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Foreword
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D 
reconstruction, Modeling and Control of mobile robot. 

Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12, the fifth edition PPNIV'13 was in 
Vilamoura (over 135 attendees) during IROS'13, and the sixth edition PPNIV'14 was in Chicago (over 100 
attendees) during IROS14. 

In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), MEPPC08 in 
Nice during IROS’08 (more than 60 registered people), SNODE'09 in Kobe during ICRA'09 (around 70 
attendees), RITS'10 in Anchrorage during ICRA'10 (around 35 attendees),  PNAVHE11 in San Francisco during 
the last IROS11 (around 50 attendees), and the last one WMEPC14 in Hong Kong during the last ICRA14 (around 
65 attendees), 

This workshop is composed with 4 invited talks and 15 selected papers (10 selected for oral presentation and 5 
selected for interactive session. Five sessions have been organized: 

Session I: Localization & Mapping 
Session II: Perception  & Situation awareness 
Session III: Interactive session 
Session IV: Planning & Navigation 
Session V: Sensing 
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Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 

Christian Laugier, Philippe Martinet, Urbano Nunes and Christoph stiller 
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Session I 

Localization & Mapping 

Keynote speaker: Philippe Bonnifait (Heudiasyc, France)
Title: Autonomous Integrity Monitoring of Navigation Maps on board Vehicles

Title: Collaborative Visual SLAM Framework for a Multi-Robot System
Authors: Nived Chebrolu, David Marquez-Gamez and Philippe Martinet 

Title: Improving Vision-based Topological Localization by Combining Local and 
Global Image Features
Authors: Shuai Yang and Han Wang 

Title: PML-SLAM: a solution for localization in large-scale urban environments
Authors: S. Alsayed, G. Bresson, F. Nashashibi, A. Verroust Blondet 
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Session I 

Keynote speaker: Philippe Bonnifait 
(Heudiasyc, France)

Autonomous Integrity Monitoring of Navigation Maps on board Vehicles

Abstract: This talk addresses the problem of monitoring navigation systems on board passenger vehicles by using 
a Fault Detection, Isolation, and Adaptation (FDIA) paradigm. The aim is to prevent malfunctions in systems such 
as advanced driving assistance systems and autonomous driving functions that use data provided by the navigation 
system. The integrity of the estimation of the vehicle position provided by the navigation system is continuously 
monitored and assessed. The proposed approach uses an additional estimate of vehicle position that is independent 
of the navigation system and based on data from standard vehicle sensors. First, fault detection consists in 
comparing the two estimates using a sequential statistical test to detect discrepancies despite the presence of noise. 
Second, fault isolation and adaptation is introduced to identify faulty estimates and to provide a correction where 
necessary. The FDIA framework presented here utilizes repeated trips along the same roads as a source of 
redundancy. Relevant properties of this formalism are given and verified experimentally using an equipped vehicle 
in rural and urban conditions and with various map faults. Real results show that sequential FDIA performed well, 
even in difficult GNSS conditions.

Biography: Philippe Bonnifait is a professor in the Computer Science and Engineering department of the 
Université de Technologie de Compiègne (UTC) in France. He obtained his Ph.D. in automatic control and 
computer science at the École Centrale de Nantes in 1997. Since 1998, he has been with Heudiasyc UMR 7253, a 
joint research unit between UTC and CNRS. His research interests are Intelligent Vehicles, high integrity 
positioning and map-matching for mobile robot navigation in structured outdoor environments.

The attached paper is going to be published in IEEE Transactions on Intelligent Transportation Systems. 
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1Ph. Bonnifait 

Autonomous Integrity Monitoring of 
Navigation Maps on board Vehicles 

Philippe Bonnifait 

Professor at the 
Université de Technologie de Compiègne 

Heudiasyc UMR 7253 CNRS, France 

In collaboration with Clément Zinoune and Javier Ibanez-Guzman  
Renault S.A.S. 

PPNIV 2015, Hamburg, 28 September 2015 

2Ph. Bonnifait 

Outline

Context and Problem Statement 

Fault Detection Isolation and Adaptation Principles 

Adaptation to noisy data 

Conclusions and Perspectives 
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Turn-by-turn navigation system 

Map-matching and 
Route Planning GPS 

Navigation Map 

Destination 

Navigation function 

Driver interface for 
turn-by-turn guidance 
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Map-Aided ADAS 
Example: Intersection Warning 

Map-matching and 
Electronic Horizon 

computation GPS 

Navigation Map 

Navigation function 

Vehicle sensors 

CAN bus 

Speed
Yaw rate 

Odometer 
...

EH

Driver commands 

Electronic Horizon (EH): representation of oncoming context events 
(e.g., curve, speed limits, intersection, etc.) 
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Map-Aided ADAS 
Example: Intersection Warning 

Map-matching and 
Electronic Horizon 

computation GPS 

Navigation Map 

Navigation function 

Vehicle sensors 

CAN bus 

Engine control 

Brakes 

Speed
Yaw rate 

Odometer 
...

EH

Driver commands 
Cluster / HMI 

Intersection warning  

Distance to intersection 

Current Speed 

Warning request 

Braking request  

Electronic Horizon (EH): representation of oncoming context events 
(e.g., curve, speed limits, intersection, etc.) 
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Problem Statement 
Map errors may be due to: 
o Errors during the mapping process. 
o Evolution of road network. 

What happens if the map is wrong ? 
o Uncomfortable and unsafe situations. 

o Repetitive ADAS malfunctions. 
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Curve warning system 

Navigation map 

30 m
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Curve warning system 

GPS logs on top of the vehicle navigation map 

30 m

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

12



9Ph. Bonnifait 

Missed detection of the road bend. 

Curve warning system 

30 m
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Problem Statement 

1. Evaluate navigation system integrity in real-time. 

2. Provide a correction when necessary. 

3. Use only on board vehicle sensors. 
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Outline

Context and Problem Statement 

Fault Detection Isolation and Adaptation 
System architecture 
Methods for structural and geometrical faults 
Experimental results 

Adaptation to noisy data 

Conclusions and Perspectives 
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Ability of the vehicle to assess the confidence associated to navigation 
information using redundant information from on board sensors.  

 every trip on the same road adds redundancy 

To provide a reliable confidence indicator to avoid client systems malfunctions.   

Autonomous integrity monitoring 

Map
Matching Client SystemsGNSS

Navigation
Function

Navigation Map

EH
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Architecture for Autonomous Integrity Monitoring 

Map Matching Client Systems

Knowledge of fault

GNSS2

Proprioceptive sensors

GNSS1

Navigation
Function

Smart front camera

Correction

Integrity of Navigation 
Information

Memory

Navigation Map

EH

Don’t use 
Unknown 
Use

14Ph. Bonnifait 

Definitions

Fault: Error generative process. 

Error: Discrepancy between measured value and true value. 

Failure: Time when a function exceeds the acceptable value. 

A1 A2

A
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Map
Matching Client Systems

Knowledge of fault

GNSS

Proprioceptive
sensors

GNSS

Navigation
Function

Smart front 
camera

Correction

Integrity of Navigation 
Information

Memory

Navigation Map

EH

Don’t use 
Unknown 
Use

Case of Navigation 
Fault:
 GNSS multipath;   
 Wrong road candidate selected by map-matching ;  
 Wrong representation of the road network. 
Error: Discrepancy between value in the EH and true value. 
Failure: Dysfunction of a client ADAS or autonomous driving function. 

16Ph. Bonnifait 

Map Geometric Faults 
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Geometric Fault Detection, Isolation and Adaptation 

The vehicle position is encoded with: 
The curvilinear abscissa s
The trip number k
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Geometric Fault Detection, Isolation and Adaptation 

The vehicle position is encoded with: 
The curvilinear abscissa s
The trip number k

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

17



19Ph. Bonnifait 

Geometric Fault Detection, Isolation and Adaptation 

The vehicle position is encoded with: 
The curvilinear abscissa s
The trip number k

FDIA is based on the comparison of vehicle 
position estimates: 
G from vehicle sensors 
N from the Navigation function estimate 

20Ph. Bonnifait 

Geometric fault detection, isolation and adaptation 

Detection:  Determine whether an estimate is affected by a fault 

Isolation:  Determine which estimate is affected by a fault 

Adaptation:  Identify a fault free estimate to provide it to client  
   systems
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Assumptions

When travelling several times on a road, the vehicle 
follows the same path with small deviations 

At a given abscissa: 
o Faulty vehicle position estimates from sensors are different 

from one trip to the other. 
o Faulty vehicle position estimates from the navigation are 

always the same. 
o Faults on the vehicle position estimates from sensors and from 

the navigation are different from each other. 

22Ph. Bonnifait 

Method

First vehicle trip 

Two independent estimates of the vehicle position: 
G1 (from vehicle sensors) 
N1 (from navigation system) 

Observed residual: 

G1 affected by a fault: 
N1 affected by a fault:
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Possible outcomes
    G1 = N1

Both estimates are fault-free

and                  

Faults on estimates from sensors and from the navigation are assumed to be 
different from each other 
The residual is therefore the result of a Boolean OR: 

G1 1

One estimate is faulty
                  and                   

        and

Both estimates are faulty
                        and

Faults and residuals 

24Ph. Bonnifait 

Compute the residual based on the available estimates 

Find this residual in the truth table

Provide the knowledge of fault to client systems 

Method
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Illustrative example: First trip 

G1 1

Both estimates are possibly faulty 
A fault is detected but not isolated 
The method returns Unknown

Abscissa s (m)

Abscissa s (m)

s = 10m

26Ph. Bonnifait 

Illustrative example: First trip 

G1 = N1

There is no fault 
The method returns Use

Abscissa s (m)

Abscissa s (m)

s = 20m
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Illustrative example: First trip 

G1 1

Both estimates are possibly faulty 
A fault is detected but not isolated 
The method returns Unknown

Abscissa s (m)

Abscissa s (m)

s = 40m

28Ph. Bonnifait 

Second vehicle trip 

Two new estimates of the vehicle position at the same abscissa 
G2 (from vehicle sensors) 
N2 (from navigation system) 

              N1               G1               N2               G2

Observed residual vector: 

Using several trips 
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Possible outcomes when comparing two estimates from sensors G1 and G2

G1 = G2

Both estimates are fault-free

and                  

Errors on estimates from sensors are assumed to be different from one trip to the 
other

The residual is therefore the result of a Boolean OR: 

G1 2

One estimate is faulty 
                  and                    
                  and 

Both estimates are faulty 
                          and 

Faults and residuals 
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Possible outcomes when comparing two estimates from Navigation N1 and N2

N1 = N2  : Map faults 

Both estimates are fault-free

and                  

Both estimates are faulty

          and

Errors on the vehicle position estimates from the navigation are always the same 

The residual is therefore the result of a Boolean Exclusive OR: 

N1 2 Matching faults 
One estimate is faulty 
                  and                    
                  and 

   

Faults and residuals 
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Truth table for two trips 

32Ph. Bonnifait 

Illustrative example: Second trip 

This residual is unique in the table, isolation is done 
The current navigation is found not faulty 
The output Use is provided to client systems 

s (m)

s (m)

s = 10m
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Illustrative example: Second trip 

This residual is unique in the table, isolation is done 
The current navigation is found not faulty 
The output Use is provided to client systems 

s (m)

s (m)

s = 20m
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Illustrative example: Second trip 

This residual is four times in the table, fault is 
detected but not isolated 
The output Unknown is provided to client systems 

s (m)

s (m)

s = 40m
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Guaranteed detection of 
faults

Formalism properties 

36Ph. Bonnifait 

Guaranteed detection of 
faults
Conservation of residual 
isolability

Formalism properties 
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Guaranteed detection of 
faults
Conservation of residual 
isolability
Isolation convergence

Ratio of adverse residuals 
• One trip:   q(1) = 3/4 
• Two trips: q(2) = 6/16=3/8 
• Infinity:     q(Inf)  0 

Formalism properties 
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Guaranteed detection of 
faults
Conservation of residual 
isolability
Isolation convergence

Ratio of adverse residuals 
• One trip:   q(1) = 3/4 
• Two trips: q(2) = 3/8 
• Infinity:     q(Inf)  0

Adaptation
There is at least one non faulty 
estimate in isolable sets of faults 

Formalism properties 
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Guaranteed detection of 
faults
Conservation of residual 
isolability
Isolation convergence

Ratio of adverse residuals 
• One trip:   q(1) = 3/4 
• Two trips: q(2) = 3/8 
• Infinity:     q(Inf)  0 

Adaptation
There is at least one non faulty 
estimate in isolable sets of faults 

Conservation of adaptation 
When isolation is performed, there will 
be at least one non faulty estimate at 
the next trip. This will make Adaptation 
possible

Formalism properties 

40Ph. Bonnifait 

Illustrative example: Third trip 

s (m)
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FDIA Algorithm for on board implementation 

Before hand computation of the truth tables 
In real-time: 

42Ph. Bonnifait 

Experimental validation 
Probe Vehicle 

Software tools 

u-blox GPS receivers 
CAN-Bus
o Vehicle speed 
o Wheel Speed 
o Yaw rate 
o Odometer...

GPS + IMU as ground truth 
for localization 

Real-time data acquisition 
Data replay 

OSM Navigation map 

Electronic Horizon generation 

Fault Detection, 
Isolation and 
Adaptation 

GPS N, road id, s 

G
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True Validations (TV):  

Correct navigation point identified as not-faulty

True Isolations (TI): 

Faulty navigation point isolated by the method

Overall efficiency rate (OER): 

Information availability rate (IAR): 

Metrics

44Ph. Bonnifait 

- used navigation map in yellow 
- correct map is in grey in background 
- vehicle goes from left to right  
- first trip is in blue; second trip in purple 

Rural results 

500 m

New bridge 

New road 

Parallel road 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

30



45Ph. Bonnifait 

Rural results 

First Trip 
Overall Efficiency Rate = 100% 
Information Availability Rate = 77% 

Second Trip 
Overall Efficiency Rate = 100% 
Information Availability Rate = 100% 

Good performance  
Real map geometric faults 
Simple GPS conditions 

46Ph. Bonnifait 

Outline

Context and Problem Statement 

Fault Detection Isolation and Adaptation 

Extension to Handle Uncertainties 
Page’s trend test 
Integration into the FDIA method 
Experimental results 

Conclusions and Perspectives 
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Noisy Position Estimates 

Deterministic FDIA method 

Noise on position estimate particularly in urban environment 

Proposed solution 
Statistical analysis of GPS and Navigation estimates 

48Ph. Bonnifait 

System Architecture 

Map 
Matching Client ADAS

Vehicle 
position 

estimation

Fault Detection, 
Isolation and 
AdaptationG

N
Knowledge 

of faultGNSS

Proprioceptive
sensors

GNSS

Navigation Navigation Map

Smart front 
camera

Correction

EH

Page’s 
trend test 

N=G ?
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Page’s trend test 

Detection of a change in the mean of a random variable 

Hypotheses

di: distance between estimates 

0 1: mean of d before and after the change in the mean 
r: time of the change in the mean 
b: noise. 

Sequential likelihood ratio testing 

Page’s trend test localizes the mean change with a minimized delay 

50Ph. Bonnifait 

Example
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Example
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Example
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Example
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Example
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Example
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Example
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Implementation in the FDIA framework 

Page’s test provides the value of 
rGN

When the decision variable is 
greater than 0 and lower than 
the threshold, the FDIA is 
delayed

58Ph. Bonnifait 

Implementation in the FDIA framework 

When Page’s trend test finally settles, 
FDIA is run at every buffered abscissa.

Benefits of the test in this example: 
False detection avoided at s = 11. 
False validation avoided at s = 15. 
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Random fault injection in maps 
Purpose
Generates a variety of map faults 
Provides quantitative results 

Principles
Add noise on position of road shape nodes 
Deletes some of the shape nodes 

50 m50 m

60Ph. Bonnifait 

Urban Results

Five maps with random faults 
Generated based on a high quality lane level map 

Three trips clockwise 
Purple lines 

Three trips anticlockwise 
Blue lines 

50 m
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Urban Results

Overall Efficiency 

Evenly due to True Validations and 
True Isolations 

Gating and temporal data re-sampling 
effects

62Ph. Bonnifait 

Urban Results

Information Availability 

Low IAR at trip 1 due to large 
proportion of faulty map areas and 
faulty GPS faults 

Isolation convergence property verified 
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Urban Results

With Page’s test: 

False Validation rate decreases.  
 Less faulty map points are identified as correct.  

 The output “use” is more reliable 

False Isolation rate increases.  
 More correct map points are identified as faulty.  

 More unjustified “don’t use”. 

The FDIA method is more cautious but client systems are deactivated more 
frequently.

64Ph. Bonnifait 

Conclusion

Context
Map-aided ADAS 
Constant evolution of the road network 
Black box systems in passenger vehicles 

Contributions
An integrity monitoring architecture that uses repetitive trips 
A framework for geometric fault detection, isolation and adaptation 
An extension of the framework with Page’s test 
Tests and evaluations on real vehicle 
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Thank you for your attention!

Associated Publications: 
1. C. Zinoune, Ph. Bonnifait, and J. Ibanez-Guzman. “Detection of missing roundabouts in 

maps for driving assistance systems”. In Intelligent Vehicles Symposium, IEEE, 2012. 
2. C. Zinoune, Ph. Bonnifait, and J. Ibanez-Guzman. “A sequential test for autonomous 

localisation of map errors for driving assistance systems”. In Intelligent Transportation 
Systems (ITSC), 2012 15th International IEEE Conference on, pages 1377–1382, 2012. 

3. C. Zinoune, Ph. Bonnifait, and J. Ibanez-Guzman. “Integrity Monitoring of Navigation 
Systems using Repetitive Journeys. In Intelligent Vehicles Symposium”, IEEE, 2014. 

4. C. Zinoune, Ph. Bonnifait, and J. Ibanez-Guzman. “Sequential FDIA for Autonomous 
Integrity Monitoring of Navigation Maps on board Vehicles” to appear in IEEE 
Transactions on Intelligent Transportation Systems 

Patent:
C. Zinoune, Ph. Bonnifait, and J. Ibanez-Guzman. Process of detection of roundabouts for an 
application conveys. INPI Patent Number FR2997183. 
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Sequential FDIA for Autonomous Integrity
Monitoring of Navigation Maps on board Vehicles

Clément Zinoune1,2, Philippe Bonnifait1, Javier Ibañez-Guzmán2

Abstract—This paper addresses the problem of Fault Detection,
Isolation, and Adaptation (FDIA) in navigation systems on board
passenger vehicles. The aim is to prevent malfunctions in systems
such as advanced driving assistance systems and autonomous
driving functions that use data provided by the navigation system.
The integrity of the estimation of the vehicle position provided
by the navigation system is continuously monitored and assessed.
The proposed approach uses an additional estimate of vehicle
position that is independent of the navigation system and based
on data from standard vehicle sensors. First, fault detection
consists in comparing the two estimates using a sequential
statistical test to detect discrepancies despite the presence of noise.
Second, fault isolation and adaptation is introduced to identify
faulty estimates and to provide a correction where necessary. The
FDIA framework presented here utilizes repeated trips along the
same roads as a source of redundancy. Relevant properties of
this formalism are given and verified experimentally using an
equipped vehicle in rural and urban conditions and with various
map faults. Results show that sequential FDIA performed well,
even in difficult GNSS conditions.

I. INTRODUCTION

Among the innovations that are transforming today’s pas-

senger vehicles, navigation maps are an important component.

Maps were first introduced as part of navigation systems used

to provide guidance information to the driver. Now they are

used to provide context information to informative Advanced

Driving Assistance Systems (ADASs) and their use has been

extended to actuating ADASs [1]. Maps are also central

components in the autonomous vehicles that are currently under

development in the automotive industry [2]. Navigation maps

are therefore playing an increasingly significant role in vehicle

automation and progressively replacing the human driver as

regards inferring the current and future vehicle context.

In recent years maps have sometimes been seen by the

intelligent vehicle community as a perfect source of information.

This assumption originates from robotics-oriented maps that

were made manually with high accuracy, but this assumption

is no longer valid when using global maps. The imperfections

of a global map may not matter very much when the map is

interpreted by a human, but they can have serious consequences

as the degree of automation of the vehicle increases. Like any

other source of information, navigation maps must be treated

with caution.

How well the navigation map represents the geometry of

the road has a direct impact on the performance of intelligent

vehicle navigation systems. Knowledge of the geometry of the

road ahead of the vehicle is currently used to improve sensor

tracking (e.g., lane markings for lane-keeping functions, or a

leading vehicle for adaptive cruise control applications) and

1 Sorbonne Universités, Université de Technologie de Compiègne, CNRS
Heudiasyc UMR 7253, France. 2 Renault S.A.S, France.

Figure 1. Framework for integrity monitoring in a passenger vehicle.

enables hazardous situations to be anticipated, by adapting

the vehicle speed (e.g., curve warning systems). Geometric

information contained in the navigation map is also essential

for some elements of highly automated driving, including path

planning, decision making and control functions [3].

This paper presents a new method for detecting, isolating,

and adapting geometrical errors in maps in order to avoid

dysfunctions in client systems. Fig. 1 shows the system archi-

tecture used in the proposed approach. In passenger vehicles

considered in this work, the navigation system provides context

information to client ADASs. Because of industrial constraints,

navigation systems cannot be modified for integrity monitoring

purposes. A new Integrity Monitoring function (Fig. 1) is

therefore added to monitor integrity in real time. The estimate

of the vehicle position provided by the navigation function

is continuously evaluated by comparing it to another position

estimate. This sensor estimate is computed independently of the

navigation system, using on-board vehicle sensors, and a fault

is detected when these two estimates differ. One contribution

of this work is to use Page’s sequential statistical test to detect

discrepancies between these two estimates despite the noise

resulting from the use of standard vehicle sensors. When this

test detects a discrepancy, ambiguity exists on the estimate

affected by the fault (i.e. either the navigation, the independent

estimate, or both can be faulty). This paper also develops a

complete framework for overcoming this ambiguity by making

use of repeated vehicle trips. Using a model of the effects of

faults on estimates, fault isolation and adaptation is performed

by comparing current and past position estimates. Structural

properties of this formalism demonstrate that fault isolation

capability improves as the number of trips increases, and that

adaptation (i.e. the identification of a fault-free estimate that

can serve as a correction) is possible when faults are isolated.

Finally, the proposed method is tested using real data provided

by a test vehicle in different driving conditions (rural and urban

areas).
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This article is organized as follows. Section II provides the

theoretical context and background of this work. Section III

states the problem that is addressed. Section IV introduces our

fault detection method based on Page’s test. Section V presents

the proposed framework for fault isolation and adaptation,

and details important inherent properties for intelligent vehicle

applications. Experimental evaluation of the proposed method

is performed with a test vehicle and is presented in Section VI.

Conclusions of this work are discussed in Section VII.

II. BACKGROUND

This section provides definitions of the terminology used,

before describing work related to the evaluation of the integrity

of each component of the navigation function.

A. Definitions

The terms fault, error, and failure may have different

meanings according to the application domain. The following

definitions are used in the context of this research and are

based on those given in [4]:

• Fault: Error generative process. The presence of a fault

may not lead to an error. An incorrect representation of

the road network in the digital map of the navigation

system is a fault that leads to an error only when the

vehicle travels on the road where the fault is present.

• Error: A discrepancy between a computed, observed or

measured value and the true, specified, or theoretically

correct value.

• Failure: Instant in time when a required function exceeds

the acceptable limits or is terminated.

Integrity is an important feature when navigation functions

rely on Information technologies. Integrity can be defined as

the ability of a system to provide user with accurate timely,

complete and unambiguous information and warnings when

the system should not be used.

B. Navigation System Integrity Monitoring

In intelligent vehicles, the navigation function provides

relevant contextual information to client systems (ADASs

or autonomous driving functions) in real time. This might

be the distance to the next intersection, the curvature of the

road ahead, or the current speed limit. This function can be

schematized as having three parts, namely the localization

system, the map-matching process and the navigation map.

Map-matching consists in finding, within the navigation map,

the road on which the vehicle is travelling, according to the

position calculated by the localization system.

Localization in passenger vehicles is mainly based on Global

Navigation Satellite Systems (GNSS). A GNSS receiver uses

the time-of-flight measurements of electromagnetic signals

emitted by satellites whose positions can be reconstructed

using ephemeris data. The signals will sometimes be perturbed

or reflected (i.e. multipath), which induces errors in the

computation of position. The integrity risk arises from the

use of faulty pseudo-ranges in this process. Classical integrity

evaluation involves evaluating the coherency of the satellite

measurements (fault detection) and then computing a protection

level. This is Receiver Autonomous Integrity Monitoring

(RAIM) [5]. It is, however, assumed that there is at most one

faulty measurement at any one time, which is an unrealistically

optimistic assumption in complex environments such as urban

areas. Other approaches extend RAIM principles to a larger

number of faulty measurements, using interval-based methods

and relaxed intersections of constraints [6], [7] with fast

implementations for fault detections [8], or an isotropy-based

approach [9]. Terrain elevation models or building heights

provided by a three-dimensional navigation map can also be

used to determine the Non-Line-Of-Sight (NLOS) satellites, i.e.

satellites that must be ignored in the position calculation [10],

[11], [12]. The vehicle proprioceptive sensors (e.g., odometer,

speedometer, gyroscope) are finally used to estimate the vehicle

motion. However, since positional drift increases with time

and distance, this technique is combined with GNSS using, for

example, an extended Kalman filter [13], [14].

Integrity evaluation of a navigation map is a rather different

problem which, unlike RAIM approaches, is not metric. A

reference (i.e. ground truth) navigation map can be used to

evaluate the vehicle map (subject map). In [15], fuzzy logic

is used to compute an outlier index that expresses how a geo-

graphical object belongs to its spatio-temporal neighbourhood.

This approach aims at detecting faults as well as temporal

changes in maps. Studies were done on large-scale databases,

in particular by crowdsourcing geographical information, like in

the OpenStreetMap initiative [16], [17], [18]. Methods inspired

from the SLAM (Simultaneous Localization And Mapping)

domain can also be employed. The position information given

by the navigation map is treated as an observation analogous

to observations from other sensors [19]. To be considered as

a ground truth, the reference navigation map must be created

by an accurate, complete survey. In the literature some works

have used alternative sources of information such as aerial

imagery [20], [21], [22] or the mining of a large number of

GNSS tracks [23] to create the reference map. These approaches

assume that any disparities between the reference and subject

maps are due to faults in the subject map, and do not address

the possibility of faults in the reference map (due to an offset

in aerial imagery or recent changes in the road network) or in

both maps.

Integrity evaluation of the map matching process is highly

dependent on the method used for the choice of road candidates.

Monte Carlo-based approaches such as particle filters can be

used when available computational resources allow. A set of

particles (each representing a possible vehicle position) are

spread over the whole road network. The population changes

over time according to available measurements (e.g., GNSS

measurement, DR estimation) and finally yields a solution [24],

[25]. In [26], [27], the road candidates were represented by a

set of hypotheses. A Bayesian framework was used to choose

the most likely road. Evidence theory can also be used, since

it is a convenient way to handle conflict in data fusion [28].

Fuzzy logic may also be considered, to address the complexity

of the map-matching problem and the large number of criteria

involved in choosing the road candidate. In [29], [30], the

authors used a Sugeno fuzzy inference system to choose the

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

44



road in the navigation map based on position uncertainty, the

distance between the road and the vehicle position estimate,

and the angular difference between the road direction and the

vehicle heading. The vehicle navigation system usually provides

a confidence index associated with the map-matched vehicle

position. This corresponds to the final score of the optimization

process employed in the map-matching, according to a given

GNSS estimate and a given navigation map. However, this

index should not be taken as a measure of the quality of the

navigation map. In case of a sparse road network, the map-

matching function is likely to provide a high-confidence index

despite an offset of the road in the navigation map due to the

low number of road candidates.

The concept of user-level integrity was introduced in [31]

to emphasize the necessity of taking into account every step

of the positioning process (GNSS, navigation map and map-

matching) in the vehicle position integrity monitoring problem.

The authors presented a strategy based on successive evaluation

of GNSS integrity, map complexity and map-matching solution

integrity. However, this requires having access to the internal

data of every sub-function in the navigation system. In the

approach presented here, functions are treated as black boxes

due to industrial constraints. It is not possible for us to have

access to low-level data such as the time-of-flight measurements,

the complete navigation map data or internal variables of the

map-matching algorithm. Only high-level data is available,

such as the calculated vehicle position before and after map-

matching, and the contextual information related to the current

vehicle position. Consequently, system monitoring approaches

can be appropriate.

Observer-based system monitoring consists in comparing

outputs with estimations of the outputs based on the inputs. The

residuals are signals that result from the difference between

estimates and actual outputs [32]. These are null when the

system is not affected by any faults. If a fault is activated,

the residuals are non-null. When faults are detected, the

consequences they have on the system are observed. A look-up

table linking the different faults to their corresponding effects on

the system would enable them to be identified unambiguously

and therefore to be isolated and excluded and/or corrected from

the system to keep it operating correctly or at a different level of

performance. This kind of process is known as Fault Detection,

Isolation, and Adaptation (FDIA). Based on the system model

and the available measurements, a logical link between faults

and residual values can be established and summarized in a

signature matrix. A complete framework to detect multiple

faults in a system was presented in [33]. The sensitivity of

a set of residuals is determined using a system model, and

diagnoses to be applied are established, based on the observed

residuals. In this paper we develop a similar approach for

an FDIA navigation system. Some kind of processing of the

values of the residuals is essential when real signals are used.

Because of the noise affecting them, different change detection

strategies must be applied. An extensive description of the

mathematical tools available for signal change detection can

be found in [34].

The approach presented in [35] uses an architecture similar

to the navigation systems studied in the present work. It

showed that detecting unexpected large discrepancies between

estimated and measured positions is not sufficient, since the

noise associated with poor quality sensors creates an excessive

sensitivity to outliers. A Cumulative Sum (CUSUM) test is

therefore implemented to reduce the number of false alarms.

III. PROBLEM STATEMENT

A. Monitoring System

A systemic diagram of the proposed integrity monitoring

system in a vehicle is shown in Fig. 2. Relevant information

about the vehicle’s current and future road environment is

sent to the client systems. This information represents a set of

context events encountered by the vehicle as it travels, and is

consequently known as an Electronic Horizon (EH) [36].

The black box assumption that is made regarding the

navigation system means that the only available observation of

the road geometry is the map-matched position estimate denoted

as N . The purpose of the method presented in this paper is to

provide an indication of the integrity of the navigation system

(in particular where road geometry faults are present in the map)

to the systems that use this information. If a loss of integrity

is detected, a correction can be provided to the client systems.

To do so, an estimate of the vehicle position independent of

the navigation system is required. This estimated position is

denoted as G in the figure and computed using an additional

GNSS receiver GNSS2 based on a different technology than

GNSS1. Vehicle proprioceptive sensors (e.g. odometer and a

yaw rate gyroscope) can be employed to improve its accuracy

and availability. This estimation might also be affected by a

fault. If the two estimates differ, there is an ambiguity in the

faulty estimate. This ambiguity cannot be resolved, owing to

the low level of redundancy (the degree of freedom being only

one). The main idea behind this framework is to make use of

repeated vehicle trips to resolve this ambiguity. The output

Knowledge of fault (Fig. 2) has three possible values:

• Use. The estimate provided by the navigation function to

client systems is not affected by any fault.

• Unknown. A fault has been detected but has not been

isolated. The position estimate from the navigation system

is possibly affected by a fault.

• Don’t use. A fault affects the current estimate from the

navigation system and the method provides a fault-free

estimate to client systems through the output Correction.

Let us recall that the fault detection step is merely declaring

that at least one of the estimates is affected by a fault. The

isolation step is determining which estimate(s) is (are) affected

by a fault.

B. Spatial Sampling

In our proposed approach, the integrity of the vehicle position

estimate from the navigation system is spatially evaluated. Each

location on the road network is considered as an operating

point of the system to be monitored (i.e. the navigation system).

For a given location of the vehicle, the presence of a fault is

investigated using all the estimates recorded at this location

during the course of vehicle trips.
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Figure 2. Structure of fault detection isolation and adaptation in a
standard passenger vehicle.

Figure 3. Illustration of the notational convention. The true (i.e. real) road is
in grey and its centreline in black. Here it is spatially sampled with a 5-metre
interval. The yellow arrow represents the true vehicle pose. The map is in
red. The vehicle position as estimated by the navigation (resp. by the vehicle
sensors) is the red (resp. blue) cross.

The method is spatially sampled with respect to the curvi-

linear abscissa of the road. The vehicle curvilinear abscissa on

a given road is the distance along the carriageway with respect

to its origin and is written s ∈ R
+, as shown in Fig. 3.

Let K ∈ N denote the total number of trips made by the

vehicle on a given road. The true vehicle position at abscissa

s of a given road and at the kth trip is written P s
k . This can

be encoded as a vector that contains the vehicle’s geographic

coordinates, that is to say longitude, latitude and ellipsoidal

height.

Using the same notational convention, Gs
k and Ns

k are

estimates of the vehicle position P s
k provided by the sensors

and the navigation respectively. Whenever the vehicle is at

abscissa s of a given road for the kth time, these two estimates

are recorded.

Faults may affect the navigation as well as the position

estimate from sensors, and cause their value to be significantly

different from the ground truth (if a multipath affects a GNSS

receiver for example). In this case, the estimates are said to

be faulty.

Let us define the faults fNs
k

and fGs
k

with:

fNs
k

def
=

{
1 if Ns

k �= P s
k

0 otherwise
(1)

fGs
k

def
=

{
1 if Gs

k �= P s
k

0 otherwise
(2)

Fig. 3 illustrates the notational convention. Since physical

quantities cannot be strictly equal, a threshold on the distance

between the estimates is employed for implementation. Since

the true vehicle position is not measurable directly, the fault

detection and isolation are based on a pairwise comparison of

estimates.

(a) Systematic errors due to a fault in the navigation map (the
map is displayed in red). The faulty estimates of the vehicle
position provided by the navigation function at abscissa s = 20
are the same.

(b) Non-systematic faults in the navigation function. The map-
matching chooses either the right or the wrong road from one
trip to another. The navigation estimate may or may not be faulty.
Errors on the faulty estimates are nevertheless equal (here N20

2
and N20

3 ).

Figure 4. Navigation system fault and error characterization

C. Assumptions

A fault is an error generative process according to the

definition stated in Section II-A. An error is therefore the

discrepancy caused by the fault, and is measurable by an

appropriate external observer. A faulty navigation system (from

the client ADAS point of view) can result from a navigation

map fault. Map faults cause systematic errors. Every time the

vehicle traverses the area shown in Fig. 4a, the navigation

system will provide the same faulty position estimate.

A faulty state of the navigation system may not only be

a consequence of map faults. Map-matching may choose a

wrong road candidate because of a difficult road configuration

such as a junction, as shown in Fig. 4b. In this situation the

map-matching may or may not choose the right road segment

from one trip to another; faults are not systematic. Nevertheless,

it will be remarked that where there is a fault, the resulting

error is always the same, since the output of the navigation

estimate is constrained by the map. Errors by the navigation

system, when they occur, are therefore systematic.

In this work we do not address the problem of determining

the reason for an estimation error made by the navigation,

because this would require access to the internal variables of

the system.

The estimate of the vehicle position from the on-board

vehicle sensors G depends mainly on the GNSS estimation.

Given a location on the road network, faults on a G estimate

will have two principal causes: first, multipath (i.e. satellite

signal reflection on buildings, for instance) and, second, a
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poor satellite configuration. The magnitude of the day-to-day

multipath correlation of a static receiver is typically around

85% [37]. We have no knowledge of correlation values for

a moving receiver, since the receiver motion mitigates the

multipath effects. Moreover, a GNSS multipath error can

repeat itself only at the same place with the same satellite

configuration (the ground track repeat is 23hr 56min for

GPS and 10 days for Galileo). Therefore, we believe that

a repetition of the same multipath errors and faults is very

unlikely from one trip to another. Errors and faults due to poor

satellite geometry (multipath aside) result from the propagation

of pseudo-range random measurement errors (dilution of

precision), and therefore also have weak correlation between

two vehicle trips. Errors on G are assumed to be different from

one trip to another.

The assumptions underlying the FDIA framework can be

summarized as follows:

• When travelling several times on a road, the vehicle

follows the same path with small deviations (which can be

compensated if necessary by lane marking measurements

from a front camera).

• Any fault affecting position estimates from sensors can

cause errors of any values. Errors on faulty vehicle position

estimates from sensors are different from one trip to

another at a given abscissa.

• The navigation map does not change from one trip to

another. Errors on the vehicle position estimates from the

navigation (when they occur due to a fault) are therefore

always the same at a given abscissa.

• Errors on the vehicle position estimates from sensors and

from the navigation are independent of each other at a

given abscissa.

Given these assumptions, we have:

P s
i = P s

i+1, ∀i ∈ {1, . . . ,K − 1} (3)

Where P is the true vehicle position, s is the curvilinear

abscissa, i is the trip index and K is the total number of trips

made on the road. In the sections below, the formalism is

developed from the system monitoring point of view, putting

temporarily aside the application to intelligent vehicles. The

estimates from sensors and from the navigation (G and N
respectively) are seen as estimates of the same physical quantity

P , which is in accordance with the assumptions above. The

curvilinear abscissa is understood as an operating point of the

system to be monitored and the vehicle trips are iterations of

this system.

IV. SEQUENTIAL FAULT DETECTION

The first step in FDIA consists in detecting faults by

comparing the two position estimates N and G. According

to the assumptions stated previously, a significant discrepancy

between the estimates indicates that a fault affects at least

one of them. However, noise on estimates may cause non-

faulty estimates to be different from each other and induce

false alarms in the detection process. For this reason, this

section details the mathematical formulation of a probabilistic

sequential test (called Page’s test) and its application to the

detection of discrepancies between position estimates.

Statistical tests are an appropriate tool for evaluating the

parameters of a probability law based on set of outcomes. In

our application, we seek to detect a change in the mean of the

probability density function (PDF) of a set of observed data,

while the standard deviation of this PDF is of the same order

of magnitude as the expected mean gap. Page’s test works

sequentially and is especially efficient for stream data. The

problem is therefore formulated as the detection of a change

in the mean of a random variable that represents the distance

between the estimates from sensors and from navigation.

Page’s test (also known as Page’s trend test) consists in

statistically detecting a change in the mean of a random

variable based on a likelihood ratio of hypotheses [34]. It

also identifies the sample at which the change in the mean

occurred. Formulation of this test in the context of map fault

detection is detailed in [38].

The random variable tested here is the distance between

estimates G and N . Let us see how the distance signal

is generated and described in terms of mean and standard

deviation. Let us consider the estimate N from the navigation

as the result of a random process based on the true vehicle

position P in a frame R1 aligned with the road:

N = P + α (4)

Σα =

[
σ2
a 0
0 0

]
R1

(5)

where α is a noise assumed to be zero-mean, with a diagonal

covariance matrix Σα. Since roads are represented in the

navigation map by zero-width poly-lines, the variance of the

navigation map-matched error normal to the road segment

is by definition null. However, a map-matched position error

along the road segment exists, and σa denotes the longitudinal

standard deviation of the navigation estimate.

The estimate of the vehicle position from sensors G can be

encoded as a two-dimensional point G = (x, y)
T

in the East-

North plane R0 locally tangent to Earth with the covariance

matrix Σβ of the estimation error β provided by the localization

system:

G = P + β (6)

Σβ =

[
σ2
x σ2

xy

σ2
xy σ2

y

]
R0

(7)

In order to make the distance signal independent of the road

direction, an isotropic approach is used, and this consists in

using the outer circle of the ellipsoid. Its radius is η = max (ηi),
ηi being the eigenvalues of Σβ . So, the covariance matrix

expressed in R1 is η · I (with I being the identity matrix).

The vector L is defined to be the difference between the

map-matched and estimated positions as stated by the following

equation. L has two independent components, namely lateral

error d and longitudinal error e.
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L =

[
d
e

]
= N −G = α− β (8)

Under the hypothesis of independent errors, the signals d
and e have the following variances:

σ2
d = η

σ2
e = η + σ2

a
(9)

The most relevant information is the lateral position of the

roads in the navigation map. The fault detection is therefore

done by detecting mean changes in the signal d using η.

V. FAULT ISOLATION AND ADAPTATION METHOD

Once a fault has been detected, the problem is now to

isolate the faulty estimates and perform adaptation according

to the assumptions made previously, using the repetition of

vehicle trips as a source of redundancy. The adaptation process

consists in providing a non-faulty estimate to a client system

so that it can continue to operate normally, even if the current

estimate is affected by a fault. Non-faulty estimates therefore

need to be identified unambiguously. The concepts of Sets

of Faults and Residuals are defined first. The mathematical

relationship between these two concepts is then demonstrated.

Finally, we show how a set of faults can be isolated, based on

the observation of residuals.

A. Definitions

1) Sets of Faults: Let the set of faults esK be composed of

all fGs
k

and fNs
k

for the considered iterations K at a given

abscissa s:

esK
def
=

{
fGs

i
, fNs

j

}
, ∀i, j ∈ {1, . . . ,K} (10)

The cardinality of esK is 2K. Each element of esK is a

boolean value so there are 22K possible sets written esK,n:

{
esK ∈ {

esK,n

}
esK,n ∈ B

2K , ∀n ∈ {
1, . . . , 22K

} (11)

Let us take an example with K = 2. There are 22·2 = 16
different sets. The cardinality of each one is 2 · 2 = 4.

For instance, es2,5 =
{

0 0 1 0
}

means
{
fGs

2
= 0

and fNs
2
= 0 and fGs

1
= 1 and fNs

1
= 0

}
.

2) Residual Processing: At a given abscissa s and at system

iteration K, every available estimate at the current iteration is

compared to all the others and the result is stored in a residual

vector Rs
K . The elements of Rs

K are defined as:

rGs
iG

s
j

def
=

{
1 if Gs

i �= Gs
j

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j (12)

rGs
iN

s
j

def
=

{
1 if Gs

i �= Ns
j

0 otherwise
∀i, j ∈ {1, . . . ,K} (13)

rNs
i Ns

j

def
=

{
1 if Ns

i �= Ns
j

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j (14)

Equations (12) and (14) are restricted to i > j to avoid

useless redundant residuals.

Rs
K is therefore composed of C (2K, 2) boolean ele-

ments, where C (2K, 2) stands for the number of 2-

combinations from a given set of 2K elements. We know

that C (2K, 2) = K (2K − 1) so the residual vector therefore

contains K (2K − 1) elements.

For example, at the second iteration, the size of Rs
2 is 6:

Rs
2 =

[
rNs

2Gs
2

rGs
2G

s
1

rNs
1Gs

2
rNs

2Gs
1

rNs
1Ns

2
rNs

1Gs
1

]
(15)

If, for example, the estimates are such that Gs
1 �=

Ns
1 = Gs

2 = Ns
2 then the residual vector is Rs

2 =[
0 1 0 1 0 1

]
.

3) Relationships Between Faults and Residuals: Let ∨ and

⊕ denote boolean or and exclusive or operators respectively.

Proposition 1. The elements of the residual vector are the
result of boolean operations between the faulty states of the
estimates, according to the following equations:

rGs
iG

s
j
= fGs

i
∨ fGs

j
, ∀i, j ∈ {1, . . . ,K} , i > j (16)

rGs
iN

s
j
= fGs

i
∨ fNs

j
, ∀i, j ∈ {1, . . . ,K} (17)

rNs
i N

s
j
= fNs

i
⊕ fNs

j
, ∀i, j ∈ {1, . . . ,K} , i > j (18)

The demonstration of this proposition is developed in [39].

Eq. (16), (17) and (18) of Proposition 1 establish a link

between the available estimates (i.e. G and N ) and the faults

which affected them (i.e. fG and fM ). The first two equations

tell us that if there is at least one fault on the considered

estimates, then the residual is affected. In (18), the residual is

equal to one if there is a single fault among the two estimates.

It is now possible to deduce the presence of faults based on

observation and comparison of the estimates.

B. Fault Isolation Principles

The fault detection and isolation strategy involves listing

all the possible sets of faults for a given iteration K, and

calculating the corresponding theoretical residual vectors

with (16), (17) and (18). This forms the truth table for K. In

parallel, available estimates are used to compute the observed

residual vector based on (12), (13) and (14). This vector, present

in the truth table, allows the corresponding set of faults to

be determined. Faults affecting each estimate can finally be

deduced from this set. It will be remarked that the truth tables

are valid for every operating point, so the superscript s is

omitted in the tables.

Let us take the example given in Section V-A2. At the

first system iteration at operating point s, two estimates are

available: Gs
1 and Ns

1 . The truth table for one iteration is shown

in Table I. It is assumed in this example that Gs
1 �= Ns

1 is

observed, therefore rGs
1N

s
1
= 1, according to (12). Table I

shows that this residual can be due to three sets of faults: es1,2,

es1,3 and es1,4. After one system iteration, it can be concluded

that there is at least one faulty estimate among Gs
1 and Ns

1 , but

it is not possible to determine which one. The fault is detected,

but not isolated.
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Table I
TRUTH TABLE FOR ONE ITERATION (K = 1). THE FIRST RESIDUAL

rG1N1
= 0 APPEARS ONLY ONCE IN THE TABLE, AND SINCE THIS MAKES

ISOLATION POSSIBLE, IT IS SHOWN IN GREEN. CONVERSELY, rG1N1 = 1 IS

DUE TO MORE THAN ONE SET OF FAULTS AND IS SHOWN IN RED. THE

RESIDUAL USED AS EXPLANATION EXAMPLE IS IN BOLD.

Sets of faults eK,n Residuals
fG1 fN1 rG1N1 = fG1 ∨ fN1

e1,1 0 0 0

e1,2 1 0 1
e1,3 0 1 1
e1,4 1 1 1

At the second system iteration at the operating point s,

a new pair of estimates is available: Gs
2 and Ns

2 . The truth

table for two system iterations is calculated with (16), (17)

and (18) and is shown in Table II. In this example and

similarly to Section V-A2, it is assumed that Gs
1 �= Ns

1 =
Gs

2 = Ns
2 is observed. This leads to the residual Rs

2 =[
0 1 0 1 0 1

]
. Table II shows that this residual (in

bold) is exclusively due to the set of faults es2,5. After the second

system iteration, fault isolation is performed by concluding

that
{
fGs

2
= 0 and fNs

2
= 0 and fGs

1
= 1 and fNs

1
= 0

}
.

C. Conditions of Isolability
By definition, the truth table is exhaustive; the observed

residual vector is necessarily included within it. However, some

sets of faults induce the same residual vector, as shown by

the red colour in Tables I and II. In this case, isolation is not

possible. These are called Adverse sets. At least one more

system iteration is required to perform isolation.
Being adverse depends on the number of faults affecting the

estimates, as stated in Proposition 2.:

Proposition 2. A set of faulty states is adverse if and only if
it corresponds to one of the following conditions:

fNi
= 1 , ∀i ∈ {1, . . . ,K} and ∃!j ∈ {1, . . . ,K} such that

fGj
= 0

fGi
= 1 , ∀i ∈ {1, . . . ,K}

In other words, it is not possible to isolate faults if:

1) Every estimate N is faulty and there is a single fault-free

G.

2) Every G is faulty.

The proof of this Proposition can be found in [40].
It will be remarked in the example developed previously

that after the first system iteration (i.e. K = 1), the situation

corresponded to the second condition of this proposition

because fNs
1
= 0 and fGs

1
= 1. This is why fault isolation

was impossible. However, after the second iteration, the set

chosen for the example
{
fGs

2
= 0 and fNs

2
= 0 and fGs

1
= 1

and fNs
1
= 0

}
no longer corresponded to either of these

conditions. Fault isolation had therefore become possible.
Proposition 2 is fundamental for demonstrating the internal

formalism properties. These are detailed and demonstrated as

follows.

D. Formalism Properties
Once the bases of the formalism are established, we

have the properties shown below in the listed propositions.

Demonstrations of these properties can be found in [39].

Proposition 3. Guaranteed fault detection: The formalism
always detects the presence of faulty estimates. In other words,
each time there is a faulty estimate, the formalism detects it
(but may not be able to isolate the faulty estimate).

Proposition 4. Isolation convergence: The ratio of the number
of adverse sets of faulty states to the total number of sets tends
to zero as the number of iterations increases. In other words,
increasing K improves fault isolation capabilities.

Proposition 5. Conservation of isolability: Once fault isolation
is performed, fault isolation will be performed at any new
iteration.

Proposition 6. Adaptation: If fault detection and isolation are
performed, then adaptation is possible.

It should be recalled that adaptation consists in identifying

a fault-free estimate once detection and isolation have been

performed.

Proposition 7. Conservation of adaptation: If fault isolation
is achieved at the Kth iteration, adaptation is possible at
iteration K+1 whatever the faults affecting the new estimates.

These propositions have important consequences for the

application of the method in intelligent vehicles. First, Propos-

ition 3 shows that the presence of a fault among the available

estimates is always detected by the method. This means that

where there is no fault, the method is able to declare this fact

with certainty even at the first system iteration, allowing client

systems to function. Integrity monitoring is therefore possible

with this method. Second, Proposition 4 shows that a new

iteration will always contribute information for fault isolation,

which justifies multiple system iterations. Third, according to

Propositions 5 to 7, once a fault has been isolated, a fault-

free estimated can be provided to client systems at any future

iteration, allowing client systems to anticipate being able to

operate properly at any future iteration.

E. Illustrative Example

We now take the FDIA formalism proposed above and apply

it to monitoring the integrity of the navigation vehicle position

estimate as introduced in Fig. 2. Using a simple example, each

step is described in detail. The map contains an error and we

show how the method performs fault detection, isolation and

adaptation. In addition to detailing each step of our proposed

method, we illustrate the properties introduced in Section V-D.

In this example (depicted in Fig. 5), the real road is straight,

while the map’s representation of the road includes a bend. Let

us detail the proposed formalism at abscissa 25 m in the first

trip shown in Fig. 5a.

The first time the vehicle is at abscissa s = 25, position

estimates are provided by the vehicle state (G25
1 ) and by the

navigation (N25
1 ) functions. The observed residual can be

computed using (13):

G25
1 �= N25

1 ⇒ rG25
1 N25

1
= 1

This residual is found three times in the truth table for one

FDIA trip (Table I): the sets of faults e251,2, e251,3 and e251,4 give
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Table II
TRUTH TABLE FOR TWO ITERATIONS (K = 2). RESIDUALS OCCURRING ONLY ONCE ARE IN GREEN, SINCE THEY MAKE ISOLATION POSSIBLE. CONVERSELY,

RESIDUALS THAT ARE DUE TO MORE THAN ONE SET ON FAULTY STATES ARE IN RED. THE RESIDUAL USED AS EXPLANATION EXAMPLES IS IN BOLD.

