tuning

Each step of the described framework rely on various

parameters affecting the overall performance of the proposed

method. While some of the values used for these parameters

directly come from the literature, an empirical tuning aproach

has been adopted to retain the best value for the other

parameters in regard to the results obtained on our associated

dataset. More precisely, parameters in section III-C, which is

the main contribution of our method, use the following values

for the consistency and first mobility constraints tCc = 3.0,

tMc1 = 3.0, while the values used to ensure the trajectory

consistency in section III-C5 are dmin = 0.1, dmax = 10.0,

dElevation = 1.0 and α = 60.0. One should although consider

that these values are specifically intended to work well on our

associated dataset and are thus given on an indicative basis

only.

v

Figure 4. Top-down view of the vehicle with the four cameras and overlapping
fields of view. According to our feature matching scheme, temporal matching
is performed for each camera, while stereo matching is performed between
the windscreen camera (in blue) and the three others (in orange and red) and
between the front grille camera (in orange) and the side cameras (in red).
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Figure 5. Views acquired with the four cameras. Top left is the front grille
camera, top right the windscreen camera and bottom left and right are the
side-left and side-right cameras.

IV. DATASET

While several datasets allowing for the evaluation of scene

flow have recently been introduced, notably the KITTI dataset

for scene flow estimation [13], no publicly available dataset to

our knowledge uses an array of wide baseline and multifocal

stereo cameras, which is the reason behind the creation of our

own. The dataset presented in this article has been acquired

in a realistic but controlled environment, which is composed

of static and mobile elements such as cars and pedestrians.

A total of eight different sequences corresponding to different

road traffic scenarios at low speed have been acquired in order

to assess the robustness of the proposed algorithm and the

quality of the reconstructions.

The experimental vehicle has been equipped with four

rigidly mounted digital cameras and a D-GPS. Spec-wise,

the cameras use identical 2.3 MP, global shutter and syn-

chronized sensors which record at 25 frames per second.

The synchronization part of the acquisition process, being of

utmost importance to ensure the geometrical correctness of

our method, has been performed by hardware triggering. Three

cameras are equipped with fisheye lenses equivalent to a 185

degrees horizontal FOV, while the fourth is equipped with a

longer focal lens equivalent to an 80 degrees horizontal FOV.

The fisheye cameras have been respectively placed on the front

grille, pointing front in the longitudinal axle of the vehicle

and on each side of the roof above the driver and passenger

doors, pointing to the left and right perpendicular to the front

camera. Finally, the last camera has been placed on the roof,

above the windscreen, pointing front in the longitudinal axle

of the vehicle. A top-down view of the vehicle with the four

cameras and overlapping fields of view is shown in figure 4,

while actual views acquired with the four cameras are shown

in figure 5.

The choices of position, specs and optical characteristics of

the cameras have been motivated by the increasingly popular

implementation of heterogeneous camera systems in current

vehicles, such as frontal (e.g., Mobileye cameras) and sur-

round cameras (e.g., Around View Monitoring systems). These

experimental conditions should then help demonstrate the

potential uses of such multi-camera systems in the challenging

task of autonomous navigation.

Figure 6. Example of false positive. The red trajectory in the top left corner
is due to false matches misinterpretation on the traffic light.

V. EXPERIMENTAL RESULTS

Qualitative results have been obtained from the algorithm on

various sequences from our dataset. One example of trajectory

reconstruction is shown in figure 1. In this particular case,

the acquisition vehicle whose trajectory is shown in blue is

following another moving vehicle in front. Three mobile points

are tracked and reconstructed simultaneously on the moving

vehicle, which corresponds to the three red trajectories on the

top left of the figure. These red points are also visible on

the moving vehicle in the two provided views. One can note

that some of the green points, which are static 3D points,

also lie on the moving vehicle. These green points are not

considered as mobile as they have not been tracked and

stereo matched for three consecutive frames. While this also

explains the relatively few number of mobile points detected,

this is a limitation of the current state of the method, as

the segmentation constraints used do not allow for a false

observation to be associated with a moving 3D point, in which

case the point becomes an outlier and is then dismissed. Views

of the windscreen and front grille cameras corresponding to

this particular trajectory can be seen in figure 7.

While several similar valid occurrences of tracking and

reconstruction appear in the different sequences, some false

positives are also to be noted. In figure 6, one can see the

false red trajectory in the top left corner. This false positive is

caused by false matches of features on the traffic light visible

on the left in the views. These matches are correct according to

the epipolar matching constraint Ec, as they lie on the epipolar

lines, but are not pointing at the same static 3D point (one is

at the top, the other at the bottom of the light) on the object

and are thus misinterpreted as a moving point. These false
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positives occur more frequently in repeating patterns areas

such as the ground, grass, or the grilling visible on the left of

the views in figure 6. Finally, although being semantic errors

rather than geometric ones, shadows of moving objects can

also be misinterpreted as moving areas and thus be considered

as false positives.

Figure 7. Views of the windscreen and front grille cameras corresponding to
the trajectories shown in figure 1.

VI. CONCLUSION AND FUTURE WORKS

The observed qualitative results show that the purely ge-

ometrical method presented in this article works as intended

on our dataset. However, several improvements can be made

regarding the results. The reconstructed moving trajectories

can indeed be considered as the starting point of a denser

matching surrounding the area near the moving features. This

could, in turn, allow to work with more points per moving

object, which would enable their tracking and reconstruction

to scale in the non-overlapped field of views of the multi-

camera system. Also, some flexibility during the segmentation

process, allowing to work on a larger number of points, could

be achieved by pondering each observation and scoring the

motion potential of each point instead of considering it as

an outlier. These perspectives will eventually be explored in

future works.

REFERENCES

[1] M. Bleyer, C. Rhemann, and C. Rother. Extracting 3d scene-consistent
object proposals and depth from stereo images. pages 467–481. Springer,
2012.

[2] M. Buehler, K. Iagnemma, and S. Singh. The DARPA urban challenge:
autonomous vehicles in city traffic, volume 56. Springer, 2009.

[3] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM:
Real-time single camera SLAM. Pattern Analysis and Machine Intelli-
gence, 29(6):1052–1067, 2007.

[4] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d traffic
scene understanding from movable platforms. Pattern Analysis and
Machine Intelligence, 36(5):1012–1025, 2014.

[5] C. Geyer and K. Daniilidis. A unifying theory for central panoramic sys-
tems and practical implications. In European Conference on Computer
Vision, pages 445–461. Springer, 2000.

[6] B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle. Review and
analysis of solutions of the three point perspective pose estimation
problem. International Journal of Computer Vision, 13(3):331–356,
1994.

[7] R. Hartley and A. Zisserman. Multiple view geometry in computer vision,
Second Edition. Cambridge Univ. Press, 2003.

[8] A. Kundu, K. M. Krishna, and C. Jawahar. Realtime multibody visual
slam with a smoothly moving monocular camera. In International
Conference on Computer Vision, pages 2080–2087. IEEE, 2011.
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AutonoVi-Sim: Autonomous Vehicle Simulation Platform with Weather,
Sensing, and Traffic control

Andrew Best1 and Sahil Narang1 and Lucas Pasqualin2 and Daniel Barber2 and Dinesh Manocha1

Abstract— We present AutonoVi-Sim, a novel high-fidelity
simulation platform for testing autonomous driving algorithms.
AutonoVi-Sim is a collection of high-level extensible modules
which allows the rapid development and testing of vehicle
configurations and facilitates construction of complex road
networks. Autonovi-Sim supports multiple vehicles with unique
steering or acceleration limits, as well as unique tire parameters
and dynamics profiles. Engineers can specify the specific vehicle
sensor systems and vary time of day and weather conditions
to gain insight into how conditions affect the performance of
a particular algorithm. In addition, AutonoVi-Sim supports
navigation for non-vehicle traffic participants such as cyclists
and pedestrians, allowing engineers to specify routes for these
actors, or to create scripted scenarios which place the vehicle
in dangerous reactive situations. AutonoVi-Sim also facilitates
data analysis, allowing for capturing video from the vehicle’s
perspective and exporting sensor data such as relative positions
of other traffic participants, camera data for a specific sensor,
and detection and classification results. Thus, AutonoVi-Sim
allows for the rapid prototyping, development and testing of
autonomous driving algorithms under varying vehicle, road,
traffic, and weather conditions.

I. INTRODUCTION

Autonomous driving represents an imminent challenge

encompassing a number of domains including robotics, com-

puter vision, motion planning, civil engineering, and simula-

tion. Central to this challenge is the safety considerations

autonomous vehicles navigating the roads surrounded by

unpredictable actors. Humans, whether drivers, pedestrians,

or cyclists, often behave erratically, inconsistently, or danger-

ously, forcing other vehicles (including autonomous vehicles)

to react quickly to avoid hazards. In order to facilitate

acceptance and guarantee safety, vehicles must be tested not

only in typical, relatively safe scenarios, but also in these

dangerous, less frequent scenarios.

Aside from safety concerns, costs pose an additional

challenge to the testing of autonomous driving algorithms.

Each new configuration of a vehicle or new sensor requires

re-calibration of a physical vehicle, which is labor intensive.

Furthermore, the vehicle can only be tested under condition

limited either by a testing track, or the current traffic con-

ditions if a road test is being performed. This means the

vehicle can be tested no faster than real-time and without

any speedups or parallel testing.

The ability to test a driving algorithm in a high-fidelity,

physics driven simulation would allow for testing novel

1Andrew Best, Sahil Narang and Dinesh Manocha are at the University
of North Carolina, Chapel Hill

2 Daniel Barber and Lucas Pasqualin are at the University of Central
Florida

approaches without incurring intense labor costs. New ve-

hicles or novel sensor configurations could be explored on

many scenarios at once under a wide array of traffic and

weather conditions. Engineers could also test the driving

algorithm under conditions which are too dangerous to utilize

the real vehicle. For example, engineers could test how the

vehicle would respond to erratic behavior from other drivers,

pedestrians, or cyclists without endangering the vehicle’s

passengers or other traffic participants. Insights gained from

simulation would provide critical information on algorithmic

inefficiencies before actual vehicle testing.

In an effort to provide such a testing platform, we

present AutonoVi-Sim, a simulation framework for testing

autonomous driving algorithms and sensors. AutonoVi-Sim

is a collection of high-level, extensible modules designed to

allow researchers and engineers to rapidly configure novel

road networks, driving scenarios, and vehicle configurations,

and to test these in a variety of weather and lighting

conditions. AutonoVi-Sim captures a variety of autonomous

driving phenomena and testing requirements including:

• Varying vehicle types and traffic density: AutonoVi-

Sim includes various vehicle models allowing for train-

ing classification on differing vehicle shapes, sizes, and

colors. In addition, AutonoVi-Sim provides high fidelity

traffic simulation, supporting dynamic changes in traffic

density and the capacity to model the surrounding

vehicles in high-fidelity.

• Rapid Scenario Construction: Typical road networks

can be easily laid out using spline painting and are

automatically connected for routing and navigation pur-

poses. AutonoVi-Sim supports many lane configurations

and atypical road geometry such as cloverleaf over-

passes.

• Cyclists and Pedestrians: Non-vehicle traffic can be

included in a scenario as part of the larger simula-

tion or given specific scripted parameters. Cyclists and

pedestrians are supported and can be given navigation

destinations like vehicles or specific scenario behaviors

to test the ego-vehicle’s ressponse time (e.g. walking

intro the road in front of the ego-vehicle).

• Varied Sensor Configurations: Sensor placement can

be varied per-vehicle to determine how a particular ap-

proach responds to differing environmental information.

At runtime, sensor failure or loss of fidelity can be

simulated as well.

The rest of the paper is organized as follows. In section II,
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Fig. 1. AutonoVi-Sim Platform Overview: The eight modules composing AutonoVi-Sim encompass varying aspects of autonomous driving. The Road,
Road Network, and Infrastructure modules define the driving environment. The Environment module allows engineers to specify specific environment
conditions including time of day and weather. The Non-Vehicle traffic module allows engineers to specify navigation goals for pedestrians and cyclists, or
setup specific triggered behaviors. The Drivers and Vehicles modules work as a pair to define current traffic conditions and specific driving destinations and
decisions for the vehicles in the simulation. Each vehicle in the simulation has a unique set of sensing capabilities and a single driver which operates the
vehicle during the simulation. Finally, the Analysis module is used to catalog and export data, including agent positions and sensor readings, for analysis.

we motivate simulation as a tool for advancing autonomous

driving and detailed related work in the field. In section III,

we detail the core modules provided by AutonoVi-Sim. We

reserve discussion of the two vehicle related modules for

section IV and offer demonstrations of the simulator.

II. RELATED WORK

Simulation has been an integral tool in the development

of controllers for autonomous vehicles. [1], [2], and [3]

offer in-depth surveys of the current state of the art and

the role simulation has played. Many successful vehicle

demonstrations of autonomy were first tested in simulation

[4], [5], [6]. Recent work in traffic modelling has sought to

increase the fidelity of the modelled drivers and vehicles; a

survey is provided in [7].

Recent studies support the use of high-fidelity microscopic

simulation for data-gathering and training of vision systems.

[8] and [9] and leveraged Grand Theft Auto 5 to train a

deep-learning classifier at comparable performance to man-

ually annotated real-world images. Several recent projects

seek to enable video games to train end-to-end driving

systems, including ChosenTruck and DeepDrive-Universe

which leverages the OpenAi Universe system. Using video

game data provides benefits in the fidelity of the vehicle

models but limits the ability to implement sensing systems

and access data beyond visual data. A fully dedicated high-

fidelity simulator can address these limitations and provide

access to point-cloud data, visual data, and other vehicle

sensors without the limitations imposed by adapting gaming

software.

III. SIMULATION MODULES

Drawing from recent work in crowd simulation, [10],

AutonoVi-Sim is divided into eight extensible modules, each

with various sub-components. The modules are Environment,

Road Network, Road, Drivers, Infrastructure, Vehicles, Non-

vehicle Traffic, and Analysis. Each module captures some

aspect of autonomous driving simulation and can be extended

and modified to suit the specific needs of a particular algo-

rithm. Figure 1 shows the connection between components

in AutonoVi-Sim. In this section, we will detail the mod-

ules which make up the basic simulation system, reserving

discussion of the vehicle and driving strategy modules for

section IV.

A. Roads

Roads in AutonoVi-Sim are represented by their center

line, a number of lanes and directions thereof, and the

surface friction of the road. Roads are placed interactively

by drawing splines on a landscape which allows quick

construction. Each road maintains occupancy information,

average flow, and can maintain hazard information. The road

module also maintains the set of hazards such as potholes or

debris, which can be specified by density (number of hazards

per km) or interactively by placing them on the road.

Alternately, roads can be specific pieces of geometry as in

the case of intersections. This provides the flexibility to place

specific intersections and model atypical road constructions

for modelling specific environments. Figure 2(A) shows an

example of road placement in AutonoVi-Sim.

B. Infrastructure

Infrastructure controllers represent traffic lights, signage,

and any other entity which modifies the behaviors of vehicles

on the road. These controllers can be added specifically to

roads, as in the case of intersections, or placed independently

as in signage or loop detectors. Vehicles implement their own

detection of these entities as is described in section IV-A.2.

C. Road Network

The road network in AutonoVi-Sim provides the basic

connectivity information for the traffic infrastructure to the

vehicles in the simulation. At run-time, the network is

automatically constructed by connecting roads into a directed

graph. The road network provides GPS style routing to

vehicles and localization for mapping purposes. Coupled

with the road and infrastructure modules, the Road Network
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(A) (B) (C)

Fig. 2. AutonoVi-Sim Environment and Sensor Setup: (A): Roads in AutonoVi-Sim are constructed by dragging spline points along the road’s center
line. This allows for complex roads to be created quickly and efficiently. (B): An example configuration of a hatchback with a laser rangefinder navigating
around traffic cones. Returned beams are illustrated in red. Beams which do not return data are illustrated in cyan for debugging. (C): An example camera
configuration for a test vehicle. A 180 degree forward facing camera, a 180 degree rear-facing camera, and a dashboard camera are illustrated.

also provides information about upcoming traffic and current

road conditions.

D. Environment

The environment module allows engineers to specify the

specific environmental conditions for a given driving sce-

nario. This currently includes time of day and weather. The

system implements varying levels of fog and rain conditions.

Environmental effects such as road friction reduction are

controlled by the environment module.

E. Non-Vehicle Traffic

AutonoVi-Sim implements two non-vehicle traffic partici-

pants: pedestrians and cyclists. Pedestrians operate separately

from the road network and can be given specific destinations.

By default, pedestrians follow safe traffic rules to navigate to

their goal. They can also be setup to trigger specific occur-

rences. For example, as the ego-vehicle nears, a pedestrian

can be triggered to walk into the street in front of the vehicle

to test its reaction time.

Cyclists operate similarly to vehicles in AutonoVi-Sim.

Cyclists are given destinations and route over the road net-

work. Similarly to pedestrians, cyclists can be programmed

to trigger erratic behavior under specified conditions. For

example, as the ego-vehicle approaches, a cyclist can be

triggered to stop in the road, suddenly change direction, or

enter the road in an unsafe fashion.

F. Analysis and Data Capture

AutonoVi-Sim implements a module for logging positions,

velocities, and behaviors of the various traffic participants.

It also supports logging egocentric data from the vehicle,

such as relative positions of nearby entities at varying times

during simulation. Camera-based sensors can record out the

video data captured during simulation as can LIDAR based

sensors Section IV-A.2 describes sensors in more detail.

IV. AUTONOMOUS DRIVING MODULES

The simulation modules described in section III serve as

the basis for AutonoVi-Sim. This section describes the two

core modules which allow for testing autonomous driving

and sensing algorithms under varying conditions, the Drivers

and Vehicles modules.

A. Vehicles
The vehicle in AutonoVi-Sim is represented as a physics-

driven entity with specific tire, steering, and sensor parame-

ters. Physics parameters include the base tire coefficient of

friction, the mass of the vehicle, engine properties such as

gear ratios, and the physical model for the vehicle. Each

of these parameters can vary between vehicles and relevant

properties such as tire friction or mass can vary at runtime

as needed.
1) Control and Dynamics: Vehicle control is provided

on three axes: steering, throttle, and brake inputs. The

specific inputs are chosen each simulation step by the driver

model, described in section IV-B. The vehicle’s dynamics are

implemented in the NVidia PhysX engine. This allows the

simulator to model the vehicle’s dynamics and communicate

relevant features such as slipping as needed by the driving

algorithm.
2) Perception: The perception module of a vehicle pro-

vides the interface for information about surroundings to be

gathered and stored in the vehicle. The basic sensing module

in AutonoVi-Sim employs a ray-cast with configurable un-

certainty, detection time, classification error rate, and sensor

angle / range. This module is sufficient to test scenarios such

as late detection or misclassification of pedestrians with min-

imal intervention. A vehicle can be equipped with multiple

sensors with varying angles and fidelity, allowing the vehicle

to simulate high-fidelity sensors in the longitudinal directions

and broader, less accurate sensors in lateral directions. In

addition, interaction with environmental conditions can be

specified for the basic sensors, including performance im-

pacts and uncertainty caused by weather effects.
In addition, the perception module provides interfaces to a

generic camera interface and Monte-Carlo scanning ray-casts

to simulate various sensor types. These interfaces can be ex-

tended to implement LIDAR or camera-based neural network

classifiers in simulation. The LIDAR can be configured to

change the scanning range, angle, and resolution. Similarly,

the camera resolution, color parameters, and refresh rate can
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(D) (E) (F)

(A) (B) (C)

Fig. 3. Simulated scenarios and conditions in Autonovi-Sim: (A): A simulated city modelled in AutonoVi-Sim. Closed circuit road networks allow
engineers to test driving algorithms over long timescales by assigning new navigation goals periodically. (B): Heavy fog obstructs the view of the vehicle.
(C): Vehicles pass through a slick intersection during rainy conditions. (D): The simple lane-keeping navigation approach projects the position of the
vehicle forward in time and adjusts the speed accordingly. Each white orb represents a future predicted position of the vehicle given the current controls.
(E): The AutonoVi driving algorithm projecting sampled controls along its current path. Red control paths indicate predicted collisions with the nearby
vehicle. Orange control paths represent the controls sampled by adaptive sampling around the prior best control set. (F): An SUV navigating with AutonoVi
changes lanes and passes a cyclist safely.

be configured for each camera sensor. Figure 2 shows an

example of a camera-based sensor and simple LIDAR.

B. Drivers

Driving decisions in AutonoVi-Sim, including routing and

control inputs, are made by driver models. A driver model

fuses information from the road network and the vehicle’s

sensors to make appropriate decisions for the vehicle. The

specific update rate of the driver model can be configured as

well as what sensors the model supports and prefers. Each

model can implement any necessary parameters needed for

the specific approach.

AutonoVi-Sim currently implements three driver models.

The first is a simple lane-following approach which employs

control methods similar to a driver assistance lane-keeping

system. This driver is used to generate passive vehicles trav-

elling along their destinations without aberrant or egocentric

behavior. These vehicles are capable of lane-changes and

turns, but follow simple rules for these maneuvers and rely

on perfect sensing models to accomplish them.

The more extensive driving model, AutonoVi, is described

in detail in [11]. This model uses optimization-based ma-

neuvering with traffic constraints to generate behaviors such

as overtaking and combines steering and braking maneuvers

through a data-driven vehicle dynamics prediction model.

Finally, the simulator implements a manual driving mode,

which can be activated from any autonomous driver. Man-

ual mode allows an engineer to drive the vehicle using a

keyboard, game-pad, or steering wheel and pedal combina-

tion. As described in [12], this manual operation is being

employed to test vehicle signalling and connected vehicle

operation. It can also be used to collect data for neural-

network methods.
Figures 2 and 3 detail several example scenarios and

configurations we have tested in AutonoVi-Sim. Additional

details on AutonoVi and additional simulations and testing

environments can be found in [11].

V. CONCLUSION

We have presented AutonoVi-Sim, a platform for au-

tonomous vehicle simulation with the capacity to represent

various vehicles, sensor configurations, and traffic conditions.

We have demonstrated AutonoVi-Sim’s applicability to a

number of challenging autonomous-driving situations and

detailed the ways in which AutonoVi-Sim can enhance the

state of the art in testing autonomous-driving algorithms.

AutonoVi-Sim is a modular, extensible framework. While

many modules currently represent preliminary implementa-

tions of advanced functionality, the extensible nature of the

framework provides the basis for progress in the various

disciplines which define autonomous driving.
Our work is in active development and still faces a number

of limitations. AutonoVi-Sim contains basic implementations

of the various modules such as sensors for perception, a

physics engine to simulate dynamics etc. However, each of

these modules can be extended to more accurately reflect
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real world conditions. For example, AutonoVi-Sim currently

lacks calibration information to replicate specific sensors and

sensor configurations. In the future we hope to model specific

sensing packages and algorithms to test specific real-world

configurations. In addition, we seek to explore the transfer

between algorithms trained on AutonoVi-Sim and actual test

vehicles.
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Lateral Controllers using Neuro-Fuzzy Systems for Automated Vehicles:
A Comparative Study

Sarouthan Sriranjan1, Ray Lattarulo2, Joshué Pérez-Rastelli2, Javier Ibañez-Guzman1, Alberto Peña2

Abstract— Different implementations on automated vehicles
are being introduced by researchers and manufacturers, par-
ticularly for longitudinal control. Some applications include
traffic jam assistance, emergency assisted braking, Cruise
Control, among others. However, lateral control applications
are less common due to the complexities of the dynamic.
In this paper, an Artificial Intelligence approach to control
the steering wheel of an automated vehicle is presented. Two
new lateral controllers are developed. One is based on human
expertise (Fuzzy Logic), and the other is based on an Adaptive
Network based Fuzzy Inference System (ANFIS) using expert
driver data. Those controllers have been tested in a simulation
environment, called Dynacar, and they were compared with a
classical PID controller, giving promising results.

I. INTRODUCTION

In recent years, the research and development in auto-

mated driving is intensively increased in automotive industry.

Indeed, automated vehicles are opening a new road-map to

many new applications and benefits for the society, i.e.: new

mobility alternative, increasing safety and reducing parking

areas, assistance to drivers and intelligent and connected

infrastructures. Moreover, this is topic where many research

groups, universities and manufactures are working around

the world.

Based on most of the previous real automated vehicle

implementations in the literature, a general control architec-

ture is divided in six main stages: acquisition, perception,

communication, decision, control and actuation ([1]), where

the perception, decision and control are the most critical.

An automated vehicle uses sensors to get information on

the external environment, i.e.: for the ego positioning (GPS,

radars) and the detection of others obstacles around (Lidars

and cameras). This information is processed in order to find

a safe trajectory to be followed by the vehicle. This process

is called the Global and local planner module, some authors

call it navigation. Then, this trajectory is sent to the control

module to maintain the vehicles on the road. Finally, the

actuators receive and execute this command by the steering

wheel and pedals.

The Original Equipment Manufacturers (OEMs) have been

started to work in this field fifteen years ago with the first

uses of Advanced Driver Assistance Systems (ADAS), where

the most known is the Anti-lock braking system (ABS). The

1(e-mail: sarouthan.sriranjan@u-psud.fr and javier.ibanez-
guzman@renault.com)

2Tecnalia Research and Innovation, Derio, Vizcaya, Spain, 48160. (e-
mail: {rayalejandro.lattarulo, joshue.perez, alberto.peña}@tecnalia.com).

* Authors wants to thank to the ECSEL project ENABLE-S3 for its
support in the development of this work, and the Non-Disclosure Agreement
between Tecnalia and Renault s.a.s

main goal of ADAS is to improve the safety of the passengers

in the vehicles and the Vulnerable Road Users. Studies say

that ninety five percent of the road accidents are caused

because of a human factor ([2]). Most of the accidents are

caused by a human limitation, as well as reaction time or

distractions. The next step is the implementation of more

safety and robust functionalities for automated vehicle.

So far, lateral control applications have special attention,

where complex models have been used mainly in auto-

mated longitudinal system [3] and [4]. Other researches

have demonstrated that some Artificial intelligence (AI)

techniques, as fuzzy logic, offers a good solutions to control

complex system, like automated vehicles [5]. Fuzzy sets do

not need an exact mathematical model of the plan, as in

[6]. These controllers can imitate the human driver behavior

with a knowledge base (or rules). However, in most of the

cases, there aren’t standard methodologies defined these rules

bases and the membership functions. Saifizul et al. [7] has

simulated an ANFIS controller for the lateral applications.

However, this approach only considers the constant curvature

in the circuit (not path planning), with some significant

overshoot and oscillation on the steering angle at the moment

the curvature changes [7].

In this paper, we will focus on the lateral control of

the vehicle applying three different controllers. Different

maneuvers have been tested, as urban intersections, lane

keeping and lane changes, based on a real time path planning

presented on [8]. The goal is to reduce the lateral error to

reference given by the path planner. In this work, a study

of different control techniques is presented, where a PID, a

Fuzzy Logic and an ANFIS controllers are considered for the

lateral dynamic of an automated vehicle. The modelled ve-

hicle used to validate our approach is an automated Renault

Twizy.

The rest of the paper is organized as follow: a brief state

of the art of the control in the automotive field in Section 2.

Next there is a description of the simulation environment,

Dynacar, used for our validation. Then we will see the

functioning of tree different controllers for the lateral control:

a PID controller, the fuzzy logic and the Neuro-Fuzzy control

in Section 4. Finally, we will compare the performances of

these three controllers in Section 5. We concluded on the

performances of these controllers and the future works.

II. WORK MOTIVATION

In automated driving field, the control of the vehicle is

divided in lateral and longitudinal. The first one concerns

the action on the steering wheel. There are different kinds

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

 
 

117



of controllers that can be used for the case of a lateral or

longitudinal actions ([9]).

The steering of a vehicle is considered as a nonlinear

dynamic system, especially at high speed. It is possible to

control this system through techniques that allows quick,

smooth and high quality control ([5]). The action on the

lateral control depends mainly of 2 modules of the global

architecture, the path planner (trajectory) and controller itself

(tracking) ([1]).

Sei-Bum Choi has developed an adaptive control law for

the lateral control of automated vehicle using magnetic sen-

sors in the vehicle?s front wheels. Another big change in the

low level steering wheel system has been the incorporation

of electric-power-assisted steering (EPS) as a substitution for

the traditional hydraulic power steering (HPS) systems in the

new generation of vehicles ([10]).

However, the most classical lateral controller found is

the Proportional Integral Derivative (PID) controller ([11]).

Indeed, this controller is present in many applications in the

industry because of the reduced number of parameters to be

tuned.

Methods using fuzzy logic, linear matrix inequality opti-

mization and yaw rate control have been used in order to

make the vehicle following the reference trajectory ([12],

[13]).

The main advantage of a fuzzy controller is that it is

not necessary to have an exact mathematical model of the

system to control it. The control problem is reduced to

estimate the input, set up a rule base and assign the output

values. Besides, this controller can emulate the behavior from

drivers due to knowledge base, using the human experience,

and if-then rules. Many contributions related with Fuzzy

Logic controller have been published ([6], [9]). However,

the problem to tune and to estimate the rule bases for lateral

applications remains still an open issue.

Some automated methods to tune the Fuzzy controller

have been developed for longitudinal controllers [14]. This

Neuro-Fuzzy system combines the semantic rules and learn-

ing capability of neural networks. Some applications have

used neuro-fuzzy systems to control nonlinear systems or

to adjust controllers [15]. In the Intelligent Transportation

System (ITS) field, neuro-fuzzy systems had been used in the

traffic modelling, as in [16]. However, this kind of controller

has not been tested in lateral dynamic for automated vehicles.

Previous works on neuro-fuzzy controller ([14]) presents a

real time implementation of a neuro-fuzzy controller for the

longitudinal control of a vehicle. This neuro-fuzzy system

improves the performances of previous controller by includ-

ing the experience of expert drivers. In light of the size of the

data base used, this controller gives good results. We are on

the next step, to study the use of fuzzy logic and neuro-fuzzy

controller for the lateral control of the vehicle.

III. SIMULATION PLATFORM

Dynacar (figure 1) is a simulation tool developed by

Tecnalia which provides a real-time vehicle model. It focuses

on two main domains the dynamics of the vehicle and the

Fig. 1: Dynacar by Tecnalia

electronics architecture of the vehicle. It provides a complete

architecture to simulate and validate the automated capabili-

ties of a vehicle [17]. This architecture is particularly adapted

for urban scenarios. Different lateral control algorithms were

tested with this platforme.

It provides a high-fidelity vehicle physics simulation. This

is combined with a Pacejka tire model, and submodels

for elements like the engine, transmission, steering system,

braking system, aerodynamics, etc ([18]). For this work, we

use the equations of the lateral dynamic of the bicycle model

as shown in (1) and (2), as are explained in [19]:

ÿ = −2Cαf + 2Cαr

mVx
ẏ+

(
−2αCαf − 2bCαr

mVx
−Vx

)
ψ̇+

2αCαf

m
δ

(1)

ψ̈ = −2αCαf + 2Cαr

IzVx
ẏ +

(
− 2a2Cαf − 2b2Cαr

IzVx

)
+

2αCαr

Iz
δ,

(2)

where m is the vehicle mass, Vx is the longitudinal speed,

Iz is the yaw inertia, a and b are the distance between the

front/rear wheels and the center of gravity, respectively, and

δ represents the front wheel steering angle (which is the

control signal in the automated control approach).

The values used in model for the twizy described before

are resumed in table I:

TABLE I

Parameter Value Unit
m 582.5 [kg]
Iz 314.28 [kg.m2]

Wheelbase 1.686 m
Dist. to COG (b) 0.4231 m

Cαf 5.784 [1/rad]
Cαr 17.163 [1/rad]

The real-time capability is very valuable, as, combined

with its notable modularity and interfacing options, it permits

to execute tests with driver-in-the-loop (DiL) and hardware-

in-the-loop (HiL) setups, for instance for ECU (Electronic

Control Unit) development or also motor test bench testing

([20]).

For this application, a reference trajectory is generated

using parametric curves as in [8]. This path planner is used
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Fig. 2: Membership function for the Lateral Error.

Fig. 3: Membership function for the Angular Error.

as the reference for the lateral control module, using different

controllers.

IV. LATERAL CONTROL

On the current section, three control techniques will be

explain to gather some concepts related to these ones, in-

cluding the designing process. These ones were tested on an

automated driving simulator to verify the differences between

them and, advantages and disadvantages that each presents.

A. PID controller

The first controller implemented on the current approach

was a PID controller associated to the lateral error (this is

calculated as a reference of the frontal point of the vehicle

and the path). The equation associated to the steering is:

Cv = Kpelat +Ki

∫
t

elatdt+Kd
d

dt
elat (3)

Kp, Ki and Kd are the gains fixed manually on the vehicle

using classic techniques of tuning.

B. Fuzzy logic controller

For the fuzzy controller, two input variables were used:

the lateral and the angular error. Each variable is defined by

a membership function affecting its corresponding linguistic

labels, which is represented in the rule base. For the cur-

rent approach, a triangular shape membership function was

implemented.

The lateral and angular errors use three labels in each

case: Left, Middle and Right. The membership functions are

symmetric considering the ideal symmetry of the steering

wheel. The range used for the lateral error is [-0.6; 0.6] (m)

as it is illustrated on figure 2 and the one for the angular

error is [-20; 20] (degrees) as it is illustrated on figure 3.

