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Foreword 
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D 
reconstruction, Modeling and Control of mobile robot. 
 
Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12, and the fifth edition PPNIV'13 
was in Vilamoura (over 135 attendees) during IROS'13. 
 
In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), MEPPC08 in 
Nice during IROS’08 (more than 60 registered people), SNODE'09 in Kobe during ICRA'09 (around 70 
attendees), RITS'10 in Anchrorage during ICRA'10 (around 35 attendees),  PNAVHE11 in San Francisco during 
the last IROS11 (around 50 attendees), and the last one WMEPC14 in Hong Kong during the last ICRA14 (around 
65 attendees), 
 
This workshop is composed with 4 invited talks and 18 selected papers (8 selected for oral presentation and 10 
selected for interactive session. Five sessions have been organized: 

 Session I: Localization & mapping 
 Session II: Perception  & Situation awareness 
 Session III: Interactive session 
 Session IV: Navigation, Control, Planning 
 Panel Session: Towards driverless vehicles? 
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Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 
 
Christian Laugier, Philippe Martinet, Urbano Nunes and Christoph stiller 
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Session I 

 
Localization & Mapping 

 
 Title: Automated driving in urban environments: car sharing distribution 

system and Parking Valet as canonical use-cases 
Keynote speaker: Fawzy Nashashibi (INRIA, Rocquencourt, France) 
 

  Title: An Iterative Graph Optimization Approach for 2D SLAM 
Authors: He Zhang, Guoliang Liu, and Zifeng Hou 
 

 Title: Appearance-based Localization across Seasons in a Metric Map 
Authors: Chris Beall, Frank Dellaert 
 

 Title: High Precision 6DOF Vehicle Navigation in Urban Environments using a Low-
cost Single-frequency GPS Receiver 
Authors: Sheng Zhao; Yiming Chen, Jay A. Farrell 
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Session I 
 

Keynote speaker: Fawzi Nashashibi 
(INRIA, Rocquencourt, France)  

 
Automated driving in urban environments: car sharing distribution system and 

Parking Valet as canonical use-cases 
 

Abstract : In September 2014, the French high authorities announced the creation of an ambitious plan to support 
the industrialization of France around 34 challenging industrial domains. Among these topics: “robotics” and 
“vehicles with automated driving”. This initiative is part of an international effort to develop automated driving 
before 2020. Automated driving in urban environments is particularly very challenging because of the technical 
challenges and legal limitations. In the meanwhile business models are limited due to these obstacles. In these 
conditions the automated distribution of a car-sharing system and a “Parking valet” system seem to be interesting 
use-cases because of the constrained environments in which vehicle navigation is performed while private areas as 
well as segregated lanes can offer a good solution to remove the legal barriers. From a pure technical point of 
view, “automated car-sharing distribution system” and “Parking valet” are interesting applications where different 
automated navigation functions and intelligent mobility concepts cohabit in order to provide a practical service to 
different end users. This talk will tackle the technical requirements to realize such services. Platooning, automated 
parking, accurate localization and environments mapping are among the automated functions to integrate. We will 
describe these advanced functions and their integration in this very specific framework. A first prototyping of such 
systems on automated vehicles will be presented as well as future developments and perspectives.  

 
Biography: Dr. Fawzi Nashashibi, 48 years, is a senior researcher and the Program Manager of IMARA Team at 
INRIA (Paris-Rocquencourt) since 2010. He has been senior researcher and Program Manager in the robotics 
centre of the Ecole des Mines de Paris (Mines ParisTech) since 1994 and was an R&D engineer and a project 
manager at ARMINES since May 2000. He was previously a research engineer at PROMIP (working on mobile 
robotics perception dedicated to space exploration) and a technical manager at Light Co. where he led the 
developments of Virtal Reality/Augmented Reality applications. Fawzi Nashashibi has a Master's Degree in 
Automation, Industrial Engineering and Signal Processing (LAAS/CNRS), a PhD in Robotics from Toulouse 
University prepared in (LAAS/CNRS) laboratory, and a HDR Diploma (Accreditation to research supervision) 
from University of Pierre et Marie Curie (Paris 6). His main research topics are in environment perception and 
multi-sensor fusion, vehicle positioning and environment 3D modeling with main applications in Intelligent 
Transport Systems and Robotics. He played key roles in more than 50 European and national French projects such 
as Carsense, ARCOS, ABV, LOVe, HAVE-it, SPEEDCAM, PICAV, CityMobil... some of which he is 
coordinating. He is also involved in many collaborations with French and international academics and industrial 
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partners. He is author of numerous publications and patents in the field of ITS and ADAS systems. His current 
interest focuses on advanced urban mobility through the design and development of highly Automated 
Transportation Systems. This includes Highly Automated Unmanned Guided Vehicles (such as Cybercars) as well 
automated personal vehicles.  
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Automated driving in urban environments: 
car sharing distribution system and Parking 
Valet as canonical use-cases

Fawzi Nashashibi

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles SEPTEMBER 14, 2014

INRIA: National Research Institute in 
Informatics and Automation
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RITS team 
Robotics & ITS 

RITS in numbers… 

4

Research axes
3

Researchers

3

Permanent 
staff

5 Admin. assistant
1

Scientists19
5 Doctoral students
10 Post-Doc / R&D eng.
3 Emeritus 
1 Starting position

30
People

Engineer, 
Technician

1

Cybercars, AGV’s,…

12

Equipped cars
6

Prototype 
vehicles

18

RITS

10
Living Projects

5
FP7 European

3 French
(ANR, CG78, ADEME…)

2
Bilateral contracts
Private sector

4444

2009 – 2012 period:

- 42  Journal papers
- 110   Int. Conferrence papers
-     2   PhD / year

Fawzi Nashashibi Chicago, September 14th - 2014
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Robotics & ITS
Intelligent Transportation Systems1

Modeling of large systems

Telecommunications & Networks

3 Main research topics 

5

2

3

Fawzi Nashashibi Chicago, September 14th - 2014

- 7Fawzi Nashashibi Chicago, September 14th - 2014
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8Fawzi Nashashibi Chicago, September 14th - 2014

Road transport: figures 

- 9

World:  7  Bn people   ->   700  millions   of cars

1910: 10% of earth’s population lived in cities
2010: 53%

2050: 75%

Security:
World:  1,3 million road deaths   /  25-50  million injuries

cost of road accidents:  € 407 Bn
Environment
Tens of millions of tons of pollutants

Mobility
- Urban sprawl

Fawzi Nashashibi Chicago, September 14th - 2014
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Urban Sprawl 

Fawzi Nashashibi Chicago, September 14th - 2014

Parking 

Fawzi Nashashibi Chicago, September 14th - 2014
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• Moving :
• Pedestrian: 1 m2*h
• Bicycle:  1 m2*h
• Moped: 2.0 m2*h
• Car: 10 m2*h
• Bus (30p): 0.3 m2*h
• Tram (200p): 0.1 m2*h

Space*Time Expenditure 

• Parking (8h) :
• Pedestrian: 0
• Bicycle: 8 m2
• Moped: 12 m2
• Car (street): 80 m2
• Car (parking): 240 m2
• Bus/Tram: 0

Fawzi Nashashibi Chicago, September 14th - 2014

- 13Fawzi Nashashibi Chicago, September 14th - 2014
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ICT for sustainable & smart mobility 

- 14

Transport: a societal and economic challenge

The use of ITS fits in the context of sustainable development :

1. Offering a range of alternatives to the car : recommendation for 
the development of public transport."

2. New mobility concepts fitting with new cities organization
3. Development of the transport multi-modality 
4. Improvement of tomorrow’s vehicles: clean / "intelligent" / 

dedicated

« A smart city is a city that allows people to move freely and where
they are informed about all possible mobility choices »

Fawzi Nashashibi Chicago, September 14th - 2014

Which car for the future ? 

- 15

• Private vs . shared ?
• Automated or Autonomous ?

• Clean:  2 l / 100 km
• Light weight, Robust
• Full drive-by-wire
• Intelligent
• Connected, communicant
• Dual  (manual / automated)

Fawzi Nashashibi Chicago, September 14th - 2014
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AKKA – 

INRIA 

 

  Link 

    & 

   Go 

- 16Fawzi Nashashibi Chicago, September 14th - 2014

- 17Fawzi Nashashibi Chicago, September 14th - 2014
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Link & Go : autonomous driving 

- 18Fawzi Nashashibi Chicago, September 14th - 2014

NEW CONCEPTS FOR URBAN 
MOBILITY 

- 19Fawzi Nashashibi Chicago, September 14th - 2014
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Bike Sharing 

20Fawzi Nashashibi Chicago, September 14th - 2014

Car Sharing 

Fawzi Nashashibi Chicago, September 14th - 2014
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• Small Public Urban Vehicles
• Assited driving
• Platooning
• Automated Parking
• Automated tracks
• Complement to 
   other modes

Concept INRIA/INRETS (1991) 

Fawzi Nashashibi Chicago, September 14th - 2014

Praxitele (1993-1999) 

23Fawzi Nashashibi Chicago, September 14th - 2014
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MIT–GM SmartCity Project 

24Fawzi Nashashibi Chicago, September 14th - 2014

Segway-GM (2010) 

25Fawzi Nashashibi Chicago, September 14th - 2014
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Tiny Cars 

26Fawzi Nashashibi Chicago, September 14th - 2014

The European project CATS 

- 27Fawzi Nashashibi Chicago, September 14th - 2014
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• First concepts in1990’s 
(Serpentine, RUF, Dedale, Frog, ULTra,…)

• First prototypes en 1990 
• First exploitation en 1997
• CyberCars/CyberMove en 2001
• Demonstrations at Antibes - 2004
• MobiVIP (2004)
• CyberC3 (2005)

• CyberCars2 (2006)
• CityMobil (2006)
• Cristal (2007)
• CityNetMobil (2008)
• CATS (2009)

• CityMobil-2 (2012)

Cybercars : a European Story 

Fawzi Nashashibi Chicago, September 14th - 2014

CityMobil project: Heathrow’s PRT 

29Fawzi Nashashibi Chicago, September 14th - 2014
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An advanced bus 
system that connects 
the university, the 
city centre of 
Castellón and the 
coast

CityMobil project : Castellón automated bus 

30Fawzi Nashashibi Chicago, September 14th - 2014

CityMobil project: 

La Rochelle temporary demo 

31Fawzi Nashashibi Chicago, September 14th - 2014
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Intersections = cybercars priority
crossing at limited speed

Demonstration site constraints 

32Fawzi Nashashibi Guyancourt, September 08th - 2014Fawzi Nashashibi Chicago, September 14th - 2014

33Fawzi Nashashibi Chicago, September 14th - 2014
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New concept of urban mobility 

Fawzi Nashashibi Chicago, September 14th - 2014

Some (real) questions ! 

1. What are the objectives of automation ?

2. What is the benefit of automation in cities ?

3. Automation or Autonomy ?

35/15
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What are the objectives of automation ?! 

SAFETY
• Reducing / annihilating accidents and their severity

• Improved safety for the driver and the surrounding elements

ADVANCED MOBILITY
• Efficiency: optimization/reduction of travel times

• Better use of the road infrastructure (repartition)

• Less traffic jams, congestion and bottlenecks ?

CIVIC TARGETS
• Reduce congestion

• Support economic viability

• Reduce accidents

• Reduce pollution : “clean” environment ?

• Support social needs ?

INDIVIDUAL TARGETS
• Less strain and fatigue while driving

• Less fines ?!

• More time for other tasks

36Fawzi Nashashibi Chicago, September 14th - 2014

Why automation in cities ? 

• Personal needs:
• For long journeys ( > 20 min.)
• Congestion management
• Safety improvement: ego-vehicle, other vehicles, vulnerables
• Parking

• Private/commercial needs:
• Efficient car-sharing system -> vehicles redistribution
• Automated taxi (e.g. from/to train stations)
• Efficient « Parking Valet »
• …

• Solutions:
• Traffic management and high level planning
• Global planning
• On-board intelligence: 

perception 
Communication
Intelligent control

- 37Fawzi Nashashibi Chicago, September 14th - 2014
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Automation in cities: a canonical case 

• Some practical challenges:

• On-road…

• Intersections: crossroads, roundabouts,…
• Need for dedicated infrastructure
• Need for automated functions:

• Platooning
• V2X communication
• Optimal management

• At destination…

• Parking management

     Intelligent redistribution of car-sharing vehicles

- 38Fawzi Nashashibi Chicago, September 14th - 2014

Intelligent redistribution of car-sharing vehicles 

• Assumptions:

• Car sharing vehicles can be dropped anywhere BUT on pre-defined « authorized 
roads »:

• Road parking lots

• Electric recharging booths

• Vehicles are supervised by the operator:
• Mission / Route Planning

• Fleet supervision & control

• Tactical display

• Vehicles have the following abilities:
• Self-localization: GPS + SLAM
• V2X communications: V2V / V2I

• Perception and intelligent control:

Platooning: BUT human leader (max 3 veh.)

Automated trajectory following, 

(un-)parking maneuvers,…

• The destination is a parking area or parking lot
• The place is assigned

• The parking’s map is known

- 39Fawzi Nashashibi Chicago, September 14th - 2014
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Typical scenario 

- 40

First step:
- Itineraries selection and optimization
- Paths are sent to each convoy head:

number of vehicles, waypoints (vehicles geolocalized positions), destination

Fawzi Nashashibi Chicago, September 14th - 2014

Platoons formations 

• Second step: (for each Convoy)
• Manuel following of the planned path

• At each waypoint: 

V2V communication: « we are here ! »
Automated un-parking of the stopped vehicle

Convoy update: docking

Platooning to the next waypoint or final destination

• Third step: (Automated parking)
• V2I communication between the leader and the parking: transmit the number of vehicles

• For each vehicle:

Get the parking place assignment

GoTo parking place:
Follow predefined trajectory to the destination

Localization using SLAM and odometry

Obstacle detection

V2I based position broadcasting to the parking operator

Automated parking: parallel, perpendicular and diagonal

- 41Fawzi Nashashibi Chicago, September 14th - 2014
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Automated functions - Platooning 

- 42Fawzi Nashashibi Chicago, September 14th - 2014

L1

L2

R2f

R1r

ex

ey

e

A2

A1

Lead vehicle

Following vehicle

Objective

Autonomous Platoon
- Without the use of any road infrastructure or inter-vehicle communication;

- The current inter-vehicle position and orientation for feedback control of the
   following vehicle is obtained from onboard sensors (laser range finder);

- Estimation of the unknown linear and angular velocities of the vehicle ahead
   is achieved by using adaptive control; 

- Any following vehicle in the platoon has
   to track the trajectory of the vehicle 
   ahead with prescribed distance.

Approach 
- Tracking a virtual reference  
   point R1r of the vehicle ahead 
   with a reference point  R2f of
   the following vehicle.

P. Petrov,M. Parent – “Nonlinear adaptive control for autonomous vehicle following” - 16th ITS Congress ,Stockholm 2009

Platooning 

- 43

Relative Kinematics
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Platooning 

- 44

Problem Formulation

L1

L2

R2f

R1r

ex

ey

e

A2

A1

Lead vehicle

Following vehicle

Given the inter-vehicle kinematics in error coordinates, and assuming that the linear
and angular velocities of the lead vehicle (vA1, 1) are unknown constant parameters,
the control objective is to asymptotically track the virtual reference point R1r the lead
vehicle with the  reference point  R2f of the following vehicle.

Fawzi Nashashibi Chicago, September 14th - 2014
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Adaptive Control
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• Simulation results with 4-vehicles platoon

- 46

1 32

4 5 6

Fawzi Nashashibi Chicago, September 14th - 2014

- 47

                    EXPERIMENTS: TWO-VEHICLE PLATOON           

                    EXPERIMENTS: THREE-VEHICLE  PLATOON           

Fawzi Nashashibi Chicago, September 14th - 2014
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Automated parking 

48Fawzi Nashashibi Chicago, September 14th - 2014

- Feedback steering (saturated control) and
    velocity control.

Controller 

h

O

y

x
B1

H1

h

B A
l

b
F

P(xP,yP)

d l1l2

Objective

- Automatic parking by using one or multiple 
maneuvers,  depending on the size of the  
parking spot and the starting position of the 
vehicle.

- An approach of using saturated (SAT)
control with two different levels of saturation 
was designed to enlarge the area of starting
positions of the vehicle, from which the 
parking can be achieved in one maneuver.

P. Petrov, F. Nashashibi, “Saturated Feedback Control for an Automated 
Parallel Parking Assist System”, ICARCV 2014, Singapore.

Automated parking 

49Fawzi Nashashibi Chicago, September 14th - 2014

- The design of the saturated path tracking controller, proposed in this paper is
    based on “high-gain”-type control design. 

- The problem of stabilizing the vehicle is seen as an extension of the tracking
   problem. 

- Saturated control ( – steering angle):

satuu mS l
uS

tan

11
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11
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for

for

sat

)( sm uabsu
mu

u
yekeku 0
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50Fawzi Nashashibi Chicago, September 14th - 2014

Parallel Parking /Simulation Results/

Parallel parking in one maneuver
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Parallel parking in multiple maneuvers
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Inverse Parallel Parking /Experiments/

Inverse Parallel Parking /Simulation Results/
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- 52Fawzi Nashashibi Chicago, September 14th - 2014

Perpendicular Parking /Simulation Results/
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Diagonal Parking /Experiments/
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Vehicle Localization 

• Needed for the localization of autonomous vehicles in the parking or charging
station.

• SLAM based technique for indoor parking

• SLAM+GPS for outdoor parkings

• Two SLAM approaches were designed:

1. ML-SLAM: Maximum Liklihood
J. Xie, F. Nashashibi, M. Parent, and O. Garcia-Favrot, “A real-time robust SLAM for large-scale 
outdoor environments,” ITS World Congress,Busan, Korea, 2010.
2. C-SLAM: Credibilistic
Guillaume Trehard et al., “ Credibilist Simultaneous Localization and Mapping with a LIDAR”, 
IROS’2014, Chicago, USA, 2014 !
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- A Maximum-Likelihood SLAM using occupancy grid to illustrate
the limits of probabilities and validate the concept of credibilist
SLAM

- A test over 10 sequences of the KITTI database which led to an
average of 3.2% in translation drift and of 0.0040 deg/m in rotation
drift

Fawzi Nashashibi Chicago, September 14th - 2014
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An Iterative Graph Optimization Approach for 2D SLAM

He Zhang, Guoliang Liu, Member, IEEE, and Zifeng Hou

Abstract— The-state-of-the-art graph optimization method
can robustly converge into a solution with least square errors
for the graph structure. Nevertheless, when a biased edge (erro-
neous transformation with over-confident information matrix)
exists, the optimal solution can produce the large deviation
because of error propagation produced by the biased edge.

In order to solve this problem in graph-based 2D SLAM
system, this paper proposed an iterative graph optimization
approach. To reduce the errors propagated from the biased
edges, we iteratively reconstruct the graph structure by refer-
ring to the result of the graph optimization process. Meanwhile,
to maintain the information of the other well estimated edges,
we strictly update the graph structure by considering the scan-
correlation score and the marginal covariance. In addition, we
apply a novel key-node mechanism to robustly detect the loop-
closure by a linear interpolation algorithm. The experiments
show that the proposed method is more robust and accurate
than the previous methods when the biased edges exist.

I. INTRODUCTION

The simultaneously localization and mapping (SLAM)
problem is a pivotal problem in the robotics community,
since it handles the most significant information for the
autonomous mobile robot. In 2D SLAM, laser scanner and
odometry usually be applied in the-state-of-the-art methods
such as Grid Mapping (GMapping) [11] and Graph Opti-
mization (GO) [13]. These methods work well and noisy-
resistent, but they will degenerate when motions are estimat-
ed erroneously but with high confidence. This often occurs
when the vehicle traverses through a corridor-like place
and the vehicle slips or applying laser-odometry algorithms
[3][7][17]. The previous methods can fail when such edges
exist.

The Gmapping implements a rao-blackwellized particle
filters(RBPF) to predict its pose distribution under gaussian
assumption and update the weights of the particles under
the Baysian rule with a likelihood evaluation for each prior
pose. Then resampling is carried out to eliminate particles
with small weights. However, if motions are estimated with
extreme noise such as vehicle slipper, resampling may e-
liminate particles with true trajectory and could never be
recovered.

The graph-based SLAM methods strive to reduce the
errors of the odometry constraint and the loop constraint.
To reduce the errors of the loop constraint, previous works
such as JCBB[16], SCGP[19], RRR[14] involve front-end

H. Zhang and Z. Hou are with the Institute of Computing Technol-
ogy, University of Chinese Academy of Sciences and with the Lenovo
(Beijing) Ltd. 6th Academy Road, Haidian District Beijing Email:
fuyinzh@gmail.com; houzf@lenovo.com

G. Liu is with the Lenovo (Beijing) Ltd. Email:
liugl6@lenovo.com

validation of loop closure to eliminate the false positive loop
edges. For the errors of the odometry constraint, they are
assumed to be corrected during the graph optimization when
true loop edges are added into the graph structure. However,
if some odometry constraint contains large errors and over-
confident information matrixes, the graph optimization will
also result in erroneous solution even when no false loop
edges exist.

The key insight of the proposed approach is that we
can correct the biased motion estimation in the front-end
by referring to the result of the graph optimization in the
back-end. When the poses of the nodes are updated, we
can use the same scan-matching algorithm to recalculate
the edge information with various prior motion guesses.
We perceive that in our 2D graph-based SLAM method,
biased edges result from poor prior motion guess that can
be improved when loops are accurately closed and the graph
structure is optimized. Therefore, we propose the iterative
graph optimization algorithm to update the graph structure
in the front-end by the aid of the optimization process in the
back-end.

The minor insight is that, in contrast to detecting loops
among nodes in the graph, we construct recoverable key-
node to verify loop closures. We perceive that the local
map information contained in key-node can be inconsistent
and thus we can rebuild the local map for each key-node
after the graph optimization. If the local map of a key-
node is maintained as a whole in a higher level for the
map representation [4][5][23], we can never eliminate the
errors in the local map. Therefore, we rebuild the local map
of each key-node when the nodes are updated by the graph
optimization process. In addition, because of the accumulated
motion error, the initial motion guess to align a scan frame
with a local map may fall out of the right convergent
basin. Thus we provide multiple interpolated initial motion
guesses between current pose and the pose of the key-node
to robustly detect loops.

In short, the central contributions of this paper are follow-
ing:
• We apply a new iterative graph optimization approach

that reduces the errors propagated by the biased edges
in the graph.

• We adopt key-nodes mechanism to robustly detect loop.
The corruptly constructed key-nodes could be recovered
when good loop edges are inserted into the graph.

• We employ an adaptive linear interpolation algorithm to
detect loop and recalculate edge information after graph
optimization.

The structure of this paper is as follows. In the fol-
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lowing section, the previous related works are discussed.
In section III, the process of graph construction will be
demonstrated. After that, the iterative graph optimization
algorithm is illustrated in detail. Then we carry out two
experiments using the real data to prove the superiority of
our method in the section V. In the end, the conclusion and
future work are presented.