Sets of faults eK,n Residuals
fG2

fN2
fG1

fN1
rN2G2

rG2G1
rN1G2

rN2G1
rN1N2

rN1G1

e2,1 0 0 0 0 0 0 0 0 0 0
e2,2 1 0 0 0 1 1 1 0 0 0
e2,3 0 1 0 0 1 0 0 1 1 0
e2,4 1 1 0 0 1 1 1 1 1 0

e2,5 0 0 1 0 0 1 0 1 0 1
e2,6 1 0 1 0 1 1 1 1 0 1
e2,7 0 1 1 0 1 1 0 1 1 1
e2,8 1 1 1 0 1 1 1 1 1 1

e2,9 0 0 0 1 0 0 1 0 1 1
e2,10 1 0 0 1 1 1 1 0 1 1
e2,11 0 1 0 1 1 0 1 1 0 1
e2,12 1 1 0 1 1 1 1 1 0 1

e2,13 0 0 1 1 0 1 1 1 1 1
e2,14 1 0 1 1 1 1 1 1 1 1
e2,15 0 1 1 1 1 1 1 1 0 1
e2,16 1 1 1 1 1 1 1 1 0 1

(a) First trip (blue line) (b) Second trip (purple line)

Figure 5. A faulty map area. Circular grey marks are for estimates where
the method has detected but not isolated a fault. Green squares are for true
estimates and red triangles are the faulty estimates.

rG1N1
= 1. The proposed method then detects a faulty estimate

among G25
1 and N25

1 but is not able to isolate it. The integrity

monitoring system cannot specify the faultiness of N25
1 , but

simply sends Knowledge of fault: Unknown to client systems,

as shown by circular grey marks in Fig. 5a.

The second time the vehicle traverses abscissa s = 25 of the

same road (Fig. 5b), a new pair of position estimates becomes

available: G25
2 and N25

2 . The dimension of the residual vector

increases to 6. The elements are calculated using (12), (13)

and (14):

N25
2 �= G25

2 ⇒ rN25
2 G25

2
= 1

G25
2 = G25

1 ⇒ rG25
2 G25

1
= 0

N25
1 �= G25

2 ⇒ rN25
1 G25

2
= 1

N25
2 �= G25

1 ⇒ rN25
2 G25

1
= 1

N25
1 = N25

2 ⇒ rN25
1 N25

2
= 0

G25
1 �= N25

1 ⇒ rG25
1 N25

1
= 1

Then R25
2 =

[
1 0 1 1 0 1

]
.

Table II is the truth table for two trips. Following the first trip

observation it is known that fG25
1

and fN25
1

are not both null,

and the first four rows of Table II may therefore be ignored.

The observed residual is found only once in this table (caused

by the set of faults e252,11). Consequently, it can be concluded

that fG25
2

= 0, fN25
2

= 1, fG25
1

= 0 and fN25
1

= 1.

The integrity monitoring system returns the instruction

Knowledge of fault: don’t use the navigation position estimate
(N25

2 ) and provides a fault-free estimate instead in the output

Correction (either G25
2 or G25

1 ). On Fig. 5b, faulty (resp. true)

estimates are represented by red triangles (resp. green squares).

From Proposition 7 we know that the integrity monitoring

system will be able to perform adaptation, i.e. provide an

error-free position estimate for all future trips along this road,

whatever the faults affecting the future estimates.

F. Complete Fault Detection, Isolation and Adaptation Method

The FDIA framework introduced previously is based on the

calculation of a residual vector Rs
K (s is the vehicle curvilinear

abscissa on the road and K is the number of trips on this

road). In practice, the elements of Rs
K are defined on the

basis of comparisons of the distance between each pair of

available estimates N and G with a threshold λd, and denoted

by rGs
iG

s
j
, rGs

iN
s
j

and rNs
i N

s
j

, ∀i, j ∈ {1, . . . ,K} which we

recall below:

rGs
iG

s
j
=

{
1 if dist

(
Gs

i , G
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j

(19)

rGs
iN

s
j
=

{
1 if dist

(
Gs

i , N
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K}

(20)

rNs
i Ns

j
=

{
1 if dist

(
Ns

i , N
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j

(21)

Page’s test is used here instead of the distance measure for

comparing G and N . According to this new formulation, the

residual vector element rGs
KNs

K
is zero if Page’s test gives the

mean of the signal d as zero. Reciprocally, rGs
KNs

K
is one if

the test detects a mean change in d. The manner in which

the other residual elements (rGs
iG

s
j

and rNs
i N

s
j

) are calculated

remains unchanged.

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

50



(a) The vehicle is at abscissa s = 15. Page’s decision variable is greater than
0 and lower than the threshold. The FDIA is then delayed since s = 13.

(b) Page’s decision variable exceeds the threshold at s = 16. FDIA is run
for abscissas 13 to 16 with rG1N1

= 1. This results in Knowledge of fault:
Unknown.

Figure 6. Example of the use of Page’s test with the FDIA framework. The
road as recorded in the navigation map is the red poly-line. The estimates
from navigation Ns

1 are the red crosses and the estimates from sensors Gs
1 are

the blue crosses. The vehicle is travelling from left to right, so its curvilinear
abscissa is denoted by the axis S. The decision variable used in Page’s test is
plotted on the middle graph. The result of FDIA with Page’s test is shown in
the lower parts of the figures.

As shown in Section IV, Page’s test may require a few

samples before it is able to give definitive results. This is

highlighted by the distance-to-alert and distance-to-recovery

metrics. In such a situation, the estimates are buffered until

Page’s test provides a definitive output. The FDIA framework

is then run on each estimate, taking the result of the test as an

input.

As an example, Fig. 6 shows the progression of Page’s test

as the vehicle advances, and illustrates the strategy employed

here for the FDIA. We are looking at the first trip along this

road. The method is detailed step by step, as shown in this

figure. When the vehicle is at abscissa s = 10, the estimates

from sensors G10
1 and N10

1 are very close to each other. The

Page’s test decision variable equals zero, and therefore the

estimates are considered to be equal. The FDIA framework

is run with rG10
1 N10

1
= 0: this residual is found only once

Figure 7. Test vehicle

in the truth table so it is not necessary to use previous trips,

and the FDIA concludes that the estimates are fault-free. At

abscissa s = 11, the Page’s test decision variable is not null, but

has not yet reached the threshold γ. A discrepancy between

the estimates G and N is likely, but not yet detected. The

estimates that correspond to abscissa s = 11 (i.e. G11
1 and

N11
1 ) are stored in the memory buffer until the Page’s decision

variable either exceeds the threshold or returns to zero. When

the vehicle reaches abscissa s = 12, the estimates G12
1 and

N12
1 make the decision variable return to zero, which indicates

that Page’s test gives no discrepancy for the two last abscissas.

The FDIA is run at every abscissa in the memory buffer: at

s = 11 with rG11
K N11

K
= 0, the FDIA concludes that there is no

fault affecting G11
1 and N11

1 ; at s = 12 with rG12
K N12

K
= 0, the

FDIA concludes that there is no fault affecting G12
1 and N12

1 .

The memory buffer is cleared. At s = 13 to s = 15, the

estimates are such that the decision variable is not null so

these are buffered as shown by black marks on Fig. 6a. At

abscissa s = 16 the decision variable finally exceeds γ, and

so Page’s test now declares that a discrepancy, starting at

s = 13, is detected. The FDIA is then successively run at

s = 13, s = 14, s = 15 and s = 16 with rG13
1 N13

1
= 1,

rG14
1 N14

1
= 1, rG15

1 N15
1

= 1 and rG16
1 N16

1
= 1 respectively.

Since these residuals are adverse and there are no previous

trips available, the FDIA outputs Unknown for the estimates,

as shown by orange marks on Fig. 6b. The memory buffer

is emptied and the decision variable is set to zero for the

following evaluation points.

VI. EXPERIMENTAL EVALUATION

A. Test Vehicle

Experiments were done in real conditions using the Renault

Espace passenger vehicle shown in Fig. 7. The navigation

system used in the vehicle is fed by a standard single frequency

Ublox 6T GPS receiver (corresponding to GNSS1 in Fig. 2).

The GNSS receiver denoted by GNSS2 in Fig. 2 is a Ublox 4T

GPS receiver. The vehicle odometer, speed, rear wheel speed

difference and yaw rate are production-standard sensors and are

available on the vehicle CAN-bus. An extended Kalman filter

is used to compute the position estimate from sensor G, based

on the vehicle sensors and the Ublox 4T GPS receiver [38].
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Figure 8. Metrics employed for method evaluation. The columns are the
output of the method and the lines are the actual state of the navigation map.

An Ixsea LandIns Inertial Navigation System (INS) tightly

coupled to a Novatel GPS receiver provides position estimates

with an error of less than 1 m and is considered as position

ground truth for the experiments.

B. Metrics

We saw above that our proposed method has three possible

output states that refer to the current navigation estimate

integrity, namely Use, Unknown, Don’t use. The navigation

map can be correct or faulty. A set of metrics is introduced

as follows and illustrated in Fig. 8. These are evaluated with

respect to the number of vehicle trips so that the performance

of our method can be evaluated precisely.

The overall efficiency corresponds to the number of relevant

diagnoses made by the method, equal to the sum of True

Validations (TV) and True Isolations (TI). A TV occurs when

a correct point of the navigation map has been declared with no

fault. A False Validation (FV) occurs when the method trusts a

faulty navigation estimate. A False Isolation (FI) occurs when a

correct navigation estimate is classified as faulty by the method.

The Overall Efficiency Rate (OER) is:

OER
def
=

TV + TI

Ω− Ωunknown
(22)

where Ω is the number of navigation points evaluated by the

method and Ωunknown is the number of navigation estimates

for which the method outputs Unknown. An OER close to one

would indicate that whenever the method provides an output

different from Unknown, this diagnosis is reliable.

The output Unknown does not provide information on the

integrity of the navigation estimate from the point of view

of client systems. From the applicative point of view, this

output should occur as little as possible. The performance of

the method in terms of information availability is measured by

the Information Availability Rate (IAR):

IAR
def
=

Ω− Ωunknown

Ω
(23)

This is expected to converge to one as the number of trips

increases.

C. Urban Test Track

In this experiment, the vehicle was driven close to large

buildings. The GPS receiver was perturbed by multipath effects

Figure 9. GNSS tracks on the correct navigation map. Clockwise (blue) and
anticlockwise (purple)

caused by signals reflecting off buildings. These measurements

are expected to be isolated by the method. As shown in Fig. 9,

over parts of the circuit conditions are good, and the deviation

of the GPS measurements is less than the width of the road. It

will be remarked that for testing the method, these experimental

conditions are challenging. The length of each trip is 1100 m

and the spatial sampling has been done along the map with

a 10 m period, and the tolerance on the vehicle curvilinear

abscissa is λs = 2 m. Hence, Ω = 110 points on the navigation

map need to be evaluated at each trip. This value varies by a

few points from one trip to another because data recordings

were not started and stopped rigorously at the same positions.

The threshold on the distance between the estimates must be

chosen according to two criteria. First, it must be as small as

possible to comply with assumptions made as bases for the

method. Second, it must be greater than the tolerance on the

vehicle abscissa λs, so that two estimates from navigation that

correspond to the same abscissa are considered as equal by

the method. Page’s test is therefore set to detect a discrepancy

of δm = λs = 2 m between the estimates with the detection

threshold γ = 4.σ/δm.

Faults were generated randomly in five different maps using

dedicated software. The performance of the complete FDIA

method is evaluated using the metrics introduced previously

and detailed in Fig. 10 and 11.

Fig. 10 shows the ratio of correctly identified points to the

number of isolated or validated points. At the first vehicle

trip the method cannot perform isolation. The OE is then only

composed of TV. The OER at the first trip is therefore favoured

by the absence of false validation; the OER of five of the ten

tests therefore equal one. It will be noted that the OER of

map 1 anticlockwise is especially low at the first trip (50%),

but this is not significant since it is calculated using only four

points. The OER tends to remain constant from the second to

the third trip with medians equal to 84% and 83% respectively.

Fig. 11 summarizes the ratio of the number of validated or

isolated points to the number of points considered Unknown.
The IAR increases with the number of trips for all the tests and

exceeds 90% at the third trip. The FDIA method is therefore

seen to converge as stated by Proposition 4.
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Figure 10. Overall Efficiency Rate.

Figure 11. Information Availability Rate.

D. Rural Test Track

Here we look at how the method performed in an area where

real map errors were present. The road had been modified when

a new motorway was built. A 2008 Navteq navigation map

was used to run the FDIA method. Fig. 12 shows that this map

contains three major faults, described below from left to right.

The first fault is where the road now deviates as it passes

over the motorway. The second is where a completely new

stretch of road has been created, deviating significantly from

the old one. For these two cases the confidence accorded

to the estimates both from the sensors and from navigation

are high. In a rural environment, many satellites are in the

receiver line-of-sight, which increases the level of confidence

and reduces the position standard deviations and Dilution of

Precision. Moreover, the road network is quite simple, so the

map-matching algorithm provides a high level of confidence

even if the GNSS measurement is a few metres away from

the road. The challenge is therefore to determine precisely the

reason for any disparity between estimates from sensors and

from navigation, that is to determine which estimate is affected

by a fault. When the real road is too far from the map road,

the map-matching confidence index suddenly decreases and

Figure 12. Rural test track. The navigation map used in the experiment is in
yellow, the correct map is in grey in background. The vehicle goes from left
to right. The estimates from sensors of the first (resp. second) trip is in blue
(resp. purple).

the navigation function switches to off-road mode and stops

providing navigation estimates. The FDIA method consequently

stops until a new estimate is provided by the navigation system.

The third fault is where a new road now exists parallel to the

old one. Even if the estimate from navigation is relatively close

to the true vehicle position in this area, the method should

identify the fault. Fig. 12 also shows the estimates from sensors

for the two trips used in this experiment.

Fig. 13a shows the result of the FDIA applied to this dataset

after the first trip. The green stretches are where the method

returned Use and the black stretches are where the output was

Unknown. There is no FI, since the method cannot isolate a

fault at the first trip, as described above. It will nevertheless be

noted that there is no FV of 0% and the OER is 100%. This

means that the method correctly identified situations where

estimates were not affected by faults and consequently provided

the output Use, and also that it detected situations where at

least one fault affected the estimates and consequently provided

the output Unknown to client systems. The IAR of this first

trip is 77% which corresponds to the proportion of erroneous

roads in the navigation map.

The results obtained after the second vehicle trip in this

area are shown in Fig. 13b. Here again, OER = 100 % which

means that every estimate not declared Unknown at the second

trip was correctly identified. Moreover, every point traversed

during the course of two trips was declared either Use or Don’t
use, and so the Information Availability Rate equals 100%.

This experiment shows that the method performed well

when using real vehicle data and a real navigation map with

faults. The absence of False Isolations and particularly False

Validations, and the high Information Availability in these

conditions indicate that the FDIA framework is a realistic

option for navigation integrity monitoring.

E. Discussion

These results, obtained using map faults that were either

injected or real, show that the isolation convergence property

is verified, since the number of points for which the method

cannot perform isolation decreases and can reach zero. The
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(a) First trip.

(b) Second trip.

Figure 13. Results of the FDIA for the rural test track. The road sections
for which the method outputs Use are in green, those for which the method
outputs Don’t use are in red, and those for which the method outputs Unknown
are in black. The true navigation map is in the background in grey.

information availability rate increases and can reach one as the

number of trips increases.

Faults that are not correctly isolated by the method (i.e.

False Validations and False Isolations) result mainly from the

trade-off between spatial re-sampling tolerance of sensor data

and the comparison threshold used for the computation of

residuals.

The design of the method is based on several assumptions

(random faults in the observer estimates, systematic faults in

the map, and independence between them). The results confirm

experimentally the validity of these assumptions. Faults in the

observer are essentially due to the additional GPS receiver

and can arise from multipath. If at a given abscissa, the same

multipath induces the same error on the receiver computation

fix at two different trips used by the FDIA method, the first

assumption is violated. In this case, the method fails to isolate

faults. Nevertheless, this requires two conditions to be fulfilled:

first, the same satellite geometry at the same abscissa during

two different trips, and, second, the same position fix error

after filtering. For these reasons, we believe that the violation

of the first assumption is very unlikely. This situation was

never encountered during the course of our experiments.

VII. CONCLUSIONS

This paper introduces a framework for monitoring the

integrity of navigation map geometry by detecting and isolating

faults on the estimate of the vehicle position from the navigation

system. We showed that the context of intelligent vehicles in

which this work takes place limits the quality of the sensors

and the redundancy of the sources of information. The FDIA

framework detailed in this work fills this gap by making use

of repeated vehicle trips.

The framework is based on a pairwise comparison of

spatially-sampled vehicle position estimates between the current

and past vehicle trips that gives rise to residual vectors. We

demonstrate that under the assumptions made the proposed

FDIA framework is theoretically always able to perform fault

detection. However, depending on the number of faults that

affect the estimates and on the number of vehicle trips, it

may not be possible to perform isolation, that is, to determine

without ambiguity which estimate(s) is (are) affected by a fault.

By defining such sets of faults mathematically, we demonstrate

that the fault isolation and adaptation capabilities of the method

improve as the number of vehicle trips increases. The proposed

framework was tested using real sensor data and navigation

map faults. Performance was excellent in open sky areas and

promising in urban conditions. This highlights the interest of

using this FDIA approach in intelligent vehicles.
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Collaborative Visual SLAM Framework for a Multi-Robot System

Nived Chebrolu1, David Marquez-Gamez2 and Philippe Martinet1

Abstract— This paper presents a framework for collabora-
tive visual SLAM using monocular cameras for a team of
mobile robots. The robots perform SLAM individually using
their on-board processors thereby estimating the seven degrees
of freedom (including scale) for the motion of the camera
and creating a map of the environment as a pose-graph of
keyframes. Each robot communicates to a central server by
sending local keyframe information. The central server merges
them when a visual overlap is detected in the scene and creates
a global map. In the background, the global map is continuously
optimized using bundle adjustment techniques and the updated
pose information is communicated back as feedback to the
individual robots. We present some preliminary experimental
results towards testing the framework with two mobile robots
in an indoor environment.

I. INTRODUCTION

Autonomous robots are increasingly being used for more
and more complex problems each day such as exploration
of large unstructured environments etc. In order to deal with
these complex scenarios, a multi-robot system consisting of
a team of robots (such as mobile robots, aerial vehicles etc)
which are equipped with perception sensors is necessary. A
multi-robot system extends the capability of a single robot
by merging measurements from several team members and
providing each robot with information beyond the range of
their individual sensors. This facilitates more efficient usage
of resources and achieves tasks which are not feasible for a
single robot system.

Moreover the use of a multi-robot system allows parallel
execution of tasks and also some degree of redundancy
increasing both the efficiency and the robustness of the
system. Consider a scenario of employing a multi-robot team
for the purpose of mapping of a large unknown environment.
The task can be divided among all the team members which
can collaboratively build a global map reducing the overall
execution time. This collective information including the
relative positions of the robots can be used for making
exploration strategies, path-planning and other higher level
decision. However, in general the advantages of a collabora-
tive system come at the cost of increased computations and
communication load among robots.

In this work, we deal with a team of mobile robots each
equipped with a monocular camera to perform SLAM. Using
a monocular camera gives the advantage for the system
to be used both for indoor/outdoor applications and also
for scenes with large variations in depth. Typically these
conditions impose severe restrictions on other vision sensors
such as RGB-D cameras and stereo pairs. However, this
makes running the visual SLAM process more challenging as

1 Nived Chebrolu and Philippe Martinet are with Institut de Recherche en
Communications et Cybernétique de Nantes (IRCCyN), Ecole Centrale de
Nantes, France.nived.chebrolu@eleves.ec-nantes.fr,
philippe.martinet@irccyn.ec-nantes.fr

2 David Marquez-Gamez is with Robotics Division, IRT Jules Verne,
Nantes, France. david.marquez@irt-jules-verne.fr

the scale needs to be continuously estimated since no depth
information is directly available.

Fig. 1. System Architecture: Collaborative Visual SLAM

In this paper, we propose a framework for collaborative
visual SLAM (as shown in Fig. 1) where:

• Each individual robot performs monocular visual
SLAM and sends local keyframe information to a
central server.

• The central server merges this information to create a
global map and performs a pose correction using bundle
adjustment.

• The updated pose is communicated back to individual
robots as feedback thereby improving the local map and
the localization estimate of the individual robots.

The organization of the paper is as following. The next
section presents the related works. Then a general overview
on our system is given in section III where every function
is shortly described. Section IV presents the methodology
where we detail each function. Finally experimental results
are presented and analyzed in the section V.

II. RELATED WORK

Traditionally, SLAM has been performed using range
sensors like laser scanners, sonars or using stereo vision [1].
More recently, monocular cameras (bearing only sensors)
are also being used as the primary vision sensor like in
[2],[3],[4]. In the multi-robot context, this problem has been
studied under the banner of multi-camera structure from
motion (SfM) [5] or multi-camera SLAM [6].

In [7], the authors analyse the improvement in localization
quality of cooperative multi-robot localization over single
robot localization. [8] demonstrates that by incorporating
relative bearing information of the cameras, the overall
accuracy of the localization is strongly improved. In this
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approach, an Extended Kalman Filter (EKF) is adopted to
maintain the state containing configurations of all robots.
In [9], the authors propose an interesting idea where two
UAVs with monocular cameras act as a flexible stereo rig.
With additional input from IMUs the relative poses are
recoverd with absolute scale starting from an unknown initial
configuration.

[10] deals with large-scale collaborative SLAM in an
outdoor environment involving heterogeneous robots such
as UAVs and ground mobile robots equipped with stereo
cameras. It employs a global graph which maintains the
relative relationships between a series of submaps built by
each robot. The links between each submaps are created
by events like robot rendezvous, scene feature matches or
absolute localization information provided by GPS etc. These
constraints allow the correction of the position estimates
of submaps with respect to each other. [11] uses a multi-
camera system to estimate the trajectory of moving objects
in the scene along with building a 3D map of static objects.
However, the system requires the image streams from all the
cameras to be synchronized making it impractical to be used
for real-time applications.

Several decentralized solutions have been proposed where
data fusion is performed using only robots which are in
direct communication range of each other. [12] proposes
a method to efficiently distribute map information across a
team of robots which is robust to node failures and changes
in network topology. The proposed scheme consists of a local
optimization module which executes single robot SLAM, a
communication module which propagates the local graphs to
other robots and a neighbourhood graph optimization module
which combines all the local graphs into maps describing the
neighbourhood of a robot. On the other hand, recently many
centralized cloud based architectures for collaborative SLAM
have been designed where the data intensive tasks can be
mitigated to a powerful back-end cluster system [13], [14],
[15]. This allows the use of small and energy efficient on-
board processor to be placed on the robots while offloading
major computations to the cloud.

In [16], the authors propose a centralized framework for
a group of MAVs equipped with monocular cameras. Each
MAV performs visual odometry on its on-board processor
and sends keyframe information to a ground server where
it is merged to realize a global map. In this paper, we
present a similar framework however each robot is capable
of performing complete SLAM individually using full image
information instead of using only features. In addition, a
feedback mechanism is put in place which corrects the local
estimates continuously. Also the framework allows the robots
to join asynchronously and no prior relative information is
required.

III. SYSTEM OVERVIEW

Figure 2 illustrates the overall scheme of our collabo-
rative SLAM system. Each mobile robot equipped with a
monocular camera performs visual SLAM using its on-board
computer. This provides each robot with an estimate of its
pose and a 3D map of the environment in their respective co-
ordinate frames. In our approach, we use a monocular SLAM
algorithm based on direct image alignment which is able to
estimate the seven DoF’s including the scale of the scene.

Fig. 2. Overall scheme of our collaborative SLAM system

The map of the environment is stored as a pose-graph of
keyframes each consisting of a semi-dense depth map of the
corresponding view. This function is based on LSD SLAM
[3].

Each robot sends its keyframe information including its
pose in the local co-ordinate frame to the central server.
Here the place recognizer function constantly monitors all
the keyframes to detect overlapping scenes from different
robots. The overlap detection is performed in the appearance
space by extracting visual features from each keyframe and
comparing them in a fast manner using Bag of Words (BoW)
technique [17].

Once an overlap is detected between two cameras, the map
merging sequence is initiated. It involves computing an initial
transformation estimate between the matched keyframes by
using a RANSAC version of the traditional Horn’s algorithm
[18]. This estimate is used as a starting point to run an
optimization algorithm which estimates the similarity trans-
formation between the two matched keyframes. Finally, this
estimate is refined by performing an iterative closest point
algorithm as described in [19].

After computation of this transformation, the two corre-
sponding maps are merged into a global map and a new
constraint is added between the two matched keyframes.In
parallel, a bundle adjustment procedure is run over the global
graph and the updated poses of the keyframe graph are
communicated back to the individual robots as feedback.
This information is in turn used by each robot to improve
its localization estimate and the local map.

IV. METHODOLOGY

In this section we detail each individual function in Fig. 2.

A. Visual SLAM
Each mobile robot performs an on-board monocular

SLAM process which is able in real time to estimate its
pose and create the map of the environment as a pose-
graph of keyframes . The problem of scale drift is addressed
by implicitly including it as a parameter in the overall
optimization procedure. This function is based on LSD-
SLAM [3]. The overall method consists of the following
main components:
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1) Tracking: The camera pose ξ ∈ se(3) is estimated with
respect to the current keyframe Ki which consists of the
image (Ii), the depth map (Di) and the depth map variance
Vi. For each new image Ij , the relative pose ξji ∈ se(3) is
computed by minimizing the photometric error:

ξji = argmin
ξ

∑
p

∥∥r2p(p, ξji)∥∥ (1)

where the photometric residual rp(p, ξji) = Ii(p) −
Ij(ω(p,Di(p), ξji)) and ω is a warping function which
computes the location of a pixel from the first image in the
second image given the relative transformation ξji. Note that
in the actual implementation, a variance normalized residual
is minimized thereby implicitly including depth accuracy in
the computation of ξji. The optimization problem can be
posed as a weighted least squares problem [20] which can be
solved using the Gauss-Newton minimization method [21].

2) Depth Map Estimation: A semi-dense inverse depth
map is continuously estimated for each new frame. The depth
map is computed by making several stereo comparisons of
varying baseline over consecutive frames of the input video.
The variable base line allows for accurate estimation of both
near and far regions of the image. The method maintains a
probabilistic depth hypothesis for each pixel modelled by a
gaussian distribution which is continuously refined using an
filtering approach described in [22]. Finally when the camera
moves far from the current keyframe, a new keyframe is
created and its depth map is initialized by projecting points
from the previous keyframe on it.

3) Map Management and Optimization: The frame to
frame alignment method previously introduced in IV-A.1
inherently accumulates drift over time due to small errors
in each estimate arising from sensor noise and other model
inaccuracies.

To deal with this problem, the SLAM system maintains the
map as a graph where each vertex is the pose of the keyframe
and each edge represents the relative transformation between
the corresponding keyframes. Each time a new keyframe
is added to the map, new edges are created and finally
when previously visited regions of the scene are encountered,
additional edges (loop closures) are added which help in
reducing the accumulated drift.

However in the case of monocular SLAM, the scale of
the scene cannot be observed directly which over a long
trajectory leads to a drift causing major errors in tracking.
To take care of the scale parameter, the overall pose graph is
constructed in a manner such that the mean inverse of each
keyframe is one and instead the edges are represented as
transformation ξji ∈ sim(3). This allows the integration of
the scale parameter directly in the optimization problem. So,
the scaled transformation between the keyframes is estimated
by minimizing the error function:

E(ξji) =
∑
p

∥∥r2p(p, ξji) + r2d(p, ξji)
∥∥ (2)

where the depth residual is rd(p, ξji) = [p′]3 −Dj([p
′](1,2))

and p′ = ω(p,Di(p), ξji)
Finally, the overall map consisting of keyframe poses as

vertices and sim(3) constraints as edges, is continuously
optimized in parallel using a general graph optimization

framework like g2o [21]. This optimization over the graph
reduces the drift both in scale and pose estimates.

B. Place Recognizer
This module runs continuously on the central server and

is responsible to find scene overlap between different robots.
Since the relative position of each robot is not known in
the global coordinate frame at the beginning, the overlap is
detected using the appearance space information only.

For every new keyframe image, visual features (e.g. SURF
[23]) are computed which are view-point invariant. These
features are then quantized with respect to a vocabulary and
the resulting visual words description is stored. This bag of
words (BoW) technique allows the scene to be represented
as a collection of words which facilitates fast comparisons
of feature descriptors.

We use the FAB-MAP method [24] to detect a scene
overlap. This algorithm takes as input the BoW description of
each image, compares it against all previously seen images. It
gives as output the probability with which the current image
matches any of the previously seen images. Moreover, it also
computes the probability of the current image being a new
one. These probabilities are calculated by solving a recursive
Bayes estimation problem:

p(Li|Zk) =
p(Zk|Li, Zk−1)p(Li|Zk−1)

p(Zk|Zk−1)
(3)

where Li is a scene (location) in the world, Zk is an obser-
vation (visual words) at time k. In equation (3), p(Li|Zk−1)
is the prior belief of our location, p(Zk|Li, Zk−1) is the
observation likelihood and p(Zk|Zk−1) is a normalizing
term. The exact evaluation of these terms can be found in
[24].

Traditionally, the FAB-MAP technique has been used to
find loop closures over long trajectories. Instead in our
application, we use it to find if a place has been visited by
other robots in the team and in-effect creating a virtual loop
closure. It is termed virtual since the loop closure is obtained
as a result of the same place being visited by two different
robots (as opposed to the same place being visited by the
same robot). Finally, in order to avoid spurious matches, we
only proceed for map merging if FAB-MAP reports a match
over three consecutive images.

C. Map Merge
When the place recognizer module detects a scene overlap

between robots and indicates a match point, the map merging
procedure is initiated. The transformation between matching
frames is done in three steps followed by an update to the
global map.

1) Initial Transformation Estimate Using Horn’s Method:
For each keyframe image arriving at the central server, SURF
features are computed and stored. Note that the same features
were also used to compute a BoW representation required as
an input to FAB-MAP.

The Horn’s method describes a closed form solution using
unit quaternions to compute the scaled transformation given
three 3D point correspondences between two point clouds
[18]. From the matching keyframe candidates proposed by
FAB-MAP, 2D feature correspondences are extracted. Later
the depth of each 2D feature is computed by taking an
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average over the keyframe depth weighted by their variances
in the descriptor neighbourhood. It should be noted that
descriptors often end up in regions of discontinuities (such
as corners or edges) and the averaging step may result in bad
depth estimates. Finally, in order to deal with bad matches
between features, we implement a robust RANSAC based
version of the Horn’s algorithm.

2) Refining Estimate Using Sim3 Tracker: As a second
step, we use the tracking method based on minimizing the
cost function as described in equation 2 to find an improved
estimate for the scaled transformation. The estimate provided
by Horn’s method is used as a starting point for the tracker.

3) Correction using ICP: A final correction is made
using the iterative closest point (ICP) algorithm, a technique
from point cloud registration literature, which tries to find a
transformation that minimizes the distance between a set of
corresponding points in two clouds. We use an augmented
version of ICP which also includes surface normal and
tangent information to improve the estimate as described in
[19]. Note that both the Sim3 tracker and the ICP procedure
use a gradient approach to find the solution. In theory both
these methods could be used in any order. However, the ICP
procedure was found to be most accurate starting from a
better estimation of the scale factor. Therefore, it was decided
to perform the ICP step after the tracking step.

4) Global Map Update: Once the transformation is com-
puted, new similarity constraints are added between the
matching keyframes. The corresponding local maps are trans-
formed into the global coordinate frame considering one of
the two as reference (if its the first map merge) or using the
existing reference otherwise. After the new constraints have
been added a bundle adjustment step is performed over the
merged graph.

D. Overall Feedback System
Each time different robots visit the same place in the

environment, new constraints are created in the global graph.
While the mobile robots move in the environment, they may
cross each others path multiple times resulting in virtual loop
closures. These loop closure constraints help in reducing the
overall drift.

Finally, the central server communicates the updated pose
graph to individual robots which can then use this informa-
tion to update their localization estimate and the local maps.

This overall feedback mechanism facilitates the extension
of sensing capability of an individual robot beyond the direct
reach of their respective on-board sensors. In a sense, each
robot in the team is able to “look” beyond what they can
directly see and thus taking advantage of the collaborative
system.

V. EXPERIMENTAL RESULTS

In this section we present preliminary results with the aim
of validating the concepts presented before. The experiments
presented are not intended to be particularly challenging
examples, they are simply used to take the reader through
the functionality of the system.

The experiments were performed using two Turtlebots,
each equipped with a uEye monocular camera attached with
a wide-angle lens (∼130°Field of View) and a Core 2 Duo
laptop. The images are captured at 30 Hz with a resolution
of 640 x 480 pixels. The experiments were conducted in

an industrial-like indoor environment approximately 20m x
20m. The two robots start exploring the environment asyn-
chronously. Moreover, their starting positions are not known
to the central server. The robots traverse through regions
with large variations in scene scales. The depth of theses
scenes range from 1m to 15m. Finally, the communication
between the robots and the central server is carried through
the standard Wi-Fi protocol.

Figures 3 and 4 shows results from the monocular SLAM
process running on the local computers of the two robots
R1 and R2 respectively. The three columns in these figures
show the images captured by the camera, the trajectory of
the robot and the corresponding map built at three different
instants (corresponding to the three rows). The trajectory of
the robot R1 is illustrated in red and that of robot R2 in blue.
Each pyramid in the map represents a keyframe location and
the lines joining these keyframes represent the constraints.
The green pyramid depicts the current keyframe for both the
cameras.

At instant 1, we see that robot R1 has completed a
small square loop. During this trajectory, it makes some
loop closures as well. Later robot R2 starts exploring some
other part of the environment. At instant 2, the robot R2
completes a loop closure. As a result, we see that the overall
trajectory of robot R2 has been optimized and the scale
factor is corrected as well. At instant 3, robot R1 enters a
region previously visited by robot R2. At this time, the visual
place recognition system triggers a merge between the two
maps. The relative transformation between these two views
is computed in three stages as described in section IV.

In this example, robot R1’s origin is considered as the
reference coordinate frame. All the keyframes of robot R2
are transformed with respect to this origin. The global
trajectory of the two robots and the joint map is shown in
figure 5 . Finally, after searching for additional constraints
and optimizing the global map using bundle adjustment, the
updated keyframe poses are sent back to the two robots. This
updated keyframe pose is then used by robots R1 and R2 to
correct the localization estimate and the local map.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework for collaborative
visual SLAM for a team of mobile robots using a centralized
approach. Each robot is able to individually perform monoc-
ular SLAM using its camera and on-board computer. The
central server continuously receives local keyframe infor-
mation from individual robots over Wi-Fi. Keyframes from
all the robots are merged at this server and an optimization
procedure is followed which minimizes the overall pose and
mapping error. The updated pose information is sent back to
the individual robots incorporating a feedback mechanism.
No prior information regarding the relative position of the
robots or the initial configuration is required. The system
allows the robots to join and leave the team asynchronously.

The framework can be extended to work with different
type of cameras by including the corresponding projection
functions. In addition to the centralized framework, it would
be interesting to add robot-to-robot communication. In this
case, the robots can also exchange pose and map information
with each other when they are in direct communication
range.
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Fig. 3. Monocular SLAM Process on robot R1 at three different instants. Left: Image captured by the camera. Middle:Trajectory built by the robot.
Right: Map built by the robot.
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Fig. 4. Monocular SLAM Process on robot R2 at three different instants. Left: Image captured by the camera. Middle:Trajectory built by the robot.
Right: Map built by the robot.

Fig. 5. Global map computed at the central server . Left: Trajectory of the two robots in the merged map. Right: Depth map associated with the keyframes
from both robots.
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Abstract— Vision-based mobile robot localization method has
become popular in recent years. Most of the current approaches
use either global or local image feature for appearance repre-
sentation. However, pure global image feature based method
suffers from its low invariance to occlusions and view point
changes. Meanwhile, pure local image feature based method
ignores the global context of the image, which is very important
in place representation. In this paper, we present a vision-based
robot localization system that uses both local and global image
features to represent locations, and the estimated location of
the robot is determined by a Bayesian tracking filter which
uses the proposed hybrid image representation. Experiments
were conducted using a 1200 m campus route and the results
show that the proposed method works reliably even with large
appearance changes.

I. INTRODUCTION

Self-localization ability is one of the most basic require-

ments for mobile robot. Whatever a self-driving car, a bomb

disposal robot, or even a self-guided vacuum cleaner, the

position should firstly be obtained before the robot can

work automatically. Most commonly used methods for self-

localization are sensor-based, which use sensory information

to locate the robot in its environment. Many different sensors

have been used, among which GPS is the most popular

for outdoor environment. GPS can provide a good accuracy

under ideal condition; however, it can be inaccurate or

unavailable due to obstacles such as skyscrapers and trees.

GPS signals can also be affected by multi-path issues [1],

which tend to cause significant errors on robot localization.

Another optional sensor is IMU; it can allow a GPS receiver

to work when GPS signals are unavailable, but it is not

appropriate for practical usage because of hight prices.

Recently, vision-based place recognition has attracted a lot

of attention due to the widespread use of cameras on mobile

devices. The basic idea is to match a query image with a

database of geo-tagged images with known poses, which is

also called image retrieval problem. Once this retrieval task

is accomplished, it is possible to recover the position of the

query image. Based on place recognition technique, many

robot localization systems were proposed. One of the most

well-known approach is Fast Appearance-Based Mapping

(FAB-MAP) [2], [3], [4], which can perform very large

trajectory estimation based on bag of visual words model.

Zamir et al. [5] proposed a method, which utilizes Google

Street View images as the reference dataset. They extract

local features (e.g., SIFT) from the query image and retrieve

a number of nearest neighbors for each query feature from

the reference dataset, then a feature pruning method which

incorportates geo-spatial information is employed to discover

incorrectly matched features. Valgren and Lilienthal [6] eval-

uated outdoor appearance-based topological localization for

a mobile robot over seasons using SIFT and SURF features.

Badino et al. [7] proposed a system, dubbed topometric

localization method: at the first step, images are recorded and

image features (standard SURF) describing each location of

the mapping route are extracted from the images and stored

as a map. During localization stage, current image features

are matched with the stored dataset and position estimates

are smoothed by fusing velocity information.

The aforementioned methods choose local image measure-

ments as image representations. While local image features

offer great robustness to occlusions and illumination effects,

as well as great discriminative power, they ignore the global

information of the image, such as spatial relationships among

the patches, which are very important in image representa-

tion. Another group of image representations are based on

global image features, which can describe an image with a

single vector. Early examples of these were color histogram,

histogram of gradient orientation or frequency transforms [8].

But they can only be used in specific cases, such as static

indoor environment. More recently, many other global image

features have been used for mobile robot localization works.

Milford et al. proposed a framework, dubbed SeqSLAM

[9], [10], [11], which use the whole image to learn and

recognize a route even with extreme perceptual changes,

such as changes from day to night, summer to winter, and

from clear weather to rain. Murillo et al. [12] used global

gist descriptor to represent a panorama, and compared the

performance with local image features. These whole-image

descriptor based localization systems have the advantages of

high efficiency, compact representation, suitable for handling

large dataset. Nevertheless, purely global descriptor based

systems are more sensitive to occlusions and illumination

changes.

Researchers have also proposed hybrid approaches which

use both global and local image features. Zamir et al. [13]

suggested a method for image localization which finds one
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Fig. 1: Schematic for representing an image with Bow model.

or a few strongly matching reference images to a query by

robustly discovering local feature correspondence at first, and

then adopt some global contexts, like GIST, color histogram,

to select the correct match. The assumption of this method is

that the local feature matching step should be correct enough

so that the candidate nearest neighbors contain the correct

ones. Weiss et al. [14] also came up with an approach that use

local features only for difficult images, and global features

for all other images. The main advantage of this method is

that it does not have to extract the local features for each test

image, but the algorithm must decide which kind of feature

to use for each image.

In this paper, we propose an approach that localizes the

mobile robot who follows a previously taken route or almost

the same route. The main difference between our work and

previous approaches is that we use both global and local im-

age features for each test image. We do not simply combine

the global feature vector with the local feature vector, but

consider them independently. This makes local feature and

global feature contribute to the localization goal separately. A

Bayesian framework is used to estimate the probability of the

vehicle position as the vehicle moves and new observations

are acquired. In order to show the performance of our

proposed method, experiments are conducted using a 1.2 km

route under different weather conditions.

The rest of the paper is organized as follows: Section

II describes the proposed hybrid features we used. Section

III explains the Bayesian tracking filter and its formulation.

Experimental architecture and results are demonstrated in

Section IV. Section V concludes this work and discusses the

future work for this study.

II. LOCAL AND GLOBAL IMAGE FEATURES

This section describes the local image feature and global

image feature we use in the proposed approach. Considering

computational efficiency, the quantized local feature–visual

bag of word model instead of exact local image feature is

employed. As for global image feature, we choose GIST

descriptor, which is a low dimensional representation of the

scene.

A. Bag–of–Word Model

The idea of traditional exact local image feature based

method is that, the most similar reference image to a query

image is the one which has the highest ratio :

r =
dmatching

dtotal
(1)

where dmatching is the number of local features in the

reference image that can be matched to the features of the

query image, dtotal is the total number of features in the

reference image. The shortcoming of this method is very time

and memory consuming, because each query image feature

must be compared to each training image feature. This issue

become more prominent when large dataset are used.

Recently, researchers embedded approximate nearest

neighbor methods and quantization schemes in the local

feature based methods, which make it more suitable for

large dataset with thousands of images. Based on these

observations, we use typical bag of word model as our local

image feature.

Representing an image with BoW model typically consists

of three steps (as in Fig. 1): feature extraction, codebook

generation and visual-word histogram generation.

In this study, we use U-SURF [15] descriptor, which

is faster than SURF, but still invariant to scale and rota-

tions of the vertical axis. For each detected feature, the

descriptor vector is 64 dimensional which is half size of

SIFT descriptor. We get a large number of U-SURF features

extracted from the training images of our own dataset, and

then we use k-means clustering method [16] to obtain cluster

centres which can also be called visual-words. The number

of the clusters is the codebook size, which can decide the

performance of the bag of words method. As we increase

the codebook size, the performance will improve, but the

requirements for memory storage and computation will also

increase. So a trade-off between performance and efficiency

must be made during the experiment. This clustering process

may take some time because of the large amount of data, but

luckily this can be done off-line. Fast approximate nearest

neighbor search library (FLANN [17]) is used to assign each

local image feature to the nearest visual word. An image is

then represented by a weighted histogram of visual words,

in which the weights for each individual bin are determined

by the occurrence frequency of the visual word.

B. GIST

GIST descriptor was originally proposed to model the

shape of a scene [18]. Recently, it has been used by many

researchers and shown good results for outdoor localization

[19], [20]. The “gist” here means dominant spatial structure

(e.g., buildings, trees, streets) that can get noticed when the

scene is observed.

Given an input image, the gist feature is computed by

convolving the image with the an oriented filter (Gabor filter)

at several different orientations and scales. Consequently, the

high and low-frequency repetitive gradient directions of an

image can be extracted. The scores for the filter convolution

at each orientation and scale are stored in an array, which is

the GIST descriptor for that image.
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(a) Our Robot (b) Captured Images

Fig. 2: Mobile robot and captured images. (b) shows the

obtained image by the left sideways-looking camera. The

robot is navigated by joystick.

In our experiment, the image is divided into 4x4 grid, and

a Gabor filter at 8 orientations at 4 scales is used. To get the

final 1x512 feature vector for an image, the histograms of

the 16 grid are concatenated.

III. BAYESIAN FRAMEWORK

To estimate current position of the vehicle, we use a

Bayesian tracking filter. The Bayesian tracking filter updates

the probability of the robot location based on functions

of image similarities which are computed using the hybrid

image features described in the previous section. In this

section, we will give the mathematical derivation of the

filtering scheme.

A. Bayes Filter

We now describe how Bayes filter is used to estimate

the location of the mobile robot. Our approach is motivated

by [21]. Let lk be the random variable representing the

vehicle location (latitude and longitude) at time k, zk be

an observation of the scene appearance at time k, which

is represented by the hybrid image features. Zk denotes

the history of the observations z1, z2, ..., zk. The objective

is to obtain the distribution p(lk|ZK), which indicates the

probability of the location Lk given all observations up to

time k. Rewrite this probability, and follow Bayes rule, we

have:

p(lk|Zk) = p(lk|zk, Zk−1) (2)

p(lk|Zk) =
p(zk|lk, Zk−1)p(lk|Zk−1)

p(zk|Zk−1)
(3)

The denominator:

c = p(zk|Zk−1) =

∫
p(zk|lk)p(lk|Zk−1)dlk (4)

is just a normalization constant, which is independent of vari-

able lk, and observation zk at time k is also independent of

all previous observations. So rewrite the probability equation,

we have:

p(lk|Zk) =
p(zk|lk)p(lk|Zk−1)

c
(5)

here, p(zk|Zk) is the likelihood or measurement probability,

p(lk|Zk−1) is the prior of the state lk without knowing the

incoming measurement zk and knowing only the previous

measurement Zk−1. Assume this dynamical model to be a

Markov model, which indicates that the current true state is

conditionally independent of all previous states given the last

state, then the prior probability becomes:

p(lk|Zk−1) =

∫
p(lk|lk−1)p(lk−1|Zk−1)dlk−1 (6)

The probability p(lk|lk−1) specifies how the camera moves

from previous time to the current time, and it can be derived

from the motion model of the mobile vehicle. The probability

p(lk−1|Zk−1) is the posterior at previous time k − 1, which

we assume is available at time k. Replacing equation (6)

into equation (5), a closed-form expression can be written

like this:

p(lk|Zk) =
1

c
p(zk|lk)

∫
p(lk|lk−1)p(lk−1|Zk−1)dlk−1 (7)

In this study, we define the route map as a dense grid,

so all the formulas derived above become discrete form,

which makes a discrete Bayes filter. The discrete Bayes filter

also requires the definition of the prediction equation and

measurement equation. The derivation of these two equations

will be detailed in the following sections for our localization

problem using hybrid features.

B. Prediction Equation

The probability p(lk|lk−1) is used to model transitions

between states at time k − 1 and time k. In the proposed

method, no odometry sensor or other instruments are avail-

able to read the position of the robot. Alternatively, a simple

constant velocity motion model is used to update the state

variable lk. Assume that the velocity of our camera has

not changed since the last time step and approximates the

robot trajectory with segments of constant linear and angular

velocities. To cope with the additional uncertainty due to

velocity changes, some randomness are added. Thus the

mathematical expression characterizing the state prediction

given previous state can be formulated as:

p(lk|lk−1) =
1√
2π2Σ

· exp(−1

2
(lk − (lk−1 + vk))

T

Σ−1(lk − (lk−1 + vk)))

(8)

where vk is the velocity at time k and Σ is the covariance

matrix of velocity.

C. Measurement Equation

The conditional probability p(zk|lk) is the likelihood of

the current observation zk (represented by hybrid image

features) given position lk, and it can be expressed by

functions of the similarity between the extracted features
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(a) Robot Path (b) Ground Truth Data

Fig. 3: Experimental path. The arrow in (a) shows start and

end point. The red curve is the trajectory of our robot. The

units are shown in meters.

and those in the database. In our experiment, we model the

likelihood function like this:

p(zk|lk = li) =exp(−wg · L2(g
k − gi)

δg
2 )·

exp(−wbow · L2(bow
k − bowi)

δbow
2 )

(9)

here gk is the gist descriptor of the image at current time k,

gi is the gist descriptor of the image stored at location li;
similarly bowk is the bag-of-word descriptor of the image

at current time k, bowi is the bag-of-word descriptor of

the image stored at location li. These descriptor vectors

are normalized. L2 is the Euclidean norm distance between

the image descriptor vectors; δg and δbow are user-defined

variance; wg and wbow are weighting parameters for local

and global descriptors with the following rules:

(1) If wg = 1, wbow = 0, we only use global features for

image representation

(2) If wg = 0, wbow = 1, we only use local features for

image representation.

(3) Otherwise, we use hybrid features for image represen-

tation.

D. Final State Estimation

The estimated location (latitude and longitude) of the

vehicle at every time step will be given by the expectation:

E[lk|Zk] =
∑
i

lk
ipi(lk|Zk) (10)

IV. EXPERIMENTS

To verify the effectiveness of our system, experiments are

conducted using our mobile robot (Fig. 2(a)). The robot is

equipped with a Ladybug2 panoramic camera, which consists

of six small CCD cameras, five radially configured on

horizontal ring and one pointing vertically. In the experiment,

we only use the left sideways-looking camera because this

orientation contains maximum amount of high-information

regions (e.g., a building) [22]. Image obtained by this camera

is shown in Fig.2(b), with a resolution of 1024x768. The

robot is also equipped with a DGPS, which is used for ground

Fig. 4: Localization results using parameter set wg = 0.5,

wbow = 0.5.

TABLE I: Comparison of the localization results for different

weight sets using our test dataset

Different Weights Avg

Error

Std Dev Div

Times

wg = 1, wbow = 0 8.06 m 2.42 m 3

wg = 0, wbow = 1 8.34 m 2.26 m 4

wg = 0.7, wbow = 0.3 3.46 m 2.10 m 0

wg = 0.5, wbow = 0.5 3.37 m 2.06 m 0

wg = 0.3, wbow = 0.7 3.39 m 2.19 m 0

truth generation. The positioning accuracy is 0.5 m under

ideal condition.

We chose a 1200m campus path as our experimental route

(Fig. 3a.). The route is a loop around hall seven in Nanyang

Technological University, Singapore; even though it is not a

long route, it includes urban area scenery (e.g. buildings) as

well as suburban area scenery (e.g. trees, grass). We collected

the datasets at 18:10 PM on April 22, 2014 (a cloudy day

after raining) and 14:00 PM on July 26, 2014 (a sunny

day). The robot was navigated by joystick and moved at

human walking speed. Images were captured at every 1.5

s which approximately makes a two-meter interval between

consecutive images. There are around 600 images for both

dataset.

Since Singapore does not have very obvious seasonal

variations, the appearance of the two dataset should be

similar. But the April dataset was collected at rush hours of a

weekday, when there were many dynamic objects (Fig. 5a),

such as vehicles and people passing by. In contrast, the July

dataset was collected during weekend, when the campus was

relatively quiet. The different lighting conditions of the two

datasets also make the appearance vary greatly. We select the

April dataset as the reference, and localization experiment is

conducted using the July dataset. Each entry in the datasets

contains a bag-of-word descriptor bowi, a gist descriptor gi,
and the location li of the robot when the image was captured.

To evaluate the performance of the hybrid feature in

relation to the single local feature and single global feature

approaches, different weight sets are tried on our dataset

and the results are shown in Table I. We first set wg =
1, wbow = 0, meaning only global image feature is used for

image representation. Divergences (A divergence is detected
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(a) Dynamic Object (b) Shadows

(c) Occlusions (d) Non-discriminative

Fig. 5: Challenging images from our April dataset.

if the localization error is more than 10 m) occur because

of occlusions (Fig. 5c) and lateral shift which change the

spatial structure of the appearance greatly. The mean error

for this weight set is 8.06 m. We then set wg = 0, wbow = 1
so that this time we only use local image feature for image

representation. Divergences occur again when robot enters

into the areas full of trees and grass which have a lot of

repetitive features (Fig. 5d). This weight set has a mean error

value of 8.34 m. Lastly, we sweep wg and wbow from 0 to 1,

and several typical results are shown in the last three rows

of Table I. As can be seen, the localization accuracies are

improved by the fusion of local and global features, and no

divergence happens again since local and global image fea-

tures can make up each other’s shortcomings. Among these

parameter sets, the optimal set is wg = 0.5, wbow = 0.5, in

which the global and local image feature occupy the same

proportion. Fig.4 shows the localization results using this set

of parameter. The localization error is calculated from the

distance between the estimated location using equation (10)

and the ground truth location. It shows that the errors do not

increase as the camera moves, and the average localization

error is 3.37 m (red line of Fig. 4) with a standard deviation

of 2.06 m.