The defuzzification operation uses a method called

“center-of-area” [5]. This is one of the most prevalent and

physically appealing of all defuzzification methods. Here, Wi

are the weights of the linguistic label i for each membership

function. Oi are the assigned values of the singleton output

for the label i. Finally, Xi is the crisp value of each rule

condition. Each crisp value is calculated by the Mamdani

inference method:

Xi =
∑ WiOi

Wi
(4)

To define the output, nine singletons were established with

various weights: RightP4, RightP3, RightP2, RightP1,

Middle, LeftP1, LeftP2, LeftP3, LeftP4, which were

defined between [-1 and 1] and spaced each 0.25.

The rule base interprets the input variables, based on the

IF . . . THEN form. The target output is given by the steering

position. The rules are shown as follows:

IF LateralError Right AND AngularError Right THEN

Steering RightP4

IF LateralError Right AND AngularError Middle THEN

Steering RightP3

IF LateralError Right AND AngularError Left THEN

Steering RightP2

IF LateralError Middle AND AngularError Right THEN

Steering RightP1

IF LateralError Middle AND AngularError Middle

THEN Steering Middle
IF LateralError Middle AND AngularError Left THEN

Steering LeftP1

IF LateralError Left AND AngularError Right THEN

Steering LeftP2

IF LateralError Left AND AngularError Middle THEN

Steering LeftP3

IF LateralError Left AND AngularError Left THEN

Steering LeftP4

C. Neuro-Fuzzy Controller

Pursuing the development of fuzzy-logic-based controller,

many industrial processes are now controlled using the

knowledge of expert operators. Thus, the fusion of Artificial

Neural Networks and Fuzzy Inference Systems has grown

interest among researchers. There are some limitations in

the IF ... THEN systems. There are not standard methods for

transforming experience from the driver into the rule base.

The learning process of the Neural Networks is based on

the adjustment of the weight of the connections between the

nodes net. Neuro-Fuzzy systems combine the easy handling

of the IF ... THEN rules of the fuzzy logic with the learning

capacity of neural networks.

The Adaptive-Network-Based-Fuzzy Inference System

(ANFIS) was one of the first neuro-fuzzy systems developed.

The principle is to extract fuzzy rules at each level of a neural

network. When the rules have been obtained, they provide the

information on the overall behavior of the process. ANFIS

implements the Takagi-Sugeno model for the IF ... THEN

rules of the fuzzy logic.
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Fig. 4: Membership function for the Lateral Error of the

ANFIS.

Fig. 5: Membership function for the Angular Error of the

ANFIS.

Neuro Fuzzy is based on the creation of a controller by

using a learning process from a data base. We want to train

our ANFIS system using as reference the expert knowledge

of a driver and for this purposes, it was recorded the behavior

of this driver trying to follow the road. The steering position,

the lateral and the angular error were recorded during the

rolling session.

The parameters chosen for the learning process of the

ANFIS systems were:

Algorithm ANFIS

System 2 Inputs and 1 Output

Membership function shape Triangular

Number of membership func. 3

Inference system Takagi-Sugeno

Number of rules 9

Training algorithm Back propagation

Training data set 25000

Validation data set 25000

The proposed neuro-fuzzy controller has two input vari-

able like the previous fuzzy controller studied (the lateral and

the angular error) and one output variable (the steering posi-

tion). Each input has three membership functions, bringing

to nine rules.

The two inputs have still the same membership function

shape: three triangular shapes. The range used for the lateral

error is [-1; 1] meters (figure 4) and the one for the angular

error is [-20; 20] degrees (figure 5). These ranges depend

on the date base used for the learning process and, of

course, a human driver has a driving way that contains more

imprecision than a driving from a controller which is tuned

to have the lowest error.

Fig. 6: Circuit of the driving session for the Simulation on

Dynacar.

The nine singletons of the ANFIS system are:

Singleton Value

Right P4 -0.9535

Right P3 -0.538

Right P2 -0.485

Right P1 -0.235

Middle 0.02

Left P1 0.24

Left P2 0.46

Left P3 0.67

Left P4 0.95

In previous works [7], the dataset was tuned by a Fuzzy

Logic model. In our approach with ANFIS, the controller

is trained by human knowledge. The fuzzy controller has a

close behavior to the human driver.

V. TESTS AND RESULTS

In order to compare the performances of these three con-

trollers, they have been tested in simulation using a predefine

circuit. It contains six intersections as it is illustrated on

figure 6.

Additionally, the use cases defined to verify the behavior

of the controllers were four. A segment of the circuit with

three consecutive intersections and a lane change, both at

low speed, are the first and the second scenario. In the case

of the third and fourth use cases are considered the same

intersections and lane changing but at high speed.

For the purposes of the current work, low speed is consid-

ered as a constant speed of 20 km/h and high speed is based

on a speed profile given by comfort and curvature constrains

with a maximum value of 50 km/h. And the controllers will

be compared using the lateral error and steering responses.
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(a) Intersections (lateral error)

(b) Intersections (steering)

(c) Lane change (lateral error)

(d) Lane change (steering)

Fig. 7: Lateral error and Steering at low speed.

A. Test at low speed

Figure 7 shows the lateral error (figures 7a and 7c) and

steering (figures 7b and 7d) at constant speed of 20 km/h. In

such a way, the figure 7a depicts how the fuzzy controller

has a better response reducing the lateral error on the

intersections scenario. In the case of the fuzzy trained with

ANFIS has a better response reducing the lateral error, but

in the other direction is less effective that the PID controller

(directly related with the data used for training). In other

hand, the figure 7b illustrates the steering for these three

controllers and they depict a similar response (in some cases

the fuzzy controllers is a little less noisy).

On figures 7c and 7d are illustrated the lateral error

and steering (respectively) on the lane change scenario (at

low speed) but there are not big differences between the

controllers. However, the fuzzy and ANFIS controllers are

more effective to correct the lateral error (faster than the

PID).

B. Test at high speed (using speed profile)

Figure 8 shows the lateral error (figures 8a and 8c) and

steering (figures 8b and 8d) using a speed profile associ-

ated with the curvature of the path and lateral acceleration

concepts (related with comfort on driving) with a maximum

speed of 50 km/h. The figures 8a and 8b depict the same

behavior that in the case of lateral error behavior associated

to the intersections scenario at low speed.

Figures 7c and 7d are illustrated the lateral error and

steering (respectively) on the lane change maneuver. In

this case, the behaviors of the controllers have changed

considerably, compared to the low speed scenario. The lateral

error has less overshoots in the case of the fuzzy controller

trained with ANFIS and it has less abrupt changes on the

steering and less overshoots.

VI. CONCLUSION

On the current approach, three controller techniques were

tested for the lateral control of a automated vehicle to verify

the advantages and disadvantages that each presents.

The PID controller illustrates a good response at low

speed. However, PID controller are difficult to be tuned and

the gains are not adapted to the speed. Fuzzy logic is useful

compared to PID controller because a complex mathematic

model is not needed. Fuzzy Logic is intuitive by thanks to

using Labels and semantic rules, as humans do.

Besides, using neural methods are powerful because we

just need Driver experience to train the system (no mathemat-

ical model or label based model). Our controller is generated

by the data set from human drivers’ experiences, giving a

better result.

In the case of the fuzzy controller, it shows a good re-

sponse with some overshoots on the cases of abrupt changes

as on lane change. For the current approach the fuzzy

controller was designed just using lateral parameters (lateral

error and angular error) but in future works will consider

variables of the longitudinal domain as speed (MISO system)

to improve the response of the controller (the PID is just

presented for SISO systems).

The ANFIS techniques used to train a fuzzy controller

could be considered as the best alternative. Admittedly, some

results are a bit less effective than the fuzzy controller in

our tests. But these performances can be improved due to

they used the data gather from an expert driver to emulate

the driving behaviors. The time used to develop and tune

this controller is really short compared to the time for the

other controllers thanks to the use of learning process. In

future works, this controller can be improved with a great

amount of data. This lateral longitudinal control can also be
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(a) Intersections (lateral error)

(b) Intersections (steering)

(c) Lane change (lateral error)

(d) Lane change (steering)

Fig. 8: Lateral error and Steering at high speed.

improved if other variables are taking into account. Finally,

a multi-variable system, considering longitudinal variables,

and more driving situations may improve our approach.
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Asynchronous Multi-Sensor Fusion for
3D Mapping and Localization

Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang

Abstract— In this paper, we address the problem of 3D
mapping and localization of autonomous vehicles while focusing
on optimally fusing multiple heterogeneous and asynchronous
sensors. To this end, based on the factor graph-based opti-
mization framework, we design a modular sensor-fusion system
that allows for efficient and accurate incorporation of any
navigation sensor of different sampling rates. In particular, we
develop a general method of out-of-sequence (asynchronous)
measurement alignment to incorporate heterogeneous sensors
into a factor graph for mapping and localization in 3D, without
requiring the addition of new graph nodes, thus allowing the
graph to have an overall reduced complexity. The proposed
sensor-fusion system is validated on a collected dataset, in which
the asynchronous-measurement alignment is shown to have an
improved performance when compared to a naive approach
without alignment.

I. INTRODUCTION

Autonomous driving is an emerging technology that en-

ables the reduction of traffic accidents and allows for those

who are unable to drive for various medical conditions to re-

gain their independence, by performing intelligent perception

and planning based on multimodal sensors such as LIDARs,

cameras, IMUs and GPS. It is critical for an autonomous

vehicle to perform precise, robust localization for decision

making as it is a sub-system that cannot fail during online

autonomous operation. There have been a large amount of

research efforts focused on multi-sensor fusion for state

estimation for localization [20], which has reached a certain

level of maturity, yielding a bounded problem given the well

structured environment a vehicle operates in. In particular,

graph-based optimization has recently prevailed for robot

mapping and localization [2]. Due to the different sampling

rates of the heterogeneous sensors, measurements arrive at

different times. Accurate alignment of such out-of-sequence

(i.e., asynchronous) measurements before optimally fusing

them through graph optimization, while essential, has not

been sufficiently investigated in the literature.1

Factor graph-based formulation [6] is desirable due to

its ability to allow for the delayed incorporation of asyn-

chronous measurements. Indelman et al. [11] address the

This work was partially supported by the University of Delaware
College of Engineering, UD Cybersecurity Initiative, the Delaware
NASA/EPSCoR Seed Grant, the NSF (IIS-1566129), and the DTRA
(HDTRA1-16-1-0039).

The authors are with the Department of Mechanical Engi-
neering, University of Delaware, Newark, DE 19716, USA. Email:
{pgeneva,keck,ghuang}@udel.edu

1It should be noted that the asynchronous measurement alignment
under consideration is different from the time synchronization (or temporal
sensor calibration) [19]; that is, even if sensors are well synchronized, their
observations still arrive asynchronously.

problem of the inclusion of asynchronous measurements by

taking advantage of IMU preintegrated terms. This allows

them to incorporate any set of asynchronous sensors whose

rates are longer than that of the IMU. Sünderhauf et al.

[18] looked to address the incorporation of measurements

with unknown time delays. Using high frequency odometry

measurements, they create a state for each incoming odom-

etry measurement so that delayed factors can be directly

connected to its closest state. While both of these can be

used to address arbitrary amounts of delay between sensors,

they add a large amount of additional factors and edges to

the graph. In contrast, the proposed approach incorporates

measurements of different frequencies without significant

increase of the overall graph complexity. It should be noted

that while this does reduce the computational cost of opti-

mization, reductions in graph size are always welcomed as

a robot’s physical memory becomes less of an issue.

Specifically, as the main contribution of this paper, we

accurately align both asynchronous unary and binary graph

factors based on our analytically derived linear 3D pose

interpolation. This interpolation allows for the direct addition

of asynchronous measurements into the graph, without the

need for extra nodes to be added or for the naive ignoring of

the measurement delay. Patron-Perez et al. [1] first proposed

a spline-based trajectory method that allows for the fusion of

delayed measurements with the consequence of an increase

of overall system complexity and deviation from a pure pose

graph. Outside of graph-based optimization, interpolation has

been used to correct time offsets of continuous measurements

such as LIDAR point clouds and rolling shutter cameras [3,

10]. In particular, Guo et al. [10] introduce the idea of linear

interpolation between past camera poses, which allow for

the use of extracted features from rolling shutter cameras.

Ceriani et al. [3] use a linear interpolation between two

poses in SE(3) to unwarp lidar point measurements. In this

work, we focus on the use of such linear interpolation in the

graph-based optimization framework to allow for the efficient

alignment of asynchronous measurements.

From the system perspective, we design and implement a

modular framework for fusing a variety of sensors, where we

separate the sensor fusion and pose estimation to allow for

any sensor to be incorporated. This system design allows for

the easy incorporation of additional sensors, while allowing

for active sensor pose estimation modules to be changed

without affecting the multi-sensor fusion. This is achieved by

fusing emitted 3D pose estimates from sensor odometry (ego-

motion) modules. The proposed sensor framework can then

leverage these 3D poses, emitted in their own local frame of
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X1 L12 X2 L23 X3 L34 X4

V12 V23 V34

G1 G2 G3

Fig. 1: Example factor graph that our system created. States

that will be estimated are denoted in circles and mea-

surements are denoted in squares. Note: we differentiate

interpolated factors through the dashed outlines.

reference, in the global estimates of the robot.

II. GRAPH-BASED ESTIMATION

As the vehicle moves through the environment, a set

of measurements, z, is collected from its sensors, such as

LIDAR scans, images, GPS, etc. These measurements relate

to the underlying state to be estimated, x. This process

can be represented by a graph, where nodes correspond to

parameters to be estimated (i.e., historical vehicle poses).

Incoming measurements are represented as edges connecting

their involved nodes (see Figure 1). Under the assumption

of independent Gaussian noise corruption of our measure-

ments, we formulate the Maximum Likelihood Estimation

(MLE) problem as the following nonlinear least-squares

problem [13]:

x̂ = argmin
x ∑

i
||ri (x)||2Pi

(1)

Here, ri is the zero-mean residual associated with mea-

surement i, Pi is the measurement covariance, and ||v||2P =
v�P−1v is the energy norm. This problem can be solved

iteratively by linearizing about the current linearization point,

x̂−, and defining a new optimization problem in terms of the

error state, Δx:

Δx− = argmin
Δx ∑

i

∣∣∣∣ri
(
x̂−
)
+HiΔx

∣∣∣∣2
Pi

(2)

Where Hi =
∂ri(x̂−�Δx)

∂Δx is the Jacobian of i-th residual with

respect to the error state. We define the generalized update

operation, �, which maps a change in the error state to one

in the full state. Given the error state {i
Gθ̃θθ ,Gp̃i}, this update

operation can be written as {Expv
(−i

Gθ̃θθ
)

i
GR,Gpi +

Gp̃i}.2

After solving the linearized system, the current linearization

point is updated as x̂+ = x̂− � Δx−. In this work, we

parameterize the pose of each time step as {i
GR,Gpi}, which

describes the rotation from the global frame {G} to the local

frame {i} and the position of the frame {i} seen from the

global frame {G} of reference. This linearization process

is then repeated until convergence. While there are openly

available solvers [5, 12, 13], the computational complexity

of the graph based optimization can reach O(n3) in the worst

case.

2Throughout the paper we denote the vector form of the matrix
exponential as Expv(·) which maps R

3 → SO(3), (e.g. Expv(G
I θθθ) = G

I RRR).
Similarly, we define the matrix logarithm Logv(·) to map between SO(3)→
R

3, (e.g. Logv(G
I RRR) = G

I θθθ ).

A reduction in the number of states being estimated can

both help with the overall computational complexity and the

physical size of a graph during long term SLAM. Naively,

if a new node is to be created at each sensor measurement

time instance, the overall graph optimization frequency can

suffer. To prolong high frequency graph optimization, we

present our novel method of measurement alignment which

allows for the estimation of the poses of a single sensor’s

measurements.

III. ASYNCHRONOUS MEASUREMENT

ALIGNMENT

A. Unary Factors

Fig. 2: Given two measurements in the global frame of

reference {1} and {2}, we interpolate to a new pose {i}.

The above λ is the time-distance fraction that defines how

much to interpolate the pose.

Unary factors can appear when sensors measure infor-

mation in respect to a single node. For example, GPS

can provide global position measurements indirectly through

latitude, longitude, and altitude readings, while LIDAR scan-

matching to known maps can provide a direct reading of the

global pose. Motivated to not add new graph nodes when

receiving asynchronous data, we add a “corrected” measure-

ment to an existing node by preforming pose interpolation

between two sequential sensor measurements. Note: that for

GPS measurements we only need to perform 3D position

interpolation, however for completeness we have derived the

following interpolation for a 3D pose. We define a time-

distance fraction between two consecutive poses as follows:

λ =
(ti − t1)
(t2 − t1)

(3)

where t1 and t2 are the timestamps of the bounding mea-

surements, and ti is the desired interpolation time (i.e. the

timestamp of the existing node). Under the assumption of a

constant velocity motion model, we interpolate between the

two pose readings:

i
GR = Expv

(
λ Logv(2

GR1
GR�)

)
1
GR (4)

Gpi = (1−λ )Gp1 +λ Gp2 (5)

where {i
GRRR,G pppi} is the interpolated measurement 3D pose

and {1
GRRR,G ppp1} and {2

GRRR,G ppp2} are the bounding poses. While

this interpolated measurement can now be directly added

to the graph, the last step is to correctly compute the cor-

responding covariance needed in graph-based optimization.
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Hence, we perform the following covariance propagation:

PPPi = HHHuPPP1,2HHHu
T (6)

HHHu =

⎡
⎣ ∂ i

Gθ̃θθ
∂ 1

Gθ̃θθ 0003×3
∂ i

Gθ̃θθ
∂ 2

Gθ̃θθ 0003×3

0003×3
∂ G p̃ppi
∂ G p̃pp1

0003×3
∂ G p̃ppi
∂ G p̃pp2

⎤
⎦ (7)

where PPP1,2 is the joint covariance matrix from the bounding

poses, and θ̃θθ and p̃pp are the error states of each angle and

position measurement, respectively. For detailed calculations

of all Jacobians derived in this paper, we refer the reader

to the companion tech report [9]. The resulting non-zero

Jacobian matrix entries are defined as:

∂ i
Gθ̃θθ

∂ 1
Gθ̃θθ

=−i
1RRR

(
Jr

(
λ Logv(2

1RRR)
)

λ J−1
r

(
Logv(2

1RRR)
)
− I

)
(8)

∂ i
Gθ̃θθ

∂ 2
Gθ̃θθ

= i
1RRR Jr

(
−λ Logv(2

1R�)
)

λ J−1
r

(
Logv(2

1R�)
)

(9)

∂ G p̃ppi

∂ G p̃pp1

= (1−λ ) I ,
∂ G p̃ppi

∂ G p̃pp2

= λ I (10)

where the Right Jacobian of SO(3) denoted as Jr(φ) and its

inverse J−1
r (φ) is defined as the following [4, 8]:

Jr(φ) = I− 1− cos(‖ φ ‖)
‖ φ ‖2

�φ×�+ ‖ φ ‖ −sin(‖ φ ‖)
‖ φ ‖3

�φ×�2 (11)

J−1
r (φ) = I+

1

2
�φ×�+

(
1

‖ φ ‖2
− 1+ cos(‖ φ ‖)

2 ‖ φ ‖ sin(‖ φ ‖)
)
�φ×�2 (12)

B. Binary Factors

Designing multi-sensor systems for estimation often re-

quires fusing asynchronous odometry readings from different

sensor modules (e.g., ORB-SLAM2 [14] or LOAM [21]). A

difficulty that arises is the unknown transformation between

the global frame of references of each module. This unknown

comes from both the rigid transformation between sensors

(which can be found through extrinsic calibration) and each

module initializes its global frame of reference indepen-

dently. Rather than directly modifying the codebase of each

module, we combine the sequential odometry measurements

into relative transforms; thereby, we remove the ambiguity

of each module-to-module transformation.

In particular, given two poses in the second sensor’s world

frame, {1
oRRR,o ppp1} and {2

oRRR, o ppp2} with the joint covariance

PPP1,2, we calculate the relative transformation as follows:

2
1RRR = 2

oRRR1
oRRR� (13)

1 ppp2 =
1
oRRR(o ppp2 −o ppp1) (14)

where we define the unknown global frame of these 3D

pose measurements as {o} and their corresponding reference

frames as {1} and {2}. To calculate the relative covariance

matrix, we perform the following covariance propagation

based on the above measurement transformation:

PPP12 = HHHrPPP1,2HHHr
T (15)

where PPP1,2 is the joint covariance matrix of each pose in the

{o} frame of reference. The resulting Jacobian matrix HHHr is

defined as the following:

HHHr =

[ −2
1RRR 0003×3 III3×3 0003×3

�1
oRRR(o ppp2 −o ppp1)×� −1

oRRR 0003×3
1
oRRR

]
(16)

We now have the {2
1RRR,1 ppp2} relative transform between

two poses and corresponding covariance PPP12. If this trans-

formation is not in the same sensor frame of reference (e.g.,

relative transform is between camera to camera and the state

is LIDAR to LIDAR), one can use the method described in

Appendix A to convert the measurement into the frame of

reference of the state.

Fig. 3: Given a relative transformation, calculated using (13)

and (14), between the {1} and {2} frame of reference,

we extrapolate this relative transformation to the desired

beginning {b} and end {e} poses. The above λ s are the

time-distance fractions that we use to extrapolate the relative

transformation.

Due to the asynchronous nature of the measurements

from two different sensors, the times corresponding to the

beginning and end of the relative transformation will not

align with matched existing state poses. Therefore, under

the assumption of a constant velocity motion, we extrapolate
the relative transformation across the desired interval. This

intuitively corresponds to a “stretching” of the relative pose

measurement in time. We define two time-distance fractions

that determine how much the relative transformation needs

to be extended (see Figure 3):

λb =
t1 − tb
t2 − t1

λe =
te − t2
t2 − t1

(17)

The λ ’s describe the magnitude that the relative trans-

formation is to be “stretched” in each direction, with the

subscripts b and e denoting the beginning and end state

poses. These time-distance fractions can also be negative,

corresponding to the “shrinking” of the relative transfor-

mation. Given the relative transform and the time-distance

fractions, we define the following extrapolation equations:

e
bRRR = Expv

[
(1+λb +λe)Logv

(
2
1RRR
)]

(18)

b pppe = (1+λb +λe)Expv
[−λbLogv

(
2
1RRR
)]

1 ppp2 (19)

The covariance propagation is then given by:

PPPbe = HHHiPPP12HHHi
� , HHHi =

⎡
⎢⎣

∂ e
bθ̃θθ

∂ 2
1θ̃θθ 0003×3

∂ b p̃ppe
∂ 2

1 θ̃θθ
∂ b p̃ppe
∂ 1 p̃pp2

⎤
⎥⎦ (20)

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 

 
 

125



where PPP12 is the relative factor covariance calculated above.

The resulting non-zero Jacobian matrix entries are defined

as:

∂ e
bθ̃θθ

∂ 2
1θ̃θθ

= Jr

[
(1+λb +λe)Logv(2

1RRR�)
]
(1+λb +λe)J−1

r

[
Logv(2

1RRR�)
]
(21)

∂ b p̃ppe

∂ 2
1θ̃θθ

=
(
− (1+λb +λe)Expv

[
λbLogv(2

1RRR�)
]⌊

1 p̂pp2×
⌋

Jr(λbLogv(2
1RRR�))λbJ−1

r (Logv(2
1RRR�))

)
(22)

∂ b p̃ppe

∂ 1 p̃pp2

= (1+λb +λe)Expv
[−λbLogv

(
2
1RRR
)]

(23)

IV. SYSTEM DESIGN

A. Design Motivations

The proposed method allows for the reduction of the

overall graph complexity during asynchronous sensor fusion.

We now propose a system that leverages the use of asyn-

chronous sensors in the application of autonomous driving.

To both facilitate the flexibility of the vehicle design and

reduce cost, we aim to run the system on a vehicle without
access to a GPS unit and with low cost asynchronous sensors

(i.e., without the use of electronic triggering). This design

constraint presents the unique challenge of still needing to

localize the vehicle in the GPS frame of reference without

the use of a traditional GPS sensor. By publishing the vehicle

state estimate in the GPS frame of reference, we allow

for existing global path planning and routing modules to

continue to work as expected. To overcome this challenge,

we present a unique prior LIDAR map that allows for the

vehicle to both initialize and localize in the GPS frame

of reference. Specifically we design a framework with two

separate sub-systems as follows:

• Creation of an accurate prior map using a vehicle that

has an additional Real Time Kinematic (RTK) GPS

sensor unit.

• Leverage the prior map in GPS denied localization to

determine the 3D pose in the GPS frame of reference.

This framework is flexible and cost effective as only a

single “collection” vehicle is needed to build the prior map

that multiple lower cost vehicles can leverage. Specifically,

this prior map allows for localization in the GPS frame

of reference without the use of GPS measurements during

runtime and can support localization in GPS denied environ-

ments (e.g., tunnels or parking garages). Both sub-systems

can leverage the proposed asynchronous factor interpolation

to enable the use of low cost asynchronous sensors while

ensuring a reduction of overall graph complexity.

B. System Overview - Prior Map

The first sub-system we propose is one that generates

an accurate prior map that can be leveraged by the sec-

ond sub-system to localize in the GPS frame of reference.

Shown in Figure 4, we fuse odometry measurements from

openly available stereo and LIDAR modules, ORB-SLAM2

[14] and LOAM [21], respectively, with a RTK GPS unit.

Both of these modules provide six degree of freedom pose

estimation.34 We estimate LIDAR states connected with

consecutive non-interpolated binary factors from LOAM

LIDAR odometry. To provide additional robustness and

information into the graph, we connect consecutive states

with interpolated binary factors (Section III-B) from ORB-

SLAM2 visual odometry. To ensure that the estimated states

are in the GPS frame of reference, we attach interpolated

unary factors (Section III-A) from the RTK GPS sensor. Both

ORB-SLAM2 visual binary factors and RTK GPS unary

factors need to be interpolated because both sensors are

asynchronous to the LIDAR sensor.

The graph can be solved in real-time using an incremental

solver such as iSAM2 [12] or offline with a full batch solver.

It is then simple to construct a prior map using the estimated

states and their corresponding LIDAR point clouds. To

evaluate the overall quality of the generated prior map point

cloud, the cloud is visually inspected for misalignment on

environmental planes such as walls or exterior of buildings.

The generated prior map from the experimental dataset can

be see in Figure 5.

Fig. 5: Prior map generated from the experimental dataset

C. System Overview - GPS Denied Localization

Using the generated prior map, localization in the GPS

frame can be preformed without the use of a GPS sensor.

As seen in Figure 4, we estimate LIDAR states that are

connected with non-interpolated and interpolated binary fac-

tors (Section III-B) from LOAM and ORB-SLAM2 odometry

modules, respectively. In addition to these two binary factors,

we preform Iterative Closest Point (ICP) matching between

the newest LIDAR point cloud to the generated prior map.

This ICP transform can then be added as a non-interpolated

unary factor into the factor graph. These unary factors

constrain the graph to be in the GPS frame of reference

during 3D pose estimation.

To provide real-time localization capabilities, we leverage

the iSAM2 solver during GPS denied state estimation. The

3Note: both modules do not normally provide a corresponding co-
variance needed for batch optimization. We reference the reader to the
appendices in the companion tech report [9].

4We run LOAM in the default mode, while ORB-SLAM2 is run first in
“mapping” mode to generate a map of the environment. We then use ORB-
SLAM2 in “localization” mode to ensure that the estimate does not jump
due to loop closures when fusing its output with the proposed systems.
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Fig. 4: Overview of the flow of data through the system, where all incoming measurements are denoted on the far left of

each figure. These measurements are first processed through an odometry module if needed (seen in blue) and then converted

into factors (seen in red) that can be added to factor graph. The prior map system (left) leverages RTK GPS measurements

to create a prior map in the GPS frame of reference. The GPS denied estimation system (right) uses the generated LIDAR

maps to ensure that the pose estimation is in the GPS frame of reference.

estimation operates at the frequency of the LIDAR sensor

limited only by the speed the LOAM module can process

measurements. It was found that when creating a unary

factor using ICP matching to the prior map took upwards

of 1-2 seconds. To overcome this long computation time,

incoming LIDAR clouds are processed at a lower frequency

in a secondary thread, and then added to the graph after

successful ICP matching.

V. EXPERIMENTAL RESULTS

A. System Validation

To access the overall performance of the GPS denied

system, we constructed a data collection vehicle with both a

combination of low cost sensors and a RTK GPS sensor. The

vehicle is equipped with a 8 channel Quanergy M8 LIDAR

[16], ZED stereo camera [17], and RTK enabled NovAtel

Propak6 GPS sensor [15]. The Quanergy M8 LIDAR was run

at 10Hz, while the ZED stereo camera was run at 30Hz with a

resolution of 672 by 376. The RTK enabled NovAtel Propak6

GPS sensor operated at 20Hz with an average accuracy of

±15 centimeters. The GPS solution accuracy allows for the

creation of a high quality prior map (see Figure 5). To

facilitate the GPS denied system, a dataset was first collected

on the vehicle and then processed using a full batch solver.

Following the proposed procedure in Section IV-B, LIDAR

factors are added to the factor graph, while both stereo and

GPS factors are interpolated and then directly connected

to corresponding LIDAR states. The resulting LIDAR point

cloud, created in the GPS frame of reference, can then be

used during GPS denied navigation.

To represent the real world, the GPS denied system was

tested on the day following the data collection for the prior

map. This was to introduce changes in the environment,

such as changes in car placement and shrubbery, while also

showing that the prior map can still be leveraged. The same

vehicle was used with the only difference being that the RTK

GPS was not used in the GPS denied localization. This RTK

GPS was instead used to provide an accurate ground truth

comparison. Following the proposed procedure in Section

IV-C, incoming LIDAR point clouds are matched to the map

generated the previous day and then added to the factor graph

after successful ICP alignment.

The estimated vehicle state is compared to the correspond-

ing output of the RTK GPS. As seen in Figure 6, when

performing GPS denied localization, the system was able to

remain within a stable 2 meter accuracy.

Fig. 6: Average position error magnitude over 10 runs. GPS

denied estimation compared at each time instance, of the 840

meter long run, with the RTK GPS position. Average vehicle

speed of 6mph.

B. Evaluating the Asynchronous Measurement Alignment

Having shown that the system is able to accurately localize

in real-time without the use of GPS, we next evaluated how

the interpolation impacts the estimation. To do so, we did

not use the ICP matching to the LIDAR prior cloud and

instead only used the pure odometry from LOAM and ORB-

SLAM2. We compared the proposed factor interpolation

method against a naive approach of factor addition into the

graph which ignores the issue of time delay and directly

attaches incoming factors to the closest nodes without inter-

polation.

Fig. 7: Comparison of the proposed method and a naive

approach of adding incoming factors to the closest nodes,

denoted as “interpolation” and “naive” respectively.

Seen in Figure 7, the proposed factor interpolation outper-

formed the estimation accuracy of the naive approach. The

average error of the naive approach was 10.24 meters and

the proposed method’s average error is 8.00 meters (overall
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21.8% decrease). This shows that the use of interpolation on

incoming binary factors can greatly increase the estimation

accuracy, without increasing graph complexity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a general approach

of asynchronous measurement alignment within the graph-

based optimization framework of mapping and localization in

order for optimal fusion of multimodal sensors. The designed

framework provides a modular system with the ability to

replace individual modules and allow for any sensor to be

incorporated. The system has been tested on a experimental

dataset and compared to a naive approach to show the

improvement due to the proposed asynchronous measure-

ment alignment. Looking forward, we will incorporate other

sensors, such as Inertial Measurement Units (IMUs), through

the use of IMU preintegration developed in our prior work

[7] to improve the system fault tolerance, if the main sensor

fails. We will also investigate how to improve the current

mapping and localization, in particular, when autonomously

driving in dynamic urban environments.

APPENDIX

A. Static Transformations

Another issue that commonly arises in the application of

multi-sensor fusion is the ability to convert from one frame

of reference to another. For example, in this paper, binary

factors from the external ORB-SLAM2 visual odometry

library. Given this relative transform {C2
C1RRR,C1 pppC2} in the

camera frame and a corresponding covariance PPPC12, we

would like to transform from the camera to the LIDAR sensor

frame. This can be done as follows:

L2
L1RRR = L

CRRR C2
C1RRR L

CRRR� (24)

L1 pppL2 =
L
CRRR

(
C2
C1RRR� C pppL +

C1 pppC2 −C pppL

)
(25)

where we define the LIDAR frame of reference as {Li}, i ∈
{1,2} and the camera frame of reference as {Ci}, i ∈ {1,2}.

It is assumed that the static transform, {L
CRRR,C pppL}, from the

LIDAR to camera frame of reference are known from offline

calibration. Given the above transform, special care needs to

be taken to calculate the relative covariance matrix in the

LIDAR frame of reference as follows:

PPPL12 = HHHsPPPC12HHHs
� (26)

where PPPC12 is the relative camera covariance. For detailed

calculations of this Jacobian, please see the companion tech

report [9]. The resulting Jacobian matrix HHHs is defined as the

following:

HHHs =

[ L
CRRR 0003×3

−L
CRRR C2

C1RRR��C pppL×� L
CRRR

]
(27)
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Towards Cooperative Motion Planning
for Automated Vehicles in Mixed Traffic

Maximilian Naumann1 and Christoph Stiller1,2

Abstract— While motion planning techniques for au-
tomated vehicles in a reactive and anticipatory manner
are already widely presented, approaches to cooperative
motion planning are still remaining. In this paper,
we present an approach to enhance common motion
planning algorithms, that allows for cooperation with
human-driven vehicles. Unlike previous approaches, we
integrate the prediction of other traffic participants into
the motion planning, such that the influence of the
ego vehicle’s behavior on the other traffic participants
can be taken into account. For this purpose, a new
cost functional is presented, containing the cost for
all relevant traffic participants in the scene. Finally,
we propose a path-velocity-decomposing sampling-based
implementation of our approach for selected scenarios,
which is evaluated in a simulation.