II. RELATED WORK

Kümmerle et al. [13][9] illustrate the advantages of the
graph-based SLAM methods. But when the graph structure
contains false loop edges, these methods will fail catas-
trophically. To solve this problem, many front-end validation
approaches [16][19][14] have been proposed. In addition,
other methods strive to alter the graph structure during the
back-end optimization process. Sünderhauf and Protzel [20]
propose switchable variables to alter the graph structure dur-
ing the graph optimization process, that can turn off the false
loop edges. Olson and Agarwal explicitely [18] model the
errors of loop edges and track multiple hypotheses for each
edge during the graph optimization process. However, as far
as we know, none of these methods make effort to reduce
the errors of the biased edges. In fact, the graph optimization
could converges into an undesirable solution when the graph
contains a biased edge even no false loop edge. Our 2D
SLAM method dedicates to reduce the errors of the biased
edges by iteratively reconstructing the graph structure with
reference to the result of the graph optimization process.

In addition, our 2D SLAM method adopt the submap
mechanism to improve the robustness of data association.
This idea is not entirely new and has been intensely explored
[5][6][4]. The improvements of the proposed method lies
in two parts: interpolated initial motion guesses for scan-
matching [17] and recoverable mapping. The first part can
improve the accuracy of loop edges by aligning a single scan
with a previous submap with multiple initial motion guesses.
The second part can reduce the errors of the local map by
reconstructing the local map after the graph optimization.

III. GRAPH CONSTRUCTION

The graph-based SLAM algorithm contains two compo-
nents: the front-end and the back-end. The front-end includes
graph construction and the back-end focuses on graph opti-
mization. In this section, we mainly talk about the front-
end process, and leave the back-end in the next section.
The front-end mainly contains two parts: motion estimation
and loop detection. For the motion estimation, we use the
particle-type representation to model the uncertainties like
the work in [15][10]. We randomly choose a set of hypothesis
based on the prior odometry model. And then we employ
scan-matcher algorithm [17] to compute the scan correlation
score between the current laser frame with the global grid
map [21] as the weight of each hypothesis. We choose the
hypothesis with maximum weight and add its transformation
and information matrix into graph. For the loop detection, we
adopt the key-node idea, and construct local grid map in each

Fig. 1: Graph Structure: black solid circle stands for key-
node, dotted rectangle includes the information in each key-
node, and the dotted yellow circle means the current node;
the blue edges stands for the transformation between the
nodes, and the red edges are loop-edges

key-node. We apply scan alignment with interpolated prior
guesses to calculate loop constraints.

A. Motion Estimation

In our method, we estimate a set of hypotheses on the
relative motion. We provide prior guesses Ppri for robot
position Pi according to its odometry model with gaussian
noise Σodo.

Σodo =

[
Σtt Σtr
Σrt Σrr

]
(1)

After that, we measure the scan correlation score between
current observation and global gridmap Mg with these prior
poses Ppri. We set Pi as the pose with the maximum scan
correlation score. Then we calculate the relative transforma-
tion and covariance Σobs [2] between successive robot pose
Pi−1 and Pi. In the experiment, we found that the Σobs is often
over-confidently estimated. Therefore we take the correlation
score into consideration when the covariance is estimated
between Pi−1 and Pi as follows:

Σi−1,i =

{
Σobs if Score≥ minScore
Σobs +

minScore−Score
minScore ∗Σodo otherwise

(2)
minScore represents the least percentage laser beams for
a good estimation in the scan-matcher algorithm. In our
experiments we found it works well when it is set as 85% of
the total laser beams. Then, we add node ni and edge ei−1,i
into graph. The information matrix in ei−1,i is Σ−1

i−1,i. After
that, we construct key-node and detect loops which will be
explained as follows.

B. Key-Node Construction

The key-node is the same as other nodes except that it
integrates observations into a local map. As shown in the
Figure 1, the black solid circle means a key-node. The
dotted rectangle shows the nodes and the local gridmap Mi
of key-node i. As explained more explicitly in [12][8], the
motivation behind key-node is to increase loop detection
accuracy by matching with a local submap instead of a single
scan. Therefore, when searching loop connections, we only
select the key-nodes as potential loop matches. For example
in Figure 1, the yellow circle is the current pose of the
robot, and it detect potential loops by matching with the
key-nodes k n1 and k n2. In addition, the transition between
key-nodes can be triggered under different constrains such
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as observation area, trajectory length or number of nodes.
In our method, we find that using trajectory length can
guarantee substantial grid map size but also works as a clue
to detect loops. In order to reduce error in the key-node, the
maintained grid map Mi of key-node k ni will be rebuilt in
the iterative optimization process. This will be illustrated in
the section IV.

As mentioned previously, we switch to a new key-node
when the length of the trajectory contained in current key-
node exceeds a predefined distance Tl . Tl is set based on the
scale of the environment in which the robot traverses. On
the one hand, it must contain enough observed information
to make accurate scan alignment when loop occurs. On the
other hand, key-nodes should be distributed broadly for the
current node to efficiently check whether it reenter the area
in one of the previous key-nodes. Once this happen, we
verify whether there is loop-closure detected. This process
is discussed in the next part.

Fig. 2: Interpolated Poses for Initial Guess in Scan-Matcher

C. Loop Closure

When the current pose of robot gets close to a previous
key-node, that means the distance between the pose Pi of
current node i and the pose Pk j a key-node j is less than Tl ,
a potential loop may exist. Then we further check if there
exist a node nl in the key-node k n j, and the Mahalanobis
distance between them satisfy:

edis = Pi⊖Pl (3)
Σil = Rt

li ∗Σl ∗Rli +Σi (4)
| e−1

dis ∗Σil ∗ edis |< ε (5)

Σi and Σl is the marginal covariance for the node i and l
respectively. Pi and Pl are the pose for the node i and l. Rli is
the rotation part of the transformation from pose Pl to Pi. ε is
a predefined threshold. When these conditions are satisfied,
we will align the current scan frame and the gridmap M j
in k n j to verify whether a consistent transformation can be
estimated.

When the robot traverses along a long path, the accumulat-
ed motion error becomes large. In this case, the initial guess
maybe far from the right convergent basin, therefore using
scan-matching algorithms [3][7][17] may fail to precisely
estimate the transformation for the loop constraint. Even if
the overlap between the current laser frame and the gridmap
in a key-node is large, without proper initial guess, the frame
alignment algorithm may fall into poor local optima. To solve
this problem, we make multiple initial guesses by adaptively

interpolating initial motion guesses between Pi and Pk j . As
depicted in the Figure 2, we provide multiple initial guesses
(small triangles) by linearly interpolating poses between
current robot position and key-node position. We select the
result from scan-matcher with the biggest scan correlation
score. The linear interpolation is a dynamical process, it takes
into Pdis and marginal covariance Σi into consideration. In our
experiments, we assume that the proper initial motion values
distribute along the direction from Pi and Pk j . Therefore along
this direction, we interpolate an initial pose every 5cm within
Pdis.

The Σi is the marginal covariance of the node i. When no
loop is closed, it accumulates according to:

Σi = R−1
i−1,i ∗Σi−1 ∗Ri−1,i +Σi−1,i (6)

Ri−1,i is the rotation part of the transformation from pose Pi−1
to Pi. Σi−1,i is the estimated covariance between observations
in the node i−1 and i by equation 2. If loop closure happens,
it is calculated following the rule in [22].
The blue eclipse in the Figure 2 represents the current
marginal covariance, and the red small triangles that exceed
the eclipse will be discarded. When the loop is verified, a
loop edge will be inserted into the graph, and we will perform
graph optimization process explained in the next section.

Algorithm 1 Iterative Graph-based Optimization Algorithm
1: function REBUILDGRAPHANDMAP
2: Sl ◃ Loop edges and nodes detected in Frontend
3: Mg← empty ◃ Global gridmap
4: for ni in graph do
5: if ni ∈ Sl then
6: continue ◃ skip loop nodes
7: end if
8: Spose = interpolate(Pi,Pinew )
9: ei−1,i = maxScanMatcher(ni−1,ni,Spose,Mg)

10: Pi = Pi−1.oplus(ei−1,i)
11: graph.replace(ei−1,i) ◃ replace with the new edge
12: graph.update(Pi) ◃ reset pose of node
13: Mg.insert(ni) ◃ reconstruct global gridmap
14: end for
15: for e j,k in Sl do
16: Spose = interpolate(Pk,Pknew )
17: e j,k = maxScanMatcher(key n j,nk,Spose,M j)
18: Pk = Pj.oplus(e j,k)
19: graph.replace(e j,k)
20: graph.update(Pk)
21: end for
22: reconstructKeyMap() ◃ rebuild gridmap in each key node
23: end function
24: function ITERATIVEGRAPHOPTIMIZATION(iter)
25: last chi2 = optimizeGraph()
26: while i++< iter do
27: rebuildGraphandMap()
28: curr chi2 = optimizeGraph()
29: if |curr chi2− last chi2|< ε then
30: break
31: end if
32: last chi2 = curr chi2
33: end while
34: end function

IV. ITERATIVE GRAPH OPTIMIZATION

The graph optimization dedicates to find a solution with
least square errors given the topological graph structure.
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Fig. 3: Scan-Matching using the same laser frame in the
Office-like scenario (left) and the Corridor-like scenario
(right): blue triangle is the target vehicle pose, green triangles
stand for different prior reference vehicle pose, and the red
dashed triangle means the convergent vehicle pose calculated
by scan-matching

However, even when no false loop edge exists in the graph,
some biased edges (erroneous transformation with over-
confident information matrix) can result in solution with
significant error. To reduce the errors propagated from the
biased edges rather than false loop edges, we propose the
iterative graph optimization algorithm that will be explained
in the following contents.

A. Biased Edges

In our 2D SLAM system, we use scan-matching to esti-
mate the relative motion between sequential vehicle poses.
However, the accuracy of scan matching depends highly on
the scenarios where the vehicle stays. As shown in Figure
3, in the left office like environment, the scan-matching can
result in the same accurate pose (red dashed triangle) even
with different priors (green triangles). While in the right cor-
ridor like place, its results differ and ranks along the corridor,
and thus it’s hard to decide where the vehicle stands. With
poor prior odometry or laser-odometry, the transformation
of the edges in this scenario is often erroneously estimated
and the information matrix is over-confidently calculated,
that we call biased edges. To improve the accuracy of the
biased edges, a better prior motion guess must be provided.
We find that when the true loop edges are added, the graph
optimization can update the poses of the nodes, which might
provide a better prior motion to adjust the biased edges.
Therefore, the essence of iteratively optimizing graph is to
alter the graph structure in the front-end using the result from
the back-end.

B. Iterative Graph Reconstruction

The motivation behind iterative graph reconstruction is to
recover the well estimated edges and improve the biased
edges. As shown in the Figure 4, the red edge e(3,4) between
node 3 and 4 is a biased edge, and the green edge e(1,5)
between node 1 and 5 is a validated loop edge. The initial
graph structure is depicted in the Figure 4.(1), a loop is
closed and a biased edge has been added into the graph. After
graph optimization, because of the propagated error from the
biased edge, the result of the whole trajectory degenerates,
shown in the Figure 4.(2). Then we reconstruct the graph
structure as the same process in the front-end, but using the
result of the back-end as the prior motion guess. For the good

Fig. 4: Iterative Graph Reconstruction: (1) initial graph struc-
ture, (2) 1st graph optimization, (3) 1st graph reconstruction,
(4) 2nd graph optimization, (5) 2nd graph reconstruction, (6)
final graph optimization. Green arrow stands for loop edge,
blue for good edge and red dashed for biased edge

matches, different prior motion guesses can still falls into the
same convergent basin as shown in the left part in the Figure
3. While for the biased matches, the relative motion can be
updated with a better initial motion guess. This is illustrated
in the Figure 4.(3), we see that the relative motion of edges
e(1,2),e(2,3),e(4,5) and e(1,5) be recovered, while that
e(3,4) be updated. Then we again repeat the same process
as shown in the Figure 4.(4)(5), but notice that the red edge
e(3,4) in the Figure 4.(3) and the Figure 4.(5) differs, the
latter has been improved by iteratively using the result of the
back-end optimization process. When the graph structure no
longer varies, we again optimize it and obtain the final result
as shown in the Figure4.(6).

C. Algorithm Explantation

The major part of the Algorithm 1 is to rebuild the graph
structure and the global gridmap. In line 5 and 6 we skip
nodes that has been updated by loop edge for which will
be recalculated in the loop set Sl . In line 8 and 16 we
interpolate poses between the original position Pi and new
position Pinew that is updated by graph optimization. We use
the same interpolation mechanism as explained in Figure 2
in III-C, and the only difference is that the target position is
Pinew and current position is Pi. We return the transformation
with maximum score, that means most consistent with the
rebuilt map Mg. In line 4-14, we rebuild the edges between
successive nodes along the robot trajectory. In line 15-21,
we recompute the loop edges by aligning laser scan in node
nk with gridmap M j in the key-node k n j. To accurately
recover the original estimations once perturbed by graph-
based optimization, we strictly reset the pose of each node
and the edges between them by considering the marginal
covariance and the scan correlation score. After that, in line
22 we reconstruct the local gridmap in each key-node with
the newly updated nodes.

The iterative graph optimization part is quite straightfor-
ward: we iteratively rebuild graph and optimize it until it
converges or the iteration time is more than the threshold
iter. The optimizeGraph() will optimize the graph and return
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the total square error over the graph.

D. Computational Time Analysis

Suppose the average computational time for graph opti-
mization and scan-matching are T (o) and T (m) respectively.
For a graph with E edges, iGO (iterative graph optimization)
costs k(T (o) + E ∗ T (m)) + T (o) while GO only T (o). k
is the average iteration number. However, we can compare
the transformation of the edges before and after the graph
reconstruction. Therefore, for the edges with no alterations,
that means well estimated edges, we will not update in the
next loop. For example in Figure, we only recalculate the
edges e(1,2),e(2,3),e(4,5) and e(1,5) in the first iteration,
and yet update edge e(3,4) in every iteration. Then, the
computational time for iGO is k(T (o) + b ∗ T (m)) + E ∗
T (m)+T (o). b is the number of biased edges. If no biased
edges exist, iGO costs 2∗T (o)+E ∗T (m), and the extra time
consumed can be seemed as to detect biased edges.

Fig. 5: 2D Gridmap Comparisons Top to Bottom: GMapping,
GO and iGO
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Fig. 6: Trajectory Comparison. Left: GroundTruth, GMap-
ping, GO and iGO; Right: Laser-odometry, GMapping, GO
and iGO

V. EXPERIMENT

To demonstrate the proposed method can recover from
biased motion estimation, we conducted two experiments
using the data from the real environment in two cases:
• When slippage occurs, motion estimation model con-

tains high uncertainty.
• When applying laser-odometry, accuracy of motion es-

timation varies heavily.
We compare the results via three SLAM methods: GMapping
[11], GO [13], and iGO, the proposed method. The only
difference between GO and iGO lies in the optimization
process in the back-end, while the process in the front-end
is the same.

A. experiment I

In the first experiment, we use the uscsal data from the
Radish [1]. To simulate vehicle slippage, we increase the
motion model covariance Σodo with Σtt = 1.6 and Σrr = 0.8.
In this case, for GMapping, the weight of particles jumps and
resampling occurs which can eliminate some particles with
true motion. As shown in the first row of the Figure 5 and
the blue cross line in the left part of the Figure 6, the total
trajectory shrinks and results in inconsistent 2D gridmap.
For GO, some edges along the corridors may contain biased
information. Therefore, depicted in the second row of the
Figure 5, after closing loops and optimization, the whole
graph can converges into a worse solution. Compared to the
groundtruth, the result of GO bears large angular error shown
in the left part of the Figure 6. In comparison, our approach
can maintain information in the well estimated edges and
improve the biased edges. As depicted in the third row in
the Figure 5 and the green square line in the left part of the
Figure 6, the result of our method is more consistent and
accurate.

B. experiment II

In the second experiment, we control the vehicle traverse
along a circle in the Lenovo B2 office which is about
17m width and 22m length, and the total length of the
trajectory is about 80 meters. We use laser-odometry to
predict the realtive motion. Therefore the covariance of the
motion estimation depends highly on the scenes it traverse.
For example, laser-odometry provide less accurate position
information in the corridor-like place than other places with
rich observation. The trajectory and map comparisons under
different methods are shown in the Figure 7 and the right
part of the Figure 6.

As shown in the right part of the Figure 6, laser-odometry
[17] offers erroneous transformation in the corridor-like
places. However, since the laser-scans are matched well
along the corridor, it estimates high confidence information
matrix. Because of this biased information, GMapping fails
to correctly estimate the poses of the particles and result
in inconsistent gridmap, Figure 7 (a). For the same reason,
even GO can accurately close the loop, the optimization
degenerates the whole vehicle trajectory and constructs a
worse 2D map Figure 7 (b). On the contrary, our method can
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(a) GMapping (b) GO (c) iGO

Fig. 7: Mapping Comparison: the red dots stand for the final 2D grid map, green line is the trajectory and the background
is the sketch 2D map for the Lenovo B2 office

not only detect the loop closure precisely, but also reduce
the error propagation introduced by the biased edges and
improves the transformation in the biased edges. Compared
with the sketch map of the work station, the gridmap of the
proposed method is more consistent and accurate than those
of the other methods, depicted in the Figure 7 (c).

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a new iterative graph opti-

mization method. Our major contributions are two folds: a)
iteratively rebuilding and optimizing the graph structure can
maintain the well estimated edges, and improve the biased
edges; b) a novel key-node mechanism and an interpolation
algorithm that can help the loop-closure. The effectiveness
of the proposed new ideas have been verified in our experi-
ments.

Although the proposed method has many advantages com-
pared with the previous methods, it can not recover from
errors propagated by the false loop edges. A single large
misleading loop closure could make the algorithm fail. In
the future, we can combine the loop validation algorithms
with the proposed method to make the graph-based SLAM
method more robust.
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Appearance-based Localization across Seasons in a Metric Map

Chris Beall, Frank Dellaert

Abstract— In this paper we address the problem of
appearance-based long-term outdoor localization across sea-
sons. This is a difficult task due to the changing appearance of
visual landmarks across seasons and time of day. Our approach
operates based on the premise that combining visual landmarks
observed at different times of the year into a single metric
map will yield better localization results than a map created
from a single sequence alone. We integrate stereo imagery
collected at two different times of the year into a unified 3D
map, and use this as the basis for localization. A landmark
visibility prediction framework is utilized to efficiently retrieve
a small subset of landmarks and their feature descriptors from
a database of millions of landmarks. The proposed approach
is experimentally validated on a challenging sequence collected
a year earlier.

I. INTRODUCTION

Vision-based localization systems have received much
attention in the past few years. Localization using vision
alone is an attractive prospect considering its very low cost
compared to other sensor modalities. GPS is useful in many
applications, but it is well known that GPS performance
is degraded in urban settings due to buildings obstructing
the sky. We are particularly interested in the scenario of
localizing a moving vehicle, where a coarse localization
estimate is available as a prior, either from GPS or from
a localization estimate in the immediate past.

While quite a number of visual localization systems have
been demonstrated, few have been shown to work robustly in
the face of changing scene appearance caused by differences
in lighting, seasonal variation, foliage changes, weather,
etc. Representing each place as a different experience in
a topologically connected map appears to be a particularly
promising approach [1], but this sort of technique makes
exact localization difficult as the query images are localized
in several distinct visual odometry tracks.

In this paper we show that localization across long periods
of time (and seasons) within a unified metric map is a
feasible approach. We take the view that by combining data
from several stereo image sequences into a single map it
sufficiently spans the space of possible appearances to enable
localization for a wide range of scenarios. This approach
clearly presents a number of significant challenges. First, the
sequences to be combined into the map must be registered
very accurately to ensure the resulting map is geometrically
consistent. Since the map contains millions of landmarks,
the second challenge is how to decide which landmarks to
choose when attempting to localize a query frame.

To the best of our knowledge, this is the first work which
explicitly joins data from two sequences into a single metric
map as shown in Fig. 1, which is then used for localization.

Fig. 1: Color point cloud representing the landmark database
of the Georgia Tech campus.

In contrast, previous work which made use of data from
different times was topological in nature. The contributions
of this paper are:

• Vision-only localization in a large-scale metric map
created from data collected during different times.

• Landmark visibility prediction in the context of real-
time vehicle localization.

The remainder of this paper is organized as follows. We
first discuss related work in section II, followed by a detailed
discussion of the 3D map building and localization in section
III. Section IV has the results.

II. RELATED WORK

In recent years, many vision-based localization algorithms
have been proposed. The work most relevant in terms of
its application is that of Churchill et. al. [1]. Visual odom-
etry trajectories, termed experiences, are stored each time
the vehicle visits a new place and is unable to relocalize
itself within already existing experiences. The system keeps
collecting new experiences until they become fully adequate
for localization. One disadvantage of this work is that these
experiences are only topologically linked, and exact metric
pose recovery presents a challenge.

Another interesting approach is that of Lategahn et al.,
who used a pre-computed 3D map, comprising 3D landmarks
and their descriptors, to localize a stereo camera without GPS
[2]. Given the previous known pose, all landmarks observed
by the nearest camera pose used to build the map are used for
descriptor matching. Lategahn et al. took a similar approach
in [3], with the notable differences being that a monocular
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camera is used during localization, and the resulting pose is
refined in a filter together with IMU measurements.

Milford and Wyeth [4] introduced SeqSLAM. Rather
than matching local features between images, sequences of
images are compared to establish a loop closure. Image simi-
larity is established using sum of absolute differences. Conse-
quently, no lighting/season invariant descriptors are needed.
The method works on sequences with drastically different
appearance. The method makes assumptions about relatively
constant velocity and direction of travel. A related approach
is that of Maddern et al. [5], in a system called CAT-SLAM.
Sequential appearance based SLAM is enhanced with metric
pose filtering to improve the performance.

Valgren et al. [6] also explored an appearance-based
approach across scenes with stark appearance changes, using
SIFT/SURF descriptor matching, and tuning the parameters
for optimal results.

Deciding which map features to match against is a major
challenge, and this is especially true in the case of Structure
from Motion (SfM), where unordered datasets with mostly
unknown location priors are the norm. Li et al. [7] addressed
this difficulty by matching 3D points to image features, rather
than the more conventional 2D to 3D matching. Points with
higher degree are prioritized. This was further improved upon
with bi-directional matching in [8]. A similar approach is
taken by Sattler et al. [9], where 2D-3D matching is sped
up by indexing all image features into a vocabulary tree
that was constructed using the 3D model, and the size of
each word cluster is used as a proxy for estimated matching
speed. Feature matching is prioritized according to cluster
sizes. In [10] this approach is further refined with an active
correspondence search in both directions.

Another interesting line of attack is reasoning about de-
scriptor occurrence. One such approach is taken in [11],
[12] where robust localization is achieved by computing
landmark observation likelihoods based on the number of
times a landmark was observed across training runs.