V. CONCLUSION

We proposed a mobile robot localization system using

both local and global image features. Experiments conducted

using a 1.2 km route under different weather conditions

showed the robustness of the proposed method.

Bigger dataset as well as other local and global image

features will be tested in the future research.
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Abstract—Localization is considered a key factor for au-
tonomous cars. In this paper, we present a Simultaneous Local-
ization And Mapping (SLAM) solution. This algorithm is based
on probabilistic maximum likelihood framework using grid maps
(the map is simply presented as a grid of occupancy probabilities).
The solution mainly solve three renowned localization problems
(1. localization in unknown environment, 2. localization in a
pre-mapped environment and 3. recovering the localization of
the vehicle). Memory issues caused by the open size of outdoor
environment are solved using an optimized management strategy
that we propose. This strategy allows us to navigate smoothly
while saving and loading probabilities-grid submaps into/from
a hard-disc in a transparent way. We present the results of our
solution using our own experimental dataset as well as the KITTI
dataset.

I. INTRODUCTION

One of the key aspects induced by a self-driving car is the

ability to localize itself in its environment. This perception

task, essential to every navigation system, is crucial for au-

tonomous driving as it is the basis on which trajectory planning

and command laws will rely. This topic has therefore received

a great amount of attention from the scientific community.

However, it is a difficult goal to achieve as such a solution

must be able to operate in large environments, provide accurate

results in real time and be able to find the vehicle’s location

in a previously explored environment when necessary.

Simultaneous Localization And Mapping (SLAM) tech-

niques play a central role in making cars truly autonomous.

The idea behind SLAM is, for a vehicle, to be able to incre-

mentally build a map of its surroundings while estimating its

pose (position and orientation) inside this map. An interesting,

but often neglected aspect is that, once a map has been built, it

can then be enriched or/and used for re-localization purposes

if a vehicle re-enters a previously mapped area.

In order to work in a fully autonomous car (embedding

other detection and safety algorithms), the requirements of

each algorithm should be optimized. This includes localization

system, as well as the architecture surrounding it. They must

be designed with this constraint in mind and should not limit

the size of the environment in which the vehicle is moving.

We propose here a complete SLAM system, called PML-

SLAM for Probabilistic Maximum Likelihood - SLAM, based

on horizontal laser sensors. PML-SLAM is well-suited to

real-life applications, it’s designed to perform in low re-

source requirements, both in terms of computational time

and memory consumption management. PML-SLAM has the

particularity to be designed around a solid map management

strategy in order to allow navigation to be smooth while

save/load/update/enrich map of any size environment. Based

on this map management strategy three of the most popular

problems related to localization are tackled. 1. localization

in unknown environment, where our solution offers the pos-

sibility to build a consistent map. 2. localization in known

environment, using a pre-built map which offers the possibility

to define vehicle’s trajectory. 3. the kidnapped robot problem,

in this case the vehicle can retrieve precisely its location

and orientation after kidnapping without any priori knowledge

about its new position. In these three cases the environment

map can be updated in real-time even when the vehicle route

from a previously explored environment or after kidnapping.

The paper is organized as follows: Section II presents the

state of the art regarding SLAM algorithms. Then, Section

III introduces the PML-SLAM algorithm with it’s different

modules that have been developed. The architecture as well as

the underlying mathematical framework are presented. Finally,

Section IV deals with the experiments and the results obtained.

II. STATE OF THE ART

Early work on the SLAM problem led to the foundation of

a probabilistic framework [1][2][3]. Even though the SLAM

problem can now be considered as being theoretically solved

[1], many issues have emerged in practical implementations.

The map representation has a great impact on which en-

vironments could be tackled and the performance of the

algorithm. Three main map representations can be found

in the literature: landmark-based maps, grid maps and raw-

measurement maps. The first one relies on the environment’s

specific characteristics to extract significant landmarks (points,

edges, etc.) [4]. One strong constraint is to be able to have a

sufficiently high number of landmarks in the scene to compute

a proper localization. Grid maps divide the environment into

cells. Each cell is associated to an occupancy probability

[5]. Consequently, these algorithms depend on the geometric

structure of the environment. Last, approaches based on raw-

measurement maps directly integrate raw sensor data in order

to have the most accurate map possible. The direct conse-

quence is that these maps can be difficult to store and can
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require a high computational cost for processing [6].

The sensors used (information type), the environment’s

characteristics (information extraction) as well as the estima-

tion process (information processing) should guide the choice

of a map representation. Regarding estimation processes, the

first SLAM approaches were based on Extended Kalman

Filters [1] and Particle Filters [3][7]. Optimization methods,

such as Bundle Adjustment [8], are now computationally

viable and provide interesting results. These approaches are

better suited to a landmark-based representation. Conversely,

other solutions based on Likelihood Maximization [9][6] are

suited to grid maps. Some implementations also consider a

raw-measurement map in addition. Landmark maps are usually

built with vision and laser sensors whereas grid maps rely

mostly on lasers.

The computational performance of SLAM algorithms is also

a major criterion when real-life applications are targeted. This

aspect has been considered in many recent SLAM algorithms

such as [10] and [11][12]. Still in the objective of making

vehicles autonomous, being able to solve the kidnapped robot

problem (localize the vehicle in a map given a set of observa-

tions) is important [13]. Indeed, the vehicle should be able to

use a reference map when the environment has already been

mapped, as it increases the relative localization accuracy and

allows the map to be enriched [8].

In this paper, we propose a solution to deal with large-scale

environments using a standard computer. Our system is based

on laser sensors data only, which require less processing for

data extraction than cameras. This choice led us to a grid-based

representation due to its lightness. Around these choices, we

built an estimation process based on likelihood maximization.

III. PML-SLAM

A. Probabilistic SLAM

The general formulation of the SLAM problem is the

estimation of the joint probability posterior of the robot pose

and the environment map simultaneously over all previous

sensor observations and command inputs (cf.[1] for more

details) :

P (xt,Mt|z0:t,u0:t,x0) (1)

where xt is the position and orientation of the robot

(x, y, α) at time t, Mt is the environment map at time t,
z0:t = {z0, z1, ..., zt} is the set of all sensor observations up

to time t, u0:t = {u0,u1, ...,ut} is the set of robot motion

measurements up to time t and x0 is the initial position and

orientation of the vehicle.

SLAM algorithms mainly consist of a two-step recursive

process:

• time update (prediction): which is a prediction of the

robot state and the joint map, based on previous obser-

vations as well as command inputs.

P (xt,Mt|z0:t−1,u0:t,x0) =

∫
P (xt|xt−1,ut)

×P (xt−1,Mt−1|z0:t−1,u0:t−1,x0)dxt−1

(2)

• measurement update (correction): which is a correction

of the state (vehicle and map) based on the current

observation.

P (xt,Mt|z0:t,u0:t,x0) =

P (zt|xt,Mt)× P (xt,Mt|z0:t−1,u0:t,x0)

P (zt|z0:t−1,u0:t)

(3)

B. General Overview

PML-SLAM for Probabilistic Maximum Likelihood -

SLAM, is a complete SLAM framework for autonomous cars

based on information provided by laser sensors. PML-SLAM

offers two different operating modes (localization with or

without an a prior map of the environment). It is based on

a complete framework to manage large-scale maps (there is

no limitation on the environment size and the map can be

gradually expanded and/or updated in real-time).

The general flowchart of the PML-SLAM approach is given

in Figure 1. It shows the architecture of the implementation

which is basically built around three main blocks (dark green

boxes).

Adaptive Matching 
parameters

ML-Matching

Map Manager

Motion Model

Start/Reset

Initializer
Initial velocity finder

Global Map
(Reference Map)

(HDD)

Pyramidal Map 
Matching

Local Map
(RAM)

Estimated Pose

Matching score

Using a 
Reference 

Map ?

Laser data

1

Fig. 1. General flowchart of the PML-SLAM algorithm

Different module illustrated on this flowchart will be

detailed in the rest of this section.

C. Overview on Data Representation

The map is expressed through a 2D grid of probability cells

with a parameterizable resolution, which allows us to change

the discretization level of the environment. We also take

advantage of this discretization to maintain maps at different

resolutions in order to perform localization recovery faster (cf.
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III-H). Although in order to reach the best possible accuracy,

the highest resolution of the grid is determined by the laser

sensor characteristics. An example of such a map is shown in

Figure 2.

(a) Satellite map (b) Map built by PML-SLAM

Fig. 2. Map from Plaisir-France

The map, at resolution level r and at time t, is

denoted as Mt,L=r. It is the fusion of all submaps

{M1,M2, · · ·Mt}L=r, where the submap Mt
L=r is the envi-

ronment seen at time t. The different resolution level are used

to solve kidnapped robot problems (cf. Section III-H).

Mt
L=r is the collection of cells {m1,m2, · · ·mN} with N

being the maximum number of cells in the submap. Each cell

corresponds to an occupancy probability [0, 1] where a cell

occupancy probability close to 0 means that it is likely to be

free. Conversely, a probability close to 1 means that a cell is

likely to be occupied.

Figure 2(b) shows the probability grid map of the real

environment presented in Figure 2(a). The dark cells are those

with a high occupancy probability and the light cells represent

the ones that are likely to be free. The green points represent

the current observation data.

D. Motion Model

The Motion Model computes the pose prediction based on

a vehicle model. It takes into account the vehicle’s previous

pose xt−1 and the vehicle’s velocity vt−1 to provide a list of

candidate poses Xt = {x1,t,x2,t, · · ·xn,t} where the vehicle

can be located.

Here, we are using a Constant Velocity model to describe

the behavior of the vehicle’s motion. Indeed, as the time

interval δt between two consecutive laser scans is small (≈
60 milliseconds), we assume that the variation in the vehicle’s

speed δvt is also small. Our prediction model is expressed as:

Δxt = Δxt−1 + δt× δvt (4)

xt|t−1 = xt−1|t−1 +Δxt (5)

The set of candidate poses Xt is the discretization of the

area defined by the velocity variation δt× δvt (cf. III-A).

E. Initial velocity finder

The role of the Initial velocity finder module is to deal with

scenarios which begin when the vehicle is already moving.

With the Constant Velocity model presented previously, these

cases can lead to wrong estimates at the beginning of such a

trajectory.

The module computes a rough estimation of the movement

(transformation) between the two first laser scans z0 =
{z00, z10 · · · zN−1

0 } and z1 = {z01, z11 · · · zN−1
1 } where zij is the

ith 2D point in the jth laser scan composed of N points.

The search space is limited by the maximum distance

the vehicle can travel during the time between the first

two observations (z0, z1). Figure 3 shows the distribution

of candidate positions all around to cover the possible area.

Each square represents one candidate on a low resolution map.

These candidate positions are then combined with candidate

orientations (depending on the vehicle mechanics) to form a

list of candidate poses X̃1.

Fig. 3. Search area around the vehicle to compute its movement.

Then the first rough estimate is calculated as follows, where

dist is the function computing the Euclidean point-to-point

distance between two observations:

x̃1 = argmin
x̃1∈X̃1

{
N−1∑
i=0

dist(zi0, z
i
1)} (6)

Finally the initial rough velocity v0 can then be calculated

and transmitted to the Motion Module presented above.

v0 = (x̃1 − x0)/δt(0,1) (7)

F. Maximum Likelihood Matching

The Maximum Likelihood Matching module corresponds to

the correction process in SLAM algorithms (see Equation 3)).

It takes into account the new measurement of the environment

zt in order to refine the state estimation xt|t−1 proposed in

the output of the Motion Model.

This module performs a maximization of similarity between

the current laser scan zt and the map Mt−1 from the previous

time using the list of candidate poses Xt provided by the

motion model:

xt|t = argmax
xt|t−1

{P (zt|xt|t−1,Mt−1)

×P (xt|t−1|xt−1|t−1,ut)}
(8)
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P (zt|xt|t−1,Mt−1) ∝
N∑

cell i=1

P (mi
t−1) (9)

where mi
t−1 is occupied.

In other words, this step consists in finding the best position

and orientation xt|t of the vehicle by fitting the observation

zt on the map Mt−1.

After performing the correction step, we update the system

joint state (xt,Mt) by merging the new observation in the

map:

Mt = Mt−1 ∪Mt (10)

This module is completed by a feedback process to adapt

the matching parameters depending on the matching score.

The threshold for cell selection (which is based on their

probability) is adjusted to maximize the number of matched

cells in the next SLAM update. If the matching score is too

low, the feedback triggers a reset of the system in order to

re-localize the vehicle.

G. Map Manager

The map manager is the key feature of our work. The map

is represented by a high resolution occupancy grid and we

aim at performing SLAM in large-scale environments. This is

not compatible as maps grow in size and we have limited

memory resources. The Map Manager module provides a

robust management of our limited resources. The goal is to

be able to have high resolution maps for accurate matching

without limiting the environment size.

Tiles of the exchange buffer 
(loaded from hard-disk)

Tiles of the current local map 
(later saved on hard-disk)

Common tiles between buffers 
(conserved on memory)

Fig. 4. Map buffers to deal with large-scale environments

Our technique consists in managing the map between the

limited Random Access Memory (RAM) and the hard-disk-

drive (HDD) where space is not an issue. First, the map is

divided into small areas that we call tiles. Then, we only

keep in the memory a current local part of the global map

which is still big enough to navigate seamlessly from one

local map to another. The other tiles are saved on the hard-

disk. Tiles are then loaded and unloaded depending on the

pose of the vehicle in order to be able to match current

observations. An illustration of this map management strategy

is given in Figure 4. The grey square is the current local

map buffer, containing a grid of 16 tiles, which is actually

loaded in the RAM. The other squares (blue, green and red)

are candidate configurations to which the local buffer may

next move, depending on the vehicle’s direction. The arrows

of same color shows the next configuration to be adopted.

Furthermore, the key ingredient behind exchanging buffers

seamlessly between RAM and HDD in real-time is by com-

pressing probability grid submaps. The buffer (grid of proba-

bility) is seen as an image buffer. This allows us to use image

compression techniques. Here we use PNG, which keep our

data precision, accelerates files saving and loading operations

as well as reducing the space required on the hard-drive.

H. Pyramidal Map Matching

The Pyramidal Map Matching module is able to solve

the kidnapped robot and relocalization in pre-mapped envi-

ronments (with what is called a reference map) problems.

The idea is to perform an extensive search of the current

observation over the reference map to find the robot’s pose

with relation to this map. As this process can be unreliable and

time consuming, the reference map is expressed at different

resolution levels. At low resolutions, finding a correspondence

is fast but not accurate. By going through the different levels,

we are able to refine the pose quickly, by testing only a few

pose candidates.

This module uses a similar strategy than proposed by

Xie et al. [9]. The main difference comes from the map

representation. Instead of a raw-measurement map, we take

advantage of our Map Manager module to directly use a

grid representation. It has the advantage to allow a faster and

constant loading time compared to [9] where the time will

vary according to the map size.

As the search can be long without prior knowledge (GPS

position for instance), the vehicle continues to perform SLAM

while the Pyramid Map Matching module works as a back-

ground task. Once the pose on the reference map is found, the

current state is brought back into the frame of the reference

map.

IV. EXPERIMENTS

The first experiments were carried out using the KITTI

odometry database [14] which provides datasets (with Velo-

dyne, cameras and a ground truth) in various environments

for performance evaluation. In order to adapt the data to our

implementation inputs, we cut the original Velodyne data to

simulate an ordinary single-layer LiDAR scanner configuration

(360° field of view with a 0.25° resolution).
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In order to test the relocalization performance of PML-

SLAM, we also built our own datasets using a vehicle

equipped with 5 laser scanners covering a 360° field of view

with a 0.25° resolution. Only one layer was used to obtain

the results presented in this article. An IMU was fused with a

RTK-GPS to provide a ground truth.

All the experiments took place in urban and peri-urban en-

vironments in real conditions (moving obstacles were present).

All tests were performed on a computer equipped with a Core-

i7 running at 2.9 GHz. For all the results presented below,

PML-SLAM took on average 2 ms to process a scan layer.

A. SLAM in unknown environments

In this experiment, we used the sequence ”05” from the

KITTI odometry dataset, collected in a residential environ-

ment. We performed SLAM without any prior knowledge on

the environment.

At the beginning of the trajectory, a map of 16 tiles

(resolution 10 pixels/meter) were initialized. During the

whole trajectory, a total of 32 tiles were created and saved

on the hard disk, covering a 720, 000 m2 surface. The map

produced takes up 981 KB on the hard disk. The computed

trajectory is shown in Figure 5.
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Fig. 5. Vehicle paths from the Kitti odometry dataset, the path estimated by
PML-SLAM and the ground truth path.

The errors in displacement and heading at each iteration

are illustrated in Figure 6. As we can see, the errors in

displacement are bounded by ± 5 cm, while the errors in

heading are limited to ± 0.3°.

Path estimated by SLAM is close to the ground truth. The

deviation throughout the trajectory in distance and in heading

are shown in Figure 7. We can see that after 2, 204 meters the

deviation in distance is about 6 meters with 0.1°of deviation

in heading.
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Fig. 6. Errors in heading and displacement by iteration during the test.
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Fig. 7. Deviation from real path in distance and heading along journey.

B. Recovering from kidnapping

In this experiment we used a dataset which we collected in

a city using our platforms. The aim of this test is to illustrate

the kidnapped robot problem and how we deal with it. The

trajectory performed and the recovery from kidnapping are

shown in Figure 8.
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Fig. 8. Vehicle path estimated by PML-SLAM during experiment in mapping
with kidnapping and recovering from kidnapping.
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The vehicle starts to build a map (black path), then the vehi-

cle is kidnapped and put in another location. As a consequence,

the vehicle starts a new local SLAM process (red path) whose

computed trajectory takes a similar shape to the previous route.

During this time, the position is provided in a local reference.

The matching process then finds the vehicle new position on

the pre-built map (recover from kidnapping). The recovery

moment is represented by the dashed green lines. The vehicle’s

positions provided from now on are given on the global map.

The map is further enriched during the common path (in dark

green). Once the vehicle enters areas not previously mapped

(light green), the vehicle continues to map and localize itself.

The map built at the beginning of the experiment served as

a recovering-from-kidnapping map, and covered 360, 000 m2.

The localization precision after recovering was ± 5 cm.

The recovering operation took about 27 seconds in this

example. However, this time depends on the random selection

of matching candidates and is thus variable. Nevertheless,

while searching for its position, the vehicle is still localizing

itself with the SLAM process. The final map built takes up

508 KB on the hard disk and it should cover 517, 500 m2 of

surface.

C. Memory consumption

The limitation in resources is an important issue. Figure

9 shows a comparison in terms of memory consumption

regarding the maximal size of the area covered by the SLAM

system with and without the Map Manager module presented

in this article (see Section III-G). Here we consider a scenario

where the vehicle is going straightforward.
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Fig. 9. Memory consumption regarding the area covered by SLAM

We can see on the graphic that memory required by a SLAM

system without Map Management may increases quadratically

in function of the environment size. In contrast the memory

required by a SLAM with a Map Manager is constant regard-

less the environment size. In realistic scenarios of autonomous

driving we can’t predefine the map size, a vehicle needs to

have it’s freedom to navigate.

V. CONCLUSION

We have presented a complete SLAM algorithm, called

PML-SLAM. The proposed system is based on the proba-

bilistic maximum likelihood framework coupled with a grid

representation. Its integration inside a complete architecture

allows to use any previously built map if available. A map

matching algorithm, based on a pyramidal search with multi-

resolution map, is able to re-localize the vehicle inside a map

given an observation, thus solving the kidnapped robot case.

Our approach has been designed with real-life applications in

mind and is consequently inexpensive in terms of memory re-

quirements and processing time. The map is smartly managed

to be loaded and unloaded on the hard drive when needed thus

allowing to work in large-scale environments.
We have performed several experiments over different

scenarios: SLAM localization, relocalization and navigation

inside an existing map. The results show that our approach is

viable for real-time urban localization without restrictions on

the size of the environment.
In future work, we plan to fuse several localization al-

gorithms within a supervision layer in order to increase

robustness and localization accuracy.
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Keynote speaker: Dr.-Ing. Michael Darms
(Volkswagen Aktiengesellschaft, Group Research, Germany)

Perception for automated and assisted driving

Abstract: The talk gives an overview on the design of perception systems for automated and assisted driving. It 
compares the requirements of the two different domains and discusses the challenge of having an application 
dependent situation awareness layer with an application independent perception layer. One focus of the talk is on 
the task of deriving information about the location of the road and lanes from sensor data which is still a key 
challenge for automated and assisted driving. It is discussed how methods stemming from the field of neural 
networks can be applied and how a priori information stemming from maps can be used in the data fusion process. 
Finally the talk will give an overview of the perception system implemented in Jack, an automated vehicle with 
which Audi and VW Group Research demonstrated the maturity of the current stage of development of automatic 
driving. The vehicle did a piloted drive over two days and 550 miles under real conditions on a highway from the 
San Francisco Bay Area to Las Vegas. An outlook is given on how such a perception system can be integrated in a 
modular and scalable architecture and which approaches are thinkable for testing such a system.

Biography: Dr.-Ing. Michael Darms received his doctoral degree on Sensor Data Fusion in 2007 at Darmstadt 
University of Technology, Institute of Automotive Engineering. From 2002 to 2006 he worked on the perception 
system of project PRORETA at this institute. Within the project a new driver assistance system for emergency 
evasion maneuvers was developed. From 2006 to 2007 he was visiting researcher at the Robotics Institute of 
Carnegie Mellon University. As part of Team Tartan Racing he was working on the perception system of the 
autonomous vehicle BOSS which took first place in the DARPA Urban Challenge. From 2008 to 2010 he was 
employed at the Advanced Engineering Department of Continental AG leading the perception group. Continental's 
first demonstrators for automated driving where set up during this time. From 2010 to 2014 he was technical 
project manager for camera systems at Continental. As one of the key projects he led the technical development of 
Continental's first series stereo camera system. In 2014 he joined VW Group Research and is now leading the 
department Sensors and Fusion. Focuses of his work are perception systems for future automated and assisted 
vehicles.
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PERCEPTION FOR AUTOMATED AND ASSISTED DRIVING 
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ENVIRONMENT PERCEPTION 

Motivation 

• Highly automated driving functions impose increased requirements on 
the performance of the perception module 

• Perception module has to cope with contradictory requirements 
(comport vs. safety systems) 

• Development of a modular and extensible perception architecture 

• Environment model has to be independent of specific ADAS function 

• Implementation of unified interface to function 

Goals
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Representation of the world around the vehicle

Static
Environment

Road / Lanes

Dynamic
Objects

Road Graph

WORLD MODEL 
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OBJECT ESTIMATION 

Mono Camera LaserRadar

• Estimating of moving/ 
movable objects and 
dynamic model

• Benefit from individual  
sensor detection 
capabilities 
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GRID ESTIMATION 

UltrasonicFront Camera

2D Layer 
Fusion

• Estimate Free Space 

• Estimate Occupied Space 

• Exclude Movable/ Moving 
Objects
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ROAD ESTIMATION 

Highway
Lane Markings
Other Vehicles

Rural Roads
Lane Markings
Other Vehicles
Curbs, sward

Inner City
Lane Markings
Other Vehicles
Curbs
Traffic Lights, Trafic Signs
Digital Maps

• Interpret where in the world vehicles should  drive using feature cues from 
the environment 
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SCENE ESTIMATION 

RoadGraph 
• Output of the perception modules is 

integrated into one model  
• Roadgraph is main interface to 

driving functions 

Challenges 
• Fusion of road estimation and 

context knowledge into unified, 
consistent and comprehensive model 

• Scene Estimation for urban areas, 
especially in complex intersection 
scenarios

• Handling of traffic participants that 
do not behave as expected 
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V-CHARGE:
AUTONOMOUS VALET PARKING AND CHARGING FOR E-MOBILITY 

Automated valet parking and charging 
no time-consuming search for parking spots any more 
driverless valet service 
no human intervention 

Fully automated driving 
in mixed-traffic scenarios  
in indoor and outdoor parking lots and parking garages 
without GPS 
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V-CHARGE:
AUTONOMOUS VALET PARKING AND CHARGING FOR E-MOBILITY 
Close-to-series sensors

Stereo- 
Camera 

Area- 
view 

Ultra- 
sonic 

Car2x 

eo-
mera
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OBJECT ESTIMATION USING FISH-EYE CAMERAS 

University of Parma, VisLab
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GRID ESTIMATION USING FISH-EYE CAMERAS 

C. Häne, T. Sattler, M. Pollefeys, Obstacle Detection for Self-Driving Cars Using Only Monocular  Cameras and Wheel Odometry
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GRID ESTIMATION WITH ALL SENSORS 

06/25/2015 22

Ultrasonic Grid Stereo Grid

Motion Stereo Grid Fused Grid
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GRID ESTIMATION WITH ALL SENSORS 

06/25/2015 22

Ultrasonic Grid Stereo Grid

Motion Stereo Grid Fused Grid

UUltrasonnnic Gridd Stereoo Grid

Mootion Stttereo Grid Fused Grid
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ROAD ESTIMATION: KNOWING WHERE THE ROAD IS VIA LOCALIZATION 

14

Setup
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

15

Survey Run

Furgale et al., ICRA2014
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

16

Survey Run

Online Run

Survey Run

RRunne RRne RRnlinnlin

RRRRuuunnnveeyyyurv

Furgale et al., ICRA2014
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Furgale et al., ICRA2014
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

18

Furgale et al., ICRA2014
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

19

Furgale et al., ICRA2014

20Volkswagen AG |  Konzernforschung 

APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

20

Furgale et al., ICRA2014
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October 13, 2013 15:15
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November 8, 2013 10:26
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December 6, 2013 13:50
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July 31, 2014 15:45
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

25

Summary

Mapping / 
FusionLocalization

Database

Summary
map for 
localization

Localization output & raw data

Full-scale 
map

Mühlfellner, Peter : Lifelong Visual Localization for Automated Vehicles, Doctoral thesis
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APPROACH: KNOWING WHERE THE ROAD IS - LOCALIZATION 

26

Find the most useful Landmarks: 

Most observed landmarks from a single session:

Landmarks observed over the most different sessions:

Mühlfellner, Peter : Lifelong Visual Localization for Automated Vehicles, Doctoral thesis
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APPROACH: INTERPRETING WHERE THE ROAD IS – ROAD ESTIMATION 

Mühlfellner, Peter : Lifelong Visual Localization for Automated Vehicles, Doctoral thesis
Mühlfellner et al.: Summary Maps for Lifelong Visual Localization, JFR, 2015

19
.0

9.
04

.1
0.

11
.1

0.

17
.1

0.
23

.1
0.

31
.1

0.

07
.1

1.
08

.1
1.

12
.1

1.

19
.1

1.
03

.1
2.

06
.1

2.

10
.1

2.
12

.1
2.

14
.0

1.

04
.0

4.
14

.0
4.

25
.0

5.

28
.0

4.
30

.0
4.

05
.0

5.

14
.0

5.
21

.0
5.

26
.0

5.

28
.0

5.
11

.0
6.

30
.0

6.

02
.0

7.
16

.0
7.

23
.0

7.

30
.0

7.
31

.0
7.

100%

75%

50%

25%

0%

1 2 3 4 5 8 96 7 10 11 12

Full Multi-Session Map

Summary Map

Date, Arrows Indicate Mapping Sessions

%
 S

uc
ce

ss
fu

lL
oc

al
iz

at
io

ns
Success Rate

28Volkswagen AG |  Konzernforschung 

APPROACH: INTERPRETING WHERE THE ROAD IS – ROAD ESTIMATION 

Mühlfellner, Peter : Lifelong Visual Localization for Automated Vehicles, Doctoral thesis
Mühlfellner et al.: Summary Maps for Lifelong Visual Localization, JFR, 2015
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CES DEMO DRIVE 2015 

About 900 km on Highways 
5 Journalists as drivers using  the automated vehicle 

Bakersfield / 5.1.2015 / 7:00 

San Francisco  / 4.1.2015 / 11:00

Las Vegas / 5.1.2015 / 16:00 

CA NV / 5.1.2015 / 12:00
Interstate I5 / 4.1.2015 / 15:00 
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1
4

5

2x Laser-scanner

4x Ultrasonic4x Ultrasonic
1x 3D-video-camera

4x Top View4x TooTopp View
4x Mid-range-radar 

1x 3D video camera

pppppp
2x Long-range-radar 

1x Stock GPS
2x Short Range Radar 

2

2

3

3

4

2

1
2
3
4
5
6
7
8

6

7

8

1

TECHNOLOGY – TODAY 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

95



31Volkswagen AG |  Konzernforschung 

KEY CHALLENGE: WHERE IS THE ROAD? 

Simple
Marking features,
simple lane geometries

Medium
Marking features, more 
complex geometries
(smaller radius of curvature, 
not parallel geometries)

Complex
Arbitrary features,
arbitrary lane geometries

Robust and highly available marking features 
low demands

Marking features with more complex geometries
medium-level demands

No clear road markings
High demands on the scene interpretation

31

Töpfer, Spehr et al: Efficient Scene Understanding for Intelligent Vehicles
Using a Part-Based Road Representation
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INPUT AND OUTPUT OF THE ROAD ESTIMATION 
• Spatial and temporal reasoning 

Features

Patches

Dig. map

Result

Lanes

Road Estimationtimation

Sp
at

ia
l a

nd
 te

m
po

ra
l

re
as

on
in

g

Standards

A-priori

Sensors

Road
model

Credits Spehr et al
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INTEGRATION OF A-PRIORI KNOWLEDGE 

• Standards:
• Guidelines for building roads, freeways and street 
• Use of country-dependent policies (e.g. in Germany „Straßenbaunormen DIN 

EN 1423 und DIN EN 1424“) 

• Deviations are modeled with appropriate probability distributions 

• Digital maps: 
• Information beyond the detection range of the sensors 
• Used for integrating the expected road geometry and topology during 

spatial reasoning.  

34Volkswagen AG |  Konzernforschung 

SENSOR SETUPS 

• High-level sensor information (Lanes) 
• Covers a wide range in the vehicle’s environment 
• Trajectories of other vehicles 
• Lane output of external preprocessing units 

• Low-level sensor information (Patches/ Features) 
• Spatially restricted features in the vehicle’s environment such as 

boundary features 
• But also features like grid cells (occupied yes/no), color values of a 

camera image 
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HIERARCHICAL MODEL OF A SINGLE SCENE 

35

The graphical model comprises hidden random variables  and observations 
• Hidden variables represent parts and sub-parts of a scene encoded by the root node 
• Variables are continuous, multi-dimensional, and multi-modal 

Edges encode probabilistic dependencies between pairs of variables  

2-Lane Road Scene

Features

Right LaneLeft Lane

Lane-SegmentLane-Segment

Patches
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INFERENCE
DEPTH-FIRST MESSAGE PASSING 
bottom-up = generating a 

hypothesis
top-down = verifying the 

hypothesis

Example:
11. Verifying the road hypothesis
(top-down)

36
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IS THE ROAD DRIVEABLE – DISTANCE TO STOP 

Velocity

50
km/h

70
km/h

100
km/h

130
km/h
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ation

2 m/s2 54 m 103 m 205 m 342 m
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Sensors 

G
at

ew
ay

 

Vehicle 

zFAS - modular & scalable architecture 
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APPLICATION FOR SERIES PRODUCTS
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Today:
Release testing of todays ADAS with up to 2 million test km and 1.000 test drivers 

data basis: 2.000.000 km, > 1.000 drivers; source: Dr. Markus Fach et al., Daimler AG, VDI/VW Gemeinschafts-Tagung, 2010) 

Tomorrow:
Increasing system complexity of future ADAS will increase diversity of relevant test scenarios 
Forecast for high automation: 100 Million km = 0,67 x average distance sun earth = 5,6 light minutes 
Costs for such release testing: several 100 Million EUR 

 source: Prof. Winner et al., Darmstädter Kolloquium „Mensch und Fahrzeug“, 2011 

Objective:
Sustainable and affordable concept for test and release of future ADAS 

System Activation frequency per 10.000 km km till activation
Distance Warning 40 - 60      170 – 250

Breaking Assistance (BAS) Plus 0,5 - 1 10.000 – 20.000

PRE-SAFE breaking, level 1 0,1 – 0,2 50.000 – 100.000

PRE-SAFE breaking, level 2 0 -

Tod

Ensuring reliability – challenges
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Extension 
Function range / 

Security requirements 

SW Module- 
Tests 

SIL-
Tests 

HIL-
Tests 

Veh.  
Tests 

Test levels/ 
Function range 

Co
m

pl
ex

ity
 

SW Module-Tests 

SIL-Tests 

HIL-Tests 

Veh.  
Tests 

The effort of vehicle tests rises 
disproportional with increasing 
functions range/ safety 
requirements 

Reduction of the vehicle tests 
effort, through shifting the test 
from the street to the simulation. 
=> Virtual Test Drive virtual

test drive 

Test levels and complexity 
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vehicle model 

sensor models 

virtual camera environment model 
video 
Inter- 
face 

image processing 

sensor data fusions 

application SW  
- longit. control 

   - lateral control 
   - path planner 

vehicle SW
 

Simulation via Virtual Test Drive 
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CONCLUSION

Knowledge about the location of the road is a key factor for  
automated driving and future driver assistance systems 

Interpretation based approaches using environment sensors work well  
in easy to medium challenging scenarios 

Using additional map information leads to more robust results 

Localization techniques are currently used to solve the most complex scenarios 

Drivability estimation at long ranges for high speed driving is still challenging 

New sensor principles and machine learning approaches are one way for solving this topic 

Testing environment perception is one of the key challenges 

Shifting tests from street to simulation reduces vehicle test efforts significantly 

Centralized ECUs like the zFAS help facilitating testing procedures 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

101



THANK YOU FOR YOUR ATTENTION 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

102



2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session II 

Perception & Situation Awareness 

Title: Free-space Detection using Online Disparity-supervised Color Modeling
Authors: Willem P. Sanberg, Gijs Dubbelman and Peter H.N. de With

Title: Vision-Based Road Detection using Contextual Blocks
Authors: Caio Cesar Teodoro Mendes, Vincent Fr mont and Denis Ferna do
Wolf
Title: Following Dirt Roads at Night-Time: Sensors and Features for Lane
Recognition and Tracking
Authors: Sebastian F. X. Bayerl, Thorsten Luettel and Hans-Joachim Wuensche

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

103



2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

104



Free-space Detection using Online Disparity-supervised Color Modeling

Willem P. Sanberg, Gijs Dubbelman and Peter H.N. de With

Abstract— This work contributes to vision processing for
intelligent vehicle applications with an emphasis on Advanced
Driver Assistance Systems (ADAS). A key issue for ADAS is
the robust and efficient detection of free drivable space in
front of the vehicle. To this end, we propose a stixel-based
probabilistic color-segmentation algorithm to distinguish the
ground surface from obstacles in traffic scenes. Our system
learns color appearance models for free-space and obstacle
classes in an online and self-supervised fashion. To this end,
it applies a disparity-based segmentation, which can run in
the background of the critical system path and at a lower
frame rate than the color-based algorithm. This strategy enables
an algorithm without a real-time disparity estimate. As a
consequence, the current road scene can be analyzed without
the extra latency of disparity estimation. This feature translates
into a reduced response time from data acquisition to data
analysis, which is a critical property for high-speed ADAS.
Our evaluation over different color modeling strategies on
publicly available data shows that the color-based analysis can
achieve similar (77.6% vs. 77.3% correct) or even better results
(4.3% less missed obstacle-area) in difficult imaging conditions,
compared to a state-of-the-art disparity-only method.

I. INTRODUCTION

In recent years, vehicles are becoming increasingly intel-

ligent with so-called Advanced Driver Assistance Systems

(ADAS). This development is expected to significantly re-

duce traffic accidents, traffic congestion and fuel consump-

tion simultaneously. To ensure traffic safety, ADAS can e.g.

indicate the location of potentially hazardous obstacles to the

driver and the area position of safely drivable road. On the

longer term, ADAS and related technologies will allow the

development of fully autonomous vehicles. In this work, we

improve a state-of-the-art vision-based free-space detection

system by efficiently exploiting multiple image modalities.

To robustly facilitate situational awareness at a moving

platform, several complementary sensor modalities should

be employed. These modalities can include RADAR, LI-

DAR, ultrasound, and (thermal) imaging. The benefit of

using vision-based systems is that they provide dense scene

information in a cost-effective way. Image data is also a

rich source of information, since it comprises of several

informative properties. For stereo-based video imaging, these

informative aspects include not only the usual texture, color
and shape features, but also optical flow motion analysis

and disparity estimation. All these elements can contribute

to a robust situational analysis, such as e.g. the detection

of partially occluded pedestrians who are about to cross

the street. Although LIDAR, RADAR or ultrasound provide

Willem Sanberg, Gijs Dubbelman and Peter de With are with the
Department of Electrical Engineering, Video Coding and Architectures
Research Group, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands w.p.sanberg@tue.nl

Fig. 1. Stixel segmentation results comparing a disparity-only result (top
left), a RGB-only result using 10 frames for online learning (bottom left),
and a new gray-only result for which just 3 frames are used for the online
learning (bottom right). The orange overlay with a dark border depicts
the space occupied by obstacles according to the detection algorithm. At
the top right, the disparity signal is shown, which has several artifacts,
due to low texture in the road region (left) and a pole reflection in the
windshield (middle). These artifacts cause false obstacle detections in the
original disparity-based algorithm [1]. Here, we show that it is possible to
obtain similar or even better segmentation results with our color modeling,
while requiring less data in the process.

valuable complementary information, in this paper we solely

focus on vision-based detection systems.

Multi-view image processing, in particular stereo vision,

has the potential to provide 3-D scene information at a

more affordable price point than that of high-end laser-based

systems, which are often accompanied by RTK-GPS, e.g.

[2][3]. In stereo vision, the disparity, which is analogous to

depth, can be estimated densely and in real-time [4]. This

gives a direct description of the geometry of the scene and it

facilitates, for example, a separation of flat, drivable surfaces

from erect obstacles [5][6]. The Stixel World method [1]

is a state-of-the-art approach to analyze such a geometry

description of the scene. It is a fully probabilistic framework

to distinguish free space from obstacles in the disparity

signal, which can be implemented efficiently provided that

several assumptions are made. This framework is generally

more flexible and more robust than its predecessors.

A pitfall of the original Stixel World framework is that

it requires a disparity signal of a certain quality. However,

the quality of disparity estimation often degrades in cases

of occlusions, reflections or image regions with too little

texture information. Unfortunately, such degradations are

common in traffic scenery. As a result of this degraded signal,

the original Stixel World framework detects many false

obstacles, rendering the results useless for a practical system

under adverse conditions. An example of this is shown at the

top-left image of Fig. 1. In our recent work [7], we show that
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the performance of such a disparity-based framework can be

improved by fusing color into the algorithm. This strategy

resolves many erroneous results of the disparity analysis at a

low additional computational cost, in contrast to alternative

solutions such as high-quality cameras or more advanced

disparity estimation techniques.

A key property of any ADAS is the response time, i.e.

the time delay between data acquisition and the response to

the result of the analysis. Since ADAS preferably need to

function at high vehicle speeds, the response time of such

systems should be as fast as possible. Hence, any delay

that can be removed from the critical path of the analysis

is beneficial to the value and applicability of the system,

provided that it does not degrade the reliability of the results.

Therefore, we will explore the possibility of removing the

disparity analysis from the critical system path. Although

fast disparity estimation methods exist [4][8], they typically

either rely on sub-optimal algorithms processing at a low

resolution, or they are based on customized hardware that

is not commonly available. To illustrate this, even in the

state-of-the-art system presented in [1], the dedicated FPGA

disparity estimation takes 40 ms per frame, whereas the stixel

analysis of the data takes 30 ms, when executed on a general,

high-quality multi-core CPU.

For these reasons, we will not rely on a strong fusion of

disparity and color in this work, even though the result pre-

sented in [7] clearly shows the qualitative benefits of that. In

contrast, we propose here to process the most recent camera

frame using an efficient color-only stixel segmentation. The

disparity estimation and analysis, which is only required for

our online color modeling, can be processed in parallel and

at a lower frame rate. Two examples of our novel color-only

stixel segmentation are shown at the bottom-left and bottom-

right image of Fig. 1, illustrating that we can achieve better

results than the state-of-the-art disparity approaches, even

with color modeling of a low complexity.

An alternative to online color modeling is offline color

modeling [9], which would completely remove the need for

online disparity estimation. However, we have a strong pref-

erence for an online learning approach, given the challenging

nature of traffic environments, which is full of varying

weather conditions, complex scenery, varying geographical

settings and highly dependent on the time of the day. For

instance, in low-light situations, urban traffic scenes tend

to contain predominantly gray-tones. We consider it more

feasible to build a robust, yet discriminating color model that

is tuned to that specific time and place, rather than building a

generic model that holds for every environment and weather

condition.

The remainder of this paper is structured as follows. First,

we will describe the probabilistic Stixel World framework

in Section II and explain briefly how it can be used with

disparity, color or both data signals. Then, in Section III,

we present the aspects of the system that will be evaluated

in this paper. We then describe our validation method and

the corresponding results in Sections IV and V, respectively.

Lastly, conclusions are provided in Section VI.

II. THE STIXEL WORLD

Let us now give a short overview of the general Stixel

World framework from [1], which we have used as a basis

of our work. The main goal of stixel segmentation is to find

the optimal labeling L∗ of vertically stacked, piecewise planar

ground or obstacle segments for input data D, which can be

any signal modality. Finding L∗ can be formulated as a MAP

estimation problem, as in

L∗ = argmax
L∈L

P(L|D), (1)

which can be solved efficiently using Dynamic Program-

ming. Using Bayes’ theorem and assuming, among others,

independence between columns and between data measure-

ments at individual pixels, the posterior probability can be

written as a chain of conditional probabilities by

P(L|D)∼
w−1

∏
u=0

P(Du|Lu) ·P(Lu). (2)

Here, u is the column index and w the image width. The

probability P(Lu) models a-priori world knowledge con-

straining the labeling, to avoid dispensable segments and

physically unlikely situations. This world model offers a

way to regularize the results for image-column optimality,

whereas the methods of [5] and [6] potentially lead to sub-

optimal results, since they mostly analyze data locally. The

details concerning P(L) are presented in [1]. Finally, the

likelihood of the data given a certain labeling, can be written

as

P(Du|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v), (3)

where n is the segment index, Nu the number of segments

in Lu, and vb
n and vt

n the bottom and top row-index of

segment sn, respectively. This segment has a label ln ∈ {g,o},

representing the ground and obstacle classes, respectively.

The distribution P(dv|sn,v) in Eq. (3) represents the prob-

ability of a single valid data measurement dv at a certain

row v, assuming that it would belong to a potential segment

sn. The model for P(dv|sn,v) should reflect the nature of

the employed signal modalities. There are several relevant

approaches in literature. The authors of [1] employed a

dense stereo-disparity signal as the sole data modality. They

proposed to model P(dv|sn,v) as a mixture model, containing

a uniform distribution that models outliers and a Gaussian

distribution that models inliers, to assess how well the

measurement fits the potential segment for each class. For

ground segments, the expected disparity is a linear planar

surface and for obstacle segments a fronto-parallel surface.

A different approach is presented in [7], where the Stixel

framework is extended, such that it exploits both the dis-

parity signal and the color data. This strategy increases the

robustness of the system against adverse conditions such as

low light, bad weather, or a low-quality sensing system.

To this end, the authors redefine the likelihood term of

Eq. (3) to be P(Du,Cu|Lu) with the additional term P(cv|ln)
in the right-hand side of the equation, thereby treating color
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Proposed critical path  
without disparity estimation

Color-only
Stixel World

Current Frame
tn

Free-space result

Color Model

Background process lagging in time or at a low frame rate

Disparity 
Estimation

Online
Disparity- 
Supervised 

Color Learning

Learning Window
tn-10        …     tn-1

Previous critical path including disparity estimation

Disparity 
Estimation

Stixel
World

Fig. 2. A comparison between the existing and our proposed framework.
Previous systems [1][7] require disparity estimation in their critical path, in
contrast to our proposed system. Note that our disparity-supervised color
modeling in the lower part of the scheme can be lagging or run at a lower
frame rate than the critical path, by varying the range of the learning window.

and disparity as independent signals. Additionally, note that

this color posterior is assumed to be independent of the

segment location, since it only considers the class label

ln in contrast with disparity modeling. The color posterior

P(cv|ln) is learned in an online fashion using the labeling

of several preceding frames as training masks for both the

ground and obstacle classes. With these masks, normalized

color histograms are calculated, which are then transformed

to posteriors using Bayes’ rule.

In our subsequent research, we explore the feasibility

of segmenting the traffic scene images using a color-only

version of the Stixel World algorithm [10]. The benefit of

this approach is that the disparity estimation can be removed

from the critical system path, as illustrated in Fig. 2. In [10],

we present color modeling that is more suited for stand-alone

processing compared to [7], by making it distance-aware. To

this end, we have specified the color-based likelihood as

P(Cu|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(cv|sn,v). (4)

The distance-aware color processing consists of two as-

pects: (a) weighing each pixel with its corresponding real-

world surface during the process of calculating the color

histograms, and (b) leveraging the regular and the distance-

weighted color posteriors based on v while evaluating Eq. (4).

This approach leads to a more balanced color analysis of far-

away and close-by image regions to cope with the inherent

geometric distortion of cameras in a robust way [10].

III. ONLINE COLOR MODELING EXPERIMENTS

The key contribution here is to perform an elaborate

analysis on the critical design choices of the online, distance-

aware, self-supervised learning framework, as presented

in [10]. The framework processes preceding stereo frames

and generates a free-space vs. obstacle labeling based on

disparity. Consecutively, this labeling is exploited as self-

supervised training masks for the color representation of

these two classes. The relevant design choices concern the

color representation, consisting of preprocessing and color

space selection, and the selection of the frames in the

learning window.

A. Color Representation

Several aspects of the color representation are kept con-

stant throughout this paper. First, we employ the median-cut

algorithm on the frames in the learning window [11]. This

ensures that we have an adaptive color representation that

has both a sufficiently low complexity for fast processing

and is still suitable for the current traffic scene, as the color

reduction is performed online. Second, we perform a further

reduction of the data by employing stixels that span 11 image

columns. This increases the robustness and decreases the

computational load at the cost of horizontal resolution in

the labeling. To condense the image data into a single stixel-

data vector, we calculate the first and the second mode of an

11×11 pixel window in the color data, horizontally centered

at the central image column of the corresponding stixel.

These aspects are recommended approaches as presented

in [7] and [10]. Let us now briefly describe the evaluated

color settings.

1) HEQ: We test the added value of performing His-

togram Equalization on the raw RGB images (separately on

each color plane) prior to converting it to a different color

space.

2) RGB: We employ RGB as the full-color reference

color space.

3) HS: To increase the robustness against varying lighting

conditions, we test the strength of the Hue and Saturation

dimensions of the HSV color space in our proposed frame-

work.

4) IllumInv: The Illuminant Invariant color space pre-

sented in [12] is a more elaborate method for robust handling

of changing lighting conditions and even shadows. It requires

an automated offline camera-calibration method to find a

parameter θ , which can then be used to transform each

new image into an illuminant-invariant gray-scale image. We

have adopted the proposed robust entropy-based calibration

method and found that θ = 90± 0.5◦ for our camera, but

refer explicitly to [12] for more details on this color space

and calibration method.

5) Gray: We also execute our segmentation on a gray-

scale representation as a baseline for extreme cases of

monochrome lighting conditions. Moreover, it would signifi-

cantly reduce the constraints on the camera hardware and the

corresponding data bandwidth when the gray-scale analysis

is successful.
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B. Learning Window

As described earlier, our method exploits preceding frames

(which are analyzed based on their disparity signal) as

Learning Window (LW) to construct color models of the

obstacle and ground classes. The settings of a LW are the

oldest frame, counting backwards from the current one, the

step size and the final frame to be considered, annotated ’LW

start:step:end’. The recommended approach in [7] relies on

the 10 most recent preceding frames (LW10:1:1), which we

will use as a reference setting. Since the aim of this work is to

reduce the computational complexity and, most importantly,

the system latency, we experiment with two alternative frame

selections. First, we test a learning window without the two

most recent frames (LW10:1:3). This way, the color model

lags by two frames but it allows a longer data investigation

interval before it is required for the analysis. Second, we test

the more extreme case that has a lower frame rate and a lag,

by only considering frames t −9, t −6 and t −3 (LW9:3:3).

Analogous to [10], we generate class-posterior color dis-

tributions from the labeled pixels in the LW frames and apply

distance-aware weighting to correct the geometric distortion

in the imaging process.

IV. EXPERIMENTS

To evaluate the different design settings, we employ two

publicly available stereo RGB data sets with 188 annotated

test frames in total [7][10]. The data consists of a large

variety of relevant traffic situations under both good and

adverse imaging conditions, such as dark roads with cyclists

and cars, road repair sites, highway scenes etc. Both images

with bright weather and under dim, clouded or even rainy

conditions are present, leading to many low-contrast regions

that are especially difficult for disparity-based methods.

All frames are captured with a BumbleBee2 stereo camera

(baseline: 12 cm; resolution: 1024×768 pixels; frame rate:

20 Hz), which is a relatively basic, low-cost camera when

compared to several high-end or custom models used in other

set-ups [1][13]. The details of our employed SGBM disparity

estimation [14] and several improvements that we made for

the baseline system are provided in [7] and [10]. Note that

we cannot execute our algorithm on benchmarks such as the

KITTI dataset [15], since those, unfortunately, do not contain

the required preceding frames of annotated road images.

V. RESULTS

We have tested all combinations of the selected color and

learning window settings, resulting in 24 different executions

(runs). The effect of the individual color and learning win-

dow settings is shown in Fig. 3, by means of a box plot.

Using a paired t-test, applying HEQ provides a significant

improvement over not using equalization (p = 3.04×10−8).

Likewise, the RGB color space outperforms the HS, IllumInv
and Gray representations (p = 1.12×10−18, p = 1.93×10−4

and p = 1.85 × 10−29, respectively), and a full learning

window (LW10:1:1) is better than a shorter, lagging one

(LW10:1:3) with p = 3.25×10−3. No significant difference
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Fig. 3. Box plots comparing the different settings over all runs. For each
frame in each run, the percentage of stixels with a correct free-space estimate
is calculated, which is visualized as a box plot per setting. Hence, each box
contains 188 data points per run. The number of runs per box is denoted in
brackets in each label.

was found between the results of using the full or low frame-

rate learning window (LW9:3:3) (p = 8.33×10−1).

Additional quantitative results are provided in Fig. 5. In

this figure, all stixels over all frames are evaluated together

for each run individually. For each stixel, a free-space

evaluation is performed, by comparing the detected free

space by the true free space, generated from the ground-truth

annotations. We calculate the deviation as a percentage of the

true free space. For robustness reasons, free-space detections

are counted as correct when they are within the range of 30%

too short or 15% too long. This asymmetrical range reflects

the fact that missing an obstacle is more dangerous than

detecting one too close. For the same reason, we distinguish

the incorrect stixels into obstacle misses (free space is too

long) and false obstacle detections (free space too short).

Although a deviation of 30% may seem a large fraction, it

corresponds to only a few pixels after several meters and

only some centimeters before that. The results are shown

on the combined data as well as on the individual datasets.