I. INTRODUCTION

In the field of intelligent vehicles, tremendous progress
has been achieved in the last decades [1]. With the first
successful experiments of close-to-production cars in real
traffic [2], automated driving has gained more and more
attention in public.

In order to improve the reliability and thus the safety
of automated vehicles, but also to increase their effi-
ciency, cooperation is focused on in recent research. Here,
cooperation through explicit communication of (fused)
sensor information and desired driving behaviour [3] as
well as negotiation of possible solutions [4], [5], [6] or
centralized approaches [7] are frequently addressed.

However, as reported in [8], cooperative behavior does
not require V2X-communication. Furthermore, as auto-
mated vehicles will share the road with human-driven
cars at least at the beginning, cooperation with human
drivers in non-V2X-equipped cars is essential. Also, a
natural, cooperative, human-like behavior of automated
vehicles potentially increases their social acceptance.

To the best of the authors’ knowledge, previous motion
planning approaches treated other traffic participants
as obstacles which are to be avoided, similar to static
obstacles like parked cars [2], [9]. While such approaches
can deal with many everyday situations, such as driv-
ing autonomously or following other vehicles, some ma-
neuvers, such as overtaking with oncoming traffic or

*We gratefully acknowledge support of this work by the Tech Center
a-drive

1The authors are with FZI Research Center for Information
Technology, Mobile Perception Systems, 76131 Karlsruhe, Germany
naumann@fzi.de

2The author is also with Karlsruhe Institute of Technology (KIT),
Institute of Measurement and Control, 76131 Karlsruhe, Germany
stiller@kit.edu

(a) without signposted right of way

(b) with signposted right of way

Fig. 1: Narrowing, with and without signposted right of way.

passing a narrowing (cf. Figure 1), require combinato-
rial approaches, as already reported by [2]. Still, even
with combinatorial considerations as proposed by [10],
[11], cooperative behavior cannot be implemented: If the
motion prediction of other traffic participants is done
isolated from the motion planning for the ego-vehicle,
the behavior can be foresighted, but not cooperative in
a bidirectional manner [8]. According to a study about
German road traffic, cooperative behavior on average
only occurs in the scale of one cooperative action per
hour per traffic participant [12]. Thus, their treatment
by a separate method, besides the conventional motion
planning, is reasonable.

This paper addresses the problem of cooperative mo-
tion planning without V2X-communication. We propose a
cost functional for trajectory ensembles, consisting of one
trajectory per vehicle. Thereby, we acknowledge the fact
that not only the behavior of other traffic participants
affects us, but also our behavior affects the others in a
closed loop. We consider the motion planning problem as
the problem to find a globally optimal solution for a spe-
cific situation, knowing that every traffic participant has
a different viewpoint considering optimality. The costs
depend on vehicle dynamics, passenger comfort, driving
intention and trajectory clearance, as well as the traffic
regulations, as further outlined in Section II. In this
approach, the prediction of other traffic participants is
integrated into the motion planning. As the assumption
of cooperative behavior might be violated by some traffic
participants, this risk is assessed and the trajectory is
only driven if a safe "plan B" [13] trajectory is still pos-
sible in case of unexpected behavior. An implementation
of this approach is presented in Section III. The proposed
algorithm is finally evaluated in Section IV.
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II. GLOBAL OPTIMUM APPROACH

This section introduces the main building blocks of
our approach to cooperative motion planning. Central
to this approach is the assumption that all traffic par-
ticipants are aware of each other and therefore react
on each other’s behavior in a closed loop. Subsequently,
the trajectories for all relevant traffic participants are
considered as one trajectory ensemble, and the quality
of the solution depends on the trajectory of every partic-
ipant separately as well as on the pairwise relation of
the trajectories among each other.

This section is structured as follows: First, the repre-
sentation of one trajectory in the ensemble is introduced.
Subsequently, the cost functional is introduced. Next,
before a solution is selected, the limitations to this
approach are treated by a "plan B".

A. Behavior Policy

Cooperative motion planning is aware of the inter-
action of traffic participants. Therefore, wrong assump-
tions concerning the behavior of other traffic participants
might cause undesired behavior. Even though, theoret-
ically, any feasible behavior is possible, the authors
make the following assumption: Every traffic participant
follows the traffic regulations, as long as this compliant
behavior is physically feasible.

Consequently, assuming perfect perception, a collision
involving our vehicle can only be caused by violating the
traffic regulation without foreseeable reason while our
reaction at the time of violation is insufficient to avoid
the collision.

Arising from this assumption, we pursue the following
policies:

• If we have to give way, we can exclude a collision
independent of others’ behavior.

• If we have the right of way or the situation is not
clearly regulated, we can exclude a collision if others
behave rule compliant.

B. Trajectory Representation

For the representation of a single, deterministic tra-
jectory, the established method of [14] is chosen: The
trajectory x(t) = (x(t), y(t))T is a mapping R → R2, with
tangent angle ψ and curvature κ. A trajectory ensemble
consists of one trajectory per traffic participant: X =
(x1,x2, ...), where the superscript describes the partici-
pants identifier.

C. Cost Functional

As proposed in [8], the quality of a solution, given by a
trajectory ensemble, is determined by a cost functional.
The lowest costs denote the best solution. Costs exceed-
ing a certain value represent an infeasible solution. The
cost functional is the sum of the costs of every traffic
participant i

Gtotal =
∑

i
Gi.

The costs Gi pursue two main goals: They ensure the
feasibility of the trajectory but also rate its comfort and
effectiveness for a single car. For this reason, the prop-
erties of the trajectory, such as velocity and acceleration,
are rated with multiple evaluation functionals:

The feasibility costs exceed a certain bound if a tra-
jectory is physically not feasible. The pleasantness costs
reflect the wish of the passenger to travel steady and
comfortable, including the perceived safety of the jour-
ney. Furthermore, the costs should motivate compliance
with the traffic regulations. Not yielding is avoided by
upscaling the costs of the vehicle that has the right of
way in the pairwise trajectory costs.

In this approach, the ability to cooperate is associated
with the ability to estimate the cost or quality of a
solution for other traffic participants.

With the above information, the costs Gi per partic-
ipant can be split into costs Gi,0 that only concern the
own trajectory and costs Gi, j that consider the relation
to other trajectories:

Gi =Gi,0 +
∑

j
Gi, j

1) Formulation of the trajectory properties: Analog to
[14] the properties of the trajectory that are examined
by the evaluation functionals are

• the velocity v(t)= ẋ(t)
• the acceleration a(t)= ẍ(t)
• the jerk j(t)= ...x (t)
• the distance to the left and right driving

corridor bound dleft(x(t)) and dright(x(t))
• the yaw rate ω(t)= ψ̇(t) and
• the curvature κ(t) .
Additionally, properties of trajectory pairs describe

their distance to each other. The shortest spatial distance
is described by

dmin(x1(t),x2(t))=min
t

(
d(x1(t),x2(t), t)

)
,

where d denotes a distance measure between states of
different vehicles.

To account for the perceived safety, but also to obey the
traffic regulations, another property is introduced. Here,
we can make use of time-referenced measures, as they
equal a velocity-referenced spatial distance measure. In
general, a collision is only possible if paths overlap. When
determining the criticality, respectively the collision risk,
of two trajectories, their closest point in time and space
is crucial. Regarding a violation of the right of way,
Cooper investigated the post encroachment time (PET) for
specific scenarios [15]. Based on the latter, also regarding
the potential collision zone, we propose the time of zone
clearance (TZC) as a measure for the criticality of two
trajectories with overlapping paths: The TZC is the time
that elapses between the first vehicle leaving potential
collision zone and the second vehicle entering this area,
independent of the right of way (cf. Figure 2).
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(a) blue vehicle drove first (b) black vehicle drove first

Fig. 2: The TZC is the time that the second vehicle takes
to enter the red potential collision zone, assuming constant
velocity.

Given the paths are overlapping and given the trajec-
tories are not colliding, the TZC is calculated as follows:

TZC = TZC(xfirst(t),xsecond(t))

= gap along path
velocity of the second vehicle

= ssecond(tsecond,in)− ssecond(tfirst,out)
vsecond(tfirst,out)

with ssecond being the path of the vehicle that passes
the collision zone second, vsecond being the scalar velocity
along this path, tfirst,out being the time at which the first
vehicle clears the collision zone and tsecond,in being the
time at which the second vehicle enters the collision zone.
Constant velocity is chosen as passengers cannot foresee
the planned trajectory and as it reflects possible actions
(maximum deceleration or acceleration) best.

If the paths do not overlap, the TZC is defined to be
infinite, if the trajectories collide, it is less or equal zero.

2) Formulation of the evaluation functionals: As in
this work the costs are also calculated for human-driven
cars in order to predict their behavioral decisions, they
should reflect humans’ understanding of the quality of
a trajectory. Therefore, the previously introduced scalar
trajectory properties f (X) are investigated. Vectorial
properties, such as the acceleration, are therefore split
into their longitudinal and lateral part, using a motion
model.

The costs of a trajectory are subdivided into three
zones:

• comfort zone Zcomf
• discomfort zone Zdisc
• infeasibility zone Zinf

each for positive (+) and negative (−) deviation from the
optimum fopt. The functionals G( f ) expressing the costs
induced by a trajectory property f are called evaluation
functionals.

For the sake of steadiness and piecewise differentia-
bility, all costs are starting from zero at their lower
bound but do not vanish at the start of the next zone.

Accordingly, the total costs G are defined as

G( f )=

⎧⎪⎨
⎪⎩

Gcomf , f ∈Zcomf

Gcomf +Gdisc , f ∈Zdisc

Gcomf +Gdisc +Ginf , f ∈Zinf.

The comfort component induces only little costs

G+
comf ( f )= a+ · (Δ f +comfort

)2

depending on the distance of f to the optimal value

Δ f +comf =Δ f +comf(X)= f (X)− fopt.

Consequently, given a comfort threshold Tcomf and as-
suming a comfortable deviation Δ f +cmargin, the parameter
a+ is to be set to

a+ = Tcomf(
Δ f +cmargin

)2 .

The costs G−
comf for comfortable negative deviation are

calculated correspondingly with the parameter a−.
The discomfort costs rise quadratic, but direction-

dependent:

G+
disc ( f )= b+ · (Δ f +disc

)2

depending on the distance of f to the upper start of the
discomfort zone f +disc,start

Δ f +disc =Δ f +disc(X)= f (X)− f +disc.

For logical reasons, the parameter b+ should be notably
higher than a+. Negative deviations are treated corre-
spondingly with the parameter b−.

Before the property represents the infeasibility of a
trajectory, the infeasibility costs rise exponentially

G+
inf ( f )= c+ · (Δ f +inf

)2 · e|Δ f +inf|

depending on the distance of f to the upper infeasible
value f +inf minus a margin f +margin from which the costs
start rising

Δ f +inf =Δ f +inf(X)= f (X)−
(
f +inf −Δ f +margin

)
.

Consequently, given an infeasibility threshold Tinf and
assuming a margin Δ f +imargin, the parameter c+ is to be
set to

c+ = Tinf(
Δ f +imargin

)2 · e|Δ f +imargin|
.

Further, the infeasibility zone Zinf includes the margin
in this notation. Again, negative deviations are treated
correspondingly with the parameter c−.
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Gcomfort

Gdiscomfort

Ginfeasible

G

fopt f +disc,start f +inf,start

Fig. 3: Composition of the cost function G for a single trajectory
property f : Very low costs around the optimum value fopt,
increasing rapidly in close vicinity of finf.

3) Formulation of the cost functional: With the evalua-
tion functionals, the cost functional for a single property
f is composed as follows (cf. Figure 3):

G ( f )= G+
comf ·σ(Δ f +comf)+G−

comf ·σ(−Δ f −comf)

+ G+
disc ·σ(Δ f +disc)+G−

disc ·σ(−Δ f −disc)

+ G+
inf ·σ(Δ f +inf)+G−

inf ·σ(−Δ f −inf),

where σ denotes the step function. The right of way of
i over j is acknowledged by adding the comfort-related
costs of vehicle i, upscaled with factor u, to the pairwise
trajectory costs, if i has the right of way:

Gi, j,row = u
(
Gi,0,comf +Gi,0,disc

)
.

A suitable choice of u ensures that the right of way is
heeded, but its violation is still feasible, as stated in
Section II-A.

The full cost functional is composed as follows:

Gtotal(X)=∑
i

(
Gi,0(xi)+∑

j
Gi, j(xi,x j)

)

with singleton trajectory costs for vehicle i

Gi,0(xi)=Gv +Ga +Gj +Gω+Gκ+Goffset

and pairwise trajectory costs for vehicle i due to vehicle j

Gi, j(xi,x j)=GTZC +Gdmin +Grow.

D. Plan B
In order to obey our previously introduced policy,

plan B trajectories are to be checked, as proposed in
[13]. By doing so, we avoid maneuvering into situations
that lead to collisions, if we made wrong assumptions
concerning the behavior of other traffic participants. As
their execution is unlikely, we accept discomfortable but
feasible trajectories. This corresponds to a neglection of
the comfort terms in the upper cost functional. As with

the previous trajectories, plan B trajectories can be cal-
culated via a local continuous method [14], a sampling-
based method such as RRT∗ [16] or other approaches.

E. Selection of Solution
As for passenger comfort, the evaluation of the TZC

should already cause high discomfort costs at around
2 s, a security margin is induced intrinsically by this
approach. Thus, even a very small optimum, represented
by a small range of minimal costs, does not equal a
physically optimal trajectory, that would pass objects
as close as possible in space-time. Rather, it already
contains those security margins that are considered
comfortable by humans and that consequently should be
feasible with measurement uncertainties in the range of
human perception errors. Hence, the optimum point can
be chosen independent of its wideness, as long as a valid
plan B protects the approach against consequences of
wrong assumptions.

III. IMPLEMENTATION

In the following, a first approach for cooperative mo-
tion planning in specific situations, based on the previ-
ously introduced cost functional, is presented.

A. Path-Velocity Decomposition
Several potentially cooperative situations have highly

constraint driving corridors for the traffic participants,
independent of the order and number of traffic partici-
pants. Consequently, we make use of the path-velocity
decomposition (PVD), as introduced by [17]. The calcu-
lation of paths in static environments has already been
widely investigated. Hence, valid paths are considered
predefined (cf. Figure 4) and the implementation focuses
on the velocity profiles along the paths.

B. Sampling
As the optimization problem is non-convex, but the

control variable for the velocity of each vehicle is only
one-dimensional, a classical sampling approach is cho-
sen. Therefore, the trajectories x(t) are approximated by
discretization in equidistant time steps:

xi = x(ti), ti = t0 + iΔt.

For each car, multiple trajectories are sampled: Start-
ing with an initial position and velocity, a random jerk
sequence determines the velocity profiles and thus the
trajectory. Next, the overall costs of each trajectory en-
semble are calculated. For the solutions with the lowest
costs, the plan B trajectory is checked until a valid plan B
is found.

C. Plan B
Instead of using a different planning method with the

assumption or classical prediction of disadvantageous
behavior of others, we again make use of the PVD: Given
the paths, a collision is only possible in particular areas
that can be determined a priori. Thus, unlike in [13],
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no trajectory has to be planned. Rather, the plan B-
consideration can be seen as a “what could I do if”-
consideration. The key questions are: In every time step,
what could the other vehicle do that leads to a collision
with us? And what could we do to avoid this? This
consideration can be split into the following cases:

1) Other vehicle drives first: If the other vehicle drives
first, it can only cause a collision by deceleration. In
reaction, we can decelerate as well. If we can manage
to stop before the collision zone, we have a valid plan B.

2) Ego vehicle drives first: If the ego vehicle drives
first, the other vehicle can only cause a collision by
acceleration. In reaction, we can also accelerate, to still
drive first, or decelerate to stop before the other vehicle
collides with us. As the path is regarded as predefined,
changing the path is not considered.

D. Implications on the cost functional

Since in this implementation, trajectories are dis-
cretized in time, derivatives are approximated by finite
differences. Thus, the functionals of section II-C turn
into functions. Consequently, trajectory properties that
depend on a single minimum, such as TZC, can be largely
affected if this minimum is not sampled. In order to
avoid this, either the sampling rate must be sufficiently
high, or the point of the exact minimum has to be
interpolated. As this implementation is not based on
linear optimization but on sampling, we interpolate the
crucial points.

The jerk is not considered to avoid high order deriva-
tives. Also, the curvature itself is not considered as
the predefined path guarantees the compliance with the
steering geometry. However, it is used to calculate the
lateral acceleration values. Furthermore, the shortest
spatial distance dmin either lies in the collision zone and
is considered by the TZC, or it is not relevant. Hence, it
is neglected as well.

E. Selection of Solutions

As explained in section II-E, criticality protection is
ensured via the costs of the TZC and the check for a
plan B. Consequently, the solution with the lowest costs
and a valid plan B is selected and its ego trajectory is
executed, as long as its costs do not exceed the feasibility-
threshold. In case no solution has a valid plan B, an
emergency braking maneuver is triggered. Note: In in-
car applications, the parallel running classical, reactive
motion-planner would have to take over control in this
case.

IV. EVALUATION

In this section, the method outlined in section III is
evaluated for two scenarios, a left turn at a T-intersection
and passing through a narrowing of the road (cf. Figures
1 and 4).

(a) (b)

Fig. 4: Left turn at T-junction, with and without signposted
right of way and predefined paths.

A. Simulation
For both scenarios, each with and without signposted

right of way, but sharing the same paths, velocity profiles
were sampled. From the resulting trajectories, ensembles
with one trajectory per vehicle were generated. In order
to reduce computational cost, trajectories that did not
reach the end of the collision zone were excluded from
the cost calculation. Furthermore, colliding trajectory
ensembles were excluded. The remaining ensembles were
analyzed with respect to

• comfort costs
• discomfort costs
• infeasibility costs
• traffic regulation costs.

B. Analysis
As depicted in Figure 5 and 6, the initial states were

chosen in a way that the optima of both vehicles overlap
in the collision zone. In the T-junction scenario, the right
of way is regulated with and without traffic signs. A
violation of the right of way causes high costs so the
optimal solution is following the rules. The trajectory of
the vehicle that has right of way is not interfered (cf.
Figure 5 (2) and (3)).

In the narrowing scenario, the right of way is not
regulated without traffic signs. Here, due to equal cost
parameters, the vehicle that is closer to the narrowing
passes first. Still, traffic signs can overrule this globally
most comfortable solution and shift the optimum (cf.
Figure 1 and 6 (3)).

If a collision can only be avoided by one of the vehicles,
as the other is too close to the collision zone, the optimal
solution is the collision avoidance. Even though this
violates the traffic regulations, the infeasibility costs
overrule discomfort costs and traffic regulation costs.

Further, if we do not interfere a vehicle that has the
right of way, its costs Grow are constantly high, but not
raised by our behavior. In this case, the optimal solution
is that we pass first, without violation of traffic rules.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach to coop-
erative motion planning, able to cooperate with human
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sstart,lower sstart,upper
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(1)
(2)
(3)

Fig. 5: Minimum cost trajectories in the T-junction scenario
with the collision zone marked in grey: (1) for each vehicle
solely on the road, (2) when upper vehicle has right of way
(Fig. 4a), (3) when lower vehicle has right of way (Fig. 4b).

sstart,left sstart,right

path s

ti
m

e
t

(1)
(2)
(3)

Fig. 6: Minimum cost trajectories in the narrowing scenario
with the collision zone marked in grey: (1) for each vehicle
solely on the road, (2) when no right of way predefined (Fig. 1a),
(3) when left vehicle has right of way (Fig. 1b).

drivers and automated vehicles without requiring V2X-
communication. While the approach is valid for two-
dimensional motion planning, our first implementation
covers several scenarios deploying PVD.

The preliminary results for the simulated scenarios
demonstrate that the method produces safe and com-
fortable cooperative trajectories in a narrowing and a
typical intersection scenario. Individual trajectory costs
have been extended by costs accounting for mutual
comfort and safety of any pair of trajectories. Other
traffic participants have been taken into account by
incorporating their individual costs. The total trajectory
costs for each participant have been segmented into three
areas representing comfortable driving, uncomfortable

driving and collision/infeasibility.
Future work includes real time implementation and

on-road experiments with our vehicle "BerthaOne". Sev-
eral parametrizations will be used for the cost functional,
considering different vehicle types and driver behaviors.
Furthermore, probabilistic trajectories will be accommo-
dated to account for inherent uncertainties in perception
and behavior.
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Urban Pedestrian Behaviour Modelling using Natural Vision and
Potential Fields

Pavan Vasishta1, Dominique Vaufreydaz2 and Anne Spalanzani 3

Abstract—This paper proposes to model pedestrian behaviour
in urban scenes by combining the principles of urban planning
and the sociological concept of Natural Vision. This model as-
sumes that the environment perceived by pedestrians is composed
of multiple potential fields that influence their behaviour. These
fields are derived from static scene elements like side-walks,
cross-walks, buildings, shops entrances and dynamic obstacles
like cars and buses for instance. Using this model, autonomous
cars increase their level of situational awareness in the local
urban space, with the ability to infer probable pedestrian paths
in the scene to predict, for example, legal and illegal crossings.

I. INTRODUCTION

As the race to attain and deploy fully autonomous vehicles

on urban roads heats up, the concept of Situational Awareness

(SA) takes centre stage. Situational awareness is the natural

human ability to understand, react and predict the environment

based on previously learnt parameters, the utilisation of which

is most frequently seen while driving. Human drivers need to

balance different variables – speed, route selection, positions

of pedestrians, cyclists, other cars, etc. – while trying to predict

their future states. In fact, errors in maintaining situation

awareness are the most frequent cause of errors in real-time

tasks such as driving [1] and can be attributed to many

accidents.

Situational Awareness can be described in three incremental

abstract levels [2] as Perception, Comprehension and Pro-
jection. A human driver in an urban street cycles through

these levels continuously. Objects and elements– pedestrians,

obstacles, other cars, cross-walks, interesting areas– in the

environment are identified. These elements are contextually

understood with regard to the environment that they are in–

the answer to the question “Why is that element there?” For

example, the answer to “Why is there a cross-walk on the

street?” is to facilitate a crossing from one side of the road

to another. Finally, the objects and elements are understood

together and their future interactions are projected with a

certain probability: a cross-walk may be used by a pedestrian

if he/she is close to it. A human driver’s specific course of

action is decided by these continuously evolving projections.

The main motivation of this work is to increase the sit-

uational awareness of an autonomous car in the context of

driving in urban streets. A major driving force is the adoption

1 Pavan Vasishta is a PhD student in the CHROMA team (Inria, email:
Pavan.Vasishta@inria.fr)

2 Dominique Vaufreydaz is an associate professor in the Pervasive Inter-
action team (Univ. Grenoble Alpes, CNRS, Inria, LIG, F-38000 Grenoble
France, email: Dominique.Vaufreydaz@inria.fr)

3 Anne Spalanzani is an associate professor in the CHROMA
team (Univ. Grenoble Alpes, Inria, F-38000 Grenoble France, email:
Anne.Spalanzani@inria.fr)

of sociological ideas for understanding pedestrian behaviour in

inner city areas. Pedestrian behaviour has been postulated to

be a function of the built environment; i.e. their movement is

a consequence of the presence of certain positive and negative

attractors [3]. This behaviour, called Natural Motion, is an

extension of Gibson’s Natural Vision which envisages human

behaviour as wanting to move in a direction that interests them

the most in their field of view [4]. These positive attractors,

here called “Points of Interest (POI)”, may be present as an

element in the scene. They can be monuments, places of

public interest, public transportation... Other, more common,

POIs are areas of commercial interest - stores, restaurants,

etc., that are seen very frequently in an urban centre [5]. The

presence of these POIs in any scene influences the behaviour

of pedestrians within it. Understanding these influences allows

the autonomous car to perform actions that are instinctive in a

human driver - project pedestrian future states and intuit areas

of legal and illegal crossings.

The major contribution of this work is the creation of a

new framework for quick comprehension of urban streets.

It also forms a base to project future states of pedestrians

without the need of their presence in the scene, analogous to

a human driver’s intuition. We model the scene as attractive

and repulsive potential fields. The novelty of our approach

is the introduction of POIs whose attractiveness influences

pedestrian behaviour.

The paper is divided into five sections. Section II deals

with related work in the field of pedestrian motion prediction,

followed by section III, the theoretical basis of the framework

and the methods used to project future states. Section IV

discusses the implementation of this framework, its results and

validation of a conducted experiment. Section V concludes this

paper with a discussion on the current work and envisaged

future work.

II. RELATED WORK

As far as the authors know, there has been little to no work

done in the field in accounting for Point of Interest influences

in urban pedestrian prediction. Much work, however, has

been done in modelling and prediction of pedestrian routes

and route-choice behaviour [6]. Most pedestrian behaviour

prediction algorithms depend on learning frameworks based

off of observed data. Modelling the inherent pedestrian vari-

ables is one such technique. A data driven approach on this,

minimising an energy function that accounts for many personal

factors like speed, grouping etc., can be found in [7]. A similar

approach, based on the Social Force Model can be seen in [8].
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Others use MDPs and its variants to predict the beliefs of

pedestrian crossings in a scene [9]. Destinations are assumed

to be known. In close spirit to our work are [10], [11] and [12].

These works build a cost function based on the environment.

[10] learns the cost function of the environment via observed

trajectories. An MDP is solved with rewards based on observed

trajectories as well with known destinations. Working on

static scenes, it requires previously observed trajectories to

model the cost function and thus is infeasible for rapidly

changing scenes on autonomous vehicles. [11] continues this

work by semantically segmenting the observed environment to

construct a cost function fed to an hMDP to predict pedestrian

positions, even without pedestrian observations. While this

knowledge is transferable, it is computationally expensive. The

computation problems are solved in [12], yet being applied

only for static scenes with learned trajectories. Last, [13] looks

at the distance of the pedestrian from the kerb, position and

velocity of the car from the cross-walk to learn an “Inner city
model” to predict pedestrian crossings.

These works require learning from observed data to predict

pedestrian positions. Our framework envisages to solve the

issues of computational complexity and dynamicity while

considering environmental and social factors. It also does not
use learning for building environmental models which makes

it very useful to deploy in unknown environments, with very

few dependencies.

III. THEORETICAL FRAMEWORK

Pedestrian crossing behaviour in urban areas can be clas-

sified into two broad categories - legal crossings and illegal

crossings. Legal crossings are such movements of a pedestrian

that account for the safest path from one side of the street to

the other. These generally happen on a cross-walk. An illegal

crossing is an abnormal behaviour wherein the pedestrian

decides to not take the cross-walk to cross the street.

In a structured urban environment, for legal crossings to

occur, certain assumptions are made:

• The edges of the road repel pedestrians such that their

paths are restricted to the side-walk.

• A cross-walk acts as a conduit between the two sides of

the street and offers no resistance to crossing

• The road acts as a barrier for crossing, repelling pedes-

trians towards the side-walks.

• Static and Dynamic obstacles on the road are repulsive in

nature, increasing the resistance of the road and pushing

back pedestrians towards side-walks.

• Side-walks offer no resistance to pedestrian movement.

• Points of Interest are a reason for pedestrians to cross

from one side of the street to another.

An illegal crossing occurs when at least one of these

assumptions is violated. Predicting these areas of illegal cross-

ings leads to a higher level of SA. Looking at these assump-

tions, it can be seen that a system of potential fields [14] can be

a good fit as a model for explaining urban behaviour. Each of

the assumptions made earlier can be represented as a function

of a potential field.

Fig. 1: Architecture of the Framework. Only the red block has

been implemented in this work

The architecture of the proposed framework can be found

in Fig. 1. From the observed scene, certain informations need

to be extracted. These informations are road width, number of

lanes, the closest Points of Interest (POI) from the observer,

their orientation, the position of the closest cross-walk, etc.

Static and Dynamic obstacles on the road also need to be

identified.

Destination points in the scene are chosen and fed forward

along with the scene information to the Potential field gener-

ator. This potential field generation step generates a grid with

a potential “Map” based on the extracted data. The generated

“Map” is used by the Behaviour classification module, first

to generate pedestrian trajectory regions and to score these

regions with a probability.

Firstly, to demonstrate the model, it is assumed that the

scene under consideration is well-structured. This implies that

there is an observable demarcation between the road and the

side-walk, the road and the cross-walk and that the lanes on

the road are easily observable. It is also assumed that the width

of the road (Lroad), the width of the lane (LLane), and the POI

positions are known, can be computed using sensors embedded

into the autonomous car or can be retrieved from a global

map. Given the position of the ego vehicle, the distance to

the cross-walk and the side-walk can be extrapolated from

known information. Considering the pedestrian as a self-driven

particle under the influence of attractive and repulsive forces,

a potential field can be constructed which produces certain

motion behaviours [5].

A destination, by definition, draws a self driven particle

towards it. Thus, a POI can be a destination. Conversely,

all destinations in a scene are points of interests. Making

this assumption, the viable ends of the observed scene are

designated as POI and the potential field is recalculated.

A grid is defined for the observed area with its origin at the

top left corner and extending to (Xm, Ym), the maximum grid

values with a specified grid resolution. Each cell on the grid

can take the attributes road, cross-walk, empty, POI, obstacle
and edge and a range of values between 0 and 1. The resultant

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

 
 

136



model is a linear function of all component potential values

at each cell in the grid. Thus,

Utotal = UEdge +URoad +UObs+

UCW +UPOI

(1)

where UEdge,URoad,UObs,UCW and UPOI are potentials

associated with the road edges, the road, obstacles on the road,

the cross-walk and the POIs.

A. Computing Potentials

For each cell in the grid, the different potentials can be

calculated as follows.

1) Edge Potential: The edge potential must repel pedestri-

ans towards the center of the side-walk. An illegal crossing

occurs when the self driven particle can exert enough force to

overcome this potential. For each cell with a center (x, y), the

value of the potential is defined by

Uij
Edge =

1

2
η

(
1

ρ(xij , yij)

)
(2)

where ρ(x, y) is the distance of the ith and jth edge cell

from all other cells in the grid. η is a scaling factor dependent

on LRoad. The calculated values are ceiled to an appropriate

value. The total edge potential is a summation of potential

values of all edge-containing cells.

2) Road potential: Based on a sociological study conducted

in France [15], it can be inferred that the propensity of illegally

crossing a road is linearly dependent on its width. Thus, a

narrow road entices a pedestrian to cross illegally while a

wider one does not.

For cell (Cij) with an attribute road, the calculated potential

value is:

Uij
Road = βRoad exp

(
−
[(

xij−xroad

σx

)2

+
(

yij−yroad

σy

)2
])
(3)

βRoad, σx and σy are dependent on the width of the road

as explained earlier.

The total road potential is the summation of potential values

of all road-containing cells.

3) Obstacle Potential: Obstacles in the scene can be distin-

guished as static and dynamic obstacles. For either classifica-

tion, the response of the self-driven particle under the effect of

the obstacle remains the same. The self driven particle cannot

cross through the obstacle and the approach to the obstacle

is slow. A Yukawa potential [16] is considered a fit for the

expected behaviour.

A static obstacle takes the shape that it is perceived to be.

A dynamic obstacle(for example, other cars in the scene), is

described as a rectangular shape with a triangular shape ex-

tending forward in the direction of motion. Thus, the potential

is described by,

Un
O = Λ

exp (−αK)

K
(4)

Where Λ and α decide the behaviour of Un
O. Larger the

values, sharper the drop off of the potential near the obstacle.

K is the distance of the obstacle from every point on the

workspace, i.e.,

K = ‖Cij − CObs‖ (5)

The total effect of all the obstacles in the workspace is given

as

UObs =

N∑
n=0

Un
O (6)

Where N is the total number of obstacles observed. The

extremely large values that are generated are truncated to a

maximum viable value.

4) POI Potential: A Point of Interest (an inexhaustive

list of what may be considered as a POI can be found in

[5]) generates an attractive pull in the scene. With sufficient

motivation, the self-driven particle can escape the influence

of a POI. A POI is also a terminal point in the scene - the

implication being that all exits in the scene are POIs. The

potential of a POI situated at a cell defined by (xpoi, ypoi) is a

Gaussian function centered at (xpoi, ypoi). βpoi, σx, σy depend

on the global importance of the specific Point of Interest.

5) Cross-walk Potential: The cross-walk connects the two

side-walks of the street and acts as a resistance-less conduit for

the self driven particle. Thus, the potential of the cross-walk

is the smallest value in the area.

B. Behavioural Classification

1) Trajectory Regions: Pedestrian route choice behaviour,

in inner city limits, can be described in terms of optimisations.

A pedestrian either tries to perform a distance optimisation to a

destination at one extreme or optimises for safety at the other.

Thus, all possible pedestrian paths can captured between these

two behaviours. From each destination in the scene to all the

others, an A* search is performed with the heuristic:

h(s) = αC(s, s+ 1) + (1− α)ρ(g, s+ 1) (7)

Where C(s, s + 1) is the cost of moving from the current

state s to the next state (s+ 1). ρ(g, s+ 1) is the normalised

distance between the goal (destinations) and the next state. α
is the parameter contributing to the integration of safe trajec-

tory optimisation and shortest distance optimisation. Varying

this parameter allows for simulating the different trajectories

pedestrians might take, like partially optimising for distance

and partly for safety.