It is standard practice to employ a RANSAC [13] frame-
work to achieve robust matching in the presence of outliers.
When inlier ratios become very low RANSAC can take many
iterations to find a good model. Chum et al. introduced
PROSAC [14] , which progressively increases the sample
size. This approach assumes that matches can be prioritized,
and in the usual case the descriptor distance is suitable. In
[15], [16] feature weighting is integrated into the geometric
verification procedure (as opposed to post-processing step).

A different approach to solving the data association prob-
lem is taken in [17]. The authors proposed a framework for
predicting the visibility of landmarks in the scene. Given a
new query image with a pose prior, the landmarks which
were previously observed by nearby cameras are probabilis-
tically weighted according to a distance metric which is
learned in an offline step. The distance metric takes into
account camera rotation and translation. This makes it easy
to ignore landmarks which were observed by a camera facing
in the opposite direction, even though they are very close to
the query camera prior. In this paper we are also interested

in localizing a query image given a pose prior, and we adopt
this same visibility approach for efficiently retrieving likely
visible landmarks from our map.

III. MAP BUILDING

In this section we describe how we build a map (3D
landmark database) which is used for localization. The main
steps consist of applying stereo visual odometry to an image
sequence, loop closing within and between data sequences,
and large scale bundle adjustment. Each of these will be
discussed in detail, but first some notation: We define X

s as
the set of camera poses {xs

i} for data sequence s. Ls is the
set of landmarks {lsj} observed in sequence s. ✓s=̂{Xs

, L

s}
is the set of all variables, which together with a camera-
landmark visibility table makes up the map M .

A. Stereo Visual Odometry
We run a conventional stereo visual odometry (VO) al-

gorithm to recover the camera trajectory. For each rectified
stereo image pair, SIFT features are extracted and matched
across the pair. Matches are only retained if they are mutually
optimal according to the ratio test [18], and fall within tight
threshold of the epipolar line, which is a horizontal scan-line
for rectified images. Points with zero disparity are discarded,
and 3D points (X,Y, Z)T are then triangulated. Features are
then matched temporally to form a set of putative matches,
and a three point algorithm [19] is employed in a RANSAC
[13] framework to recover the relative pose.

Features which are successfully tracked for at least two
consecutive frames, called feature tracklets, are recorded
along with their feature descriptors. As these feature tracklets
are geometrically consistent across at least two frames they
will be accepted for inclusion in the map. The resulting
camera trajectory, together with the accepted landmarks will
be optimized later as described in the following sections.

B. Closing the Loop
Loop closures are needed to correct for drift in the VO

trajectory, as well as to precisely align multiple passes along
the same street. Appearance based loop closure detection
as in [20] is a popular approach. However, since the data
used to build the map has synchronized GPS, we use this
to find loop closure candidates. We are not concerned about
real-time performance while constructing the map. In a brute
force fashion, we find the nearest neighbor camera poses and
attempt feature matching and geometric verification as in
Sec. III-A. Loop closure landmark observations are recorded
to be incorporated into the map (Sec. III-C).

Loop closure detection is also performed between data se-
quences to provide constraints to align datasets with respect
to each other.

C. Map Optimization
Bundle adjustment, or smoothing and mapping (SAM), has

been applied to create highly accurate, city-scale reconstruc-
tions from large photo-collections[21], [22]. We apply this
technique to optimize several data sequences together into a
geometrically consistent map.

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
48



l1


l2


x1
 x2


l3


Fig. 2: Factor graph comprising two camera poses, three
landmarks, and a GPS prior on camera pose x1.

The optimization problem at hand is easily represented by
a factor graph. A factor graph is a bipartite graph comprising
two types of nodes: state variables and factors. Here, the
unknown camera poses X = {xi| i 2 1...M} and landmarks
L = {lj | j 2 1...N} make up the set of state variables. The
landmark measurements Z = {zk| k 2 1...K} as observed
by the cameras correspond to factors. An example of a factor
graph is shown in Fig. 2.

We minimize the non-linear cost function

KX

k=1

khk(xik , ljk)� zkk2⌃k
(1)

in a least-squares sense, where hk(⇧) is the measurement
function of landmark lj from camera xi, and the notation
k.k2⌃ represents the squared Mahalanobis distance with co-
variance ⌃. We assume that we have normally distributed
Gaussian measurement noise.

For more details on the SAM optimization process, we
refer the interested reader to [23].

D. Localization

Given a set of measurements Zi and the map M , we
are interested in efficiently recovering the most likely pose
⇥: P (⇥|Zi,M). In the case of vehicle localization we
also assume that we have a pose prior that comes from
the previous pose estimate or GPS. In light of M having
many millions of landmarks, it is important to only retrieve
landmarks which are likely to be visible in the current stereo
frame. We use the visibility prediction framework introduced
in [17] to achieve this. The key idea here is that stereo frames
which were taken at camera poses X which were nearby the
current pose, and also facing in roughly the same direction,
are likely to have observed a similar set of landmarks Lv .

The landmark visibility distance metric used in this paper
combines Euclidean distance and rotation between the query
pose and map poses X . To find the set Lv we compute
the distance between the query pose and all poses X , and
then collect all of the landmarks observed by the n nearest
poses. One important advantage of this approach is that map
landmarks observed from a map-building sequence Xs where
the vehicle was traveling in the opposite direction along
the same road will not be considered visible, which is in
accordance with the limits of rotation invariance of the SIFT
descriptor.

Date Frames VO Fr. Resolution Length Label
Sep 11, 2012 25462 20372 1380⇥ 480 10.5km F
Apr 2, 2013 23090 14053 1384⇥ 680 11.38km K
Aug 1, 2013 21690 15219 1384⇥ 680 13.21km L

TABLE I: Three datasets that were used for the experiments.

Fig. 3: GPS-INS trajectory superimposed on Google Earth
imagery. Severe GPS drift due to multi-path issues can be
observed to the east of the stadium.

Given Lv , the standard approach is followed to compute
a pose estimate: Detect features in the current stereo pair,
match and verify with RANSAC.

In practice, some steps can be taken to further speed up the
algorithm described above. Computing the visibility distance
metric with respect to all poses X can be costly for large
M. Instead, we make use of a quad-tree to pre-prune the set
of poses, and only compute the visibility for poses that fall
within a bounding box of the query pose.

IV. EXPERIMENTAL RESULTS

To validate our approach we have built a map using two
data sequences collected on our campus. One sequence was
collected in April, and the other in August of 2013, called
sequences K and L. Sequence F is not included in the map,
and is used for localization testing only. A listing of all
the data sequences used in this paper is shown in table I.
Images were collected using two Point Grey Flea 3 GigE
cameras, along with a third color camera for visualization
purposes. The cameras were triggered through hardware
synchronization at 10Hz.

GPS-INS data was collected using a 3DM-GX3-45 GPS-
Aided Inertial Navigation System at up to 100Hz. This data
was interpolated and synchronized to camera timestamps.
The GPS-INS solution occasionally drifts quite noticeably,
particularly when driving next to large buildings which
hinder a clear view of the sky in all directions. An example
is shown in Fig. 3. Visual Odometry is run on each of the
sequences, and feature tracklets, as well as their associated
descriptors, are saved for the loop closure step.

A. Closing the Loop
As described in Sec. III-B, loop closure detection is

performed within each sequence, as well as between the
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Fig. 4: Successful registration and pose recovery on challeng-
ing imagery between frames from sequences K (top) and L
(bottom). There are notable differences in lighting, foliage,
as well as vehicular occlusions. Putative matches are shown
in blue, and accepted inlier matches are shown in green.
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Fig. 5: Loop closure results for sequence L. a: Inlier ratios
b) Accepted loop closures exceeding the inlier threshold and
minimum inlier count are shown in red.

two sequences making up the 3D map. Fig. 4 shows a
successful loop closure. The goal is to detect as many
loop closures as possible as this promises the most accurate
map registration possible. Missed loop closures lead to poor
map alignment, while false loop closures present difficulties
during optimization. Through empirical experimentation we
find that a RANSAC inlier ratio of 0.5, and a minimum
inlier count of 10 yield satisfactory results. Fig. 5 shows
loop closure results for sequence L.

Fig. 6 shows the loop closure result between sequences K
and L. As expected, there are no loop closures where the two
trajectories do not overlap, but loop closures are also missed
in some places, likely due to vastly different appearance, or
due to the RANSAC inlier ratio not meeting the required
threshold.

B. Map Optimization

Each sequence is optimized individually before all data
are combined into a single map. Camera poses X

s are
initialized from GPS, and landmarks L

s are initialized from
stereo triangulation. We additionally add weak GPS priors to
camera poses so the map remains in true alignment with the
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Fig. 6: Loop closures between sequences K & L. Poses where
loop closure is possible are shown in blue, and where loop
closure was successful is shown in green.
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Fig. 7: Sequence L. a) Per-camera RMS errors before opti-
mization b) RMS errors after optimization

streets. The Huber cost function is used to achieve robustness
against possible outliers. RMS projection errors per camera,
before and after optimization, are shown in Fig. 7.

Finally, the two optimized sequences are combined, and
landmarks which were observed in both sequences are rep-
resented as a single landmark. The final optimized camera
trajectories are shown in Fig. 8.

To fully appreciate the structure of the 3D map, Fig. 9
shows a top-down view of all contained landmarks, with
landmarks observed in sequences K and L shown in blue
and green, respectively. Fig. 1 shows the color point cloud.
The complete map, inclusive of feature descriptors has a size
of approximately 1.4GB on disk.

C. Localization

We have conducted localization experiments for each of
the three sequences, shown in Fig. 10. It is expected that
sequences K & L will perform very well, as these contributed
to the map. Sequence F, however, is a lot more challenging,
since this sequence was taken in the previous year, and scene
appearance was drastically different in many places across
campus.

Fig. 11 shows a visualization of the smallest visibility
distance for each query pose. The smaller the distance,
the more likely the camera is to have observed the same
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(a) Sequence F (b) Sequence K (c) Sequence L

Fig. 10: Localization results with KL map. Estimated poses are shown blue, GPS-INS priors are shown in green.

Fig. 8: Optimized camera trajectories after full bundle ad-
justment of over 12 million factors and over 2.2 million
variables.

Fig. 9: Point cloud of tracked landmarks. Points shown in
blue and red are from sequences K and L, respectively.
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Fig. 11: Camera visibility scores (Mahalanobis distance) per
GPS query pose for sequence F with respect to the full
database. Lower (blue) is better. Streets which were not
covered by the database, or which were traveled in the
opposite direction have a large distance (red).

landmarks. For example, note that to the east there is a street
block which was not covered in the map, and therefore has
a very large visibility distance (deep red).

We have conducted the same experiments using only
sequence K as the basis for the landmark map, and these
results are shown in Fig. 12. As expected, the results for
sequence K are virtually unchanged, and sequence L has gaps
in localization where its trajectory does not overlap with K.
Sequence F is relatively similar to the previous result, with
the notable difference that localization was somewhat worse
in areas where the two sequences K & L had poor loop
closures. In other words, these were areas where there might
exist alignment problems in the map. This underscores the
need for very good registration when combining data from
multiple sequences into a single metric map, and this is to
be addressed in future work. Table II shows the localization
performance of the three sequences with respect to a map
constructed from sequence K alone vs. a map constructed
from K+L.

The visual odometry component of our system runs faster
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(a) Sequence F (b) Sequence K (c) Sequence L

Fig. 12: Localization results with K map. Estimated poses are shown blue, GPS-INS priors are shown in green.

Map F K L Total
K 5335 22969 10540 38844

K+L 4417 22819 21245 48481

TABLE II: Number of successfully localized frames of
sequences F, K, L against maps created from sequence K
alone, and from sequences K and L.

than real-time (10Hz). The performance of the localization
module varies greatly, depending on the number of land-
marks returned from the map, and depending on the inlier
ratio. In the successful case it takes about 5-10ms, depending
on the sequence (localizing K or L against the map is
faster than F). When localization fails it can take up to
hundreds of ms, dependent on RANSAC termination thresh-
olds. However, these results were obtained with unoptimized
code, and localization of individual image frames is easily
parallelizable.

CONCLUSION

In this paper we presented a robust localization system
based on a unified metric landmark map created from two
stereo sequences collected at different times of the year.
Efficient vision-based localization was performed by relying
on a visibility prediction framework to retrieve a subset of
landmarks which are used for descriptor matching. Experi-
ments on real data showed the effectiveness of the approach.
In future work we plan to incorporate more datasets into the
map, and extending the visibility prediction framework to
handle seasonal appearance explicitly.
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High Precision 6DOF Vehicle Navigation in Urban Environments using a
Low-cost Single-frequency GPS Receiver

Sheng Zhao Yiming Chen Jay A. Farrell

Abstract— Many advanced driver assistance systems (ADAS)
demand for high precision navigation in urban environments.
Traditional high precision dual-frequency RTK GPS receivers
are too expensive for the low-cost, massive produced consumer-
grade applications. On the other hand, many potential appli-
cations will become feasible as the high precision navigation
solution becomes affordable using low-cost sensors. Hence,
this paper proposed a high precision global navigation system
using the low-cost single frequency GPS receiver and MEMS
inertial measurement unit (IMU), with the application in GPS-
challenged urban environments. By utilizing a sliding-window
smoothing estimator, we are able to demonstrate reliable
decimeter positioning accuracy in the presence of severe mutli-
path errors and intermittent GPS signal receptions. To the best
of the authors’ knowledge, this is the first literature report
of a high performance sliding window smoothing estimator on
tightly coupled Differential-GPS/IMU using L1-only measure-
ments in a GPS-challenged urban environment.

I. INTRODUCTION AND RELATED WORK

High precision navigation is the core functionality in many
advanced driver assistance systems, e.g. self-driving. In these
systems, GPS is the primary sensor to obtain the global
position of the vehicle. To achieve reliable high precision
positioning, differential GPS (DGPS) is a promising ap-
proach. As the mobile communication networks (4G or WiFi)
becomes ubiquitous, the DGPS technique can be used in
most of the urban environments and provides 0.1 to 3 meter
positioning accuracy [1].

However, GPS has its own limitations due to many factors.
In the urban environments, the GPS signals can be blocked
by trees and tall buildings and thus using GPS alone cannot
obtain reliable and accurate navigation solutions. As an
example of the poor GPS coverage in the urban environment,
the satellite availability along the campus testing trajec-
tory is shown in Fig. 1. Moreover, the traditional high-
end dual frequency RTK GPS receiver is too expensive for
low-cost/consumer-grade applications. In addition, in recent
years, the single frequency (L1-only) GPS receivers have
become readily available in the market at a much lower price
than the dual frequency receiver, and the MEMS IMU is
also getting much cheaper. Many potential applications will
become feasible as the high precision navigation solution
becomes affordable using low-cost sensors. Therefore, this
paper proposes a high precision global navigation system
using a low-cost single frequency GPS receiver and a MEMS
IMU, with the application in GPS-challenged urban environ-
ments.

Zhao and Chen are Ph.D. students and Farrell is a Professor at the Dept. of
Electrical Eng., University of California, Riverside, 92521. {shzhao, yichen,
farrell}@ee.ucr.edu.
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Fig. 1: The testing trajectory marked with colors to represent
the number of satellites available to the receiver along the
trajectory. Due to the blockage of building and trees, there
are many places where less than 4 satellites can be seen
(highlighted in blue color). This is a challenging route for
the GPS/IMU navigation system. With the proposed method,
the reliable decimeter positioning errors is achievable using
L1-only GPS measurements.

In the GPS navigation community, RTK GPS positioning
is a well-known mature technique. However, for low-cost,
single frequency receiver, there still are many challenges,
especially in urban environments. Compared to a dual fre-
quency receiver, a single frequency receiver cannot form
multi-frequency combinations which would greatly reduce
the integer searching effort in realtime. Moreover, the number
of measurements from single frequency receiver is half of
that from a dual frequency receiver. In urban environments,
the intermittent signal reception that caused by the signal
blockage also creates problems because everytime the re-
ceiver reacquires the satellite signal, the integer in the carrier
phase measurement is different. Therefore in practice, it is
difficult or takes significantly longer for a single frequency
receiver to resolve the integer and obtain the centimeter
level accuracy compared to the high-end, dual frequency
receivers [2]. As a result, the slow convergence rate of the
positioning accuracy using a single frequency receiver is
usually intolerable for many ADAS applications.

Without the correctly resolved integer, the phase measure-
ment does not provide absolute range information. In this
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case, most of the existing approaches use the triple difference
technique in an EKF estimator [2], [3], [4]. However, the
existing approaches either have slow convergence rate or
assume perfect initialization of the estimator. In recent years,
the smoothing based estimator have been demonstrated to
have better performance than the EKF [5] and have been
applied in many vision-aided inertial navigation systems [6],
[7]. Hence, in our previous paper [8], the authors utilized a
sliding-window smoothing estimator (which is named as the
Contemplative RealTime (CRT) estimator) and demonstrated
the superior performance to the EKF using pseudorange
measurements in open sky environments. To further improve
the performance of the CRT estimator in GPS-challenged
urban environments, this paper proposes a novel way to
utilize the accurate phase measurements in the CRT estimator
when the integer cannot be resolved.

The contributions of this paper are:
1) The first literature report of a high performance slid-

ing window smoothing estimator on tightly coupled
DGPS/IMU using L1-only measurements in GPS-
challenged urban environments.

2) The first literature report of utilizing the phase mea-
surement in the sliding window smoothing estimator
to achieve high precision navigation when the correct
integer cannot be resolved.

II. LITERATURE REVIEW

For dual-frequency GPS receivers, the integer ambiguity
problem is a well researched topic and there are many
working solutions available [9], [10]. Once the integer is
successfully resolved, an EKF is typically applied to obtain
a centimeter accuracy navigation solution.

For a single-frequency GPS receiver, resolving the integer
in realtime is much harder. There are many papers working
on this topic by using triple difference technique, which
differences the phase measurement at two consecutive times
to eliminate the unknown integer. In [2], the authors designed
an EKF to use the triple-difference phase measurement from
a single frequency receiver to achieve submeter accuracy.
The reported time needed for the estimator to converge to
submeter accuracy is 500 sec and the vehicle needs to stay
stationary during this period. In [3], the authors proposed
an integer searching and validation method based on the
technique developed in [2] with an application on a low-
cost mowing robot using single frequency receivers. The time
it takes to reliably resolve the integer was not reported. In
[4], the authors utilize a modified triple difference technique
in an EKF to track the relative positions of the receivers
from a perfectly known initial configuration. The global
positions are not estimated in their approach. Due to the
nature of tracking (perfect initial knowledge), it does not
need a long time to converge to a submeter accuracy. The
reported accuracy of position tracking is in the decimeter
level when the vehicle is driving in high speed.

The method proposed in this paper is related to the
triple difference technique. Instead of differencing consec-
utive measurements to eliminate the integer, we propose a

CRT windowݔ଴,  ଴ܲ

ܷ଴ ଵܷ

ଵିݕ ଴ݕ ௄ݕ

௄ݐ∗ݐ

ଶିݕ
Fig. 2: The illustration of measurement time line and CRT
window. The red dots represent the vehicle states at the GPS
measurement time. The green lines represent the IMU con-
straints between two consecutive states. At tk the optimiza-
tion problem is formed and the solution of the optimization
problem will be available at t∗. At t∗, the vehicle state is
propagated from tk to t∗ using IMU measurements.

systematic way to eliminate the integer for a time window
of measurements and thus creates the constraints between
all the vehicle poses in the window. The proposed method
is optimal in that it preserves all the information from the
measurements and correctly captures the time correlation of
the resulted kinematic constraints in contrast to the triple
difference technique.

To fully utilize the proposed method, this paper uses
a sliding window smoothing estimator. Smoothing related
algorithms are getting significant attention in the SLAM
community in recent years [11], [12], [6], [7]. However,
none of these papers report the performance for tightly
coupled DGPS/INS. The most related one is [7]. However,
in that paper the GPS is integrated in a loose coupled
way. Therefore, they reported similar performance between
smoothing and EKF. In a tightly coupled DGPS/INS system,
we notice that there is a significant performance improve-
ment compared to the EKF, especially in GPS-challenged
urban environments. The navigation system designed in this
paper is similar in concept to the one proposed in [6].
However, [6] focus on the visual inertial integration and
they have not reported any tightly coupled GPS/IMU results.
Based on the best knowledge of the authors, we believe this
is the first publication of the high performance capability of
smoothing estimator on tightly coupled DGPS/INS.

III. NONLINEAR LEAST SQUARE PROBLEM

This section briefly describes the optimization problem in
the CRT estimator. The details of the CRT estimator can be
found in [6], [8].

The measurement time line of the CRT estimator is given
in Fig. 2. The IMU measurements and GPS measurements
are denoted as Uk and yk respectively. At each CRT window
(a sliding window of sensor measurements), we solve a
nonlinear least square problem:

X̂ = argmin
X

{∑
i∈S
‖ei(X)‖Ri

}
(1)

where X is the state vector of the vehicle trajectory defined
on the CRT window, the set S represents all the information
within the CRT window which, in our case, consists of the
IMU, GPS and prior information, the ei(X) is the residual
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function (IMU: ei∆, GPS: eiρ and eiφ, prior: ei0), and Ri is the
corresponding covariance matrix. The formulation of IMU
and prior residual can be found in [8]. The GPS residuals
will be discussed in the next section.

IV. DIFFERENTIAL-GPS

DGPS has advantage over stand-alone GPS in that most
of the common-mode errors (e.g., ionosphere, troposphere,
satellite clock and ephemeris errors) can be removed by
differencing measurements between the rover receiver and
the GPS base station receiver. For simplicity of notation, it
is assumed in this paper that DGPS approach completely
removes all common-mode errors. Two types of measure-
ments are provided by the receiver: pseudorange (code)
and carrier phase measurements. To avoid the modeling
of the receiver clock error which involves the complicated
GPS measurement compensation, double differenced GPS
measurements are considered in this paper.

A. Pseudorange Measurement

The double differenced pseudorange measurements for the
i-th satellite vehicle (SV) can be modeled as

ρic = γic +mpicρ + nicρ , (2)

where γic(t) = γ̄i(t)− γ̄c(t), ρic = ρ̄i− ρ̄c, nicρ = n̄iρ− n̄cρ,
γ̄i(t) = ‖pr(t)−pisv(t)‖2 is the geometric distance between
the vehicle position pr ∈ R3 and the i-th SV position
pisv ∈ R3, ρ̄i is the pseudorange measurement of i-th SV, the
superscript c is used to denote the common satellite chosen in
the double differencing method, mpicρ is the multi-path error
which can be several meters and n̄iρ is the measurement noise
whose standard deviation is typically around 2-5 meters.