The rightmost graph in Fig. 5 clearly shows that the added

value of color processing is more pronounced for the EHV-

road-ITSC15 data. This can be explained by the fact that

the EHV-road-ITSC14 contains both frames with bright and

dim lighting conditions, whereas EHV-road-ITSC15 is solely

focused on dark, clouded, low-light and rainy frames. These

situations are specifically difficult for disparity-based meth-

ods, rendering color data more advantageous. Of all color

settings, Run f results in the highest percentage of correctly

detected free-space (77.64%, averaged over all data), which

is similar to the disparity-only method (77.25%). For the

EHV-road-ITSC15 data, the improvement is higher: 78.01%

compared to 74.39%. When specifically focusing on reducing

the number of missed obstacles in difficult imaging condi-

tions, Run h reduces the percentage of erroneous stixels from

17.18% to 12.85%, compared to the disparity-only method.

On the combined data, the stixel-error fraction reduces from

13.81% to 11.52%.

We provide additional analysis by means of five theoretical
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Qualitative results of the disparity method and three of our runs on six stereo frames. Each subfigure contains two input and four result images.
The top left and middle images show the rectified and cropped left camera image and the corresponding disparity image. Next to that, the disparity baseline
result is shown, where the stixel segments are colored by their distance (red (close) to blue (far)). The three bottom result images illustrate different
color settings, from left to right: RGB+HEQ with LW10:1:1, IllumInv+HEQ with LW10:1:1 and Gray+HEQ with LW9:3:3. In the color-only results, a
homogeneous overlay of the detected obstacle region is visualized. The bright green line indicates the border of the ground-truth annotation of the drivable
surface. Subfigures a, c and e show that our color-only results provide similar or better results in various situations. The right column (b, d and f) shows
examples of scenes where not all color settings provide equally acceptable results.

runs at the bottom of Fig. 5. These scores are generated

by selecting the optimal setting for each frame out of a

(subset of) the available runs, to assess the added value

of the processing choices and to provide insights in where

the most gain is to be expected in future research. First of

all, it is noteworthy that for every setting, there are frames

in the data set on which it performs best. If the optimal

score is selected from all possible runs (including disparity),

the highest theoretical score can be achieved (86% correct),

as could be expected. However, also with the color data

alone there is room for improvement, compared to using the

same color space and preprocessing step for every frame.

So, even with our adaptive median-cut color indexing, the

system can extract more information from different color

representations in different situations (fourth bar from below

in Fig. 5; 83% correct). Also, note that even with the simplest

learning window (LW9:3:3), the color-only Stixel World can

outperform the disparity one with a more sophisticated color

representation (the bottom bar in Fig. 5; 80% correct), even

though using more frames is still better (third bar from below

in Fig. 5; 82% correct).

The aforementioned observations are illustrated with the

qualitative results in Fig. 4, where the disparity-only results

are compared to three of our color-only strategies. We show

the setting that performed best (RGB+HEQ, LW10:1:1), one

of the runs that relied on the color space that was specifi-

cally designed for this context (IllumInv+HEQ, LW10:1:1),

and the results with the lowest computational complexity,

since it uses gray-scale images and only three LW frames

(GRAY+HEQ, LW9:3:3). The left three images show that our

methods are all capable of delivering similar or better results

than the disparity-only framework. The images in the right

column of Fig. 4 illustrate that different settings perform best

in different situations, so that the system performance could

be increased by adapting the color modeling in even more

ways than we currently do. For example, color spaces may be

combined or selected online, or the most informative frames

within the learning window could be selected adaptively.

Metrics and methods guiding this online decision-process

will be investigated in future research.

VI. CONCLUSIONS

We have explored a stixel-based probabilistic framework

for color-based free-space vs. obstacle segmentation. Our

system learns color appearance models for free-space and

obstacle classes in an online and self-supervised fashion. To

this end, it applies a disparity-based segmentation, which

can run in the background of the critical system path and

at a lower frame rate than the color-based algorithm. As a

bonus, this approach enables operation without a real-time
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Fig. 5. Quantitative results of free-space segmentation for the baseline that use disparity alone (a) [1] or strongly fused color and disparity (b) [7], and all
of our runs. The labels show if histogram equalization (HEQ) is applied, which color space is used and which frames are in the learning window (LW).
The learning window parameters are indicated with LW start:step:end as before. The final four entries are theoretical optima, generated by selecting the
optimal setting for each frame out of all runs (a-z, including disparity), out of all color-only runs alone (c-z), out of all runs with LW10:1:1 (c, f, ..., x),
out of all runs with RGB (c-h) and out of all runs with LW9:3:3 (e, h, ..., z). They give an approximate upper bound for the current processing framework,
which could be achieved by, e.g., online selection of color spaces.

disparity estimate. Consequently, the current road scene can

be analyzed without the extra latency of disparity estimation.

This feature results into a reduced response time from data

acquisition to data analysis, which is a critical property for

high-speed ADAS.

To achieve reliable color-only free-space detection, we

have experimented with several color spaces and different

online learning settings. Our evaluation on publicly avail-

able data shows that the color-based analysis can achieve

similar or even better results in difficult imaging conditions,

compared to the state-of-the-art disparity-only method. As an

illustrative example, our color-processing detects the correct

free-space for 77.6% of all stixels, compared to the disparity-

only score of 77.3%. Furthermore, our color-only method

results in 4.3% less stixels with missed obstacles on the most

challenging data set.

Besides the previous system aspects, the provided meta-

analysis of the results shows that our approach of online

color modeling is beneficial and can be extended for further

improvements, with potential scores of up to 82% within the

currently assessed parameter-setting space.
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Vision-Based Road Detection using Contextual Blocks

Caio César Teodoro Mendes1,2, Vincent Frémont2 and Denis Fernando Wolf1

Abstract— Road detection is a fundamental task in au-
tonomous navigation systems. In this paper, we consider the case
of monocular road detection, where images are segmented into
road and non-road regions. Our starting point is the well-known
machine learning approach, in which a classifier is trained to
distinguish road and non-road regions based on hand-labeled
images. We proceed by introducing the use of “contextual
blocks” as an efficient way of providing contextual information
to the classifier. Overall, the proposed methodology, including
its image feature selection and classifier, was conceived with
computational cost in mind, leaving room for optimized im-
plementations. Regarding experiments, we perform a sensible
evaluation of each phase and feature subset that composes our
system. The results show a great benefit from using contextual
blocks and demonstrate their computational efficiency. Finally,
we submit our results to the KITTI road detection benchmark
achieving scores comparable with state of the art methods.

I. INTRODUCTION

Autonomous vehicles, and more concretely Advanced

Driver Assistance Systems (ADAS), can potentially reduce

accidents, improve traffic flow, save fuel and consequently

change the transport landscape. Road detection is a key

component of such systems, providing not only free and

valid space for maneuvers but also invaluable information

for others tasks such as pedestrian and vehicle detection.

In this work, we aim at estimating the road region us-

ing a monocular color camera. Visual road detection is a

challenging task, where one has to deal with the continu-

ously changing background, illumination issues, and most

importantly, the high intra-class variability, i.e. the large

variation in road appearance from place to place. Some

works estimate the road area by relying on lane markings

or sudden changes in appearance near the road boundaries.

For instance, [1] uses steerable filters for robustly detecting

lane markings. Another popular approach [2], [3] consist

of using machine learning techniques, where a classifier is

trained to distinguish between road and non-road regions

based on images features (e.g. color and texture). In this

context, many works focus on proposing new image features

for road detection. In [4], the authors propose the use of

an illumination invariant color space to deal with shadowed

areas.

A common limitation of most machine learning methods

is that they independently classify each image region or

pixel, ignoring the contextual information and are there-

fore subject to misclassifying areas of similar appearance.

Authors1 are with the Mobile Robotics Lab, Institute of Mathematics
and Computer Science (ICMC), University of São Paulo (USP), SP, Brazil,
{caiom; denis}@icmc.usp.br

Authors2 are with Heudiasyc UMR CNRS 7253, Université de Technolo-
gie de Compiègne, France, vincent.fremont@hds.utc.fr

Fig. 1: Illustration of the proposed block scheme. The

classification block is show in red, the contextual blocks in

orange, the possible support block in blue and the road blocks

in green.

Some efforts have been made to address this issue; [5]

uses Conditional Random Fields (CRF) and [2] spatial rays

features to incorporate contextual cues. Nevertheless they

are limited because first-order CRFs only allow the direct

influence of adjacent regions while spatial rays require a pre-

segmented image. More powerful ways to exploit contextual

information are presented in [6] and [7], the former creates a

hierarchical image segmentation, specific classifiers for each

level of the hierarchic and uses the classification of one level

as features to the next one. The later uses region-specific

Convolutional Neural Networks (CNNs) allowing non-linear

influence of distant regions. Both approaches, however, are

computationally costly and were not able to reach real-time

even with parallel implementations.

We hold that the key for reliable monocular road de-

tection lies in the efficient use of contextual information,

and consequently we propose a block scheme to efficiently

incorporate contextual cues. Our method classifies small im-

ages patches using images features while the so-called “con-

textual blocks” provide contextual information. The other

components, namely the image features and the classifier,

were chosen taking into account not only their performance

and adequateness to the task but also their computational

cost, leaving room for optimized and possible real-time

implementations.

The rest of the paper is organized as follows: Section

II presents the methodology; Section III shows the method

evaluation; The results are discussed in Section IV; finally,

Section V draws the conclusions and suggests future works.

II. PROPOSED METHODOLOGY

Our system makes extensive use of rectangular

block/patches as shown in Fig. 1. These blocks are divided

into three categories: classifications blocks, contextual
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Algorithm 1 Feature Concatenation

1: vfinal ← ∅ � Empty vector

2: vfinal ← vfinal ⊕ vclass � ⊕: Concatenation

3: for i ← 1 to radius× 8 do
4: vfinal ← vfinal ⊕ vi

context

5: end for
6: if size(class) �= size(context) then
7: vfinal ← vfinal ⊕ vsupport

8: end if
9: vfinal ← vfinal ⊕ (v1

road − vclass)
10: vfinal ← vfinal ⊕ (v2

road − vclass)

blocks and road blocks. Classification blocks are the ones

whose pixels are classified while contextual and roads blocks

are auxiliary and delimit regions from which features are

extracted. To classify a single image region or classification

block, one should extract features from the block itself, its

respective contextual blocks and from the road blocks. All

these features are pre-processed and concatenated into a

single final vector vfinal ∈ R
N that is fed to a classifier.

The output of the classifier, road or non-road, is attributed

to every pixel of the classification block. To classify an

entire image, this task should be repeated for every image

region or classification block, and since we classify every

pixel in a classification block, its vertical and horizontal

stride is always equal to its vertical and horizontal size.

The features employed in this work do not provide spatial

information, i.e. they do not make distinction between pixels

positions within a block, hence we use what we call “contex-

tual blocks” to provide information about the surroundings

of the classification blocks. The first contextual blocks are

positioned in the direct neighborhood of a reference block

according to the eight connected scheme and further blocks

are aligned in a “star” shape pattern. The reference block

is the classification block itself if the classification block

and the contextual blocks have the same size. Otherwise it

consists of an additional block, called support block, centered

on the classification block and with the same size as the

contextual blocks. The number of contextual blocks for a

classification one is given by their “radius”. For instance, a

radius of one yields 8 contextual blocks while a radius of

2 yields 16. The feature vector vi
context of each one of the

contextual blocks, and the possible support one vsupport, are

concatenated into the final feature vector vfinal.

Finally, road blocks are positioned in the bottom part of

the image and they provide a frame relative notion of the road

appearance. The feature vector of each road block vi
road is

subtracted from the classification block feature vector vclass

and concatenated into vfinal. The subtraction is made to

directly provide the classifier a similarity notion of the block

being classified and a supposed road region. We opted for

using two small road blocks instead of a larger one, as it

is usually done, to minimize the effect of lane markings

in the road blocks features. The feature concatenation is

summarized in Algorithm 1.

TABLE I: Image features selection

Feature Dim.

RGB Mean and std. dev. of each channel 6
Grayscale Mean and std. dev. 2
Entropy Mean and std. dev. 2
LBP Normalized LBP histogram (4-connected) 16
LM Filters 1 Mean and std. dev. of filter responses 30
LM Filters 2 Normalized histogram of the max. responses 15

Total 71

A. Image Features

In this paper, we decided to use some simple color and

texture/structure features. We gave preference for fast (low

computational cost) and low dimensional features. As small

image regions are being classified, there is no need for com-

plex features, such as those employed for object recognition

(e.g. Histogram of Oriented Gradients). Furthermore, as we

are using a parametric classifier, a low-dimensional feature

vector is desirable since it can improve generalization.

Table I presents the selected image features. Entropy,

Local Binary Patterns (LBP) and Leung-Malik (LM) [8]

filters responses features are generated based on the grayscale

image. The entropy is calculated using a circular support

region with a radius of 5 pixels. For the LBP descriptor,

we chose to use four neighbors instead of the usual eight

reducing its histogram dimensionally from 256 to 16. We

employed a subset of the original LM filter bank consisting

of 6 edge, 6 bar, 1 Gaussian and 2 Laplacian of Gaussian

filters, with a 19 × 19 pixel support,
√
2 scale for oriented

and blob filters and 6 orientations.

A spatial prior, in the form of the position of the clas-

sification block, is also included in our final feature vector.

Preliminary tests suggested that it is preferred to input it

encoded as a one-hot bit vector instead of a floating point.

Intuitively, this encoding may facilitate the learning of strong

priors in parametric models. Concretely we normalized each

classification block coordinate, discretize it in 11 parts and

represent each discretized coordinate as an 11 bins one-

hot bit vector. Therefore the dimensionality of the spatial

prior feature is dim(vspatial) = 22, 11 for each coordinate.

The exact number of bins should make a small difference

in performance as long as it is not too small (e.g. < 5),

compromising its discriminative power, or too large (e.g.

> 100), significantly increasing the model complexity in

parametric models.

If we assume the use of the additional support block, the

dimensionality of the final feature vector is given by:

dim(vfinal) = dim(vclass) + dim(vsupport)

+ radius× 8× dim(vcontext)

+ 2× dim(vroad) + dim(vspatial) (1)

where the function dim returns the dimensionality of

the input vector. It should be noted that, for this work

dim(vclass) = dim(vcontext) = dim(vroad) and if we

consider all features, they are all equal to 71.
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B. Classifier

We chose to use a standard Multilayer Perceptron (MLP)

neural network, which is a parametric non-linear model.

MLPs present a reasonable classification performance in a

wide range of tasks and are easily parallelizable to exploit

the processing power of Graphics Processing Units (GPUs)

and multi-core systems and, as it is a parametric model, its

prediction computational cost does not depend on the training

procedure (unlike SVMs, for instance).

Our model consists of one hidden layer with Rectified

Linear (ReLU) activations functions and an output layer with

the sigmoid activation function. We used the cross entropy

cost function, therefore only one output neuron is used for

the binary classification task. Formally, given that the feature

vector vfinal is a column vector the prediction is given by:

g(vfinal) = σ(Wo · ψ(Wh · vfinal)), (2)

where Wh and Wo are the weight matrices of the hidden

and output layer respectively (each row stores the weights

of a neuron), ψ is the ReLU function and σ is the sigmoid

function. Finally, the output of the model is thresholded

according to:

L =

{
Road if g(vfinal) > 0.5

Non-road if g(vfinal) ≤ 0.5
, (3)

where L is the label of the referent classification block.

For regularization, we limit the Euclidean norm of the

MLP weights (parameters), the maximum value is chosen

per layer and it is applied individually to the weights

corresponding to a single neuron (output dimension of the

layer). When the norm exceeds the limit, it is scaled down

to have exactly the limit value. The training is done using

mini-batch stochastic gradient descent with momentum. The

training is finished after a number, here called of “patience”,

of epochs without any improvement in the accuracy of the

validation set.

One drawback of MLPs is their large number of hyper-

parameters. To tackle this issue, before every training, we

use a small subset of the training and validation sets to

perform a hyperparameter optimization. For this optimization

procedure we use the particle swarm optimization (PSO)

algorithm and optimize the following parameters: number

of neurons, learning rate, hidden layer maximum norm and

output layer maximum norm.

III. EXPERIMENTS

A. Dataset and Setup

To evaluate our approach, we made use the KITTI Vi-

sion Benchmark Suite [9]. Specifically, we use the road

detection benchmark, which provides 289 annotated images

for training and 290 test images. Both sets are divided

into three categories: urban unmarked (UU), urban marked

(UM) and urban multiple marked lanes (UMM). Methods are

ranked according to their pixel-wise maximum F-measure on

the Bird’s-eye view (BEV) space. The benchmark further

provides laser points (Velodyne data), stereo images and

TABLE II: Hyperparameter Search Setup

Parameter Value

N. Iterations 10
Particles 10
N. Hidden Neurons (16, 2000)
Learning Rate (0.001, 0.5)
Max. Norm Hidden (0.5, 5)
Max. Norm Output (0.5, 5)

GPS data. In our work, only the monocular color images

are used and we do not make distinction between the three

road categories.

To evaluate each component of our system and to select

the most adequate parameters/hyperparameters, we divide

the 298 annotated images into a set of training/validation

containing 260 images and a set for testing containing 29

images. All results reported in this paper, excluding our

benchmark submission, are referent to these 29 images. The

evaluations are performed in the same way as the benchmark

server, i.e. the prediction and the ground truth images are

both converted into BEV space and are compared pixel-wise.

We implemented our system using the Python-based SciPy

software ecosystem and scikit-image library for feature ex-

traction. We use the MLP GPU implementation provided by

the Pylearn2 [10] library and conduct the PSO hyperparam-

eter optimization using the Optunity [11] library. The tests

were conducted on a machine equipped with an Intel Core

i7-4930K, 64GB RAM and an NVIDIA Titan X. The GPU

was utilized only for model training and testing, the rest of

the system runs on a single core.

For every test and the benchmark submission, we fixed

the blocks size at 10 × 10 for the classification blocks and

20× 20 for the contextual blocks, hence we always use the

additional support block. We believe that those sizes yield

a good compromise of computational cost, discriminative

power and classification granularity. In this work, we choose

to focus on evaluating the blocks scheme itself rather than

parameters effects.

B. Training Scheme

To generate the features vectors (samples) for training, we

used only classification blocks whose ground truth pixels

are all of the same class, excluding, therefore, ambiguous

cases. We adequately pad images to accommodate the se-

lected block sizes and contextual blocks in order for the

classification blocks to cover the full original image. As the

top 150 lines of every image contain only negative examples

and are not considered in the BEV space evaluation, we

ignore this region when generating the feature vectors for

training. This measure reduces the training time and helps

to improve the class balance.

The samples extracted from the 260 images that are

selected for training/validation are randomly split into 70%
training and 30% validation. Each of these datasets are

further subsampled at 20% for the hyperparameters search,

where the validation set is used for early stopping and for

the hyperparameter selection. Once the best hyperparameters
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(a) No contextual blocks (radius 0).

(b) Radius 1.

(c) Radius 2.

(d) Radius 3.

Fig. 2: Classification results using different radius parameter

values where green represents true positive, red false negative

and blue false positive.

are established, the training proceeds by using the initial

70− 30 split, where the validation set is used only for early

stopping. All samples are standardized feature-wise based on

the training dataset. The hyperparameter search configuration

is presented in Table II. We use 10 particles and 10 iterations

resulting in 100 training procedures. Further MLP parameters

are the 100 mini-batch size, 0.9 momentum and 30 patience.

C. Evaluation of Contextual and Road Blocks

We initially evaluate the effects of using contextual blocks

and their radius parameter using all image features. Table

III shows the results when varying the radius on the 29

testing images. A radius of 0 means that no contextual

block is in use. The results show a substantial increase

in the F-measure from no contextual block use (radius 0)

to radius 1 and further radius increases yield a small but

consistent improvement. This effect is also clearly visible

in the classification results as shown in Fig. 2. The image

classified using no contextual blocks presents a significant

amount of false positive and false negative pixels. With a

radius of 1, all false negative pixels are removed and the

number of false positives is reduced. The number of false

TABLE III: Contextual Blocks Radius Evaluation (in %)

Radius F-measure Accuracy Precision Recall

0 83.7 87.8 87.8 79.9
1 86.3 89.4 87.5 85.0
2 87.3 90.4 89.6 85.2
3 88.2 91.0 90.2 86.2

TABLE IV: Road Block Evaluation (in %)

Blocks F-measure Accuracy Precision Recall Diff.

All 88.2 91.0 90.2 86.2 0.0
No Road 87.9 90.8 90.1 85.9 -0.3

negatives continues to decrease until radius 3, when the left

side of the resulting image is almost clear of false positives.

These results highlight the validity of our contextual

blocks approach and despite the higher dimensionality of the

feature vector, the classifier was able to take advantage of the

additional information. We did not test radiuses larger than

3 due to hardware constraints (especially the working mem-

ory), nevertheless the benefit of larger radiuses is expected to

fade and not compensate the additional computational cost.

We also evaluate how the road blocks affect the per-

formance. For that purpose, we removed the road blocks

features while maintaining the best radius parameter previous

obtained (3) and all image features. Table IV shows the

results where the column “Diff.” refers to the difference in

F-measure when using all blocks. The removal of the road

blocks has a minor effect on the performance, affecting it less

than a single decrease in the contextual blocks radius. We can

therefore conclude that, for this dataset, our method is robust

and does not depend on the usage of road blocks. However

in datasets where the change in road appearance between

training and test sets is more enunciated, these blocks could

play a major role in helping with generalization.

D. Features Evaluation

Using the best radius deducted from previous experiments,

we evaluated the contribution of each feature subset. To

do so, we removed each feature subset and evaluated the

performance on the 29 test images. The results are show

in Table V. These results show that the LBP and LM 2

texture features provided the most significant contribution

despite LBP using the unusual 4 neighbor parameter and

the small subset of filter selected for the LM features. The

LM 1 features did not provide benefit and, in fact, their

removal resulted in a 0.3 F-measure increase. Considering

that a non-linear parametric model is employed, we suspect

that the unique information content of the LM1 features

did not compensate for their relative high dimensionality

(750 considering all blocks). The RGB features provided a

reasonable contribution while the gray features made little

difference, probably due to their redundancy with the RGB

ones. The spatial prior showed of little importance for our

method, which is expected since we use a large contextual

support. Methods with smaller or no contextual support
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TABLE V: Features Evaluation (in %)

Feature Subset F-measure Accuracy Precision Recall Diff.

All 88.2 91.0 90.2 86.2 0.0
No RGB 87.7 90.7 90.4 85.2 -0.5
No Gray 88.1 90.9 90.4 85.8 -0.1
No Entropy 87.7 90.7 90.3 85.3 -0.5
No LBP 87.3 90.4 90.2 84.6 -0.9
No LM 1 88.5 91.2 90.4 86.8 +0.3
No LM 2 87.0 90.0 88.6 85.5 -1.2
No Spatial 88.0 90.8 90.4 85.7 -0.2

would greatly benefit from using a spatial prior. Overall,

the method is robust to the feature selection as no feature

subset removal reduced the F-measure to the level of not

using contextual blocks.

E. Processing Time

Table VI shows the average processing time to classify

an image relating it to each major stage in our system and

the contextual blocks radius parameter. These results were

produced using all but LM 1 features. The feature extraction

phase refers to the generation of grayscale, entropy, LBP

and filtered images. The pre-processing and concatenation

phase encompasses the mean, standard deviation, histogram

calculations and also the feature concatenation of all blocks

involved. Finally, the model prediction phase refers to the

prediction time of the model for all classification blocks.

Overall, the processing time of our system implemen-

tation is far from achieving real-time but we believe that

an optimized implementation, e.g. using C language and

taking advantage of multi-core systems, may achieve it.

This belief is motivated by the fact that there is no stage

in our system that is intrinsically costly (e.g. Textons or

HoG features) and the most time consuming parts of our

system (convolutions, windowed operations) are suitable

for parallelization. One important thing to notice is how

the processing time scales with the radius, although the

number of blocks (and features) greatly increases with larger

radiuses, the processing times are less affected. This is due to

the efficient implementation of the contextual blocks, where

their features are pre-calculated for the whole image and

then appropriately concatenated for each classification block.

The feature extraction phase takes longer due to the larger

padding used.

TABLE VI: Average Processing Time for Classifying an

Image (in seconds).

Radius 0 1 2 3

Feature Extraction 0.44 0.49 0.51 0.65
Pre-processing and Concatenation 0.94 1.07 1.17 1.27
Model Prediction 0.02 0.03 0.04 0.05

Total 1.40 1.59 1.72 1.97

TABLE VII: Urban Road KITIT Benchmark Results (in %)

Method MaxF Pre. Rec. FPR FNR Runtime

DNN [6] 93.43 95.09 91.82 2.61 8.18 2s
HIM [7] 90.64 91.62 89.68 4.52 10.32 7s

NNP 89.68 89.67 89.68 5.69 10.32 5s
NED 89.12 85.80 92.71 8.45 7.29 1s

Our method 88.97 89.50 88.44 5.71 11.56 2s
FusedCRF 88.25 83.62 93.44 10.08 6.56 2s

ProbBoost [3] 87.78 86.59 89.01 7.60 10.99 150s
SPRAY [2] 87.09 87.10 87.08 7.10 12.92 0.04s

RES3D-Velo [12] 86.58 82.63 90.92 10.53 9.08 0.36s

F. Benchmark Submission

To compare our method with others, we submitted our

method results to the road detection KITTI Benchmark1

using all but the LM 1 features and a radius of 3 for

the contextual blocks (the best configuration according to

the performed experiments). Table VII presents the first

nine benchmark results in the Urban Road category which

includes all road images types (UU, UM and UMM). Our

method achieved the fifth best score out of 31 participants,

including the ones taking advantage of LIDAR (FusedCRF

and RES3D-Velo) or stereo vision (NNP and ProbBoost).

The first two methods (DNN and HIM) uses global con-

text (takes the whole image into consideration) which may

explain their high scores. The next two methods are yet to

be referenced, the only information available tells that the

NNP method uses stereo vision (plane fitting) and NED uses

some form of CNN. The fastest method in the benchmark

is the SPRAY method. As our work, this method focuses

on providing the classifier contextual cues in an efficient

way. All methods scoring better than ours uses some form

of parallel processing and could not achieve real-time.

Figure 3 shows a visual comparison2 of the first method,

our method and the fastest one using images provided by

the benchmark server. The DNN method tends to obtain

smoother boundaries and an overall better result. Our method

and the SPRAY one have a tendency to misclassify similar

regions, but our does so to a lesser extent. Our method,

however, presents a few more false positives predictions than

the other two.

IV. DISCUSSION

The proposed approach yields results in line with state of

the art methods. The use of contextual blocks provides signif-

icant performance improvements that scales adequately with

the radius parameter. The method run-time depends mostly

on the images features selection, while the block scheme

itself have a low computational cost since their features can

be pre-calculated and simply concatenated afterwards. One

advantage of our method is its simplicity, especially when

compared to other road detection works (e.g. [3], [2]). We

provide a small image features selection that seems to be

adequate for road detection and whose implementation can

be highly optimized. We also presented other details such

1http://www.cvlibs.net/datasets/kitti/index.php
2Video demo: http://youtu.be/QFmOZyqtClU
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(a) DNN method sample results.

(b) Our method sample results.

(c) SPRAY method sample results.

Fig. 3: Sample classification results extracted from the KITTI benchmark server where green represents true positive, red

false negative and blue false positive.

as the training scheme and hyperparameters search that may

have contributed to the method performance.

Despite encouraging results, our method has some lim-

itations. Global features are unpractical to include due to

padding requirements and, even with a large radius, the

whole image can not be considered. The presented imple-

mentation is not optimized and, although we hold that it

could be optimized for real-time purposes, we do not provide

evidence that it is the case. Compared to deep learning

methods [6], our method has the disadvantage of requiring a

selection of hand-crafted features, which is mostly intuitive

since it is not possible to evaluate all combinations of image

features present in the literature. Finally, the use of road

blocks is controversial as it is based on the assumption that

the bottom part of the image always refers to a road region.

In this work, however, the road blocks could be removed

with a minimal performance penalty or, more generally, other

sensors (e.g. stereo camera) could be used to support that

assumption.

V. CONCLUSIONS AND FUTURE WORKS

This work proposed an efficient block scheme to exploit

contextual information and also sensible choices for image

features and classifier. Each system component has been

evaluated, along with image feature subsets and processing

times. The results reaffirm the importance of contextual

information for road detection and demonstrate the method

effectiveness that, despite being simple, could achieve results

comparable with state of the art methods. Unfortunately the

method still has some limitations that need to be addressed,

as its inability to incorporate fully global contexts and the

current implementation run time. As future work, we intend

to perform an optimized implementation of our method and

use convolution neural networks as feature extractors.

ACKNOWLEDGMENT

The authors would like to acknowledge the support granted

by FAPESP (process nr. 2011/21483-4) and CNPq (process

nr. 202415/2014-7).

REFERENCES

[1] J. McCall and M. Trivedi, “Video-based lane estimation and tracking
for driver assistance: survey, system, and evaluation,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 20–37,
March 2006.

[2] M. Passani, J. Yebes, and L. Bergasa, “Crf-based semantic labeling
in miniaturized road scenes,” in IEEE Conference on Intelligent
Transportation Systems (ITSC), October 2014, pp. 1902–1903.

[3] G. B. Vitor, A. C. Victorino, and J. V. Ferreira, “A probabilistic
distribution approach for the classification of urban roads in complex
environments,” in Workshop on IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[4] J. Alvarez and A. Lopez, “Road detection based on illuminant in-
variance,” IEEE Transactions on Intelligent Transportation Systems,
vol. 12, no. 1, pp. 184–193, March 2011.

[5] T. Kuhnl, F. Kummert, and J. Fritsch, “Spatial ray features for real-time
ego-lane extraction,” in IEEE Conference on Intelligent Transportation
Systems (ITSC), September 2012, pp. 288–293.

[6] R. Mohan, “Deep Deconvolutional Networks for Scene Parsing,” ArXiv
e-prints, 2014. [Online]. Available: http://arxiv.org/abs/1411.4101

[7] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked hierarchical label-
ing,” in European Conference on Computer Vision (ECCV), September
2010, pp. 57–70.

[8] T. Leung and J. Malik, “Representing and recognizing the visual ap-
pearance of materials using three-dimensional textons,” International
Journal of Computer Vision, vol. 43, no. 1, pp. 29–44, 2001.

[9] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure
and evaluation benchmark for road detection algorithms,” in IEEE
Conference on Intelligent Transportation Systems (ITSC), October
2013, pp. 1693–1700.

[10] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin,
M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio,
“Pylearn2: a machine learning research library,” ArXiv e-prints, 2013.
[Online]. Available: http://arxiv.org/abs/1308.4214

[11] M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. D. Moor,
“Easy hyperparameter search using optunity,” ArXiv e-prints, 2014.
[Online]. Available: http://arxiv.org/abs/1412.1114

[12] P. Shinzato, D. Wolf, and C. Stiller, “Road terrain detection: Avoiding
common obstacle detection assumptions using sensor fusion,” in IEEE
Intelligent Vehicles Symposium (IV), June 2014, pp. 687–692.

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 

 
 

116



Following Dirt Roads at Night-Time: Sensors and Features for Lane
Recognition and Tracking

Sebastian F. X. Bayerl, Thorsten Luettel and Hans-Joachim Wuensche

Abstract— The robust perception of roads is a major prereq-
uisite in many Advanced Driver Assistant Systems such as Lane
Departure Warning and Lane Keeping Assistant Systems. While
road detection at day-time is a well-known topic in literature,
few publications provide a detailed description about handling
the lack of day-light.

In this paper we present multiple sensors and features for
perceiving roads at day and night. The presented features are
evaluated according to their quality for road detection. We
generated a large number of labeled sample data and extracted
the quality of the features from their probability distributions.
The challenge of tracking an unmarked road under bad lighting
conditions is demonstrated by comparing receiver operating
characteristics (ROC) of the features at day and night-time.

Based on these results we present a road tracking system
capable of tracking unmarked roads of lower order regardless
of illumination conditions. Practical tests prove the robustness
up to unmarked dirt roads under different weather conditions.

I. INTRODUCTION

In the last decades autonomous robots became more and

more a focus of interest. Both scientific research facilities and

car companies are investing considerable man-power into this

field. On the way from Advanced Driver Assistant Systems

(ADAS) to a completely self-driving vehicle a lot of chal-

lenging tasks have to be solved robustly to enable the robot

to participate in traffic. One of those issues is environment

perception. In order to keep an autonomous vehicle driving

on a lane or to give a lane departure warning to the driver,

one has to robustly detect the lane’s geometry and position.

The most common approach are vision systems, but due to

the varying appearance of roads and its strong dependency

to illumination conditions this is still a challenging task ([1],

[2], [3]).

Moreover, little work has been done on tracking roads at

night. In this paper we present characteristics of rural roads

and sensors in order to perform a robust tracking at day and

night. We are especially interested in tracking roads without

any kind of boundary markings. To this end, we utilize and

extend our road tracking approach shown in [4].

This paper is structured as follows: In the following sec-

tion some related work on road tracking methods is described

focusing on their performance at night. In Section III we

show our autonomous vehicle, the sensors it is equipped with

and how the sensor measurements are fused into a multilayer

terrain map. The features extracted from the sensor data are

shown in Section IV, followed by an evaluation in Section

All authors are with the Institute for Autonomous Systems Technology
(TAS), University of the Bundeswehr Munich, 85577 Neubiberg , Germany,
Contact author email: sebastian.bayerl@unibw.de

Fig. 1. Tracking a rural road at night using a multi layer terrain map
(thermal layer is shown). Red cells indicate obstacle cells. Upper left: Color
Night Vision camera, Upper right: thermal camera

V. A tracking system utilizing these features is presented in

chapter VI. Finally, we conclude with a short summary and

an outlook to future work.

Sensor Fusion Feature Calculation Particle Filter

Fig. 2. Global Architecture of the Tracking System

II. RELATED WORK

In the past, a lot of different lane recognition systems have

been developed. Today perception of high- and freeways

work quite well and is already implemented in modern

cars for lane departure warning systems. Most of them are

based on vision systems and are developed for daytime

application. A commonly used recursive filtering technique

allows estimating the parameters of road models ([5], [6],

[7]) such as clothoids or splines.

In vision-based approaches features like extracted lane-

markings, color and/or texture information is used. For

example a particle filter approach investigated by Franke et
al. [8] treats the road recognition as a maximum-a-posteriori

estimation task that optimizes the parameters of a road model

given an image sequence. For weighting the large number of

particles they calculate a joint probability of each hypothesis

by considering features such as color saturation, texture and

edges. One benefit of this kind of tracking is the easy way

to add or remove features as they are treated independently.

Expanding on this idea Manz et al. [9] developed a hybrid

estimation approach that was able to even follow dirt roads.

Parameterless systems have also been presented. In [3] the

problem of detecting the road was interpreted as finding a

minimum-cost path from the lower to the upper image part.
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The costs are defined by extracted lane markers, the grass

verge (a color based classification) and the free space that

was detected by stereo vision.

Although all system proved their strength in difficult

scenarios, they all have weakness, too. The vision-only

approaches strongly suffer from the disadvantage of their

single sensor. Even the best camera does not reach the quality

of a human eye, and thus, challenging lighting conditions

or less colored environments are limiting the power of this

approach to road recognition. Multi-sensor systems combine

the benefits of different sensors to achieve a higher level

of robustness. In [4] sensor data from color-camera and a

LiDAR is fused, accumulated and used for tracking road

networks.

One aim of this paper is to show features that indicate

the existence and the position of the road at night. An

example application of road tracking at night is introduced

in [10]. Serfling et. al developed a particle filter which is

able to estimate position errors inside a digital map by

comparing the map-based road information with the sensor

data. Each particle represents a potential road course with a

different width, robot position and orientation. They suggest

measuring road’s boundary gradient and its orientation by

edge operations on a night-vision image. Due to the different

reflectivities of the road and the non-road surface, the road

boundary is also visible without lane-markings. Additionally,

a lighting independent imaging radar sensor is used for

weighting the particles with information about road area and

gradient. Another night-vision approach for map-matching is

shown in [11]. Schüle et. al propose a sensor fusion system

that employs digital map information in combination with

radar and camera sensors to estimate the 3D road course.

This information is fused with the results of an optical lane

recognition system. The result is an accurate road course.

Road curvature estimation is performed in [12] by using a far

infrared camera, a near infrared camera and an imaging radar

sensor. Harmann et. al are training a Convolutional Neural

Network in order to distinguish between three different road

curvatures. This kind of detection system is not able to keep

a robot on a road, since only a few discrete statements about

the lane are made. For our application we need a detailed

description of the lane that has to be followed.

III. SENSORS

A. Robot and Hardware

The software we develop is applied to our robot platform

MuCAR-3 (Munich Cognitive Robot Car - 3rd Genera-

tion), a stock VW Touareg equipped with full drive-by-wire

capability. The vehicle motion is estimated by a Kalman

filter that fuses data from an inertial navigation system

with vehicle odometry to provide jump-free estimates in an

inertial integration space.

MuCAR-3 is equipped with different sensors that are

beneficial for road detection. The main sensors are listed

below:

• A Velodyne HDL-64 laser scanner provides 1.3 million

measured points per second. This 3D point cloud pro-

(a) Color camera with 100ms integration time

(b) CNV camera with 50ms integration time

(c) Thermal image scaled from 9◦C (blue) to 13◦C (red)

Fig. 3. Camera images showing a dirt road. Headlights are enabled.

vides a lot of information about the terrain profile up

to 120 meters in distance. Since the laser-scanner is an

active sensor that is not affected by lighting conditions,

it is ideally suited for night-time application. Obstacles

like bushes, trees or any kind of terrain slopes indicate

the boundary of a road. In a flat-world scenario however,

one is not able to detect a road using this sensor only,

so we suggest using additional types of sensors.

• The second type of sensors are default color cameras.

This very common sensor is used in a lot of previous

work (e.g. [8], [9]) for road detection, but suffers from

its sensor-typical limitations: At low light conditions the

camera needs a lot of time for image exposure. High

integration times leads to smearing in high dynamic

scenarios. As a result we limit the integration time and

take less illuminated images into account.

• The application of a color night vision (CNV) camera

provides more information even in less illuminated

areas. Thanks to larger pixel size and other low-light

technologies this camera is better adapted for tracking

roads at night.

• The last sensor is a thermal camera utilizing an un-

cooled microbolometer. The thermal camera is able

to measure the different surface temperatures of the

terrain independently of the lighting conditions. Due to

the different materials of the surface the corresponding

temperature is different. Figure 3 (c) gives a visual

impression of the surface temperature of a dirt road.

The temperature of the road is higher than that of the

non-road area.
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B. Sensor Fusion

In a fusion step the high amount of sensor data is com-

bined in low level manner. We suggest to use the fusion

algorithm according to [13] and [4] and extend them by a

temperature and a NIR layer. We do not want to go into

detail, but the main ideas can be described as follows. A

local terrain map containing multiple layers of information

is introduced and built as a Cartesian grid with a cell size

of 0.2m. (A multi layer map including color, height and ob-

stacle information is shown in Figure 4 (a).) The aim of this

terrain mapping is to produce a dense local representation of

the environment, making use of all data the sensors provide.

Hence, we accumulate the measured data from several scans

and overcome the limitation of the limited field-of-view

(FOV) of the cameras and the vertical resolution of the

LiDAR. We consider occluded areas, which are not visible

to the camera, as well as overhanging structures, which can

be interpreted as non-obstacles. The fusion step is passing

several maps (such as obstacle, height, height-difference,

color and thermal map) to the feature extraction.

IV. FEATURES

In order to detect and track a road several features are

defined. This chapter includes their detailed description,

whereas their evaluation is part of the following chapter V.

According to the nature of their main sensors they can be

split up in three groups: color, 3D and thermal.

A. Color

The first group of features is based on the color informa-

tion of the terrain map.

• The first features we can extract from the color map

are edges, since we expect a change in color at the lane

boundaries. Therefore we apply one edge operator for

each direction (x and y) in order to get the edge intensity

vEI =
√
v2EI,x + v2EI,y. The change in color should be

perpendicular to the direction of the road. As a result we

use the corresponding edge phase, that can be calculated

consequently with vEP = atan
(

vEI,y

vEI,x

)
.

• The green-ratio feature assumes that the road area has

a low ratio of green color compared to the other color

channels ( g
r+g+b ). Since slightly vegetated forest roads

do have a high green ratio, we also consider the area

below the robot. There is no additional sensor to observe

this area, but the cells are taken from the accumulated

map (Section III-B). Our algorithm adapts a reference

value online and calculates the cell’s green-ratio feature

accordingly.

• According to [9] the color of frequently-driven roads

tends to have a low saturation value in the HSV color

space. Because the saturation channel of the HSV space

is independent of the illumination intensity, the feature

depends less on shadows.

• Assuming that the vehicle drives on a road, we compare

all color information inside the terrain map with the

cells below the robot. The accumulation of sensor data

(see Section III-B). One method to do the comparison

is to setup a histogram of RGB-color values below

the vehicle and perform a histogram back projection

to the complete terrain map. This color comparison

can be executed also by using another color space. We

suggest utilizing the YUV color space, by calculating

the mean and standard deviation of its components

inside the area below the robot. The feature value of

a cell results from the Mahalanobis distance to the

color values below the vehicle. Since the Y component

represents the illumination, which possibly might have

negative influence at scenarios with challenging lighting

conditions, it can be neglected.

These features should never be used alone, since the

robot will not able to rejoin a road after having left

once.

B. 3D Features

The second feature group refers to the 3D texture of the

surface. Their main source of information is the LiDAR, but

it can be driven with any system capable of providing 3D

data.

• We expect roads to be free of static obstacles. This

implies that occupied cells are definitely non-road cells

and areas of high obstacle density tend not to be roads.

• The obstacle detection does not interpret a cell as an

obstacle if the cell is located inside a low terrain slope.

But even small slopes indicate the position of a road.

Areas with a high variation in slope have a low road

probability.

• The terrain height can be introduced in a similar way

to the slope. The cell’s information about its height is

an indicator of non passable obstacles or areas that are

not nice to drive on. The higher the difference between

the cell’s height and the robot plane, the more likely the

cell is to be non-road.

• We use a classification of vegetation such as grass or

bushes by analyzing the frequency of the distance signal

of each laser scanner diode. This method allows us to

distinguish between road and grass independently of

light. This information, however, should not be a hard

decision criteria, since a lot of dirt roads or forest roads

are slightly covered with grass.

C. Thermal

The last feature group uses information provided by the

thermal camera. In most cases the base material of the

road is different to the non-road material. This causes a

different heating of the surface at day-time and thus we

expect differences in the temperature profile of road and non-

road area. Our practical tests have confirmed this and we

were even able to observe thermal differences between the

white markings of a road and the road itself. See Figure 3.

In order to use this we introduce the following two features:

• Similar to the edges in color, we expect edges in

temperature located at the road boundaries. For this

reason we apply edge operators to the thermal layer
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(a) 3D color and obstacles (red) (b) Heights

(c) Edge intensity (d) Road saturation

(e) Thermal edge (f) Thermal backprojection

Fig. 4. Features of road scene shown in Figure 1

of the terrain map and get measurements of the edge’s

intensity and direction.

• The last important observation is the homogeneous

temperature distribution along the road. Based on this

we calculate the temperature statistics under the robot

and compare it to all cells of the terrain map. If we

assume that the robot is already located on the road,

we can extract cells with similar temperature and the

road itself.

V. FEATURE EVALUATION

In the following chapter we analyze the quality of the

presented features and state which features are beneficial

under challenging night-time lighting.

A. Data Generation

The generation of feature data is performed by applying

the road tracker from Section VI to several recordings of

sensor measurements. Given the tracking result, we can

generate pairs of positive and negative road samples. The

positive is defined by the road tracking result itself and the

negative is built by falsifying the road geometry (clothoid

parameters, such as displacement or curvature) of the positive

one. Given the road geometry we are able to extract the

sample’s features - e.g. edges at the road boundary. For each

sample all the feature values are finally stored with a label

(positive or negative) in memory.

The different sensor recordings include different seasons

(summer, winter, ...) and types of roads (paved, unpaved,

dirt, forest). Each track was driven at day- and at night, so

we can evaluate which features are still beneficial at less

illumination. We were able to generate at least 10000 night

samples and the corresponding 10000 day samples.

B. Comparison

In order to perform this comparison, we define criteria

which represent the feature’s quality. We suggest taking a

look at the distribution of the labeled feature values and the

Receiver Operating Characteristic (ROC) of the features. The

influence of day and night-time causes differences in the

ROC of a feature.

In general the ROC’s curve is created by plotting a

feature’s true positive rate against the feature’s false positive

rate at various threshold settings. High true positive rates at

low false positive rates mark the most powerful features.

The ROC of one single feature was generated as follows:

the feature’s values of the collected data are compared to a

threshold and classified as road or non-road. Since the data

is labeled, we can identify false positives, false negatives,

true negatives or true positives. We sample the threshold and

get different numbers of the false positives and true positives

for each threshold.

The following specifies the different Probability Density

Functions (PDF) and ROC curves for day and night time.

We do not describe all the features in detail, but we select

the most representative ones.

• Evaluating the color features of the road, we noticed - as

expected - a reduction of quality. In all ROC curves the

degradation of the features based on the default color

camera is much higher than to the CNV camera. In

some cases (default camera’s saturation or green ratio,

Figure 5 (b) and (f)) the ROC curve approximates to the

y = x axis, which represents a maximum uncertainty.

(a) Default saturation distribution (b) Default saturation ROC

(c) CNV saturation distribution (d) CNV saturation ROC

(e) Edge intensity ROCs (f) Green Ratio ROCs

Fig. 5. PDF of color features
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• The active LiDAR measurements allow the the 3D fea-

tures to be independent of illumination. The distribution

of the features is almost the same. For example see

the occupancy feature at Figure 6. Also the ROCs do

not change from day to night. Thus, they can be used

unrestricted for tracking at night. Unfortunately a road

cannot be detected by 3D features only in general. The

low true positive rates at low false positive rates can

be interpreted as follows: The 3D features contain the

implicit information about non-road area, but no direct

information about roads.

(a) Obstacle feature distribution (b) Obstacle feature ROC

Fig. 6. PDF of 3D features

• The last group to evaluate are the thermal features.

Transitions at the road boundary are observable at each

time of the day. This group of features has even a

better performance at night because there is no direct

influence of the sun. Shadows generate different surface

temperatures on one surface material.

(a) Thermal edge distribution (b) Thermal edge ROC

Fig. 7. PDF of thermal features

The thermal features depend on weather conditions.

Rain and fog cool down the surface and make the

road area and the non-road area having less difference

in temperature. In Figure 8 the ROC of the thermal

edge direction is presented for dry and wet scenarios.

The temperature ROC has also a strong dependency

to the quality of the road. This dependency is even

stronger than the influence of weather. A example of

poor structured road can be seen in Figure 10.

Fig. 8. Evaluation of thermal edge direction feature with different weather
conditions and road quality

VI. TRACKING SYSTEM

In this paper we use an extended version of the tracking

method suggested by [4]. This method is based on a particle

filter, which projects its road hypotheses into the local terrain

map and weights them according to a set of road features,

similar to the presented ones. The main extension of our

method is the increased number of road features and the

usage of further sensors. This increases the robustness of

tracking and we are able to perceive road networks even at

night.

A. Particle Filter

Similar to [4] we use two different road geometries to

model the road network. A clothoid with a fixed width is

used as a road model. The intersections are constructed

by multiple clothoids starting at a common origin. The

algorithm switches between the different models with the

help of a digital road map. All coordinates of the system

state are kept relative to the robot’s ego coordinate system.

The filter can be split up in two main parts:

• A prediction step uses the estimation of the robot’s

motion in order to update the relative coordinates of

the road and intersection (see [9]).

• In the following measurement step we rebuild the prob-

ability distribution of the state vector xp by assigning

a specific weight to each predicted particle. The filter

projects the geometric models of all particles into the

local terrain map and measures their road quality. This

quality qp is estimated by a Naive Bayes classifier,

that compares n measured feature values to a trained

feature distribution of roads or uses a manual generated

heuristic which again depends on the measured feature

values. In a last step the state vector and its covariance

are generated as the weighted mean of the best particles.

The calculation time of the algorithm is small enough to

run on an ordinary machine (Intel i7 2600K) in sensor rate,

which is given by the Velodyne LiDAR as slowest sensor at

10Hz. Figure 1 is showing the estimation of the road tracker.

B. Effects to Tracking Quality

In this section we want to demonstrate the benefit of the

additional night sensors and features and compare it to the

previous method introduced in [4].

Fig. 9. ROCs of classifier with full and reduced feature capability

Two different Naive Bayes classifiers are trained: one with

full feature capability (classifier CA) and a second with
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the reduced number of features (classifier CB). The second

reduced classifier represents the classification power of the

method presented in [4] and is only trained with default

color camera features and without any information of night

sensors. At day the performance of CA is only slightly better

than CB . At night the classifier show a different degradation

of their performances: CA is influenced only a bit because

it supports all the presented features. The ROC of CB is

influenced very much since it is limited to the default color

camera.

C. System Limitations

A bad classification result indicates that the system is

operating near the limit of its perception. One key role for

our robust tracking system is the clear separation of road

and non-road cells by a couple of features. The system

has reached its limits if the sensor data does not indicate

any existence of a road. For example in a flat environment

the 3D point cloud of a laser scanner cannot be used to

determine the position of the road. A similar case is given by

the thermal camera and a homogeneous temperated surface.

Here, the sensor does not provide useful information. Also

a color camera is not a perfect sensor. One is not able to

visually extract the road in a uniformly colored terrain. One

example of a challenging scenario is show in Figure 10,

where the road is covered by leaves. Since the particle

(a) Thermal camera (b) CNV camera

Fig. 10. Challenging road scene

filter uses all of the above mentioned features, the system is

able to compensate sensors, which do not provide beneficial

information. At least one significant feature is necessary to

make tracking valid.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper we describe several sensors and their rele-

vance for road tracking at night-time. In a first step color

cameras, a thermal camera and a LiDAR are fused into a

multi layer local terrain map. Based on the information of

this grid map, we generate a variety of features and evalu-

ate them according to their relevance for road recognition.

Obviously, the active sensors are not influenced by lighting

conditions. Also the features which are based on thermal data

are very informative. The data provided by the color camera

gets worse with less light, but is still partially usable. Finally

we presented a particle filter based tracking algorithm that

utilizes the described features for a robust recognition of road

networks.

Some visual impressions of the features and the

presented tracking system at night can be seen at

www.mucar3.de/iros2015-roadtracking.