2) Probability map of pedestrian trajectories: Trajectories

generated for each entrance and exit are collated to create

regions of probable pedestrian trajectories. These are then

analysed to find regions of overlap. The larger the value of

the region of overlap, higher the probability that a pedestrian

might be present there.
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IV. IMPLEMENTATION AND RESULTS

In the current work, the red block in Fig. 1 has been

implemented on the dataset provided in [17]. This is a dataset

generated in Martigny, Switzerland from a static camera over-

looking a city square. The camera captures a scene containing

2 POIs and a crosswalk. It also captures pedestrian and

traffic circulation. POI positions have been extracted from

OpenStreetMaps. The scene at a specific instant is shown in

Fig. 2

This scene is segmented into a grid containing features of

the component potential fields - road, POI, crosswalk and

sidewalks. Road parameters are taken from Swiss national

standards and a potential field resulting from the constituent

components are created as explained in III. This potential field

“Map” is then used to determine areas of probable trajectories

and pedestrian probability.

A. Validation

To show that this approach follows Natural Vision [4] is

sufficient validation to use it to efficiently model the environ-

ment. Naive and sufficient validations are described for the

approach, based on chosen destinations.

Fig. 2: Scene at a specific instant from the dataset. No dynamic

obstacles on the road are observed at this instant.

Fig. 4 forms the crux of our work. This scene, taken from

the acquired dataset, is the representation of the observation

at a specific instant (leftmost image in Fig. 4). The width of

the road and lanes were extracted manually based on Swiss

national standards. With this data, the scene is reconstructed by

placing its constituent elements at relative positions on a grid.

The obstacle has been identified and tracked using the YOLO2

framework. Attributes of each cell on the grid is manually

defined as cross-walk, side-walk, road, edge or obstacle, as

well as for the POI. With these data populated on the grid, a

resultant potential field “Map” has been generated as defined

in section III

1) Primary Validation: A first naive validation of this

method is to show that observed pedestrian presence matches

those areas predicted by the framework. In this scene (Fig.

2), there are 4 potential destinations, marked (1), (2), (3)

and (4). Destination (2) is the entrance of the visible POI

while the others are the ends of the scene. Choosing one of

these as a starting point, we compute trajectories of the safest

and the shortest paths and everything in between to all the

other exits. By repeating this at each exit, a map of areas of

most probable pedestrian positions emerges. For instance on

Fig. 3, two destinations – (1) and (4) – were chosen and the

different trajectories determined. Superimposing areas leads to

the pedestrian trajectory probability map at right on the same

figure.

Pedestrians were detected using the YOLOv2 framework

[18]. Trajectories were tracked based on these detections. By

accumulating these trajectories, a probability map based on

observations was created (Section III-B2). Fig. 3 compares

the predicted probability areas from our model and the obser-

vation.

Fig. 3: Comparison between observed probability map and

predicted pedestrian trajectory probability map. The left image

shows the ground truth. Right image is the predicted probabil-

ity map of the scene. Darker the colour, higher the probability

of pedestrians being present in that area.

In the observed probability map, it can be seen that there is a

high incidence of pedestrians on the side-walk. The probability

of a legal crossing is much higher compared to an illegal one,

as observed. The predicted pedestrian trajectory probability

map shows that there is a high probability that this scene has

more chances of pedestrians crossing legally compared to an

illegal crossing. It also predicts a high number of pedestrian

trajectories into destination (3). Comparing to the ground

truth, even though there are a few stray illegal crossings,

they are overwhelmingly outnumbered by the number of legal

ones. It is also observed that pedestrians continue to walk

towards destination (3) compared to people crossing across

into destination (2) in the scene.

TABLE I: Different behavioural cases observed in the dataset.

Destinations can be seen on Fig 2.

Case Destinations Crossing
From To Legality

I 1 3 Legal
II 1 2 Legal
III 4 2 Legal
IV 4 1 Legal
V 1 4 Illegal
VI 1 4 Legal
VII 4 1 Illegal
VIII 4 3 Legal/illegal
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Fig. 4: Real scene juxtaposed against resultant potential field “Map” and pedestrian trajectory probability. Scene contains a

dynamic obstacle and a pedestrian.

2) Secondary Validation: A secondary validation of the

framework is to prove that it predicts behaviour based on

Natural Vision. Pedestrians stay within certain bounds while

going towards a destination. Knowing this, areas of illegal

crossings can be predicted. From the dataset, 38 trajectories

were chosen and classified into eight different behaviours.

Each case is classified based on the entry and exit destinations

of the scene and the legality of crossing between them. The

behavioural classes for pedestrians walking in the scene (Fig.

2) can be found in Table I.

Fig. 5: Validation of the two most common behaviours in the

dataset: case I and case VI (see table I). The dashed line

corresponds to the A* predicted regions for each case. The

coloured boundaries represent the extended zone.

As seen in section III-B1, the A* algorithms returns a sharp

trajectory, going straight for the goal based on the heuristic

provided. It does not meander when there are no explicit

potential modifications. The zones predicted by just using the

A* algorithm can be seen as the dashed line in Fig. 5. Human

motion very rarely follows a perfect straight line. Thus, to

account for these random motions, the zones were dilated by

40 cms on all sides. This leads to a much better prediction

score as can be seen in Table II. This is sufficient to show

that the principle of Natural Vision is valid and can be used

to determine pedestrian behaviour.

B. Discussion
For some behavioural cases, like cases II and III, not

many pedestrian trajectories could be found in the chosen

dataset. As can be seen, a large percentage of all observed

trajectories for all cases are present within the predicted zones.

These zones are bounded by the shortest route to the goal

and the safest. Our results are a validation of this. These

scores can be ameliorated by substituting better parameters to

build the potential field model. For example, the attractiveness
parameter of the POIs in the scene were assumed to be equal

for all POIs in the scene. These parameters could change

based on the POIs global importance, the time of day, etc.,

all of which could be encoded on a map for a given city. By

accurately estimating the values, pedestrian behaviour in urban

centers could be much better predicted. Thus, a conclusion can

be reached that pedestrian behaviour is not random in nature.

Their movement can be accurately predicted by utilising well

established sociological ideas of attractors and Natural Vision
as our work demonstrates.

1) Towards Prediction: As an inference, the A* algorithm

can be used to determine the prior destination probabilities

of every tracked pedestrian. At each time step, a tracked

pedestrian’s probable regions of movement can be calculated

as explained earlier. These prior probabilities can then be

used to perform spatio-temporal predictions on the grid. An

example for such an area is shown in Fig. 4. The first image

shows the observed scene with an obstacle and the four

possible destinations in the scene. The second image shows

the resultant potential field due to all the component features.

The third image shows the trajectory probability regions of a

tracked pedestrian. Darker the region, higher the belief that

the pedestrian will take that path. The left image is that of a

pedestrian waiting to cross the street while a car is waiting

at the traffic light. The generated potential field is used to

determine the trajectory regions of the pedestrian to each

destination and the probabilities are scored. This is seen in

the rightmost image in Fig. 4. This result shows that there

is a high belief that the pedestrian will cross via the cross-

walk. Yet, given her position, there is a significant probability
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TABLE II: Quantitative analysis of trajectories within predicted regions

Case Nb Trajectories A* Predicted zone Extended zone (40cms)
Inside zone (%) Outside zone (%) Inside zone (%) Outside zone (%)

1 10 84.11 15.88 96.88 3.11
2 2 30.07 69.92 88.17 11.82
3 1 29.10 70.89 51.49 48.50
4 9 68.48 31.51 77.43 22.56
5 7 72.38 27.61 83.26 16.73
6 9 39.63 60.36 50.26 49.73
7 12 76.79 23.20 83.28 16.71
8 10 64.67 35.32 69.98 30.01

that she can cross illegally. The belief can be ameliorated and

made more accurate by taking into account the direction and

velocity of the observed pedestrian. A drawback of this method

is that the A* finds the optimal trajectory given the heuristic.

This does not take into account similarly values potential

fields, leading to a loss of information. A possible solution

to this could be to use a greedy algorithm that can generate

all possible trajectories between the pedestrian position and

the destination.

V. CONCLUSION

In this work, we have established a new framework for

increasing the Situational Awareness of an autonomous car

on urban roads. This is done by adapting the sociological

principle of Natural Vision as a function of a potential field

composed of different elements of the urban environment. This

allows the car to intuitively understand pedestrian behaviour

in previously unobserved areas. We have also demonstrated

that pedestrian behaviour in urban areas is not random but

is a function of the built environment they are in. The main

contributions of this paper are – a) the usage of sociological

principles and the integration of POIs into understanding

pedestrian behaviour, b) quick computation of probable pedes-

trian movement zones even when there are no pedestrian

observations in the scene.

The current work utilises a dataset that captures pedestrian

behaviour with a mounted, stationary camera overlooking a

single view. Future work will deal with the application of this

framework from the ego-perspective of an autonomous car.

Algorithms like the CMC-DOT [19] can be used for estimating

the occupancy grid and positions of dynamic obstacles in real

time. This can then be used as an input for our framework.

Another work that needs to be done is to have online extraction

of POIs and track individual pedestrians based on the priors

determined by our framework.
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Constant Space Complexity Environment Representation for
Vision-based Navigation

Jeffrey Kane Johnson1

Abstract— This paper presents a preliminary conceptual in-
vestigation into an environment representation that has constant
space complexity with respect to the camera image space. This
type of representation allows the planning algorithms of a
mobile agent to bypass what are often complex and noisy
transformations between camera image space and Euclidean
space. The approach is to compute per-pixel potential values
directly from processed camera data, which results in a discrete
potential field that has constant space complexity with respect
to the image plane. This can enable planning and control
algorithms, whose complexity often depends on the size of
the environment representation, to be defined with constant
run-time. This type of approach can be particularly useful for
platforms with strict resource constraints, such as embedded
and real-time systems.

I. INTRODUCTION

A significant issue in planning and control when solv-

ing real-world navigation problems is that there are often

large numbers of individual agents with whom a mobile

robot might interact. Consider navigating a busy roadway

or crowded sidewalk or convention hall, where there may

be multitudes of other agents sharing the space. Conven-

tional approaches to planning in multi-agent systems often

explicitly consider interactions between all agents and so

become overwhelmed as the number of agents grows [1],

[2], [3]. More scalable conventional approaches often have

strict requirements on system dynamics [4] or observability

of agent policies [5].

This paper presents a preliminary conceptual investigation

into the use of a fixed-size environment representation for

vision-based navigation. The representation is modeled after

a camera image space, which is chosen because cameras are a

ubiquitous sensor modality, and image space is by nature dis-

crete and fixed size. The proposed representation additionally

allows planning and control routines to reason almost directly

in sensor space thereby avoiding often complex and noisy

transformations to and from a more conventional Euclidean

space representation. The intent of this new representation is

to help vision-based mobile robots navigate complex multi-

agent systems efficiently, and to take a step toward satisfying

the strict resource requirements often present in real-time,

safety critical, and embedded systems [6].

The next section briefly surveys related work, then the

environment representation is presented along with an illus-

trative example of how it can be used. Finally, conclusions

and future work are discussed.

1Jeffrey Kane Johnson received his PhD from Indiana University and is
principal of Maeve Automation, Mountain View, CA 94043
contact@maeveautomation.com

Fig. 1: Top: Illustration of an approaching object in the

image plane (left), and the image space potential field (right).

Bottom: Multiple object detections (left) can be composed

into a single field (right). Black boxes represent ROIs.

II. RELATED WORK

The approach in this work is based on potential fields [7].

These fields represent attractive and repulsive forces as scalar

fields over a robot’s environment that, at any given point,

define a force acting upon the robot that can be interpreted as

a control command. This type of approach is subject to local

minima and the narrow corridor problem [8], particularly

in complex, higher-dimensional spaces [9]. Randomized ap-

proaches can partially overcome these difficulties [10], [11],

and extensions to globally defined navigation functions [12],

[13], [14], while often difficult to use in practice, theoreti-

cally solve them. This work uses potential fields defined over

a virtual image plane, which limits the possibility of narrow

corridors, and is designed such that additional information

can be used by the controller to interpret potential gradients,

as suggested in [15]. [16] described a scheme related to that

presented in this paper, but places potentials in a Euclidean

space, which this approach explicitly avoids. The potential

fields computed by the approach in this paper are intended to

inform a visual servoing [17], [18], [19], [20] control scheme.

This is a class of controllers that computes control commands

directly from image space data.

In order to define values for the potential fields, this

approach draws on a wealth of related works in optical flow

and monocular collision avoidance, notably [21], [22], [23],

[24], [25], [26], [27], [28], [29], [30], [24], [23]. The intuition

of these approaches is that the information contained in a
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sequence of monocular stills provides sufficient information

to compute time-to-contact (Definition 2), which informs

an agent about the rate of change of object proximity.

The primary contribution of this work is a sensor-inspired

representation space and algebra for enabling planning and

control algorithms to reason effectively and efficiently with

the output of this class of perception algorithms.

III. IMAGE SPACE POTENTIAL FIELDS

Before defining image space potential fields, the notion of

a potential field used in this paper is defined below:

Definition 1. A potential field (also artificial potential field)

is field of artificial forces that attracts toward desirable

locations and repels from undesirable locations. In this work,

a potential field is defined by a potential function that maps

an image pixel value I(x,y) to a tuple of affinely extended

reals R = R∪{−∞,+∞}, the first of which is the potential

value, and the second of which is its time derivative:

I(x,y) �→ R
2

(1)

From the definition, the image space potential (ISP) field

is modeled after an image plane. As with image planes,

the potential field is discretized into a grid, and regions of

interest (ROIs) are defined for it. In this work it is assumed

that the fields are origin and axis aligned with the camera

images, and that they have the same ROIs (as in Figure 1).

The potential function, which maps image pixel values

to potential values, can be defined in arbitrary ways, either

with geometric relations, learned relations, or even heuristic

methods. In this paper geometric properties of temporal

image sequences are used. The approach is to assume an

estimation of the time-to-contact (defined below) is available

for each pixel in an image over time. The mapping of image

pixel to this value is taken as the potential function that

defines the image space potential field.

Definition 2. Time-to-contact (τ), is the predicted duration

of time remaining before an object observed by a camera

will come into contact with the image plane of the camera.

The time derivative of τ is written τ̇ .

As noted often in literature (e.g. [30], [25], [27], [29]), τ
can be computed directly from the motion flow of a scene,

which is defined as:

Definition 3. Motion flow is the pattern of motion in a scene

due to relative motions between the scene and the camera.

In other words, it is a vector field describing the motion of

objects on the image plane over time.

Unfortunately, it is typically not possible to measure

motion flow directly, so it is usually estimated via optical
flow, which is defined as the apparent motion flow in

an image plane. Historically this has been measured by

performing some kind of matching of, or minimization of

differences between, pixel intensity values in subsequent

image frames [31], [28], [32], while more recently deep

learning techniques have been successfully applied [33].

The image space potential field is now defined using τ:

Definition 4. An image space potential field is defined by a

potential function that maps image pixels to a tuple of scalar

potential values 〈τ, τ̇〉.
A. Computing τ

Assuming some reasonably accurate estimation of optical

flow vector field exists, τ can be computed directly under

certain assumptions [25]. In practice, the computation of

optical flow tends to be noisy and error prone, so feature-

and segmentation-based approaches can be used [24], [23].

The idea of these approaches is to compute τ from the rate

of change in detection scale. For a point in time, let s denote

the scale (maximum extent) of an object in the image, and

let ṡ be its time derivative. When the observed face of the

object is roughly parallel to the image plane, and under the

assumption of constant velocity translational motion and zero

yaw or pitch, it is straightforward to show that [34]:

τ =
s
ṡ

(2)

As shown by Lemma 1, scale has a useful invariance

property for these types of calculations that can make τ
computations robust to certain types of detection noise:

Lemma 1. The scale s of an object on the image plane is
invariant to transformations of the object under SE(2) on
the XY plane.

Proof. Let (X1,Y1,Z) and (X2,Y2,Z) be end points of a line

segment on the XY plane in the world space, with XY parallel

to the image plane and Z coincident with the camera view

axis. Without loss of generality, assume unit focal length.

The instantaneous scale s of the line segment in the image

plane is given by:

s =
1

Z

√
ΔX2 +ΔY 2 (3)

Thus, any transformation of the line segment on the XY
plane for which ΔX2+ΔY 2 is constant makes s, and thereby

ṡ and τ , independent of the values of (X1,Y1) and (X2,Y2).
By definition, this set of transformations is SE(2).

In addition, as shown in [35], the time derivative τ̇ of τ ,

when available, enables a convenient decision function for

whether an agent’s current rate of deceleration is adequate

to avoid head-on collision or not. The decision function is

given below, where ε > 0 is a buffer to prevent an agent

from coming to a stop directly at the point of contact with

another agent:

f (τ̇,ε) =
{

1 : τ̇ ≥−0.5+ ε
0 : τ̇ <−0.5+ ε (4)

Equation 2 allows the computation τ for whole regions

of the image plane at once given a time sequence of

labeled image segmentations, and Equation 4 enables binary

decisions to be made about the safeness of the agent’s current
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state. The following two sections describe encoding these

pieces of information into image space potential fields.

B. Computing Fields for a Single Object

Computing the image space potential field for a single

object is straightforward given the discussion in §III-A.

Assuming an object can be accurately tracked and segmented

over time in the camera image frame, its scale s and esti-

mated expansion ṡ can be used to compute τ for each pixel

in the image plane that belongs to the object, and a finite

differences or estimation method can be used to compute τ̇ .

Pixels that do not belong to the object, and for which no

other information is available, are mapped to 〈∞,∞〉 by the

potential function. An illustration of this mapping is shown

in the top row of Figure 1.

C. Computing Fields for Arbitrary Objects

Computing the image space potential field for arbitrary

objects builds on the single object case by computing the

field individually for each segmented and tracked object and

then composing them into a single field. For this composition

to be meaningful, however, the fields cannot be simply

added together; this would result in the destruction of the τ
information. Instead, a composite field is defined to preserve

and combine τ information meaningfully. Equation 5 defines

a composite field F in terms of image space potential fields

F1 and F2 for an image I, and where minτ selects the tuple

whose τ value is minimum:

F(x,y) =
{

min
τ

(F1(x,y),F2(x,y)) | (x,y) ∈ I
}

(5)

Selecting the point-wise τ-minimum tuple for the compos-

ite field effectively enforces instantaneous temporal ordinal-

ity of objects, i.e., objects that are instantaneously temporally

nearer are always what is seen. It is important to note that

this is not the same as spatial ordinality. For an illustration

of this, see Figure 2.

D. Constant Space Complexity

By definition the image space potential field representation

has guaranteed constant space complexity assuming that the

camera images for which the fields are generated are fixed

size. This can be a powerful tool in simplifying planning and

control algorithms whose complexity is typically dependent

on the number of objects in a scene. In many cases it may,

in fact, be possible to achieve constant time for planning and

control given this representation.

It is important to note, however, that computing the repre-

sentation itself may have arbitrary complexity: the problem

of segmenting and tracking objects in order to generate these

potential fields, for instance, can be efficient or arbitrarily

complex, depending on the approach. The problem of inves-

tigating efficient computation methods for these fields is a

point of future work discussed in §V.

d: 2m, : 2s

33m/s 32m/s 25m/s

d: 6m, : 0.75s
Fig. 2: Illustration comparing spatial and temporal ordinality.

Consider three vehicles traveling in the same lane. For

the pickup truck (left), the car (middle) has lowest spatial

ordinality, i.e., is closest spatially. However, the van (right)

has lowest temporal ordinality, i.e., it is nearest temporally.

IV. NAVIGATION WITH IMAGE SPACE

POTENTIAL FIELDS

The intuition behind using image space potential functions

for vision-based navigation is that they provide a natural

space in which to compute collision avoiding controls, which

then allows general navigation to be solved using a guided

collision avoidance scheme, such as ORCA [4] or the Se-

lective Determinism framework [36]. This section uses the

Selective Determinism framework to define a simple control

function that utilizes image space potential fields to navigate

toward a visible goal in the presence of other agents. In this

example only forward field of view is considered, but the

extension to omnidirectional field of view is straightforward.

The navigation problem considered is defined below:

Problem 1. Assume a set of acceleration-bounded agents

A , each operating according to known dynamics and with

similar capabilities, navigating a shared space. Each agent

operates according to a unique reward function that is not

observable to other agents. Each agent is equipped with a

camera that always faces in the direction of motion, and

each agent is capable of performing image segmentation

on the output. Suppose the reward function for an agent A
encourages navigating toward a goal that A has in line of

sight. How can A control toward the goal while avoiding

collision with other agents?

Problem 1 is the type of problem that a driver may face

on a busy highway when trying to navigate toward an exit or

offramp. The solution in this example will take a naı̈ve ap-

proach of decoupled steering and acceleration control while

noting that more sophisticated control schemes are certainly

possible. And while the example is formulated for a mobile

agent traveling on a two dimensional manifold, the technique

in general is equally applicable to three dimensions (such as

with a UAV). The method for computing collision avoiding

controls is discussed first, followed by the formulation of the

navigation law.

A. Collision Avoidance

In order to address collision avoidance, the Encroachment
Detection problem is presented.
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Problem 2. Let encroachment refer to the reduction in

minimum proximity between two or more objects in a

workspace W beyond desired limits as measured by a metric

μ(·, ·). Assume an agent A receives some observation input

Ot of W over time. Let A be the set of agents that does not

include A. For a sequence of observations Oi, . . . ,Ot , how

can A estimate the rate of change of minA j∈A μ(A,A j)?

Note that maintaining an estimate of 〈τ, τ̇〉 directly solves

the problem, as these values quantify temporal proximity and

the rate of encroachment. The collision avoidance problem

can now be solved by detecting encroachment and control-

ling such that it does not violate limits.

It was shown in [37] that collision avoidance can be

guaranteed in a non-adversarial system if all agents com-

pute and maintain collision-free stopping paths, which are

contingency trajectories that bring an agent to zero relative

velocity in minimal time. If agents are also self-preserving,

they can each assume that all other agents will maintain

such contingencies. Under these assumptions, agents should

have sufficient information in the image space potential field

to compute a solution to Problem 2 by maintaining non-

zero time headway, which is assumed to be witness to the

existence of a feasible stopping path.

For illustration, a naı̈ve control set computation in the

spirit of the braking controller in [38], [39] is sketched in

Algorithm 1. This routine makes the reasonable assumption

that τ̇ is not so large as to overwhelm τ . The idea is that

steering angle and acceleration commands are computed

independently and such that τ thresholds are not violated.

To compute steering angles, a min filter is swept across

the field of view in the potential field and a minimum

potential value within the window is computed for each

column in the image. Any value that meets τ thresholds

is kept, and these are considered the safe steering angles

(Figure 3, left). To compute the acceleration command, the

minimum potential value within a centered window of a

specified width is considered (Figure 3, right). If the value

meets the τ threshold, the full scaled range of accelerations,

[−1,1], is considered safe. If the threshold is violated, then

either full deceleration [−1,−1] or the range of deceleration

values [−1,0) is sent depending on the value of the decision

function of Equation 4. The control sets are then used by

the Selective Determinism framework to compute the output

control command.

B. The Selective Determinism Framework

Selective Determinism [36] is a solution framework

for dynamically-constrained, non-adversarial, partially-

observable multi-agent navigation problems. It belongs

to a family of approaches useful for dealing with real-

world problems because they remove the theoretical

intractability inherent in optimal approaches [40], [41] while

typically exhibiting good empirical performance. Selective

Determinism, in addition, can also make certain collision

avoidance guarantees even without explicitly considering

interaction effects among agents.

Algorithm 1 Given an image space potential field F , com-

pute the set of steering and acceleration commands that

satisfy τ ≥ Ts and τ̇ ≥−0.5+ε , where Ts > 0 is some desired

time headway, wθ and wa are kernel widths for computing

steering angle and acceleration maps, and ε > 0 is the buffer

from Equation 4.

1: procedure SAFECONTROLS(F,Ts, τ̇E ,wθ ,wa,ε)

2: Let Ic be the list of image column indices

3: Let Ma map i ∈ Ic to steering angles

4: Let h be the height (row count) of F
5: Let Mτ map 〈τ, τ̇〉 to i ∈ Ic via wθ ×h min filter

6: Let Mθ = {〈τ, τ̇〉 ∈ Mτ : τ ≥ Ts}
7: Let W be a centered wa ×h window in F
8: Let 〈τ, τ̇〉min be the min. τ over W
9: Let L ← /0 be a container for safe accelerations

10: if Mθ = /0 then
11: Mθ ← 0 , L ← [−1,−1]
12: else if τmin > Ts then
13: L ← [−1,1]
14: else
15: if f (τ̇,ε) = 0 then
16: L ← [−1,−1]
17: else
18: L ← [−1,0)
19: end if
20: end if
21: return Mθ , L
22: end procedure

Ts

M

min > Ts

min < E 

L ← [-1, 0)

Fig. 3: Illustration of the steering angle control computation

(left) and the acceleration control computation (right). On the

left, a window sweeps from left to right over the image space

potential field computing minimum τ for each image space

column (left bottom). The set of column values that satisfy

the threshold are the set of acceptable steering angles Mθ .

On the right, the minimum potential value over a centered

window is computed and the set L of acceptable scaled

acceleration values are determined from it.
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Global Control: 
Make progress 
towards goal

Constrained Interference
Minimization

Control
Command

Local Control: 
Maintain SP 
disjointness

Fig. 4: Architecture of the Selective Determinism framework.

Selective Determinism works by exploiting the idea that

agents in a system are capable of independently computing

contingency trajectories that cover the space necessary for

them to come to a stop (or to a zero relative velocity), and it

assumes that agents do so, and that they will seek to maintain

a non-empty set of available contingencies.

The framework casts the navigation problem in terms of a

constrained interference minimization [38], [39] that utilizes

a local collision avoidance controller to compute sets of

controls from which an optimization choses a control that

makes maximal progress toward some goal (see Figure 4).

The solution to Problem 1 is sketched in Algorithm 2.

Algorithm 2 For a desired pixel location (xd ,yd), and

setpoint speed ṡd , compute the Selective Determinism control

that safely guides the agent A toward (xd ,yd). See Algo-

rithm 1 for descriptions of the other parameters.

1: procedure CONTROLS((xd ,yd),F,Ts, τ̇E ,wθ ,wa,ε)

2: Let θt , ṡt be the steering angle and speed of A
3: Let θd be the steering angle corresponding to yd
4: Let Mθ ,L ← SafeControls(F,Ts, τ̇E ,wθ ,wa,ε)
5: Let θ � ← θt contain the new steering angle

6: for θ ∈ Mθ do
7: if |θ −θd |< |θ �−θd | then
8: θ � ← θ
9: end if

10: end for
11: Let s̈� ∈ L be chosen proportionally to ṡd − ṡt
12: return θ �, s̈�

13: end procedure

C. Complexity Analysis

In Algorithm 1 all non-trivial operations are iterations

over the width of the image plane, which is assumed to be

fixed for a given problem. The operations on lines 5 & 7

depend on the user defined wθ and wa parameters, but these

are also bounded by image width. In Algorithm 2, Line 4

is a call to Algorithm 1, and so has constant complexity

with respect to the image space, and Line 11 is assumed to

be implemented with an O(C) proportional law. Thus, the

navigation algorithm as a whole has constant complexity, in

space and time, with respect to the camera image space.

V. CONCLUSION & FUTURE WORK

This paper presented a conceptual investigation into an

environment representation for vision-based navigation that

has constant space complexity with respect to the image. This

preliminary work is intended to serve as a basis for future

investigations. This section outlines three primary topics of

investigation.

The first topic is how to more completely combine envi-

ronment information with the potential fields. As presented

here, the representation is defined strictly in terms of object

τ values, but a more elegant solution would build richer

information about the environment into the potential field

itself. An obvious extension would be to encode path in-

formation, such as lane or sidewalk boundaries, as well as

goal information, into the potential field. This would enable

navigation in semantically sophisticated environments and is

an area of active development1.

The second topic is a more sophisticated control law. The

decoupled approach used here can lead to odd and counter-

productive behavior, such as swerving out of the way of

approaching objects while at the same time slowing down, or

instability around control modes. A more intelligent control

law would address stability issues and reason about the steer-

ing and longitudinal controls simultaneously. Additionally,

allowing the potential fields to label a small, fixed-size set

of objects individually could let such a control law reason

about individual interactions without losing constant space

complexity or information about all other objects.

Finally, the third topic, and one of great importance,

is whether and how the potential fields themselves can

be computed with some kind of constant complexity. A

purely optical flow based approach would address this, but

would require breakthroughs in the quality and efficiency

of optical flow algorithms. Alternatively, a purely learning-

based approach in conjunction with cheap, heuristic-based

tracking approaches may provide the requisite segmentation

and tracking information without runaway complexity.
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Relocalization under Substantial Appearance Changes using Hashing

Olga Vysotska Cyrill Stachniss

Abstract— Localization under appearance changes is essen-
tial for robots during long-term operation. This paper inves-
tigates the problem of place recognition in environments that
undergo dramatic visual changes. Our approach builds upon
previous work on graph-based image sequence matching and
extends it by incorporating a hashing-based image retrieval
strategy in case of localization failures or the kidnapped robot
problem. We present a variant of hashing algorithm that allows
for fast retrieval for high-dimensional CNN features. Our
experiments suggest that our algorithm can reliably recover
from localization errors by globally relocalizing the robot. At
the same time, our hashing-based candidate selection is sub-
stantially faster than state-of-the-art locality sensitive hashing.

I. INTRODUCTION

The ability to localize itself is an essential capability for

goal-directed robot navigation. A central ingredient of local-

ization as well as mapping is the capability to identify that

the robot is at a previously visited place, i.e., to make the data

association between the current observation and a previously

taken one. When operating in changing environments such

as outdoor scenes, the localization system should be able to

deal with substantial appearance changes. An example for

such appearance changes is depicted in Fig. 1. Both images

correspond to the observations taken at the same physical

location but at different times during the day.

The task of localization through image matching for

handling substantial changes in the appearance of a place has

been tackled by several researchers [4], [5], [7], [14], [19],

[21]. In line with previous work on this topic, we also rely

on sequence information, i.e., exploit the fact the images are

not obtained in a random order but according to the physical

motion of the robot through the environment. We solve the

problem by building a data association graph, where possi-

ble paths through this graph correspond to different image

matching hypothesis. Efficient relocalization is achieved by

a locality sensitive hashing strategy.

The main contribution of this work is a online approach

for finding correspondences between the currently acquired

image stream and a previously recorded image sequence even

under strong appearance changes. Our work is an extension

of our previous work as it uses the lazy search approach

proposed in [21] but proposes several extensions. First, we

provide a way for dealing with loops in the reference or

database sequences and introduce new edges into the data

association graph that is build up on the fly. Second, we

All authors are with the University of Bonn, Institute of Geodesy and
Geoinformation, Bonn, Germany.
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=

Fig. 1. Challenging image pairs for place recognition systems. Both images
have been recorded at the same place but during different times resulting in
strong appearance changes. The approach presented in this paper identifies
such corresponding images via sequence information and can handle loops
in the database sequences, recover from localization failures, as well as deal
with the kidnapped robot problem.

provide an efficient way for relocalizing the robot in case

it got lost. Both extensions naturally integrate with and

extend [21] so that the same search approach and search

heuristic can be re-used. This furthermore does not affect

the online nature of the solution and the data association

graph is still built incrementally.

We make the following three claims for our approach. It is

able to (i) quickly relocalize the robot globally after getting

lost and can handle the kidnapped robot problem, (ii) can be

executed in an online fashion during navigation and requires

only a small amount of image to image comparisons, and (iii)

deal with loops in the reference images sequence while not

relying on GPS information or similar means. These three

claims are backed up through our experimental evaluation.

II. RELATED WORK

Localization is a relevant and frequently studied problem

in robotics. A prominent approach to visual localization is

FAB-MAP2 [5]. Dealing with substantial variations in the

visual input, however, has been recognized as an obstacle for

persistent autonomous navigation and one way to address it is

to exploit sequence information for the image alignment [9],

[13], [12], [14].

Over the past few years, different types of features have

been investigated for place recognition. Some approaches

use variants of HOG features such as [14] or Bag of Words

models optimized to seasonal changes [16]. More recently,

multiple researchers apply learned features as proposed by

Sermanet et al. [17] and suggested for place recognition by

Chen et al. [3]. These CNN features yield a high matching

quality but are rather high-dimensional, i.e., comparisons are

computationally expensive. This motivates the binarizations

of such features and efficient comparisons using the Ham-

ming distance [2]. Other alternatives are place-dependent

features, which are optimized to the current location [11].
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There is an increasing interest in the systems that can

localize under appearance changes and different weather

conditions. The experience-based navigation paradigm [4]

stores multiple images or experiences for individual places

and extends the place model whenever matching the current

images to previous ones becomes challenging. Extension of

experience-based navigation targets large-scale localization

by exploiting a prioritized collection of relevant experiences

so that the number of matches can be reduced [9]. SeqS-

LAM [13] aims at matching image sequences under strong

seasonal changes and computes an image-by-image matching

matrix that stores similarity scores between the images in

a query and database sequence. It computes a straight-line

path through the matching matrix and selects the path with

the smallest sum of similarity scores across image pairs to

determine the matching route. Milford et al. [12] present a

comprehensive study about the SeqSLAM performance on

low resolution images. Related to that, Naseer et al. [14]

focus on offline sequence matching using a network flow

approach and Vysotska et al. [21] extended this idea towards

an online approach with lazy data association and build

up a data association graph online on demand. Our paper

extends [21] by allowing more flexible reference trajectories

as well as efficient means for relocalization.