Thus, the residual function of the double differenced code
measurement can be formed from eqn. (2) as:

eiρ(x(t)) = ρic − γic(t) (3)

B. Carrier Phase Measurement

The double differenced phase measurement model for the
i-th satellite vehicle (SV) is:

λφic = γic + λN ic +mpicφ + nicφ , (4)

where φic = φ̄i − φ̄c and nicφ = n̄iφ − n̄cφ, φ̄i is the
phase measurement of i-th SV, N ic is an unknown integer
of the phase cycle, λ is the wavelength of the signal (L1
signal: 19.05cm), mpicφ is the multi-path error which is in
the centimeter level, and n̄iφ is the measurement noise whose
standard deviation is typically in the centimeter level. The
integer N ic is constant over time intervals when the receiver
has phase lock for SV i and c. The receiver indicates this
lock with a flag and lock time counter. Once the unknown
integer N ic is resolved, the phase measurement provides the
range measurement in a centimeter accuracy.

However, the integer is difficult to resolve reliably in
realtime for a single-frequency receiver. Nonetheless, there
are at least two reasons why we still want to use the phase
measurement when the integer cannot be resolved:

1) Multi-path only introduces a few centimeters of error
in the phase measurement while the code measurement
can be affected by few meters.

2) Phase measurements over a time window provide the
local kinematic constraints of the trajectory at the
centimeter accuracy even when the correct integer is
not available.

Typically, there are two ways of utilizing the phase mea-
surement when the correct integer cannot be resolved:

1) Use the triple difference technique to create an integer-
free measurement. The triple difference measurement
φ̃ick at tk for i-th SV is defined as:

λφ̃ick = γick − γick−1 + ñicφ (5)

where φ̃ick = φic(tk)− φic(tk−1) and ñicφ = nicφ (tk)−
nicφ (tk−1). This equation is derived by subtracting eqn.
(4) at tk−1 and tk. The benefit of this approach is
that the resulted measurement φ̃ick is independent of
the integer and thus it does not violate the integer
assumption. However, the triple difference only con-
sider the consecutive measurements and ignore the
time correlation of phase measurements over a time
window.

2) Estimate the integer as a float number together with
other vehicle states in the estimator. This approach
correctly accounts for the time correlation of phase
measurements. The major drawback of this approach
is that the integer constraint is not respected and
adding integers into the estimator will increases the
computational complexity.

To incorporate the accurate phase measurements in the
CRT framework, this paper proposes a new method that takes
benefits from both the approaches mentioned above. Further-
more, as an improvement of the triple difference technique,
this paper proposes a integer-free phase measurement that
is independent of the integer while correctly captures the
time correlation of phase measurements. As a nutshell, the
CRT estimator uses the proposed integer-free measurements
for i-SV when the i-SV is not observed by the first pose in
the CRT window. Otherwise the integers are added into the
estimator.

V. INTEGER-FREE PHASE MEASUREMENT

To fully utilize the phase measurement without resolving
the integer, an integer-free measurement is constructed using
methods originally proposed for visual odometry [13]. Given
all the measurements of the i-th SV and the common SV c
that contributes to the constant integer N ic, which are defined
as an integer track Ξic in this paper, stacking up eqn. (4) and
ignore the multi-path error mpicφ gives:

λφic = h(XSicp ) + λGicN ic + nicφ (6)
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where

φic =


φic(t̄1)
φic(t̄2)

...
φic(t̄l)

 , h(XSicp ) =


γic(t̄1)
γic(t̄2)

...
γic(t̄l)

 ,Gic =


1
1
...
1

 ,
(7)

where Sicp = {t̄1, t̄2, . . . , t̄l} denotes a set of consecutive
time steps that both the i-th SV and the common SV c
are observed, and XSicp = {x(t) | t ∈ Sicp }. The set Sicp
always contains consecutive time steps because every time
the receiver reacquires the satellite, the integer changes.

Using the methods in [13], the integer can be eliminated
from the equation by the following procedure. Define a
unitary matrix A = [A1, A2] such that the columns of
A2 form the basis of the left nullspace of G (A>2 G = 0).
Multiplying A>2 on both sides of (6) gives:

λφ̄ic = h̄(XSicp ) + n̄icφ (8)

where φ̄ic = A>2 φic, h̄ = A>2 h and n̄icφ = A>2 nicφ .
Thus, the integer-free phase measurement induced residual

equation eφ(X) can be formed as:

eiφ(X) = λφ̄ic − h̄(XSicp ) (9)

Note that the above derived measurement equation is
independent of the integer. Equation (9) expresses the relative
kinematic constraints between vehicle poses along the trajec-
tory. The constraint is strong because the noise nicφ (t) has a
standard deviation at the centimeter level. Moreover, in the
proposed approach, the noise n̄icφ correctly captures the time
correlation of the relative kinematic constraint between all
the vehicle poses in the set Sicp through its dense covariance
matrix A>2 Ricφ A2, where Ricφ is the covariance matrix of nicφ .
In contrast, the triple difference technique only captures the
pairwise kinematic constraint between two consecutive vehi-
cle poses, but neglects time correlation between subsequent
measurements.

VI. EXPERIMENTAL RESULTS

This section presents analysis of data accumulated during
a test drive around the campus of University of California,
Riverside, see Fig. 1. Along the test path there are many trees
and buildings as is representative of a typical urban environ-
ment. In the experiment, the vehicle is equipped with dual-
frequency GPS receivers and a MEMS IMU, but no form
of compass. For this receiver, the L1 data is more accurate
than a typical low-cost single frequency GPS receiver and
antenna would produce; however, using identical data is most
useful for the present analysis (generating ground truth).
GPS measurements are taken at 1 Hz. The GPS provides
code (pseudorange) and carrier phase measurements. All
GPS measurements are used in a differential mode. The IMU
provides measurements at 200Hz. The CRT estimator uses
10s window of data. The vehicle position is initialized by
the GPS measurement and the pitch and roll are obtained

Fig. 3: Navigation and Mapping sensor platform. Equipped
with GPS/INS unit, monocular camera, 360 degree camera,
2D LIDAR, RADAR, and Velodyne LIDAR.

from the accelerometer assuming the vehicle is stationary.
The sensor platform is shown in Fig. 3.

The trajectory estimation error is formulated by sub-
tracting the real-time state estimate at each time from a
ground truth state estimate for the same time. The ground
truth trajectory is determined by an off-line, post-processed
smoother combining the IMU and integer-resolved phase
measurements (using L1 and L2 measurements) [14]. The
ground truth trajectory is accurate at the centimeter level.
All the CRT estimators used in the experiment use L1 only
measurements.

Fig. 4 shows the position, velocity and attitude errors of
the CRT estimator using code and phase. As we can see from
the results, the position error is within ±0.5m for most of
the time in the horizontal plane (north and east direction),
the velocity error is within ±0.1m/s and the roll and pitch
errors are within ±0.2◦ and the yaw error is within ±1◦

without using a compass.
To demonstrate the benefits of phase measurements, the

position errors of the CRT estimator using code only are
shown in Fig. 5 with the position errors of the CRT es-
timator using code and phase. We can see that the phase
measurements are able to provide accurate local kinematic
constraints that prevent large jumps in the position estimates
in the presence of multi-path errors and noisy GPS signal
receptions, even when the integer cannot be resolved. More-
over, the estimated trajectory using phase measurement is in
general smoother than using the code measurements only.

VII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel DGPS/IMU navigation
system that significantly improves performance in urban
environments. The experimental results demonstrated that
the proposed method has the potential to enable the high
precision navigation using low-cost, single frequency GPS
receivers and MEMS IMU in GPS challenged environments.
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(b) Velocity error.
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(c) Attitude error.

Fig. 4: Navigation system errors. The ±3σ bound is plotted in red.
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Fig. 5: North and East position errors comparison. Without
using the phase measurements, the position errors have
huge jumps in the presence of multi-path issues and noisy
measurements when under trees.

The new algorithm performs optimization in realtime, for
all IMU and GPS measurement within a time window, to
provide a state estimate at the current time. The approach
leads to improved performance for a few reasons. First,
optimization over a time window provides the capability to
re-linearize the system kinematic and measurement models
around the improved trajectory estimate. This leads to the
ability to estimate attitude and biases, especially yaw, accu-
rately without a magnetometer. Second, the large set of mea-
surement data provides sufficient redundancy to allow the
effects of noise to be significantly reduced in the optimiza-
tion. Third, the proposed integer-free phase measurement is
able to provide accurate local kinematic constraints, without
needing to resolve the integers, which helps to improve the
robustness to multi-path errors and GPS noise, which are
common in urban environments.

In the future, we plan to integrate the visual odometry into
the existing GPS/IMU system to improve the performance.
In addition, we are also working on the multi-path error
modelling to correctly accounts for it.
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Institut für Mess-
und Regelungstechnik

Situation Perception and Planning for
Autonoumous Driving

Christoph Stiller
& Julius Ziegler

2014 IROS Workshop

2014 IROS

Vision-based autonomous driving
Things we wanted to leave behind:

On-roof sensor suite
Highly accurate DGNSS/IMU
High-end lidars

e behind:

S/IMU

Instead:
Normal appearance
Low cost cameras
Low cost GPS/IMU
(Pre-)series sensors
Map-based
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Bertha and Carl Benz ~ 1870
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2014 IROS

Bertha Benz Memorial Route

first automotive 
long distance journey 
in 1888

104 km

3 large cities

23 smaller towns

18 roundabouts

> 150 traffic lights

2014 IROS

Major KIT/FZI Tasks

Map generation 

Visual localization (KIT/FZI & Daimler)

Behaviour decision

Trajectory planning
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2014 IROS

Sensors

2014 IROS

Map Layers
Dynamic layer

dynamic objects
new static objects

Localization layer
3d landmarks
lane markers
6d camera poses

Static planning layer
3d geometry, lanelets
traffic lights/rules
tactical information

[Lategahn, Bender, Schreiber, Franke et al. 11-14]
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Visual Localization from Point 
Feature Matches

[Lategahn et al. 11-14]
start up company Atlatec UG

map features

image features

R, t

2014 IROS 10

Localization
Experiments - Augmented Reality

10
[Lategahn 2009-2013] 
Now Atlatec UG
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2014 IROS

Front Stereo: Stixel Representation
Stereo Image Pair

Disparity Image (SGM)
500.000 points in 3D
real-time on FPGA

Stixel Representation
<1000 super-pixel

Tracked Stixel with
6D-motion vectors

Classified static background
detected moving objects

[Franke, Pfeiffer, Rabe, Knoeppel, Enzweiler, Stein, Herrtwich, ICCV Workshop 13]
Courtesy Daimler AG

2014 IROS

Bertha's Driving Corridor

[Ziegler et al.2009-2013] 
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Cooperative Trajectory Planning
pose = (position, orientation)

trajectory

past

future

special case „certain prediction“, e.g. through v2v communication

2014 IROS

Trajectory Planning Methods
global, discrete, 
combinatoric

[Ziegler et al.2009–2011] [Ziegler et al.2011–2014] 

local, continuous, variational
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Trajectory planning

outer conditions
enforce integrity, 
e.g.:

inner conditions 
enforce drivability,
e.g.:

optimize cost functional

subject to hard inner and outer conditions

2014 IROS

Fast Collision Checking

[Ziegler et al. 2011] 

Approximation of vehicle shape by a set of circles
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Dynamic Objects
We need to plan for ourselves …
… and for others

2014 IROS

Results
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KITTI Vision Benchmark

Automotive Vision Bechmark: www.mrt.kit.edu
[Geiger, et al., International Journal of Robotics Research 32, 2013] 

2014 IROS

Grand Cooperative Driving Challenge
Holland, May 2011

Winner
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Summary & Conclusions
Automated driving using vision, sota sensors and maps is feasible

Maneuver decisions strongly inferred from map knowledge

Real-time dynamic trajectory planning

Automated driving on Bertha Benz Memorial Route 
In normal traffic and at normal velocities
Safety driver still needed

Many open issues 
Benchmarks
Safety assessment
Handling of rare situations
Cooperation

Step-by-step market introduction
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Detection and Tracking of the Vanishing Point on a Horizon for
Automotive Applications

Young-Woo Seo and Ragunathan (Raj) Rajkumar

Abstract— In advanced driver assistance systems and au-
tonomous driving vehicles, many computer vision applications
rely on knowing the location of the vanishing point on a
horizon. The horizontal vanishing point’s location provides
important information about driving environments, such as the
instantaneous driving direction of roadway, sampling regions of
the drivable regions’ image features, and the search direction
of moving objects. To detect the vanishing point, many exist-
ing methods work frame-by-frame. Their outputs may look
desirable in that frame. Over a series of frames, however,
the detected locations are inconsistent, yielding unreliable
information about roadway structure. This paper presents a
novel algorithm that, using the extracted line segments, detects
vanishing points in urban scenes and tracks, using Extended
Kalman Filter, them over frames to smooth out the trajectory
of the horizontal vanishing point. The study demonstrates both
the practicality of the detection method and the effectiveness
of our tracking method, through experiments carried out using
hundreds of urban scene images.

I. INTRODUCTION

This paper presents a simple, but effective method for
detecting and tracking the vanishing point on a horizon
appearing in a stream of urban scene images. In urban
street scenes, such detecting and tracking would enable the
obtaining of geometric cues of 3-dimensional structures.
Given the image coordinates of the horizontal vanishing
point, one could obtain, in particular, the information about
the instantaneous driving direction of a roadway [3], [8],
[11], [13], [14], [16], [17], the information about the image
regions for sampling the features of the drivable image
regions [10], [12], the search direction of moving objects
[9], and computational metrology through homography [15].
Advanced driving assistance systems or self-driving cars
can exploit such information to detect neighboring moving
objects and decide where to drive. Such information about
roadway geometry can be obtained using active sensors (e.g.,
lidars with multi-horizontal planes or 3-dimensional lidar),
but, as an alternative, many researchers have studied the use
of vision sensors, due to lower costs and flexible usages [1],
[3], [9].

A great deal of excellent work has been done in de-
tecting vanishing points on perspective images of man-
made environments; their performances are demonstrated on
collections of images [2], [7], [18]. Most of these methods,
in voting on potential locations of vanishing points, use low-
level image features such as spatial filter responses (e.g.,
Garbor filters) [12], [8], [14], [20] and geometric primitives
(e.g., line segments) [7], [15], [17], [18]. To find an optimal
vote result, the methods use an iterative algorithm such as
Expectation and Maximization (EM).

Young-Woo Seo is with the Robotics Institute and Ragunathan (Raj)
Rajkumar is with Dept of Electrical Computer Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, young-
woo.seo@ri.cmu.edu, raj@ece.cmu.edu

Fig. 1: Sample images show the necessity of a vanishing
point tracking for real-world, automotive applications. The
red circle represents the vanishing points detected from the
input images and the green circle represents the vanishing
points tracked over frames. The yellow line represents the
estimated horizon line. The existing, frame-by-frame vanish-
ing point detection methods would fail when (a) the extracted
image features overfit and (b) relevant image features are not
present at the input images.

However, these frame-by-frame vanishing point detection
methods may be impractical for real-time, automotive appli-
cations primarily because 1) they require intensive compu-
tation per frame and 2) they expect a presence of low-level
image features. In particular, it may take longer than a second
simply to apply spatial filters to large parts of or the entire
input image. Meanwhile, a vehicle drives a number of meters
with no information about road geometry. Furthermore, these
frame-by-frame methods would fail to detect the vanishing
point appearing on over- and under-exposed images. Such
images are acquired when a host-vehicle is emerging from
tunnels or overpasses. Figure 1 (b) shows a sample image
acquired when our vehicle emerges from a tunnel. When this
happens, these methods would fail to continuously provide
information about the vanishing point’s location. Because of
such a practical issue, some researchers developed Bayes
filters to track the vanishing point’s trajectory [12], [17].
In addition to the two aforementioned concerns, we have
one of our own. In an earlier work [15], we demonstrated
the ability to acquire, using a monocular camera sensor,
the information of a vehicle’s lateral locations as well as
metrological information of the ground plane. To correctly
compute metric information such as lateral distances of a
vehicle to both boundaries of the host road-lane, it is critical
to accurately estimate the angle between the road plane
and the camera plane. To do this, we detect the vanishing
point on the horizon to estimate the angle (i.e., pitch)
between two planes. But, because, image features relevant to
detecting the vanishing point are missing in certain frames,
our vanishing point detection fails to correctly locate the
vanishing point, resulting in incorrect angle measurements
and distance computations.
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Fig. 2: (a) A prior for the line classification. (b) An example
of line detection and classification. The red (blue) lines are
categorized into the vertical (horizontal) line group. The
yellow, dashed rectangle represents a ROI for line extraction.

To address these practical concerns, we have developed a
novel method of detecting and tracking the vanishing point
on the horizon. In what follows, Section II-A details how
we extract line segments from an input image and how we
detect, using extracted line segments, the vanishing point
on the horizon. Section II-B describes our implementation
of Extended Kalman Filter (EKF) for tracking the detected
vanishing point. Section III explains experiments conducted
to demonstrate the effectiveness of the proposed algorithms
and discusses the findings. Finally Section IV lays out our
conclusions and future work.

The contributions of this paper include 1) a method, based
on line segments, for fast detection of vanishing points, 2) a
novel vanishing point tracking algorithm based on a Bayes
filter, and 3) empirical validations of the proposed work.

II. A BAYES FILTER FOR TRACKING A VANISHING POINT
ON THE HORIZON

This section details our approach to the problem of detect-
ing and tracking a vanishing point on a horizon appearing
on perspective images of urban streets. A vanishing point
on a perspective image is the intersection point of two
parallel lines. In urban street scenes, as long as the image
is under normal exposure, one can obtain plenty of parallel
line segment pairs, pairs such as longitudinal lane-markings
and building contour lines. Section II-A describes how we
extract line segments and, with them, detect vanishing points.
The image coordinates of the vanishing points detected from
individual frames may be temporally inconsistent because
line segments relevant to and important for vanishing point
detection may not have been extracted. To smooth out
the location of vanishing points over time, we develop an
extended Kalman filter to track vanishing points. Section II-
B details the procedure and measurement model of our EKF
implementation.

A. Vanishing Point Detection
Our algorithm detects, by using line segments, vanishing

points appearing on a perspective image. In an urban scene
image, one can extract numerous line segments from urban
structures, like man-made structures (e.g., buildings, bridges,
overpasses, etc.) and traffic devices (e.g., Jersey barriers,
lane-markings, curbs, etc.) To obtain these line segments,
we tried three line-extraction methods: Kahn’s [6], [7], the
probabilistic and the standard Hough transform [4]. We found
Kahn’s method to work best in terms of the number of
resulting line segments and their geometric properties, such

as lengths or representation fidelity to the patterns of low-
level features. To implement Kahn’s method, we first obtain
Canny edges and run the connected component-grouping
algorithm to produce a list of pixel blobs. For each pixel
blob, we compute the eigenvalues and eigenvectors of the
pixel coordinates’ dispersion matrix. The eigenvector, e1,
associated with the largest eigenvalue is used to represent the
orientation of a line segment and its length, lj = (θj , ρj) =
(atan2(e1,2, e1,1), x̄ cos θ+ȳ sin θ), where x̄ = 1

nΣkxk, ȳ =
1
nΣkyk. The two parameters, θj and ρj , are used to determine
two end points, p1

j =
[
x1j , y

1
j

]
and p2

j =
[
x2j , y

2
j

]
, of the line

segment lj . Figure 2 (b) shows an example of line detection
result.

Given a set of the extracted lines, L = {lj}j=1,...,|L|,
we first categorize them into one of two groups: vertical
LV or horizontal LH , L = LV ∪ LH . We do this to use
only a relevant subset of the extracted lines for detecting
a particular (vertical or horizontal) vanishing point. For
example, if vertical lines are used to find a horizontal
vanishing point, the coordinates of the resulting vanishing
point would be far from optimal. To set the criteria for this
line categorization, we define two planes: h = [0, 0, 1]

T for
a horizontal plane and v = [0, 1, 0]

T for a vertical plane in
the camera coordinate. We do this because we assume that
the horizontal (or vertical) vanishing points lie at a horizontal
(or vertical) plane at the front of our vehicle. Figure 2 (a)
illustrates our assumption about these priors. We transform,
the coordinates of the extracted line segments’ two points
into those of the camera coordinates, pcam = K−1pim,
where pcam is a point in the camera coordinates, K is
the camera calibration matrix of intrinsic parameters, and
pim is a point in the image coordinates. We then compute
the distance of a line segment, lj = [aj , bj , cj ]

T ,1 to the
horizontal, h, and the vertical plane, v. We assign a line to
either of two line groups based on the following:

LV ← lj , if lTj · v ≤ lTj · h, (1)
LH ← lj , Otherwise

where lTj ·v =
[aj ,bj ,cj ]

T [0,1,0]√
a2
j
+b2

j
+c2

j

. Figure 2 (b) shows an exam-

ple of line classification result; vertical lines are depicted in
red, horizontal lines in blue. Such line categorization results
help us use a subgroup of the extracted lines relevant to
computing the vertical or horizontal vanishing point. Our
approach of using line segments to detect vanishing point
is similar to some found in earlier work [7], [17], [18]. All
uses line segments (or edges) to detect vanishing points. Our
distinguishes itself in terms of line classification. Suttorp and
Bucher’s method relied on a heuristic, to cluster lines into
left or right sets for vanishing point detection [17]; Tardif
[18] used a J-linkage algorithm to group edges into the same
clusters. In contrast, our method distinguishes horizontal line
segments from vertical ones by computing the similarity
of line segments to the priors about the ideal locations of
vanishing points.

Given two sets of line groups (vertical and horizontal),
we run RANSAC [4] to find the best estimation of a
vanishing point. For each line pair randomly selected from

1Using two end-points of a line segment, we can represent a line segment
in an implicit line equation, where, aj = y1j − y2j , bj = x2

j − x1
j , c =

x1
jy

2
j − x2

jy
1
j .
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Fig. 3: Some examples of vanishing point detection results. For most of testing images, our vanishing point detection
worked well as good as the tracking method. But it often failed to correctly identify the location of the horizontal vanishing
point. For the last two images, our detection method found the locally optimal vanishing points (red circles) based on the
lines extracted from those images. By contrast, our tracking method were able to find the globally optimal locations (green
circles) of the vanishing points.

the horizontal and vertical line groups, we first compute
the cross-product of two lines, vpij = li × lj , to find an
intersection point. The intersection point found thus is used
as a vanishing point candidate. We then claim the vanishing
point candidate with the smallest number of outliers as the
vanishing point for that line group. A line pair is regarded as
an outlier if the angle between a vanishing point candidate
and the vanishing point obtained from the line pair is greater
than a pre-defined threshold (e.g., 5 degrees). We repeat this
procedure until a vertical vanishing point is found and more
than one horizontal vanishing point is obtained. Figure 3
shows sample results of vanishing point detection.

B. Vanishing Point Tracking

The previous section detailed how we detect vanishing
points using line segments extracted from urban structures.
Such frame-by-frame detection may result in, however, in-
consistent locations of the same vanishing point over frames.
This is because some image features (i.e., line segments)
relevant to detecting vanishing points on the previous frame
may not be available in the current frame. When this
happens, any frame-by-frame, vanishing point detection al-
gorithm, including ours, fails to find an optimal location
of the horizontal vanishing point. This results in incorrect
information about roadway geometry [15].