B. Future Work

The modular weighting step of the particle filter can be

extended easily by new features. The basis of a possible fea-

ture extension is given by the measured reflectivity values of

the laser scanner. Since our focus is in less structured regions

without any artificial boundary markings, we expect different

surface reflectivities between road and (for example) grass,

but no extreme difference as between paved road and its

white lane markings.
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Generating Compact Models for Traffic Scenarios to Estimate Driver
Behavior Using Semantic Reasoning

Ilya Dianov, Karinne Ramirez-Amaro and Gordon Cheng

Abstract— Driving through a constantly changing environ-
ment is one of the main challenges of autonomous driving. To
navigate successfully, the vehicle should be able to handle a
variety of possible situations on the road by constantly analyz-
ing the traffic environment and determine which objects might
influence its current behavior. This paper presents an artificial
intelligence method to improve the perception and situation
awareness of autonomous vehicles by detecting and extracting
meaningful information from different traffic scenarios, and
inferring the correct driving behavior for each of them. Our
method uses a state of the art technique based on semantic
reasoning previously used for recognizing human activities
in cooking scenarios. This algorithm has been adapted and
extended to the automotive domain by introducing new object
properties such as ObjectInFront, ObjectActedOn, MoveForward,
Turn. The main advantage of our proposed method is its
adaptability to different mobile domains without any additional
training. First, our system is trained on traffic situations.
The obtained semantic models are later used to autonomously
navigate a mobile robot in an indoor environment by utilizing
the acquired knowledge and inference from the automotive
domain. The results show that the overall positive classification
rate for traffic scenarios recognition is 90.14% of the cases. In
addition, the average processing and behavior generation time
for the implemented system is 0.177 seconds, which allows the
mobile robot to react online to the newly encountered situations.

I. INTRODUCTION

Recent developments in autonomous driving show that

autonomous vehicles can bring a lot of benefits to our

society e.g. reduction of traffic incidents, increased mobility

for the elderly and disabled people, more efficient traffic

flow, reduction of fuel consumption and many more [1].

In order to achieve that, these vehicles have to overcome

many problems such as moving in a dynamic environment,

processing vast amount of data from different sensors, han-

dling driving rules, path planning and collision avoidance [2].

One of the main challenges is understanding the encountered

traffic situations to estimate the proper driving behavior by

considering the meaningful traffic participants and relations

between them. However, finding this meaningful information

represents another set of challenges such as complexity

of the perceived environment, which leads to problems of

having partial observable information. Typically, to solve

this problem it is necessary to implement a sophisticated

method which can recognize, analyze and extract contextual

information about each scenario, learn and use it to determine

vehicle behaviors when this scenario is encountered again

Faculty of Electrical Engineering, Institute for Cognitive Systems,
Technical University of Munich, Germany ilya.dianov@tum.de,
karinne.ramirez@tum.de and gordon@tum.de

Fig. 1: General overview of our system which shows two

examples where we reuse the learned semantic models: a)

shows an example of the new traffic scenario and b) depicts

an example of the domain transference of learned model1.

[3]. The extracted contextual data is represented as spatio-

temporal relationships between the ego vehicle and traffic

environment [4]. This context information can be obtained

from the generation of dynamic maps [5] which will enhance

the tracking of the objects around the vehicle. However,

there are a vast amount of objects which can influence the

vehicle motion depending on their behavior, and learning all

possible traffic scenarios involving all these different objects

would be computationally expensive in terms of execution

and memory. Thus, semantic representation and knowledge

methods can greatly improve such systems.

The goal of this paper is to create a simple and general

ontology model which can be used to describe different

scenarios in mobile domains. For this reason, we propose a

method that can automatically recognize and extract spatial

relationships from such scenarios using a simple perception

system and create a reasoning mechanism which can infer

appropriate vehicle behavior for each situation. Fig. 1 shows

an example of our proposed system, exemplifying how the

model of the same behavior can be applied to two different

scenarios. First, the compact general model was created for

the input scenario involving the yellow car which is not

moving in front of the vehicle and the traffic light is showing

a green light. To avoid collision the vehicle has to slow

1The traffic scenario image is a courtesy of Verlag Heinrich Vogel.
www.fahren-lernen.de
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down even if the traffic light is green. A similar situation

was simulated using the PR2 robot: the monitor represents

the traffic light and there is a wheelchair standing in front of

the robot path. Using such knowledge our system can detect

that both car and wheelchair are mobile entities therefore

both will infer the same behavior: slow speed.

This paper is organized as follows: Section II describes

related work. Section III introduces the framework consisting

of the object properties, semantic rules and the ontology.

Section IV shows the application of the generated framework

to mobile robot domain, and Section V presents conclusion

and an outlook on possible future work.

II. RELATED WORK

There are multiple approaches for analyzing and estimat-

ing traffic scenarios. The method presented in [6] models

scenarios as a state space, containing information about the

vehicle, properties of its surroundings, possible behaviors and

trajectories of the vehicles using Dynamic Bayesian Network

(DBN) to predict the driver’s behavior in its current scenario.

A similar approach by Agamennoni et al. [7] introduces fea-

ture functions to characterize dynamic relationships between

traffic participants to form context models which are used

by DBN to predict states of all objects influencing vehicle

behaviors. In contrast, [8] introduce evidential grids which

utilizes geographic information from digital maps to detect

navigable space for the vehicles. However, this approach is

used only for obstacle avoidance and do not incorporate

any data about the road infrastructure (for example traffic

signs). Another method is described in [9] where a tree-

like hierarchy of classifiers is introduced. Each node in the

hierarchy is predefined and predicts only one certain property

of an input object and can activate a child node if a specific

output is predicted. In [10] a Bayesian network is used to

find impact of traffic situations to each participant and predict

their behavior, where participants are represented as nodes

connected with conditional distribution functions. However

all these approaches require a complicated perception sys-

tem, large amount of samples for each driving situation

and do not extrapolate and exploit semantic relations for

prediction use.

Another group of methods for analyzing traffic situations

are based on description logic. An ontology can be used

to describe road intersections by mapping atomic concepts

to specific geometric primitives [11]. Another way of using

an ontology is to represent lanes and vehicles moving on

them as a graph like network and detect conflicts between

traffic participants at the same intersection [12]. To analyze

more complex situations an ontology can be represented

as a knowledge base with hierarchical structure consisting

of atomic concepts and relations between them [13]. This

method can be extended to find dependencies in interaction

of the traffic participants to infer their likely behavior in

current situations [4]. However, the described methods are

using manually generated rules for reasoning, which are

very specific to each situation. Moreover, their ontology

representations are created for driving scenarios and cannot

be applied to any other mobile domains without significant

changes.

Conversely, our method provides a framework for au-

tonomous learning semantic rules from sensory data which

together with the ontology, allows to transfer knowledge

from the traffic domain to other mobile domains.

III. SEMANTIC REASONING AND KNOWLEDGE

REPRESENTATION

The overview of the created framework is shown in Fig.

2. The contextual information perceived by the vehicle is

processed to detect objects and their spatial properties and

then stored in the ontology. The reasoning module utilizes

knowledge from the ontology to recognise traffic scenarios

and uses semantic rules to infer driving behavior with respect

to the road context (traffic rules and objects in driving

environment). The semantic rules are generated using the

decision tree classifier trained on the driving tests obtained

from an online driving school2.

Fig. 2: Framework overview3.

A. Identification of Object Properties

Fig. 3: Example of detecting properties from traffic situation,

the input video was obtained from the online driving school3.

To analyze different driving scenarios the video tests

described above were used. Each video was manually an-

notated, and we found that for each traffic participant in-

fluencing the behavior of the vehicle at the current time

point there is a set of common properties which are always

applicable regardless of the participant type. These properties

2www.fahren-lernen.de
3The traffic scenario image is a courtesy of Verlag Heinrich Vogel.

www.fahren-lernen.de
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evaluates spatial relationships between the participants and

the ego vehicle. Each traffic participant is represented as an

abstract object and the following properties are defined:

1) ObjectInHand: the object is very close to the ego

vehicle and can cause a collision. In Fig. 3 the red

car is considered to be ObjectInHand, because if the

vehicle would turn left it will crash with that car.

2) ObjectActedOn: the object is in the range of interest of

the ego vehicle and might require a certain action, but

neglecting the execution of this action will not lead to a

collision. In Fig. 3 both motorcycles are considered to

be ObjectActedOn because normally the vehicle should

reduce speed to keep proper distance, but even if it

maintain current speed there will be no collision until

the vehicle would reach the motorcycles (but then they

become ObjectInHand).

The above properties were inspired by the similar ones

defined in [19] and readapted to driving scenarios. At any

particular time point the object can have only one of these

two properties (either ObjectInHand or ObjectActedOn) but

not both of them. Additionally, we define the following

properties:

3) ObjectInFront: the object is in front of the current driv-

ing path of the ego vehicle. In Fig. 3 both motorcycles

are ObjectInFront because both of them are moving on

the same lane as the ego vehicle.

4) ObjectOnLeft: the object is on the left possible path of

the ego vehicle. In Fig. 3 the red car is ObjectOnLeft
because it is moving on the lane which is to the left

of the current driving path of the ego vehicle.

5) ObjectOnRight: the object is on the right possible

path of the ego vehicle. In Fig. 3 the blue car is

ObjectOnRight because even if there is no separation

line, the car is parked on a different lane according to

driving rules, and this lane is to the right of the current

driving path of the ego vehicle.

For automatic detection of the above Object Properties we

define the formulas shown in Table I. Where l =
√

x2 + z2 is

the distance to the object, r1 and r2 are distance thresholds,

xob j, xle f t and xright are x coordinates of the Cartesian

position of the object , left boundary and right boundary of

the driving tube respectively. The framework do not require

global positions of the objects or the ego vehicle for property

detection and utilize only their local positions with respect

to the ego vehicle. Fig. 4 shows an example of properties

detection, where the blue dot represents the ego vehicle:

• The obstacle1 (green dot) is detected as ObjectInHand.

TABLE I: Definition of Object Properties.

Name Formula
ObjectInHand l < r1

ObjectActedOn r1 < l < r2

ObjectInFront xle f t < xob j < xright
ObjectOnLeft xob j < xle f t

ObjectOnRight xob j > xright

• The obstacle3 (yellow dot) is ObjectActedOn.

• The obstacle1 (green dot) is ObjectInFront.
• The obstacle2 (purple dot) is ObjectOnLeft.
• The obstacle3 (yellow dot) is ObjectOnRight.

Fig. 4: Graphical Example of the Object Properties detection.

In addition, we identified that traffic participants of the same

type can have different properties which we called Instance
Properties. For the data obtained from the video tests we

define the following Instance Properties:

• MoveToward: the object is moving towards the vehicle.

• MoveForward: the object is moving forward the vehicle.

• NotMove: the object is not moving.

• ChangingLane: the object is changing lane.

• Crossing: the object is crossing the path of the vehicle.

• Turn: the object is turning.

It is always possible to add additional Instance Properties to

generate a more accurate model of traffic scenarios.

B. Semantic Rules

In order to map the Object properties to the ego vehicle

driving activities, a decision tree classifier was build similar

to [20]. The training data sample contains the current Object
Properties:

1) ObjectInHand (None, Something)
2) ObjectActedOn (None, Something)
3) ObjectInFront (None, Something)
4) ObjectOnLeft (None, Something)
5) ObjectOnRight (None, Something)

where Something represents an object with certain instance

property (for example Vehicle MoveToward) and None is

used if there is no object with that particular Object Property.

And a target concept value which describes a current vehicle

behavior:

Class : VehicleActivity{NormalSpeed,SlowSpeed,

NormalStop,LaneChange}.
Here is an example of a training sample:

{None,Vehicle MoveToward,None,Vehicle MoveToward,

None,NormalSpeed}.
It is possible to have two separate sets of Object Properties
for different Classes in order to describe the situation in more
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detail. For example, the class Vehicle can have the properties:

{ObjectInHand1,ObjectActedOn1,ObjectInFront1,

ObjectOnLeft1,ObjectOnRight1}
where 1 indicates that this is a first set of properties. While,

the class Pedestrian can have a different set of properties:

{ObjectInHand2,ObjectActedOn2,ObjectInFront2,

ObjectOnLeft2,ObjectOnRight2}.
where 2 indicates that this is a second set of properties. In this

case, the training sample should contain combination of both

properties, which means that each ego vehicle activity can

be represented by several combinations of Object properties
(in contrast to [20]). To learn a target concept value from

the data samples we trained a decision tree classifier based

on the C4.5 algorithm [14]. The information gain is defined

as follows:

Gain(S,P) = Entropy(S)− ∑
v∈Values(P)

|Sv|
S

Entropy(Sv)

where Values(P) is the set of all possible values of the Object
properties, and Sv = s ∈ S|P(s) = v.

C. Ontology Model

The formal definition of an ontology is ”an explicit spec-

ification of a conceptualization” [15], in other words it is an

unambiguous representation of the knowledge about a certain

domain. An ontology usually consists of terms organized

in hierarchical structure and relationships between those

terms. Our proposed ontology was built as a knowledge base

using Knowrob [16] and represented in the Web Ontology

Language (OWL) [17]. It consists of the terminological box

(TBox) and the assertional box (ABox) [18] .

1) Tbox describes concepts in the ontology, which are

usually called Classes. Each concept has a set of

properties called attributes. Relations between concepts

are represented by rules and axioms.

2) Abox describes instances of concepts.

The terminology box consists of:

1) Classes which represent different types of objects

detected from the traffic environment.

2) Object Properties: properties described previously,

which are common for all classes or for a specific class.

3) Instance Properties: these properties are defined for

each object, and two objects belonging to same class

can have different instance properties.

The assertional box was defined as following:

• Abox consists of instances which belong to classes

defined in Tbox. All perceived objects are contained in

Abox and if any of the Object Properties are held, their

instances are created and placed in Abox.

To implement the obtained semantic rules in the Reasoning

module and connect them with the ontology the Knowrob

Computable Classes were used. The Computable defines a

semantic relation between instances of classes representing

possible behavior of the ego vehicle and Object Properties.

For example:

if (oi = Vehicle) & Ob jectInHand2(oi) &

Ob jectInFront2(oi) & (NotMove(oi)) then
NormalStop

end if
where oi is an object detected in the traffic environment.

The Computables were implemented using Prolog, which

provides a useful functionality for ontology description,

knowledge inference, searching and pattern matching.

IV. EXPERIMENT

To prove that our proposed methodology is working in

different mobile domains, first the framework described in

Section III was applied to create the semantic rules for traffic

scenarios. Next, to test the robustness of our system in the

real environment we used it to navigate PR2 mobile robot.

The robot environment contains unknown objects and we

will demonstrate how without any additional training the

PR2 can utilize the system build for traffic scenarios and

generate correct behavior by taking advantage of knowledge

and inference.

A. Semantic Tree Training

TABLE II: Confusion matrix of the recognized driving

behavior.

Predicted Class

A
ct

u
al

C
la

ss NormalSpeed NormalStop SlowSpeed LaneChange
NormalSpeed 94.4% 0 5.6% 0
NormalStop 0 98.5% 1.5% 0
SlowSpeed 3.6% 0 96.4% 0

LaneChange 0 0 0 100%

For training we used 14 video samples of the driving tests

(see Section III). Each sample had a length of 15 seconds

and contained 150 video frames. The video tests consist

of different complex traffic scenarios involving multiple

road participants, traffic signs and pedestrians. In the first

experiment, each frame of the input video was manually

annotated to obtain training samples, containing a sequence

of detected objects and its properties as well as the class

of the recognized driving behavior. A decision tree was

generated in the Weka data mining system [21] and was

tested on a 3 new video samples of the driving tests con-

taining previously untrained traffic scenarios. The resulting

classification rate was 94.6%, and the confusion matrix is

shown in Table II. The partial decision tree is shown on

Fig. 5, where each driving situation is identified by a set

of specific properties and instances, which allows a compact

and general representation.

By analyzing the obtained results, we concluded that seg-

menting each frame of the video was redundant, and instead

it is better to extract only 5 samples for each traffic situation

recognized in the input video. To prove this theory, a second

experiment was conducted using the same video samples for

training and testing as before, and the resulting classification
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Fig. 5: Partial decision tree obtained from the first experiment instance.

rate was 90.14%. The confusion matrix generated for the

new setup is shown in Table III. The resulting decision tree

remained the same as the one obtained in the first experiment,

which clearly indicates that our proposed method do not

require large amount of data for training.

TABLE III: Confusion matrix for the second experiment with

less training samples.

Predicted Class

A
ct

u
al

C
la

ss NormalSpeed NormalStop SlowSpeed LaneChange
NormalSpeed 92.5% 0 7.5% 0
NormalStop 0 97.8% 2.2% 0
SlowSpeed 6.8% 0% 93.2% 0

LaneChange 0 0 0 100%

B. Integration with the Robotics Domain

The framework was integrated with a PR2 mobile robot

and the overview of the created system is shown on Fig.

6. The robot behavior is generated reactively based on the

perception data obtained from the robot camera.

Fig. 6: Overview of the system for automatic recognition of

driving scenarios implemented on the PR2.

First, each image frame obtained from the robot right

camera is processed to detect existing objects and their

properties. The realistic detection of objects and pedestrians

is out of the scope of this paper, that is why the visual

processing module was implemented using the OpenCV and

the aruco library [22], which allows to detect AR markers

and obtain their 3D position and orientation by using only

one camera. Additionally, the color based detection was used

to recognize lines of the driving tube in the testing area. For

evaluation only positions in 2D space were used, because

the robot and most objects it encounters cannot move in

vertical direction. When objects and properties are obtained,

the system uses the Reasoning module described in Section

III to infer the correct behavior in a current situation (Fig. 6).

To prove that the robot can reuse the semantic rules obtained

from the decision tree trained on traffic situations the testing

scenario shown on Fig. 7 was created. The robot can move

inside the lane formed by the red lines, or by the middle red

and blue lines. The middle red line represents a dashed road

line, and the blue one represents a continuous road line. On

his path PR2 encounters the wheelchair which is not moving

and has the property ObjectInHand2. Moreover, the robot

always perceives the dashed road line which can be crossed

for overtaking and has property the ObjectInHand3. Using

the obtained data from the tree shown in Fig. 5, the following

Computable will be called4:

if Ob jectInHand2(oi) & Ob jectInFront2(oi) &

(NotMove(oi) & (oi = Vehicle) &

Ob jectInHand3(o j) & (o j = RoadLine Dashed)
then

LaneChange
end if

where oi and o j are objects detected in traffic environment.

However, the object oi with the ObjectInHand3 property

is not the Vehicle but the WheelChair which means that

the direct execution of the Computable would fail and

additional information from the ontology will be requested.

The ontology will infer the class hierarchy of the object oi
and detect that the class WheelChair is a subclass of Vehicle
:

oi �WheelChair � LightVehicle �Vehicle

Consequently, the computable defined above will be executed

and the LaneChange behavior will be generated.

The performance of the system is shown in Table IV

which clearly indicates that the average reaction time for

each perceived situation is 0.177 seconds5. This means that

4Please note that this is a simplified example of the Prolog implementa-
tion.

5Our system was implemented on a computer with the Intel(R) Core(TM)
i5 CPU 750 2.67 GHz and 4GB memory.
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Fig. 7: Overview of the experimental setup.

the mobile robot, i.e. PR2, takes around 0.177 seconds to

make a decision. It is possible that the inference time will

improve when a faster perception system is used.

TABLE IV: Performance for each input frame obtained from

the PR2 camera.

Type of the operation Average execution time in sec
Image processing and object detection 0.0685529
Properties detection 0.0166563
Behavior inference 0.0917922
Total 0.1770014

V. CONCLUSIONS

In this paper a framework for recognition and extraction of

driving situations using an artificial intelligence method was

presented. This framework improves perception and situation

awareness of autonomous vehicles in dynamic environments

and creates general compact models of different traffic sce-

narios which are used to reason on road contexts. First,

we trained our system in the traffic domain, and with the

obtained model we tested new unknown scenarios obtaining

a classification rate of 90%. Next, to demonstrate the ro-

bustness of our method we tested it on the new environment

with the PR2 mobile robot. The robot reused the framework

obtained from the first experiment to recognise new and

previously untrained situations by taking advantage of the

proposed ontology and inference methods. This framework

allowed the robot to navigate successfully in an indoor

environment with an average reaction time of 0.177 seconds.

The results show that knowledge and semantic reasoning

allows to apply our framework to different mobile domains

by using the same semantic rules to enable mobile agents to

correctly infer driving behaviors without additional training.

The methodology was implemented using a simple per-

ception system, and though it used only a frontal camera,

the system can be easily extended for full range detection

using different types of sensors or data from dynamic maps,

which will require only one additional property for objects

at the back of the vehicle.
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16 channels Velodyne versus planar LiDARs based perception system
for Large Scale 2D-SLAM

Nobili S.1 Dominguez S.2 Garcia G.3 Philippe M.4

Abstract— The ability of self-localization is a basic require-
ment for an autonomous vehicle, and a prior reconstruction
of the environment is usually needed. This paper analyses the
performances of two typical hardware architectures that we
evaluate in our 2D Simultaneous Localization and Mapping
(2D-SLAM) system for large scale scenarios. In particular, the
selected configurations are supposed to guarantee the possibility
of integrating at a later stage mobile objects tracking capabili-
ties without modifying the hardware architecture. The choice of
the perception system plays a vital role for building a reliable
and simple architecture for SLAM. Therefore we analyse two
common configurations: one based on three planar LiDARs Sick
LMS151 and the other based on a Velodyne 3D LiDAR VLP-
16. For each of the architectures we identify advantages and
drawbacks related to system installation, calibration complexity
and robustness, quantifying their respective accuracy for local-
ization purposes. The conclusions obtained tip the balance to
the side of using a Velodyne-like sensor facilitating the process
of hardware implementation, keeping a lower cost and without
compromising the accuracy of the localization. From the point
of view of perception, additional advantages arise from the
fact of having 3D information available on the system for other
purposes.

I. INTRODUCTION

An efficient and accurate solution to the Simultaneous
Localization and Mapping (SLAM) problem is the basic
building block for an autonomously navigating platform.
The perception system employed in the architecture plays
a fundamental role in determining the quality of the perfor-
mance. Indeed, the reliability of the map and consequently
the accuracy of the localization are highly dependent on the
measurements provided by the local sensors. Nowadays there
are several options when choosing the hardware architecture
that allows us to apply SLAM for positioning our vehicle.
The question arises when we have to choose which hardware
set-up is the most appropriate for our application given
some constraints about budget, ease of installation, preci-
sion, reliability against changing environment, versatility, etc.
Most commonly used architectures employ Light Detection
and Ranging (LiDAR) technology measuring at different
angles the distance to the surrounding environment. The
SLAM problem is well-known for its increasing complexity
in terms of accuracy, runtime and computational resources

1 2 4 Nobili S., Dominguez S. and Philippe M. are with IRCCyN, Institut
de Recherche en Communication et Cybernétique de Nantes, École Centrale
de Nantes, 1 rue de la Noë, 44321 Nantes, France

3 Garcia G. is with ECN École Centrale de Nantes, 1 rue de la Noë,
44321 Nantes, France

1 simona.nobili@eleves.ec-nantes.fr
2 salvador.dominguez@irccyn.ec-nantes.fr
2 Gaetan.Garcia@ec-nantes.fr
3 philippe.martinet@irccyn.ec-nantes.fr

required while covering long outdoor distances and map-
ping. We regard these aspects as particularly relevant for
precise localization of memory-restricted systems and we
propose a multi-map LiDAR-based 2D-SLAM solution. We
implemented an extended version of the GMapping Robot
Operating System (ROS) package. In particular, we adapted
it and integrated it into our architecture for being used in
Large Scale multi-map 2D SLAM. Our version allows to
start building a new map when required, saving previously
the map under construction. A map-manager is in charge of
deciding when a map must be stored and start building a new
one. Later, during the localization phase, the sub-maps are
loaded as they are required along the pre-recorded journey
and Monte Carlo localization techniques using a probabilistic
particle filter are applied to find the most likely position given
the map, laser scan and odometry measurements. Connection
points connect a sub-map with its neighbour and delimit
when a sub-map ends and a new one starts. The local
reference frame of a sub-map is normally positioned on a
connection point (See figure 1).

Fig. 1. We represent the vehicle’s path (from right to left) in a chain
of sub-maps. Each submap is connected to the previous and the next one
through connection points.

In this paper, we present experimental results obtained
in a urban context using two distinct laser-based hardware
architectures typically used in SLAM but the same software
for localization. In Table I, we summarize the main features
of both types of sensors. Our main contribution focuses on a
comparison between the performances of the two systems in
terms of map quality, localization accuracy and robustness
to temporarily static elements like parked vehicles.

The first experimental platform is an electric car Renault
Zoe ZE equipped with three LiDARs (SICK LMS 151)
placed at 50 cm from the ground level in a configuration
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that guarantees a 360◦ Field of View (FoV) about the car
vertical axis. Specifically, two of the LiDARs are mounted
on the two front corners of the car in order to cover straight
and side views, whereas the third one covers the back side
view (See figure 2 and 4). An extrinsic calibration process is
performed to ensure that all the three LiDARs lie on a plane
as closed as possible to a common horizontal plane such that
the scans can be merged and given as input measurement to
the SLAM solver.

Sick LMS151 installed on
the front

Sick LMS151 on the rear
side

Fig. 2. The LiDARs Sick LMS151 are installed in strategical positions to
ensure a 360◦FoV around the vehicle.

The second experimental platform is a vehicle Renault
Fluence equipped with a 16 channels Velodyne LiDAR
PUCK (VLP-16) placed some centimeters above the roof
surface and scanning 360◦ about the car’s vertical axis
(see Figure 3). This sensor is a 360◦ revolving-head 3D
LiDAR with 16 laser beams vertically separated along a
range of 30◦ with 2◦ of angular resolution. The ith laser,
after a full rotation, sweeps a cone in the 3D space. In this
context, we take advantage of the vertical FoV (from -15◦

to 15◦ with respect to the sensor reference frame) to infer
a 2D laser-scan information merging data belonging to a
vertical range between 1.8 and 2.8 meters from the ground.
In this way the scan measurements will not be influenced
by the most common moving elements, which in a urban
context are assumed to be cars, people or small objects.
This height also provides robustness to slopes and defects
of the road as the laser plane is less likely to intersect
the ground. Moreover, note that the decision of working
in two dimensions is justified by one main applicability
reason. From a practical point of view, 2D information are
sufficient for self-localization on a local flat map, as the car
moves locally in two dimensions, and are manageable in
the general case of restricted availability of computational
resources.

TABLE I

SENSORS’ FEATURES

- Field View Max Range Layers ≈ Price
SICK LMS 151 270◦ 50m 1 3000 $

Velodyne VLP-16 360◦ > 100m 16 8000 $

The remainder of this paper is organized as following. In
the next section, we present some of the most effective per-
ception systems currently employed for SLAM applications,

Fig. 3. The Velodyne VLP-16 is installed on the Renault Fluence ZE’s
roof surface.

along with some relevant state-of-the-art methods for large-
scale SLAM. In section III we explain how we obtain a 360◦

planar laser scan with a certain angular resolution where the
measurements are relative to the vehicle’s reference frame
in both cases. Additionally we explain how we generate the
ground truth, as well as, how we perform the comparison
between computed position and ground truth position. In
section IV we present the experiments performed on this
study and their purpose. In section V we present the results of
the experiments performed giving some partial conclusions.
And finally in section VI, we summarize the main points of
our results.

II. RELATED WORK

In the past, highly effective SLAM techniques have been
developed and state-of-the-art SLAM solvers are now able
to achieve good performances in terms of accuracy and real-
time processing (e.g. GMapping [1] and Hector SLAM [2]).

The first implementations of SLAM methods were based
on combined motion control and features observations with
an Extended Kalman Filter (EKF) [3], [4]. However, as
reported in [5], the solution to the EKF-based SLAM is
consistent in the linear-Gaussian case but diverges in general
situations. Subsequently, Rao-Blackwellized particle filters
have been introduced as effective SLAM problem solvers
under conditions of non-linearity. The approach proposed
in [1] and [6] uses a particle filter in which each particle
carries an individual map of the environment and treats
the consequent requirement of reducing the number of
particles. This algorithm is open source for the community
of researchers under the name of GMapping and is currently
employed for many SLAM-based applications. However,
the problem of computational complexity over large-scale
environments, of the order of tens of kilometers, has not
been directly addressed in this work.

Closely related to the solution we propose are hierarchical
SLAM methods to deal with large-scale applications. Atlas
[7] is a framework which builds a two-levels hierarchy
combining a local Kalman Filter with global graph
optimization. Similarly, Hierarchical SLAM [8] is a
mapping technique which uses statistically independent
local maps interconnected at an upper level through an
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adjacency graph. Subsequent proposals employ independent
local maps with robot-centred representation [9], local metric
maps associated with topological places in a topological
map [10], submapping methods in which the current submap
summarizes all the information [11], local maps with feature
positions and final robot pose associated with a global map
without robot poses [12]. In [13] the authors present a
SLAM technique requiring a small memory footprint. This
feature makes this solution particularly suited for large-scale
problems. In the case of this paper, we present an adaptation
of the GMapping framework to deal with computational
complexity problems while covering long distances.

Of fundamental importance for a SLAM-based
architecture is the perception system. While quality
and accuracy of the sensors are basic requirements for
the reliability of the measurements, the costs in terms of
system installation effort and finances have to be taken
into account at conception time. During the DARPA Urban
Grand Challenge in 2007 [14], fully equipped autonomous
vehicles performed complex SLAM-based tasks to compete
in a 96km course in a urban area. Boss, by the Carnegie
Mellon University and General Motors Corporation team
[15], took advantage of three 3D LiDARs (IBEO Alasca
XT) mounted at about 50cm from the ground assuming
to cover a relatively flat road surface, processing each
layer independently and assuming infrequent changes in the
static environment. Junior, by the Stanford University team
[16], used a Velodyne HDL-64 mounted on the car’s roof
surface to perform 2D mapping and localization. Odin, by
the Virginia Tech team [17], used the coupled information
provided by three LiDARs (two IBEO Alasca XT and a
IBEO Alasca A0) mounted at about 50cm from the ground
level. In the last few years Google developed hardware and
software architectures for a self-driving car [18]. The heart
of the system is a Velodyne HDL-64 generating a detailed
3D map of the environment which requires high processing
capabilities.

In this context, the aim of our work is to provide a
comparison of the results obtained for the localization in
an unknown environment using two differently equipped
vehicles. In particular, we analyse the performances of our
solution to a large-scale SLAM problem in the case of
a (three) 2D LiDARs based versus a 16 planes Velodyne
LiDAR based perception architecture.

III. METHODOLOGY

The required inputs to the SLAM system are odometry
and planar laser scans, providing the information about the
car’s motion and the surrounding environment respectively.
Specifically, we generate 360◦ FoV scans with 0.5◦ of
angular resolution @ 10 Hz from each of the laser-based
perception architecture and odometry @ 100Hz from the data
collected by the OBD-II connectors and IMUs integrated
in the cars. For the sake of simplicity, we consider both
odometry and scans data with respect to the car reference
frame, placed at the center of the rear axis.

In order to provide an unbiased comparison, we run the
same SLAM system on both our vehicles. However, given
two distinct hardware architectures, the approaches adopted
to generate the scans and their quality vary. In the following,
we present the two different techniques developed to generate
laser scan information, first from the three Sick LiDARs and
then from the VLP-16.

A. Sick LiDARs

In the case of Zoe (Figure 4), we convert the individual
scan measurements into the 360◦ output scan by knowing the
pose of each of the sensors with respect to the car reference
frame. In particular, we determine the exact pose of each
sensor using a process of extrinsic calibration, fitting the
overlapping parts of the individual scans and then we convert
each of the measurements from the sensor’s local frame to
the car’s frame by simple reference frame transformation
(Equation 1).

Tscan = Tsensor ∗ Tpoint (1)

where Tpoint is the transformation matrix of a point with
respect to the sensor’s frame, Tsensor is the fix transforma-
tion of the sensor with respect to the car’s reference frame
and Tscan is the transformation of the measured point with
respect to the car’s reference frame which is composed by a
translation vector {x, y, z} and a rotation matrix. From the
transformed position we can extract the angular position α
with the expression (2)

α = arctan
x

−y
(2)

Depending on the scan’s angular resolution, for a given
α, a unique corresponding index in the output scan vector is
given by (Equation 3).

i(α) = round(
α

Δα
) (3)

where Δα is the chosen angular resolution. In our case
Δα is 0.5◦and α ∈ {0, 360◦}.

On the other hand, we obtain the output range as

rangei =
√

x2 + y2 (4)

Notice that, for the same α there can be more than one
measurement. In this case, we select the nearer point, i.e. the
one with smaller range.

B. 16 Planes Velodyne

In the case of Fluence (Figure 5), the VLP-16 is placed
above the roof surface. In particular, we compute the exact
position of the VLP-16 as 1.457 meters from the car’s rear
axis and 1.565 from the ground after a process of extrinsic
calibration. Similar to the three Sick LiDARs’ case, we con-
vert each of the measurements from the sensor’s local frame
to the car’s frame by simple reference frame transformation
(Equation 1). Notice that in this case the raw data provided
by the VLP-16 correspond to 3D measurements. Therefore,
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Fig. 4. Sensor configuration for Zoe. In different colours, the coverage of
each planar LiDAR. In grey, the uncovered area. At the bottom, the profile
of the scans horizontal plane.

so as to obtain a planar scan information, we project the
points belonging to the vertical range {1.8, 2.8} meters from
the ground to a plane passing through the VLP-16 reference
frame center and perpendicular to its vertical axis. Once
this transformation is performed, the scan data type can be
identified by an index and a corresponding range value as
explained in the case of Zoe (Equation 3 and 4).

Fig. 5. Sensor configuration for Fluence. A 360◦ laser scan is obtained
from the 3D point-cloud generated with VLP-16. In the bottom, the profile
point-cloud range involved in the generation of the planar scan is shown.

C. Comparison with ground truth

The ground truth is generated using a Proflex 800 RTK-
GPS receiver that applies the differential corrections obtained
from a DGPS station located on the roof of IRCCyN build-
ing. The measurements provided by the RTK-GPS have an

error of less than 1 cm in position when in Fixed mode.
We estimate the orientation (heading), by computing the
direction of the movement.

We compare the position obtained by the SLAM system
at time t with the ground truth interpolated to that time.
The interpolation method used is through splines of position
coordinates with the time as independent variable.

IV. EXPERIMENTAL SET-UP

A couple of experiments have been performed to quantify
the localization accuracy and robustness of both the systems.
The precision of each of the results is evaluated comparing
the position of the car with a ground-truth generated using
the measurements provided by the high precision RTK-GPS
on the points where it is available. During both the experi-
ments, the vehicles travel in convoy, that is, one following the
other, in order to ensure the same environmental conditions.

A. First Experimental Set-up

For the first experiment, the vehicles travel for about 3
kilometers. The chosen trajectory covers the area around the
campus of École Centrale de Nantes, which is a standard
urban sector. Using the data recorded by both the vehicles,
we perform the task of map building. Later Monte Carlo
localization in these maps is performed. The aim of this
experiment is to compare the positioning accuracy of both
systems under the same conditions.

B. Second Experimental Set-up

A second experiment has been conducted in a highly
changing environment such as the parking area of the campus
of École Centrale de Nantes, where the position and num-
ber of parked vehicles constantly changes. We performed
recordings over two different days in order to ensure changes
in the temporarily-static elements (e.g. parked vehicles) met
along the path. In particular, the first day we recorded in
the early morning (when the parking was almost empty)
and the second day during the day-time (when the parking
was crowded). In this context, on the first day the vehicles
are asked to perform a task of localization and mapping.
Subsequently, on a second day, the vehicles have to localize
themselves along the same trajectory but with the maps
previously built. The aim of this experiment is to check the
robustness of each set-up against environmental changes.

V. RESULTS

A. First Experiment. Same trajectory, same environment

In figure 6 we show the accumulative and differential
histogram of the error resulting from localization under the
conditions detailed in Section IV-A, for both the cars.

As we can see the precision of Zoe’s localization
(equipped with planar LiDARs) is slightly better than Flu-
ence’s localization (equipped with VLP-16). For Zoe 95% of
the measurements have less than 0.6 meters of error while
for Fluence 95% have less than 0.7 meters. In this case,
Zoe performs better because, since the LiDARS detections
originally belong to a plane, the measurements are more
stable and less noisy. Instead, the fact that each VLP-16 scan
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Fig. 6. Accumulative and differential histogram of positioning error
between both cars for the same trajectory and same environment. The
distance covered is about 3 Km. The coloured vertical line show the
maximum error obtained along the journey for the respective car.

results from the projection of a collection of points onto a
plane, causes the map not to be overall as well shaped as in
the case of the planar LiDARs.

B. Second Experiment. Same trajectory, highly changing
environment

Figure 7 shows part of the map built on the same area
by both systems. In the left image, the map built by the
VLP-16-based system doesn’t show short objects like the
cars parked, but the walls of the sourrounding buildings and
trees. In the right one, the map build by Sick LMS151-based
system show all the objects that can be seen at a height of
50 centimeter from the floor level. Just by looking at both
maps we can expect significant differences on the analysis
of the positioning accuracy.

Detail of a sub-map built
using the LiDARs VLP-16

Detail of a sub-map built
using the LiDARs Sick

LMS151

Fig. 7. Detail of the same working area seen by each LiDAR system.
Note that, while in the case of the Sick LMS151 the cars parked on the
sides of the road are visible while in the case of the VLP-16 only the static
environment like the walls of the buildings and the trees in the right side
are considered.

Figure 8 shows the accumulative and differential position-
ing error histograms for the case of the planar LiDAR-based
system. As expected the precision obtained for the second

day using the maps of the first day is worst than in the case of
the first day. However, an acceptable precision even under
highly changing conditions was not an obvious result. In
the first day 95% of the measurements lie under 0.4 meters
while in the second that percentage moves to 0.8 meters.
In this case we can assess that the common environmental
changes affect the precision but still more than 97% of the
measurements lie under 1 meter of error.

Fig. 8. Accumulative and differential histogram of positioning error for the
car equipped with three Sick LMS151 on the same trajectory but different
days where the environment has changed strongly. In coloured vertical lines
are marked the maximum error obtained for the respective day.

Figure 9 shows the accumulative and differential his-
tograms of the error in position between both days for the
case of the Velodyne-based system (Renault Fluence). As
expected, there is no significant difference on the precision
between localizing with the same maps in both days as, from
the point of view of the sensor, the environment has not
changed at the projected range of heights. This means that
this system is more robust against high environment changes
under heights below 1.8 meters than the case of the planar
LiDARs. Regarding the accuracy, in both days 95% of the
measurements have less than 0.6 meters of error in absolute
position.

Fig. 9. Accumulative and differential histogram of positioning error for
the car equipped with Velodyne VLP-16 on the same trajectory but different
days where the environment has changed strongly. In coloured vertical lines
are marked the maximum error obtained for the respective day.

VI. CONCLUSIONS

In this paper we perform a quantitative comparison, using
our 2D-SLAM localization system for large scale scenarios,
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of two typical LiDAR-based hardware configurations: one
based on several LiDARs strategically installed around the
car at a low height, and the other one based on a single 3D-
LiDAR installed on the roof of the car. Both systems generate
a single 360◦ scan centered on the car’s reference frame
which is used for map-building and/or map-localization. The
qualitative results from studies conducted over our datasets
are summarized in Table II. In the same conditions and
with an static environment, the set-up using planar LiDARs
performs slightly better than with the 3D sensor as the
scans are less noisy on the range dimension. The positioning
error obtained is, in general, 10 cm. smaller in the first
case. The reason for being more noisy in the 3D sensor’s
case is because we are projecting onto the same plane a
range of heights (1 meter of range in our case), so that,
the probability of variability is higher than in the case of
one single height. Another conclusion is that the maps built
with VLP-16 data provide more robustness against common
medium term environment changes, like cars parked on the
sides of the road, describing mostly the static details, like
the walls of the buildings, trees or urban structures. This is a
desirable feature on map localization. Furthermore, there are
other advantages of using a single sensor regarding the sim-
plicity of installation, extrinsic calibration and general set-
up, speeding up considerably the set-up process. Regarding
the cost-effectiveness, the newly released sensor VLP-16 is
affordable for most of research projects in comparison with
using 3 outdoors planar LiDARs. Finally, in the case of the
3D-sensor the fact of having 3D information available on the
system opens a wide range of possibilities from the point of
view of the perception.

TABLE II

COMPARISON TABLE

- Planar LiDARs 3D LiDAR
Accuracy same environment ↑ ↓

Robustness env. changes ↓ ↑
Ease installation ↓ ↑

Ease extrinsic calibration ↓ ↑
Total cost ↑ ↓

Provides 3D data No Yes
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Discriminative Map Matching Using View Dependent Map Descriptor

Liu Enfu Tanaka Kanji

Abstract— The problem of matching a local occupancy grid
map built by a mobile robot to previously built maps is
crucial for autonomous navigation in both indoor and outdoor
environments. In this paper, the map matching problem is
addressed from a novel perspective, which is different from
the classic bag-of-words (BoW) paradigm. Unlike previous
BoW approaches that trade discriminativity for viewpoint
invariance, we develop a local map descriptor that is view-
dependent and highly discriminative. Our method consists of
three distinct steps: (1) First, an informative local map of the
robot’s local surroundings is built. (2) Next, a unique viewpoint
is planned in accordance with the given local map. (3) Finally, a
synthetic view is described at the designated viewpoint. Because
the success of our local map descriptor (LMD) depends on
the assumption that the viewpoint is unique given a local
map, we also address the issue of viewpoint planning and
present a solution that provides similar views for similar local
maps. Consequently, we also propose a practical map-matching
framework that combines the advantages of the fast succinct
bag-of-words technique and the highly discriminative LMD
descriptor. The results of experiments conducted verify the
efficacy of our proposed approach.

I. INTRODUCTION

The problem of matching a local occupancy grid map

built by a mobile robot to previously built maps is crucial

for autonomous navigation in both indoor and outdoor en-

vironments [1]–[7]. This paper addresses a general 1-to-N

matching problem in which a 2D pointset map is given as a

query, and the system searches over a size N map database

to find similar database maps that are relevant under rigid

transformation.

The classical approach to the map-matching problem is

to describe the appearance of each local map using high-

dimensional local invariant feature descriptors such as shape

features (e.g., polestar feature [8]), and perform feature

matching between query and database maps. One major

limitation of such an approach is the time consumed com-

paring the high-dimensional descriptors [9]. One of the most

popular approaches used to address this computational cost

is the bag-of-words (BoW) approach, in which an unordered

collection of vector quantized feature descriptors (e.g., shape

context, polestar), which are extracted at random, dense,

or interest points (e.g., FLIRT), is used for compact map

representation and efficient matching to pre-built maps. Thus

far, the BoW approach has been utilized in various map-

matching tasks, ranging from view image sequence maps

to 3D point cloud maps [5]–[7]. Our proposed approach is

also built on the BoW system in [10], in which the BoW

Our work has been supported in part by JSPS KAKENHI Grant-in-Aid for
Young Scientists (B) 23700229, and for Scientific Research (C) 26330297.

E. Liu and K. Tanaka are with Graduate School of Engineering, Univer-
sity of Fukui, Japan. tnkknj@u-fukui.ac.jp

framework is successfully applied to the retrieval of 2D

occupancy maps using rotation invariant polestar descriptors.

In this paper, we consider the local map descriptor (LMD),

which involves the generation of text descriptions of lo-

cal map content to facilitate fast succinct text-based map

matching. Unlike previous local feature approaches that

trade discriminativity for viewpoint invariance, we develop

a holistic view descriptor that is view-dependent and highly

discriminative. Our method consists of three distinct steps:

1) First, an informative local map of the robot’s local

surroundings is built.

2) Next, a unique viewpoint is planned in accordance with

the given local map.

3) Finally, a synthetic view is described at the designated

viewpoint.

The success of our holistic view descriptor is based on the

assumption that the viewpoint is unique given a local map.

Therefore, we also address the issue of viewpoint planning

and present a solution that provides similar views for sim-

ilar local maps. We also propose a practical map-matching

framework that combines the advantages of the fast succinct

BoW techniques (e.g., [11]), and the highly discriminative

LMD holistic view descriptor. The results of experiments

conducted using the publicly available radish dataset [12]

and our own collected dataset confirm the efficacy of our

proposed approach.

In this paper, we focus on methods that describe not

only local feature descriptors but also the local keypoint

configuration among them. Among these methods, the part

model [13], in which a scene is modeled as a collection

of visual parts, is very popular. The model uses informa-

tion on relative positions as spatial cues to improve the

discriminative power of representation. However, existing

part-based models primarily focus on a small set of pre-

learned parts. Our approach is somewhat similar in concept

to the spatial pyramid matching approach in [14], as opposed

to the focus on kernel definition and improvement to dis-

criminative power of previous solutions. Most of the works

cited above either explicitly or implicitly assume that the

viewpoint trajectory of the mapper robot w.r.t. the local map

is unavailable. In contrast, we explicitly use the viewpoint

information produced by our viewpoint planner as a cue to

compute the holistic view descriptor. The success of our

approach is based on the assumption that the viewpoint

planner provides a unique viewpoint given a local map;

therefore, we also consider the issue of viewpoint planning.

To the best of our knowledge, these two issues have not been

explored in previous approaches.
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II. LOCAL MAP DESCRIPTOR

A. Baseline System

This section describes the baseline map-matching system,

on which our proposed approach is built, and which is also

used as a benchmark for performance comparison in the

experimental section, Section III. The main steps in the

procedure carried out by the system are as follows: (1)

Extraction of appearance features from each local map, (2)

translation of the extracted features to a BoW descriptor, and

(3) construction/retrieval of the map database from the BoW

descriptors. These three steps are explained in detail below.

1) Feature Extraction: We adopt the polestar feature for

our purpose because it has several desirable properties,

including viewpoint invariance and rotation independence,

and has proven effective as a landmark for map matching in

previous studies [10]. The extraction algorithm consists of

three steps (Fig.1): (1) First, a set of keypoints are sampled

from the raw 2D scan points. (2) Next, a circular grid is

imposed and centered at each keypoint with different D = 10

radius. (3) Finally, the points falling into each circular grid

cell are counted and the resulting D-dim vector outputted as

the polestar descriptor.

2) BoW Descriptor: Next, we quantize each D-dim

polestar vector to a 1-dimensional code termed “visual

word”. This quantization process consists of three steps: (1)

normalization of the D-dim vector by the vector’s L1 norm,

pointset and keypoints

circular grids

Fig. 1. Extraction of 2D polestar features from a 2D pointset map.

(2) binarization of each i-th element of the normalized vector

into bi ∈ {0,1}, and (3) translation of the binarized D-dim

vector into a code or a visual word: wa = ∑i 2ibi. Currently,

the threshold for binarization is determined as the mean

of all the elements of the vector. In consequence, a map

is represented by an unordered collection of visual words

{wa | wa ∈ [1,K]}, called BoW. Because we consider D-dim

binarized polestar descriptors, the vocabulary size is K = 210.

3) Database Construction/Retrieval: We use the BoW

representation for both the database construction and retrieval

processes. In the former process, each local map is indexed

by the inverted file system, by using each word wa belonging

to the map as an index. In the latter process, all the indexes

that have words in common with the query map are accessed

and the resulting candidate database maps are ranked based

on the frequency or the number of words in common. A

frequency histogram of visual words is represented by a

K-dim vector when we have K words in the vocabulary.

Similarity between a pair of BoW frequency histograms is

evaluated in terms of the histogram intersection.

B. Proposed Extension

In this section, we outline our proposed extension. As

mentioned earlier, we built on the baseline system described

in Section II-A, and developed a novel holistic view descrip-

tor. Our method consists of three distinct steps: (1) build a

local map, (2) plan a unique viewpoint given the local map,

and (3) describe a synthetic view at the planned viewpoint.

These three steps as well as the modified map-matching

algorithm are detailed in below.

1) Map Building: We first build a local map from a short

sequence of perceptual and odometry measurements; each

measurement sequence must be sufficiently long to cover

rich photometric and geometric information about the robot’s

local surroundings. In implementation, each sequence corre-

sponds to the robot’s 3 m run. Any map-building algorithm

(e.g., FastSLAM, scan matching) can be used to register a

measurement sequence into a local map. We start a local

map every time the robot’s viewpoint moves along the path.

This results in a collection of overlapping local maps along

the path.

2) Viewpoint Planning: We wish to design a robust plan-

ner that provides a unique viewpoint given a local map.

(Note that the viewpoint is not necessarily one of the actual

viewpoints.) An occupancy grid map is constructed from the

2D pointset map and used as input to our viewpoint planner.

Currently, we plan the unique viewpoint near to the center of

gravity (CoG) of all the occupancy grid cells. This strategy

is inspired by the observation that the CoG can be unique

given a local map both in narrow corridors and in rooms.

In implementation, all the viewpoints on the free space

cells on the local occupancy grid map are viewed as can-

didate viewpoints, and among them, the closest candidate

to the CoG is selected as the viewpoint for the holistic view

descriptor. Subsequently, we determine the viewing direction

based on the “dominant direction” [15] of the occupancy

grid cells. An intuitive example of the dominant direction is
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Manhattan world-like environments, where the two dominant

directions should be the two orthogonal directions of the

manhattans world. To estimate the dominant directions, we

adapt the Manhattan world assumption criteria in [15].

3) Holistic View Descriptor: Let us now look at the

holistic view at the planned viewpoint and represent it in

the BoW form. A key difference of our BoW representation

from that of previous works is that we no longer need to rely

on view invariant local features that trade discriminativity

for view invariance. Instead, we can exploit the knowledge

of viewpoint w.r.t. the ego-centric local map coordinate

to make the holistic descriptor view-dependent, and thus

highly discriminative. Our BoW representation comprises

appearance words and pose words. The former represents

the appearance descriptor of each local feature w.r.t. the local

map coordinate. Currently, we simply use the descriptor of

each local feature and quantize it into an appearance word, as

we did in Section II-A.2. The latter, pose word, represents the

keypoint of each local feature w.r.t. the local map coordinate.

During implementation, we quantize the keypoint (x,y) w.r.t.

the local map’s coordinate to obtain the pose word (wx,wy)
with resolution quantization step size of 0.1 m. As a result,

our visual word is in the form:

〈wx,wy,wa〉. (1)

4) Map Matching: To index and retrieve the BoW map

descriptors, we use the appearance word wa as the primary

index for the inverted file system, while using the pose

word (wx,wy) as an additional cue for fine matching. The

retrieval stage begins with a search of the map collection

using the given appearance word wa as a query to obtain

all the memorized feature points with common appearance

words, and filter out those feature points whose pose word

(w′
x,w

′
y) is distant from that of the query feature (wx,wy):

|wx −w′
x| > Dx,y, (2)

|wy −w′
y| > Dx,y, (3)

to obtain the final shortlist of maps. Currently, we use a

large threshold, Dx,y = 1[m], to suppress false negatives, i.e.,

incorrect identification of relevant maps as not being relevant.

III. EXPERIMENTS

We conducted map-matching experiments to verify the ef-

ficacy of the proposed approach. In the ensuing subsections,

we first describe the datasets and the map-matching tasks

used in the experiments, then present the results obtained

and conduct performance comparison against the baseline

system.

A. Dataset

For map matching, we created a large-scale map collec-

tion from the publicly available radish dataset [12], which

comprises odometry and laser data logs acquired by a car-

like mobile robot in indoor environments (Fig.2). We created

a collection of query/database maps using a scan match-

ing algorithm from each of six different datasets—namely,

“abuilding,” “albert,” “fr079,” “run,” “fr101,” and “kwing”—

which were obtained by the mobile robot’s 79–295 m travel,

corresponding to 521–5299 scans. Fig.3 shows examples of

the query and database maps. The map collection comprises

more than 13,000 maps. Our map collections contain many

virtually duplicate maps, which makes map matching a

challenging task.