In visual place recognition, relocalization after getting lost

can be achieved by comparing the query image to all images

in the reference dataset as it was used by Neubert et al. [15].

To optimize the process of finding similar images in large

datasets Gionis et al. [6] proposed using hashing algorithm,

which was intensively used to solve text retrieval problems,

to search for duplicates and even similar images in the large

dataset, known as locality sensitive hashing (LSH). In LSH,

slight variation in the image domain should only lead to

slight variations in the hash. The disadvantage of LSH is

that it relies on a quite large number hash tables (> 100
is suggested in practice) to obtain a high retrieval accuracy.

To tackle this problem, Lv et al. [10] propose an efficient

indexing strategy, which allowed to reduce the number of

hash tables.

The popularity of the CNNs resulted in learned features,

which are high-dimensional in comparison to those used

by Lv et al. This slows down multi-probe LSH when

matching full image sequences. An alternative approach to

improve retrieval is spectral hashing [22], where a variant of

spectral clustering is performed on the database before the

operation in order to find better hash codes. Due to the high-

dimensionality of CNN features, spectral clustering becomes

computationally intractable and thus we rely on a variant of

LSH proposed by Lv et al.

III. OUR APPROACH

A. Lazy Data Association for Image Sequence Matching

The approach proposed in this paper is an extension of our

previous approach for visual place recognition in changing

environments [21]. The central idea of [21] is to perform

visual place recognition by matching image sequences: Given

a sequence of images, also called reference sequence, find

...

...

...
... ...

database images

qu
er

y 
im

ag
es

0:

1:

2:

source

:

Fig. 2. Graph structure inherited from the [21]. Green circles denote
expanded nodes (for which two feature vectors are compared); right circle
- match; blue - non match, but support the path hypothesis.

for the stream of incoming images the visually most similar

(sub-)sequence in the reference sequence. For making the

required associations, the approach uses the ideas of lazy data

association and solves the matching problem in an online

fashion.

We formulate the problem of matching image sequences

as a graph search problem, in which every node represents

the potential match between two images and edges encode

possible transitions between nodes. The shortest path through

this graph corresponds to the most likely data association

between the image sequences. Fig. 2 depicts the structure

of such a data association graph: green circle denotes the

nodes for which the matching cost has been computed and

blue (or red) nodes are those that belong to the found path.

The blue nodes are so-called hidden nodes, the ones that

support the path topology, but whose matching cost is higher

than a specified parameter (non-matching cost), i.e. the image

appear dissimilar. The red nodes are the ones for which

corresponding matching cost is lower than the non-matching

cost. The search ends (for each new image in the sequence)

when the latest image gets associated to a reference image,

either as hidden or real node.

This approach can accurately match image sequences but

has also some limitations. First, it cannot relocalize well

once lost. Second, it makes assumptions that query trajectory

roughly follows the reference trajectory. In this paper, we

overcome both limitations.

B. Robust Image Matching Costs with CNN Features

To align image sequences, we need to match the individual

images. Our approach represent each image by a single high-

dimensional feature vector. In their extensive study, Chen et
al. suggest that the 10th layer of the convolutional neural

network OverFeat [17] produces robust features for changing

environments. The size of the output feature vector depends

on the size of the input image. We opted for the smallest

acceptable size of 450× 250 pixels, which results in feature

vector of approx. 200, 000 dimensions. Note, however, that

our algorithm is not limited to this kind of features and we

will plan to investigate alternative features such those from

VGG-16 [18], Net-VLAD [1] and PoseNet [8] in our future

work.
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Fig. 3. Example of the proposed hashing algorithm. Here the dataset
consists of 3 feature vectors of dimension 7 each. An entry of hash table
H[2] stores the IDs of the feature vectors 0 and 1, since for both of them,
dimension 2 has the value of 1. For a query feature, the set of dimensions
that take a value of 1 is A = {0, 1, 2, 4}. By collecting the values from
H , the set of potential matching candidates is 0 with occurrence 3, 1 with
occurrence 3 and 2 with occurrence 1. The resulting matching candidates
for query q are {0, 1}.

C. Efficient Relocalization Strategy

No localization system is free of failures. Thus, it can

happen that a robot gets lost, i.e, it cannot establish a cor-

respondence between its current observations and the model

anymore. In our case, this means that the (sub-)sequence

of images, which the robot is currently acquiring, cannot

be matched to the reference sequence anymore. A common

reason for that in practice is the fact that the robot moves

along a so far unseen trajectory, for example, when leaving

the mapped area.

A good relocalization system should be able to detect

whenever the robot reenters the previously mapped area in

order to resume or restart the localization. To detect whether

the robot is lost, we analyze the nodes of the best current

matching hypothesis within the sliding window over time.

If the percentage of the hidden nodes within this window

exceeds 80%, i.e. only 20% of the images can be matched

to the reference sequence, we consider the robot as lost. The

size of the window depends on the framerate of the camera

and potentially also on the speed of the robot1.

A straightforward but computationally demanding way to

find a reentry point is a brute force search through the whole

reference database. Instead, we propose to use hashing for

identifying potential reentry points. This results in comparing

a query image only to the subset of the database images that

are mapped to the same hash key. Hashing techniques are

known to be robust and efficient to find image duplicates. In

contrast to standard (cryptographic) hashing such as MD5

or SHA1, hashing for image retrieval is expected to assign

similar features to the same or neighbouring buckets, i.e.,

to similar hash keys. This property is referred to as locality
sensitive. Locality sensitive hashing (LSH) proposed in [6]

was one of the first approaches to apply hashing for image

retrieval problems.

We found that the use of an improved version of the LSH,

called Multi-Probe LSH proposed by Lv et al. [10] is better

1In our experiments (using car in an urban environment), the size was
set to 10 s.

suited for image matching tasks. Multi-Probe LSH builds on

top of the LSH but specifies an intelligent strategy to probe

specified buckets in multiple hash tables to get the higher

probability of finding similar images. In our work, we use

the Multi-Probe LSH in the following way: The moment the

robot is considered lost, the algorithm starts to hash every

incoming image qi and looks up for candidates C(qi), stored

in the hash buckets, according to the probe strategy. More

information about the probing strategy can be found in [10].

After the potential matching candidates are retrieved, we add

the corresponding nodes to the graph

Ereentry = {(x(i−1)j , xc)}c∈C(qi) (1)

where i is the id of the current query image qi, the term

x(i−1)j corresponds to a node representing current best

matching hypothesis, and c refer to ids of the images in the

reference dataset that were retrieved as matching candidates

based on hashing.

Originally, Multi-Probe LSH was designed to match im-

ages that were taken under similar conditions and was

used with relatively low dimensional features, e.g. 64 or

192 dimensions. In this work, however, we rely on high

dimensional features (around 200K dimensions) as they show

a better matching performance under changing conditions.

This naturally leads to an increase in the querying time for

computing the potential candidates from the database.

To tackle this issue, we propose an alternative hashing

algorithm designed to explicitly take into account the high-

dimensionality of the data and thus improve the querying

time without compromising matching performance.

As in every hashing algorithm, the first step is to construct

the hash table H . We start with binarizing the feature vectors

that represent the images from the reference dataset. We

inherit the binarization strategy for CNN features proposed

by Arroy et al. [2]. To receive the binary values, we first scale

the feature vector so that the dimension with largest spread

lies in the interval [0, 255] and afterwards all dimensions

higher than a middle value 128 are assigned to 1, others 0.

Formally:

f int = (f cnn −min(f cnn))
255

max(f cnn)−min(f cnn)
,(2)

fbin =

{
1, iff int >= 128,

0, iff int < 128
(3)

Let us assume we need to hash a dataset that consists

with N features indexed with n ∈ [0, N ] and each of the

feature has D dimensions indexed with d ∈ [0, D]. Then,

every entry in the hash table H[d] stores the set of indices

of all the features that have a value of 1 in dimension d:

H[d] = {n | fbin
n [d] = 1} (4)

In a query phase, the incoming image q gets also binarized

using the same procedure as in Eq. (3). Afterwards, we

extract a set of indices A(q) of dimensions take the value of

1 for the image q:

A(q) = {d | fbin
q [d] = 1}, (5)
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where |A| = M < D and typically M � D. We collect all

the feature indices from the hash table, that take a value of

1 for the dimension stored in A

H[A] = ∪̂a∈AH[a], (6)

where ∪̂ denotes the set union preserving duplicates. We

intentionally keep the duplicates in the set to further select

those feature candidates that have high number of occur-

rences in the set H[A]. This represents the fact that the

query feature q and candidate features from the database

share a substantial set of feature dimensions taking a value

of 1. Thus, they are likely to represent the same place. For

an illustration of the hashing procedure, consider the toy-

example in Fig. 3.

D. Loopy Reference Sequences

While recording the reference image sequence, it can

happen that the robot moves along the same route multiple

times. It may even be unavoidable given the topology of

the environment. In practice, this situation occurs frequently

when considering a typical urban mapping run using a car. In

Fig. 4 (left), we provide a sketch of a trajectory that shows

the situation in which reference trajectory visits the same

place in the environment twice from ’B’ to ’C’. The cost

matrix for a corresponding real world situation is depicted

in Fig. 13 (left) in the experimental section. In these matrices,

bright pixels correspond to a pair of images that appear

similar given the feature vectors, whereas dark pixels suggest

a low similarity. In this case after visiting the place ’C’,

there are two possibilities to proceed, either visiting ’C-D’

or ’C-F’. As the query trajectory follows the ’C-F’ route,

we can see a brighter pattern on the right lower part of

the cost matrix in the Fig. 13 (left), whereas if the query

trajectory followed the ’C-D’ direction, the pattern would

appear in a left lower part of the matrix. The previous version

of our approach [21], cannot handle this situation flexibly,

because the query sequence is expected to roughly follow

the reference one.

In this paper, we extend the approach so that the search

algorithm can flexibly “jump” between similar places in

reference sequence. The ability to “jump” is established

by creating the edges in the graph between the nodes that

correspond to the similar places in the environment. If

we know that image a corresponds to image b within the

reference sequence, then whenever the algorithm is requested

to expand the graph from the node xia, it will also expand

from the node xjb

Esim = {(xia, x(i+1)k)}k=b−K,...,b+K (7)

where K - is a fan-out parameter that compensates for

different robot speeds or camera frame rates. The same

thoughts hold if the graph gets expanded from the node xib.

To be able to establish these nodes, we need to identify

which places, i.e. images, in the reference dataset represent

the same place. Since the evaluations are performed only

on the reference dataset, finding of the similar place can be

done offline using standard place recognition algorithm such

DE

A B C F

reference

query

same place

A B C D

reference query lost

Fig. 4. Left: Sketch of similar places situation. Right: sketch of a query
detour during which the robot is lost.

ground truth

matching costs

expanded nodes

real match hidden match

Fig. 5. Example of possible outputs in our experiments. The cost matrix
stores the costs of matching individual images (not used in our algorithm).
Expanded nodes - matching costs computed in our algorithm. Real matches
- image pairs that represent the same place and hidden match - image pairs
that support the path hypothesis, but have low matching cost. Ground truth
matches that represent the same place in reality.

as FABMAP2 [5] since the images stem from the the same

appearance within the reference trajectory.

IV. EXPERIMENTAL EVALUATION

Our experiments are designed to show the capabilities of

our method and to support our key claims, which are: Our

approach is able to (i) quickly re-localize after a period

while navigating without additional pose information, (ii)

handle the kidnapped robot problem, (iii) be executed in

an online fashion, and (iv) deal with loops in the reference

images sequence. We furthermore provide comparisons to

an existing methods such as [14], [13], [21]. We perform the

evaluations on own datasets as well as on publicly available

ones. To support the claims made in the beginning of the

paper, we have selected the datasets that explicitly represent

a particular challenge for localization. Some of them stem

from the Freiburg datasets used in [20], [21] and others from

the VPRICE Challenge dataset. Additionally, we collected a

more challenging dataset in terms of trajectory shapes. We

collected the data in Bonn with a car and a dashboard camera.

The query as well as reference trajectory contains several

revisits of the same places. In this paper, we use the datasets

collected in the morning with slight rain and overcast as well

as in the evening and very late evening on different days.

Example images can be seen in Fig. 1.

Note, that throughout all the experiments the cost matrix

was only computed for visualization purposes. The matching

algorithm only computes the matching costs for the image

pairs visualized in green. To enhance the visualization of the

cost matrix for larger datasets, we also overlayed the ground

truth results, see Fig. 5 for further notations.
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Fig. 6. Example of a cost matrix for matching two trajectories, where the
query trajectory deviates from the reference one twice. Once at the beginning
and then in the middle. The places are marked with pink rectangles. Left:
matching matrix. Middle: result of proposed algorithm. Right: Result using
previous approach. Note that the full cost matrix for matching is only shown
for visualization and does not need to be computed by our approach.

A. Matching Performance and Localization Recovery

The first set of experiments is designed to show that our

approach is able to quickly relocalize after the system has

identified that it cannot find matching images for a certain

amount of time. This typically has the reason that the robot

is navigating outside the mapped area or that the robot has

been “kidnapped and teleported” to a different location the

map. In our setup, kidnapping is equivalent to the situation

that robot has deviated from a previously taken path and now

moves on a different subsequence of the reference data.

The first experiment is designed to show how our approach

can deal with situations, in which the robot is navigating

outside the mapped area (reference sequence). This means

that there are no corresponding images with respect to the

reference sequence. An example for that can be seen in

Fig. 6 (left) marked by the large rectangles. Fig. 6 (middle)

illustrates that our approach localizes the robot in such

a situation (as can be seen from the red (matched) and

blue (unmatched) pixels. In contrast, the standard lazy DA

approach [21] finds the matches only partially as is searches

in the wrong area of the graph, see Fig. 6 (right).

We further tested our system on the publicly available

VPRICE Challenge dataset to illustrate the handling of

the kidnapped robot problem. We depict here the part that

contains images where a person is moving with a hand-held

camera during the day in the reference sequence and repeats

the same path during the day and at night within the query

sequence. Since the image sequences between the day and

night runs are appended to each other, this corresponds to the

kidnapped robot situation, i.e. the robot was teleported from

the current location (end of the sequence) to another place

(beginning of the sequence). As Fig. 7 (middle) suggests

also in this case we can dramatically improve the matching

quality with respect to our previous approach Fig. 7 (right).

Furthermore, we evaluated our approach on a more challeng-

ing dataset that has multiple revisits of the same places in

query as well as reference sequence, see Fig. 8. The left

Fig. 7. Example of the trajectory matching from the VPRICE datasets. Here
the query trajectory follows the reference trajectory twice, once during the
day time (upper matrix part) and once during the night time (lower matrix
part). Left: cost matrix. Middle: result of proposed algorithm. Right: Result
using previous approach.

Fig. 8. Matching example from the Freiburg dataset. The trajectory contains
partial revisits of the reference sequence as well as detours in the query
sequence. Left: cost matrix. Middle: result of proposed algorithm. Right:
Result using previous approach.

image of Fig. 9 depicts the precision-recall curve and as can

be seen the quality of the result is also better than in our

previous approach [21] (here labeled as “RAL’16”) exactly

due to the ability to detect loops. Fig. 9 (right) visualizes the

results for a dataset with a query loop and relocalization part,

as in Fig. 6 and it clearly outperforms the RAL’16 approach.

The next experiment is performed using more challenging

shapes of trajectories, recorded in downtown Bonn. In Fig. 10

the query sequence was collected in the morning with a slight

rain, whereas the reference in the late evening around a week

later. The trajectories only partially overlapped, which results

in broken bright patterns in the cost matrix. As can be seen

the proposed approach (middle) is able to find the underlying

pattern, i.e. find the matches, whereas our previous approach

can only perform reliably within the continuous pattern.

Fig. 11 shows the results for another pair of trajectories. The

query sequence was collected in the early evening, whereas

the reference in the late evening. As can be seen the proposed

approach finds the underlying pattern as well as ignores the

areas, where the query trajectory deviates from the reference

one, thus no matching images and minimal expansion are

expected. Due to inability of our previous method to handle

the loops in the trajectories, without (GPS) priors, it performs

poorly on this dataset.

To evaluate the performance of our approach in a more

quantitative way, we computed precision recall as well as
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Fig. 9. Precision recall plots for the dataset with multiple loops in query in
references sequences (left) and the dataset with a query connected through
the similar places in the reference sequence (right).

Fig. 10. Matching example of trajectories from Bonn in which both
trajectories contain loops. The query also deviates for reference trajectory for
a significant amount of time. Left: cost matrix with ground truth overlayed.
Middle: proposed approach; Right: Result using previous approach.

F1-score statistics for the given datasets, see in the Tab. I. As

it can be seen, by introducing the additional constraints and

an efficient relocalization strategy, we are able to increase

the number of found image matches (recall) with almost the

same precision rate as in our previous paper. This naturally

leads to an increase in accuracy in terms of F1-score.

B. Hashing comparison

The second experiments is designed to show that the

performance of the proposed relocalization strategy and the

Multi-probe locality sensitive hashing is comparable. We

also confirm that the proposed hashing algorithm runs faster

for the data with very high dimensional features. For the

Multi-probe hashing we use the OpenCv implementation. We

select the following parameters for all of the experiments:

number of tree = 1, key size = 10 and probe level = 2.

From our experience selecting a higher number of trees

or key size does not improve the performance of the al-

gorithm, but, dramatically increases the computation time.

Fig. 12 depicts only small deviations of the precision recall

Fig. 11. Additional matching example from Bonn. Left: cost matrix with
ground truth overlayed. Middle: proposed approach; Right: Result using
previous approach.

TABLE I

QUALITATIVE COMPARISONS BETWEEN THE IMAGE SEQUENCE

MATCHING APPROACH FROM [21] (RAL’16) AND PROPOSED METHOD.

TRAJECTORIES OF VARIOUS SHAPES.

RAL’16 Proposed
exp pr; re F1 exp pr; re F1

1 7,3% 0.98; 0.35 0.51 6% 0.95; 0.92 0.93
2 12,6% 0.89; 0.63 0.74 11% 0.89; 0.91 0.86
3 10,3% 0.55; 0.64 0.59 4.2% 0.7; 0.71 0.70
4 2.9% 0.99; 0.31 0.48 1.5% 0.95; 0.76 0.84
5 2.7% 0.72; 0.35 0.46 1.8% 0.8; 0.81 0.80

Fig. 12. Precision recall plots for different pairs of trajectories from Bonn
dataset. LSH - results for locality sensitive hashing, DH - proposed hashing
algorithm (dimension hashing).

curves between the locality sensitive hashing (LSH) and

the proposed dimension hashing (DH), which indicates that

both hashing algorithm perform equally good on multiple

datasets. On the other hand, the run time of the individual

hashing strategies differ dramatically. For querying a set of

candidates the LSH on average takes 120ms, whereas DH

retrieves the candidates in on average in 600μs, which makes

the candidates extraction time around 200 times faster. This

speedup has a substantial impact on the overall timing.

Given the OverFeat feature vectors, we obtain the follow-

ing timings. Processing a single image while being localized

takes 2− 3ms. In contrast, processing a single image while

being lost takes 30 − 80ms using our DH hashing and

150 − 200ms using LSH. Thus, our approach reduces the

runtime for the relocalization by a factor of 2.5-5 in our

experiments.

C. Loops in Reference Sequences

The last experiment is designed to show that taking into

account the similarity of the places in the reference sequence

leads to better localization results. As it can be seen, in

Fig. 13 (middle), our proposed approach finds the underlying

pattern as oppose to the approach that does not take into

account the notion about the place similarity Fig. 13 (right).

Again this is an expected results and was the reason for
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Fig. 13. Example of trajectories, where the reference sequence traverses
the same place in the environment twice (marked with orange squares)
and deviates in two difference direction upon exiting similar area. The
query trajectory then also passes the ”marked” area and follows one of the
direction in the reference sequence. Middle: result of proposed algorithm.
Right: Result using previous approach.

implementing this approach. Experiments with other datasets

show similar results, but are omitted here in sake of brevity.

V. CONCLUSION

In this paper, we presented a new approach for quickly

finding correspondences between a currently observed image

stream and a previously recorded image sequence under

strong appearance changes. Related to [21], we build a

data association graph incrementally and search for a data

association sequence using an effective search heuristic. The

work proposed here overcomes two key limitations of our

previous method. First, we provide an efficient way for

re-localizing the robot in situations, in which it got lost,

after the robot has left the previously mapped areas and is

reentering the known part of the environment or to solve

the kidnapped robot problem. Second, our new approach

can deal with loops in the reference sequences effectively

without additional pose priors, like GPS. We implemented

and evaluated our approach on different publicly available

datasets. Our evaluations and comparisons show that we

can handle the above mentioned situations, which could not

been solved with the approach in [21]. We furthermore show

through the experiments that the our approach runs online,

provides an effective image matching, and supports all claims

made in this paper.
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Experimental study of the precision of a multi-map AMCL-based
localization system

Garcia G.1, Dominguez S.1, Blosseville J.-M.2, Hamon A.1, Koreki X.1 and Martinet P.1

Abstract— Autonomous navigation on the public road net-
work, in particular in urban and semi-urban areas, requires a
precise localization system, with a wide coverage and suitable
for long distances. Moreover, the system must be adapted to
higher speed, as compared to usual indoor mobile robots. Con-
ventional GPS is not precise enough to satisfy the requirements.
In addition, GPS suffers from signal fading and multi-path
(signal reflections on nearby surfaces), very common in urban
environments because of the buildings. This paper shows the
methodology and statistical results of performance, over nearly
100 km, of the localization system developed at LS2N based on
the classical probabilistic Monte Carlo localization, adapted for
multiple maps. The environments under study are urban and
suburban roads.

I. INTRODUCTION

Urban environments have different characteristics than
other environments like indoor areas or highways. They usu-
ally are very dynamic in terms of traffic, require frequent and
pronounced steering actions, and are usually more structured
because of the surrounding buildings. On the other hand,
suburban residential areas are usually structured, as well as
quiet regarding traffic. In both scenarios, the average speed is
limited by law to 50 km/h, less in some areas. Ring roads are
another important urban traffic environment. Their distinctive
features are a dynamic traffic, a globally linear structure and
lots of vehicles running in the same direction, with higher
speed limits than in urban centers.

For autonomous navigation, it is important to be able to
self-localize with good precision in all these environments
and this is one of the main motivations of this study.

Even though they are built using a 3D LiDAR, our
approach uses 2D occupancy maps in order to simplify the
processing while still integrating as much surrounding infor-
mation as possible. 2D maps limit the amount of information
to be processed, with respect to 3D maps.

In such a map-based localization system, determining the
correct vehicle position is easier if the maps contain only
static information. To satisfy this constraint, we take only
LiDAR measurements located a minimum height above road
surface (see section II). This strategy effectively discards
most non stationary objects: cars, vans, motorbikes, people...
and significantly contributes to stable localization. For more
information, in [1] a comparison of the results using this
technique with a Velodyne PLS-16 versus three laser range
Sick LMS151 covering 3600 is described.

1 These authors are with LS2N, Laboratoire des Sciences du Numérique
de Nantes, École Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France

2 J.-M. Blosseville is with Sherpa Engineering
Corresponding author: Gaetan.Garcia@ec-nantes.fr

Prior to the localization phase, the maps are built using
Simultaneous Localization and Mapping (SLAM). Highly
effective SLAM techniques exist, and state-of-the-art SLAM
solvers are now available that achieve good accuracy in real-
time (e.g. GMapping [2] and Hector SLAM [3]). We have
implemented an extended version of the GMapping package
of ROS (Robot Operating System). Our algorithm uses as
inputs odometry and planar laser scans, as does the AMCL.
It is a Large Scale 2D SLAM which uses multiple sub-maps
[7], with the generated sub-maps being geo-positioned thanks
to RTK-GPS (Real Time Kinematic GPS). Each time the
system starts building a new sub-map, the previous ones are
geo-positioned and saved. A map-manager is in charge of
deciding when to store the current map on disk and start
building a new one.

During the localization phase, the sub-maps are loaded as
required along the path. Adaptive Monte Carlo localization
(AMCL) [4], [5], [6] ) is applied in the current sub-map to
compute the position relative to the map.

It is important to precise that, for positioning the sub-maps
at centimetric level, a RTK-GPS Wide Area Differential
GPS has been used during the map building phase. A good
positioning of the sub-maps ensures good absolute position
of the car if the local map localization is precise. The RTK-
GPS, in conjunction with odometry, is also used during the
localization phase to calculate the instantaneous position and
heading of the vehicle used as a reference.

The remainder of this paper is organized as follows.
Section II presents the hardware configuration used for
the experiments. Section III contains the methodology for
building and geo-positioning the sub-maps, while section IV
explains the localization method. Sections V and VI respec-
tively present the experiments and the statistical localization
results.

II. HARDWARE SETUP

A. Vehicle and sensors
The vehicle used for this study is an electric car Renault

Fluence ZE (Figure 1), equipped with the following sensors:

• Wheel tachometers which are read at 50 Hz on the CAN
bus of the car. These are used to compute the speed of
the vehicle, which is one of the inputs of the odometry
generator.

• “Strap-down” Inertial Measurement Unit Xsens
MTI 100. It provides the angular speed of its three
orthogonal axes at 200 Hz. The vertical angular speed
is used to compute the increments of angular rotation
of the car, which is the second input of the odometry
generator.
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• RTK-GPS receiver ProFlex 800
(www.spectraprecision.com/eng/proflex-800.html). Pro-
vides positions with + 1 cm accuracy in RTK mode.
It is used for ground truth generation and sub-map
positioning.

• Puck Velodyne VLP 16 LiDAR
(http://velodynelidar.com/vlp-16.html). Provides range
measurements in 16 planes at different pitch angles
between -15◦ and 15◦, over 360◦ in horizontal, with a
resolution of 0.25◦ and a range accuracy of ±3 cm for
a maximum range of 100 m. Used for map building
and localization.

.

Fig. 1. Renault Fluence ZE used for the experiments

B. 360◦ laser scan generation

The VLP-16 LiDAR sensor (figure2) has been placed
above the roof surface.

Fig. 2. The Velodyne VLP-16 on the roof of the Renault Fluence ZE.

Extrinsic calibration of the sensor provides the position
of the VLP-16 relative to the car frame. We convert each
measurement from the sensor frame into the car frame by
simple reference frame transformation (Eq. 1). The raw data
provided by the VLP-16 corresponds to 3D measurements.
Therefore, in order to obtain a planar scan information, we
project the points belonging to the height range [1.8 m -
2.8 m] on a horizontal plane (fig.3). The points chosen are
higher than most cars and people, so in this step we remove
from the system most of the perturbation due to moving
objects, thus increasing the stability of the localization [1].
Moreover, the amount of information to be processed at each

iteration is drastically reduced when projecting from 3D to
2D laser scan, which allows the algorithm to run in real time
on a conventional computer. Once the points are transformed
into the car frame, the scan measurement can be addressed
by an index in the vector of range measurements (Eqs. 2 and
3).

Fig. 3. Sensor configuration for Fluence. A 360◦ laser scan is obtained
from the 3D point-cloud generated by the VLP-16. The bottom of the figure
shows the point-cloud range involved in the generation of the planar scan.

The relation between the points in car and sensor frames
is:

cP = cTs ∗ sP (1)

where sP is a point expressed in the sensor frame, cTs is
the constant transformation between the sensor frame and
the car frame and cP = [x, y, z]T is point P expressed in
the car frame. From these coordinates, we can extract the
bearing angle α of P . Given the angular resolution of the
scan, each value of α corresponds to a unique index in the
output scan vector, given by equation 2.

i(α) = round(
α

Δα
) (2)

where Δα is the angular resolution, in our case 0.5◦, and
α ∈ [0, 360◦].

The range measured by the sensor for measurement index
i is:

rangei =
√

x2 + y2 (3)

C. Ground truth generation

The ground truth position is computed using a Kalman
filter that uses:

• The odometry pose. It is the result of integrating over
time the speed of the car and its vertical angular
velocity.

• The RTK-GPS position provided directly by the GPS
receiver.
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The GPS receiver provides localization at 1 Hz and the
odometry is generated at 50 Hz, frequency of the speed
measurements on the CAN bus of the car. The Kalman filter
generates ground truth localization at the same frequency
than the odometry (50 Hz). However, the RTK-GPS position
is not always available, since it requires a minimum constel-
lation of visible satellites and correct reception of corrections
from the GPS ground station. In Section V, aerial views of
the paths are provided. For each path, a color code reflects
the precision of the GPS data, depending on the mode the
system is in.

• GPS-Fix-RTK in green (+/-1 cm)
• GPS-Float-RTK in blue (+/- 15cm)
• GPS-Float in red (+/- 2-5m)

III. MAP BUILDING METHODOLOGY

The localization method is based on a multi-map system
that covers the length of the trip using 2D occupancy grid
sub-maps. For building each of those sub-maps we apply 2D
SLAM using ROS Gmapping [2] then each sub-map is geo-
positioned using an optimization process that matches the
local paths inside each sub-map with the global path obtained
using the EKF GPS+odometry position. The reason why this
method was chosen is because with respect to a local map
the precision is quite acceptable for navigation, even though
absolute precision might not be that good. On the other hand,
the EKF GPS position can suffer from various disturbances,
so its precision may locally be insufficient, while remaining
globally consistent, meaning that it doesn’t diverge from the
real position. This method takes advantage of both good
qualities: good local sub-map precision and good global GPS
consistency for positioning the sub-maps.

The sub-maps are positioned forming a chain in which
two consecutive sub-maps are joined at common points
called connection points. During the building phase, for
each sub-map i we simultaneously record, at a predefined
interval of distance Lthreshold, the path point in the map
Pi
m = {P i

jm
}{j=0...Ni−1}, and the path point produced by

the EKF for the same instant. We also record the vari-
ance of the localization error of the EKF solution Pi

g =
{P i

jg
, σ2

jg
}{j=0...Ni−1}, where Ni is the number of points

of the local path i. In this way we obtain two paths, the
map path and the global path, produced respectively by the
SLAM and EKF processes (See figure 4). The optimization
by relaxation process for geo-positioning the maps is only
applied when the sub-map under construction reaches a
maximum size, so it takes little computing resources and
can be run in real time on a standard computer.

The points of both types of path are computed with respect
to a common global reference system (see figure 5). The
sub-maps are connected at the connection points to ensure
continuity between them. We apply an iterative process of
energy relaxation to fit the map and the global paths in
such a way that the points that have a better EKF global
precision intervene with higher weight than those with lower
precision. The idea consists in considering the points of the
global path like fixed points linked to the corresponding
point in the map path by a virtual elastic force proportional

Fig. 4. Global path and Map path. Different sub-map paths are represented
in different colors as a chain of sub-maps connected at the connection points.
The green circles represent the localization error of the EKF solution.

Fig. 5. Global and local reference systems used in the optimization process.

to the distance between both points. The elasticity constant
is defined as the inverse of the covariance of the global
position error (figure 6). The output of the relaxation process
is the sequence of sub-maps poses that produce a minimal
energy, so the coherence of the information recorded on the
global path and the map path are optimal. In practice, areas
where the quality of the GPS is lower (for instance in urban
canyons) or where it is inexistent (tunnels) produce global
path points in which the uncertainty of the localization is
high, so the corresponding forces with the respective map
path point are weak or null. In this way, the method can
cross areas of poor GPS coverage, provided they are not
longer than the size of a sub-map, and yet ensure a good
geo-positioning of the sub-maps.

IV. LOCALIZATION METHODOLOGY

The localization uses a probabilistic process called Adap-
tive Monte Carlo Localization (AMCL)[5], based on a par-
ticle filter [4]. The main ideas of such an algorithm are:

• Each particle represents a likely position and orientation
(posture) of the vehicle.
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Fig. 6. Every point P i
jp

of the sub-map is attracted towards the correspond-

ing point P i
jg

with a force �F i
j proportional to the inverse of the covariance

of the position error covij and the relative position of the points �lij . From

Newton’s action-reaction principle, at the connexion points P i
Nm

the forces
between the sub-maps are opposed.

• The odometry equations are used to predict the posture
of the particles at each iteration.

• Periodically, the filter calculates how well the LiDAR
measurements fit the local sub-map, for each particle,
with the result corresponding to the probability of the
particle to hold the true posture of the vehicle.

• Only the particles with a probability higher than a given
threshold survive, others are discarded.

• The particle with the highest probability is assumed to
correspond to the current posture of the vehicle.

• Whenever the number of remaining particles becomes
too low, a resampling around the last best fit is per-
formed, in order to maintain a minimum number of
particles.

In our extension of the algorithm, when the vehicle leaves
a sub-map, a module called ”map manager” orders to load
the next sub-map and initializes the local pose of the car
on the new sub-map to ensure continuity of the localization
process. As shown in figure 4, there is a certain amount of
overlap between sub-maps, which guarantees the absence of
”gap” in the process.

V. EXPERIMENTAL CONDITIONS

Three scenarios have been considered for testing the
localization system:

• Ring road of Nantes: little structured environment,
higher speed and continuous traffic.