To address such potential inconsistency, we develop a
tracker to smooth out the trajectory of the vanishing point of
interest. Our idea for tracking the vanishing point is to use
some of the extracted line segments as measurements, thus
enabling us to trace the trajectory of the vanishing point.
To implement our idea, we developed an Extended Kalman
Filter (EKF). Algorithm 1 describes the procedure of our
vanishing point tracking method.

For our EKF model, we define the state as, xk = [xk, yk]
T ,

where xk and yk is the k step’s camera coordinates of the
vanishing point on the horizon. We initialize the state, x and
its covariance matrix, P as:

x0 = [IMwidth/2/fx, IMheight/2/fy]
T
,

Algorithm 1 EKF for tracking the vanishing point.
Input: IM, an input image and L, a set of line segments

extracted from the input image, {lj}j=1,...,|L| ∈ L
Output: x̂k = [xk, yk]

T , an estimate of the image coordi-
nates of the vanishing point on the horizon

1: Detect a vanishing point, vph = Detect(IM, L)
2: Run EKF iff vphx ≤ IMwidth and vphy ≤ IMheight.

Otherwise exit.
3: EKF: Prediction
4: x̂−k = f(x̂k−1) + wk−1
5: Pk = Fk−1Pk−1F

T
k−1 + Qk−1

6: EKF: State Estimation
7: for all lj ∈ L do
8: ỹj = zj − h(x̂−k )
9: Sj = HjPjH

T
j + Rj

10: Kj = PjH
T
j S
−1
j

11: Update the state estimate if ỹj ≤ τ
12: x̂k = x̂−k + Kj ỹj
13: Pj = (I2 −KjHj)Pj
14: end for

P0 =


(
xim

fx

)2
0

0
(
yim
fy

)2


where xim and yim are our initial guesses about the uncer-
tainty of the state in pixels, along the x- and y-axises, and
fx and fy are focal lengths of the vision sensor we use. The
initial values need to be scaled by focal lengths because the
state is represented in the normalized camera coordinates.

Given an input image, our algorithm predicts the location
of the vanishing points, x̂−k = I2x̂k−1 + wk−1, where I2 is
2×2 identity matrix and wk−1 is a 2×1 vector of process
model’s noise, normally distributed, wk ∼ N(0,Q).2 While
doing so, we neither define a motion model (i.e., f(x̂k))

2The x̂ represents an estimate and the superscript, x̂−, indicates that it
is a predicted value.
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nor incorporate any information about ego-motion. We set
the process noise as a constant, Q2×2 = diag(σ2

Q), where
σ = xim

fx
.

For the measurement update, we first change the repre-
sentation of an extracted line segment, lj , as a pair of image
coordinates of its mid-point and orientation, lj = [mj , θj ]

T ,
where mj = [mj,x,mj,y]T , θj ∈

[
−π2 ,

π
2

]
. Note that the line

segments we use as measurements for EKF are the same
ones used for detecting the vanishing point. Our approach
is similar to Suttorp and Bucher’s method [17], but both
employ different measurement models. We then compute the
residual, ỹj , the difference between our expectation on an
observation, h(x̂−k ) and an actual observation, zj = θj .

We presume that if a selected line segment, lj , is aligning
with the vanishing point of interest, x̂k = [xk, yk]

T , the
angle between the vanishing point and the orientation of
the line should be zero (or very close to zero). Figure 5
illustrates the underlying idea of our measurement model
that investigates the geometric relation between an extracted
line and a vanishing point of interest. Based on this idea, we
design a model of what we expect to observe, our observation
model, as

h(xk) = tan−1
(
yk −mj,y

xk −mj,x

)
(2)

To linearize this non-linear observation model, we take the
first-order, partial derivative of h(xk), with respect to the
state, xk, to derive the Jacobian of the measurement model,
H.

∂h(xk)

∂x
=

[
−(yk −mj,y)

d2
,

(xx −mj,x)

d2

]
= H (3)

where d2 =
√

(xk −mj,x)2 + (yk −mj,y)2. We set the
measurement noise, vk ∼ N(0,R) and R1×1 = σ2

R, where
σ = 0.1 radian. We then compute the innovation Sj and the
Kalman gain Kj for the measurement update.

Before actually updating the state using these measure-
ments, we treat individual line segments differently based
on their lengths. This is because the shorter the length the
higher the chance of the line being a noise measurement.3
To implement this idea, we compute a weight of the line
based on its length and heading difference, to update the
measurement noise.

R = Rmax +

(
Rmin −Rmax
lmax − lmin

)
|lj | (4)

where Rmax (e.g., 10 degrees) and Rmin (e.g., 1 degree)
define the maximum and the minimum of heading difference
in degree, and lmax (e.g., 500) and lmin (e.g., 20) define the
maximum and minimum of observable line lengths in pixels,
|lj | is the length of the line. This equation ensures that we
treats the longer line more importantly when updating the
state and we only use lines of which heading differences are
smaller than the threshold, τ .

In summary, the task of our EKF is to analyze the extracted
line segments to estimate the location of the vanishing point
on the horizon. Figure 4 shows some example results that one

3Recall that we extract line segments from Canny’s edge image where
short edges may originate from artificial patterns, not from actual objects’
contours.

can see the difference of the locations between the detected
and the tracked vanishing points.4

Fig. 5: The line measurement model. The red circle repre-
sents the vanishing point, x̂k, tracked until kth step. θj is
the orientation of the jth line, lj , and β is the orientation
between the line’s mid-point and the vanishing point. The
orientation difference is the residual of our EKF model.

We use the tracked vanishing point to compute the (pitch)
angle between the camera plane and the ground plane. The
underlying assumption is that, if the road plane is flat and
perpendicular to an image plane, the vanishing point along
the horizon line is exactly mapped to the camera center.
Based on this assumption, we derive the location of the
vanishing point on the horizon line as [5]:

vp∗h(φ, θ, ψ) =

[
cφsψ − sφsθcψ

cθcψ
,
−sφsψ − cφsθcψ

cθcψ

]T
(5)

where φ, θ, ψ are yaw, pitch, and roll angle of the camera
plane with respect to the ground plane and c and s for cos
and sin. Since we are interested in estimating the pitch angle,
let us suppose that there is no vertical tilt and rolling (i.e., the
yaw and the roll angles are zero). Then the above equation
yields:

vp∗h(φ = 0, θ, ψ = 0) =

[
0

cθ
,−sθ

cθ

]
(6)

Because we assume that there is neither yaw nor roll, we
can compute the pitch angle by computing the difference
between the y-coordinate of the vanishing point and that of
the principal point of the camera as

θ = tan−1 (|py − vpy|) (7)

where py is the y coordinate of the principal point. Figure 6
shows our setup to verify the accuracy of our pitch angle
estimation. Because no precise angle measurement exists
between the two planes, we instead measure the distances
between the camera and markers on the ground to evaluate
the accuracy of the pitch angle computation. We found that
the distance measurements have, on average, a sub-meter
accuracy (i.e., less than 30cm).

III. EXPERIMENTS

To evaluate the performance of our vanishing point detec-
tion and tracking algorithm, we drove our robotic car [19]
on a route of inter-city highways, to collect some image data

4Some of the vanishing point tracking videos are available from, http:
//www.cs.cmu.edu/˜youngwoo/research.html
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Fig. 4: A comparison of vanishing point locations by the frame-by-frame detection and by the EKF tracking.

Fig. 6: A setup for verifying the accuracy of our world-
coordinate computation model. The intersection point of the
two red lines represents the camera center and the intersec-
tion point of the two green lines represents a vanishing point
computed from the two blue lines appearing on the ground.

and the vehicle’s motion data. Our vehicle is equipped with
a military-grade IMU which, in root-mean-square sense, the
error of pitch angle estimation is 0.02 with GPS signals
(with RTK corrections) or 0.06 degree with GPS outage,
when driving more than one kilometer or for longer than
one minute. The vision sensor installed on our vehicle is
PointGrey’s Flea3 Gigabit camera, which can acquire an
image frame of 2,448×2,048, maximum resolution at 8Hz.
While driving the route, we ran the proposed algorithms as
well as the data (i.e., image and vehicle states) collector. We
implemented the proposed methods in C++ and OpenCV that
runs about 20Hz. The data collector automatically syncs the
high-rate, ego-motion data (i.e., 100Hz) with the low-rate,
image data (i.e., 8Hz). To estimate the camera’s intrinsic
parameters, we used a publicly, available toolbox for camera
calibration5 and define a rectangle for the line extraction
ROI, x1 = 0, x2 = Iwidth−1, y1 = 1300 and y2 = 1800.
For the line segment weighting, we empirically found that

5http://www.vision.caltech.edu/bouguetj/calib_
doc/

Fig. 7: A comparison of the estimated pitch angles by an
IMU and by the proposed method.

Rmax = 10, Rmin = 1, lmax = 500, and lmin = 20 worked
best.

We evaluated quantitatively and qualitatively the perfor-
mance of the presented vanishing point tracking method.

For the quantitative evaluation, we analyzed the accuracy
of the pitch angles estimated from the vanishing point
tracking. Figure 7 shows the comparison of the pitch an-
gles measured by the IMU and estimated by a monocular
vision sensor. Although the pitch angles estimated from our
algorithm have some periods underestimate (or overestimate)
the true pitch angles, the two graphs have, at a macro-level,
similar shapes where the blue curve follows the ups-and-
downs of the red curve. The mean-square error is 2.0847
degrees.

For the qualitative evaluation, we examined how useful the
output of the tracked vanishing point is in approximating the
driving direction of a road way. Figure 8 shows some exam-
ple results that, within a certain range, the driving directions
of roads can be linearly (or instantaneously) approximated
by linking the locations of the tracking vanishing point to
the center of the image bottom (i.e., the image coordinates
our camera is projected on).

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented novel methods of detecting van-
ishing points and of tracking a vanishing point on the hori-
zon. To detect vanishing points, we extracted line segments
and applied RANSAC to the locally optimal vanishing point

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
81



Fig. 8: This figure shows the idea of using the results of vanishing point tracking to approximate the driving direction of
a roadway. We used such approximated driving directions to remove false-positive lane-marking detections [16]. The green
blobs are the final outputs of lane-marking detection and the red blobs are the false-positive lane-marking detections that
are removed from the final results. Refer to [16] for more detail.

from a given input image. Occasionally, however, our method
failed to detect the vanishing point because relevant image
features were unavailable. Our previous computer vision
application for autonomous driving required metric compu-
tation to accurately measure the vehicle’s lateral position. To
obtain this measurement, we need an accurate measurement
of the angle between the camera and the ground planes. To
compute this angle, we used the detected vanishing point.
Thus, when the vanishing point location was inaccurately
estimated, it led to an imprecise measurement of the vehicle’s
lateral motions. To tackle such inconsistent positions of the
vanishing point over frames, we developed an EKF and
addressed this jumpy trajectory of the vanishing point.

As future work, we would like to determine the limits
of our algorithms and so continue testing it against various
driving environments. In addition, we would like to study
the relation of ego-vehicle’s motion between in the world
coordinates and image coordinates and develop a motion
model to enhance the performance of our tracking method.
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Robot Navigation Using Radio Signal in Wireless Sensor Networks

Ju Wang,Mohammad M Tabanjeh, Tariq Qazi, Brian Bennett, Cesar Flores-Montoya, Eric Glover, Meesha Rashidi

Abstract— We investigate the navigation problem of a land
robot in a Wireless Sensor Network (WSN) to perform net-
work maintenance works. Our proposed method employs a
distributed RF sensing technique with the aid of a directional
antenna. Our method only requires partial and coarse RF
profiling of the field network area. Another advantage is that it
does not require knowledge of the locations of the beacon nodes.
In 2D navigation, the directional RSS measurements allow us
to achieve location accuracy beyond the grid resolution of the
RF profile. The robot is able to navigate within 2 feet from
the target sensor in indoor environments and within 5 feet in
outdoor tests.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are used in many
research, industry and agriculture applications to provide
valuable field data, however the maintenance of such net-
works pose a significant challenge. Typically deployed in
outdoor environment, the network will gradually lose its
functionality due to depleted battery and/or physical wear
in sensor node. A single mal-functioning node is often
enough to cause network segmentation and render some
wireless sensors unreachable (Figure 1). A practical solution
is to use Unmanned Ground Vehicle to perform maintenance
workload such as recycling dead nodes and deploying new
sensor nodes in the field. The problem then becomes the
ability of the robot to locate and navigate to a wireless sensor
device based on RF transmission. The challenge come from
two aspects: (1) could RF sensing provide sufficient location
accuracy? and (2) could we track the location of the wheeled
robot precisely in the off-road environment [1]. Our focus
here will be on the first challenge.

Fig. 1. Sensor localization in WSN
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In the simplest case, radio sensing based navigation in-
volves measuring radio signal strength (RSS) of a target
transmitter to estimate the distance between the transmitter
and the receiver. The method attracted more attention re-
cently [4], [6], [8], [10], [11] when the application scenarios
disallowed conventional navigation method such as GPS.
Another application scenario would be for search and rescue
of missing personnel in a remote wild land. Using RF
sensing technology, robots can search a large area in a
coordinated fashion. Bahl etc [4] reported that in a complex
indoor environment, RSS based empirical method has higher
accuracy up to a few meters than model-fitting based method.
However simple RSS localization has been proven difficult
to use due to the high complex and nonlinear radio channel
model in real deployments. In most cases comprehensive RF
profiling of the target area must be conducted. There are
several follow-up techniques to improve the accuracy of RF
localization [5], [12], some employ comprehensive RF profil-
ing; some use multiple fixed-location beacon nodes. However
RF sensing remains to be a low accuracy positioning tool
even when RF profiling is used.

The specific research question is: could RF sensing tech-
nology provide sufficient accuracy to navigate a robot to a
wireless sensor device with only coarse RF profiling?

The answers to the problem have tremendous impact
on WSNs in network lifespan and reliability. In terms of
localization and navigation, such a robot must possess two
capabilities: a middle range locating capability that does
not require visual data, and a terminal locating capability
to locate sensor nodes in close range, which most likely is
vision aided.

We present a locating and navigation method based on
distributed RF sensing. The objective is to accurately lo-
cate/track a target wireless sensor and the robot itself using
only wireless beacon measurements and a coarse RF profile
established in prior. Due to high non-linearity of the RF sig-
nal strength model, our localization method adopt a modified
particle filtering [17]. Our method also takes into account
that the observation data is a vector function consisting
of measurements from independent beacon nodes. This is
different from the scalar observation function assumed in
conventional sensor. Such would mandate how the robot
location estimation will be updated.

To estimate the target sensor location, we calculate the
cumulative Maximum Likelihood (ML) probability of the
received observation vector. This requires us to determine
which beacon nodes should be included in the active set for
location estimation. Two beacon set selection strategies are

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
83



studied and the results show that the cumulative beacon ap-
proach outperforms asingle beacon by a significant margin.
The proposed ML probability model is used to update the
posterior location probability of the robot.

Fig. 2. Prototype of UGV equiped with RF sensor and onboard processing
unit

Our navigation method adopts a novel way to determine
the optimum motion angle using directional RSS measure-
ments. We use a ’indirect matching’ technique to calculate
the motion direction corresponding to theshortest RSS path.
Our experimental data shows that such a method results in
a better motion direction than the shortest path direction in
Euclidean space.

In the rest of the paper, Section 3 gives an overview of the
problem. Section 4 presents our navigation algorithm in an
indoor setting. Section 5 discusses the estimation of optimum
motion angles in an outdoor environment.

II. BACKGROUND AND L ITERATURE REVIEW

Despite many drawbacks, using RF sensing as localization
and navigation technology has several advantages in WSN.
RF sensing is more reliable and less terrain-limited compared
to the GPS technology. Another benefit is that no additional
hardware is required since RF sensing is integrated in most
wireless communication chip. In a large WSN network a
hop-by-hop navigation plan [6], [9], [12] is usually required.

There exists a wealth collection of robot location estima-
tion methods in a global or locally defined coordinate system.
When infrastructure is not available, the location knowledge
is typically obtained by analyzing local measurements from
a range sensor, a visual sensor (landmarks, or special tags
[11]), sound echoes (as in sonar), or a radar sensor, combined
with local odometer or GPS data when available. Typically
a Bayesian Network based computational method, such as
EKF or particle filter [14], [17], [3], will be used to produce
location estimation. This is accomplished by processing
two streams of input data: one fromProcess or Motion
Model such as odometer and IMU sensor, and the other is
Observation Model such as ranger sensor, GPS sensor, and
in our case, radio sensor.

In an infrastructure environment such as mobile cellu-
lar network [15], the time-of-flight (TOF), angle-of-arrival
(AoA), or signal strength of beacon radio signals could be
used.

The feasibility of radio sensing as a localization technique
for WSN are discussed in [2], [4], [10], [12]. In the simplest

Fig. 3. Wireless Sensor Network in VSU farm

scenario, a singleRSS measurement offers rough estimation
of relative distance between a transmitter and a receiver. Bahl
etc [4] reported that in a complex indoor environment, RSS
based empirical method has higher accuracy than model-
fitting based method. Whitehouse etc., [6] demonstrates that
RSS with low power radios can be used for direct distance
estimation in an ideal open, outdoor environment. However
simple RSS localization has limited applicability due to
the complex radio propagation in real scenario. Some of
the main reasons that contribute to the difficulty in RSS
based localization are: (1) radio channel could be very
unpredictable, (2) reflections of the signal against walls,
floor, and (3) severe multi-path interference at the receiving
side.

Many schemes have been proposed to improve the RSS
localization technique. In [5], a distributed sensing algorithm
is used to cancel RF measurement errors for an indoor
environment. To reduce the localization noise, a stream of
RSS measurement are observed and processed by Kalman
filter [14] and particle filter [12].

III. PROPOSEDMETHOD OVERVIEW

Most existing RSS based localization methods only con-
sider RF sources in a stationary environment. In our in-
vestigation, the localization and navigation problems are
considered from a mobile robot equipped with a directional
antenna. This gives us some unique advantages that are not
considered in previous WSN location studies: the mobile
robot can perform RSS measurements of multiple beacon
sensors from different spatial locations.

The high level navigation algorithm consists of a three-
step loop:

1) resample the candidate location of the robot
2) estimate the location of the robot and the target sensor

with new RSS data.
3) determine a motion distance and angleθ.

We assume a set ofN beacon nodes{s1, s2, ...sN} and
a mobile wheeled robotm. The general 2-D robot state
(position) is given byS(k) = (xr, yr, θ). We assume a
simple Motion (or Process) Model where the robot position
is update by odometry difference between consective time

S(k + 1) = S(k) + ∆(x, y, θ) + w0 (1)
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wherek is the discretized time,(x, y, θ) is the grid location
of the robot and its orientation, andw0 is the odometry noise,

To estimate ˆS(k) we use sensor observationsSSi(S(k)),
which is the RSS measurement of thei-th beacon node at
the current robot location.SSi follows observation model:

ˆSSi(S(k)) = SSi(S(k)) + wi (2)

Here we assume a Gaussian random noise termwi.
We use a familiar particle filtering framework: we maintain

a set of particle (robot location candidates); at the arrival
of new RSS measurement, the posterior probability of each
location candidate are re-evaluated; a new population is re-
sampled based on posterior probability. The multiple obser-
vation sources allow continuous refinement of the location
estimation [14] [10]. Secondly, the utilization of a directional
antenna in our localization process proves to be significant.
Such an option has not been exploited in the past, partially
because directional antenna requires much more space than
a single dipole antenna.

The project’s original goal was to maintain the high-tunnel
greenhouse WSN at VSUs Randolph Farm. The network
was deployed in 2009 to collect environmental data in the
greenhouse environment (Figure 2). From time to time, the
network would not be accessible due to a failed relay node or
poor signal quality. An all-terrain field robot called PatchBot
has been developed as a mobile service node that could
retrieve a troubled node and fill the hole in the network.
The first robot prototype is built upon a 6-wheel platform.
Each wheel is driven by a gear motor and independently
controlled. The low level driver is implemented with a
Cyclone II FPGA to provide a rich set of driving signal. The
second prototype (See Figure 2) utilized a modified iRobot
Create chassis with a major upgrade in motor driver (up to
43 Amp) and gear motor. High level navigation, as well as
communication and task dispatch, is implemented on top of
the Tekkotsu framework [16] and Robotic Operating System
(ROS).

IV. I NDOOR HALLWAY LOCALIZATION

The indoor hallway assumption lead to a 1-D world and
the robot state variable is degenerated to a single offsetd.

The sensor input (observations) is RSS of beacon packets
measured bym or other nodes of interest. In our indoor
hallway problem setting, the RSS is described by a nonlinear
functionSSi(d), whered is the location of the mobile robot
in the reference frame and the subscriptioni denotes the
i−th beacon node. The objective of the navigation algorithm
is to estimated̂ given observationsˆSSi. We further assume
the following observation model:

ˆSSi(d) = SSi(d) + wi (3)

The main difficulty is that the actual radio model is often
non-linear and dependant to the particular physical environ-
ment. Hence we opt to use an empirical model based on RF
profiling.

One immediately notice that the observation data is a
vector function, instead of the conventional scalar function.

Such would mandate how the robot location estimation will
be updated. In the following, we first discuss our experiments
to establish necessary the indoor observation model— RF
profile for all beacon nodes. We will then present the
effectiveness of Maximum-Likelihood estimation algorithm
combined with different beacon selection strategies.

A. Indoor radio profiling

We recorded radio signal strength (RSS) as a function of
the sensor location in the hallway setup. RSS is reported
in units of dBm. The RSS measurement is conducted in
the hallway next to the Robotic Lab. Three wireless sen-
sor nodes are programmed to broadcast beacon packets at
channel 0x0B (2405 MHz) of ZigBee frequency band. The
channel is selected to minimize the interference from local
WIFI activity. Each beacon packet contains a local sequence
number and a sensor node ID to distinguish it from other
beacon packets (when there are multiple beacon nodes). The
beacon nodes are positioned along the wall of the hall about
2 feet above the ground. The respective locations of the
beacon/sensors are shown in Figure 3. Beacon node 6 is
placed at the left side of the hallway, node 5 in the middle,
and node 3 at the right side of the hallway. The three wireless
sensors are programmed to transmit BEACON packets every
200 ms. CSCA is used at the node MAC layer to avoid packet
collision.

To receive the beacon packets, a crossbow MIB510 wire-
less base station is connected to the robot’s onboard computer
(an ASUS netbook). The MIB510 is programmed to listen to
the wireless channel and report all received beacon packets.
The physical layer packet from MIB510 base station includes
a received signal strength indicator (RSSI) and the link-
quality-indicator (LQI) fields. RSSI is reported in scale from
0 (-91 dBm) to a maximum observation of 84 (-7 dBm). In
a test run, the PatchBot will move along the hallway from
the left side while collecting BEACON packets.