B. Qualitative Results

Recall that the objective of map matching is to find a

relevant map from the map database for a local map given

as a query. The relevant map is defined as a database map

that satisfies two conditions: (1) Its pose is near the query

map’s pose within a predefined range, where the pose of a

map is defined as the CoG of the map’s pointset; and (2) its

distance traveled along the robot’s trajectory is distant from

that of the query map, such as in a “loop-closing” situation in

which a robot, after traversing a loop-like trajectory, returns

to a previously explored location.

For each relevant map pair, a map-matching task is

conducted using a query map and a size N map database,

which consists both of the relevant map and (N−1) random

irrelevant maps. The spatial resolution of the occupancy map

is set to 0.1m. We implemented the map-matching algorithm

in C++, and successfully tested it on various maps. Figs.

3 show the results of map matching using the baseline

(“BoW”) and the proposed (“LMD”) systems. As can be

seen, fewer false positives appear in the case of the proposed

LMD method than the BoW method. This is because many

of the incorrect matches are successfully filtered out by the

proposed feature, which uses the keypoint configuration as

a cue. Quantitative evaluation results for our approach are

provided in the next subsection.

C. Quantitative Results

For performance comparison, we evaluated the averaged

normalized rank (ANR) [16] for both the BoW and LMD

methods. ANR is a ranking-based performance measure

in which a lower value is better. To determine ANR, we

conducted a number of independent map-matching tasks

with different queries and databases. For each task, the rank

assigned to the ground-truth database map by a map matcher

of interest was investigated and normalized by the database

Fig. 2. Datasets used in the experiments: “abuilding,” “albert,” “fr079,”
“run,” “fr101,” and “kwing” from the radish dataset [12].
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BoW LMD

Fig. 3. Examples of map matching. Left: relevant map pairs. Right: irrelevant map pairs.

TABLE I

SUMMARY OF ANR PERFORMANCE [%].

dataset abuilding albert fr079 fr101 kwing1 run1 OCD

BoW 29.3 35.0 24.0 32.6 18.7 41.7 37.1
LMD 7.0 26.6 17.1 16.7 3.6 15.2 22.6

size N. ANR was subsequently obtained as the average of

the normalized ranks over all the map-matching tasks. All

map-matching tasks were conducted using 13,592 different

queries and map databases.

Table I and Fig.4 summarize the ANR performance. The

proposed LMD system clearly outperforms the baseline BoW

system. By filtering out incorrect matches using the keypoint

configuration as a cue, the LMD method was able to suc-

cessfully perform map matching in many cases, as shown in

the figure. In contrast, the BoW system based on appearance

words alone often does not perform well, mainly because

of the large number of false matches. The above results

verify the efficacy of our approach. Table I also reports

results of additional experiments using our own collected

dataset, termed “OCD” in the table. In this experiments, we

used pioneer 3 DX mobile robot equipped with LMS200

laser scanner and collected a set of 38 local maps in our

university building 1F, 2F, and 5F. All the maps used in the

experiment are shown in Fig.5 and shown in Table I are

ANR performance. As can be seen, the proposed method

outperforms the previous BoW method for almost all maps

considered in the experiments.

IV. CONCLUSIONS

In this paper, we focused on generating text descrip-

tion of local map content for fast succinct text-based map

matching. In particular, we presented a novel holistic view

descriptor that describes a synthetic view at a planned

viewpoint. We addressed the issues involved in building a

local map, planning viewpoints, and computing the holistic

view descriptor. The results of experiments conducted with

the publicly available radish dataset confirm the efficacy of

our proposed approach. In the future, we plan to use the
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Fig. 4. ANR performance for each dataset (horizontal axis: sorted query
map ID, vertical axis: ANR in [%]).
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Fig. 5. Results for own collected dataset (OCD). Shown in the figure are from top to bottom, pairs of query map #0-#4, #5-#8, #9-#11, #12-#14, #15-#18,
#19-#24, #25-#30, #31-#34, and #35-#38, and its ground-truth database map. Performance is evaluated in terms of rankings of ground-truth database map
and the ranking values are shown in the figure for either proposed LMD method (“M2T”) or conventional BoW method (“BoW”). The details are better
seen by zooming on a computer screen.
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Fig. 6. Ranks for each query from our own collected dataset. (horizontal
axis: query map ID, vertical axis: ANR in [%]).

presented LMD system for long-term operation of robots

in familiar environments. Although this paper focused on

the standard 2D pointset map, we believe our approach is

sufficiently general to be applicable to a broad range of map

formats, such as the 3D point cloud map, as well as general

view-based maps.
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Abstract— This paper considers the perpendicular reverse 
parking problem of front wheel steering vehicles. Relationships 
between the widths of the parking aisle and the parking place, 
as well as the parameters and initial position of the vehicle for 
planning a collision-free reverse perpendicular parking in one 
maneuver are first presented. Two types of steering controllers 
(bang-bang and saturated tanh-type controllers) for straight-
line tracking are proposed and evaluated. It is demonstrated 
that the saturated controller, which is continuous, achieves also 
quick steering avoiding chattering and can be successfully used 
in solving parking problems. Simulation results and first 
experimental tests confirm the effectiveness of the proposed 
control scheme. 

I. INTRODUCTION 

The perpendicular parking is the most efficient and 
economical since it accommodates the most vehicles per 
linear meter [1], and is especially effective in long term 
parking areas. Due to the special constraint environments, 
much attention and driving experience is needed to control 
the vehicle, and this parking maneuver may be a difficult 
task. For this reason, automated operation attracts significant 
attention from research view point, as well, and from the 
automobile industry. One of the difficulties in achieving 
automatic parking is the narrow operating place for collision-
free motion of the vehicle during the parking maneuver, and 
planning of optimal trajectories is often used in the 
applications. In [2], an optimal stopping algorithm was 
designed for parking using an approach combining an 
occupancy grid with planning optimal trajectories for 
collision avoidance. The geometry of the perfect parallel 
parking maneuver is presented in [3]. In [4], a practical 
reverse parking maneuver planner is given. A trajectory 
planning method based on forward path generation and 
backward tracking algorithm, especially suitable for 
backward parking situations is reported in [5]. A car parking 
control using trajectory tracking controller is presented in [6]. 
In [7], a saturated feedback control for an automated parallel 
parking assist system is reported. In recent years, automatic 
parking systems have been also developed by several 
automobile manufacturers [9, 10].  

In this paper, we focus on geometric collision-free path 
planning, and feedback steering control for perpendicular 
reverse parking in one maneuver. Geometric path planning 
based on admissible circular arcs within the available parking 

spot is presented in order to steer the vehicle in the direction 
of the parking place in one maneuver. Two steering 
controllers (bang-bang and saturated tanh-type) for path 
tracking are proposed and evaluated. The rest of the paper is 
organized as follows: In Section II, geometric considerations 
for planning perpendicular reverse parking in one maneuver 
are presented. In Section III, two feedback steering 
controllers are proposed. Simulation results and first 
experimental tests are reported in Section IV. Section V 
concludes the paper.  
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II. GEOMETRIC CONSIDERATIONS FOR COLLISION-FREE 
PERPENDICULAR PARKING IN ONE MANEUVER 

A. Vehicle Model 
In this paper, a rectangular model of a front-wheel 

passenger vehicle is assumed. The vehicle parameters which 
affect the parking maneuver, as well as the parameter values 
used in the simulations, are presented in Table I. 

TABLE I. VEHICLE PARAMETERS 

Vehicle parameters  Notation         Value 

Longitudinal vehicle base l 2.6m 

Wheel base b 1.8m 
Distance between the front axle and 

the front bumper l1 0.94m 

Distance between the rear axle and 
the rear bumper l2 0.74m 

  Maximum steering angle         max        /6rad 

 

B. Collision-Free Path Planning with a Constant Turning 
Radius 
The geometry of the reverse perpendicular parking in one   

collision–free maneuver is shown in Fig. 1. In the 
perpendicular parking scenario considered in this paper, the 
vehicle starts to move backward from an initial position 1 in 
the parking aisle, with constant steering angle c, which may 
be smaller than the maximum steering angle (| c|  | max|), 
and has to enter in the parking place (position 2) without 
colliding with the boundary c1 of parking lot L1 and 
boundaries c2, and c3 of parking lot L2. In position 2 the 
orientation of the vehicle is parallel with respect to the 
parking place. After that, the vehicle continues to move 
backward in a straight line into the parking place until it 
reaches the final position 3 (Fig. 1). Assuming a circular 
motion of the vehicle (with turning radius c), with center O 
(Fig. 1). The radius c is calculated from the formula 

c
c

l
tan
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 The boundaries of the turning path during the 
perpendicular parking are determined by the dimensions of 
the traces (circular arcs) formed by the left corner of the front 
bumper B2 with radius rB2, the left corner of the rear bumper 
B4 with radius rB4, and the end of the rear wheel axle C1, 
respectively, as shown in Fig.1. Since the vehicle executes a 
plane rotation, the trajectories of these points form arcs of 
concentric circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. Geometry of the collision-free perpendicular parking maneuver 

From the OC2B2, applying the Pythagorean Theorem, 
we obtain an expression for the radius rB2 of the circular arc 
traced by the left corner of the front bumper B2 in terms of 
the vehicle parameters l, l1, b , and the  turning radius c, as 
follows 

2
2

122 2
bllOBr cB

From the OC2B4, we determine the radius rB4, of the 
circular arc traced by the left corner of the rear bumper B4 

2
2
244 2

blOBr cB

We assign an inertial frame Fxy attached to the parking 
place, where the center F is placed in the middle between the 
borders of the parking place, which has its y-axis aligned 
with the boundary c2 of parking lot L2, as shown in Fig. 1. 
Let O denotes the center of rotation of the vehicle (the 
Instantaneous Center of Rotation (ICR)) when it starts the 
parking maneuver with constant steering angle c. Depending 
on the sign of x-coordinate of ICR (point O) with respect to 
the Fxy frame, i.e., the offset s (Fig. 1), different formulas can 
be derived in order to determine the required width hp of the 

parking place and the width of the parking aisle (the corridor) 
hc as functions of s in order to ensure collision-free 
perpendicular parking in one maneuver. We consider right 
turning of the car in the following two cases: 

•  The ICR O belongs to the interval: ]0),2/([ bs c                       

The lower value of the interval corresponds to the case 
when the right side of the vehicle B1B3 (Fig.1) lies on the 
boundary line c2  of parking lot  L2. 

 
In order to avoid collision between the left corner B2 of 

the front bumper with the boundary c1 of L1 (Fig. 1), using 
(2), we obtain an expression for the width of the parking aisle 
hc, as follows 

sbllsrh cBc

2
2

12 2

The function hc = f(s) defined by (4) is linear in s, positive 
and monotonically increasing in the above-mentioned closed 
interval for s. Therefore, it takes its minimum and maximum 
values at the ends of this interval. 

To avoid a collision between the right point C1 of the rear 
axle with the vertex A of obstacle L2, from the OAD, 
applying the Pythagorean Theorem, the distance OD (Fig. 1) 
is calculated as follows 

2
2

2
sbOD c

In order to avoid a collision between the left corner B4 of 
the rear bumper with the edge c3 of the parking place, using 
(3) and (5), the following expression for the width hp of the 
parking space is obtained  

2
22

2
24 22

sbblODrh ccBp

The function hp = f(s) defined by (6) is continuous on the 
closed interval of s mentioned above. This function is 
differentiable on the open interval )0),2/(( bs c , and its 
derivative is given by 

0

2
2

2

sb

s
s

h

c

p  

  Therefore, the function hp = f(s) is strictly decreasing on 
the closed interval [-( c – b/2), 0].  The maximum and 
minimum values of hp can be found by replacing in (6) the 
boundary values of the interval: s = - ( c – b/2) and s = 0.                 

•  The ICR O belongs to the interval: 2,0 ls  

The upper bound l2 corresponds to the case when the rear 
bumper lies on the Fy-axis at the instant when the orientation 
of the vehicle is parallel to the parking place. 
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In order to avoid a collision between the left corner B2 of 
the front bumper with the boundary c1 of L1, using (2), we 
obtain an expression for the width of the parking aisle hc  

sbllsrh cBc

2
2

12 2

Again, the function hc = f(s) defined by (8) is linear in s, 
positive and monotonically increasing in the above-
mentioned close interval of s. Therefore, it takes its minimum 
and maximum values at the ends of this interval. 

To avoid a collision between the left corner B4 of the rear 
bumper with the edge c3 of the parking place, and between 
the right point C1 of the rear vehicle axle with the vertex A of 
obstacle L2, we obtain the following expression for hp 

22
2

2
2
2

bsblh ccp

The function hp = f(s) defined by (9), is continuous on the 
closed interval of . This function is differentiable on 
the open interval  and the derivative is  

2,0 ls
2,0 ls
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Therefore the function is strictly decreasing on the closed 
interval . The maximum and minimum values of hp 
can be found by replacing the limit values s = 0 and s = l2 of 
the interval, respectively, in the expression (10). It should be 
noted that for s = 0, the two functions defined by (6) and (9) 
take the same maximum value. For s = l2, the function hp = 
f(s) takes minimum value, which is exactly the width b of the 
vehicle. 

2,0 ls

From a practical point of view, it is important to 
determine the starting positions of the vehicle for parking 
without collision in one maneuver in the case when the 
widths hc and hp of the parking aisle and the parking space, 
respectively, are specified in advanced. Suppose that the 
widths of the parking aisle and the parking place are set as hc 
= hcd and hp = hpd, respectively, and also that hcd < rB2. In this 
case, from (2) and (4), it follows that 

2max Bcd rhs

From (3) and (6), we obtain a formula for the minimum 
value of s as follows 

2
4

2

min 2 pdBc hrbs

Simulation results were performed to illustrate the 
relationships between the widths hc and hp of the parking 

aisle and the parking space, respectively, as functions of the 
offset s in the interval [-(  – b/2), 0] by using parameters of 
the test vehicle (Table I) with c = max, ( c = min). The 
values of hc and hp, (hcd and hpd), were chosen as follows: hcd 
= 6m and hpd = 2.4m.   

As seen from Fig.2, the function hp = f(s) (the solid blue 
line) decreases in the interval and converges to b=1.8m (the 
red dotted line), which is exactly the length of the wheel base 
of the vehicle. Meanwhile, the graph intersects the horizontal 
line for the assigned value of hpd = 2.4m (the blue dotted line) 
at s = - |s|min = -1.91m, which is the minimum value of s 
obtained from (12) for collision-free parking. In order to park 
the vehicle in one maneuver for s = - |s|min = -1.91m, from (8), 
the required minimum width hc of the parking aisle is 
obtained to be hc = 4.55m which is less than the specified 
value of hcd = 6m.  

The function hc = f(s) (the green solid line) increases 
linearly in the interval and the graph intersects the horizontal 
line for the assigned value of hcd = 6m (the green dotted line) 
at s = - |s|max = -0.46m, which is the maximum value of s, 
obtained from (11).  For s = - |s|max = -0.46m, from (6), the 
required minimum width hp of the parking place has to be hp 
= 1.88m, which is less than the assigned value of hpd = 2.4m. 

Therefore, given specified values hc = hcd = 6m and hp = 
hpd = 2.4m for the parking aisle and the parking space, 
respectively, for collision-free parking, the offset s can take 
values in the interval [- |s|min, - |s|max] = [-1.91m, -0.46m], 
where the boundary values are determined by (12) and (11), 
respectively.   

hc = f(s) 

hp = f(s) 

hcd = 6m 

hpd = 2.4m 

hpmin = 1.8m 

-|s|min = -1.91m -|s|max = -0.46m 

Figure 2. Collision-free interval for s 

The distances between the car and the boundaries of the 
parking space hpl and hpr (Fig. 1), when the vehicle is parallel 
to the parking space, are determined as follows   

2
2

22
sbbh ccpr

prpdpl hbhh

From the simulations, for s = -|s|min = -1.91m, the obtained 
values of hpr and hpl are hpr = 0.55m and hpl = 0.05m.   
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From a practical view point, it is better to park the car 
symmetrically with respect to the boundaries of the parking 
place, since it is not very wide. For this end, we calculate the 
minimum value of the offset s = sm, in order to park the 
vehicle symmetrically in the center of the parking space (Fig. 
3). We set  

2
:

bh
hhh pd

plprps

From the OAD (Fig. 3), the distance OD is determined 
as 

2
2

2 mc sbOD

Since the turning radius can be expressed as  

ODhb
pr2

and substituting hpr from (13) and OD from (16) into (17), we 
arrive to an expression for sm, as follows 

22

22
|| pd

ccm

hbs

The new offset -|sm| is bigger than those given by (12) (-
|s|m > -|s|min). In the simulation results, -|s|m = -1.44m > -
1.91m. In general, it must be checked whether the new offset 
-|s|m is smaller than -|s|max given by (11). If it is the case, the 
car can park symmetrically without collision in reverse when 
s is at least s = -|s|m. In this case, however, the boundary c3 of 
the parking place will not be tangent to the arc of circle 
traced by point B4 of the left corner of the rear bumper; 
nevertheless, point A (vertex A of obstacle L2) will lie again 
on the arc of circle traced by point C1 of the rear vehicle axle. 
Therefore, given specified dimensions of the parking aisle 
and parking place hc = hcd and hp = hpd, respectively, the 
offset s can take values in the closed interval -|s| [-|s|m, -
|s|max], where -|s|m and -|s|max are determined from formulas 
(18) and (11), respectively, (Fig.3).  

Hence, in order to perform reverse perpendicular parking 
in one maneuver and to place the vehicle symmetrically in 
the parking place, the starting position, i.e., the reference 
point P of the vehicle has to be on any one of the arcs of 
circles with radius  of center O(xO, yO), where xO [-|s|m, -
|s|max] and yO = - c, with respect to an inertial frame Fxy 
attached to the parking place. The initial orientation has to be 
tangent to the arc (Fig. 3). The reference path of the parking 
maneuver consists of two parts. The first one is a circular arc   
with center O connecting the staring position of the vehicle 
and the tangent point T between the arc and the x-axis of Fxy.  
At that point, the car will be parallel to the parking place. The 
second part of the reference path is a straight line along the y-
axis of the coordinate frame Fxy between point T and the 
goal position G of the parking place, where point G lies on 
the x-axis of Fxy, (Fig. 3). 
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Figure 3. Geometry of collision-free perpendicular parking 

 

III. STEERING CONTROL 

For a low speed motion, which is the case of the parking 
maneuver, we assume that the wheels of the vehicle roll 
without sliding, and the velocity vectors are in the direction 
of the orientation of the wheels. We consider a simplified 
(bicycle model) of the vehicle, where the front and rear 
wheels are replaced by two virtual wheels, placed at the 
longitudinal axis of the vehicle. An inertial coordinate system 
is attached to the parking place (Fig. 3). The coordinates of 
the reference point P in Fxy are denoted by (xP, yP). The 
orientation of the vehicle  is defined as an angle between the 
x-axis of Fxy and the longitudinal vehicle base. The front 
wheel steering angle is denoted by . The equations of 
motion of the vehicle in the plane have the form [7] 

tan

sin
cos

l
v
vy
vx

P

PP

PP

where vP is the velocity of point P. We consider a 
practical stabilization of the vehicle in the parking place. Our 
approach is based on controlling the motion of the vehicle 
along a straight line (the x-axis of Fxy) passing through the 
goal point G (Fig.3) in the parking place and aligned with the 
orientation of the place with velocity of the car, which is 
dependent of the distance between the vehicle and the goal 
position [7]. Since the reference path for the first part of the 
parking maneuver is a circular arc, first a bang-bang 
controller is proposed, where the front wheel steering angle is 
constrained by magnitude and takes only two constant values. 
As a consequence, the vehicle trajectories represent circular 
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arcs. However, in practice, due to the discontinuity of the 
control law, an undesirable behavior of the system 
(chattering) will occur when the position of the vehicle is in 
the vicinity of the tracking line, and the orientation error is 
also small. In order to avoid the chattering, a saturated 
control based on hyperbolic tangent function is also 
proposed, which is constrained by magnitude, but the control 
function is continuous.  

A. Bang-Bang Control 
In this paper, we propose a bang-bang control in the case 

when the vehicle is moving backward, (vP = -|vP| < 0). The 
vehicle has to track a straight line which coincides with the x-
axis of coordinate frame Fxy. The design of the control low is 
based on the second and third equations of (19). The steering 
angle of the front wheels is constraint and takes values c. 
For brevity of exposition, we will present the final form of 
the bang-bang control. The control design procedure for 
backward driving of the vehicle is similar to those presented 
in [8], but the form is slightly different, since the vehicle 
velocity has negative sign. The bang-bang controller for 
backward driving has the form 

0
2

sin
2

sin
tan

2

2
sin

2
sin

tan
2

0
2

sin
2

sin
tan

2

2
sin

2
sin

tan
2

P
c

P

c
P

P
c

P

c
P

yandlyor

lyifu

yandlyor

lyifu

u

where  

l
u ctan

B. Saturated Control 
In order to avoid chattering in the system when a pure 

bang-bang control is used, we propose a differentiable 
saturation in the form of hyperbolic tangent (tanh(.)) 
constraint.  This function is bounded by 1. Also tanh(x)  0 
if x  0, and tanh(x) < 0 if x < 0. Tanh(x) is close to the 
signum function, when in tanh(Ktx) the gain Kt  is large, as 
shown in Fig. 4. 
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Figure 4. The function tanh(Ktx) for Kt = 1,3, and 10 

We propose the following feedback bounded steering   
controller  

)tanh(tan vKlua t

where u is given by (21),  

)( 0 PyaKv

and Kt, K and a0 are positive constants. 
 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

Simulation results using MATLAB are presented to 
illustrate the effectiveness of the proposed steering 
controllers for perpendicular reverse parking in one 
maneuver. The parameters of the vehicle are given in Table I. 
For the simulations, the constant steering angle of the front 
wheels was chosen to be c = max = /6rad. Using (1), for the 
minimum turning radius  is obtained the value of =4.5m. 
The parking aisle hcd was 6m wide, while the width of the 
parking place hpd was 2.4m. The initial coordinates of the 
vehicle reference point P with respect to the inertial frame 
Fxy attached to the parking place were (xP(0), yP(0)) = (3.5m, 
-4.5m). In this case, the offset s is equal to s = -1m and 
belongs to the interval [-|s|m, -|s|max] = [-1.44m, -0.46m] for 
symmetric parking in one maneuver. The initial orientation of 
the vehicle was chosen to be (0) = - /2rad. The initial 
coordinates of the vehicle reference point P with respect to an 
inertial frame Gxy  with center placed in the goal position G 
of the vehicle in the parking place (Fig. 3), and which has its 
x-axis aligned with the x-axis of Fxy  are (xP(0), yP(0)) = 
(7.5m, -4.5m). The maximum value of the vehicle velocity 
was chosen to be |vP| = 0.3m/s. The values of the saturated 
tanh-type controller were Kt = 8, K = 5.85, a0 = 0.17. 

Starting from identical initial conditions, the planar paths 
of the vehicle using bang-bang control and saturated (tanh-
type) control are presented in Fig. 5. As seen from the 
simulation, the vehicle trajectories are quite similar. This 
result shows that the saturated control can be used instead of 
bang-bang control in order to steer the vehicle into the 
parking place according to the geometrical considerations for 
collision-free reverse perpendicular parking in one maneuver 
presented in Section II. 
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Figure 5. Perpendicular parking: Planar paths of the vehicle using bang-
bang control (a) and saturated control (b). 

Evolution in time of the front-wheel steering angle by 
using bang-bang control and saturated control is presented in 
Fig. 6. The simulation results show the advantage of the 
saturated control: the chattering occurring using bang-bang-
control, when the position of the vehicle is in the vicinity of 
the tracking line, and the orientation error is also small, is 
avoided.  
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Figure 6. Perpendicular parking: Evolution in time of the front-wheel 
steering angle using bang-bang control (a) and saturated control (b) 

An animation of the perpendicular reverse parking in one 
maneuver using saturated tanh-type steering control is shown 
in Fig. 7. 
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Figure 7. Perpendicular reverse parking using saturated control 

The saturated tanh-type controller has been implemented 
on an experimental automatic electric vehicle CyCab and 
initial tests of perpendicular reverse parking has been 
initialized (Fig. 8). In the first tests, only information from 
the encoders mounted on the wheels were used for 
determining the position of the vehicle with respect to an 
inertial frame attached to the goal position into the parking 
place. The dimensions of the CyCab are: l = 1.2m; b = 1.2m; 
l1 = l2 = 0.35m; c = max = /6rad and c = min =2.08m.  
The assigned values for the parking aisle and the parking 
place were chosen to be hcd  = 3m and hpd = 2m, respectively. 
For symmetric parking into the parking place, according to 
(18) and (11) the offset s can take values in the closed 
interval -|s| [-|s|m, -|s|max] = [-1.01m, -0.095m]. For the 
experiment shown in Fig. 8, the initial coordinates of the 
vehicle with respect to Gxy with center placed at the goal 
position in the parking place were approximately (xP(0), 
yP(0)) = (3m, -2.1m). The first experiments confirm the 
effectiveness of the proposed controller.  

V. CONCLUSION 
In this paper, the problem of perpendicular reverse 

parking of front wheel steering vehicles was considered. 
Geometric considerations for collision-free perpendicular 
parking in one reverse maneuver were first presented, where 
the shape of the vehicle and the parking environment were 
expressed as polygons. Relationships between the widths of 
the parking aisle and parking place, as well as the parameters 
and the initial position of the vehicle have been given, in 
order to plan a collision-free maneuver, in the case, when the 
car has to be symmetrically positioned into the parking place. 
Two types of steering controllers (bang-bang and saturated 

controllers) for straight-line tracking have been proposed and 
evaluated. It was demonstrated that, the saturated tanh-type 
controller, which is continuous, was able to achieve also 
quick steering avoiding chattering and can be successfully 
used in solving parking problems. Simulation results and the 
first experiments with a test vehicle confirm the effectiveness 
of the proposed control scheme.  (a) (b) 
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Figure 8. Automatic perpendicular parking of a CyCab vehicle 
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Obstacle segmentation with low-density disparity maps

Daniela A. Ridel, Patrick Y. Shinzato and Denis F. Wolf1.

Abstract— Autonomous vehicles aim at decreasing the high
level of accidents that have occurred year after year. Several
requirements as localization, mapping, recognition of traffic
signs and detection of obstacles must be satisfied for the
development of such intelligent systems. This paper presents a
method for the detection of general obstacles by stereo vision.
The system uses a disparity value and a cost associated with
each pixel and its 24-neighborhood information to segment the
image into obstacles. It was evaluated in two different datasets
and with hand-labeled images as ground truth. The quantitative
and qualitative results showed satisfactory in different scenarios
and the average computation time of 55 ms for KITTI dataset
images (disparity processing included) enables the application
of the method on our platform for the online detection of
obstacles.

I. INTRODUCTION

Autonomous vehicles have drawn the interest of the aca-

demic community and automotive industry over the past

years, as they can assist in solving problems faced by the

current transportation system, such as collision and heavy

traffic flow. This technology also enables the development

of Intelligent Transportation Systems to improve the time of

use of vehicles and reduce the growing automobile fleet.

Several requirements, as localization, mapping, recogni-

tion of traffic lights and signs must be satisfied for a vehicle

to be driven by itself. Detection and tracking algorithms

enable a dynamic modeling of obstacles around a vehicle

for the planning and execution of actions, as lane changing

and overtaking, and prevention of any type of collision.

Some approaches on obstacle detectors have focused on

specific types of obstacles and generally require a training

step. The use of such methods in real applications would

lead to high computational costs for the support of a specific

classifier for each type of obstacle. Moreover, some new

obstacles may not be detected, as no classifier has been

trained for it. Other approaches require the tuning of a large

number of parameters and use of high-cost sensors.

This paper proposes a general obstacle detection system

based on vision sensors, widely addressed in the academic

community and commercially viable for applications in

industries for assisting autonomous vehicle navigation. The

system considers any obstacle, as pedestrians, cars, cyclists,

poles, trees and traffic signs in the environment operated

by the autonomous vehicle. Such a detection system will

be further joined to a full obstacle tracking system and

1The authors are with Institute of Mathematics and Computer
Science (ICMC), University of São Paulo (USP), São Carlos, Brazil.
danielaridel@usp.br, shinzato@icmc.usp.br
and denis@icmc.usp.br

CaRINA platform [14] (Fig. 1), designed by the LRM1

(Mobile Robotics Lab) at USP (University of Sao Paulo).

Fig. 1: CaRINA platform.

Since the relative position of any obstacle is important for

the planning of actions, the system will use a sensor, i.e. a

stereoscopic camera to provide information on metrics. The

sensor consists of a pair of monocular cameras and enables

the construction of a disparity map representing the depth

of each image pixel. From the image pixel coordinates (u,v)
combined with the disparity value (d), the system generates

a map of costs for each pixel based on [3] and [1], which

represents a cost for each pixel to be part of either an obstacle

or a navigable area. It is segmented according to the cost

and disparity value for the detection of obstacles inside the

camera view, as shown in Fig. 2. For evaluation purposes,

we used images from the KITTI object detection dataset [5]

(left side of Fig. 2) and images captured on our platform

(right side of Fig. 2).

Fig. 2: Clustered points. Each color represents an obstacle..

The main advantages of the proposed approach are it

requires neither dense disparity maps, which improves the

1http://www.lrm.icmc.usp.br/
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time of computation, nor a training phase or prior knowledge

on the environment, and makes no assumptions about the

environment, as flatness of surfaces.

II. RELATED WORK

Several approaches have been developed to solve the

problem of detection of obstacles through the use of active

sensors, such as LIDAR (Light Detection and Ranging) and

radar and passive sensors, as cameras, or even the fusion of

different types of sensors [15].

Many algorithms detect specific obstacles, as people or

cars (a review on vision-based vehicle detection is provided

in [9]) and some approaches separate dynamic and static

obstacles ([7], [16] and [8]).

Other methods perform the detection task in a general

manner, i.e. they do not distinguish between different obsta-

cle classes, but between obstacles and non obstacles. Erbs

et al ([10]) segmented obstacles using stereo vision and

stixel representation. In [6], the obstacles were detected in a

general manner by v-disparity and clustering using DBSCAN

(Density-Based Algorithm for Discovering Clusters) [13]

algorithm.

III. SYSTEM OVERVIEW

Given a disparity map, a cost is calculated for a subsample

of pixels, according to [3] and [1] and followed by a

clustering step for the segmentation of those points into

obstacles.

The entire system follows a sequence of four process-

ing steps. The first consists in running a correspondence

algorithm for the creation of a disparity map. In the next

step, pixels equally distributed in the image are selected for

the creation of a graph that contains nodes p(x,y,z,u,v,d),
where x,y,z are the 3D coordinates from a reconstruction

process, u,v are screen coordinates and d is the disparity

value. In the third step a cost that represents how likely a

single pixel could be an obstacle is computed. The fourth step

corresponds to the clustering, which will transform points

into object entities. Figure 4 shows intermediate results of

this process and details on how to compute the cost values

are available in [1].

A. Stereo Correspondence

Prior to the execution of a stereo correspondence algo-

rithm, a histogram equalization method is applied to both

images (left and right) to smooth noise caused by shadows.

A region of interest of height = 2
3 original height is selected

and only the disparity for lines with step λ is computed, for

improvements in the speed performance. The disparity image

was constructed by a modified version of Efficient Large-
Scale Stereo Matching (ELAS) [11] with no post processing

filters. The resulting disparity map (Fig. 4b) was then used

in the selection step for the construction of a graph. Other

methods that calculate disparity maps can also be used.

B. Selection of Points

An undirected graph G= {P,E} is created in this step. P is

the set of nodes that represents sparse points (x,y,z,u,v,d)
and E is the set of all edges that guarantees there exists

no other point between two points connected by an edge.

Differently from previous works, the edges of G are not

generated by The Planar Delaunay Triangulation Method

[12], but according to the valid 24-neighborhood of each

pixel (Fig. 3). This modification enables the system to

respond at higher frequency rates, because of the constant

time access.

Fig. 3: 24-neighborhood.

P must contain points equally distributed in the image (i.e.,

distance-to-any-neighbour ≥ λ ) with a valid disparity value

(higher than zero) for the extraction of a sparse set of points.

C. Cost Computing of Points

In this step, a cost value C is calculated for each node

p from graph G, where 0.0 < C ≤ 1.0 and represents a

confidence level of node p being an obstacle. Using graph

G from the previous step, our approach calculates C by

Equation 1 (more details in [3] [1]), which depends only

on the local spatial-condition represented by Equation 2 for

each pair of nodes connected by an edge. The resulting image

(Fig. 4c) is used in the point clustering step. Equation 1 is

defined as

C(p) =
1

‖Q(p)‖ ∑
n∈Q(p)

sigmoid
( |py −ny|
||p−n|| ,cos(θ),σ

)
, (1)

where |py − ny| corresponds to the absolute difference of

height values between these two points, ||p − n|| is the

distance between points p and n, θ and σ are constants,

Q(p) is a set of all 24 neighbours of p, and sigmoid() is a

function defined in Equation 2:

sigmoid(x,μ,σ) = 0.5+
0.5(x−μ)σ√
1+(x−μ)2σ2

, (2)

where μ specifies the effective threshold and σ is a scale

parameter that influences the tangent slope at the threshold.

The intuition behind this method is derived from [3], in

which the obstacle estimation was binary.

D. Point Clustering

Both disparity and cost values were used as inputs for

the grouping of points into obstacles. The first point, p, is

selected and, if it is not part of a cluster, a new cluster label
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is assigned to it. All points that belong to its neighborhood

are retrieved and for each neighbor q ( q ⊂ N, where N is

the set of neighbors of point p) to be considered part of the

same cluster of p, the three following conditions must be

satisfied:

1) q is not part of a cluster

2) |(pd −qd)| ≤ η
3) cost of q > α ,

where pd and qd correspond to the disparity values of

the points. If point q has suited the conditions, it becomes

part of the same cluster of p. The process continues for

each neighbor that has become part of the same group until

all neighbors have been processed. After all neighborhood

of p has been analyzed, another point is chosen and the

same process is repeated. The algorithm differs from the

well known DBSCAN because it does not use the concepts

of border or core points and checks the condition of the

minimum number of points for the validation of a cluster.

If a cluster has enough points, it is considered an obstacle,

otherwise the entire cluster is considered noise.

The condition that takes into account the chance of a point

being an obstacle is used to separate points in obstacles from

points in a navigable area. The disparity condition groups

points of a certain uniformity and sudden changes in the

disparity map will not cluster neighboring points to the same

obstacle. The values used for η and α were 1 and 0.1,

respectively. At the end of the algorithm, a certain number of

clusters corresponding to obstacles will have been detected

(Fig. 4d).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The quantitative evaluation of a general obstacle detector

algorithm is not an easy task, as even for humans, it might be

difficult to segment obstacles in complex scenarios, and no

benchmark, without the classification step, is available for the

comparison of different approaches. This section addresses

the evaluation method and the construction of ground truth

data and discusses some of the experimental results.

Two hundred images were selected - a hundred from the

object detection benchmark of KITTI and a hundred from

a sequence captured on our platform. They contain different

types of obstacles interacting with the vehicle, which implies

it performs some action, such as braking or overcoming. All

visible obstacles were hand-labeled for the construction of

the ground-truth. They were identified based on the spatial

condition in the scene, e.g. if there is a pole between the

camera and a car, (which, in the camera view, splits the car

in the middle), the pole and the car will be considered three

obstacles, namely left side of the car, the pole and right side

of the car. If the boundaries of more than one obstacle are

not clear, they are labeled as same obstacle (e.g., two people

walking together). Obstacles far from the road or sidewalk

are considered background and are grouped into a single

obstacle. The range was limited to a maximum number of

30 meters, experimentally determined because the disparity

values are not very accurate after this distance.

(a) Left image from KITTI benchmark.

(b) Disparity map: Results of the correspondence algorithm. Each node
has been painted as a circle of radius = 3 px.

(c) Cost map: Lighter pixels indicate a higher confidence level of their
being an obstacle. Each node has been painted as a circle of radius = 3
px.

(d) Obstacles detected. Each color represents a cluster. Each node has
been painted as a circle of radius = 3 px.

Fig. 4: Data from Figs. 4b and 4c were used as input to the

clustering algorithm (Fig. 4d).

In Experiment 1 (section IV-B), the LIDAR data available

on KITTI were used for the assignment of a distance to

each pixel. Pixels whose distance was longer than 30 meters

were not considered. In Experiment 2 (section IV-C), we

used the disparity data to project the distance to each pixel.

All experiments were conducted in an Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz of 8GB RAM memory running

ubuntu 14-04.

A. Evaluation method

For each group of points detected by the clustering algo-

rithm, a convex hull polygon representation was constructed,

according to [4]. For each polygon detected, we associated a

ground truth polygon in which the polygon detected showed

a more overlapped area. More than one detected polygon

could be associated with the same ground truth polygon.

Therefore, for each ground truth polygon, we calculated

the intersection area with each associated polygon. The inter-

section areas between the detected polygons were decreased

and the resulting area was divided by the area of the ground
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truth polygon. A hit was considered when the resulting area

was greater than ϕ = 0.4. The metrics of precision and recall

were calculated for each image.

Figure 5 illustrates the evaluation method - green repre-

sents true positives (TP - obstacles correctly detected), blue

represents false negatives (FN - ostacles that should have

been detected), red represents false positives (FP - detec-

tions that are not obstacles) and pink represents detections

associated with a polygon of the ground truth of a score

smaller than ϕ .

Fig. 5: Green represents TP, blue represents FN and red and

pink represent FP (pink represents detections associated with

a polygon of the ground truth of a score smaller than ϕ).

The unique different parameter in the two experiments was

λ . In Experiment 1, λ = 5 and in Experiment 2, λ = 10,

because the cameras of the datasets have different focal

length and size of CCD sensor, therefore an adjustment had

to be made to compensate for this difference. Due to this

difference between the two sensors, the width (in pixels) of

a detected person was smaller in KITTI than in our dataset.

B. Experiment 1

A hundred images from KITTI dataset were used in

Experiment 1. The images have 1242×375 (465750) pixels

and the computational cost running of the algorithm was 55

ms. The averages of precision and recall for all images are,

respectively, 0.58 and 0.68. A high recall value is desired

in an autonomous vehicle system, because all obstacles near

the vehicle must be detected. The obstacles were correctly

identified in most images, however, some were not identified

due to a failure in the disparity maps and mainly because

such maps lose precision in function of the distance. When

the camera approaches the obstacle, the chance of its being

detected increases. In some cases, visible obstacles can not

be segmented by the disparity condition, which causes them

to be merged into a single cluster.

In the hand-labeled images, when the boundaries of obsta-

cles were not clear, they were labeled as a single obstacle.

Therefore, when some people are detected as a single ob-

stacle, it can also be considered a hit, depending on their

proximity. Otherwise, when they have a visible boundary,

they are grouped separately, e.g. cluster 14 in Fig. 10a.

The obstacles were correctly segmented in most images

(people walking alone, Fig. 10a (10, 11, 12, 15, 17, 19 and

24), Fig. 10c (7 and 8), cars Fig. 10b (4, 5, 6 and 7), Fig.

10d (7), cyclists Fig. 10d (6 and 10), poles Fig. 10a (22, 25

and 28), Fig. 10b (1, 8 and 9) and Fig. 10d (11, 12, 16, 18,

20, 21, 24, 25 and 26), trees Fig. 10c ( 2 and 5)).

In some cases, the obstacles were not identified because of

errors in the disparity map, or the group clustering of some

obstacles by the algorithm (people walking side by side) and

individual clustering in the ground truth (Fig. 10a (obstacle

14)). As we set the maximum disparity parameter to 100 in

ELAS, some obstacles very close to the cameras were not

detected (Fig. 6).

Fig. 6: Obstacles very close to the camera were not detected

because of the maximum disparity parameter.

C. Experiment 2

We also evaluated the proposal using CaRINA dataset, our

own data collected on our autonomous platform. The images

were captured by the extended baseline of a Bumblebee

XB3 (BBX3-13S2C-38) Point Grey (Fig 7). The evalua-

tion procedure was the same conducted in Experiment 1;

however, as we do not have the LIDAR 3D data to ensure

the distance at each pixel, we projected it using disparity.

People were correctly detected in Figs. 10e (3, 4 and 5) 10f

(5, 6 and 7) and 10g (5 and 6), and cars in Figs. 10e (7

and 8), 10f (8 and 9) and 10g (7, 8 and 9). The precision

and recall achieved were 0.63 and 0.76, respectively. The

images have 1280 × 960 (a total of 1228800) pixels and

the computational cost was 114 ms, including rectification,

disparity map construction, cost computation and clustering.

Fig. 7: The images were captured by the extended baseline

of a Bumblebee XB3 Point Grey.

D. Final considerations

Although we have limited the range to 30 meters to evalu-

ate the detection, our approach can reach farther obstacles, as

shown in Fig. 8. Another reason for low precision is curbs

were not considered obstacles in our ground truth (Fig.9),

as they have different heights and shapes in the perspective

view, which hampers their detection as a single obstacle. In

a future evaluation, the inclusion of a ground detection can

help the classification of such obstacles as curbs, for a higher

precision rate.
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(a) Image from KITTI object detection benchmark. Four of the five
visible cars were detected (2, 3, 4 and 5). One car was wrongly clustered
together with the guardrail.

(b) Image from KITTI object detection benchmark. Two distant cars (4
and 5) were identified.

Fig. 8: Figures with no range limitation.

(a) Curbs detections (in red) on the right side of the image.

(b) Curbs detections (in red) on the left side of the image.

Fig. 9: Example of images with a detected curb. The red

and green polygons represent the result of the convex hull

transform in the set of points of each cluster. Green repre-

sents true positives, red represents false positives and white

represents the ground truth answer.

All results can be seen at https://youtu.be/
CD6X99RacgM.

V. CONCLUSIONS

This paper has addressed the construction of an obstacle

detection system to ensure safety to agents operating in

the same environment of an autonomous vehicle. A stereo

system was used as a perception sensor of the environment,

partly because of the lower costs of cameras in comparison to

other sensors, as LIDAR, and the increase in the computing

power, which enables the processing of images at higher

frequency rates. The approach was tested in two hundred

images, half from KITTI Benchmark and half from CaRINA

dataset. Preliminary results indicate this is a promising

approach to be used in real time and future studies will focus

on the implementation of tracking and distinction between

dynamic and static obstacles.
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(a) Experiment 1: A Group of people (14), 7 people alone (10, 11, 12, 15, 17 and 19) and poles (22, 25 and 28).

(b) Experiment 1: Four cars (4, 5, 6 and 7), poles (1, 8 and 9) and high vegetation (10, 11 and 12).

(c) Experiment 1: Two people alone (7 and 8), a pole (5) and high vegetation and a wall (1, 3 and 4).

(d) Experiment 1: Two cyclists (6 and 10), poles (11, 12, 14, 16, 17 18, 19, 20, 21, 22, 23, 24, 25 and 26), a car (7) and a wall (4).

(e) Experiment 2: Three people alone (3, 4 and 5), and three of the four visible cars (6, 7 and 8).

(f) Experiment 2: Two cars (8 and 9) and a person (5, 6 and 7).

(g) Experiment 2: Three of the four visible cars (7, 8 and 9) and a person (5 and 6).

Fig. 10: Results of detection. The first column is the image from the left camera. The second column represents each cluster

formed by its set of points and the third column shows the results from the evaluation with range limitation. White and blue

represent ground truth obstacles, green represents obstacles considered correct and pink and red represent false detections.
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Motivation

Assessing the Risk of Traffic Situations

When to initiate an emergency maneuver?

Collision “almost” unavoidable

Approach: Test if there is none or only “very few” evasive trajectories

Figure: Existence of evasive trajectories
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Motivation

Uncountably Many Possible Situations

How “many” future trajectories of other traffic participants are
possible?

How “many” evasive trajectories are there?

Answer for both: Infinitely many.

Figure: Set of evasive trajectories
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Motivation

Overview of Our Previous Approach

� occupancy prediction � trajectory planning

� collision checking� trajectory tracking

controller
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Motivation

Outline

1 Model of the ego vehicle and other traffic participants

2 Set-based behavior prediction

3 Determining the nonexistence of evasive trajectories

Set representation for reachability analysis
Computational tricks

4 Test results

5 Further use of reachability analysis: Verification of single trajectories
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Models of the Ego Vehicle and Other Traffic Participants

Constraints for Traffic Participants

Initially the following constraints are considered:

C1: positive longitudinal acceleration is stopped when a parameterized
speed vmax is reached.

C2: driving backwards in a lane is not allowed.

C3: positive longitudinal acceleration is inversely proportional with speed
above a parameterized speed vS (modeling a maximum engine power).

C4: maximum absolute acceleration is limited by amax.

C5: actions that cause leaving the road/lane boundary are forbidden.

When a violation of a constraint of a traffic participant is sensed, it is no
longer considered in future predictions for that particular traffic participant.
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Models of the Ego Vehicle and Other Traffic Participants

Physical Modeling (1)

Traffic participants are a point mass with

√
(alat)2 + (along)2 ≤ amax (Kamm’s circle).

The lateral acceleration is provided by a normalized steering input u1:

alat = amaxu1.

Due to the maximum absolute acceleration (C4), the longitudinal
acceleration is bounded by

a
long
c1 =

√
(amax)2 − (alat)2.
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Models of the Ego Vehicle and Other Traffic Participants

Physical Modeling (2)

Constraints C1 (max. velocity), C2 (no driving backwards), and C3 (max.
engine power) are considered in another bound:

a
long
c2 =

⎧⎪⎨
⎪⎩
amax

vS
v
, vS < v < vmax ∧ u2 > 0

amax, (0 < v ≤ vS ∨ (v > vS ∧ u2 ≤ 0))

0, v ≤ 0 ∨ (v ≥ vmax ∧ u2 > 0)

The longitudinal acceleration combining both bounds is for a normalized
acceleration input u2 ∈ [−1, 1]

along =

{
a
long
c2 u2, a

long
c2 |u2| ≤ a

long
c1 ,

a
long
c1 sgn(u2), a

long
c2 |u2| > a

long
c1 .
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Set-Based Behavior Prediction

Reachability Analysis

possible
trajectory

exact
reachable set

jump

steady state

initial set

x1

x2

Informal Definition

A reachable set is the set of states that can be reached by a dynamical
system in finite or infinite time for a

set of initial states,

uncertain inputs,

and uncertain parameters.
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Set-Based Behavior Prediction

Overapproximative Reachable Sets

overapproximative
reachable set exact

reachable set
invariant set

unsafe set

initial set

x1

x2

Exact reachable set only for special classes computable
→ overapproximation computed for consecutive time intervals.

Overapproximation might lead to spurious counterexamples.

Simulation cannot prove correctness.
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Set-Based Behavior Prediction

Abstraction Technique for Other Traffic Participants

Overapproximative Occupancy

Given are models Mi , i = 1 . . .m which are abstractions of model M0, i.e.,
reach(M0) ⊆ reach(Mi). The occupancy of the model M0 can be
overapproximated by

proj
(
reach(M0)

)
⊆

m⋂
i=1

proj
(
reach(Mi)

)
. �

Two models: Longitudinal dynamics along road boundaries (upper bound),
lateral dynamics towards road boundaries (left/right bound).

initial occupancy

lower left bound

lower right bound

upper bound
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Set-Based Behavior Prediction

Occupancy Along Road Boundaries

The dynamics becomes monotone when following a lane center.

Definition (Monotone dynamics)

For the initial state x(0) ∈ R(0) and inputs u(t) ∈ U the dynamics is
monotone when the following holds for the solution χ(t, x(0), u(·)):

if ∀i , j , t ≥ 0 : xi (0) ≤ x̄i (0), uj(t) ≤ ūj(t) then

∀i , t ≥ 0 : χi (t, x(0), u(·)) ≤ χi (t, x̄(0), ū(·)). �

From this follows that e.g. the upper bound is provided by max. position,
max. velocity, and max. acceleration:

sx

sy

path

occupancy set
for some time interval

s
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Set-Based Behavior Prediction

Occupancy Towards Road Boundaries

For lateral dynamics there exists no single combination of an initial state
and an input trajectory determining the boundary.

Given the vehicle-fixed angle of the acceleration
vector a, possible trajectories are: ax

ay

a

φ

 

sx

s
y

const. acceleration
(φ = 90◦)

const. acceleration
(φ = 110◦)

const. acceleration
(φ = 130◦)

2

0

−2

0 10 20

w
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Set-Based Behavior Prediction

Occupancy Towards Road Boundaries: Method A

Using limit of absolute acceleration (constraint C4): Occupancies are circles with
center c(t) and radius r(t):

c(t) =

[
sx(0)
sy (0)

]
+

[
vx(0)
vy (0)

]
t, r(t) =

1

2
amaxt

2.

From this follows the boundary of occupation:

bx(t) = v0t −
a2maxt

3

2v0
, by (t) =

√
1

4
a2maxt

4 −

(
a2maxt

3

2v0

)2

.

sx

s
y

4

0

−4

0 10 20

[bx(t), by(t)]
T

[bx(t), −by(t)]
T

O([tk , tk+1])

O(tk−2) r(tk+1)

c(tk+1)
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Set-Based Behavior Prediction

Occupancy Towards Road Boundaries: Method B and C

Method B: Assume independence of lateral and longitudinal acceleration →
Solution of time ts for switching the steering angle to avoid road departure:

ts =

√
amaxw + 1

2v
2
0 − v0

amax

Method C: Combination of method A and B.

 

sx

s
y

const. acceleration
(φ = 90◦)

const. acceleration
(φ = 110◦)

const. acceleration
(φ = 130◦)

method A

method B

method C

2

0

−2

0 10 20

w
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Set-Based Behavior Prediction

Examples: Lane 1

Step 1:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 1

Step 2:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 1

Step 3:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 1

Step 4:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 1

Step 5:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 2

Step 1:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 2

Step 2:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 2

Step 3:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 2

Step 4:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set-Based Behavior Prediction

Examples: Lane 2

Step 5:

×105
3.865 3.8652 3.8654 3.8656 3.8658 3.866 3.8662 3.8664 3.8666 3.8668

×106

5.5913

5.5913

5.5913

5.5913

5.5914

5.5914

5.5914

5.5914

5.5914

5.5915

M1
M2
M3

M1: restricted absolute acceleration.

M2: restricted acceleration and velocity in longitudinal direction.

M3: staying within road boundaries.
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Set Representation for Reachability Analysis

Selection of an Appropriate Set Representation

Reachable set of the ego vehicle

We restrict the reachable set to states that can be reached by a
collision-free trajectory

∀t : A (x(t)) ∩ O(t) = ∅.

where A (x(t)) is the footprint of the vehicle at state x(t) and O(t) is the
obstacle region.