• Residential area: more structure than in the previous
case, lower speed, and little traffic.

• Urban zone: structured zone like in the previous case,
low speed and continuous presence of traffic in any
direction.

Remarks about ring road scenario:

• On the ring road, the RTK coverage varies significantly
from one test to another. In figure 7 a typical example is

Fig. 7. RTK-GPS coverage - Ring road of Nantes (RTK zones in green)

Fig. 8. RTK-GPS coverage - Residential zone (RTK zones in green)

shown. The total length in RTK mode is about 2.6 km.
• In the chosen trajectory, the RTK-GPS coverage east of

the river Erdre is, in general, quite bad. The precision
of the localization in this part has essentially been
evaluated on those short portions in which the GPS
was in RTK mode. This is because there are multiple
bridges crossing over the road that mask the signals
coming from the satellites (red circles on the image of
figure 7).

• In the part with good RTK coverage, the infrastructure is
almost non existent, except the borders of the roadway.

Remarks about residential scenario:

• The journey is located in the municipality of ”La
Chapelle sur Erdre”, in the north of Nantes.

• The availability of RTK-GPS is quite repeatable from
one test to another. Figure 8 shows a representative
example.

• The RTK mode is available practically along the full
trip. The total length in RTK mode is about 3.6 km.

Remarks about the urban scenario:

• The journey is located in the north of Nantes.
• The availability of the RTK mode is globally good, but

in the southern part it is less stable. Figure 9 shows a
representative example. The total length in RTK mode
is about 3.4 km.
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Fig. 9. RTK-GPS coverage - Urban zone (RTK zones in green)

Fig. 10. Statistical summary for each scenario

VI. RESULTS AND ANALYSIS

Figure 10 shows a statistical summary of the results of
the three scenarios. The minimum and maximum errors, the
average error and its standard deviation over nine executions
of the path are given.

Figure 11 shows the histograms of the lateral and longi-
tudinal errors for each scenario and gives a visual idea of
error distribution.

Figure 12 represents the series of standard deviations of
the lateral and longitudinal errors for the individual experi-
ments of each scenario. This figures shows in a visual way
the repeatability of the experiments for the same trajectory
by comparing the different individual tests.

The total distance analyzed along the ring road of Nantes
is about 26 km, near 38 km in residential zone and about
34 km in urban zone. The experiments were conducted
at different hours of the day, on different days. The total
distance covered was about 100 km.

Here are a few observations we consider important:

• The errors can be considered as centered.

Fig. 11. Lateral and longitudinal error histograms (ring road, residential,
urban)

Fig. 12. Repeatability of the standard deviation error along the experiments
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• The symmetry of the lateral error histograms is good,
a little less for the longitudinal ones. In any case we
cannot say there is any anomaly.

• The standard deviations are between 0.13 m and 0.22 m.
As expected, the standard deviation of the error is higher
on the ring road, with less structured environment than
in the other two cases.

• Considering figures 10 and 12, we observe that the
poorer quality of the localization on the ring road is duly
reflected by the algorithm’s estimation of the standard
deviation of the error.

• Figure 12 shows that the standard deviation obtained on
different executions of a given scenario are repeatable.
However, experiment number two (10 March 2017)
shows a standard deviation of the error higher than
the others. This particular experiment was conducted in
foggy conditions. At this point, it would be premature to
conclude that the fog is the cause of the result based on
a single occurence of foggy conditions, but the matter
certainly deserves further attention.

We have also noted that, in some of the experiments, there
are rare situations where the error exceeds the ±3σ interval
which, for a gaussian probability distribution, corresponds to
an event of probability 0.27%. The standard deviation of the
errors are produced by the AMCL algorithm, based on the
dispersion of the particles and is just an approximation. Nev-
ertheless, it fits quite well the real probability distribution,
so it can be used as a quality estimator.

At this point one of the main questions that emerges is,
which are the sources of error in the overall process? It would
be difficult to enumerate all the error sources but we can at
least mention the most important ones:

• Time stamping of the RTK-GPS measurements. The
GPS measurements used in the experiments were time
stamped with the time at which the NMEA message
from the GPS reader arrives, minus a fixed delay that
was estimated at 35 ms, which is approximately the
time taken by the receiver to compute the position and
send the result to the computer. Obviously, that is not
optimal and should be computed dynamically by using
techniques that uses the GPS PPS (Pulse Per Second)
signal to obtain the correct time of measurement in
computer’s time. The error introduced in the results
by bad time stamping of the GPS measurements are
related directly to the generation of the ground truth, not
with the localization algorithm but, as we compare the
ground truth and our localization, it affects the results.

• Time stamping of the LiDAR data. The time stamp of
the VLP-16 sensor is transfered to the planar 360◦scan,
and this time stamp is of great importance when per-
forming the ”update” phase in the particle filter. A delay
in the laser time affects the SLAM process. As in the
case of the RTK-GPS, the laser data was stamped with
the time of arrival of the data. In order to be precise it
should be stamped using the same PPS input as for the
GPS.

• Noise in laser measurements. The laser sensor has
an intrinsic measurements error of a few centimeters.

Additionally, the angular discretization of the scan pro-
duces an uncertainty in the position of the measurement
as well. These two effects combined cause the 3D
measurement corresponding to a fixed point of the
environment not to be totally static, specially if the
vehicle moves.

• Projection of points from 3D to 2D. The fact that we
project a range of height from the 3D cloud to a single
2D plane can also introduce some error, specially if the
environment is not geometrically vertical, that is, for the
same angle, all points in different heights do not project
onto the same 2D position.

• Odometry error. Even though the odometry was care-
fully calibrated, the short term prediction of the motion
between two measurements is still affected by some
noise.

VII. CONCLUSIONS AND FUTURE WORK

Results of an intensive campaign of evaluation of a
large scale mapping and localization experiment have been
reported. The algorithms have proved to be very robust
and their evaluation of the precision of the result reliable.
Current accuracy may not yet be sufficient for autonomous
navigation in the urban areas, but is getting close to the
requirements. We feel that there is room for improvement of
the performance with the same set of sensors, in particular
through more precise data time stamping, which is the
problem we wish to address in the near future.
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PedLearn: Realtime Pedestrian Tracking, Behavior Learning, and Navigation

for Autonomous Vehicles

Aniket Bera and Dinesh Manocha1

Abstract— We present a real-time tracking algorithm for ex-
tracting the trajectory of each pedestrian in a crowd video
using a combination of non-linear motion models and learning
methods. These motion models are based on new collision-
avoidance and local navigation algorithms that provide im-
proved accuracy in dense settings. The resulting tracking
algorithm can handle dense crowds with tens of pedestrians at
realtime rates (25-30fps). We also give an overview of techniques
that combine these motion models with global movement
patterns and Bayesian inference to predict the future position
of each pedestrian over a long time horizon. The combination
of local and global features enables us to accurately predict the
trajectory of each pedestrian in a dense crowd at realtime rates.
We highlight the performance of the algorithm in real-world
crowd videos with medium crowd density.

I. INTRODUCTION

The sensing and computation (detection, tracking, and pre-
diction) of human crowd motion has received considerable

attention in the literature. It is a well-studied problem that

has many applications in surveillance, behavior modeling,

activity recognition, disaster prevention, and crowded scene

analysis. Despite many recent advances, it is still difficult

to accurately track and predict pedestrians in real-world

scenarios, especially as the crowd density increases.

The problem of tracking pedestrians and objects has been

studied in computer vision and image processing for three

decades. However, tracking pedestrians in a crowded scene

is regarded as a difficult problem due to intra-pedestrian

occlusion (i.e. one pedestrian blocking others) and changes in

lighting and pedestrian appearance. Similarly, predicting the

trajectory of a pedestrian in a dense environment can also be

challenging. In general, pedestrians have varying behaviors

and can change their speed to avoid collisions with obstacles

and other pedestrians in a scene. In high density or crowded

scenarios, the pairwise interactions between the pedestrians

tend to increase significantly, affecting their behavior and

movement. As a result, the highly dynamic nature of pedes-

trian movement makes it difficult to estimate their current

or future positions. Furthermore, many applications such as

surveillance, robot navigation, and autonomous driving need

realtime prediction capabilities to estimate the positions of

the pedestrians.

We present an algorithm that offers better tracking and

prediction using improved motion models and local nav-

igation models and demonstrates improved navigation for

autonomous robots and vehicles.

1All the authors from the Department of Computer Science, University
of North Carolina at Chapel Hill, USA

Fig. 1: Pedestrian Prediction and Multi-Robot Navigation:
We developed an algorithm to predict the path of each
pedestrian (i.e., close to the ground truth) and use the
predicted path for collision-free multi-robot navigation. We
also classify the behavior of each pedestrian from his or
her trajectory and adjust some of the components of social
constraints (e.g., personal space, entitativity behavior, etc.)
accordingly.

II. RELATED WORK

In this section, we give a brief overview of prior work on

motion models and pedestrian path prediction.

A. Motion Models

There is an extensive body of work in robotics, multi-agent

systems, crowd simulation, and computer vision on modeling

pedestrian motion in crowded environments. These models

can be broadly classified into the following categories:

potential-based models, which model virtual agents in a

crowd as particles with potentials and forces [20]; boid-like

approaches, which create simple rules to steer agents [35];

geometric optimization models, which compute collision-free

velocities [40]; and field-based methods, which generate

fields based on continuum theory [39]. Many of these models

have been used for offline and online pedestrian tracking and
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trajectory computation. Among these approaches, velocity-

based motion models [22], [23], [41], [40], [33] have been

successfully applied to the simulation and analysis of crowd

behaviors and to multi-robot coordination [37]. Velocity-

based models have also been shown to have efficient im-

plementations that closely match real human paths [18].

B. Pedestrian-Tracking with Motion Models

Prior work in pedestrian tracking [10], [25] attempts to

improve tracking accuracy by making simple assumptions

about pedestrian movement, such as constant velocity and

constant acceleration. More recently, long-term motion mod-

els and pairwise interaction rules have been combined with

tracking to improve the accuracy. Bruce et al. [9] and

Gong et al. [16] first estimate pedestrians’ destinations

and then predict their motions along the path towards the

estimated goal positions. Liao et al. [28] extract a Voronoi

graph from the environment and predict people’s motion

along the edges. Many techniques have been proposed for

short-term prediction using motion models. Luber et al. [29]

apply Helbing’s social force model to track people using a

Kalman filter based tracker. Mehran et al. [30] also apply

the social force model to detect people’s abnormal behaviors

from videos. Pellegrini et al. [32] use an energy function

to build up a goal-directed short-term collision-avoidance

motion model. Bera et al. [4], [5], [3] use reciprocal velocity

obstacles and hybrid motion models to improve the accuracy

of pedestrian tracking.

C. Path Prediction and Robot Navigation

There has been considerable work on predicting pedestrian

trajectories in robotics and computer vision. Most of this

work relies on local pedestrian interactions, crowd flows,

motion models, Kalman filters, particle filters, and their

variants [38], [2]. However, current methods are limited to

sparse settings with only a few pedestrians. Our goal is to

develop accurate methods for dense settings that consist of

pedestrians as well as moving robots. There has been some

recent work on using hybrid approaches, combining local

and global pedestrian features. In practice, each of these

methods only capture some interactions and movements; they

are unable to capture the overall pedestrian behavior and

hence fail in many situations.

Understanding the behavior of pedestrians within a crowd,

which can be as simple as a person walking towards a

destination, involves several complex human-centric deci-

sions such as which route to take and the various ways to

avoid collision with other pedestrians and obstacles. As a

result, different pedestrians will accomplish the same goal

in different manners.

Robots navigating in complex, noisy, and dynamic envi-

ronments have prompted the development of other forms

of trajectory prediction algorithms. Fulgenzi et al. [15] use

a probabilistic velocity-obstacle approach combined with

the dynamic occupancy grid; this method assumes con-

stant linear velocity motion of the obstacles. DuToit et al.

[11] present a robot planning framework that takes into

account pedestrians’ anticipated future location information

to reduce the uncertainty of the predicted belief states.

Other techniques use potential-based approaches for robot

path planning in dynamic environments [34]. Some methods

learn the trajectories from collected data. Ziebart et al. [43]

use pedestrian trajectories collected in the environment for

prediction using Hidden Markov Models. Bennewitz et al. [2]

apply Expectation Maximization clustering to learn typical

motion patterns from pedestrian trajectories before using

Hidden Markov Models to predict future pedestrian motion.

Henry et al. [21] use reinforced learning from example traces,

estimating pedestrian density and flow with a Gaussian pro-

cess. Kretzschmar et al. [26] consider pedestrian trajectories

as a mixture probability distribution of a discrete as well as

a continuous distribution, and then use Hamiltonian Markov

chain Monte Carlo sampling for prediction. Kuderer et al.

[27] use maximum entropy based learning to learn pedestrian

trajectories and use a hierarchical optimization scheme to

predict future trajectories. Many of these methods involve

a priori learning, and may not work in new or unknown

environments.

Trautman et al. [38] have developed a probabilistic predictive

model of cooperative collision avoidance and goal-oriented

behavior for robot navigation in dense crowds. Guzzi et al.

[19] present a distributed method for multi-robot human-like

local navigation. Variations of Bayesian filters for pedestrian

path prediction have been studied in [36], [31]. Some of

these methods are not suitable for real-time applications or

may not work well for dense crowds.

III. PEDESTRIAN TRACKING

We use the term pedestrian to refer to independent individ-

uals or agents in a crowd. We use the notion of state to

specify the trajectory characteristics of each pedestrian. We

assume that the output of the tracker corresponds to discrete

2D positions. Therefore, our state vector, represented using

the symbol x ∈ R
6, consists of components that describe the

pedestrian’s movements on a 2D plane:

x = [p vc vpref ]T, (1)

where p is the pedestrian’s position, vc is its current velocity,

and vpref is the preferred velocity on a 2D plane. The

preferred velocity corresponds to the predicted velocity that a

pedestrian would take to achieve its intermediate goal if there

were no other pedestrians or obstacles in the scene. We use

the symbol S to denote the current state of the environment,

which corresponds to the state of all other pedestrians and

the current position of the obstacles in the scene. The state

of the crowd, which consists of individual pedestrians, is a

union of the set of each pedestrian’s state X =
⋃

i xi, where

subscript i denotes the ith pedestrian.
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The trajectories extracted from a real-world video tend to

be noisy and may have incomplete tracks [13]; thus, we use

Bayesian-inference technique to compensate for any errors

and to compute the state of each pedestrian [24]. At each time

step, the observation of a pedestrian computed by a tracking

algorithm corresponds to the position of each pedestrian on

the 2D plane, denoted as zt ∈ R
2. The observation function

h() provides zt of each pedestrian’s true state x̂t with sensor

error r ∈ R
2, which is assumed to follow a zero-mean

Gaussian distribution with covariance Σr:

zt = h(x̂t) + r, r ∼ N (0,Σr). (2)

h() is the tracking sensor output.

We use the notion of a state-transition model f() which is an

approximation of true real-world pedestrian dynamics with

prediction error q ∈ R
6, which is represented as a zero-mean

Gaussian distribution with covariance Σq:

xt+1 = f(xt) + q, q ∼ N (0,Σq). (3)

We can use any local navigation algorithm or motion model

for function f(), which computes the local collision-free

paths for the pedestrians in the scene.

We use particle filters as the underlying tracker approach.

The particle filter is a parametric method that solves non-

Gaussian and non-linear state estimation problems [1]. Par-

ticle filters are frequently used in object tracking, since they

can recover from lost tracks and occlusions. The particle

tracker’s tracking uncertainty is represented in a Markovian

manner by only considering information from present and

past frames. For more details we redirect the reader to [8].

IV. PEDESTRIAN PATH PREDICTION USING BAYESIAN

LEARNING

We use Ensemble Kalman Filter (EnKF) and Expectation

Maximization (EM) with the observation model h() and

the state transition model f() to estimate the most likely

state x of each pedestrian. EnKF uses an ensemble of

discrete samples assumed to follow a Gaussian distribution

to represent the distribution of the potential states. EnKF

is able to provide state estimation for a non-linear state-

transition model. During the prediction step, EnKF predicts

the next state based on the transition model and Σq . When

a new observation is available, Σq is updated based on the

difference between the observation and the prediction, which

is used to compute the state of the pedestrian. In addition,

we run the EM step to compute the covariance matrix Σq to

maximize the likelihood of the state estimation.

Next, we compute clusters of these movement features and

the entry point for each pedestrian. That provides information

about the pedestrians’ global level trajectory behaviors. At

every w steps, we compute new behavior features for each

agent in the scene. We group similar features and find K
most common behavior patterns, which we call movement
flow clusters. We use multivariate Gaussian mixture model

Fig. 2: Behavior Learning: Our goal is to identify the

personality of each pedestrian in a robot’s field of vision

based on his or her trajectory and learning methods. Once

we can classify the personalities of nearby pedestrians, the

multi-agent planning algorithm will take the personalities of

the pedestrians into account and ensure that the resulting

robot behaviors satisfy the social constraints.

to learn the time-varying distribution of entry points, which

will be used as the initial position x0 for a newly added

pedestrian in a data-driven crowd simulation.

A. Pedestrian Behavior Classification

To track or predict the motion of the pedestrians, the robots

should be able to closely estimate pedestrians’ behavior

and thereby adjust their movement by accounting for so-

cial constraints. While there are many factors that govern

people’s overall behaviors, we focus on capturing these

behavior variations that occur due to pedestrians’ inherent

personalities and the environment.

To automatically classify every pedestrian’s behavior based

on his or her trajectory and motion model, we developed

an approach that can classify pedestrian behaviors using

Personality Trait Theory from psychology and the Eysenck

3-factor model [14]. This model identifies three major factors

that are used to characterize the personality: Psychoticism,

Extraversion, and Neuroticism (commonly referred to as

PEN). Each individual personality is identified based on how

they exhibit each of these three traits. These individual be-

haviors can be classified into six weighted behavior classes:

aggressive, assertive, shy, active, tense, and impulsive. There

is prior work on mapping the personality factors and different

motion models used for multi-agent navigation [12], [17].

In our formulation, each pedestrian can be described by a

weighted combination of different personality traits based on

his or her movement pattern. We use learning methods and

a precomputed database on pedestrian behaviors classified
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using Personality Trait Theory. During online planning and

navigation, we compute pedestrian state information using

tracking and behavior learning methods. In this approach,

the personality classification is reduced to performing a high-

dimensional nearest neighbor query for behavior classifica-

tion and dynamic computation of the motion parameters.

Based on this classification, the pedestrians are classified into

different behavior models such as shy, aggressive, active, etc.,

as shown in Fig. 4. Moreover, we adjust the social constraints

parameters corresponding to entitativity and culture elements

based on different personalities.

Fig. 3: Our robot navigation algorithm satisfies the prox-

emic distance constraints, including personal space (red)

and social space (yellow). The trajectory computed by our

algorithm (green trajectory) does not intrude on the per-

sonal/social space of the pedestrian, whereas a robot that

fails to account for the social constraints (purple trajectory)

may cause pedestrians discomfort.

In our formulation, we use the well-known Personality

Trait Theory from psychology and use the Eysenck 3-factor

model [14] to classify such behaviors. We adopt a data-

driven approach and derive a mapping between simulation

parameters and perceived agent behaviors based on the

results of the perceptual study. For more details we refer

the reader to [6].

As an initial proof-of-concept, we demonstrate our behav-

ior learning pipeline on the PBS video stream from the

2017 Presidential Inauguration ceremony at Washington, DC,

USA. We extract a representative sample of the crowd by

selecting 130 pedestrians from a camera angle and learn

their behaviors. As part of our crowd prediction, we changed

the number of pedestrians in the scenario (e.g., 1 million

pedestrians), and estimated the distribution and shape of the

resulting crowd at the National Mall. The resulting crowd of

1M pedestrians has the same behavior classification as the

original 130 representative pedestrians. Readers can find the

video here - https://www.youtube.com/watch?v=
Hyyl22qpc9I

Fig. 4: Improved navigation based on social and physical

constraints in a simulated environment: (a) shows a real-

world crowd video and the extracted pedestrian trajectories

in blue. The green markers are the predicted positions of

each pedestrian that will be computed by our algorithm for

collision-free navigation. The red and yellow circles around

each pedestrian in (b) and (c) would highlight their personal

and social spaces respectively, computed using the social

constraints described in Sections 2 and 3. The use of such

psychological and social constraints in (c) can result in better

trajectories over the existing navigation method that takes

into account only the physical constraints with no social

consideration, as shown in (b).

B. Socially-Aware Multi-Robot Multi-Person Navigation

The multi-agent planning and interaction algorithms de-

scribed in the earlier sub-sections will be integrated and

evaluated in multi-human environments. It is necessary for

multiple robots working around human pedestrians to be
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able to successfully navigate to perform their tasks without

colliding with pedestrians or other obstacles in the scene.

One of our goals is to ensure that the resulting set of robots

has fewer entitative behaviors. We also hope to account for

cultural elements.

We developed a new navigation algorithm for multi-robot

multi-person scenarios. Furthermore, the level of interac-

tion may vary depending on passive, active or dynamic

surveillance. Our approach combines pedestrian prediction

and behavior learning methods with multi-agent navigation

schemes that account for both social and physical constraints

as well as social saliency.

We use the distances computed using a person’s psycho-

logical constraints and social saliency to enable socially-

aware collision-free robot navigation through a crowd of

pedestrians. Our navigation method is based on Generalized

Velocity Obstacles (GVO) [42], which uses a combination

of local and global methods. The global metric is based on

a road-map of the environment. The local method computes

a new velocity for the robot and takes these distances into

account. Moreover, we also consider the dynamic constraints

of the robot in this formulation.

Figure 3 illustrates how a robot avoids an approaching

pedestrian based on these distances. At a given time instance,

the pedestrian is located at pcurr
human, and has two proxemic

distances: a personal distance of dp (red) and a social

distance of dp (yellow). At the same time instant, the robot

is located at pcurr
robot and has a preferred velocity vpref

robot which

is computed based on global navigation module. This is the

velocity that it would have for navigating to its goal position,

in the absence of any static or dynamic obstacles. The robot

predicts that during the next time frame, the pedestrian

will move to the position ppred
human using the path prediction

described in Section III(D), and it computes its new velocity

to avoid a collision with the pedestrian. However, this path

prediction is not sufficient for socially-aware navigation since

the robot fails to take into account the pedestrian’s proxemic

distances. Based on these distances, the robot alters its

goal position to ppred+soc
robot and its velocity to vpred+soc

robot

to accommodate both social and psychological constraints.

Notice that the velocity vpred
robot causes the robot to intrude on

the pedestrian’s personal distance, shown by the red circle

centered around the pedestrian, whereas the updated velocity

ppred+soc
robot successfully accounts for the pedestrian’s personal

distance as well as its social distance. For more experimental

details and results, we refer the reader to [7].

V. CONCLUSION

We present an overview of a collection of interactive ap-

proaches for computing trajectory-level behavior features

from crowd videos and demonstrate their application to

surveillance and training applications. The approaches are

general, can handle moderately dense crowd videos, and can

compute and predict the trajectory (past, present and future)

for each agent during each time-step. A key benefit of these

approaches is that they can capture dynamically changing

movement behaviors of pedestrians and therefore can be used

for dynamic or local behavior analysis.

Limitations: The performance and accuracy of this algo-

rithm are governed by the tracking algorithm, which can

be noisy, sparse, or may lose tracks. Furthermore, current

realtime methods may not work well in very dense crowd

videos, e.g., those with thousands of agents in a single frame.
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Safe Navigation in Dynamic, Unknown, Continuous, and Cluttered
Environments

Mike D’Arcy, Pooyan Fazli, and Dan Simon

Abstract— We introduce PROBLP, a probabilistic local plan-
ner, for safe navigation of an autonomous robot in dynamic,
unknown, continuous, and cluttered environments. We combine
the proposed reactive planner with an existing global planner
and evaluate the hybrid in challenging simulated environments.
The experiments show that our method achieves a 77% reduc-
tion in collisions over the straight-line local planner we use as
a benchmark.

I. INTRODUCTION

Safe navigation through Dynamic, Unknown, Continuous,

and Cluttered (DUCC) environments is a crucial ability

for autonomous robots in search and rescue, self-driving

cars, and servicing tasks. A robot traveling through such

environments must make fast decisions to react to moving

obstacles, while still finding an efficient path through the

partially or fully unknown area.

Path planning approaches can be broadly divided into

global and local/reactive methods. Global planners attempt to

find a complete path from the robot to the goal. A common

way to extend these methods to handle moving obstacles is

to add a time dimension to the planning space and modeling

obstacles as spacetime volumes. This has the advantage of

making it possible to consider the long-term effects of actions

but can also result in long planning times in large or complex

environments. However, in dynamic environments, standing

still for a long time while replanning could result in a

collision. In addition, many global approaches expect that

a full map of the target area is given a priori [1, 6, 15, 17],

which is an unrealistic assumption in many scenarios.

The limitations of global planners are often addressed by

combining the global planner with a local method. Local

or reactive planners only attempt to plan one or more steps

in the future, without necessarily finding a complete path

to the goal. This results in much faster decision-making for

autonomous robots in the vicinity of dynamic obstacles but

typically has weak goal-directedness, making it hard to pro-

vide completeness or optimality guarantees. Many reactive

planners assume deterministic knowledge of obstacles, such

as most Velocity Obstacle based approaches [4, 5, 18].

In this paper, we define the safe navigation problem in

DUCC environments, with no constraints on the shape or size

of the environment or the shape or velocity of the moving

obstacles. The proposed local planner, PROBLP, consolidates

information about the target and the obstacles detected by

Mike D’Arcy, Pooyan Fazli, and Dan Simon are with
the Electrical Engineering and Computer Science Department,
Cleveland State University, Cleveland, OH 44115, USA
{m.m.darcy,p.fazli,d.j.simon}@csuohio.edu

the range sensor to identify a safe path in the environment.

We run experiments in which we combine PROBLP with

the Dynamic Rapidly-exploring Random Tree (DRRT) [3]

algorithm to produce a hybrid capable of navigating through

complex environments while still remaining safe around

moving obstacles. We show empirically that this combined

approach significantly outperforms the DRRT algorithm,

which by default uses a straight-line local planner.

II. RELATED WORK

Many existing navigation approaches work only in discrete

state spaces. This is the case for D* [16], AD* [11], and also

for the SIPP based methods [14, 12]. While it is usually

possible to discretize a continuous environment into an

occupancy grid [2] or roadmap [9], doing so can require large

amounts of memory and processing power, and it destroys

some of the information about the environment.

Many of the methods that do work in DUCC environments

are based on Rapidly-exploring Random Trees (RRT) [10].

RRT methods use random sampling to build a tree struc-

ture over the map. Given enough samples, the RRT will

eventually find a path if one exists, so it is called a

probabilistically complete algorithm. Due to the path being

constructed randomly, there is no upper bound on the cost

of the path produced in regular RRT, and it can be proven

that the probability of the basic RRT algorithm producing

an optimal path is zero [7]. This path optimality problem

is addressed by RRT* [7], an extension of RRT that will

converge to an optimal solution asymptotically as the number

of random samples increases. While this improves the speed

of path execution, the planning time to find an optimal path

can still be quite large, making it unsafe for environments

where obstacles may be moving during the planning process.

Anytime RRT* [8] was developed to reduce this drawback

by quickly finding a suboptimal solution and improving it

throughout the execution of the path, but some challenges

remain. For both RRT and RRT*, if the path to the goal

requires going through a very narrow set of acceptable states,

as is the case with a narrow tunnel, the planning time can

increase significantly as the probability of sampling one of

the acceptable states is low.

In dynamic environments where the initial solution may

have to be replanned several times, the potentially high

planning time of RRT methods is amplified. A variant of RRT

that focuses on efficient replanning with a time dimension

is the Multipartite RRT (MP-RRT) algorithm [19], which

reuses parts of the previous tree to significantly reduce

the required planning time. However, while MP-RRT is
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Fig. 1: A sample environment. Static obstacles are dark grey

and moving obstacles are light blue. The start point is shown

in green on the bottom left of the map, and the target region

is shown in red on bottom right. The small purple circle

represents the robot, the orange line depicts the robot’s range

sensor readings, and the green line shows the robot’s path.

capable of planning in continuous, unknown environments

with moving obstacles and has a low replanning time relative

to other RRT methods, the planning time still increases

with the size and complexity of the environment due to the

nearest-neighbor search over all the nodes in the tree. This

makes the approach unsafe for some real-world applications,

because obstacles may collide with the robot while it is

replanning.

A method that does not plan a complete path to the goal

was proposed by Petti and Fraichard [13]. Called Partial

Motion Planning (PMP), this approach still uses RRT as

the exploration strategy but handles real-time constraints by

stopping the growth of the tree when planning time runs out

and provides provable safety conditions using the Inevitable

Collision States (ICS) concept. PMP provides a significant

improvement in real-time planning ability over the global

RRT methods, but there remains the possibility that PMP

will not find any collision-free trajectories, even when one

exists. If there is only a narrow path to escape obstacles,

PMP’s uniform sampling strategy may not be as effective as

an intelligently biased sampling approach.

III. PROBLEM STATEMENT

The problem takes place in a continuous two-dimensional

configuration space C with static and dynamic obstacles. Our

agent is a holonomic robot that can move at a fixed speed. It

has no prior information about the size and shape of the map

or the velocity of the moving obstacles in the environment.

The robot has a limited-range 360° sensor, with which it

can determine the distance to the nearest obstacle in any

direction. We additionally assume the robot can perfectly

determine its own location and the location of the goal in

terms of (x, y) coordinates in the map. The objective of

the robot is to navigate from an initial position to the goal,

without colliding with any of the static or dynamic obstacles.

Figure 1 shows a sample environment and a robot navi-

gating toward the target point.

IV. PROBABILISTIC LOCAL PLANNER (PROBLP)

We introduce PROBLP, a probabilistic local planner, to

enable an autonomous robot to navigate safely in DUCC

environments. The algorithm works by sampling a set of

candidate trajectories from the robot’s current position and

then choosing the best by scoring each candidate on safety

and on how much closer it brings the robot to the goal. We

define a trajectory as a sequence of waypoints p0, p1, · · · pn,

and we say the robot has executed a trajectory when it has

visited all of the waypoints in order. Our approach does

not sample trajectories entirely at random and instead biases

the sampling using a probability distribution to increase the

likelihood of choosing favorable candidate trajectories. We

will first describe the construction of the distribution, and

then how the trajectory sampling is performed.

A. Trajectory Sampling: Probability Distribution

The probability distribution fΘ that the robot uses to

sample trajectories is a distribution over direction angles

θ ∈ Θ = [0, 2π), so fΘ(θ) is the probability of θ being the

best direction for the robot to travel next. We construct fΘ
using two other distributions: a target distribution, fg

Θ, and an

obstacle distribution, fo
Θ. Each of these are also distributions

over θ ∈ Θ ∈ [0, 2π). Note that while fΘ is a probability

distribution, fg
Θ and fo

Θ are only pseudo probability distribu-

tions, because their integrals do not necessarily sum to 1.

1) Target Distribution: The target distribution fg
Θ repre-

sents the extent to which moving at a direction angle θ would

bring the robot closer to the goal. It is defined as a Gaussian

distribution:

fg
Θ(θ) =

1√
2πσ2

e−
angleDiff(θ,α)2

2σ2 , (1)

where α is the direction angle between the current location

of the robot and the goal, and σ is the standard deviation.

The choice of σ will affect the behavior of the robot,

with small values making it strongly prefer to go directly

towards the goal, and large values making it more willing

to take a roundabout path to stay safe around obstacles.

angleDiff(θ1, θ2) returns the absolute value of the

smallest difference between two angles. It can be formally

written as:

angleDiff(θ1, θ2) = min
(
(θ1 − θ2) mod 2π,

(θ2 − θ1) mod 2π
)

2) Obstacle Distribution: The obstacle distribution fo
Θ

represents the extent to which moving in a direction θ would

move the robot into free space. It is defined as:

fo
Θ(θ) =

range(θ)

λ
, (2)

where range(θ) is the distance between the robot and the

nearest obstacle at direction θ, and λ is a scale factor. The
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Fig. 2: The red and green lines show obstacle and target

distributions respectively. The dashed part is cut away, and

the solid line is the resulting final distribution.

specific λ chosen can vary by use case and affects the robot’s

sensitivity to obstacles, with higher values increasing the

sensitivity. In our experiments, we set it to:

λ = maxRange×
√
2πσ2 (3)

where maxRange is the maximum range of the robot’s

range sensor.

To combine the target and obstacle distributions into the

final distribution fΘ, we take the element-wise minimum and

then normalize the area under the curve to be 1:

f̂Θ = min(fg
Θ, f

o
Θ) (4)

fΘ =
f̂Θ∫ 2π

θ=0

f̂Θ

(5)

Figure 2 shows an example of the result of combining two

distributions.

B. Trajectory Sampling: Selecting the Candidate Trajecto-
ries

We use fΘ to sample a set of candidate trajectories, from

which the robot will select its next movement. Each candi-

date trajectory is constructed as follows: The first waypoint

p0 is set to the current location of the robot. We then sample

an angle θ at random from [0, 2π), biased by fΘ. The location

of p1 is determined by predicting the location the robot

would have if it started at p0 and moved in a direction of

θ for Δt seconds. Δt is the computation time allowed for

the robot. The remaining waypoints up to pn are computed

in a similar way, with the caveat that a new fΘ must be

constructed for each waypoint.