Fig. 4. Hall way RSSI measurement

The measurement resultis shown below in Figure 5. As
the robot moves from one end of the hallway to the other
end, the signal strength observed changes accordingly, but
in a non-trivial manner. The measurement of a particular
beacon reaches the strongest point when the robot is close
to or at the corresponding sensor node. The signal strength
decreases as the robot moves away from the beacon node.
The strongest signal strength is in the range of 40 (-51 dBm).
The lowest RSSI observed is 12 (-79 dbm) before packet
becomes completely undecipherable.
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Our observations confirmed many finds on indoor RSS
measurement reported inliterature. We find that the standard
deviation of slow fading is normally small (within 2 dBm).
The RSS measurement result also shows a strong multi-path
effect as the RSS is not monotonic of distance.

Fig. 5. RSSI Measurement from three beacons

B. Maximum Likelihood (ML) Navigation

The Maximum-likelihood estimation maximizes the pos-
terio probability of the robot location based on current RSS
observations and a set of candidate locationsP . As in
typical particle filtering implementation,P is re-sampled
from the prior location estimation using the Motion model
and odometer record.

The general form of Maximum-Likelihood estimation of
the robot locationd is as the following:

d̂ = argmaxd∈P {
∑

i∈R

Pri( ˆSSi|d)} (4)

This model is calledCumulative-Maximum-Likelyhood,
since we sum the conditional probabilityPri for all ob-
servable beacon nodes. The active beacon set is defined by
R = {i|SSi > ξ}, whereξ is the tolerance margin of radio
sensor. The computation ofPri is based on the RF profile
obtained above and the Gaussian model in equation (1). The
selection of the active beacon setR could have significant
impact on the results. Several other possible strategies are:

• Fixed one: one particular beacon node is fixed and not
changed during the navigation course.

• Strongest RSS first:R only contain the beacon node
with the highest RSS reading. The rational of this
strategy is that high RSS reading means less noise
interference.

• Closest to Target first: hereR will contain the beacon
node that is closest to the target sensor.

• Highest gradient first: hereR will contain the beacon
node whose RSS at the estimated robot position is the
steepest.

The additional requirement is that all beacon nodes will
measure the RSSI reading of the target sensor node and
report the result to the robot. The ML procedure will be
used to estimate the location of the target sensor node.

Using the above estimations, the probabilityP(r, t) of
the robot observingSSi(r, t) can be calculated. IfP(r, t)
is greater than a pre-defined threshold, the result is accepted
and the robot will drive towards the estimated target node.

C. Localization Results

Figure 5 shows the cumulative distribution function (CDF)
of the location error based on theFixed One strategy.
The location error is calculated through 5 test runs where
the robot is manually driven through the hallway. We re-
randomize the particle set every 1 foot to emulate a robot
kidnapping event. In general, we observed that the location
accuracy provided by the three test beacon nodes is very
location dependant. For example, using beacon node #6, the
location error in the middle section of the hallway is mostly
below 2 feet. However the error increase to 10 feet in the
two end sections of the hallway. Such is the direct result of
the non-linear RF profile.

Figure 6 shows the localization error usingAdditive-
Running-Set strategy with three beacon nodes. The reduc-
tion in localization error is significant compared to the simple
Fixed one approach. In most position the location error is
below 1.5 feet, and the highest location error is 2.7 feet, a
very acceptable result.

We hence conclude that the cumulative ML method with
3 beacon nodes is able to provide sufficient accuracy for
hallway localization even with sever RF multipath.

Fig. 6. Hallway Test

V. OUTDOOR 2D NAVIGATION

In an outdoor environment, the locations of the robot and
the target sensor node are estimated in a similar manner as
described above, except that the RF profile is established
in a 2-D grid. In typical 2D navigation, the estimated grid
locations for the target sensor and the robot are sufficient to
decide the movement directionθ, which is the direction of
the shortest path in Euclidean space. However this usually
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demands high accuracy in rotational tracking [1]. We derive
the motion angledifferently by examining the shortest path
in the RSS space. This is accomplished by comparing local
beacon measurements at the robot and that at the target
sensor node. These measurements are then matched against
the RSS profile to determineθ.

The directional antenna plays a critical role in the naviga-
tion algorithm. Depending on whether the robot can hear the
target sensor node or not, two different modes of navigation
are possible: (1) Mode 1 (direct matching): If the RF of the
target node is functional and the robot is close enough to hear
beacon packets from the target node, the robot will scan the
directional antenna and record beacon packets from the target
node. The antenna-bodyframe angle with the strongest RSS
reading is selected asθ. The robot will rescan after it moves
forward by 1 foot. (2) Mode 2 (indirect matching): If the
target node can’t be heard, the robot is guided by matching
the RSS reading of the beacon nodes between the robot and
the target node. We refer to this navigation mode as indirect
matching since we are comparing the RSS of beacon packets
instead of packets directly from the target node. More detail
will be discussed.

The rationale behind theindirection matchingis because
of the 2-D nature of outdoor field and (rotational) odometer
drifting in some terrain [1], which makes navigation more
complicated than the indoor case. While the odometer-based
orientation tracking has a cumulative error, the relative orien-
tation between the robot’s directional antenna and the beacon
nodes show a rather static error. The use of a directional
antenna alleviates both problems and is the main source of
improved locating accuracy.

A. Navigation base on Indirect Matching

The indirect matching method allows the target sensor
node to be several hops away from the robot, assuming
that the beacon measurement~SSt from the target node is
successfully relayed to the robot via WSN. If the target
node fails to provide current beacon measurement, the multi-
hop navigation algorithm can still utilize WSN network
topology to determine a closest neighbor node as an alternate
navigation goal. This topic however is beyond the scope of
this paper.

With N beacon nodes, we assume a partial RF profile field
function

~SS(x,y) =< ss1(x,y), ss2(x,y), ...ssN(x,y) > (5)

where ssi(x, y) is the RSS profile of thei − th beacon
signal at (x, y). If point (x, y) is one of the preselected
measurement points, referred to as grid points, the actual
measurement value is used. For a non-grid point,ss() is
interpreted linearly from its neighboring grid points.

The navigation loop can be described as follow:

1) Denote ~SSt = (sst1, ss
t
2, ...ss

t
n) as the beacon mea-

surement at the target node, the location of the target
wireless sensor node(x̂t, ŷt) is estimated by

(x̂t, ŷt) = argmax(x,y){
∑

Pri(ss
t
i|(x, y)} (6)

This is obtained with the Maximum-Likelyhook esti-
mation algorithm discussed in section 3.

2) The RSS measurement at the robot is denoted by
~SS

r
(θ) = (ssr1(θ), ss

r
2(θ), ...ss

r
n(θ). The angle of the

directional antenna is taken from a rangeθ ∈ [0o 270o].
3) Resample the particle set for the robot loca-

tion P , the location of the robot itself(x̂r, ŷr)

is estimated using a processed version~SS
r

=
(max(ssr1(θ)),max(ssr2(θ)), ...max(ssrn(θ))).

(x̂r, ŷr) = argmax(x,y)∈P {
∑

Pri(ss
t
i|(x, y)} (7)

4) calculateδSS = | ~SSt − ~SSr|, if δSS < ζ, stop.
5) Else, an optimum movement directionθ∗ is calculated

such that the RSS discrepencyδSS will be reduced the
most.

6) The robot will travel alongθ∗ for D meters.

The optimunθ∗ is selected by a local greedy procedure:

• Descretizeθi in the scanning range[0 270o] at a step
size of0.06o.

• calculate a potential location

Pi = (x̂r +D. sin θi, ŷr +D. cos θi) (8)

• calculate the projected RSS at locationPi based on RSS
profile:

~SS(Pi)

• calculate the potential gain:δSSi
= | ~SSt − ~SS(Pi)|

•

θ∗ = argminθiδSSi
(9)

B. Directional Antenna Setup

A motorized plat directional antenna assembly is fabri-
cated to provide additional navigation accuracy at the close
range. The antenna is mounted in front of the robot. A Kondo
digital servo controls the antenna to scan a specific area
or points to a particular angle. The maximum scan range
of the servo is 270 degrees and the resolution is 270/4096
degree/step.

The RSSI reading from the directional antenna is strongest
if the radio source is in the middle of the antenna’s field of
view. The readings fall off as the target move to the side
of the field view. The further away the radio source is to
the robot, the better angular resolution we can get. If the
radio source is too close to the robot, the direction becomes
indistinguishable due to RF signal saturation. At close range,
the directional antenna is effective with the radio source
placed one foot from the robot. The figure below shows the
measured RSS of a source node three feet away from the
robot.

C. Outdoor experimental results

Our outdoor experiment is conducted on VSU football
field. Three Beacon nodes are deployed at the end of the field.
To evaluate the performance of the navigation algorithm, we
place a test wireless sensor node in the field as the target.
The navigation algorithm will stop if it believes itself within
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1 foot from the target. The actual distance to the target is
measured manually as the location error.

The measurement points are located from the goal line up
to the 110-yd line every 10 yards; the total length of the field
is about 330 feet. On each measured yard line, 5 data points
are selected from sideline to sideline, making a grid size of
30 x 50 feet.

The test area is about 160 feet in length. This is determined
by a minimum RSS reading of 5. Although the Beacon
packets can still be received after 110 yard line, there are
many noticeable packet drops and moving robot further line
will not generate any location estimation. Figure 8 (top)
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Fig. 8. (top) Outdoor RF profile, (bottom) location error

shows the2-D RF profile we collected in the testing field
from one of the beacon node. The bottom subfigure shows
the navigation error when we place the test node at different

locations along the middle of the field. The results show that
the navigation error is closely related to the relative distance
between the target sensor and the beacon nodes. The starting
location of the robot has little effect on the final result. The
location error is less than 5 feet as long as the target sensor
is within 120 feet from the beacon.

VI. CONCLUSIONS

We present a radio sensing based location and navigation
method for outdoor WSN applications. The method utilizes
a vector of RSS measurements to estimate the location of the
target sensor and optimum navigation direction. Our result
shows that RSS based navigation can achieve reasonable
accuracy in a coarsely profiled field.
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Abstract— Conventional agricultural fields are sprayed 
uniformly to control weeds, insects, and diseases. To reduce 
cultivation expenses, to produce healthier food and to create 
more environmentally friendly farms, chemicals should only be 
applied to the right place at the right time and exactly with the 
right amount. In this article, a task and motion planning for a 
team of autonomous vehicles to reduce chemicals in farming is 
presented. Field data are collected by small unmanned 
helicopters equipped with a range of sensors, including 
multispectral and thermal cameras. Data collected are 
transmitted to a ground station to be analyzed and triggers aerial 
and ground-based vehicles to start close inspection and/or 
plant/weed treatment in specified areas. A complete trajectory is 
generated to enable ground-based vehicle to visit infested areas 
and start chemical/mechanical weed treatment.  

Keywords—path planning; turning trajectory; motion control; 
ASETA; 

I.  INTRODUCTION 

Adaptive Surveying and Early treatment of crops with a 
Team of Autonomous vehicles (ASETA) is a research 
projected funded by the Danish Council for Strategic Research 
and aims to explore the efficient and safe task execution and 
cooperation between a number of ground-based and airborne 
vehicles and its use in the early detection and treatment of 
weeds in row crops e.g. sugar beets [1]. In traditional 
automated weed control systems, unmanned ground vehicle 
(UGV) scans the surface of the entire field area and identify 
weed species and treats it chemically or mechanically directly. 
The main disadvantage of these approaches is that the robot has 
to scan or comb the whole field looking for weed spices which 
is a time consuming and costly process and in addition, more 
crop plants are most likely to be subjected to a potential full or 
partial damage. In this project, surveillance is carried out based 
on small unmanned helicopters equipped with a range of 
sensors, including multispectral and thermal cameras. A path-
planning algorithm for efficient unmanned aerial vehicles 
(UAVs) guidance based on a predefined set of waypoints and 
dubbin curves is used [2]. The helicopters scan large field 
areas, data collected are transmitted to a ground station, which 
analyses the data and triggers aerial and ground-based vehicles 
to start close inspection and plant treatment in specified areas. 
Small-scaled helicopters are used to provide the system with 
multi-spectral aerial images. Using data from the helicopters, 
the system identifies infestations and intensive weed spots in 
the field and then dispatches autonomous ground vehicles to 
the infestations to exactly identify and localize the weeds [1-3].  

UGVs require high-precision control, continuous operation, 
increased efficiency, and the removal of a human operator from 
an unsafe environment. Although autonomous vehicles have 
been for long the subject of research, only recently have sensor 
and computer technology made autonomous vehicles practical 
[4]. The advent of Global Positioning Systems (GPS) sensors 
which has offered engineers the high precision necessary for 
accurate vehicle control and the relatively inexpensive 
computers which are capable of running complex control and 
estimation algorithms make it practical for real-time control. 
With all the tools necessary for economical real-time land-
vehicle control, specific commercial applications are 
stimulating research into effective vehicle control systems. 
Agriculture has emerged as one of the first potential 
applications of real-time vehicle control. Certain types of 
repetitive farming tasks such as seeding, spraying, fertilizing, 
weed control, and harvesting could benefit from high-precision 
control, control which is available in all visibility conditions 
[4].  

In this paper, a motion planning and control approach to 
give the UGV the capabilities to visit weed spots in the 
optimized manner is developed. This includes; 1) the 
generation of a path which follows the crop rows to minimize 
crop damage, 2) the generation of an optimized turning path at 
the end of crop rows to join rows and to enable a UGV to drive 
smoothly between these rows in a manner which reduces soil 
compaction, operational time and total travelled distance in the 
field, and 3) a trajectory following controller, namely the 
Helmsman Controller (HC), to follow the desired trajectory is 
proposed.  

The entire work is organized as follows; we first introduce 
the mechanical specification of the UGV platform used in 
ASETA project (see Fig. 2) in Section 2.2. The dynamic model 
of the used UGV is presented in Section 2.3. In section 2.4, two 
controllers are presented. A Field coverage approach is 
introduced in Section 3.1. In Section 3.2, an approach for 
assigning rows which are the closest to the weed spots are 
presented. Different types of turning trajectory generation for a 
blind turning are presented in Section 3.3. Finally, the 
developed approach is tested and validated through a number 
of simulation experiments are performed to evaluate the 
tracking performance of the robot under different field and 
operational conditions. Finally, a brief concluding remarks and 
future work in Section 5 are presented. 
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the selected crop rows and the turning path connecting these 
rows is generated to enable an unmanned ground vehicle to 
visit these weed spots in an optimized manner. Four types of 
turning types; namely, U-, π-, Ω-, and hook- turning types are 
generated and used to join selected crop rows. To enable a 
robot to follow a predefined trajectory, a trajectory following 
controller based on Helmsman controller principal is proposed. 
Simulation results showed that the controller is capable of 
accurately steering the robot to follow complex trajectories and 
reducing the tracking error under different operational 
conditions. An experimental field test showed that the 
developed controller is capable of following a predefined 
trajectory with high accuracy. In future work, the trajectory 
will be extended to 3D dimensional space in order to improve 
the controller performance for different field terrains. 
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 

Abstract— This paper presents a Breadth-First Search-based 

Indicator System for remaining range estimation and 

representation in battery electric vehicle driving range 
indicators. The representation enables detailed illustration of 
electric vehicle’s “distance to empty”. To build up a remaining 

range graph the Breadth-First Search (BFS) algorithm is 
coupled with a simple electric energy consumption model  taking 
into account the driver-desired speed, road data in a near 
horizon (route network topology, legal speed, grade  and grip), 

ambient temperature, headwind speed and state  of charge of 
electric battery. The presented study focuses on  investigation of 
the effect of the ambient temperature variations on the vehicle 

remaining range . Simulation results clearly show an increased 
energy requirement at low temperature resulting in a reduction 
of the vehicle  range . 

Keywords: advanced driver assistance systems, navigation, 
remaining range estimation, electric vehicle, energy consumption, 
breadth-first search. 

I. INTRODUCTION 

Since its creation in 2010 the Laboratory of Engineering of 

Surface Transportation networks and Advanced Computing 

(GRETTIA) of the French Institute of Science and 

Technology for Transport, Development and Networks 

(IFSTTAR) contributes to transport networks and systems 

development taking into consideration integration, 

intermodality, reliability and system analysis issues. The 

areas of research include road sector, collective, and 

particularly guided transport. In this framework, GRETTIA 

together with the Taganrog Polytechnic Institute of Don 

State Technical University participate in development of new 

approaches for remaining range estimation and 

representation in battery electric vehicle (BEV) driving range 
indicators. 

Range estimation remains complicated by the fact that: 

 Future driving behavior is often unknown [1,2]. 

 Road data as well as weather, traffic conditions 

(often uncertain) have to be taken into account [1], 
[3,4,5], [8]. 

 Batteries are subject to external influences and 
aging [4]. 

 
 

Several studies have been performed for conventional and 

electric vehicles to estimate/predict the remaining range or 

extend it by providing (for a given road segment) the optimal 

speed profile aiming at reducing the electric energy 

consumption. Rodgers et al. [1] investigated conventional 

and novel methods for estimating an electric vehicle’s 

“Distance to Empty” (DTE), the actual distance the vehicle 

can be driven before recharging is required. They proposed a 

Novel Regression-based DTE algorithm that reduces the error 

in DTE estimation if the future changes in driving conditions 

are detected beforehand by obtaining route information from 
the user. 

Yuhe et al. [3] introduced an estimation method, in which to 

save time and computing resources, range estimation is 

classified into rough range estimation and precise range 
estimation according to remaining battery energy.  

Besselink et al. [4] analyzed the energy usage and range of a 

battery electric ECE VW Golf, using over 20000 km of real 

life data. The study showed the impact of ambient 

temperature: in cold weather conditions additional energy 

was needed to heat the interior resulting in a higher specific 
energy usage. 

To the authors’ knowledge, modern indicators use two 

different ways to represent the remaining range estimation 
results on the road map (Fig. 1): 

 By simply drawing a circle containing all the 
achievable road network nodes (in red). 

 Detailed graph-based representation (in green). 

To plan a ride we use two different on-board devices: 

 A range indicator computing the vehicle’s DTE. 

 A GPS-navigator providing us with the optimal 
path/distance to the destination point. 

Having that information in mind we then take a decision on 

whether to schedule a stop for refueling/recharging or not. 
And why not to couple those two devices? 
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Figure 1. Circle- and graph-based representations. 

For the purposes of the BFS-based Indicator System we have 

chosen the detailed representation of the output graph of road 

segments all starting from the initial EV position and ending 

at the farthest achievable road nodes (Fig. 2). The chosen 

graph-based representation allows defining more accurately 

the achievable road network zones. This makes it possible to 

easily couple the BFSIS with modern on-board GPS 
navigators. 

This paper extends the study presented in [5] by investigating 

the effect of the ambient temperature variations on the EV 

remaining range. The remaining of this paper is organized as 

follows. Section 2 introduces the architecture of the BFS-

based Indicator System and the consumption model used. 

Section 3 shows and discusses some simulation results. The 

conclusion of the paper and future work are given in section 
4. 

II. BFS-BASED INDICATOR SYSTEM 

The BFS-based Indicator System (BFSIS) uses the extension 

of the BFS [6] coupled with a simple electric energy 

consumption model to build up the BEV remaining range 

graph (in green, Fig. 2) taking into account the driver-desired 

speed, road data in a near horizon (route network topology, 

legal speed, grade, grip), ambient temperature and state of 
charge (SoC) of the battery. 

 

Figure 2. BFSIS illustration: remaining range graph (in green) on Google Maps. 

 

TABLE I.  NOMENCLATURE  

Variable Description Units 

V 
Average vehicle speed (within a road 

segment) 
m/s 

Vdriver Driver-desired speed  m/s 

eHorizon 
Data structure of predefined size containing 

the road data and weather forecast  
- 

Route graph 
Road network graph (has to be known ahead 

of time) 
- 

Av. Vleg Average road segment legal speed  m/s 

Av. Grade Average road segment grade (slope)  - 

Av. Grip 
Average road segment grip (road 

slipperiness or road fri ction) 
- 

Amb. Temperature Outdoor air temperature °C 

2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

x 10
5

2.8
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Av. Vhw Average headwind speed  m/s 

SoC Battery state of charge - 

Rem. Range Graph EV remaining range graph  - 

Ek Kinetic energy  J 

   Transmission effi ciency  - 

T e Engine torque N*m 

we Engine speed  rad/s 

Eelec Electric energy  J 

Eaux Energy requirement for heating/cooling  J 

   Battery efficiency  - 

  Electric motor effici ency  - 

r Wheel radius m 

M Vehicle mass  kg 

rho Air volumetric mass kg/m3 

SCx Vehicle drag area m2 

g Gravitational acceleration  m/s2 

Crr Rolling resistance coefficient  - 

Low-level description 

Fig. 3 below presents the low-level description of the BFSIS. 

The eH block converts the data of eHorizon into an 

appropriate format that can be read by the BFSIS. eH 

provides the following data for each road segment (input 
road graph arc): 

 Road network topology. 

 Average road grade. 

 Average road grip. 

 Average legal speed. 

 Average outdoor air temperature. 

 Average headwind speed. 

We assume the driver always prefers to keep the maximum 
speed allowed within a given road segment: 

                          

Based on the provided data the output remaining range graph 
is constructed by the BFSIS as described below. 

 

Figure 3. Block diagram of the BFS-based Indicator System. 

Consumption model 

The kinetic and the electric energies (consumed during a 
time slice t) are evaluated based on the following equations:  

   
 

  

       

      
  

        
                           

The engine speed computation is performed based on the 
absence of gearbox: 

      . 

The torque     is computed as follows: 

                          + 

                 

BFS approach for remaining range estimation and 

representation 

The proposed extension of the BFS approach for remaining 

range representation is depicted below. It consists of two 

phases. The first phase calculates the path cost for each road 

segment by means of the consumption model described in 

the previous sub-section and returns the 

RoadSegmentEnergyCost array. Then the phase 2 performs 

the BFS algorithm which uses a queue data structure to store 
intermediate results as it traverses the graph, as follows: 

Input: NNodes – number of nodes of the road network graph, 

DCs – set of direct children of a node, Eelec – 

NNodes*NNodes matrix of electric energy needs to traverse a 

road segment, RemRange – 1*NNodes array of nodes’ 

remaining range values, Examined – 1*NNodes Boolean 
array of examined nodes. 
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Initialize: RemRange(initial vehicle location) = SoC, 
Examined [1..NNodes] = 0. 