The representation of the set is crucial for efficient calculations:

Propagation of set after one time step must suite motion model (e.g.
convex polyhedron for LTI)

Intersection tests with forbidden states (e.g. obstacles)

Complement set operation to cut forbidden regions from reach set
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Set Representation for Reachability Analysis

Overapproximation of all Reachable States

We overapproximate the reachable set of the previous vehicle model
(now: only consideration of acceleration limits; for computational
reasons: ‖a‖∞ ≤ amax) by the union of boxes:

reach(x0, t) ⊂
⋃
j

box
(j)
t

Each box is four-dimensional and stores an interval of position and
velocity in x , y -direction:

[sx ,min sx ,max ]× [sy ,min sy ,max ]× [vx ,min vx ,max ]× [vy ,min vy ,max ]
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Set Representation for Reachability Analysis

Main Algorithm

Propagate:

Split (dark regions are obstacles):

Repack:

for i ← 1 to steps do

Ri ← ∅
for all box(i−1) in Ri−1 do

box(i) ← PROPAGATE(box(i−1))
Ri ← {Ri , SPLIT(box(i))}
if |Ri | > max. number boxes then

Ri ← REPACK(Ri )
end if

end for

end for

return R1,R2, . . . ,Rsteps

Matthias Althoff Nonexistence of Evasive Trajectories September 28, 2015 28 / 43

 
 

 



Set Representation for Reachability Analysis

Propagation of Boxes

Overapproximation by propagation of extremal values

s
(L)
t+Δt = s

(L)
t + v

(L)
t Δt −

1

2
aΔt2

s
(H)
t+Δt = s

(H)
t + v

(H)
t Δt +

1

2
aΔt2

v
(L)
t+Δt = v

(L)
t − aΔt

v
(H)
t+Δt = v

(H)
t + aΔt

a is maximum acceleration/braking, Δt is time step, (L) and (H)
denote the lower and upper bound.
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Set Representation for Reachability Analysis

Collision Check of Boxes and Split Boxes

Split rectangle along both axes if it intersects with obstacle

Similar to quadtrees

Repeat splitting until split rectangles do not intersect any obstacle or
the diagonal is less than inner circle of vehicle

For occupancy grids collision check can be done in O(1) using a
summed area table
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Set Representation for Reachability Analysis

Restrict Velocities in Split Boxes

ti+1

ti+2

ti+3

Find reachable velocities within a position subregion

Using Pontryagin’s maximum principle to find candidate functions to
minimize/maximize final velocity

Bang-bang input

Find start and goal state with extremal final velocities
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Set Representation for Reachability Analysis

Repack Reachable Set to Non-Overlapping Boxes

Union of axis-aligned rectangles can be done in

O(m logm + p log(2m2/p))

p: number of edges in the contour
m: number of rectangles

Sweep line algorithm using a segment tree to do fast interval union

Modified algorithm to split into non-overlapping boxes in the same
sweep

Velocity set for each new box is obtained from minimum and
maximum velocity of all intersecting original boxes
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Set Representation for Reachability Analysis

Example Scenario

Scene with ego vehicle and two other vehicles

Other vehicles are assumed to stay on lane, but may accelerate or
brake arbitrarily within some bound

host vehicle
vehicle A

vehicle B
road boundary
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Set Representation for Reachability Analysis

Example Scenario
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Set Representation for Reachability Analysis

Example Scenario

Matthias Althoff Nonexistence of Evasive Trajectories September 28, 2015 35 / 43

Set Representation for Reachability Analysis

Example Scenario

t1
t2
t3

t1
t2
t3

t3
t2
t1

(a) initial scenario at t1, t2 and t3 (b) t1: reachO(s0(t1), 3 s)

(c) t2: reachO(s0(t2), 3 s) (d) t3: reachO(s0(t3), 3 s)
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Further Use: Verification of Single Trajectories

Trajectory Verification: Situation

obstacle

reference trajectory
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Further Use: Verification of Single Trajectories

Trajectory Verification: Standard Approach

obstacle

reference trajectoryvehicle occupation
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Further Use: Verification of Single Trajectories

Trajectory Verification: Considering Uncertainties

obstacle

reference trajectoryreachable set of the center

Robust Safety Problem

Is the planned maneuver of the autonomous vehicle still safe under

uncertain initial states,
uncertain measurements,
and disturbances?

Objective: Guarantee safety when bounds on uncertainties are known.
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Further Use: Verification of Single Trajectories

Trajectory Verification: Formal Verification Reveals

Problems

reachable set of the center vehicle occupation

possible collision

Robust Safety Problem

Is the planned maneuver of the autonomous vehicle still safe under

uncertain initial states,
uncertain measurements,
and disturbances?

Objective: Guarantee safety when bounds on uncertainties are known.
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Further Use: Verification of Single Trajectories

Online Verification Of Automated Driving

lane change

maneuver B

lane change

maneuver A

Test site Test vehicle

−20 0 20 40 60 80 100 120
−5

0

5

reference trajectory

other vehicle

ego vehicle ego vehicle (braking part)

initial occupancy

final occupancyobstacle

x-position [m]

y-
p
o
si
ti
o
n
[m

]
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Further Use: Verification of Single Trajectories

Test Drive Results

[
sx
sy

] Ψ
βlr

lf δ

x

y
v

sx , sy [m] x- and y-position
Ψ [rad] orientation
β [rad] slip angle at center of mass
δ [rad] front wheel angle
v [m/s] velocity

2.5 3
−0.5

0

0.5

Ψ [rad]

Ψ̇
[r
ad

/
s]

lc B lc A

−0.2 0 0.2

2.4

2.6

2.8

3

δ [rad]

Ψ
[r
ad

]

−0.2 0 0.2
−0.5

0

0.5

δ [rad]

Ψ̇
[r
ad

/
s]

lc A

lc B

computation time: ≈ 1.8 times faster than maneuver time (Intel i7, 1.6GHz)
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Further Use: Verification of Single Trajectories

Conclusions and Future Work

Conclusions

All possible behaviors can be computed.

The approach considers uncertain measurements of other traffic
participants and the ego vehicle.

Assuming that the mathematical model captures all real behaviors, we
can prove that no evasive trajectory exists.

The computation is constantly improving and already less than a
second.

Future Work

Comparison of results with real world measurements.

Implementation in C++ for deployment in a vehicle.
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Safe prediction-based local path planning using obstacle probability
sections

Tanja Hebecker1 and Frank Ortmeier2

Abstract— Autonomous mobile robots gain more and more
importance. In the nearest future they will be a part of everyday
life. Therefore, it is critical to make them as reliable and
safe as possible. We present a local path planner that shall
ensure safety in an environment cluttered with unexpectedly
moving obstacles. In this paper, the motion of obstacles is
predicted by generating probability sections, and collision risks
of path configurations are checked by determining whether
these configurations lead inevitably to a collision or not. The
presented approach worked efficiently in scenarios with static
and dynamic obstacles.

I. INTRODUCTION

Due to the fast development in the field of autonomous

mobile robotics the importance of safe motion planning

increases. Even in situations with many irrationally moving

obstacles local path planners have to guarantee a safe avoid-

ance of obstacles. Therefore, it is necessary to consider the

robot’s kinematics, the motion of dynamic obstacles and also

risks that can arise in the future even if a robot is located at

a point of a path (waypoint) that is itself collision-free.

Within the last years many new path planning approaches

for autonomous robots were presented but to our knowledge

there is no approach that considers both future collision prob-

abilities of a waypoint in the presence of moving obstacles,

and also atypical obstacle motion. For guaranteeing freedom

from collision, even promising path planning approaches still

have some need for improvement.

Schmidt and Berns [1] presented an approach in which

an extended A* path planning algorithm is applied to a 2D

gridmap with growing regions for obstacles as a minimum

safe distance. This approach does only consider static obsta-

cles.

A method named Minimal Risk Motion Planning is pre-

sented in [2]. A route cost function minimizes possible

failures to reach a goal state. By applying the wavefront

algorithm [9], a cost-to-go function within the sensor field

of view is calculated. Future collision risks of path states are

not considered.

There are also approaches considering the possibilities

of a future collision with static and dynamic obstacles.

In [5] Petti and Fraichard proposed the Rapidly-Exploring

Random Tree (RRT [13])-based motion planning scheme

Partial Motion Planning (PMP). The Inevitable Collision

State (ICS) approach is applied to check if it is possible

in a state to avoid a collision with an obstacle (otherwise the

1Chair of Software Engineering, Faculty of Computer Science, Otto-von-
Guericke-University, Germany, Tanja.Hebecker@ovgu.de

2Chair of Software Engineering, Faculty of Computer Science, Otto-von-
Guericke-University, Germany, Frank.Ortmeier@ovgu.de

state is an ICS), and to guarantee safety by checking a state

whether at least one control command exists which is not

leading to a collision state. This approach promises well but

atypical obstacle motions are not considered.

Bouraine et al. [6] presented a passive motion safety

approach that guarantees that, if a collision takes place, the

robot will be at rest. The future obstacle motion is modeled

by reachable sets [9] occupying with growing time the whole

workspace. Therefore, a Braking ICS-Checking algorithm is

integrated in a navigation scheme called PASSAVOID to

check whether for all future braking trajectories of a state

a collision occurs before the robot is at rest. It is not the

task of PASSAVOID to drive the robot to a given goal and

in some cases collisions occur that could have been avoided.

Likewise, methods to predict the motion of moving ob-

stacles already exist. Vasquez and Fraichard [3] presented

a technique to estimate the motion of a moving object in

a structured environment in the long term by determining

typical motion patterns of obstacles to predict their future

motion. The presented approach is not able to predict atypical

trajectories and for a short observation time frame the

predicted motion tremendously differs from an obstacle’s real

motion.

Kushleyev and Likhachev proposed in [4] a representation

of dynamic obstacles that models their predicted trajectories

and considers the prediction uncertainty with error ellipses.

It is assumed that the obstacle maintains constant controls at

all future times. Atypical motion of obstacles is not regarded

and if dynamic obstacles remain stationary it is possible that

the robot gets stuck.

In this paper, we present a local path planning approach

for mobile robots in unknown dynamic environments that

considers (i) the robot’s dynamic properties, (ii) motion

probability of obstacles and (iii) future risks. The consid-

eration of the robot’s kinematics is important for generating

only traceable paths and for a better evaluation of critical

situations. This is because planning safe paths that a real

robot cannot track due to a high velocity or constrained

rotating movement can lead to collisions. We involve motion

probabilities of obstacles by motion probability sections to

consider realistic and, to our knowledge in contrast to other

related works, also atypical obstacle motions with variable

velocities in order to plan collision-free paths. Future risks

of a chosen waypoint of a path will be estimated to not

lead a robot into a situation where a collision is inevitable.

Therefore, we apply ICS but we simplify the ICS checks

similar to the PMP method for requiring less computation

time. For our ICS checks we allow very low collision risks
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of the future states to not make path planning impossible

because of too strict constraints.

Currently, this path planner is designed for holonomic

and non-holonomic ground robots and, therefore, first, it

is only required to involve the two-dimensional case. An

environmental model representing a mobile robot within a

room with static and moving obstacles is implemented in

OpenRAVE.

We assume that the parameters and kinematics of detected

obstacles are known to our algorithm. Currently, we start

from the premise that obstacles have the same kinematics as

our robot. Another assumptions are that the obstacles’ unseen

part is not bigger than the part that is detected by the sensor

and that their motions are independent from other obstacles

aside from collision avoidance.

II. METHOD DESCRIPTION

In this section, we present the concept of our path planning

approach which is summarized in pseudocode 1. First, cells

in a 2D grid map are generated following the strategy in Sec-

tion II-A. Then, motion probability sections are determined

in Section II-B to predict the future position of detected

moving obstacles. The modified wavefront algorithm [12]

assigns cost values to the grid map cells after a collision-free

local goal is determined within the sensor field of view (see

Section II-A). Then, a path is determined by determining

a cell sequence. The neighboring cells of the lastly to the

cell sequence added cell are checked if they have a lower

cost value. This process continues as long as the path has

not reached the local goal. If the condition is true the cell

centers of these cells are checked if they do not lead to

an inevitable collision (see Section II-C.3), keep a safety

distance to obstacles and the sensor range (see Section II-

C.1), and are reachable (see Section II-C.2). In this context,

we define reachability as the existence of a control command

such that the robot can reach this waypoint safely and without

unneeded detours. If these criteria are fulfilled the considered

cell is added to the path cell sequence. The path is generated

by the cell centers from the cell sequence.

Algorithm 1: Generating a collision-free path

Input: sensor range rsensor , initial state of robot sinit

Output: Path P

1 while global path not safe do
2 Cells ← CellGeneration(rsensor);
3 RiskArea ← MotionProbabilitySections(rsensor);
4 LocalGoal ← AssignGoal(RiskArea, Cells);
5 Costs ← ModifiedWavefront(Cells, LocalGoal);
6 P ← FindingPath(Costs, Cells, RiskArea, sinit);
7 end
8 return P;

A. Generating Potential Waypoints

The first step is to apply an algorithm that provides

potential waypoints within the field of view. Many path

planning approaches can be applied, e.g., Virtual Force Field

by [10] or the enhanced Vector Field Histogram method

VFH* by [11]. We propose to use the modified wavefront

algorithm presented in [12]. It is an extension of the wave-

front algorithm that we previously applied for a UAV online

planner in 3D [8]. The modified wavefront algorithm is a

real-time capable approach that is applicable in 2D and 3D

space and capable of finding shortest paths. It guarantees the

achieving of the goal if it is possible to reach, i.e., it does not

lead to a local minimum. This method requires a grid map

representation of the workspace. Because the applied sensor

has a circular field of view we construct the grid map with

polar coordinates.

An example of a grid map representation in a polar

coordinate system is depicted in Fig. 1. The radii get larger

by a constant value and the straight lines along the polar

angles have a constant distance to each other. This way cells

are generated that are smaller at short distance to the robot

and larger with growing distance. A local goal is a cell center

which is determined after checking all cell centers for the

following conditions: (i) the distance to the global goal is

as short as possible, (ii) the distance to static obstacles and

to the sensor range limit is not too short and (iii) there is

no risk that an obstacle occupies this cell center within the

required time frame (see Section II-C.1).

The modified wavefront algorithm labels the cells of the

work space with cost values based on their distance to the

local goal. First, all these cells in the work space get the

cost value zero, and then, the cell containing the local goal

receives the cost value one. Orthogonal neighbor cells of

the goal get the cost value of the goal plus 3 and diagonal

neighbor cells get the cost value of the goal plus 4. This

process continues for their neighbors with the cost value of

the currently considered cell (see Fig. 1).

Cells that are occupied by obstacles or due to obstacles

beyond the sensor’s view get an invalid cost value. When

assigning cost values we consider only the sensor detected

position of dynamic obstacles and not their motion. We

include their possible future positions in the determination

of motion probability sections that are considered when

choosing a waypoint later. The algorithm stops when no cell

has the cost value zero anymore.

Beginning from a starting cell, centers from neighboring

cells with the lowest (and positive) value are potential

waypoints. Before selecting one of these potential waypoints

we have to ensure that it does not lead into a collision.

B. Probability Sections

We consider only the last detected position of moving

obstacles for the application of the modified wavefront algo-

rithm, hence, we have to include their motion when choosing

waypoints for a path. We represent the obstacles’ motion

with motion probability sections. The possible future position

of obstacles is described by an approximated reachable set

around the detected part of the moving obstacles. This

approximated reachable set is partitioned into areas con-

taining the probabilities of keeping or changing a direction.
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Fig. 1: Generating cells and applying the modified

wavefront algorithm within the robot’s sensor range

These probability sections are approximations to enable fast

calculations.

If an obstacle with a certain velocity direction moves

freely in a room the probability for this obstacle to continue

with the same velocity and in the same direction is higher

than a turning or a braking maneuver (except, e.g., it has an

obstacle in front of it). The probability that an obstacle brakes

and moves with a sharp curve to the left or to the right is in

this case lower, and the probability that an obstacle moves

suddenly in the direction where it came from is the lowest

one because it is completely irrational (but not impossible)

except it has to fulfill a task that demands such a motion

behavior.

We refer a probability value to a section giving the

probability that in the next time steps the obstacle will be

within this area. These probabilities are computed with the

standard normal distribution for the motion angle. The peak

is in the direction of the current motion.

Examples of probability sections are depicted in Fig. 2.

The obstacle O1 of the robot is moving towards the robot

and the obstacle O2 is about to move out of the field of

view (the velocity arrows show the velocity direction). Both

obstacles are unknown and, therefore, the robot has only the

information about the obstacles that it gets from its sensor.

Around the seen part of the obstacles an area is determined

that this obstacle part is able to reach. Considering their

current speed a distance is calculated that these obstacles

can cover within a certain time frame which is explained

in Section II-C.1. This distance determines the limit of the

probabilistic future position area. This area for obstacle O1 is

divided by maximum possible turning maneuvers to the left

and to the right with a constant velocity and by the current

motion direction. The reason for the section limitation by

these turning maneuvers is that a change of the obstacle

motion direction without braking is in unconstrained space

almost as possible as continuing in the initial direction. If

an obstacle has to avoid another object the probability for

continuing in the same direction decreases. But if this object

is not in the front but at a side of the obstacle it is still

Fig. 2: Probability sections for a dynamic obstacle within

the laser range

Obstacle

Robot

Detected
obstacle part

Velocity
direction

Sensor

Line to devide
obstacle positition
probability area

Fig. 3: Determination of a straight line that divides the

lowest probability section from the whole future position

area

highly probable that the obstacle continues without reducing

the velocity. Therefore, the front section is separated by the

current direction line into two sections.

In Fig. 2 the robot can see the back view of obstacle O2

which is about to leave the field of view and, therefore, the

part of the area around the obstacle that is behind the obstacle

has a low occupancy probability. Hence, we divide the area

around the detected obstacle part by a straight line going

through the obstacle’s point with the closest distance to the

robot and being at an angle of 90◦ to the velocity direction.

For a better understanding, the determination of the straight

line is depicted in Fig. 3. To avoid unnecessary huge areas a

part that definitely is not reachable within the given time

frame gets the probability 0. This area part is calculated

by assuming the obstacle to suddenly move directly in the

opposite direction. Within the given time frame it is not

possible that the obstacle reaches the area boundary due

to its initial velocity. This negligible area part starts at the

maximum reachable distance in the reversed direction of

the initialized obstacle motion. As in the case of obstacle

O1 the section with the highest probability is determined

by calculating maximum possible turning maneuvers with a

constant velocity.

The probability values are influenced by the presence of

other obstacles. If obstacle O2 or its approximated reachable
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set intersects the probability section of obstacle O1 the prob-

ability value for the concerned section of O1 is calculated

with the formula for conditional probabilities.
The motion probability sections are involved for selecting

waypoints (see Section II-C.1). Parts of the environment that

cannot be perceived by the sensors because they are hidden

by obstacles are considered as potential obstacles.

C. Selection of Waypoints
Beside the criterion that a waypoint must have a lower

cost value than its predecessor other conditions have to be

fulfilled to be chosen as a point of a path. The waypoint has

to be collision-free, reachable and with low future collision

risks.
1) Safe Distance to Obstacle Regions: A waypoint must

not be occupied by an obstacle when the robot reaches it. In

our specification, this means that a waypoint is not allowed

to be located within an obstacle position probability section

for a time frame the robot would need to arrive there. The

only exception is the unreachable section with probability

equal to zero because there is no collision risk.
The extents of the probability sections depend (beside the

obstacle’s current velocity and kinematics) on the distance

of a waypoint which is checked for freedom from collision

to the robot’s initial position. That is because we choose

the time frame tframe for the calculation of the motion

probability area by this distance and a certain velocity. We

determine this velocity as the lower bound of the robot’s

velocity for reachability (see Section II-C.2) vbound because

tframe is an assumed time frame the robot needs to get to the

considered waypoint in the exclusion of unexpected detours.
Additionally, a safety distance to the obstacle motion area

has to be included because if an obstacle really reaches the

limit of this area it must not be too close to the robot. This

safety distance is added to the outer limits of the obstacle

sections and it depends on whether the obstacle is in motion

direction of the robot or not for not rendering planning

in narrow areas unnecessarily impossible. For obstacles in

a planned robot motion direction we determine the safety

distance as

dsafe =

{
term1 + lrobot

2 , if tbreak > tframe

term2 + lrobot
2 , else

, (1)

where term1 = −amax

2 · t2frame + v0 · tframe and term2 =
−amax

2 · t2break + v0 · tbreak. The parameter tbreak is the

time the robot needs to come to a standstill, v0 is the initial

velocity and lrobot is the length of the robot. Equation 1 is

based on uniform acceleration. The reason for adding lrobot
2

is that we assume the center of the robot to be located on

the waypoint, then half of its extent exceeds this waypoint.

We consider the maximum extent of the robot due to safety

reasons and, therefore, we include half of the robot’s length

in the safety distance.
For obstacles that are not located in the planned motion

direction of the robot the probability sections are additionally

only extended with dsafe =
lrobot

2 . The occupancy probabil-

ity of a waypoint is determined for the time when the robot

is able to reach the waypoint.

The safety distance dsafe holds also for static obstacles.

Due to possible obstacles beyond the field of view also a

safety distance dsafe to the outer sensor range has to be kept.

A waypoint must not be located within an obstacle section

with a probability higher than zero and has to keep a safety

distance dsafe to static obstacles and the full sensor range.

If these conditions are complied the waypoint is checked for

fulfilling the following criteria, if not another waypoint is

analyzed.

Even if a waypoint is collision-free, two other criteria have

to be fulfilled before it becomes a part of the path: (i) the

waypoint has to be reachable by the robot without unneces-

sary detours due to motion safety and without braking to a

too slow velocity, and (ii) the robot’s state at the waypoint

must not be an ICS.

2) Reachability: To determine if a waypoint is reachable

without the need that the robot comes below a certain

speed, we determine an approximated reachable set that was

already presented in our previous work [8]. The limits of

this reachable set are calculated by computing trajectories

representing maximum possible turning maneuvers to the left

and to the right and the maximum distance dreach that the

robot with its initial velocity can cover.

We consider the motion direction that the robot would

have if it moves from the waypoint that was lastly added to

the path to the potential new waypoint. Turning maneuvers

are determined by setting the initial speed into this motion

direction starting from the potential waypoint. We do not

want to plan a path that is only traceable when the robot stops

in front of obstacles or to render path planning impossible

due to too high velocities. Therefore, the trajectories concern

the case that the robot brakes with a = −kreach · amax not

below vbound = kreach · vmax. The constant value kreach is

defined in the interval [0,1] and in our case kreach = 0.5. We

chose this value because we assume it to represent a lower

bound to ensure a smooth motion. Only cell centers between

these two trajectories and within the distance dreach to the

previous waypoint are reachable.

3) Inevitable Collision States: According to [7] an ICS is

a state in which it is not possible to avoid a collision with an

obstacle, no matter what the control input of a robot is. ICS

checks are important because a waypoint must not be added

to a path if it is impossible to avoid a collision after reaching

it. Precise ICS checks require a lot of computational time,

hence, we apply a simple way of determining ICS. Similar

to [5], we check if a predicted state at a waypoint is an ICS

by computing three trajectories with the help of the robot’s

dynamic model for a certain time frame. One trajectory is

for the straight forward motion and two trajectories are the

ones already calculated for the reachability check with the

difference that the trajectories are now determined for the

case of full braking with a = −amax. These trajectories

are depicted in Fig. 4. Sampled points of these trajectories

are checked for collision risks as the waypoint itself with

one difference. If the collision risk for these trajectories is

higher than a probability border, which we for the moment

set to 5% (because the area behind an obstacle that is not
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Fig. 4: ICS check of a potential waypoint

influenced by intersections of other obstacles never exceeds

this probability value), than the considered waypoint is not

safe enough and another waypoint has to be found.

III. EVALUATION

In this section, the evaluation results of our path planning

approach are presented and compared to the PMP algorithm.

Both algorithms were implemented in OpenRAVE1.

A. Kinematics and Parameters

For testing the two approaches in simulations, we assume

as an example that the robot as well as the obstacles move

according to the following simple model:

ẋ =

⎛
⎜⎜⎝

v · cos(γ)
v · sin(γ)

a
γ̇max

⎞
⎟⎟⎠ (2)

with

x = (x1, x2, x3, x4)
T
,

x1 and x2 as positions in x- and y-direction, x3 as speed

and x4 as the yaw angle. The state space model contains the

velocity v, the acceleration a and the yaw angle γ as well

as the maximum angular velocity γ̇max.

In our simulations, we represent obstacles and the robot

with our local path planner as KUKA youBots2. For the

evaluated scenarios, the motion of these robots is constrained

according to the mathematical model 2. The KUKA youBot

omni-directional mobile platform has the following parame-

ters: a length of 0.580m, a width of 0.380m and a maximum

speed of vmax = 0.8m/s. Additionally, we set for our

simulations the maximum acceleration to a constant value

of 0.2m/s2.

The applied sensor is a 2D laser scanner with the following

chosen specifications: a scan time of 0.1s, a sensor range of

5m, an angle interval [-135◦,135◦] and a resolution of 0.35◦.

1OpenRAVE: see http://www.openrave.org, accessed on August 4, 2015
2KUKA youBot: see http://www.youbot-store.com, accessed on August

4, 2015

B. Simulation Results

In this section we present evaluation results for our proba-

bility section algorithm. We compare the proposed algorithm

with the PMP method on scenarios where obstacles move

atypically. Path smoothing was for the moment neglected in

the simulations. Our environment consists of an 8×8 meters

plane limited with walls from every side. The obstacles are

other youbots. The environment is depicted in Fig. 5.

In the scenario of Fig. 5 three obstacles are moving with

a current speed vobstacle = 0.75 · vmax and the robot has

a starting velocity vrobot = 0.5 · vmax. The green lines

starting at each obstacle indicate the assumed future motion

direction due to the observed previous movement. The red

curves show the real future motion of two obstacles (the third

one obstacle2 moves in the assumed direction). Fig. 5(a)

depicts a path planning result of our algorithm. A grid

map overlays the geometry of the maximum possible sensor

field of view. Due to the inclusion of unexpected obstacle

motion, the planned path, which is represented by a yellow

line, avoids obstacle1 though with its current position and

velocity direction there is no collision risk. The local goal

is not within one of the furthest cells in consequence of the

consideration of the safety distance to the field of view’s

limit.

Fig. 5(b) shows the path planned by the PMP algorithm

with a blue line. Negligible branches, which are generated

in a RRT search towards the global goal, are represented

with yellow arms at the path. The chosen path is collision

free considering only the current obstacle states but with the

actual future motion of obstacle1 the robot collides with the

obstacle when reaching the critical waypoint. The reason of

this is the different inclusion of the obstacle motion because

PMP used the predicted trajectories approach presented in [3]

that does not consider atypical obstacle motion. In contrast

to our algorithm, the missing consideration of the robot’s

dynamics effects an avoidable need for velocity reduction.

The unnecessary detours are caused by applying the RRT

with 50 nodes.

In other test cases with more than one obstacle located on

the upper part of the grid map, and with obstacles moving

directly between the robot and the global goal our algorithm

generates a local goal that is closer to the robot than to the

global goal. The reason behind this is if the local goal would

be further afar from the robot and closer to the global goal

the time frame for the probability sections would increase

and thus also the extents of these sections. Hence, obstacles

in the upper field of view part which are moving in path

direction can occupy a local goal with a longer distance to

the robot before our robot is able to reach it. Therefore,

only short collision-free paths are calculated until the robot

escapes the critical situation.

In the tested scenarios, our algorithm always found a safe

path to a local goal as long as it was possible to reach the

local goal. The adaptation of the local goal to environmental

conditions contributes to the planning of a complete path.

The only test cases when the path planner fails to reach the
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(a) (b)

Fig. 5: We compared our approach with the PMP algorithm in the same scenarios. (a) shows the in this paper presented

algorithm and (b) the PMP method.

local goal were when the robot was already at initialization

time in an unsafe situation with obstacles moving all around

and too close to the robot and blocking all possible ways to

the local goal.

IV. CONCLUSIONS

In this paper, we presented a local path planning method

for mobile robots that chooses a local goal within the field

of view according to the environmental situation, consid-

ers future risks of a potential waypoint by applying ICS

checks and includes possible irrational motion of obstacles

by motion probability sections. We tested the algorithm in

the OpenRAVE simulation environment with moving and

static obstacles and compared it to the PMP method. In

simulations, our algorithm always found a safe path to a

local goal. In future works, we have to include the following

issues in our algorithm:

• In the case that no safe waypoint can be added to a path

a state will be determined where the collision risk is as

minimal as possible and where the robot will get the

fewest harm in case of a collision (e.g., the robot turns in

a position that a collision has the fewest consequences).

• Another future work direction is the extension to 3D

cases, e.g., to be capable to plan flight paths for un-

manned aerial vehicles (UAVs).
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Improving Monte Carlo Localization using Reflective Markers:
An Experimental Analysis

Francesco Leofante1,2, Gwénolé Le Moal3, Gaëtan Garcia1 , Patrice Rabaté2

Abstract— Robust localization is a basic requirement for
many applications in mobile robotics. Despite many techniques
have been devised to find solutions to the localization problem,
symmetrical or featureless environments represent a great
challenge for most of the commonly used approaches. In this
paper, we investigate how artificial landmarks can be used to
reduce the chances of failure of the localization process. More
specifically, an experimental analysis of a probabilistic sensor
model designed to employ reflective markers is presented. The
analysis will focus on two central parameters of the model,
several experiments are carried out to evaluate their effect on
the overall localization process.

I. INTRODUCTION

Mobile robot localization is the problem of determining

the pose of a robot relative to a given map of the en-

vironment. Localization plays an important role in nearly

all robotics tasks involving autonomous navigation, unfor-

tunately the pose of a robot can usually not be sensed

directly as most robots do not have noise-free sensors for

measuring pose. Therefore pose-related information must

be inferred from different sources of data (e.g. odometry,

additional sensors etc.), sometimes making it difficult to

achieve precise localization. Moreover, structurally symmet-

rical or featureless environments increase the chances of

failure of these techniques: the ambiguity characterizing such

environments may indeed result in different robot poses

being indistinguishable based on sensor data. In this paper,

we focus on the problem of employing artificial landmarks to

counteract the effects of the aforementioned ambiguity on the

overall localization process. In particular, we wish to propose

an experimental analysis of a sensor model developed to

take into consideration the additional information provided

by reflective markers placed in the environment at known

locations. Our main contribution is to provide experimental

results related to the choice of central parameters of the

model by considering a concrete instantiation of the local-

ization problem in featureless environments. Furthermore,

several experiments are performed, both in simulated and real

environments, to show how the proposed model improves the

overall localization performance.

The remainder of this paper is organized as follows. Sec-

tion II gives a brief overview on several techniques used

to improve localization using landmarks. The localization

algorithm used is described in Section III, which is followed

in Section IV by a formal description of the sensor model

1Institut de Recherche en Communications et Cybernétique de Nantes,
Ecole Centrale de Nantes, 44321 Nantes, France

2Airbus Group Innovations, 44340 Nantes, France
3CIMPA, 44340 Nantes, France

employed. Section V illustrates the results collected from

simulated and real experiments. Finally, Section VI provides

final conclusions and directions for future works.

II. RELATED WORKS

A variety of techniques has been proposed to find solutions

to the robot localization problem. Traditional approaches

typically use natural landmarks present in the environment

in which the robot navigates [1], [2]. These techniques,

which have the advantage of not implying any change in the

environment, are however prone to fail when the environment

does not present suitable characteristics. This is when the use

of artificial landmarks becomes beneficial. Some approaches

consider landmarks which can be uniquely identified, such

as RFID transponders [3], or 2D bar codes on the floor

which can be detected with a camera [4] (see [5], [6] for

other examples). These landmarks are used to guarantee

accurate localization, greatly simplifying the localization

problem. However, the mentioned solutions require specific

landmark coding and the use of identification systems which

are not always available on a robot. Using indistinguishable

artificial landmarks like retro-reflective tape greatly alleviates

this problem, as most robots are equipped with laser range

finders. In [7], an approach is presented to compute a con-

figuration of reflectors that decreases the overall ambiguity

of the environment, thus increasing the robustness of the

localization process. The authors addressed the landmark

placement problem, formulated as the problem of selecting a

subset of landmarks out of a finite set of possible configura-

tions. This represents a fundamental problem, as there exist a

relation between the localization error and the configuration

of the selected landmarks as proven in [8]. The authors of

[7] also developed a sensor model which allows to employ

the reflectivity of the the measured objects, in addition to

their range and bearing, to obtain robust localization. The

sensor model, contrarily to other approaches [9], [10], does

not rely on geometrical reasoning but instead operates in

a probabilistic localization framework. This proves to be

particularly beneficial in applications where occlusions and

other uncontrollable events may make it impossible to use

landmark information in a pure geometrical fashion. While

the authors mostly focussed on the problem of finding an

optimal placement for landmarks, our aim is to investigate

the properties of the model. In this paper, we present the

results of an experimental analysis of the sensor model, and

study the effects it produces on the localization performance.
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III. MONTE CARLO LOCALIZATION

Monte Carlo localization (MCL) [11] has been employed

to estimate the pose of the robot. Given a map of the envi-

ronment, the algorithm estimates the position and orientation

of a robot as this moves and senses the environment. The

algorithm uses a particle filter to represent the distribution of

likely states, with each particle representing a possible state

i.e. the belief bel(xt) is represented by a set of particles
χt = x

[1]
t , . . . , x

[M ]
t . The algorithm starts with a given dis-

tribution of particles over the configuration space. Whenever

the robot moves, particles are shifted to predict the new state

after the movement. Whenever a new sensor reading is avail-

able, particles are resampled based on recursive Bayesian

estimation. Different sensor models have been implemented

to compute the likelihood of measurements, likelihood field

model [12], [13] has been used here. According to this

model, in order to evaluate how well the actual sensed

data correlate with the predicted state, the end points of a

sensor scan zt are first projected into the global coordinate

space of the map. Then, for each measurement coordinate

(xzk
t
, yzk

t
)T , the likelihood of measurement zkt is computed

using the distribution

phit(z
k
t ) ∼ N (dhit, σ

2
hit) (1)

based on the distance dhit between the end point of

the measurement zkt and the closest obstacle on the map.

The model assumes two additional sources of uncertainty

i.e. failures, given by the point-mass distribution pmax and

unexplained random measurements, modelled by the uniform

distribution prand. The three distributions are finally com-

bined together to compute the importance factor of each

particle i.e. the likelihood of the estimate they carry.

MCL, in its basic implementation, solves the global locali-

sation problem but cannot recover from robot kidnapping, or

global localisation failures [12]. This is a consequence of the

fact that as a position is acquired, particles at places other

than the most likely pose gradually disappear. After some

iterations, particles only survive near a single pose, and the

algorithm is unable to recover if this pose happens to be

incorrect.

This problem can be solved by injecting a number of

random particles based on the estimate of localization perfor-

mances. One possible way to implement this is to monitor the

probability of sensor measurements p(zt | z1:t−1, u1:t,m)
and relate it to the average sensor probability . This quantity

can be approximated by the average of importance factor (by

definition):

p(zt | z1:t−1,m) =
1

M

M∑
m=1

w
[m]
t (2)

The estimate is usually smoothed by averaging it over

several time steps, since there exist multiple reasons why the

measurement probability may be low, besides a localisation

failure. For this reason, a short-term average of the measure-

ment likelihood is maintained, and related to the long-term

average when determining the number of random samples to

add.

IV. THE SENSOR MODEL

The sensor model presents similarities to the one devel-

oped by the authors of [7], that is a variant of the likelihood

field model introduced in Section III. However, contrarily to

the model of [7],we decided to implement the sensor model

in two steps to have more control on each phase of the

localization process.

distance [m]

N
(d

b
,σ

2 b
)

0 db1 db2

p1

p2

Fig. 1: In the second update step, a new coefficient is computed if markers
are detected. The smaller the distance, the more likely the measurement is.

First, the likelihood of each range measurement is com-

puted using the distribution

phit(z
k
t ) ∼ N (dhit, σ

2
hit) (3)

where dhit is again the distance between the end point of

the measurement zk and the closest obstacle on the map. This

likelihood is used to perform a first update of the weights of

the particle cloud. Next, a correction factor is applied to the

weights of each particle according to the distribution

pb(z
k
t ) ∼ N (db, σ

2
b ) (4)

where db represents the distance to the marker which is the

closest, as seen in figure 1. Here N represents a normal

distribution with mean μ and standard deviation σ.

The resulting likelihood is therefore computed as follows:

p(zt | x,m) =
N∏

k=1

phit(z
k)

N∏
k=1

γpb(z
k) (5)

where γ denotes a coefficient used to weight the importance

of the second update step.

V. EXPERIMENTAL EVALUATION

In order to evaluate the performances of the model con-

sidered, experiments were conducted in simulation and on a

real robot. Different set-ups have been chosen, with a special

focus on featureless and highly symmetrical environments.

As already stated, our purpose was to carry out a thorough

study of the sensor model introduced in Section IV. To

this end, parameters γ and σb have been studied. Different

combinations have been tested in order to assess how these

parameters influence the localization process.
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A. Simulation

A simulation has been implemented using the V-REP [14]

simulation environment. The software allowed to build a

fully operational simulation with which we could carry out

different tests, each time focussing on a specific parameter.

The sensors used for the simulation were two Hokuyo

URG 04LX laser range scanners, modified so as to return

the reflectivity of the measured objects. The simulator imple-

ments laser models by means of proximity sensors or vision

sensors, as physical simulations of light are not supported. In

particular the model we used is based on proximity sensors,

which can return the ID of the detected object. Given this,

we simply decided what surface property to use depending

on the object ID returned. As for the landmarks, we used

round markers with a diameter of 100mm.

The robot can be controlled using the ROS Navigation

packages [15], localization was performed using the ROS

implementation of MCL, called Augmented MCL (AMCL).

The modifications of section IV have been applied to the

general algorithm. The simulator provides built-in methods

to output odometric data for the robot’s pose and velocity,

together with their covariance matrices.

Accurate occupancy maps of the simulated environments

have been obtained using HECTOR SLAM techniques [16].

A preliminary evaluation of the sensor model was carried

out using simulations in which the robot had to move

along a fixed trajectory in the environment . The error on

the final position was recorded, for different values of the

parameters γ and σb, and different parameter choices were

then compared.

Simulation number

E
rr

o
r

[m
]

Fig. 2: Error on the final pose obtained in different simulation runs. Different
values for γ and σb result in errors of different amplitudes. The model
always produced better results when compared to traditional techniques.

As expected, the use of artificial landmarks improves the

localization performance. Figure 2 shows that the average

error obtained using one reflector is always lower than the

one given by the traditional likelihood field model (i.e.

without markers). Concerning the choice of the parameters,

it is possible to notice that high precision is obtained when

low values of σb are selected. This is normal as a sharper

Gaussian in the sensor model removes more particle that are

far from the real position. Such high degree of precision

could be tested since experiments were run in a completely

controlled environment, where uncertainties were kept to a

minimum. Increasing values of the weighting coefficient γ
led to a decrease in accuracy, which became more significant

when higher σb values were chosen. This is normal as more

particles survive when the Gaussian is wider, and their weight

results increased by γ even if their estimate is not accurate.

B. Real Experiments

The sensor model has also been tested using real data

gathered with an experimental mobile robot equipped with

two SICK S300 Expert CMS laser range finders. An oc-

cupancy map of the environment was built, again using

HECTOR SLAM. Experiments were carried out in a corridor

of approximately 12 × 2m size. In the following, the pose

of the robot is defined in terms of (x, y, θ).

Three different scenarios have been considered:

a) The particle filter is initialized with a Gaussian distri-

bution centred in (6.10,−14.90, 0), the real pose of the

robot. Here σx = 0.5, σy = 0.5 and σθ = π
12 .

b) The particle filter is initialized using a mixed distribution,

with three Gaussian distributions centred respectively in

(6.10,−14.90, 0) , (6.70,−14.90, 0) , (7.40,−14.90, 0),
all of them with σx = 0.05, σy = 0.1 and σθ = 0.1.

The first cluster (i.e. the one centred in (6.10,−14.90, 0))
represents the actual starting point of the robot.

c) The particle filter is initialized as above, but the

actual starting position of the robot is actually

(12.60,−14.90, 0) i.e. we initialize with an initial error

on x of 6m.

Figure 5 shows the experimental setup described above.

When present, beacons have been placed at (9.53,−13.51)
and (9.23,−15.57), as shown in figure 6.

To evaluate the model, we moved the robot along fixed

trajectories on the major axis of the corridor (forward motion

for cases 5a, 5b and backward motion in case 5c). The

localization algorithm was executed 10 times per set of

parameters, using 10000 particles initially distributed as

described before. Odometry was used as ground truth to

identify the correct pose of the robot at each iteration of the

algorithm. When studying cases 5a and 5b, AMCL managed

to provide good results both with and without reflective

markers. However, we could still notice improvements in

the localization performances obtained when reflectors were

used, as particles are more quickly converging to the correct

estimate. An analysis of the effects of different parameter sets

on the the average localization error during position tracking

has been carried out. Even in cases where the standard

likelihood field model provided good results, the proposed

approach led to improvements as shown in figure 3.
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Fig. 3: Case 5a - Average localization error with and without reflective
markers, and for different values of γ and σb. The marker is visible until
iteration 15 approximatively.

Case 5b was used to gain a better understanding of the

effects of the second update step introduced by the model

(as explained in section IV). The evolution of the weights of

the three particle clusters was monitored throughout several

experiments. A performance index rc has been defined as:

rc =
ωfirst

ωsecond
(6)

where ωfirst is the weight of the cluster centred in the

correct position, and ωsecond is the second most weighted

cluster. The presence of landmarks increased the confidence

on the estimate as shown in figure 4.

Number of iterations
5 10 15 200

100

101

r c

Fig. 4: Case 5b - Confidence in the estimate given by the filter.

It is possible to notice that a higher number of markers

does not always result in better performances. Previous

works suggest that parameters such as the number of markers

and their location heavily influence the localization perfor-

mance. If these parameters are not tuned properly (i.e. if

the placement of landmarks is not optimal), the ambiguity

of the environment may not be successfully reduced. This

ultimately results in performances which are comparable to

the ones obtained without markers.

When we considered a wrong initial estimate instead

(case 5c), AMCL failed when no additional information was

provided. Adding markers to the process helped improving

the performances, allowing a significant decrease in the error.

Tables I and II show the error on the final position, obtained

using one marker.

Error on x (m) Mean Median STD Min. Value Max. Value
No markers 5.17 4.59 3.50 0.29 9.92
One marker 1.96 0.81 2.41 0.06 13.17

TABLE I: Case 5c - Statistics on the x axis

Error on y (m) Mean Median STD Min. Value Max. Value
No markers 0.57 0.18 0.82 0.01 2.66
One marker 0.25 0.25 0.15 0.03 0.50

TABLE II: Case 5c - Statistics on the y axis

Even though the robot was not able to recover completely,

it is possible to see that the use of reflective markers helped

reducing the localization error induced by a wrong initial

estimate. In particular, table I shows that the average error

on the x axis decreases from 5.17m when no beacons

are used, to 1.96m when one beacon is introduced. This

value would be even lower if few outliers were discarded:

the median error is indeed 0.81m, against 4.59m obtained

without beacons. In both cases, localization provided good

results on the y axis, as seen in table II.

VI. CONCLUSIONS

In this paper a study has been proposed on a sensor model

which allows to use indistinguishable artificial landmarks to

reduce the overall ambiguity of featureless environments.

To this end, a simulation has been developed to study the

performances of the model, for different configurations of the

landmarks, and for different parameter values. We evaluated

the model for various environments using real data. The

results demonstrate that the model yields to considerable

improvements in the localization performance. We expect

that a more sophisticated sensor model employing laser

readings to their full potential could provide more robust

result. For instance, this could be done by incorporating

information related to the angle of incidence of the laser

at the moment of hitting the marker.
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Fig. 6: Placement of the markers in the map

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 

 
 

193



[8] Sutherland, K.T.; Thompson, W.B., ”Inexact navigation,” Robotics
and Automation, 1993. Proceedings., 1993 IEEE International Con-
ference on , pp.1,7 vol.1, 2-6 May 1993.

[9] Salas, J.; Gordillo, J.L., ”Placing artificial visual landmarks in a
mobile robot workspace,” in Proc. of the Ibero-American Conf. on
Artificial Intelligence (IBERAMIA), 1998.

[10] Sinriech, D.; Shoval, S., ”Landmark configuration for absolute posi-
tioning of autonomous vehicles,” IIE Transactions, vol. 32, pp 613-
624, 2000.

[11] Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S., ”Monte Carlo localiza-
tion for mobile robots,” Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on , vol.2, pp.1322,1328, 1999.

[12] Thrun, S.; Burgard, W.; Fox, D., ”Probabilistic Robotics,”, MIT Press,
2005.

[13] S. Thrun, ”A probabilistic online mapping algorithm for teams of
mobile robots,” International Journal of Robotics Research, vol. 20,
no. 5, pp. 335-363, 2001.

[14] Rohmer, E.; Signgh S.P.N.; Freese, M., ”V-REP: a Versatile and
Scalable Robot Simulation Framework,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013.

[15] ROS Navigation Stack, http://wiki.ros.org/navigation. Last accessed
June, 18 2015.

[16] A Flexible and Scalable SLAM System with Full 3D Motion Estima-
tion, S. Kohlbrecher and J. Meyer and O. von Stryk and U. Klingauf,
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR) 2011.

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

194



2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session V 

Sensing

Keynote speaker: Christian Laugier (INRIA, France)
Title: Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous 
Cars

Title: 360 degre 3d ground surface reconstruction using a single rotating camera 
Authors: Motooka, Sugimoto, Okotumi, Shima 

Title: Towards Characterizing the Behavior of LiDARs in Snowy Conditions 
Authors: Sebastien Michaud Jean-Francois Lalonde, and Philippe Giguere 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

195



2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

196
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Session V 
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(INRIA, France) 

Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars 

Abstract: This talk addresses both the socio-economic and technical issues which are behind the development of 
the next generation of cars. These future cars will both include enhanced Advanced Driving Assistance Systems 
and Driverless Car functionalities. In the talk, new Bayesian approaches for Autonomous Vehicles will be 
presented, with an emphasis on Situation Awareness, Collision Risk Assessment, and Decision-making for safe 
navigation and maneuvering. It will be shown that Bayesian approaches are mandatory for developing such 
technologies and for obtaining the required robustness in presence of uncertainty and complex traffic situations. 
Results obtained in cooperation with Toyota and with Renault will also been presented.

Biography: Dr. Christian LAUGIER is first class Research Director at Inria.  His current research interests mainly 
lie in the areas of Motion Autonomy, Intelligent Vehicles, Embedded Perception, Decisional Architectures and 
Bayesian Reasoning. He is a member of several international scientific committees and he has organized or co-
organized numerous IEEE workshops and major conferences in the field of Robotics. In particular he has been 
General Chair, Program Chair or Program co-Chair of the international conferences IEEE/RSJ IROS’97, IROS’00, 
IROS’08, IROS’10, IROS’12, FSR’07 and ARSO’15. He is co-chair of the IEEE RAS Technical Committee on 
“Autonomous Ground Vehicles and Intelligent Transportation Systems”, and he is also member of the Steering 
Committee and Senior Editor of the IEEE Transactions on Intelligent Vehicle. Christian Laugier has co-edited 
several books and handbooks in the fields of Robotics and Intelligent Vehicles, and he also co-edited several 
special issues in high impact Robotics journals. He recently brought recognized scientific contributions and 
patented innovations to the field of Perception & Decision for Autonomous Robots and Intelligent Vehicles. He is 
the recipient of several awards, including the IEEE/RSJ Harashima award 2012. He has also co-founded four start-
up companies. 
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Content of the talk

Socio-economic context & Addressed problem

Bayesian Perception (Key Technology 1)

Bayesian Risk Assessment & Decision-making (Key Technology 2)

Conclusion & Perspectives
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The car ?

Automobile plays a big role in our human society
A Social & Industrial revolution in the 20th century

For most of cars owners it’s more than that !
Synonymous to motion freedom

Often considered as a Precious Personal 
Goods & showing a particular Social  position

Often synonymous to Driving Pleasure 
(including speed feeling)… but this is 
progressively changing because of rules 
enforcements

Look / Performances & Comfort / Safety 
are more and more considered as important 
criteria ….

A technological machine designed for 
enhancing individual Mobility ? 

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
Keynote talk, PPNIV 7Workshop , IEEE/RSJ IROS 2015, Hamburg, September  28h 2015 4

Traffic congestion

Pollution

Parking problems

Accidents

But the reality is somewhat different !
in particular in cities
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Intelligent Mobility & Next Cars Generation
A drastic change of the Societal & Economic context

Huge expected growth of the number of Vehicles (~3 billions in 2050)  & of People in 
cities (~75% of population in 2050)

Human Society is no more accepting all the nuisances & the incredible socio-economic 
cost of traffic accidents => 50 millions injuries & 1.3 million fatalities/Year in the world [1]
… 93% of road accidents are caused by human errors !

Driving Safety & Efficiency are now becoming major issues for both governments
(regulations & supporting plans) and the automotive industry (technology & commercial 
issues)

Growth of ADAS market: $16 billions at the end of 2012 …  $261 billions by 2020  [2]

New Technologies can strongly help for (e.g. for ADAS & Autonomous Driving)
Constructing Cleaner & more Intelligent cars => Next cars generation 
Developing Sustainable Mobility solutions for smart cities  =>  Cybercars

[1] G.Yeomans. Autonomous Vehicles, Handling Over Control: Opportunities and Risks for Insurance. Lloyd’s 2014
[2] ABI Research on Intelligent Transportation Systems and Automotive Technologies Research Services
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Thanks to the last decades advances in the fields of  ICT & Robotics,  Smart Cars & 
ITS are gradually becoming a reality
=> Driving assistance  &  Autonomous driving,  Passive & Active Safety systems,  V2X 
communications, Green technologies for reducing fuel consumption & pollution  … and also 
significant advances in Embedded Perception & Decision-making systems

Legal issue is also progressively addressed by governmental authorities
=>  June 22, 2011:  Law Authorizing Driverless Cars on Nevada roads … and this law has also 
been adopted later on by California and some other states in USA

=> Several other countries (including Europe, France, Japan …) are also currently analyzing 
the way to adapt the legislation to this new generation of cars

The good news
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Still some open questions: Why  driverless cars ? Intelligent co-Pilot  v/s  Full Autonomy ? 
Acceptability ? Legal issue ? Driver / Co-Pilot  Control transitions ?

Google Car  2011
=> 140 000 miles covered 

Toyota 
Automated Highway Driving Assist

=> Demo Tokyo 2013, Product 2016 ?

But also most of the major 
Automotive Constructors !

e.g.

Tesla (90% Autonomous in 2016)

Volvo, Mercedes Class S, BMW
….

Horizon 2020-30 ?

Nissan promises a 
driverless car for 2020

Carlos Ghosn
Renault /Nissan

Autonomous car:  An industrial challenge for tomorrow ! 
French Minister of Industry & Carlos Ghosn (CEO Renault-Nissan)

Automotive industry
Expected evolution from ADAS to Driverless Cars?

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
Keynote talk, PPNIV 7Workshop , IEEE/RSJ IROS 2015, Hamburg, September  28h 2015 8

Today talk: Addressed Problem & Challenges

ADAS & Autonomous Driving

Safe & Socially Compliant Vehicle Navigation
in Open & Dynamic Human Environments

Focus on Perception & Risk Assessment & Decision-making 

Situation Awareness & Decision-making
in complex situations

Anticipation & Prediction

Place Charles de Gaulle (Paris), every day Road Safety campaign, France 2014

Main features
Dynamic & Open Environments
Incompleteness & Uncertainty (Model & Perception)
Human in the loop (Social & Interaction Constraints)
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Key Technology 1: Bayesian Perception

Main difficulties
Noisy data, Incompleteness, Dynamicity, Discrete measurements + Real time !