Recall that fΘ is composed of the target and obstacle

distributions. The target distribution is constructed using the

direction angle between the current location of the robot

and the goal. However, when picking p2, we must consider

that the robot will start from the previous waypoint p1 and

not from its current position p0, so the target distribution

should be constructed using the direction angle from p1 to

the goal. For the obstacle distribution, we must consider that

not only the location of the robot will change, but also time

will pass as it progresses along the trajectory. Therefore,

we predict the future locations of the moving obstacles to

construct an accurate distribution. To this end, we define a

predictor function that returns the probability of an obstacle

obs occupying position pos at time t ≥ t0:

P (obs|pos, t) = min

(
4
1 + (t− t0)

1 + d
, 1

)
, (6)

where t0 is the current time, and d = minc∈Cobs
‖c− pos‖.

Cobs is the set of all locations currently occupied by obsta-

cles, which is computed by the robot’s range sensor. If no

information is available with which to predict future obstacle

positions, it can simply be assumed that ∀t P (obs|pos, t) =
P (obs|pos, t0), which is trivial to compute directly from the

range sensor. However, better predictions improve safety and

reduce the need to replan. Likewise, there is no specific

reason to prefer the predictor function in Equation 6 to any

other obstacle prediction method, but through empirical test-

ing of many possible predictor functions in the experiments

in Section VI we found that this function works well.

Using the obstacle predictor function, we can define a

rangei(θ) function giving the predicted range sensor value

for angle θ at time ti = t0+ iΔt, with the robot predicted to

be located at pi. This function can be used in Equation 2 in

place of range(θ) to compute the predicted fo
Θ for future

times. Let Ci
obs be the set of all points pos such that

P (obs|pos, ti) > γ, where γ is some cutoff value in the

range [0, 1]. Then let Ci,θ
obs ⊆ Ci

obs be the subset of points

that lie on the line segment from pi to pi+(maxRange)(û),
where û is a unit vector with direction θ. Then:

rangei(θ) = min
c∈Ci,θ

obs

‖c− pi‖ (7)

The selection of the cutoff value γ can be adjusted depend-

ing on the use case, but in general it is most important not

to pick a value that is too low. For example, if γ = 0.01 and

there is some uncertainty in future obstacle locations, even

points relatively far from obstacles may exceed the small

cutoff value, unnecessarily restricting the robot’s options. A

large value of γ will increase the likelihood of sampling

waypoints with low safety scores, increasing the number of

samples needed to find a good trajectory, but it is less likely

to eliminate desirable trajectories. We found that a cutoff of

γ = 0.3 worked well in our experiments.

In general, when picking waypoint pi, fΘ should be

computed relative to the location of pi−1 and relative to

time ti−1 = t0 + (i− 1)Δt. After fΘ is constructed for this

location and time, pi can be chosen as described previously,

by picking a θ from fΘ and projecting the location the robot

would have after starting at pi−1 and traveling in direction

θ for Δt seconds. The process is repeated up to waypoint

pn, at which point the generated trajectory is ranked by a

combination of distance and safety scores.
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C. Trajectory Sampling: Selecting the Final Trajectory

Our algorithm is modular with respect to the metrics used

for the distance and safety scores, but we calculated them as

follows:

Distance Score = fΘ(β)× ‖pn − p0‖∑n−1
i=0 ‖pi+1 − pi‖

, (8)

where β is the direction angle between p0 and pn, and fΘ is

constructed relative to the current location of the robot and

to the current time. The second term in Equation 8 is used

for smoothing, as the ratio of straight-line distance to total

path length is larger for more straight trajectories.

Safety Score =
n∏

i=0

[1− P (obs|pi, t0 + iΔt)]. (9)

This is equivalent to the probability of the robot being able

to follow the trajectory without having any collisions. We

set a minimum safety threshold and eliminate all candidate

trajectories with a safety score below this threshold. This

prevents unsafe trajectories from being considered even if

they score highly on distance.

The final score of each trajectory is computed by taking a

weighted sum of the distance and safety scores. The safety

score is weighted by w and the distance score by (1 − w),
where w can be adjusted on a per-use-case basis to make

the robot more cautious (high w) or aggressive (low w).

The robot picks the trajectory with the highest score and

attempts to follow it to completion but continuously updates

the estimate of the safety as new information is obtained.

If the safety score goes below the minimum threshold,

the robot immediately plans a new trajectory to avoid the

danger. Otherwise, the robot will not replan until it reaches

the terminal waypoint pn. This makes the robot prefer to

continue on its planned smooth path, instead of replanning

and changing direction at each decision step.

V. COMBINING PROBLP WITH A GLOBAL PLANNER

PROBLP is weakly goal-directed, so the robot will attempt

to move directly towards the goal when it is safe to do

so. In an environment with complex arrangements of static

obstacles, such as a maze or office building, the reactive

planner alone may not be able to reach the goal due to

the need to backtrack. Therefore, it is desirable to combine

ProbLP with a global planner. The global planner plans a

path to the goal and divides it into a series of configurations

with straight lines between them. The goal for the reactive

planner is then to navigate to the next configuration instead

of to the target point. This allows the complex long-term

path planning to be handled by the global planner, and the

reactive planner can remain simple and fast for computing

safe trajectories around moving obstacles.

To this end, we selected the Dynamic Rapidly-exploring

Random Tree (DRRT) algorithm [3] as the global planner

to combine with PROBLP. DRRT is an extension of the

RRT algorithm that improves replanning speed by reusing

parts of the old tree when regrowing it. DRRT generates

configurations to guide our planner through the static map

and only considers static obstacles in its plan. The avoidance

of moving obstacles is entirely handled by PROBLP to avoid

the relatively expensive DRRT replanning. Because ProbLP

may deviate significantly from the DRRT path for safety

reasons, it will ask DRRT to replan if it cannot reach the

next configuration within 10 seconds.

DRRT initializes a tree with the root node at the goal, and

then grows the tree from the goal to the robot by repeatedly

(1) sampling a random point p, (2) finding the node nnear in

the tree that is closest to the sampled node, and (3) adding a

new node nnew to the tree at a distance of at most η along

the line from p to nnear, as long as the line from p to nnew

does not intersect any obstacles. This is done until one of

the nodes added to the tree is within some distance ε of the

robot’s location. The list of intermediate configurations given

to the local planner is the list of ancestors of the node closest

to the robot.

To work under limited-vision constraints, the DRRT builds

its own internal map for collision checking, which starts

empty and adds obstacles as they are observed. When it

replans, the tree is first checked for collisions, and any

branches that intersect an obstacle are pruned. The pruned

nodes are inserted into a fixed-size waypoint cache with

random replacement. Then the tree is regrown, and the

local planner is re-initialized with the resulting intermediate

configurations.

For our experiments, η = 3 m and ε = 0.7 m. The size of

the waypoint cache is 200 nodes and the random sampling

for growing the tree is biased to pick the robot’s location 10%
of the time, a random point from the waypoint cache 40%
of the time, and a point anywhere on the map the remaining

50% of the time. In addition, after the DRRT finds a path, we

smooth it by searching for pairs of nodes along the existing

path that could be connected by a straight line, skipping the

nodes between them.

VI. EXPERIMENTS

We evaluate the proposed algorithm in six simulated

environments. Each environment has a different static layout,

as shown in Figure 3. All maps are 80 m × 60 m. Twenty

dynamic obstacles are also generated randomly for each trial,

ten circular and ten square. The obstacles have random sizes

ranging between 0.5 m (radius for circles, edge length for

squares) and 3 m. Obstacles move randomly around the map,

and collisions between obstacles are not considered (i.e.,

obstacles can overlap and move through each other).

The robot speed was set to a constant 1.0 m/s for all

the experiments, but we tested a variety of obstacle settings.

These settings can be divided into two movement modes and

four speed modes. The movement modes are as follows:

• MM-1: Each obstacle picks a random point on the map

and moves straight towards it. When it reaches the point,

it picks a new point to move towards, and this continues

indefinitely.
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(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Map 5 (f) Map 6

Fig. 3: Maps used for experiments. Static obstacles are dark grey and moving obstacles are light blue. The start point is

shown in green on the bottom left of each map, and the target region is shown in red on top right. The orange circle

represents the robot’s sensor range.

• MM-2: Each obstacle moves back and forth between

two random points picked at the start of the simulation.

The speed modes are as follows:

• SP-1: All obstacles move 0.5 m/s (slower than the robot)

• SP-2: All obstacles move 1.0 m/s (same as the robot)

• SP-3: All obstacles move 1.5 m/s (faster than the robot)

• SP-4: Each obstacle moves randomly between 0.5-1.5

m/s

For each trial, all obstacles use the same movement and

speed modes (i.e., for a given trial, there cannot be some

obstacles using movement mode 1 and others using mode 2),

and we evaluate all combinations of maps, movement modes,

and speed modes for a total of 6× 2× 4 = 48 experimental

setups.
The robot is equipped with a range sensor with an effective

range of 10 m, and we assume the sensor can distinguish

between static and dynamic obstacles. In practice, this could

be achieved with an obstacle-tracking algorithm, and this

allows the obstacle predictor to be set to P (obs|p, t) = 1 if

p is an observed static obstacle, and otherwise the predictor

remains the same as defined in Equation 6. The robot speed

was set to a constant 1.0 m/s for all the experiments.
For scoring candidate trajectories, we set the safety thresh-

old to 0.1 to immediately filter out any trajectories that the

obstacle predictor determined had lower than a 10% chance

of being collision-free. When taking the weighted sum to

combine the distance and safety scores, we set the weights

to 0.5 for both distance and safety. The standard deviation,

σ, of the target distribution is set to 100, and trajectories

are sampled with a fixed length of two waypoints (i.e., two

timesteps into the future are considered). In our testing, we

found that these settings produce a good balance of path

optimality and safety.

We compare our hybrid approach (DRRT-PROBLP) with

a hybrid of DRRT and a straight-line local planner (DRRT-

SLLP). The straight-line local planner simply travels in a

straight line towards its next configuration. Unlike the DRRT

in DRRT-PROBLP, which only handles static obstacles and

leaves dynamic obstacle avoidance to PROBLP, the DRRT

in DRRT-SLLP does handle dynamic obstacles, because the

straight-line planner does not have an obstacle avoidance

strategy of its own. The straight-line planner asks DRRT to

replan if there are any obstacles obstructing its current path

within its range of vision.

Our experiments consist of 100 trials of each of the 48

combinations of speed mode and map. Both the DRRT-

PROBLP robot and the DRRT-SLLP robot run simultane-

ously on the same map with the exactly same obstacles, to

reduce error in the comparison. We allow a maximum of

5000 time steps to get to the goal before marking the trial as a

failure, and also mark the trial as a failure if the DRRT is ever

unable to find a path to the goal within 5000 nodes added

to the tree (which could happen if a moving obstacle blocks

the only path). Failed trials are not used when calculating

the averages in the results.

VII. RESULTS AND DISCUSSION

Of the 4800 trials, 4375 (91%) were successful and

425 (9%) failed. The results of the successful trials are shown

in Table I. In all of the speed modes and map combinations,

DRRT-PROBLP had fewer collisions than DRRT-SLLP,

and the overall averages were 0.27 collisions for DRRT-

PROBLP and 1.20 for DRRT-SLLP. Furthermore, even in

SP-3, where obstacles are all faster than the robot, DRRT-

PROBLP robot was able to receive less than one collision on

average for all maps. The overall average path lengths were

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 

 
 

170



TABLE I: Results of experiments. Numbers represent average of collisions

MAP DRRT-PROBLP DRRT-SLLP

SP-1 SP-2 SP-3 SP-4 Average SP-1 SP-2 SP-3 SP-4 Average
1 0.01 0.07 0.43 0.13 0.16 0.60 0.91 1.22 0.91 0.90
2 0.09 0.19 0.62 0.19 0.27 0.50 1.19 1.67 1.28 1.15
3 0.05 0.18 0.85 0.25 0.33 1.12 1.71 2.46 1.74 1.75
4 0.03 0.10 0.65 0.24 0.25 0.54 1.06 1.73 1.13 1.10
5 0.13 0.14 0.65 0.26 0.30 0.39 0.90 1.47 1.02 0.94
6 0.07 0.17 0.78 0.31 0.33 0.69 1.48 1.89 1.26 1.33

Average 0.05 0.13 0.68 0.24 0.65 1.15 1.72 1.22

similar for both robots, being 132.09 for DRRT-PROBLP

and 128.85 for DRRT-SLLP. This indicates that DRRT-

PROBLP robot did not need to deviate far from the global

path to achieve the safety improvement.

We also tracked the number of individual trials in which

DRRT-PROBLP received fewer collisions than DRRT-

SLLP. DRRT-PROBLP had fewer collisions in 2470 trials,

DRRT-SLLP had fewer in 285 trials, and in 1620 trials

both had the same number. Interestingly, the DRRT-PROBLP

robot reached the goal first in 2035 of the trials, with

the DRRT-SLLP robot arriving first in 2240. This again

indicates that the safety gains came at almost no detriment

to path length.

In SP-1, with the obstacles being slower than the robot,

DRRT-PROBLP averaged only 0.05 collisions per trial, and

had no collisions in 94% of trials. DRRT-SLLP had a much

higher average of 0.65, and only 56% of trials were collision-

free. In SP-2, the obstacles moved with the same speed

as the robot, and DRRT-PROBLP had 0.13 collisions on

average, with 88% of trials being collision-free. In this speed

mode, DRRT-SLLP had only 32% collision-free trials. Not

surprisingly, SP-3 was the most challenging one, as having

the obstacles moving faster than the robot meant there could

be situations in which the robot simply did not have time

to maneuver around the obstacle before being hit. This

had a large effect on the performance of DRRT-SLLP,

which averaged 1.72 collisions and had collisions in 80%
of the trials. Despite the difficulty of this mode, however,

DRRT-PROBLP averaged only 0.65 collisions and had zero

collisions in 54% of the trials. Speed mode 4 averaged 0.24
collisions and 81% collision-free trials for DRRT-PROBLP,

and 1.22 collsisions and 33% collision-free trials for DRRT-

SLLP.

Unsurprisingly, both robots had the lowest average number

of collisions on Map 1, which has no static obstacles.

The averages were 0.16 and 0.90 for DRRT-PROBLP and

DRRT-SLLP respectively. The most challenging map for

both robots was Map 3, having 0.33 average collisions for

DRRT-PROBLP and 1.75 for DRRT-SLLP. The second

most challenging map was Map 6, having 0.33 collisions

for DRRT-PROBLP and 1.33 for DRRT-SLLP. Maps 2, 4,

and 5 performed slightly better, having 0.27, 0.25, and 0.30
average collisions for DRRT-PROBLP, and 1.15, 1.10, and

0.94 average collisions for DRRT-SLLP.

We conjecture that the reason some maps performed better

is related to the way the static obstacles are arranged. Maps

2, 4, and 5 have a scattered obstacle layout, with many small

static obstacles spread across the map. In contrast, Maps 3

and 6 are more structured, consisting of long, contiguous

walls with large free spaces between them. In the scattered-

obstacle maps, the static obstacles can be avoided with

relatively small adjustments to the trajectory of the robot,

making it possible to take a relatively direct path to the goal.

In the environments with walls, the robot may have to make a

long detour if it finds itself trapped in a dead end, increasing

the time spent in the environment and therefore the number

of chances to be hit by an obstacle.

We measured the planning times for our implementation

of each algorithm and found that DRRT-PROBLP took an

average of 117 ms to plan each action, whereas DRRT-

SLLP took 149 ms. Intuitively, DRRT-PROBLP should have

a higher planning time because it has a more complicated

local planner, but this result suggests the opposite. We believe

the reason for the superior performance of DRRT-PROBLP

is due to the difference in the DRRT for each algorithm.

The DRRT in DRRT-PROBLP only needs to consider static

obstacles and therefore only needs to replan when new static

obstacles are observed, but the DRRT in DRRT-SLLP has to

handle dynamic obstacles as well as static obstacles, causing

it to undergo the expensive replanning operation much more

frequently.

VIII. CONCLUSION AND FUTURE WORK

We have presented PROBLP, a probabilistic local planner,

for navigating safely in dynamic, unknown, continuous,

and cluttered environments. We showed that this algorithm

outperforms the straight-line local planner algorithm we used

for comparison.

In future work, we would like to use informed hyperpa-

rameter optimization techniques, such as evolutionary algo-

rithms, to tune the algorithm automatically. We would also

like to extend our algorithm to multi-robot safe navigation

and to non-holonomic robots, and to make it more robust

with respect to uncertainties in the range sensor observations

and in the positions of the robot and the goal. Finally,

because we have so far only developed this approach for use
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in 2D environments, we would be interested in extending the

algorithm to work in higher-dimensional planning spaces.
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Germany. The Ph.D. thesis addresses gas distribution mapping and gas source localisation with mobile robots. The 
M.Sc. thesis is concerned with structure analysis of (C60)n+ clusters using gas phase ion chromatography. 
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ILIAD in a nutshell
Why the intermediate is the big step
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Concept image
More quickly changing market needs, unforeseeable trends, shorter product life cycles, …

Flexible intralogistics needed

• Today’s highly automated goods-to-man solutions 
• require dedicated warehouses,
• are unsuitable for fresh food, bulky goods, etc.

• ILIAD’s aim is to provide solutions for flexible intralogistics for the transition to 
automation in shared spaces.
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Therefore we need intralogistic systems that are F-RE-SE–QUD–SA-EFF! 
(1) highly flexible, (2) rock-solid reliable, (3) self-optimising, 
(4) quickly deployable and (5) safe yet (6) efficient 
in environments shared with humans.

Flexible intralogistics needed

Approach
Safety and efficiency by 
long-term learning and 
prediction of patterns

Easy deployment with
semantic mapping

On-line, self-optimising 
fleet management

Flexible manipulationHuman safety-aware AGV fleets:
safe and legible motion planning,
human detection and tracking,
mutual communication of intent
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Platform (CitiTruck)
Early prototype (APPLE platform at Hannover fair 2015)

Demonstrators
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Demonstrators
• Demos at key stakeholders from food distribution sector.
• Distribution of fresh food products particularly 

challenging:
• sensitive products,
• short shelf life,
• rapid response to consumer needs.

• Food industry largest manufacturing sector in EU: 
4.2 million jobs.

Orkla Foods

Not always well-defined aisle environment

Heterogeneous and brittle (and sometimes large or heavy) items to pick.

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

 
 

182



NCFM

• National Centre for Food Manufacturing

ASDA

Photo credit: RedirackPhoto credit: Adrian Welsh
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Easy deployment,
long-term operation
Learning, modelling and 
exploiting flow information

Learn, model and use dynamics
• Learn and map how things usually move.

• Statistical multi-modal flow model.
• Use for socially compliant motion planning: 

less "annoying", safer and 
more efficient operation.
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.

FP7 EU project SPENCER
http://www.spencer.eu/

yp

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Using this information can 

• lead to safer and socially more acceptable robot trajectories;
• allow to plan energy efficient paths for flying robots;
• improve gas distribution mapping.
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

(Circular–Linear Flow Field map) –
A probabilistic approach for general flow mapping

Enabling Flow Awareness for Mobile Robots in Partially Observable Environments.
T. P. Kucner, M. Magnusson, E. Schaffernicht, V. Hernandez Bennetts, and A. J. Lilienthal. 
RA-L 2017 (2:2, pp. 1093-1100) / ICRA 2017

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Local elements are probability distributions of observations V = ( , )
• One circular (orientation ) and one linear (speed ) random variable.
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Local elements are probability distributions of observations ( , )
• One circular (orientation ) and one linear (speed ) random variable.

• Semi-wrapped Gaussian mixtures 

Learning CLiFF maps
• Init: Mean Shift (MS) to determine number of clusters and their positions 
• Use MS clusters to initialize Expectation Maximisation (EM)

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Local elements are probability distributions of observations ( , )
• One circular (orientation ) and one linear (speed ) random variable.

• Field of semi-wrapped Gaussian mixtures 
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Local elements are probability distributions of observations ( , )
• One circular (orientation ) and one linear (speed ) random variable.

• Field of semi-wrapped Gaussian mixtures 

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Local elements are probability distributions of observations ( , )
• One circular (orientation ) and one linear (speed ) random variable.

• Field of semi-wrapped Gaussian mixtures 
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Field of semi-wrapped Gaussian mixtures 
• Observations in robotics are often sparse

?

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Field of semi-wrapped Gaussian mixtures 
• Observations in robotics are often sparse

?
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Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Field of semi-wrapped Gaussian mixtures 
• Observations in robotics are often sparse

• => Data imputation to build dense maps from sparse measurements
• Monte Carlo Imputation (MC)

• sampling virtual observations from the surrounding
• tends to preserve multimodal characteristics and keep sharp transitions

• Nadaraya Watson Imputation (NW) 
• Weighted extrapolation (distance kernel)
• smooths data and models introduces gradual changes

• MC performed better than NW on pedestrian data (and is less sensitive to 
kernel size) – but results may differ in different applications

Learn and model dynamics
• Learn and map how things usually move.

• Extensive research on mapping geometric structure.
• Environment typically defined by spatial movement patterns.
• Statistical multi-modal flow model CLiFF map

• Field of semi-wrapped Gaussian mixtures 
• Observations in robotics are often sparse

• => Data imputation to build dense maps from sparse measurements

• Summary
• It is possible to accurately represent multimodal (even turbulent) flow 

using CLiFF map.
• It is possible to reconstruct a dense representation based on 

sparsely distributed observations.
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Using dynamics models
• Use for socially compliant motion planning: 

less "annoying", safer and more efficient operation.

Kinodynamic Motion Planning on Gaussian Mixture Fields.
L. Palmieri, T. Kucner, M. Magnusson, A. J. Lilienthal, and K. O. Arras 
ICRA 2017

Using dynamics models
• Socially compliant motion planning using CLiFF map

• Mobile robot motion planning approach: CLiFF-RRT*
• CLiFF map – provides learned perception prior
• RRT* motion planner

• asymptotically optimal sampling-based motion planner
• considers the robot's kinematic and its non-holonomic constraints

Kinodynamic Motion Planning on Gaussian Mixture Fields.
L. Palmieri, T. Kucner, M. Magnusson, A. J. Lilienthal, and K. O. Arras 
ICRA 2017
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Using dynamics models
• Socially compliant motion planning using CLiFF map

• Mobile robot motion planning approach: CLiFF-RRT*
• CLiFF map – provides learned perception prior
• RRT* motion planner 
• => CLiFF map guides sampling in the RRT* planner

• low costs for paths that comply to the directions of CLiFF-map mixture 
components and high costs for paths in opposite directions

Using dynamics models
• Socially compliant motion planning using CLiFF map

• Mobile robot motion planning approach: CLiFF-RRT*
• CLiFF map – provides learned perception prior
• RRT* motion planner 
• => CLiFF map guides sampling in the RRT* planner

• Results are very encouraging
• Planner generates reasonable ("socially compliant") trajectories
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Using dynamics models
• Socially compliant motion planning using CLiFF map

• Mobile robot motion planning approach: CLiFF-RRT*
• CLiFF map – provides learned perception prior
• RRT* motion planner 
• => CLiFF map guides sampling in the RRT* planner

• Results are very encouraging
• Planner generates reasonable ("socially compliant") trajectories
• Planner is very efficient (significantly faster than RRT and RRT*) /

very fast convergence
• Generates higher quality paths (in terms of smoothness and length)

RRT* path
CLiFF-RRT* path

Easy deployment,
long-term operation
Ongoing work

9th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 24th 2017 
 

 
 

193



Spatiotemporal mapping
• Representations and inference for compression of past

experience and prediction of future states with 
confidence intervals.

• Learn where and when activities happen.

FreMEn (Krajnik et al., ECMR 2015)

Predicting patterns
• Combine inputs from mapping and tracking.
• Actively update knowledge – plan where and when to 

collect data.

FreMEn (Krajnik et al., ECMR 2015)
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Reliability-aware loc. & maps
• Combining metrics to assess quality of scan registration.
• Detect mapping errors using learned structural cues.

Auto-calibration
• Unsupervised monitoring and (re-)calibration of sensors.
• Find regions with high information for calibration.

6 DOF – x,y,z,roll,pitch,yaw

Optimized
timing offset

7 DOF – x,y,z,roll,pitch,yaw,dt
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Safe and human-aware
operation
Ongoing work

Human safety
• Study human safety in shared environments.
• Connect injury biomechanics to safe control and 

planning.
• Associate vehicle dynamics to injury safety database.

• Extend Safe Motion Unit paradigm to vehicle-human and 
vehicle-vehicle interaction.

• Shape vehicle velocity based on 
• humans and vehicles in the environment,
• environment observability,
• predictive braking models.
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Human-aware fleets
• Increase human-robot cooperation safety & efficiency.

• Detect, track, and analyse people.

Human-aware fleets
• Increase human-robot cooperation safety & efficiency.

• Detect, track, and analyse people.• Detect, track, and analyse people.
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Human-aware fleets
• Increase human-robot cooperation safety & efficiency.

• Detect, track, and analyse people.••••• DDDDDDDDDeeetteeeeeccccccttttttt,, ttttttttttttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrraaaaaaaaaaaaaaaaaaaaaaaaaacccccccccckkk, anddddd aaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalllllllllllyyyyyyyyyyyyyyyyyyyyssssssssssssssseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppeeeeeeeeeeeeeeeeeeeeeeeeeeooopppppppplleeeeeeeeeeeeeeeeeee....

Human-aware fleets
• Increase human-robot cooperation safety & efficiency.

• Detect, track, and analyse people.
• => Retenua AB
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Human-aware fleets
• Increase human-robot cooperation safety & efficiency.

• Detect, track, and analyse people.
• Recognise human intentions.
• Visually communicate robot intentions.
• Socially normative motion planning.Socially normative motion planning.

Manipulation

Ongoing work
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Manipulation
• Innovative end-effectors.
• Perception for dense packets, and plastic wrapping.
• Control for unwrapping, picking, palletising.
• Optimise package positions on pallets.

Fleet management

Ongoing work
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Fleet management
• Integrated task allocation, motion planning, and coordination.
• Guaranteed deadlock-free operation.
• Continuously revise w.r.t. changing requirements.

Intralogistics with Safe and Scalable Fleets of 
Autonomously Operating Vehicles in Shared Spaces

Where the Intermediate 
is the Big Step

Intra-
Logistics with 
Integrated
Automatic
Deployment

Thanks for your attention!
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2017 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session V 

Perception

Title: Fast Image-Based Geometric Change Detection in a 3D Model 
Authors:  Emanuel Palazzolo, Cyrill Stachniss 

Title: Fast Graph-Based Place Recognition 
Authors:  Mattia G. Gollub, Renaud Dubé, Hannes Sommer, Igor Gilitschenski and Roland 
Siegwart
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Change Detection in 3D Models Based on Camera Images

Emanuele Palazzolo Cyrill Stachniss

Abstract— 3D models of the environment are used in numer-
ous robotic applications and should reflect the current state of
the world. In this paper, we address the problem of quickly
finding structural changes between the current state of the
world and a given 3D model using a small number of images.
Our approach finds inconsistencies between pairs of images by
reprojecting an image onto the other by passing through the
3D model. Ambiguities about possible inconsistencies resulting
from this process are resolved by combining multiple images
such that the 3D location of the change can be estimated. A
focus of our approach is that it can be executed fast enough
to allow the operation on a mobile system. We implemented
our approach in C++ and tested it on an existing dataset for
change detection as well as on self recorded images sequences.
Our experiments suggest that our method quickly finds changes
in the geometry of a scene.

I. INTRODUCTION

Building 3D models of the environment is a frequently

addressed problem in robotics as they are needed for a wide

range of applications. For most applications that include

autonomous behavior, such models should correspond as

well as possible to the current state of the environment.

In case the environment was substantially changed, existing

models must be updated. For this purpose, the possibility

of directing a mapping or exploring robot directly towards

the possible regions that have changed instead of repeating

the whole mapping process can greatly reduce the required

efforts. Therefore, it is important to reliably identify locations

in the environment or in a 3D model that have changed.

In this paper, we address the problem of finding changes

between a previously built 3D model and its current state

based on a small sequence of images (keyframes) recorded

in the environment, see Fig. 1 for an illustration. Two aspects

are important for us: first, we want to reliably locate changes

in the model and second, the approach should have a limited

computational demand so that it can be executed on a mobile

platform. Our approach seeks to find changes between the

current state of the world and a previously recorded, existing

3D model of the scene. For finding inconsistencies, we do

not build another 3D model from the newly obtained image

data. Instead, we project the currently obtained image onto

the 3D model and then back to a view-point at which another

image of the current sequence has been taken. Through

a comparison between the back-projected images and the

one observed in reality, we can identify possible regions of

change. To eliminate ambiguities, this process is executed

for multiple image pairs. Typically 4-5 keyframe images

All authors are with the University of Bonn, Institute of Geodesy and
Geoinformation, Bonn, Germany.

This work has partly been supported by the DFG under the grant number
FOR 1505: Mapping on Demand.

Fig. 1: Our approach aims at quickly finding changes in the
environment based on an existing 3D model and a sequence of
(currently recorded) images.

are sufficient to find areas of change and then estimate the

3D location where the geometry has changed. Compared to

existing approaches for visual change detection such as the

work by Taneja et al. [13] or Ulusoy et al. [14], our method

is substantially faster towards execution on a mobile robot.

The main contribution of this paper is a new and fast

approach for identifying differences between an existing 3D

model and a small sequence of images recorded in the

environment. Our approach identifies the approximate area

of change fast enough to be executed on a navigating robot,

which sets it apart from several related other techniques. We

identify inconsistencies by comparing the acquired images

to back-projected images that would have been obtained

assuming the 3D model is correct, in combination with a

forward intersection of the potentially inconsistent regions.

Our experiments suggest that our method quickly finds the

approximate location of the change in the scene and is fast

enough to potentially guide an exploring ground robot or

UAV seeking to map the changes in the environment.

We make two key claims: our approach is able to (i)

identify the location of changes in the environment, in the

form of 3D volumes in the world coordinate frame, using a

3D model and a sequence of images, and (ii) it is fast enough

to be executed on a mobile robot, i.e. analyzing a sequence

of keyframe images does not take longer than recording it

(e.g., 10 s for five keyframe images with a size of 1500 by

1000 pixels).
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II. RELATED WORK

Building 3D models can be an expensive process as it

requires a good coverage of the environment and potentially

dedicated sensors or equipment. To reduce this cost, it is

important to identify, on an existing model, the parts that

have changed, and direct the exploration towards those loca-

tions. For this reason, 3D change detection is an increasingly

popular topic, see [8].

In the past, several 2D change detection algorithms have

been proposed [9]. Several of such methods are affected by

lighting conditions, seasonal changes, weather conditions,

and other differences that may occur between the recording

of the old and the new images. Moreover, the images often

do not provide information on the actual 3D location of the

change. Sakurada et al. [10] try to overcome these problems

by estimating the probabilistic density of the depth from

the oldset of images and by comparing it with the depth

computed from the new set of images. Eden et al. [3]

compare 3D lines in the images instead of using color or

intensity information. A more recent approach by Alcantar-

illa et al. [1], instead use a deep convolutional neural network

combined with a dense reconstruction technique.

Another approach to 3D change detection is to build a

3D model from the new images through Multi-View Stereo

and then compare the new model with the old one. This is,

however, often a rather time consuming activity, at least when

using cameras. Golparvar-Fard et al. [4] use this approach

combined with a support vector machine classifier to obtain

an updated voxelized model of the environment.

A popular and effective approach is to infer the changes

of the environment using a previously built 3D model and

a sequence of newly acquired images. One way to achieve

this is to maintain a voxelized model of the environment and

detect the probability of change in it by comparing the color

of a voxel and the color of the pixels in the images onto

which it projects. Examples of this approach are the one by

Ulusoy et al. [14] or the one by Pollard et al. [6].

Another relevant strategy that use an existing 3D model

and newly acquired images is to identify changes by re-

projecting images onto each other by passing through the

existing model and compare the inconsistencies in the re-

projection. Taneja et al. [13] use this technique on pairs

of images, and apply a graph cut minimization to label the

changed area in 3D in a voxelized model. In addition, Qin

et al. [7] combine the pairwise detected inconsistencies by

counting the rays that hit every pixel for each image, in order

to get rid of the ambiguities. They stop at the image level

and do not estimate the 3D location of the change.

In this paper, we use a reprojection technique similar

to [13] and [7] to identify the changed regions in the images.

We resolve ambiguities by fusiung multiple images and

introduce a fast way for estimating the rough location of

change in 3D. The whole process takes only a few seconds

for an image sequence. In contrast to that, state-of-the-art

approaches such as [13] or [14] have execution times in the

order of minutes.

(a) Image I1 (b) Image I2

(c) Re-projection of I1 onto I2 (d) Inconsistencies

Fig. 2: A pair of images, the first image reprojected onto the second,
and the inconsistencies between them.

III. FAST IMAGE-BASED CHANGE DETECTION

Our approach aims at spotting areas in an environment that

have changes with respect to a previously built 3D model.

It does so by exploiting a sequence of around five images

through evaluating how the projections of image content

from one image to the model and back to another image

looks like. In terms of computational demands, this process is

substantially more efficient than generating a new, dense 3D

model and comparing it directly with the given one. Note that

we assume a good pose estimate for the robot. We obtain the

(approximate) location of the 3D model and the viewpoint of

the images as described in Sec. III-A below. The first step

is to detect possible inconsistencies of an image with its

neighboring images assuming that the 3D model is correct.