1. Enqueue the root node (initial vehicle location). 

2. While the queue is not empty 

3.       Dequeue a node, v = node, IndInVertices = 
index of v in Vertices set, v is labeled as examined, 
Examined(v) = 1 

4.       for each i   DCs(v) 

5.             RayToDraw = min(Eelec(i,IndInVertices), 
RemRange(IndInVertices)); 

6.             Plot the remaining range ray 

7.             if !Examined(i) 

8.                 Enqueue i 

9.                 RemRange(i) = 
RemRange(IndInVertices) – RayToDraw, i is 
labeled as examined, Examined(i) = 1 

10.             endif 

11.       endfor 

12. endwhile 

III. SIMULATION RESULTS 

The system is implemented in Matlab/Simulink. Table 2 and 

Table 3 summarize the vehicle and simulation parameters 

based on which the simulation has been performed. The 

efficiency profile of YASA-400 Advanced Axial Flux 
Electric motor [7] has been used for the simulations.  

TABLE II.  VEHICLE PARAMETERS  

Variable Value/Range 

r 0.30 

M 1700 

SCx 0.7 

   0.9 

  [0.01, 0.95] 

   0.7 

TABLE III.  SIMULATION PARAMETERS 

Variable Value 

Crr 0.012 

V (initial) 16 

Vdriver 30 

SoC From 0.35 to 0.2 

eHorizon 100 km 

Test scenarios 

To simulate DTE we have generated a route network graph 

depicted in Fig. 4. The graph contains 20 nodes, including 
the root node (X = Y = 3.00) where the EV is initially located. 

 

Figure 4. Road network topology. 

Table 4 summarizes the Av. Vleg values used for all four test 
scenarios described below. 

TABLE IV.  AVERAGE ROAD SEGMENT LEGAL SPEED VALUES 

Road segment color in Fig. 4 Value 

Red 16 

Blue 22 

Black 30 

Scenarios 1 to 4 

All four scenarios are temperature-oriented. They investigate 

the effect of the ambient temperature variations on the EV 

remaining range. Table 5 lists the simulation parameters for 

each of them. All the parameters are applied to the entire 

road network. The scenarios differ from each other by the air 
density rho and the Amb. Temperature values. 

TABLE V.  SCENARIO 1 TO 4 SIMULATION PARAMETERS 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Av. Grade 0 0 0 0 

Crr 0.012 0.012 0.012 0.012 

Vhw 0 0 0 0 

Amb. Temperature -15 0 20 30 

rho 1.37 1.29 1.20 1.16 

The auxiliary power (heating/cooling) measurements 

(executed on a distance of 100 km) for different values of the 

ambient temperature have been performed by Tober [8] and 
presented in Fig. 5 below. 
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Figure 5. Energy requirement for heating/cooling as a function of the 

ambient temperature for Nissan Leaf electric car [8].  

In Fig. 6 and 7 the proposed BFS Indicator System is used to 

output the remaining range graph for four different scenarios 
defined in Table 5. 

 

a) DTE ((3.0, 3.0) to (2.9, 3.2) via (3.0, 3.1)) = 18.8 km 

 

 

b) DTE ((3.0, 3.0) to (2.9, 3.2) via (3.0, 3.1)) = 21.5 km 

Figure 6. Scenario 1 (a) and 2 (b) simulation results. 

 

a) DTE ((3.0, 3.0) to (2.85, 3.35) via (3.0, 3.1) and (2.9, 3.2)) = 32 km 

 

b) DTE ((3.0, 3.0) to (2.85, 3.35) via (3.0, 3.1) and (2.9, 3.2)) = 30.3 km 
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Figure 7. Scenario 3 (a) and 4 (b).  

Results discussion 

The Breadth-First Search-based Indicator System has been 

tested on the four previously described scenarios. The 

simulation results show that the simplified consumption 

model used for the purpose of the system reacts properly to 

the ambient temperature changes. The tests report an 

increased energy usage at low temperatures, resulting in a 

major reduction of the vehicle range. Scenario 1 is the 

‘coldest’ scenario with its critical Amb. Temperature = -15°C 

and DTE = 18.8 km. In the Scenario 2 the vehicle range 

slightly increases until DTE = 21.5 km at Amb. Temperature 

= 0°C. In the Sceario 3 the weather conditions are optimal 

and there is no need to heat/cool the interior of the vehicle, 

thus resulting with the maximum DTE = 32 km. Then in the 

last Scenario 4 the size of the remaining range graph (the 

number of green edges and their length) is affected by the 
energy requirements for cooling at 30°C, DTE = 30.3 km. 

To extend the vehicle range we propose to: 

1) “Eco-drive”, keeping, for example, the constant speed 
of 80 km/h (22 m/s) all over the road network. 

2) Couple the BFS Indicator System with the Smart and 
Green ACC driver assistance system developed in [9]. 

IV. CONCLUSIONS AND  FUTURE WORK 

In this paper, the Breadth-First Search-based Indicator 

System for electric vehicle has been tested on several 

temperature-oriented scenarios. The tests have reported an 

increased energy usage at low temperatures, resulting in a 

major reduction of the vehicle range. The BFS-based 

remaining range representation we have chosen for the 

purposes of the BFSIS allows detailed illustration of electric 
vehicle’s “distance to empty”.  

Future developments will be oriented at using of a map-

based service (Google Maps, OpenStreetMap or others) to 

show the output road graph overprinted in real time. 

Different traffic conditions will be taken into account when 

calculating the average vehicle speed and road segments’ 
energy costs. 

To validate the proposed system we build a moke-up, which 

will represent a road network drawn at a rectangular piece(s) 

of wood. The road segments will be built in such a way to 

represent uphill, downhill and slippery roads. Different 

average legal speed as well as different traffic density values 

will be assigned to all the segments of the road network. 

The cars will be car-like robots moving from their initial 

locations to their destinations. All of them will have a small 

LCD direct user interaction and information display 

visualizing the road network and the RR graph overprinted in 

real time. The spectators will be invited to choose the initial 

location of a robot(s) and its destination point. Then the 

BFSIS will compute the time-optimal (or the most efficient 

in terms of fuel/energy consumption) path taking into 

account the road data in a near horizon (route network 

topology, legal speed, grade and grip), traffic conditions as 

well as ambient temperature. If the destination point is not 

achievable, the BFSIS will propose the optimal path via the 
nearest refueling/recharging station. 
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Landmark Discovery for Single-View Cross-Season Localization

Ando Masatoshi Chokushi Yuuto Tanaka Kanji

Abstract— We tackle a challenging task of single-view cross-
season localization. The main problem we face is how to
obtain discriminative and compact visual landmarks, which
are necessary to cope with changes in appearance in an
environment. We address this issue by proposing the use of raw
image matching, which is contrastive to popular bag-of-words
methods which rely on vector quantized visual features. A direct
implementation of raw image matching can be time / space
intractable due to the high dimensionality of raw image data.
We propose to exploit raw image matching, not for the direct
matching between query and database images, but for mining
an available visual experience to find discriminative visual
landmarks. The result is a bounding box -based scene descriptor
that crops the mined landmark objects with respect to the
visual experience. We develop a practical localization system, by
employing both efficient and reliable subsystems for raw image
matching, including RANSAC geometric verification, common
pattern discovery, and approximate near neighbor search.
Experimental results show that our proposed framework tends
to produce stable localization results despite the fact that our
scene descriptor is significantly space / time efficient.

Index Terms— single-view localization, cross-season localiza-
tion, landmark discovery, raw image matching

I. INTRODUCTION

Cross-season robot localization has gained much attention
in autonomous robotics today. Most of the work so far has
concentrated on coping with changes in appearance of an
environment [1]–[8]. A single place can look quite differ-
ently depending on the geometric conditions (e.g., viewpoint
trajectories, object configuration) and the photometric con-
ditions (e.g., illumination). Such changes in appearance lead
to difficulties in scene matching, and thereby raise the need
for highly discriminative, compact scene descriptor (Fig.1).

Existing approaches are broadly divided into those which
describe a variety of visual appearances of scenes in a
sole map, or those in which multiple independent maps
are employed to describe different visual experiences. [1]
developed a state-of-the-art robust localization framework,
called SeqSLAM, in cross season navigation tasks separated
by months or years and in opposite seasons. However,
SeqSLAM algorithm explicitly assumes that image sequence
measurements (i.e., multiple views) are available for robot
localization and relies on an image sequence -based scene
descriptor. [2] proposed a robust approach that can capture
the typical time varying appearance of an environment in
multiple different maps and the number of experiences

This work was partially supported by JSPS KAKENHI Grant-in-Aid for
Young Scientists (B) 23700229 and Grant-in-Aid for Scientific Research
(C) 26330297 (“The realization of next-generation, discriminative and
succinct SLAM technique: PartSLAM”), by KURATA grants, and by the
Telecommunications Advancement Foundation in Japan.

M. Ando, Y. Chokushi, and K. Tanaka are with Faculty of Engineering,
University of Fukui, Japan. tnkknj@u-fukui.ac.jp

Fig. 1. Single-view cross-season localization. A single place can look
quite differently depending on the geometric conditions (e.g., viewpoint
trajectories, object configuration) and the photometric conditions (e.g.,
illumination). Such changes in appearance lead to difficulties in scene
matching, and thereby raise the need for highly discriminative, compact
scene descriptor.

required tends to a constant. [3] showed that by quantizing
local features in both feature and image space, discriminative
statistics can be learned on the co-occurrences of features
at different times of the day. However, it is not clear
whether those approaches can make the scene description
compact as they directly memorize a variety of multiple
visual experiences. A notable exception is [4], where the
issue of compactness is addressed with a question: “how little
and what quality of visual information is needed to localize
along a familiar route? ”. Although impressive results have
been demonstrated, it also relies on the assumption of image
sequence measurements.

In this paper, we tackle a challenging task of single-view
cross-season localization. Single-view localization is a family
of localization tasks with important applications, where the
robot’s view sequence only sparsely overlaps with pre-
mapped views. The main problem we face is how to obtain
discriminative visual landmarks, which are necessary to cope
with changes in appearance in an environment. We address
this issue by proposing the use of raw image matching,
in contrast to popular bag-of-words methods which rely on
vector quantized visual features. A direct implementation of
raw image matching can be time / space intractable due to the
high dimensionality of raw image data. We propose to exploit
raw image matching, not for the direct matching between
query and database images, but for mining an available
visual experience to find discriminative visual landmarks.
The result is a bounding box -based scene descriptor that
crops landmark objects with respect to the visual experience.
We develop a practical localization system by employing
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Fig. 2. The landmark discovery process. Left-most column: I = 4
subimages with different views (cyan rectangular boxes) are sampled from
an input query / database image. Top-most row: J = 4 reference images that
are most similar to the input image, are searched by an efficient SIFT-based
approximate near neighbor search, followed by a RANSAC step to ensure
the geometric consistency between the tentative SIFT correspondences.
4x4 panels in the right bottom: A raw image matching between each
input subimage and each reference image is performed to find common
visual patterns, i.e., discriminative landmarks. Bottom-most: the result is
a discriminative and compact scene descriptor that consists of IJ = 16
bounding boxes.

efficient matching techniques, including RANSAC geometric
verification, common pattern discovery, and approximate
near neighbor search. We evaluate the proposed framework
through challenging single-view cross-season localization
tasks.

II. LOCALIZATION SYSTEM

The localization task consists of two main steps: (1) scene
description, and (2) database search. The first step interprets
a query scene image into a scene descriptor. Descriptors
are also computed for all images in the map database. The
second step searches over the map database to find images
with similar descriptors to the query descriptor. Then, image
with highest similarity score is viewed as the localized image.
The both subtasks are respectively detailed in the following
subsections.

A. Scene Description

To interpret a given scene image into a scene descriptor,
we assume a dictionary or a library of random L reference
view images to be given (Fig.2). Those reference images
are not required to be associated with spatial information
(e.g., viewpoint, location ID, geotag) such that the viewpoint
and orientation are known. Such images are cheaper than
those mapped images with spatial information required by
the database, and can be more easily available. For example,
they could be a visual experience obtained by the robot-self
in a previous navigation, or shared via information sharing
networks by other colleague robots [5], and potentially, they
could be resource publicly available image data on the web,
such as Google StreetView.

A small subset of J appropriate reference images that are
most similar to a given input image are selected and used
to interpret the image. Our experimental results suggest that
high localization performance tends to be associated with
coverage of the robot’s route by these reference images. To
select most similar J reference images {R j}J

j=1 to a given in-
put image, the pairwise similarity between the input and each
reference image is evaluated as the number of similar SIFT
matches between the image pair. Approximate near neighbor
search (ANN) [9] is iterated for efficient search of similar
SIFTs to each query SIFT, followed by a RANSAC step
to ensure the geometric consistency between the tentative
SIFT correspondences, and those J similar images that are
supported by highest number of SIFT matches are considered
as the relevant reference images. Note that although this is
a naive implementation of our approach, it does not rely on
quantized SIFT vectors as the popular bag-of-words image
model do. Instead, our image model is based on the precise,
raw SIFT features. Although it is computationally more
demanding, the search process is fast as we only require
a small library of reference images.

Then, common pattern discovery (CPD) between an input
and the reference images is performed to mine a set of
rectangular image patches, termed visual phrases (VPs), that
effectively explain an input image. Any CPD algorithm could
be adopted, but for our purposes, we selected the algorithm of
randomized visual phrase (RVP) [10], as it provides fast and
stable detection of common visual patterns and can generally
handle scale variations among objects without relying on any
image segmentation or region detection.

The original RVP algorithm employs a bag-of-words im-
age representation. We do not rely on vector quantized
visual features, but do raw SIFT matching between the input
and each reference images. We assign unique ID to each
reference SIFT feature, and do the ANN over the reference
to find similar SIFT features to each input SIFT feature,
followed by a verification step to ensure the normalized L1-
distance between the SIFT descriptor pair is smaller than 0.4.
We then assign IDs of the similar SIFTs as visual words to
the input SIFT feature, i.e., multiple visual word per feature.
Note that our bag-of-words image representation is free from
vector quantization errors.

Given the bag-of-words image representations of the ref-
erence and the query images, the RVP algorithm efficiently
evaluates the likelihood of the query object being located
at each pixel on the reference image. The result is a voting
image whose pixel indicates the evaluated likelihood. We
binarize the voting image to obtain the bounding box. This
binarization process employs a threshold that is determined
on-the-fly, so that the size of a bounding box should be
sufficiently small that it can be localized well, and should
not exceed 10% of the area of the reference image. We
also take into account the fact that the views of input
and reference images are usually different depending on
their viewpoints. To address the difference of viewpoint, a
collection of random I subimages are sampled from each
query image, and used as the view images with slightly
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different viewpoints. Then, CPD is iterated for each pairing
of input subimage and the reference image. We finally obtain
I bounding boxes for each of the J reference images.

B. Database Search

The scene description process outputs a compact scene
descriptor, in a form of bag-of-bounding-boxes (BoBB),
which consists of J pairings of
• a reference image ID (an integer),
• I visual phrases (BBs on the reference image).

Because a BB is a far lower dimensional representation than
many existing feature descriptors such as 128 dimensional
SIFT vectors, the search of similar BBs to a query BB can
be done quite quickly. Note that a BB carries appearance
information of a VP as it indicates size and location of
common visual patterns with respect to the visual experience.
Suppose a function Overlap(Bi, j,B′i′, j′) returns the area of
overlap between a given BB pair Bi, j, B′i′, j′ when they
belong to the same reference image or 0 otherwise. Note that
our current implementation ensures that each bounding box is
well localized, i.e., smaller than 10% of the image area, and
we found there is no need to penalize the size of bounding
boxes. A large value of Overlap(Bi, j,B′i′, j′) indicates that
the VPs cropped by the BBs are similar between the image
pair, and vice versa. By aggregating the VP-level similarity,
we obtain the image-level similarity:

fV P(I ,I ′) =
1
IJ

J

∑
j=1

I

∑
i=1

max
i′, j′

Overlap(Bi, j,B
′
i′, j′). (1)

The bag-of-bounding-boxes (BoBB) descriptor does not
produce meaningful results when there is no common visual
pattern between the input and the reference scenes. We
propose to use the traditional bag-of-words (BoW) descriptor
complementary with the proposed BoBB descriptor, and a
modified image-level similarity:

f (I ,I ′) =CV P · fV P(I ,I ′)+CVW · fVW (I ,I ′), (2)

where CV P,CVW are weighting coefficients and CV P≫CVW .
Currently, we use the FAB-MAP as the bag-of-words method
and view its output likelihood value as the similarity fVW .

III. EXPERIMENTAL RESULTS

We evaluate the performance over several data sets that
are collected in different seasons and paths. The dataset used
in these experiments consists of collections of view images
taken around a university campus, using a hand-held camera
as a monocular vision sensor.

Fig.3 shows a bird’s eye view of our experimental en-
vironments, viewpoint paths, and examples of the dataset.
We consider a typical scenario that deals with view images
that are taken relatively far (1m-5m) from each other [2],
greatly reducing the memory required to describe a given
path. Occlusion is severe in the entire scenes, and people and
vehicles are dynamic entities occupying the scene. We went
each path three times, collected three independent collections
of images and use each for query, library and database image
collection.

Fig. 3. Experimental environments. A collection of 448-592 images
are collected for three different seasons, autumn (2013/10/21), winter
(2013/12/21) and spring (2014/4/17) and for three different paths #1, #2 and
#3, respectively indicated by orange, green and blue curves on the figure.
Shown in the bottom three rows are examples of single-view cross-season
dataset collected in spring, autumn, and winter.

Fig.4 shows example results of landmark discovery. For
common pattern discovery (CPD), our method selects a set
of J = 4 reference images out of the size L = 100 library
and learns I = 4 VPs for each reference image, based on
ANN and CPD as described in the previous section. One
can see that discriminative landmarks are successfully found
for all the image pairs shown here. However, the reasons for
each landmark found are various depending on the content
of the input and reference images. In the first case, an image
of a house that commonly appear in the input query or
database image is mined via the visual experience mining,
and a window of the house is found as a discriminative
landmark via the landmark discovery. In the second case,
there are mainly three dominant objects, (from left to right)
trees, white house, and large building, and among them, only
the house is selected as the discriminative landmark, as the
appearance of the house does not change among the scenes.
In the third case, large portion of the scene is occupied by
dynamic objects (e.g., cars), and despite the difficulty, a part
of the house is successfully selected as the discriminative
landmark. In the fourth case, a part of one of dominant
building object is selected as the landmark.

Fig.5 shows peformance results. We evaluated the pro-
posed VP method (“VP”) in terms of the retrieval accuracy
and compare it with FAB-MAP 2.0 (“FAB-MAP”) [11]. For
FAB-MAP, we used the same code as the authors. Series of
independent 200x3 retrievals are conducted for each of 200
random query images for each of the 3 different paths. The
retrieval performance was measured in terms of averaged
normalized rank (ANR) in %, which is a ranking-based
retrieval performance measure, where the smaller value is
better. To evaluate ANR, the rank assigned to the ground-
truth relevant image was evaluated for each of the 200
independent retrievals, and then the rank was normalized by
the database size and averaged over the 200 retrievals. From
Fig.5, one can see that our approach outperformed FAB-
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Fig. 4. Example results of CPD.

MAP in most of the retrievals considered here.
Fig.6 shows the input query image, the ground truth image,

and the database images topranked by FAB-MAP and by the
proposed method. One can see that both the FAB-MAP and
the proposed method tend to find database images that are
similar to the query image in some sense. However, FAB-
MAP tends to fail when there are confusing images in the
database whose appearance is partially similar with the query
image but with different structure. Shown in the 3rd row
in the figure is a typical exmaple where FAB-MAP could
not distinguish two different buildings with partically similar
appearance and quite different structure, i.e., flip left and
right. On the other hand, the proposed method successfully
distinguish such a confusing image, due to the discriminative
power of raw image matching used as the matching criteria.

IV. CONCLUSIONS

The main contribution of this paper is to tackle the chal-
lenging tasks of single-view cross-season localization and to
propose a novel discriminative and compact scene descriptor.
In contrast to popular bag-of-words scene descriptor that re-
lies on vector quantized feature vectors, our criteria for scene
matching is based on raw image matching. Instead of direct
raw image matching between query and database images
that is space time intractable, we proposed to do raw image
matching between a query or database image and known
reference images, e.g., visual experience, information shared

Fig. 5. Performance results. We conducted scene retrieval experiments
for 6 different combinations of query - database / library images: autumn
-winter, autumn - spring, winter - autumn, winter - spring, spring - autumn,
and spring - winter. For each experiment, we constructed and used 4
different sets of query (Q), library (L), and databsse (D) images: from left
to right, set#1={ Q:path1+path2, L:path1+path2, D:path1+path2 }, set#2={
Q:path1+path2, L:path2+path3, D:path1+path2 }, set#3={ Q:path2+path3,
L:path2+path3, D:path2+path3 }, set#4={ Q:path2+path3, L:path1+path2,
D:path2+path3 }

by other colleague robots, or publicly available image data
on the web. We developed a practical localization system,
by employing both efficient and reliable subsystems for raw
image matching, including RANSAC geometric verification,
common pattern discovery, and approximate near neigh-
bor search. Experimental results showed that our proposed
framework tends to produce stable localization results despite
the fact that our scene descriptor is significantly space / time
efficient.
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 

Abstract— Current automated guided vehicle (AGV) 
technology typically provides material handling flow along 
single or dual opposing-flow lanes in manufacturing and 
distribution facilities.  An AGV stops for most any obstacle that 
may be in its path which then halts other AGVs behind it until 
the obstacle is removed.  An alternative to serial AGV flow is to 
provide parallel flow in particular areas, such as buffer zones 
and appropriate lanes where a stopped AGV can be passed by 
other AGVs.  This paper describes two obstacle detection and 
avoidance (ODA) methods developed and tested. These 
methods will allow current off-the-shelf AGVs to advance 
towards unstructured environment navigation. 

I. INTRODUCTION 

Automated guided vehicle (AGV) technology has been 
used since 1953 [1] for material handling in manufacturing 
and distribution facilities.  Tug-, unit-load-, and forklift-style 
AGVs are readily available with typical onboard low-level 
control of drive, steer, position sensing, guidance sensing, 
obstacle detection, emergency stop and automatic restart, and  
start/stop controls among other capabilities.  Today, 
occurrence handling, for example when an obstacle is 
detected in the vehicle path, is mostly handled locally by the 
onboard safety sensors – two dimensional (2D), laser 
detection and ranging (LADAR) sensors – that directly 
control the vehicle to slow and/or stop via direct electrical 
connection to the drive amplifiers.  Non-contact and/or 
contact (bumpers) safety sensors are mandatory onboard 
AGVs, according to the American National Standards 
Institute/Industrial Truck Standards Development Foundation 
(ANSI/ITSDF) B56.5 [2] AGV safety standard, where 
sensors must provide low-level stop capability prior to the 
AGV structure contacting an obstacle.   

Typically, centralized [3] off-board higher-level 
controllers command AGVs through wireless communication 
that provides waypoint positions, segment information 
between waypoints, navigation method and handling, traffic 
management (e.g., admittance into or decline movement into 
a particular facility zone), etc.  Many AGVs navigate by 
triangulating laser-based detection of reflectors mounted on 
walls, resulting in centimeter or smaller repeatability. The 
AGV movement along segments is programmed into the 
controller with knowledge of speed, steer method (e.g., 
Ackerman or quad-steer), onboard equipment adjustment, 
etc., from one waypoint to the next.  Segment information is 
sent to the onboard AGV controller, typically as the AGV 
approaches upcoming segments. This ensures that the AGV 
does not have the entire facility navigation plan that may be 
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uninterruptable and that forces the AGV to follow without 
updates.    