Approach: Bayesian Perception
Reasoning about Uncertainty & Time window (Past & Future events)

Improving robustness using Bayesian Sensors Fusion

Interpreting the dynamic scene using Semantic & Contextual information

Characterization of the 
Safe navigable space (local)

Scene interpretation
=> Using Context & Semantics

Sensors Fusion
=> Mapping & Detection

Embedded Perception
=> Continuous monitoring  the 

dynamic environment

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
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Bayesian Perception : Basic idea

Sensors Observations
Lidar, Stereo camera, IMU …

Environment Model
• Sensor Fusion
• Occupancy grid integrating uncertainty
• Velocities representations
• Prediction models

Bayesian
Perception

pedestrian

car

Occupancy probability + Velocity probability
+ Motion prediction model
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A new framework:  Dynamic Probabilistic Grid
A clear distinction between Static & Dynamic parts

Processing Dynamic Environments using DP-Grids (Occupation & Velocity Probabilities)

Bayesian Inference + Probabilistic Sensor & Dynamic Models (Robust to sensing errors & occultation)

Highly parallel processing (Hardware implementation : GPU, Many-core architecture, SoC) 

Occupancy & Velocity 
Probabilities

Bayesian Filtering
(each time step)

25 Hz

Sensing

A Key Technology:
Bayesian Occupancy Filter (BOF)

Velocity flow 
(particles)

Patented by Inria & Probayes,                 
Commercialized by Probayes

Used by:  Toyota,  Denso,  Probayes,   
IRT Nanoelec / CEA
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Bayesian Occupancy Filter (BOF): Outline

• Estimate Spatial occupancy

• Analyze Motion Field (using Bayesian filtering)

• Reason at the Grid level (i.e. no object segmentation 
at this level)

Camera view
Resulting
Occupancy Grid

Extracted
Motion field

Sensors data fusion
+

Bayesian Filtering

Main features:

Occupancy Probability (POcc)
+

Velocity Probability (Pvelocity)

Grid update
=> Bayesian Filter 

Sensing
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Laser scanners (left + right) Joint Occupancy Grids

Data fusion: The joint Occupancy Grid

• Observations Zi are given by each sensor i (Lidars, cameras, etc)

• For each set of observation Zi , Occupancy Grids are computed: P(O | Zi )

• Individual grids are merged into a single one: P(O | Z)

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
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Bayesian Filter 
(25 Hz)

Observations

Instantaneous OG Filtered OG (includes motion field)

Taking into account dynamicity:
Filtered Occupancy Grid (Bayesian filtering)

• Filtering is achieved through the prediction/correction loop (Bayesian Filter). 
It allows to take into account grid changes over time

• Observations are used to update the environment model

• Update is performed in each cell in parallel (using BOF equations)

• Motion field is constructed from the resulting filtered data

Motion field is represented in orange color
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Variables:
• C : current cell
• A : antecedent cell, i.e. the cell from which 

the occupancy of the current cell comes 
from

• O : occupancy of the current cell C
• O-1 : previous occupancy in the antecedent 

cell
• V : current velocity
• V-1 : previous velocity in the antecedent
• Z : observations (sensor data)

Objective:
Evaluate P(O V | Z C) : Probability of
Occupancy & Velocity for each cell C, 
Knowing the observations Z and  the cell 

location C in the grid

Bayesian Occupancy Filter – Formalism

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
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Bayesian Occupancy Filter
How to theoretically compute P(O V | Z C) ?

Sum over the possible antecedents 
A and  their states (O-1 V-1)

The joint probability term can be re-written as follows: 

P(C A O O-1 V V-1 Z) =  P(A)   P(O-1 V-1 | A)    P(O V | O-1 V-1)
P(C | A V)   P(Z | O C)

Joint probability => used for the update of P(O V | Z C)

P(A) : Selected as uniform (every cell can a priori be an antecedent)

P(O-1 V-1 | A) : Result from the previous iteration
P(O V | O-1 V-1) : Dynamic model
P(C | A V) : Indicator function of the cell C corresponding to the “projection” in the grid 

of the antecedent A at a given velocity V
P(Z | O C) : Sensor model
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• Dynamic part (particles) is “projected” in the
grid using motion model (motion prediction)

• Both Dynamic & Static parts are expressed in the
new reference frame (moving vehicle frame)

• The two resulting representations are confronted
to the observations (estimation step)

• New representations (static & dynamic) are
jointly evaluated and particles re-sampled

Main steps in the updating process t-1

t

Static part Dynamic part

Bayesian Occupancy Filter
How to compute P(O V | Z C) in practice (HSBOF process)
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Underlying Conservative Prediction Capability
=> Application to Conservative Collision Anticipation

Autonomous 
Vehicle (Cycab)

Parked Vehicle 
(occultation)

Thanks to the prediction capability of the BOF technology, the Autonomous Vehicle “anticipates” the 
behavior of the pedestrian and brakes (even if the pedestrian is temporarily hidden by the parked vehicle)
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Implementation & Experimentation

Toyota Lexus Renault Zoé

Manycore
SThorm

GPU
Nvidia Jetson

HSBOF & 2 Lidars

Miniaturization
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Bayesian Sensor Fusion (Inria / Toyota Lexus)
CPU+GPU+ROS   /  Stereo + 2 Lidars + GPS + IMU

[Perrollaz et al 10] [Laugier et al ITSM 11]
IROS Harashima Award 2012

2 Lidars IBEO Lux

Stereo camera 
TYZX

Stereo Vision Bayesian Sensor Fusion 
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• Data association is performed as lately as possible
• More robust to Perception errors & Temporary occultation

Bayesian Sensor Fusion + Detection & Tracking

Fast Clustering and Tracking Algorithm (FCTA)

[Mekhnacha 09, Laugier et al  ITSM’11]

Detected &Tracked 
Objects

Stereo-vision (U-disparity OG+ Road/obstacle classif.)

Cartesian
Occupancy 
Grid

Road  (Navigable Space) 

Possible  
obstacles 

Road  Obstacles 

Objects classification

Laser Fusion (8 layers, 2 lasers)

Grid & Object level processing architecture

Multi-Lane tracker

Motion Detection
=> Dynamic grid filtering using
Motion data (IMU + Odometry)

Reducing false detections

HSBOF

[Perrollaz et al 10-12]

[Makris et al 12]

[Qadeer et al 12, Negre et al 14]
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Main difficulties
Uncertainty, Partial Knowledge, World changes, Human in the loop + Real time

Approach: Prediction + Risk Assessment + Bayesian Decision
Reasoning about Uncertainty & Contextual Knowledge (History & Prediction)

Avoiding Pending & Future collisions (Probabilistic Collision Risk at  t+ )

Decision-making by taking into account the Predicted behavior of the observed 
mobile agents (cars, cycles, pedestrians …)  &  the Social / Traffic rules

Key Technology 2: Risk Assessment & Decision
=> Decision-making for avoiding Pending & Future Collisions

Complex dynamic situation Decision-making for Safe Navigation
=> Safest maneuver to execute ?

Alarm / Control

Human Aware Situation Assessment
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Short-term collision risk (Grid level, Conservative)

Detect “Risky Situations” a few seconds ahead (0.5 – 3 s)
Risky situations are localized in Space & Time
Conservative motion prediction in the grid (Particles & Occupancy)
Collision checking with Car model (shape & velocity) for every future 

time steps (horizon t+ ) s    => Precrash
= 1 s      => Collision mitigation
= 1.5 s  => Warning / Braking

1s before the crash

Static Dynamic Risk /Alarm

Objective:

System outputs:

C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
Keynote talk, PPNIV 7Workshop , IEEE/RSJ IROS 2015, Hamburg, September  28h 2015 24

Short-term collision risk (Grid level, Conservative)

Static obstacle

Dynamic cell

Car model

Projecting over time the estimated scene & car model

Approach (using conservative prediction)
Projecting over time the Estimated scene (Particles & Occupancy) & Car model (Shape & 
Velocity)   => Apply a conservative motion model (using current car motion data)

Collision assessment for every next time step

Integration of Risk over a time range [t   t+ ]
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Short-term collision risk – Experimental results

Crash scenario on test tracks
=> Almost all collisions predicted before the 

crash  (0.5 – 2 s before)

Ego Vehicle

Other Vehicle
Mobile Dummy

Alarm !

Urban street experiments
=> Almost no false alarm (car, 

pedestrians…)

Alarm !

video
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Short-term collision risk – Crash scenario 

1s before 
crash

Ego Vehicle

Other Vehicle
Mobile Puppet

Video Static Dynamic Risk
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Generalized Risk Assessment (Object level) 
=> Increasing time horizon  & complexity using semantics

Understand the Current Situation  &  its likely Evolution
Evaluate the Risk of future Collision for Safe Navigation Decision
Highly structured environment & Traffic rules make prediction more easy

Context & Semantics
(History & Space geometry & Traffic rules)

+
Behavior Prediction

(For all surrounding traffic participants)
+ 

Probabilistic Risk Assessment

Previous 
observations

Highly structured environment + Strict traffic 
rules => Prediction more easy

Decision making at road intersections 
False alarm !

Conservative TTC-based crash 
warning is not sufficient !
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[Tay thesis 09] [Laugier et al 11] Patent Inria & Toyota & Probayes 2010

Behavior prediction & Risk
Probayes & Inria & Toyota

Gaussian Process + LSCM

28

Behavior-based Collision risk (Object level)
Trajectory prediction & Collision Risk Assessment 

Video

Behavior modeling & learning
+

Behavior Prediction

From behaviors to trajectories

Probabilistic collision risk
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Behavior-based Collision risk (Object level)
Intention  & Expectation approach

Human in the loop & Interdependent  behaviors
Detect drivers errors & Colliding behaviors
Risk = Comparing maneuvers Intention & Expectations  (using DBN)

Intersection:
Complex Geometry & Traffic context
Large number of Vehicles & Possible Maneuvers
Vehicle behaviors are Interdependent
Human Drivers are in the loop !
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A Human-like reasoning paradigm  => detect Drivers Errors & Colliding behaviors
Estimating “Drivers Intentions” from Vehicles States Observations (X  Y    S  TS)          
=> Perception or V2V communication
Inferring “Behaviors Expectations” from Drivers Intentions & Traffic rules
Risk = Comparing Maneuvers Intention & Expectation using a “Dynamic Bayesian 

Network”
=> Taking traffic context into account (Topology, Geometry, Priority rules, Vehicles states)
=> Digital map obtained using “Open Street Map”

Blind rural intersection 
(near Paris)

30

Behavior-based Collision risk (Object level)
Intention  & Expectation approach

Risk 
model

Traffic 
Rules

Intention model Expectation model

[Lefevre thesis 13] [Lefevre & Laugier IV’12, Best student paper]
Patent Inria & Renault  2012  (intersections) + Patent Inria & Berkeley 2013 (generalization)
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Current & Future work

Manycore
STHORM

GPU
Nvidia Jetson

Miniaturization & Improvements
Current  implementation

Approaches for Software & Hardware integration (Embedded Perception)
=> Reduce drastically Size, Weight, Energy consumption, Cost ... while improving Efficiency

CPU (2006)       GPU (2010)         Manycore & GPU low power (2014)

SoC (2018-20) Dedicated Hardware & Software
integration (2017)

Technologies for Autonomous Driving (Perception + Decision + Control + Learning)
PhD on “Driving Decisional Process” => Coop. Berkeley & Renault 
PhD on “Models & Algorithms for Autonomous Driving”  => Toyota

=> Coop. CEA LETI (common projects & PhD student)

Equipped Toyota Lexus hybrid Equipped Renault Zoé electric
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Conclusion & Perspectives
Intelligent Cars (ADAS & Future Driverless Cars)  are gradually 

becoming a reality

Bayesian Perception & Situation Awareness & Bayesian Decision are key
Technologies for dealing with uncertainty & addressing the Challenge of 
Autonomous Vehicles

Several implementations on commercial cars & Tests in realistic traffic 
situations have successfully been performed

…. However system Robustness & Efficiency have still to be improved, in 
particular when human is in the loop (Share control & Interaction)

Parking Assistant  (2004) Fully Autonomous Driving (2025-30 ?)Volvo Pedestrian avoidance system (2011)

• Camera & Radar detection
• Automatic braking (below 25km/h)

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

214



C. LAUGIER  – “Embedded Bayesian Perception & Risk Assessment for ADAS & Autonomous Cars”
Keynote talk, PPNIV 7Workshop , IEEE/RSJ IROS 2015, Hamburg, September  28h 2015 33

IEEE RAS Technical Committee on “AGV & ITS”
Numerous Workshops & Special issues since 2002

March 2012

C. Laugier:  Guest Editor Part 
“Fully Autonomous Driving”  

March 2012

Winter 2011
Vol 3, Nb 4

Guest Editors:  
C. Laugier & J. Machan

July 2013

2nd edition planned  for Dec 2014
Significant contribution from Inria

C. Laugier Guest  co-author for IV Chapter

Springer,  2008 Chapman & , Hall / CRC, Dec. 2013

Thank You    - Any questions ?

christian.laugier@inria.fr  - http://emotion.inrialpes.fr/laugier 
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360-Degree 3D Ground Surface Reconstruction
Using a Single Rotating Camera*

Kouma Motooka1, Shigeki Sugimoto1, Masatoshi Okutomi1, Takeshi Shima2

Abstract— We propose a method for reconstructing 360-
degree 3D ground surfaces in high precision from images
captured by a single rotating camera, assuming that the camera
is mounted at an off-centered position on a construction
equipment whose upper body is rotatable around a single
axis (e.g. power shovel). We estimate a regular-grid ground
surface, whose coordinate system is determined from the
camera positions estimated by a standard structure from motion
(SfM) technique. To produce high-quality ground surfaces, we

rst initialize the ground surface by tting to the 3D points
from SfM, then we minimize the variance of pixel values over
the whole ground surface, where all contributable pixels are
treated equally for the measurements, while removing outlier
pixels which usually appear due to self-shadows and lens- ares
under shiny weather conditions. The validity of the proposed
method is demonstrated through experiments using synthetic
and real images.

I. INTRODUCTION

Estimating 3D ground surface is an important task for
heavy machinery working in construction sites, for measur-
ing earth volumes and detecting traversable areas. The 360-
degree surrounding ground surface is often required for the
machinery which is able to move in any direction by using
two caterpillars. Considered with the tough works and harsh
conditions in construction elds, the measurement device
should be as simple and easy for maintenance as possible.

In this paper we propose a method for reconstructing a
360-degree 3D ground surfaces from the images captured
by a single rotating camera, assuming that the camera is
mounted at an off-centered position on a heavy construction
equipment whose upper structure can rotate more than 360
degrees in a single axis (e.g. power shovel with hydraulic
swivel joint), as shown in Fig.1.

The main contribution of this paper lies in our robust
direct ground surface reconstruction stage for producing a
high quality ground surface, represented by a ne regular
mesh for generating a digital elevation map (DEM) with
surface normals [16]. We minimize the variance of pixel
values over the ground surface, where every pixel contributes
to the measurements while every image is treated equally.
However, the direct reconstruction method is adverse to
outlier pixels engendered by self shadows and lens ares,
which appear quite often when we rotate a camera in shiny

∗This work was partly supported by the Grants-in-Aid for Scienti c
Research (No. 25240025) from JSPS.

1Dept. of Mech. and Control Eng., Graduate School of Sci. and Eng.,
Tokyo Institute of Technology. Ōokayama, Meguro-ku, Tokyo, 152–8550
Japan {kmotooka,shige,mxo}@ok.ctrl.titech.ac.jp

2Hitachi Research Laboratory, Hitachi Ltd. Ōmikacho, Hitachi-shi,
Ibaraki, 319–1292 Japan takeshi.shima.rb@hitachi.com

Fig. 1. Overview.

outdoor conditions. We effectively detect the outlier pixels
by taking the median of the pixel values instead of the
mean value in the variance computation. To make this direct
method feasible, we rst estimate an initial ground surface
by tting to the sparse 3D points obtained by a standard
structure from motion (SfM) technique with loop closing.
Then the surface is robustly re ned by a hierarchical meshing
technique in the direct reconstruction stage. The validity of
the proposed method is demonstrated through experiments
using synthetic and real images.

II. RELATED WORKS
The methodology for panoramic (360-degrees) 3D re-

construction has been extensively studied in the literature,
including methods using multiple omnidirectional cameras
(e.g. [15], [18]) and using a rotating standard or specially de-
signed camera(s) (e.g. [8], [11], [17]). For our scenario where
the imaging system is mounted on a construction equipment
which is exposed to chronic vibrations in daily works, we
need a sturdy and easy-to-calibrate standard imaging system
instead of specially-designed naive one. Unfortunately, the
previous works using a rotating standard camera (e.g. [17])
have adopted traditional window matching techniques for
front-parallel surfaces, not taking the highly slanted ground
surfaces into consideration.

On the other hand, calibrated binocular stereo cameras
are widely used to estimate dense depth maps for indoor
and outdoor scenes including ground surfaces (e.g. [1], [6],
[20]). In exploration scenarios, stereo image sequences are
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successfully used in SLAM (simultaneous localization and
mapping) for incrementally building ground metric maps [2],
[10], [14], [16]. In our case a possible choice is to apply a
stereo-SLAM technique to the rotational camera motion us-
ing commercially available compact stereo system. Although
a synchronized stereo system is pro table for incremental
3D map estimation, the images are actually redundant in
the batch processing for the images from rotating stereo
cameras, because the maximum baseline length is determined
by the camera rotation diameter rather than the baseline
length of the compact stereo system [8]. Otherwise the stereo
calibration of a wide-baseline stereo system is troublesome.

Recovering camera poses and 3D points from image
collections becomes a feasible task according to the success
in the recent developments of SfM techniques [12], [19],
[21]. This technique is followed by dense multiview stereo
(MVS) reconstruction [5] and surface model tting [9] for
reconstructing 3D surfaces. Instead of taking separated steps
after SfM, our approach directly estimates the ground surface
represented by the vertex heights of the regular grid mesh
drawn on a level plane. In addition, other than the standard
approach in the recent MVS technique, where a special
reference image is selected for computing pairwise error
criteria (e.g. squared pixel value differences or normalized
cross correlation), we adopt the minimization of pixel value
variance [4], where every image pixel equally contributes
to the measurements [3]. However, in our scenario where
the camera rotates 360 degrees in outdoor environments, we
cannot avoid the camera’s self-shadows and lens ares which
the recent SfM-MVS framework does not take into careful
consideration.

III. 3D GROUND SURFACE RECONSTRUCTION
USING ROTATING CAMERA

We assume that the camera is mounted on the rotatable
upper structure of a construction equipment and that the
camera intrinsic parameters, the camera rotation radius, and
the height of the camera mount position are known.

Our method is composed of four steps as shown in Fig.2.
In the rst step, we apply a standard SfM technique for
estimating the camera positions and 3D points. In the next
step, we t the estimated camera positions to a 3D circle,
whose rotation radius gives the scene absolute scale. We
also set a reference (ground) coordinate system by using the
position of the estimated camera rotation circle, followed
by setting a regular mesh composed of piecewise triangular
patches on the x-y plane in the reference coordinate system.
Then the 3D points estimated by SfM are used for estimating
the regular-grid ground surface which is parameterized with
the vertex heights of the regular mesh, z = (z1, z2, · · · , zV ).
Finally, in the last step, we re ne the ground surface by
minimizing the variances of pixel values.

A. Structure from motion
We start with the standard single-camera SfM tech-

nique [19] with simple loop closing for estimating camera
positions and 3D points of features on the off-road ground

x
y

z

Fig. 2. Algorithm ow.

from all images, In, (n = 1, 2, · · · , N), captured while the
camera rotates about 360 degrees. Since a typical off-road
ground surface has a well-textured but homogeneous texture
pattern (e.g. by pebbles), which engenders many mismatches
under the standard SIFT matching parameter setting used for
urban city environments, we use tight thresholds for the SIFT
matching score and ratio test [13] for obtaining highly unique
feature matches on the ground, resulting in a relatively small
number of the 3D points against to the rich texture.

B. Setting absolute scale, reference coordinate system, and
regular mesh

In this step we compute the scene absolute scale by
equalizing the known camera rotation radius with the radius
of a camera rotation circle, which is obtained by tting to the
camera positions estimated by SfM. In the 3D circle tting

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 
 

 
 

220



An input image Initial surface (1m sides)

Estimated surface at the rst
meshing level (1m sides)

Estimated surface at the second
meshing level (50cm sides）

Estimated surface at the last
meshing level (25cm sides）

Ground truth surface
with 25cm sides

Fig. 3. Input image and its overlaps with surfaces.

process, we rst estimate a plane which the camera positions
lie in, by minimizing the distance between the plane and
the estimated camera positions, followed by a standard 2D
circle tting technique using the projected camera positions
on the plane. We also determine the position of the reference
coordinate system, where the z-axis corresponds to the
rotation axis and the x-y plane is arranged so that the circle
plane is at the height of the camera mount position. On
the x-y plane we also de ne a regular grid mesh which is
composed of piecewise triangular patches (See Fig.2(2)).

C. Initial surface estimation by tting to 3D points
We estimate an initialize ground surface, parameter-

ized with the vertex heights of the regular mesh, z =
(z1, z2, · · · , zV ), by tting to the 3D points, xm =
(xm, ym, zm)T , (n = 1, 2 · · · ,M), estimated by SfM. We
minimize the following linear least squares cost CF (z):

CF (z) = CFD(z) + CFS(z) (1)
where

CFD(z) =
∑
m

(λT
mz−zm)2 (2)

CFS = αFS

∑
v

⎛
⎝zv − 1

8

∑
v′∈N (v)

zv′

⎞
⎠

2

(3)

where CFD and CFS indicate the data term and the smooth-
ness term, respectively. In the data term, λT

mz denotes the
surface height (i.e. z value) at (x, y)T = (xm, ym)T , induced

by the objective parameter vector z. Namely, λT
mz − zm

denotes the difference in z between the surface point and the
3D point, where λm has only three non-zero elements, repre-
senting barycentric interpolation weights for the three vertex
heights of the triangular patch that involves (xm, ym)T .
The smoothness term (3) represents the sum of the squared
Laplacian convolution outputs over the mesh, where αFX is
a constant.

We found that the 3D points from SfM are too noisy in
the 3D space to recover detailed surfaces with a ne mesh.
We also know that the number of the 3D points from SfM is
not always enough for recovering desirable ground surfaces.
Therefore we apply this surface tting for a rough surface
mesh (i.e. with a large patch size).

D. Surface reconstruction by direct method minimizing the
variance of pixel values

In the nal step we minimize the following cost CP for
re ning the initial ground surface estimated in III-C:

CP (z) = CPD(z) + CPS(z) (4)
where
CPD(z) =

∑
x′

s

(
1

|ns|
∑
ns

(Ins
[pns

(xs(x
′
s, z))]− Īns

[z])2

)
(5)

CPS = αPS

∑
v

⎛
⎝zv − 1

8

∑
v′∈N (v)

zv′

⎞
⎠

2

(6)

where CPD and CPS respectively indicate the data term
and the smoothness term. Herein, x′

s = (x′
s, y

′
s), (s =

1, 2, · · · , S) denotes pre-de ned sample points on the ground
level plane. Then xs = (xs, ys, zs)

T represents the point on
the surface settled by a sample point x′

s = (x′
s, y

′
s)

T and the
objective parameter vector z. The surface point xs can be
computed using barycentric interpolation weights, similar to
the case in III-C. We denote by Ins

an image which observes
the surface point xs, and by |ns| the number of the images.
Then pns

represents the projected pixel position of xs on
the image Ins

. We also denote by Īns
[z] the average of the

pixel values over the images that observe xs. That is, (5)
represents the sum of the variances of pixel values, where the
image positions of the pixel values in a single variance are the
projections from a single sample point on the surface to only
the images that observe the sample point. The smoothness
term (6) is the same as the initial surface estimation (3),
except αPS is another constant. We minimize the cost (4) by
a Gauss-Newton algorithm with the initial surface parameters
estimated in III-C.

The data term (5), representing the sum of the pixel value
variances over the sample points on the surface [4], generally
works well for indoor scenes. However, this straightforward
approach generates an erroneous ground surface in the pres-
ence of outlier pixels which usually appear at the edge of the
self-shadows of the rotating equipment under shiny whether
conditions.
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Ground truth surface Error map of our nal surface

Error map of the surface from SfM. Error map of the surface from SfM + PMVS.

Fig. 4. Error maps of estimated surface from synthetic data. Top left: the ground truth. Top right: the error map of our nal surface.
Bottom left: the error map of the surface estimated using the 3D points using SfM. Bottom right: using SfM + PMVS. The RMSE shows
root mean square error of all estimated vertex heights

Assuming that we have good initial surface parameters,
we nd outlier pixels of the surface point xs by taking
the median value MED(Ins

) and thresholding the absolute
difference |Ins

[pns
(xs(x

′
s, z))] − MED(Ins

)|. This outlier
detection process is done at the beginning of each iteration
process in the optimization, followed by a single iteration
process for minimizing the same cost (4), except that |ns|
denotes the number of inlier pixels (images).

For enhancing the robustness and ef ciency, we adopt
a hierarchical meshing technique, where we rst roughly
optimize the ground surface using a mesh with large squares
(initial surface) and the level-of-detail of the mesh is in-
creased in stages.

We set the sample points x′
s so that their projected points

cover as many pixels as possible on the image for estimating
the ground surface in high precision. The sample point
positions on the level planes are concentric circular, where
the radial and angular intervals are de ned using the given
camera height, the angle between the camera optical axis and
the level plane, and the physical pixel size. Here, we omit
the details but, in consequence, the sample points have high
density in the area near to the camera while low density in
the area far to the camera.

IV. EXPERIMENTAL RESULTS
Our algorithms were implemented in C++-language

without explicit multi-thread implementation. We used
CHOLMOD library for solving linear systems. The algo-
rithms were run on a Windows7 PC (Xeon E3-1225 3.2GHz,
16GB).

A. Synthetic images
We created synthetic images with a size of 640×480 pix-

els, horizontal eld of view (FOV) of 130 degrees, position
height of 2.0 meters, and rotation radius of 1 meter. The
camera rotated 10 degrees per frame capturing 36 images of a
textured ground surface created by a trigonometric function.
We randomly added zero-mean Gaussian noise with standard
deviation 3.0 graylevels to all images.

Fig. 3 shows one of the 36 input images, along with the
initial surface estimated using the 3D points from SfM, the
surfaces estimated at the three meshing levels and the ground
truth surface, all of which are overlapped with the same input
image. Fig. 4 shows the ground truth surface, and the error
maps of the surface estimated by the proposed method and
related methods, in the area of 16x16 meters, which are
covered by the FOVs of the 36 images except around the
rotation center on the ground (where only the smoothness
term works). The error maps, i.e. textured surfaces whose
vertexes are colored by error levels. The top right error map
show the errors of the surface estimated by the proposed
method, while the bottom error maps show the errors of the
surface directly estimated by tting the most detailed surface
to the 4725 points from SfM (left), the 16107 points from
SfM + PMVS (right). The result shows that our nal surface
is the best.

B. Real images
We used images with a size of 640×480 pixels, horizontal

FOV of 60 degrees, position height of about 2.0 meters,
and rotation radius of 1 meter. The camera was mounted
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12th image 21st image 30th image Camera crane and scene

12
m

12m

Fig. 5. Result of 3D ground surface generation in real scene (Scene 1). Top: Three input images and their overlaps with estimated surface mesh. Bottom:
3D views of the estimated surface and camera positions.

on a rotatable small camera crane and manually rotated for
capturing images.

Fig. 5 shows the estimation results of Scene 1, where three
of all 36 images that we took while rotating the camera about
360 degrees, their overlaps with the estimation result, and the
whole view of the estimated ground surface overlapped with
the estimated camera positions. We estimated the ground
surface in the area of 12×12 meters, and we show in Fig. 5
only the surface’s triangular patches each of which has at
least one observed sample point. The surface views show
our method can precisely recover even small bumps (less
than 2cm in level) on the ground (see the marked parts).

Fig. 6 also shows the ground surface estimation results of
Scene 2, where we estimated the surface in the area of 16×16
meters. We show three of all 50 images that we took while
rotating the camera about 360 degrees. We can see not only
the self-shadow of the camera crane on the ground surface
as shown in the top-middle image, but also the lens ares
in the opposite view directions as shown in the top-right
image. These undesirable phenomena cannot be avoidable
in outdoor environments. As shown in the bottom-left (a),
where we simply minimize the pixel value variances using
the data term (5) without outlier pixel handling, the estimated
ground surface is erroneous. On the other hand, our method
estimates a desiable ground surface by effectively handling

the outlier pixels engendered by the self-shadows and lens
ares.

V. CONCLUSIONS

We have proposed a method for estimating a regular-grid
ground surface from images captured by a single rotating
camera, assuming that the camera is mounted on a construc-
tion equipment. We rst estimate an initial ground surface,
represented by the regular grid mesh, by tting 3D points
from SfM, and then we re ne the surface by minimizing
the pixel value variances while handling outlier pixels. The
validity of the proposed method has been demonstrated
through experiments using synthetic and real images.

The total computation time under our current non-
optimized implementation is too large for practical use (about
30 minutes in the case of Scene 1). In particular, the iterative
Hessian computation for minimizing the variance of the pixel
values takes a large amount of time. We will reduce the
computational cost by keeping the barycentric interapolation
weights in the memory and the parallel computation on
the sample points. On the other hand, our approach can
be applied to unsynchronized uncalibrated multiple cameras,
which are advantageous to the 360 degree observation by a
smaller angle of rotation, and be extended to the simultane-
ous estimation of the ground surface and camera positions.
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14th frame 23th frame 44th frame

(a) Without outlier pixel handling.
(b) With outlier pixel handling

(threshold=10 graylevel).
(c) Textured surface of (b).

Fig. 6. Result of 3D ground surface reconstruction in real scene (Scene 2). Top: Three input images and their overlaps with the estimated surface mesh.
Bottom: Views of the surfaces estimated without/with outlier pixel handling.

Such acceleration and extensions will be studied during
future research work.
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Abstract— Autonomous driving vehicles must be able to
handle difficult weather conditions in order to gain accep-
tance. For example, challenging situations such as falling snow
could significantly affect the performance of vision or LiDAR-
based perception systems. In this paper, we are interested in
characterizing the behavior of LiDARs in snowy conditions,
as there seems to be little information publicly available. In
particular, we present a characterization of the behavior of 4
commonly-used LiDARs (Velodyne HDL-32E, SICK LMS151,
SICK LMS200 and Hokuyo UTM-30LX-EW) during the falling
snow condition. Data was collected from the 4 sensors simulta-
neously during 6 snowfalls. Statistical analysis of these datasets
indicates that these sensors can be modeled in a probabilistic
manner, allowing the use of a Bayesian framework to improve
robustness. Moreover, we were able to observe the temporal
evolution of the impact of the falling snow during these
snowstorms, and characterize the sensitivity of each device.
Finally, we concluded that the falling snow had little impact
beyond a range of 10 m.

I. INTRODUCTION

The robustness of autonomous vehicles has increased

prodigiously in the recent years. While long-range au-

tonomous driving on the highway has been around for

decades already [1], advances in mapping, 3D data pro-

cessing and computer vision have enabled cars to drive

autonomously for thousands of miles in unconstrained, city

environments [2]. While this surely is an impressive feat,

one quickly notes that most of these miles have been logged

in California weather, which provides optimal operating

conditions for sensors such as LiDARs. In order for these

systems to gain acceptance worldwide, it is crucial that they

could be operated in more challenging weather conditions,

such as rain, fog and snow.

As we strive to make autonomous vehicles more adaptable

to varying weather conditions, it is important to understand

how sensors will behave in such conditions. Of particular

interest, snowy conditions may cause challenging situations

for sensors such as LiDARs. Indeed, the laser beams emitted

may illuminate the snowflakes themselves, thus providing

echoes that do not correspond to real obstacles. Consider

fig. 1 for example. The same scene appears drastically

different depending on whether it was captured on a clear

or snowy day. While programmable lighting may help cir-

cumvent this problem [3], current LiDARs may fail under

such circumstances.

In this paper, our main contribution is to provide a

characterization of the behavior of four well-known LiDARs

Corresponding author: philippe.giguere@ift.ulaval.ca

Fig. 1. Driving in bad weather. While autonomous vehicles have attained
a great level of performance in nice weather (left), bad weather can
cause significant challenges due to limited visibility (right). In this paper,
we characterize the behavior in snowy conditions for oft-used sensors in
autonomous cars: LiDARs. Photo credit: Nicole Duchesne (left), Gaetan
Chevalier (right).

in snowy conditions. Through an extensive empirical study

performed on a novel dataset captured under varying de-

grees of snowfall, we evaluate how much these LiDARs

are sensitive—or not—to falling snow. We show that recent

advances in sensor design have increased their robustness

even to significant snowfall.

A. Related work

It is well-known that snow poses significant challenges to

sensors mounted on-board outdoor mobile robots or other

autonomous vehicles. For example, in their Antarctica ex-

ploration project, Moorehead et al. indicate that “in heavy

[snow] storms, [...] the laser could not be used” [4]. Similarly,

Yamauchi et al. relate that “LiDAR and stereo vision provide

greater accuracy and resolution in clear weather but has

difficulty with precipitation and obscurants” [5]. Common

approaches for dealing with this problem include filtering

3-D data [4], or video [6], but this is often not enough to

completely remove artifacts.

It is therefore important to characterize how sensors be-

have in such conditions. To this end, Sumi et al. [7] build

a specifically designed simulated snow chamber, with white

polystyrene beads flown with large fans to simulate snow.

In our case, we use real world conditions to acquire a novel

dataset of more than 6 days of snowfall.

Finally, we also mention the work of Servomaa et al. [8],

who use LiDARs (and other sensors) to characterize snow

storms for monitoring and measurement applications. In our

case, we characterize the behavior of the sensors themselves

for robotics applications.
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II. DATA ACQUISITION

In this section, we first report on the relevant characteris-

tics of the four sensors used in our dataset. We then describe

the physical configuration of our test setup, then outline the

weather conditions for each of the six collected snowfalls.

Finally, we describe how the information from the LiDARs

was preprocessed before analysis.

A. Sensors

Data acquisition was performed with the following four

LiDARs: the SICK LMS200, SICK LMS151, Hokuyo UTM-

30LX-EW, and the Velodyne HDL-32E. Relevant sensor

information is provided in table I, but the reader is referred to

the manufacturers documentation for additional information1.

The first element that provides a qualitative overview of

the sensor performance is the maximum acquisition distance.

This value depends on several factors, such as lighting con-

ditions and target remission. This value is provided directly

for the HDL-32E and UTM-30LX-EW, but based on a target

remission greater than 75% for the LMS200 and LMS151.

Another element to consider is the shape and area covered

by the beam, which influences the probability of hitting a

snowflake as well as the proportion of area it covers. A

final significant element which changes from one sensor to

the other is the number of echoes returned. The Hokuyo

sensor can return up to three echoes, which means that it

could locate two snowflakes before the beam reaches the

ground. Regarding the LMS151, two echoes are evaluated

by the hardware, but only one is returned. Finally, note that

all LiDARs use class 1 laser with a wavelength of 905 nm.

B. Setup configuration

Data acquisition was conducted at Pouliot Hall of Laval

University, where sensors were placed close to the inner wall

of a window facing N50◦E. As shown in fig. 2, a wooden

structure held the sensors side by side at approximately 14m
above the ground. The main scanning plane (i.e. XY plane in

the sensor reference frame) formed a 30◦ angle with respect

to the building wall, so as to increase the maximum distance

as much as possible without having the laser beams hitting

trees or a pedestrian walkway present near the building. In

addition, an RGB camera was placed alongside the LiDARs

to provide visual information about the scene. In this config-

uration, a slight opening of the window allowed to keep the

instruments inside while scanning outside. To avoid direct

interference between sensors, corrugated plastic layers were

placed between them. Fig. 3 shows the scene as observed by

the RGB camera placed with the sensors.

C. Dataset description

Data acquisition started February 12 and ended on

March 2. A total of 10 episodes were collected for a total of

more than 50 hours of data. Recordings were made using

the Robot Operating System (ROS) [13], which provides

standardized data types as well as time synchronization. Data

1Available here: Velodyne [9], Hokuyo [10], LMS151 [11], LMS200 [12]

Fig. 2. The experimental setup. The 3D axis represent the orientation of
the sensors and the bottom left panel represent the 2D geometry as seen
from the right side of the picture.

Fig. 3. View from the RGB camera.

was acquired at different times of day and in a wide variety

of conditions, covering a wide range of snowflakes size,

falling rate and wind speed. Table II provides an overview

of our data2. Of these, six are used in the current study, as

highlighted in this table. The dataset is publicly available

upon request.

D. Pre-selection of laser data

For each sensor, we selected a combination of angles

and laser rings (for the Velodyne) or angles (for the others)

that had a clear view of the snow-covered ground surface.

Details for each sensor are provided in table III. The range

of the ground in our scans was between x = 15m to

x = 22m, depending on the angle. To simplify the analysis,

we considered as a snowflake echo any measurement which

had a range reading of x < 14.5m. As will be shown later

in sec. IV, this approximation is valid as the vast majority

of those events happened for x < 10m.

2Wind speed, daily precipitation and temperature were measured at
Québec City Jean Lesage International Airport, located at a distance of
9 km from Laval University. Data is available here [14].
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Sensor Maximum distance Spot area (at 30 meters) Spot shape Echoes
SICK LMS200 28m 165 cm2 Circle 1

SICK LMS151 50m 22 cm2 Circle 2

Hokuyo UTM-30LX-EW 30m 196 cm2 Ellipse 3

Velodyne HDL-32E 70m 51 cm2 Rectangle 1

TABLE I

OVERVIEW OF CHARACTERISTICS SPECIFIC TO EACH LIDAR.

Beginning Duration Snowflakes Falling Wind speed range Daily precipitation Temperature
time (HH:MM) size rate (km h−1) (cm) (◦C)

Feb 12, 9:47 am 09:21 Small Variable [2–13] 1.4 -14.1
Feb 14, 10:12 pm 04:12 Small Very low [5–13] 0.2 -21.4
Feb 19, 8:38 am 10:02 Big/small High [3–28] 4.5 -10.9
Mar 2, 1:06 pm 01:27 Big/small Variable [22–36] 1.6 -9.1
Mar 3, 10:33 pm 02:17 Big Medium [7–9] 5.4 -13.3
Mar 4, 11:45 am 04:12 Big/medium Low/none [20–30] 2.0 -4.3
Mar 17, 10:08 am 06:08 Big/medium Low/none [1–31] 2.0 -5.8
Mar 21, 6:44 pm 07:42 Medium/big High [5–33] 8.6 -5.1
Mar 30, 1:06 pm 04:45 Medium/big High [4–8] 8.5 -3.0

Apr 2, 1:56 pm 01:51 Small/rain High [2–10] 1.2 -8.4

TABLE II

OVERVIEW OF OUR SNOW DATASET. DATES IN BOLD CORRESPOND TO THE SIX DAYS USED IN THE PRESENT STUDY.

Sensor Acquisition Selected Selected Window
frequency beams/angles rings size

LMS200 9.375Hz 55–115 N/A 106 s
LMS151 25Hz 310–220 N/A 40 s
Hokuyo 20Hz 440–590 N/A 100 s

Velodyne 10Hz -0.05–0.25 rad 17–31 40 s

TABLE III

DETAILS OF MEASUREMENT SELECTION FOR THE ANALYSIS. THE

WINDOW SIZE IS THE TEMPORAL WINDOW USED TO CALCULATE

STATISTICS DURING THE TEMPORAL EVOLUTION OF A SNOWFALL.

III. TEMPORAL ANALYSIS

In this section, we analyze the temporal behavior of the

four sensors for the duration of six complete snowstorms.

In particular, we are interested in seeing how the fraction

of echoes in snowflakes evolves over time, for all four

sensors. First, we will discuss the highly dynamical nature

of snowstorms. This will be exemplified by how consecutive

scans can have significant quantitative and spatial differences

in the distributions of the snowflakes echoes, which justify

the use of averaging windows for our analysis. We will then

present the actual temporal evolution of these statistics in

the form of graphs for all four sensors, and finally briefly

discuss the results for each sensor.

A. Extraction of temporal statistics

Snowstorms are highly dynamic processes, with large

variation in snowfall rates over their durations. Moreover,

the snow physical characteristics (size, shape or reflectance)

might vary significantly during a storm, affected by ambient

conditions such as humidity level and temperature. Also,

wind gusts might pull snow back up in the air or drive it

sideways, affecting its effective fall rate. Consequently, one

expects during a snowstorm to see significant short, medium

and long term variations in the fraction of LiDAR echoes

corresponding to the falling snow.

Computing and reporting the temporal statistics for every

scan would put too much emphasis on the very short-term

statistics. Indeed, the inter-scan variation in the fraction of

snowflake echoes can be significant. To better illustrate this

point, we have overlaid four consecutive scans in the same

plot for the LMS200 and for the first echo returned by the

multi-echo Hokuyo sensor in fig. 4, for an intense snowing

episode from the 02-19 dataset (see tab. II). In these figures,

we can see strong variations in the fraction of snowflake

echoes and their spatial distribution. One can readily see the

fluctuation in these fractions as reported in the brackets of

the legend in fig. 4.

To smooth out these fluctuations, statistics are extracted

from a number of consecutive scans contained in a time

window of around 1 minute (detailed values in tab. III).

Fig. 5 shows this smoothed fraction of snowflake echoes

compared to all returned laser measurements as a function

of time, for the six snowiest days of our dataset. To allow

for better visualization, only the LMS200 and the Hokuyo’s

first echo are plotted at their actual scale (1x): Others have

been scaled up (from 30x to 200x), with their corresponding

scaling factors reported in the legend. As will be shown

below, some sensors were much more sensitive than others.

B. Detailed analysis, per sensor

1) SICK Sensors LMS200 and LMS151: Our first conclu-

sion based on fig. 5 is that the most sensitive device was the

older LMS200, first introduced in the mid-2000s. For the

most intense snowstorms (fig. 5. b) 02-19, d) 03-17, e) 03-

21 and f) 03-30), it peaked at around 15% of measurements

triggered by the falling snowflakes, for averaging windows

of 106 s. As an older-generation device, it probably uses less

sophisticated algorithms and sensing, and was not directly
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Fig. 4. Four overlaid consecutive scans for the LMS200 sensor (top), and
the first echo scans for the Hokuyo sensor (bottom), taken from the 02-19
dataset. Each symbol corresponds to a particular scan. The curved line at
the top corresponds to the snow surface on the ground. One can see the
rapid variation of the snowflake echoes between scans, and how they are
mostly limited to a range x < 5m. The percentages (in brackets) are the
proportion of those echoes in the snowflakes.

targeted for harsh outdoor environments. Indeed, its technical

description [12] indicates that “raindrops and snow-flakes

are cut out using pixel-oriented evaluation”, but this seems

only applicable to obstacle detection (field computation), not

the actual measurements. No further details are given. On

the other hand, the more recent SICK LMS151 exhibits

much less sensitivity to snowflakes: The reduction factor

for the fraction of snowflakes echoes is in the order of

200-300, granting this device a much higher immunity to

snowstorms. Indeed, the highest peak was around 0.1 % of

echoes in snowflakes during the 02-19 dataset. This seems

to support the claim, obtained in the documentation from

the manufacturer, that this model is targeted for “all weather

conditions” [15].

2) Hokuyo UTM-30LX-EW: For this sensor, we resorted

to a slightly different approach for comparison, as the device

has been designed to return multiple echoes. We thus ex-

tracted statistics for the two most relevant cases: the first and

last echoes. Statistics for the first echo indicate how sensitive

the device is, if one wishes to detect the presence or absence

of falling snow. This information could be used, for example,

to adapt the driving strategy of an autonomous vehicle

or inform vision algorithms of the presence of particles

in the air. Using the last echo increases the probability

that obstacles, such as another vehicle or the snow-covered

ground, will be detected. This information would be used for

localization and navigation purposes.

For the first echo, we observed that the device behaved

similarly to the LMS200. Indeed, the Hokuyo first echo (blue

line) closely tracks the LMS200 curves (red dashed line)

almost everywhere in fig. 5, with a few exceptions. When

using the last echo, the sensor behaves like the LMS151,

not surprisingly as this sensor performs a 2-echo analysis

and filtering. The last echo of the Hokuyo tends to reject the

falling snow, but not as well as the LMS151, as it peaked at

around 0.5 % in some episodes. Nevertheless, this difference

might not be sufficient to impact algorithms relying on laser

data. Note that tab. IV shows similar correlations between

these three sensors for averages taken over the complete 02-

19 dataset.

LMS200 Hokuyo Hokuyo LMS151 Velodyne
first echo last echo HDL-32E

2.67% 3.55% 0.0113% 0.00178% 0.0100%

TABLE IV

OVERALL AVERAGE SNOWFLAKE ECHOES FOR THE COMPLETE 02-19

DATASET, PER SENSOR. THESE AVERAGES ARE SIGNIFICANTLY LOWER

THAN THE INSTANTANEOUS VALUES DISPLAYED IN FIG. 5, AS SNOW

WAS NOT FALLING AT ALL TIMES DURING THAT PERIOD.

3) Velodyne HDL-32E: For all purposes, the behavior of

the Velodyne was similar to the last echo of the Hokuyo

sensor. This is seen both in the temporal behavior in fig. 5

and in the average value displayed in tab. IV.

IV. DISTRIBUTION OF SNOWFLAKE ECHOES AS A

FUNCTION OF RANGE

In the previous section, we showed how the expected

fraction of snowflake echoes varied temporally during snow-

storms. In some sense, it provided for a temporal modeling

of the interaction between a snowstorm and a given LiDAR.

In this section, we evacuate the temporal aspect and instead

focus on how the range x affects the probability for a

snowflake to trigger a measurement. To this end, we will

use histograms to estimate a probability density function of

those events, and show that for the weather conditions and

the sensors we tested, there seems to be an upper bound

on the range x beyond which falling snowflakes no longer

trigger a measurement: in other words, snowflakes become

invisible to the sensor past a certain range.

A. Modeling the impact of range on snowflake detection

When modeling a range sensor, one has to obtain the

probability distribution of certain events (e.g. snowflakes)

as a function of this range. Over the years, many re-

searchers have proposed probabilistic models for sensors,

notably [16]. In the previous section, we have estimated

the probability for a given sensor S that a snowflake would

generate an echo Esnowflake given the weather condition W ,

or PS(Esnowflake|W ). In this section, we take a closer look

at which range x such events would be generated, that is

PS(Esnowflake|x,W ). Having such a formulation would allow

for a more statistically-sound treatment of the information,

such as within a Bayesian probabilistic framework. To this

effect, we use histograms as approximations for the previous
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Fig. 5. Temporal evolution of the percentage of echoes coming from the falling snow (range x <5m) during the 6 most intense episodes, for all 4
sensors. The data is smoothed by taking statistics for small time windows. Except for the LMS200 and Hokuyo first echo, all other sensors statistics have
been scaled up (factor in bracket of legend b) for ease of visual comparison. Time is in hour, starting from the beginning of the data capture sequence.

distribution. In fig. 7, we have plotted these histograms

for each of the four sensors. For ease of comparison, they

have all been normalized by their total area in the interval

0 < x < 14m, as the total count varies widely between the

sensors. The numbers in brackets in the legend indicate the

fraction of echoes generated by snowflakes compared to the

total number of data points, for a given dataset.

The general shape of these histograms is close to a log-

normal distribution, with the exception of the LMS200 for

a number of dates (02-12 through 03-17), which seems to

follow a sum of two log-normal distributions. We attribute

this log-normal shape to the interaction between two different

phenomena, illustrated in a cartoon-type model in fig. 6.

At short ranges x < 3m, the building acts as a shield

and decreases the probability of having a snowflake in the

path of the laser. We recognize that this phenomenon would

be most likely absent on an autonomous vehicle, thereby

increasing the probability of having echoes in snowflakes

at close range. However, we believe that this difference is

not problematic, as close obstacles would be easily detected

from i) the overwhelming number of LiDAR echoes on this

obstacle ii) other sensing modalities such as vision or radar.

Furthermore, if the LiDAR is to be mounted on a rooftop, one

can safely ignore echoes in the first 2m, either in software

or directly through the sensor itself (via its configuration).

The other phenomenon, illustrated as the red dashed line in

fig. 6, is the probability of optical detection of a snowflake

by the sensor as a function of the range x. We argue that this

shape is due to the rapidly decreasing light intensity of the

echoes in snowflakes, as a function of x. Combining these

two phenomenon yields a log-normal shaped curve (black

line in fig. 6). Overall, this seems to indicate that a simple

probabilistic model PS(Esnowflake|x,W ) can be derived for

these sensors.
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Fig. 6. Cartoon representation of the interaction between the probability
of detecting a snowflake (in red) and the diminution of snowflakes due to
the shielding effect of the building (in blue). The black line is the product
of the two, and bear a close resemblance to the actual histograms extracted
from our dataset.

B. Sensor results

As can be seen from the histograms in fig. 7, most

sensors exhibit the log-normal or sum-of-log-normal distri-

butions discussed above. We note that for certain days, the

distributions are shifted to the right (greater range x). In

particular, for the 03-21 and the 03-30 distributions, this shift

is substantial (on the order of 1m). We suspect that for these

days, the snowflakes were significantly larger, thus allowing

for a stronger optical echo and extended range of detection.

For all sensors, we can also conclude that beyond the

range x > 10m, snowflakes are no longer detected, i.e. they

become invisible. A small notable exception would be for the

Velodyne, for which snowflakes were detected all the way to

x = 14m, albeit at a significantly reduced rate. Again, we

do not think that this would significantly impair their use in

conditions similar to our test setup.

V. DISCUSSION AND CONCLUSION

In this paper, we explored the impact of falling snow on

the usability of 4 commonly deployed LiDARs in the context

of autonomous driving vehicles. To this end, we collected
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Fig. 7. Histograms of echoes in falling snow during important snowfall
days, as a function of distance x reported by the sensor. Each histogram
has been normalized by its area, for ease of comparison. The numbers
in brackets are the fraction of data points in the complete dataset that
correspond to snowflake echoes. Note that for the 03-21 dataset, the LMS151
was not working properly: thus no data is included for that day.

data during 6 snowstorms in the winter of 2015. Upon

analysis, we found that the SICK LMS200 was the most

sensitive LiDAR, having a peak average rate of up to 15 %

of echoes coming from falling snow. Meanwhile, all 3 others

never exceeded 1 %. We also presented a simple probabilistic

model to take into account the effect of the range on

snowflakes interference. Based on a histogram analysis, we

concluded that for our experimental setup, this model can be

approximated by a log-normal distribution. Most importantly,

our data indicate that the impact of snowflakes on LiDAR

beyond a range of 10m is very limited.

A number of questions remain to explore. For example,

as the LiDAR beam travels through the falling snow, its

intensity will diminish. Since the maximum range of a

LiDAR is heavily related to this beam intensity, we expect

the maximum range to be affected during snowstorms. In

our setup, we have not witnessed this issue, indicating that

this effect probably happens beyond our maximum distance

of 20m. Another aspect to be investigated is the relationship

between the returned intensities and the surface type (ground

or snowflakes). Also, because of the shielding effect of the

building, very few snowflakes were present at close range; It

might be the case that at closer range, a snowflake might be

detected at more than one angle, effectively occluding small

targets. Moreover, we have not investigated the impact on

the measurement noise for the snowy ground surface in the

presence of falling snow. Finally, it would be interesting to

mount these LiDARs on a moving vehicle to investigate the

impact of the vehicle velocity on the sensing behavior.
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