After computing pairwise inconsistency hypotheses, we fuse

them to eliminate the intrinsic ambiguities and estimate the

location of change by triangulation. Given that we look for

inconsitencies between the 3D model and new images, our

approach only finds changes from images where the rays

corresponding to pixels intersect with the 3D model.

A. Camera pose estimate

Our algorithm requires an estimate of the viewpoints of

the images w.r.t. the 3D model. We obtain this through

direct georeferencing fusing GPS, IMU, and visual odometry,

as described in [11]. The approach employs the iSAM2

algorithm, and provides uncertainty information about all

sensor poses in form of a covariance matrix. In case no GPS

information is available, approaches for camera to 3D model

localization such as [2] can be used—although we did not

directly try that here.

B. Inconsistencies Between Images Pairs

To detect inconsistencies between a pair of images consist-

ing of the images I1 and I2, we create a new image I1→2

that represents the content of I1 as seen from view point

of I2 given the 3D model. Given the calibration matrix and
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Fig. 3: Re-projection procedure. The gray rectangle represents the
known 3D model, while the yellow square is a change not present
in the original model. Using two images, a point Xc, not present
in the model, is reprojected onto two pixels x1→2 and x

′

1→2.

the pose at which the camera took I1, we can compute the

projection of a 3D point X onto the image plane resulting

in a 2D point at pixel x1:

x1 = P1X, (1)

where x1 is expressed in homogeneous coordinates and

P1 = K1[R1|−R1t1] is the camera projection matrix

computed from the calibration matrix K1 of the camera and

the rotation R1 and translation t1 that transform the world

coordinates into camera coordinates.

By inverting Eq. (1), we compute the ray from the projec-

tion center of the camera through the pixel to the 3D world.

This allows us to back-project each pixel of I1 onto the 3D

model assuming the known intrinsic parameters (K1) and

the rotation matrix R1 from the extrinsic parameters:

r1 = RT

1K
−1
1 x1, (2)

where r1 is the direction of the ray in world coordinates.

In the next step, we project the intersections X between

the rays and the 3D model onto the image plane of I2 to

obtain I1→2 (see Fig. 2c for a real example):

x1→2 = P2 X, (3)

where P2 is the camera projection matrix corresponding to

image I2. In this way, we obtain a new image I1→2 that can

be compared to I2. Since the exact poses of the cameras are

unknown and the 3D model is not perfect, the point x1→2

has an uncertainty represented by the covariance matrix Σ :=
Σx1→2x1→2

. To overcome this, we compute, for every pixel

of I2 the minimum Euclidean norm of the intensity difference

to each pixel of I1→2 in a neighborhood N around the

projected pixel. We compute the size of this neighborhood

by propagating the pose uncertainty obtained while recording

the images into the image points, see Sec. III-A. In detail,

we search within the 3σ area given by Σ and select the pixel

with the smallest difference:

D1→2(i, j) = min
k,l∈N

||I2(i, j)− I1→2(k, l)||2 , (4)

where i, j, k, l are pixel coordinates and the neighborhood

N is defined as:

N =

{
∀(k, l) ∈ I1→2

∣∣∣∣∣
[
i− k

j − l

]T
Σ−1

[
i− k

j − l

]
< d2

}
, (5)
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Fig. 4: Ambiguity elimination using multiple images. When re-
projecting I1 and I3 onto I2, only one ray (therefore one pixel) is
coincident. The thicker red line represents that coincident ray.

where d2 = 11.82 is the critical value of the χ2
2 distribution

corresponding to a probability of 99.73%, i.e. a 3σ boundary

on the normal distribution. Finally, we normalize D1→2

to values between [0, 1]. Fig. 2d shows the result of this

procedure.

If there is no change in the 3D model between the

acquisition time and the time when the images have been

taken, all pixels in I1 should correctly re-project onto I2.

Therefore, I2 and I1→2 should be identical and D1→2 should

be small or equal to 0 for each pixel. If there is, however,

a change in the model, pixels corresponding to the change

reproject onto the wrong place in I2. Thus, D1→2 allows

us to identify the changes (as long as not all pixels in the

current images have the same RGB value, i.e. represent a

large homogeneous area)

The process, however, leads to ambiguities. As Fig. 3

illustrates, a single point Xc corresponding to a change

in the 3D model generates two pixel locations, x1→2 and

x′
1→2, in D1→2, one corresponding to the change in I1

reprojected onto I2 and one corresponding to the change

in I2 reprojected onto I1. To eliminate this ambiguity, we

use multiple pair-wise image comparisons as described in

the following section.

C. Inconsistency Detection using Multiple Images

The ambiguity produced by the re-projection of an image

onto another one can be eliminated by considering multiple

image pairs. Fig. 4 shows how a pixel belonging to the same

change in a third image I3 re-projects onto I2 at two different

locations. It is important to note that one of the two points

is mapped to the same location as a change detected by re-

projecting I1 onto I2. Thus, the pixels that re-project onto

the same region of I2 from the other images represent the

real change.

To localize the changes, we therefore compare an image

with its m neighboring keyframe images. For each image

It, we store an inconsistency image Dt resulting from the

product of all the inconsistency images obtained from the

neighboring images reprojected onto It:

Dt(i, j) =
∏

s∈S(t)

Ds→t(i, j), (6)
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(a) (b) (c) (d) (e)

Fig. 5: (a) The statue (here manually marked in green) is not in the model. (b) Inconsistencies between 2 images (m = 1). (c) Inconsistencies
between 3 images (m = 2). (d) Inconsistencies between 4 images (m = 3). (e) Original image masked with the segmented area obtained
from the inconsistency image with m = 3. (best viewed in color)

where S(t) is the set of m neighboring keyframe images of

It. In our implementation, we typically use the four closest

images in time to It. Fig. 5 depicts the output of Eq. (6), for

m = 1, 2, and 3.

D. Segmentation and Data Association

The procedure explained so far enables us to identify

the pixels in each image where changes occur. For reli-

ably computing the regions of change, we first filter out

the noise with an erosion-dilation procedure, then apply a

standard border following algorithm [12]. We discard all

the regions with a contour shorter than a threshold (in our

implementation 500 px) to filter out noise and changes that

are too small. The next step is to associate the regions from

the images with each other. To do that, we compute and

compare hue-saturation histograms region-wise and perform

standard cross-correlation together with a simple geometric

consistency check using the epipolar lines.

E. Estimating the Location of Change

Once we obtain the segmented 2D regions and the associ-

ation between them, we proceed to estimate the 3D location

of the change.

To simplify the notation in the remainder of this section,

the following equations will refer to a single change in

images, i.e. dropping an index referring to individual regions.

The whole procedure is repeated for every region (of detected

change).

To estimate the 3D volumes in which the changes occur,

we first compute, for every region identified as a change, the

mean location xt and spread in form of the covariance Σt

in the image. We then compute, for each change, a 3D point

X in the 3D world coordinates by triangulating the mean

location in each image. Specifically, we setup a system of

equations in the form

AX = 0, with A =

⎡
⎢⎣
S(x1)P1

...

S(xn)Pn

⎤
⎥⎦ , (7)

where A is a 3n × 4 matrix composed by 3 × 4 blocks,

n is the number of images, Pt is the projection matrix

relative to image It, and S(xt) is the skew symmetric

matrix corresponding to the mean pixel xt, in homogeneous

coordinates, i.e.:

xt =

⎡
⎣xt

yt
wt

⎤
⎦ , S(xt) =

⎡
⎣ 0 −wt yt
wt 0 −xt

−yt xt 0

⎤
⎦ . (8)

We solve this system using singular value decomposition

and retrieve X by taking the right-singular vector of A
belonging to its smallest singular value (Fig. 6a). For each

change in the image, we additionally compute the K sigma

points [5] v
(k)
t (k = 1 . . .K) corresponding to xt and Σt

and project the sigma points to the 3D space to estimate the

region of change in 3D. To compute the 3D position of the

sigma points, we define for each image a plane At passing

through X with normal equal to the direction of the ray rt
obtained through Eq. (2) for xt.

We can define the plane in homogeneous coordinates as a

4-dimensional vector:

At =

[
rt
d

]
, (9)

where the last element d = rTt X is the distance between the

camera and X.

The projection of v
(k)
t on At is the intersection V

(k)
t

between the plane and the ray r
(k)
t generated from v

(k)
t . We

compute V
(k)
t by expressing r

(k)
t in Plücker coordinates as

a line L
(k)
t joining the camera projection center Ct and a

point p = Ct + r
(k)
t along the ray:

L
(k)
t =

[
Lh

L0

]
=

[
Ct − p
Ct × p

]
(10)

From L
(k)
t , we compute the transposed Plücker matrix

ΓT(L
(k)
t ) =

[
S(L0) Lh

−LT

h 0

]
, (11)

where S(L0) is the skew symmetric matrix corresponding to

L0. Finally, we obtain V
(k)
t as

V
(k)
t = ΓT(L

(k)
t )At. (12)

We repeat this procedure for the sigma points from each

mean and covariance matrix of the same region in every

image. In this way, we can quickly estimate the approxi-

mate 3D location of the change without computing a dense

reconstruction of the scene, see Fig. 6b. The mean and the

covariance of the position of these points represent the 3D

area where the change occurs, see Fig. 6c.
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(a) (b) (c)

Fig. 6: (a) Example triangulation with 5 images. The white lines are the backprojected rays and the white point represent the triangulated
point. (b) Sigma points projected in 3D. (c) The result of our algorithm, i.e. the 3D region where the change is. (best viewed in color)

IV. EXPERIMENTAL EVALUATION

The focus of this work is a comparably fast approach to

identify changes in a previously obtained 3D model using a

sequence of new images. Thus, our experiments are designed

to show the performance of our approach and to support the

two central claims that we made in the beginning of the

paper, i.e. that our method: (i) can localize changes in the

environment using a 3D model obtained in the past and a

sequence of new keyframe images, and (ii) can be executed

fast enough to run on an exploring robot, i.e. the average

execution time should be in the order in which the sequence

is recorded, here in the order of a few seconds for around 5

keyframe images.

We perform the evaluations on own datasets,

which we publicly share including the 3D models at

http://www.ipb.uni-bonn.de/data/changedetection2017/, as

well as the dataset used by Taneja et al. [13], which

can be obtained from: https://cvg.ethz.ch/research/change-

detection/Datasets/Structure.zip. Throughout all experiments,

we use a sequence of n = 5 images and for each image of

the sequence, we compute the inconsistencies with m = 4,

i.e. for these sequences all the neighboring images. We

found out that using higher values of m does not improve

the results substantially and that is why we used this value

on all the experiments.

A. Change Identification

The first experiment is designed to illustrate the capability

of our approach to localize a change in 3D given a model and

a small sequence of images. Fig. 7 depicts the results of the

algorithm on 4 different datasets. In all our tests, the localized

3D regions reflect the actual position of the changes. This

information can allow an exploring or mapping robot to

inspect the changed regions in more detail and collect more

observations to update the previously built model. Note that

the exploration itself is not part of this work but this works

enables it.

The ”Playground” dataset shown in Fig. 7c is particularly

challenging. In this dataset, the house, which is not present in

the model, is composed by separate wooden pieces, each one

in a different color. Our algorithm is able to correctly identify

the lamp and the bar as changes, but recognizes the house

TABLE I: Execution time for different datasets. The images in our
datasets have resolution 1504×1000 pixels, the ones by Taneja et
al. [13] have resolution 1072×712 pixels.

Dataset Execution time Execution time
name without uncertainty [s] with uncertainty [s]

A/C Unit 4.598 10.54
Statue 7.486 12.571

Playground 8.529 13.989
Taneja et al. [13] 2.47 5.525

Average time 5.77±2.758 10.656±3.702

as multiple, separate changes. This does not constitute a real

problem, but shows a possible limitation of our approach.

B. Execution time

The next experiment is designed to support the claim

that our approach runs fast enough for processing on an

exploring robot. We therefore measured the execution time

of our approach on a common, lightweight laptop with an

Intel Core i7 processor and an embedded Intel GPU.

Tab. I shows the average execution time needed to process

sequences of 5 images from different datasets as well as

the standard deviation, both with and without taking into

account the uncertainty on the camera poses. The numbers

support our second claim, namely that the computations can

be executed fast enough for operation on an exploring robot.

On our datasets, the whole process, taking into account the

uncertainties, takes about 10 s, which is shorter than the time

needed to record the 5 keyframe images. Even though the

process is clearly not real-time in a strict sense, it is fast

enough to be executed on a real robot at a low frequency to

trigger exploration or additonal mapping actions.

The computation time is influenced by both the number

of images as well as their resolution. This is evident from

our test on the dataset by Taneja et al., which took approxi-

matively half of the time for processing images with a lower

resolution.

C. Comparison to an Existing Approach

Finally, we want to briefly compare our results with those

obtained by Tanjea et al. [13]. The comparison is done based

on the dataset that they provide and report on (Fig. 7d).

Their approach uses a computationally expensive graph cut

labeling on a 3D voxelization of the scene. Their method

typically provides a more accurate estimate of the region
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(a) A/C Unit (b) Statue (c) Playground (d) Dataset by Taneja et al.

Fig. 7: Results of our experiments on 4 different datasets. For each dataset, the top image shows the changes (here manually marked in
green), while the bottom image shows the 3D region, identified by our algorithm, where the changes are. (best viewed in color)

of change (in the order of 25×25×25 cm3 voxels) than our

estimate using the mean and covariance. The disadvantage

of their method, however, is the computational demands as

they require computation times in the order of 1 min per

region, whereas we can process the same dataset in about

5 seconds. Thus, for most robotics applications, where an

online feedback is expected, our approach is better suited.

To summarize, our evaluation suggests that our method can

estimate the 3D localization of changes in the environment.

At the same time, the algorithm is fast enough to be used by

an exploring robot to focus on the areas that have changed.

Thus, we supported all our claims made in the introduction

with this experimental evaluation.

V. CONCLUSION

In this paper, we presented a novel approach to identify

geometric changes between the current state of the environ-

ment and a previously built 3D model using a short sequence

of images. Our approach operates by identifying the changes

in the images by reprojecting them onto each other, passing

through the 3D model. We eliminate the ambiguities about

possible changes by combining the inconsistencies from

multiple pairs of images. We are then able to estimate the

locations of changes in 3D and identify the changed region

through a mean 3D point and a covariance matrix. The com-

putational time of the whole process using multiple images

is in the order of seconds. We implemented and evaluated

our approach on different datasets. The experiments suggest

that our method can correctly identify the changes in the

environment with only 5 images and a total computational

time of around 10 s, which make the algorithm suitable for

running on mobile robots.

As future work, we plan to conduct more effective tests

of our method on different types of datasets and extend the

quantitative comparisons.
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A Partitioned Approach for Efficient Graph–Based Place Recognition

Mattia G. Gollub Renaud Dubé Hannes Sommer Igor Gilitschenski Roland Siegwart∗

Abstract— Place recognition is a crucial capability of au-
tonomous vehicles that is commonly approached by identifying
keypoint correspondences which are geometrically consistent.
This geometric verification process can be computationally
expensive when working with 3D data and with increasing
number of candidates and outliers. In this work, we propose a
technique for performing 3D geometric verification efficiently
by taking advantage of the sparsity of the problem. Exploiting
the relatively small size of the area around the vehicle, the
reference map is first subdivided in partitions, and geometric
verifications are only performed across relevant partitions,
guaranteeing the sparseness of the resulting consistency graph.
A maximum clique detection algorithm is finally applied for
finding the inliers and the associated 3D transformation, taking
advantage of the low degeneracy of the graph. Through exper-
iments in urban driving scenarios, we show that our method
outperforms a state of the art method both asymptotically and
in practice.

I. INTRODUCTION

Efficient and reliable place recognition is one impor-

tant challenge for enabling fully autonomous driving. With

considerable changes in illumination occurring in driving

scenarios, it is interesting to consider geometric information

for performing place recognition. Autonomous vehicles are

therefore often equipped with 3D time of flight sensors which

permit a precise estimation of the road environment through

the generation of point cloud maps.
One standard approach for recognizing places in 3D point

cloud data is to compare a local map characterizing the

vicinity of the vehicle, to a target map representing the full

environment. This comparison can be done by extracting

different basis elements such as keypoints[1], objects[2],

shapes[3] or segments[4]. Place recognition is then per-

formed by identifying correspondences between these basis

elements and by verifying these correspondences for geomet-

ric consistency. This final 3D geometric verification step can

be computationally expensive when working with large maps

and with increasing number of correspondence candidates

and outliers.
In this work, we formulate the problem of geometric

verification as identifying a maximum clique in a consistency
graph where edges connect correspondences that are geo-

metrically consistent. A simplified example of a consistency

graph is illustrated in Fig. 1c. We propose to perform the

geometric verification by exploiting two important charac-

teristics of the problem. First, we take advantage of the

∗Authors are with the Autonomous Systems Lab, ETH, Zurich
{gollubm, rdube, sommerh, igilitschenski,
rsiegwart}@ethz.ch.

This work was supported by the European Union’s Seventh Framework
Programme for research, technological development and demonstration
under the TRADR project No. FP7-ICT-609763.

(a) (b)

(c) (d)

Fig. 1: Steps of the recognition process with minimum geometrically
consistent set size T = 3: (a) Current approaches need to test all possible
correspondence pairs for consistency. Nodes represent the correspondences,
while the tested pairs are shown as edges. (b) Our partitioning approach
allows to drastically reduce the number of consistency tests. (c) The consis-
tency graph obtained with our method and the recognized T–clique (in blue)
of geometrically consistent correspondences. (d) Example of a successful
recognition in a urban driving scenario experiment. Correspondences that
constitute the maximum consistent set are indicated in green.

significant difference in size between the local and target

maps by subdividing the latter into partitions and by perform-

ing geometric verifications only across relevant partitions.

This approach not only effectively reduces the number of

consistency tests but also guarantees the sparseness of the

resulting consistency graph. In a second step, we exploit this

sparsity by leveraging an efficient algorithm for detecting

maximum cliques in sparse graphs.

The proposed approach is compared to a state of the art

baseline method in urban driving scenario experiments which

demonstrate that our approach is more efficient. We show

through a simple example that the baseline method can return

sub-optimal solutions whereas our method always identifies

a maximum clique. A derivation of the complexity of our

method is presented, demonstrating that it scales linearly

with the size of the target map.

To summarize, this paper presents the following contribu-

tions:

• A novel partition-based algorithm for efficiently identi-

fying maximum geometrically consistent sets of corre-

spondences.

• An asymptotic complexity analysis of the proposed

method.
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• An evaluation of the proposed method based on exper-

iments in urban driving scenarios.

The remainder of the paper is structured as follows: Sec-

tion II provides an overview of the related work in the field

of geometric verification for place recognition. Section III

describes our partition-based approach to place recognition.

The approach is evaluated in Section IV, and Section V

finally concludes with a short discussion.

II. RELATED WORK

Numerous methods have been developed for performing

global registration of partially overlapping 3D objects [5–7].

Unfortunately such methods cannot always be applied for

performing place recognition in real-time, as the target map

can be many orders of magnitude bigger than the local map

and as the matching process can produce a high fraction of

false correspondences.

Chen and Bhanu [8] propose to filter these outliers by

clustering correspondences into geometrically consistent sets.

Two correspondences ci and cj are called pairwise geomet-
rically consistent if the difference of the Euclidean distance

between the keypoints in the local map and in the target map

is below a threshold ε, i.e. if

|dl (ci, cj)− dt (ci, cj)| ≤ ε (1)

where dl (ci, cj) and dt (ci, cj) are the keypoint distances in

the local map and in the target map respectively.

This idea is employed in the recognition module of the

Point Cloud Library (PCL) [9] where geometric consistencies

are determined using a bruteforce approach in which all

possible correspondence pairs are checked for consistencies.

This has an asymptotic complexity of O
(
n3
)
, where n is the

number of correspondences. This approach is well suited for

scenarios with a low amount of candidates and was employed

in our previous work on segment-based place recognition [4].

However, it does not scale well to cases with a large number

of candidates and outliers, eg. when doing real-time place

recognition in a large target map. We consider this method

as our baseline in the experiments of Section IV.

Strategies for efficiently reducing the number of cor-

respondence pairs have been proposed for stereo images

and image retrieval. Ayache and Faverjon [10] describe a

partitioning scheme for efficiently finding neighbor segments

in stereo images. The SCRAMSAC method [11] performs

RANSAC only on spatially consistent correspondences, i.e.

correspondences that have a minimum fraction of matching

neighbor features in both images. Both methods rely on

assumptions about the disparity between images, thus their

accuracy is influenced by the presence of high disparity and

strong variation in viewing angles.

Graphical models have successfully been employed in

the analogous task of recognizing places based on camera

images [12, 13] In the context of geometry-based place

recognition, Fernandez-Moral et al. [3] propose to leverage

graphical models for executing the geometric verification.

An interpretation tree is used to match the local and target

graphs where vertices represent planes and edges represent

geometric relationships between these planes. Finman et al.

[14] also propose a similar graph-matching strategy where

vertices represent objects instead of planes. Contrastingly in

our approach, vertices and edges respectively represent cor-

respondences and geometric consistencies. Place recognition

is then executed by extracting a maximum clique.

III. METHOD

This section presents our approach for performing geo-

metric verification of correspondences in order to recognize

places in 3D maps. We treat this task as a graph problem with

the goal of identifying a maximum geometrically consistent
set which is a set of maximum size consisting of corre-

spondences that are all pairwise geometrically consistent.

Pairwise geometrical consistency relationships are encoded

in an undirected graph G = (V,E) where V = {ci} is the set

of correspondences ci and E = {eij} is the set of undirected

edges eij connecting all consistent pairs of correspondences

(ci, cj). Once the graph is constructed, identifying a maxi-

mum geometrically consistent set is equivalent to finding a

maximum clique of G. An example of a consistency graph

with its maximum consistent set is given in Fig. 1c.

A. Partition-based consistency graph construction

The naive approach for identifying all pairwise consisten-

cies is testing all possible correspondence pairs. Here we take

advantage of our knowledge about the sizes of the target and

local maps to reduce the number of tests.

In many recognition applications, like place recognition

as in our case, the local map is significantly smaller than

the target map. Taking advantage of this information we can

define a criterion for reducing the amount of consistency tests

a priori. Let ε be the tolerance for geometric consistency and

b be the diameter of the bounding sphere of the local map

keypoints, a pair of correspondences ci and cj can then only

be consistent if

dt (ci, cj) ≤ b+ ε (2)

Urban driving scenarios usually extend along the earth’s

surface only (x and y coordinates), but not vertically. Without

loss of performance or correctness, we simplify the problem

and consider only a bounding cylinder of diameter b. The

new relaxed criterion becomes

d2Dt (ci, cj) ≤ b+ ε (3)

where d2Dt (ci, cj) computes the distance between the target

map keypoints of ci and cj projected on the xy–plane1.

We create a 2D grid partitioning of the correspondences

according to the position of their keypoints in the target

map, where each partition pu,v has a square base with a side

length of b + ε and infinite height. An example of 2D grid

partitioning is illustrated in Fig. 1b. Each correspondence ci
is assigned to its partition P (ci) = pu,v ,

u =

⌊
kt (ci) .x− o.x

b+ ε

⌋
, v =

⌊
kt (ci) .y − o.y

b+ ε

⌋
(4)

1The z-axis is assumed to be roughly gravity aligned.
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where kt (ci) is the keypoint of ci in the target map and

o is the origin of the grid. A good choice of o is the

componentwise minimum of all kt (ci).
With the chosen grid size b + ε, it is guaranteed that the

bounding cylinder of the model is always contained in a

squared group of four adjacent partitions. Thus geometric

consistency tests are necessary only on a set of candidate

pairs of correspondences that is much smaller than V × V :

{(ci, cj) ∈ V × V | i < j ∧ ∃u, v : ci ∈ pu,v ∧ cj ∈ N (u, v)}
(5)

where N (u, v) :=
⋃

l,m∈{−1,0,1} pu+l,v+m. i.e. for a given

ci ∈ V only correspondences in the partition of ci and the

8–neighbor-partitions need to be tested. Since consistency is

a symmetric property, each pair is tested only once, i.e. if

i < j. Other pairs of correspondences are ignored, since they

cannot be consistent. The consistency graph is constructed as

an adjacency list and contains all the geometrically consistent

correspondence pairs (ci, cj) as edges. Fig. 1a shows a

set of 7 correspondences where all 21 pairs are tested for

consistency. Applying this partitioning strategy reduces the

number of tests to 14 (Fig. 1b).

The same approach can be used for cases where the

environment extends into the third dimension. In this case,

assuming that the local map is bounded by a sphere of

diameter b, a 3D grid of cubes with size b + ε is used and

consistency tests are performed over the 26–neighborhood of

each partition.

B. Maximum clique detection

We consider a recognition to be successful in case the

size of the detected maximum geometrically consistent set

is greater than or equal to a threshold parameter T . Thus we

need to identify a maximum k–clique with k ≥ T .

A second advantage of enforcing the partitioning con-

straints in situations where the local map is significantly

smaller than the target map is that the sparseness of the

consistency graph is guaranteed. With this knowledge we

can rely on a class of k–clique detection algorithms that

visit the graph in degeneracy order to find the maximum

geometrically consistent set. A graph G can be characterized

by its degeneracy (or k–core number) d, which is the smallest

number so that every subgraph of G contains a vertex with

degree ≤ d. Each graph has a degeneracy ordering, an order

in which each vertex has at most d vertices that come later

in the ordering.

We use a generalization of the maximal clique listing

approach described in [15, 16] to find a maximum clique

of G. An outline of the algorithm is presented in Algorithm

1. First, we use the bucket sort algorithm for sorting the

vertices in increasing degree order. This is described in detail

in [17] and can be performed in O (|V |). Then we iterate

on the vertices according to the found order. At each step,

the function CLIQUE is called using the current vertex of

minimum degree as input. If the function returns a clique that

is bigger than the current maximum clique max_clique, the

new maximum clique is stored. The vertex is then removed

from the graph together with its incident edges and the

vertex ordering is updated in O (d). The resulting degeneracy
ordering in the visit of the vertices guarantees that at each

step v has at most d neighbors, bounding the computational

load on CLIQUE.

CLIQUE can be any function that returns the biggest clique

C ⊆ G such that |C| ≥ T and v ∈ C (or the empty set,

if such a clique does not exist). Instances of this function

can be any clique detection approach like the branch-and-

bound method presented in [18] or successive refinements

like [19]. For simplicity, in this work we use a method based

on heavy pruning strategies [20]. This algorithm builds a

subgraph containing v and its neighbors and recursively visits

its subgraphs to determine if a clique of the required size can

be built. Vertex degrees are constantly checked to discard

fruitless candidates as soon as possible in the recursion.

Algorithm 1 Outline of the algorithm for maximum clique

detection. Iterating over the vertices in degeneracy order

guarantees that v always has at most d neighbors.

1: procedure MAXIMUMCLIQUE(G, T )

2: max_clique ← ∅
3: sorted_vertices ← SORTBYDEGREE(G)
4: while |sorted_vertices| 
= 0 do
5: v ← sorted_vertices[0]
6: C = CLIQUE(v, G, T )

7: if |C| 
= 0 then
8: max_clique ← C
9: T ← |C|+ 1

10: end if
11: REMOVEVERTEX(G, v)
12: UPDATEORDER(G, sorted_vertices)
13: end while
14: return max_clique
15: end procedure

C. Recognition

The condition on the size of the maximum geometrically

consistent set can be removed in case it is safe to assume

that a true recognition always exists. This is however not

always possible, e.g. in loop–closure detection applications.

Once an acceptable maximum clique is identified, the relative

transformation between the local and target maps can be

found using any rigid transformation estimation method.

Here we use the least-squares approach described in [21].

D. Asymptotic complexity and scaling

In the consistency graph G = (V,E), let the parameters

n = |V | be the number of correspondences and d be

the degeneracy of the graph. Assuming that outliers are

uniformly distributed in the target map and are present in

a high ratio over inliers, we can say that n is propor-

tional to the size of the target map. The average number

of correspondences per partition np and d are considered

constant as they depend on fixed parameters like the density
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Fig. 2: Runtime comparisons between the reference PCL implementation
and our new method. Error bars show the standard deviation of the measure-
ments and are caused by the different amount of candidate correspondences
found while the vehicle moves.

of objects in the environment, the size of the local map and

the correspondence matching strategy.

Partitioning the correspondences is trivial and can be

done in O (n). All the necessary consistency tests can be

performed in O (npn) since each of the n
np

partitions requires

O
(
n2
p

)
tests. The bucket sort is done in O (n). Since every

vertex visited in the loop has at most d neighbors, each

of the n calls to CLIQUE has a worst case complexity of

O (d!), thus the complexity of the code in Algorithm 1 is

O (d!n). Although the d! term may appear like an important

bottleneck, any reasonable implementation for CLIQUE usu-

ally performs better. As shown in Table I, maximum clique

detection brings a minimal contribution to the total runtime.

The estimation of the 3D transformation scales linearly with

the number of elements in the geometrically consistent set,

thus it is bound by O (d).
The total complexity of our method is O (n (d! + np)).

Under the homogeneity assumption, since d and np are

parameters that do not depend on the target map’s size, we

can conclude that the performance of our algorithm scales

linearly with the size of the target map.

IV. EXPERIMENTS

We tested our method in the place recognition mod-

ule of our online LiDAR-based localization and mapping

system described in [22]. We compare our new method

with our current baseline approach implemented in the PCL

(pcl::GeometricConsistencyGrouping). Both im-

plementations are benchmarked in two different configura-

tions:

• Localization: An autonomous vehicle drives in a known

urban scenario, continuously trying to localize inside a

static target map.

• Loop-closure: The vehicle explores an unknown urban

scenario, continuously updating a dynamic target map

and trying to detect loop-closures.

Each configuration uses a different dataset of the KITTI

collection [23], both datasets have similar sizes. At each call

we measure the runtime of the recognition. We use ε = 0.4m

as consistency threshold and T = 6 as minimum consistent

set size.

Figure 2 shows a runtime comparison between our method

and the PCL implementation. In the localization test, our new

method is 6.57 times faster than the reference method. This

improvement comes from two main factors. First, only 32.6%
of the consistency tests are performed. In addition, our parti-

tioned approach enables better cache locality when accessing

correspondence keypoints, increasing the performance of the

consistency test functions.

In the loop-closure setting the speedup decreases to 2.05x.

This is due to the fact that during the first part of the

experiment the target map is relatively small and prevents

partitioning from being effective. In general we observe that

partitioning successfully accelerates the recognition process

by reducing the number of tested correspondence pairs and

our method scales better as the size of the map increases. In

future work the method should be tested with bigger maps

in order to prove the theorized linear scaling of the method

(see Section III-D).

Mean runtime Mean runtime

Step (Localization) (Loop-Closure)

Partitioning 0.06± 0.01ms 0.03± 0.02ms

Graph construction 13.86± 7.95ms 8.09± 9.70ms

Max clique detection 0.13± 0.08ms 0.17± 0.23ms

Transformation estimation < 0.01ms < 0.01ms

Total (Our method) 14.33± 8.16ms 8.52± 9.98ms

Total (PCL) 94.23± 56.28ms 17.49± 32.10ms

Speedup 6.57x 2.05x

TABLE I: Runtimes and speedups of the different steps of our algorithm.
Clearly the most important factor is the construction of the consistency
graph.

Table I shows the time needed by each step of our

method. While partitioning quickly and effectively reduces

the number of consistency tests required, the construction of

the consistency graph is still the most expensive operation.

Detecting a maximum clique is a relatively cheap task thanks

to the sparseness of the graph and to the traversal strategy

that bounds the complexity of the search.

We performed additional tests to determine the quality

of the resulting recognition in the two methods. As metric

for the quality we use the size of the identified maximum

consistent set. Our method uses an exact algorithm, and is

always able to find a consistent set of maximum size. On the

other side, the PCL implementation uses a greedy approach

and occasionally fails to detect the optimal solution. Fig. 3

shows a tested pathological case: depending on the order of

the input correspondences the greedy approach can detect a

maximum (3a, in blue) or a maximal (3b, in red) consistent

set. Our method detects the maximum clique in both cases.

Note that the PCL implementation does not explicitly build

a graph, but detects the same pairwise consistency, thus we

can use the same visualization.
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Fig. 3: Detection of consistent sets with T = 3 in two graphs based on the
same correspondences stored in different orders, indicated by the numbers.
The PCL implementation identifies the blue biggest cluster in (a), but can
only find a suboptimal solution (in red) if the correspondences are stored
differently (b). Our implementation uses exact k–clique detection and finds
a maximum consistent set in all cases.

V. CONCLUSION

In this work, we presented a new graph-based method

for place recognition in 3D point clouds that improves on

our reference baseline in terms of performance. We stated

the recognition task as a graph problem and used a novel

partitioning approach to significantly reduce the number of

consistency tests required. Taking advantage of the sparse-

ness of the consistency graph, we use a clique detection algo-

rithm to identify the biggest set of geometrically consistent

correspondences quickly and exactly.

Experiments in urban driving scenarios show that our

method performs better than the greedy approach of our se-

lected baseline. We theoretically demonstrate that the runtime

of this algorithm scales linearly with the size of the map,

enabling fast localization in large environments. Benchmark

results show that the present bottleneck of the method is

the construction of the consistency graph. In future work

we will explore other approaches to further accelerate the

construction task. Moreover we would like to evaluate our

method on bigger scenes to prove the theorized linear scaling

behavior.
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