AGVs transporting material usually travel along single or 
dual, opposing-direction lanes.  Therefore, when an AGV 
halts for an obstacle in its path, it serially stops the flow of 
other AGVs behind it until the obstacle is removed on its 
own (e.g., a person walking) or by an AGV supervisor (e.g., a 
piece of broken pallet dropped in the lane).  Workers can 
anticipate AGV flow in known directions and lanes and at 
known rates. This method of material handling flow provides 
intuitive movement for nearby workers and operations.  
However, this method potentially slows production rates and 
may require more or faster vehicles to achieve the continuous 
material flow rates desired by the facility owner. Obstacle 
detection and avoidance using mobile robot systems is well 
known in the literature, as a simple internet search illustrates. 
However, this is not so for AGVs, where only two instances 
in our search provided examples.  One AGV company stated 
“autonomous navigation provides increased responsiveness, 
operational flexibility, and improved material flow.” [4] 
Another company demonstrated a floor cleaning robot that 
navigates around an obstacle in an open area. [5] 

The National Institute of Standards and Technology’s 
(NIST) Smart Manufacturing Program has been researching 
AGV control for developing safety and performance test 
methods for several years [6, 7, 8]. NIST mobile autonomous 
vehicle research has investigated performance of obstacle 
detection algorithms and sensors with respect to standard test 
pieces, human forms, and overhanging obstacles to foster 
more intelligently controlled AGVs.  Past AGV controls 
research was enabled through open-source controls and 
algorithms developed by NIST.   

Recently, NIST procured an industrial AGV with stock 
controls for developing performance metrics and test 
methods for mobile robots within smart manufacturing 
facilities.   These newer manufacturing settings may have 
minimal infrastructure, with humans working in close 
proximity to robots, and may require AGVs to carry 
advanced onboard equipment such as robotic arms.  Using 
existing technology to conduct this research dramatically 
reduces the risk to current AGV users and manufacturers. 
The 2025 Material Handling and Logistics Roadmap suggests 
that “as confidence in algorithms increases, many routine and 
even complex decisions will be turned over and automated” 
and “real-time optimization algorithms for dynamic control 
of logistics systems should be developed and widely used.” 
[9] Detecting and avoiding obstacles may be considered 
complex for some in the industry, although it directs them 
towards future unstructured environment navigation even 
with their current systems. 

Obstacle Detection and Avoidance from an Automated Guided 
Vehicle 
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Frontier Based Exploration with Task Cancellation

P.G.C.N. Senarathne andDanwei Wang

Abstract— Classical frontier based exploration strategies op-
erate by iteratively selecting the next best sensing location
myopically and moving to the specified location, until the entire
environment is explored. And it does not consider the new
information added to the map through continuous observations
by the robot along the way to a selected location. This can
sometimes lead to redundant traversal by the robot, such as
traveling towards a dead-end when the nearby area is already
mapped. In this work, we augment the classical frontier based
exploration strategy to include a probabilistic decision step that
decides whether further motion on the planned path is desirable
or not. If the motion is not desirable, it is interrupted and a new
sensing location is selected as the next sensing task. Experiments
were conducted using a Pioneer 3AT robot to explore an indoor
environment and is demonstrated that the proposed method on
average is capable of exploring environments more efficiently.

I. INTRODUCTION

Autonomous exploration of unknown environments is one
of the most important tasks carried out during robotic
missions such as environmental mapping [1], search and
rescue/find [2], [3]. For a robot to autonomously explore
an unknown environment, it must sequentially sense the
environment at new sensing locations until complete sensor
coverage of the environment is achieved. At a given instance
during an exploration mission, there are multiple candidate
locations where the robot could perceive the environment to
expand the existing mapped area. Once the robot senses the
environment through one of these caldidate locations, a new
set of candidate locations appear in the map. This explosion
of the candidate sensing space with each sensing action,
coupled with the high uncertainties in the information gain
predictions for each of these sensing locations, makes finding
an optimal sequence of sensing locations for complete ex-
ploration of the unknown environment intractable. Therefore,
all the exploration strategies are reduced to finding the next
best sensing location as an intermediate target and moving
to that target as the next task and repeating this process
until complete mapping of the environment is achieved. The
most popular heuristic used to generate the set of candidate
locations, to find the next best sensing location (i.e. interme-
diate target), is to extract cells in the boundary between the
mapped free and unmapped cells from an Occupancy Grid
Map representation for the environment [4]. These boundary
cells are calledfrontier cells and the exploration strategies
based on this heuristic are called Frontier Based Exploration.

In almost all the frontier based exploration strategies, the
robot is left to travel to the selected target (i.e. completion of

Both authors are with EXQUISITUS, Center for E-City, School of Elec-
trical and Electronic Engineering, Nanyang Technological University, Sin-
gaporesenarathne@ntu.edu.sg, edwwang@ntu.edu.sg

Fig. 1. (a) Illustrates a situation where a frontier cell that is closeto a
yet to be revealed obstacle boundary, marked in dashed lines, is selected
as the next intermediate target. The white area is the already explored free
space while solid black lines are the already discovered obstacle boundaries.
Gray represents unmapped area.Rmax is robot’s maximum sensing range
and light-blue area illustrate robot’s current sensing field of view. (b) As
the robot moves towards the target (as shown by the arrow), the entire area
becomes fully explored (c) The robot continues to move towards the target
in traditional exploration strategies, redundantly

current sensing task), before the next decision is made. While
this method is simple and reduces the exploration problem
to a one finding the best intermediate target to expand the
map in discrete steps, it does not consider the changes to
the frequently evolving frontiers, which could invalidate the
usually over-estimated information gain for the intermediate
target. This happens when robots select frontier cells, that
are very close to obstacles which are yet to be revealed
in the map, as their next intermediate targets. As a robot
moves towards such a target, continuous sensing reveals the
obstacle, which encloses the explored free space, fully or
partially, and stops the expansion of most of the frontier
cells in the neighborhood, an extreme situation of which
is depicted in fig. 1. This disappearance of frontiers in the
current target’s neighborhood results in the further movement
of the robot towards the target, largely redundant as large
portion of the map does not get expanded.

Therefore it is important to check if the map continues
to get expanded in the direction of the robot’s final desired
heading. This expansion is directly reflected by the distri-
bution of the frontier cells near the current target as the
robot moves towards the target. Existence of frontiers in the
direction of the robot’s desired heading indicate that the map
gets expanded in that direction. Frontiers in other directions
indicate the options available for the robot for exploration
in those directions. Depending on the distribution of the
desirability of these two types of frontiers, decisions can be
made to either continue the current motion or to cancel it
and generate a new exploratory task in another direction. The
work presented in this paper augments the classical frontier
based exploration strategy to include this decision step in
order to conduct more efficient exploration missions.
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The article begins by providing a summary of various
works on autonomousexploration strategies and a description
on the baseline frontier based exploration strategy. The next
section describes the approach used to arrive at the task
cancellation decision. It includes a probabilistic formulation
for the decision event and how the parameters decide the
aggressiveness or the conservativeness of the exploration
process. It also details the generation of the frontier selection
probability distribution used for the decision event. Details
of the experiments, the results and analysis are provided in
the subsequent sections.

II. RELATED WORK

Robot exploration strategies are mainly driven by the con-
cept of iteratively selecting the next best sensing location in
the environment as the intermediate target in order to expand
the map. Frontier based exploration [4] selects the next
best sensing location from a collection of candidate target
locations generated from the boundary between the mapped-
free and unknown grid cells (i.e. frontiers) in the occupancy
grid map [5]. Different criteria used for the selection of the
next intermediate target has resulted in various extensions
of the basic frontier based exploration strategy. Selecting
the closest frontier cell, balancing the information gain of
frontier cells with travel cost [6], [7], [8], use ofhysteresis
value to restrict robot from frequently switching exploration
tasks [9] are some of them. While the popular heuristic
is to use frontier cells as candidate targets for exploration,
random generation of candidate target locations have also
been proposed. The works in [10] discuss the generation of
candidate target locations randomly while [11] proposes the
biasing of the random target generation towards the frontier
boundaries.

Several exploration algorithms based on topological map
representations are also proposed in the literature. These in-
clude the works of Kuipers et. al, [12], Choset et. al, [13] and
Ge et. al, [14]. However, frontier based exploration strategies
have become prevalent due to the ease of generation and
management of occupancy grid maps compared to topolog-
ical maps hence are the focus of this article. The baseline
strategy used for comparison of the proposed method is a
frontier based exploration strategy. The utilityU(λ) of the
frontier cell λ is generated asU(λ) = αI(λ) − βC(λ)
where I(λ) is the estimation of the information gain and
C(λ) is the estimated travel cost to cellλ. α and β are
two parameters that can be varied to decide the relative
importance of the information gain and cost components.
The frontier cell with the highest utility is selected as the
next intermediate target. Calculation of the information gain
can be done using entropy/mutual information based methods
[8], [7] or by counting nearby unexplored cells, generated
by thresholding the occupancy probabilities [9]. Since the
second method is simpler to implement and is not considered
inferior [15], it is used to calculate the information gain. The
travel cost is estimated as the distance of the planned path
to the frontier cell.

Fig. 2. xT is the currentintermediate target,θT is the desired heading
angle. Bothλi, λj are example depictions of two frontier cells neighboring
xT . Note that frontier cellλk is outside the neighborhood ofxT , so not
considered for the cancellation decision. The neighborhood is depicted by
the dashed semi-circle with a radius ofRmax. The light-blue shaded area
represents robot’s current sensor field of view.

Improving the efficiency of frontier based exploration
using updated frontier information has previously been men-
tioned by Keidar et. al, [16]. However, their work focuses
only on efficiently generating frontiers in high frequency to
support such improved strategies. Holz et. al, [17] discusses
the drawback of continuing to move towards the intermediate
target without considering the continuously updated frontier
information. A repetitive rechecking approach is proposed
where, the assigned intermediate target is checked for being
a valid frontier cell in order to reduce redundant exploratory
motion. Our work extends this approach to a more general
formulation that considers the utility around the target and
to decide when to cancel the current motion.

III. CANCELLING EXPLORATORY MOTION

Let us define the current intermediate target of the robot as
xT ∈ R2 and the final heading of the robot’s planned motion
at xT as θT . Consider that the map is updated at discrete
steps during the planned motion toxT . Let Θ : R2 → [0, π2 ]
be the randomvariable describing the absolute difference in
angle between robot’s desired headingθT and

−−→
xTλ where

λ is any neighboring frontier cell ofxT as illustrated in
fig. 2. The set of neighboring frontier cells of targetxT is
denoted byF(xT ). At each map update stepk, a probability
density functionfkΘ : [0, π2 ] → [0, 1] can bedefined. This
distribution describes the probability of selecting a frontier
cell fromF(xT ) in a specified absolute angle difference with
θT , as the next intermediate target. Supposeγ to be the
angle tolerance used to consider frontier cells as belonging
to robot’s final heading direction. Then, the robot’s motion
towards its current targetxT is cancelled ifP (Θ ≤ γ) < pT .
The cumulative probability on the left hand side of the
inequality provides a measure of desirability of the frontier
cells in the ‘direction’ (based on angle toleranceγ) of the
robot’s final heading for the robot. If this desirability is less
than a certain probability thresholdpT , the robot’s motion
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Fig. 3. (a) Major steps in the base-line exploration strategy (b) Major steps
in the proposed exploration strategy. Frontiers are generated at a certain
frequency and the motion is preempted to check for redundant motion. And
the motion continues if the motion towards the target is still desirable. If
not desirable, a new target is selected and the process continues.

towards the current target is cancelled as illustrated by the
steps in fig. 3. The value ofpT can be changed according to
the level of cancellation desired. A more aggressive form of
exploration can be activated by settingpT to a higher value
and a more conservative form of exploration can be activated
by a lowerpT value. SettingpT to zero makes the inequality
false for all scenarios and will not cancel the robot motion,
hence will make the robot behave identically to the baseline
strategy.P (Θ ≤ γ) is calculated as follows.

P (Θ ≤ γ) =

∫ γ

0

fkΘ(θ) dθ

=

∫ γ

0

∑

λ∈X
T

θ

fkX(λ) dθ
(1)

Here, the setX T
θ is defined as{λ ∈ F(xT ) s.t.Θ(λ) = θ}

and contains all the neighboring frontier cells ofxT with
an absolute angle difference toθT equal toθ. fkX : R2 →
[0, 1] is the probability mass function (p.m.f.) that provides a
measure of desirability of selecting neighboring frontier cell
λ ∈ F(xT ) as an alternative target.

IV. ESTIMATING NEIGHBORHOOD FRONTIER
CELL SELECTION PROBABILITY

The probability of selecting a neighboring frontier cell
(i.e. desirability of frontier cell as an alternative target) is
calculated based on their individual utilities. Hence the p.m.f.
can be defined as,

fkX(λ) =
U(λ)∑

λi∈F(xT ) U(λi)
(2)

However, it is reasonable to assume that the effect of the
travel cost is negligible for the set of neighboring frontiers
of xT , F(xT ), as the variation among these travel costs
is minimal. Hence Eq. 2 can be approximated using the
information gain valuesI(λ) as follows.

fkX(λ) =
I(λ)∑

λi∈FT (xT ) I(λi)
(3)

While crude calculation of information gain for each
frontier cell,I(λ), can provide the necessary p.m.f values, it
is desirable to generate these p.m.f. values with less compu-
tational burden as they need to be computed at each frontier
update step. Hence the apparent correlation of information
gain values among nearby frontier cells is used to quickly
arrive at estimates of actual information gain values. Frontier
cells generally belong to clusters of cells representing map
boundary contours that share a common unknown area that
is used to estimate the information gain. Corners of these
contours are adjacent to already mapped area restricting the
information gain, while the mid points of these contours
are generally the farthest points away from mapped area
allowing a higher information gain. This heuristic knowledge
of information gain progression along a frontier cell contour
is used to define a function that approximates the information
gain for each frontier cell.

Consider a frontier contourc, then the information gain
of cell λ ∈ c is approximated asI(λ) = Icψc(‖λ − λµ,c‖)
whereIc corresponds to the contour wide common informa-
tion gain term. The functionψc(d) approximates the fraction
of Ic the robot gains by visiting a frontier celld distance
away from it’s associated contour’s centerλµ,c. Rc is the
maximum distance to a corner of the frontier contour from
λµ,c.

ψc(d) =





1 if d+Rmax ≤ Rc

1
√

2πRmax

e
−(d+Rmax−Rc)

2

R2
max else

(4)
The function value is kept at 1, indicating the highest

possible information gain, when the frontier cell is more
thanRmax distance away from the frontier contour’s corners,
towards the centerλµ,c, thus not restricting the maximum
sensor range. When the frontier cell’s position makes the
sensor range goes beyond the contour’s corners, it restricts
the sensing of the robot and the fraction of the information
gained by the robot is approximated to decline according to
a normal function.

V. EXPERIMENTAL RESULTS

Experiments are conducted using a Pioneer 3 AT robot
equipped with a Hokuyo LRF for sensing. The exploration
strategies were implemented using the navigation software
layer provided by ROS [18]. The occupancy grid map
update/access frequency is set to 1Hz. In all experiments,
α andβ parameter values are set to 0.8 and 0.3 respectively.
Changes to these two values do not affect the performance
of the task cancellation decision as they are used only for
selection of the intermediate target, hence are kept constant
throughout the experiments. Two types of experiments were
conducted to compare the performance of the proposed strat-
egy. In the first type, effect of cancellation on a single sensing
task is evaluated while on the second type of experiments,
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(a) (b)

Fig. 4. (a)Map of the narrow passage. The blue box is the starting position
of the robot, red circle is the target near the dead end. The red band circling
the mapped space is the inflated obstacle grid cells. (b) Map of the room
type environment. Two targets A and B are used

the effect of task cancellation was evaluated for complete
exploration missions. Travel distance of the robot is used for
comparisons between the two strategies.

A. Analyzing the effect of parameters on different environ-
ments

In the first type of experiments, the cancellation of explo-
ration tasks is compared with traditional exploration tasks to
better understand the effects of the two parametersγ andpT .
The two environments used for comparing parameter effects
is shown in fig. 4. The robot’s maximum sensor range,Rmax,
is set to 4m. The first environment considers the situation
of a robot approaching a narrow passage with a dead end,
which are often found in indoor environments. The end of
the passage is 4.5m from robot’s starting point. Hence, there
exists unmapped area towards the dead end and robot selects
a target which is 3.5m away and close to the dead-end.

Fig. 5 depicts the travel distance of the robot towards the
dead-end with varyingγ andpT values. It can be seen that
irrespective of theγ value, when the threshold probability is
set to zero, it behaves identically to the classical exploration
strategy and continues to move towards the target which
is close to the dead end even though the entire passage
gets fully explored by a small forward motion. In all other
situations, the robot’s motion gets cancelled within 0.5-1.0
m forward motion and behaves identically. This is because
as the robot moves forward about 0.5m-1.0m, due to the
narrowness of the passage, the entire environment is fully
explored and there are no more frontiers to be selected as
intermediate targets. Hence the two parameters do not affect
the cancellation decision differently.

In the second environment type, two targets are used.
Target A and B are placed about 0.5m and 1.5m away from
the room boundary respectively as shown in fig. 4(b). In both
cases, the target is at the frontier with the robot’s sensor
facing towards the target. In each experiment, the robot is
sent to the specified intermediate target in an exploratory
motion following a straight trajectory. The travel distance
at the time the robot stops/gets interrupted is recorded for
each run. For each target A and B, the area the robot
could explore is measured by hand. This value is used to

generate the expected information gain percentage function
for the robot’s currently travelled distance. It can be noted
that, the remaining information gain exhibits a diminishing
returns property with respect to the travelled distance. This is
because as the robot moves towards the targets, most of the
area in front of the robot gets mapped. Remaining unmapped
area resides to the two sides of the robot’s motion. Hence,
the straight motion of the robot does not map the unknown
area with high efficiency. This results in a lower net-gain
with increasing travelled distance. This observation justifies
cancelling the motion before the robot reaching the assigned
target and reassigning a new target, when the robot’s motion
towards the previous target is less ‘desirable’.

The two graphs in fig. 6 and fig. 7 summarizes the results
from these experiments and illustrates the effect ofγ and
pT in deciding the desirability of the robot’s motion. For
both targets, settingpT to zero, irrespective of theγ value,
makes the robot behaves exactly similar to the classical
exploration approach and moves the robot to the target
which is 3.5m away. And also asγ = 90◦ includes the
entire neighborhood as the robot’s ‘heading’, the robot moves
forward until there are no frontiers in the neighborhood,
hence the long travel distances. For target A, it can be seen
that, travel distances between 1.0m-1.5m explores between
70%-85% of the neighboring area approximately. Cancelling
the sensing task during this travel distance interval can be
considered more efficient for the exploration mission as
the robot could cover the remaining unknown areas more
efficiently by employing a different motion from the current
one. For targets that lie very close to obstacle boundaries
in a room type environment, such as A, selectingγ = 75◦

and pT = [0.1 − 0.5] or γ = 60◦ and pT = [0.1 − 0.3] is
observed to generate motions that are neither too agressive
nor too conservative in exploring according to fig. 6. For
target B, the travel distance interval 2.0m-2.75m explores
between 77%-90% of the neighboring area approximately.
Hence, similar to target A, it can be considered that selecting
γ = 60◦ andpT = [0.3−0.5] or γ = 45◦ andpT = [0.1−0.3]
generate exploratory motions that exhibit the correct balance
of agressiveness and conservativeness for targets that are not
too close or far away from obstacle boundaries relative to
the sensor range. It can also be observed that forγ = 75◦,
the generated motions are either too conservative, forpT =
[0.1− 0.7], or too agressive, forpT = [0.8− 1.0] hence not
suitable for exploration missions.

B. The effect of task cancellation on exploration missions

The previous section analyzed the effect on exploration
with cancellation of a single sensing task. An exploration
mission is a sequence of such sensing tasks. Experiments
were conducted to measure the effect of the cancellation
strategy on complete exploration missions of an indoor
environment, depicted in fig. 8. The travelled distances to
complete the exploration missions were recorded. Based on
the results from the previous section,γ = 45◦, pT =
[0.1−0.3] andγ = 60◦, pT = [0.1−0.5] are selected as the
parameter space for full exploration missions. For eachγ, PT
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Fig. 5. Travel distances of robot during exploratory motion in the narrow
passage
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Fig. 6. Travel distance of robot and remaining information gain percentage
during exploratorymotion to target A
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Fig. 7. Travel distance of robot and remaining information gain percentage
during exploratorymotion to target B

parameter pair used for experiments, 10 runs were conducted
with different starting pisitions to negate any bias arising
from the starting point. The numbered points in the figure
illustrate these starting points. The greedy target selection
strategy sometimes makes the robot move longer distances
for sensing tasks during the final stages of the exploration
mission. Inorder to remove any biases of the results due to
this scenario, the travel distances when the environment is
95% explored are also reported. The maximum range of the
sensor is set to 3.0m.

Table I summarizes the results for the various exploration
missions conducted. The first row corresponds to the re-
sults from the classical exploration mission, withpT = 0.

Fig. 8. The map of the indoor area used for experiments. The numbered
points are thedifferent starting points used for each (γ, PT ) parameter pair

Overall, augmenting the classical exploration process with
cancellation of sensing tasks results in lower travel distances,
on average for both the 100% and 95% explored scenarios.
However, the standard deviation indicates that, the perceived
average performance improvements are not statistically sig-
nificant. Gain in travel distance during exploration occurs
when the classical method selects frontier cells that are near
obstacle boundaries as targets and the proposed method avoid
reaching such targets. However, selection of such frontier
cells by the classical method does not occur in all target
selection steps during a mission. In some steps, the selected
target may not be closer to any obstacle boundary and both
strategies would perform identically on average. Hence, the
improvements on the travelled distance by the proposed
method gets averaged out over long travel distances and mul-
tiple experiments, and reduces the statistical significance of
the data. However, it is observed that the number of times the
task cancellation based missions having a positive gain for
each parameter pair is much higher. Of the total 80 missions
executed, 62 have provided a positive travel gain considering
100% exploration and 58 have provided positive travel gains
considering 95% exploration. Therefore, inorder to have a
better understanding on the effect of task cancellation on
missions, the distribution of the travel gains should also
be considered. Travel gain distributions for both 100% and
95% explored scenarios, illustrated in fig. 9, indicate that
exploration with task cancellation approach generates more
efficient motion with high probability. It is also observed that
with high pT values, the number of motion cancellations
increase leading to more aggressive exploration missions
as predicted. However, the results are inconclusive about
the effect of the agressiveness of task cancellation on the
efficiency in this environment. Fig. 10 qualitatively compares
the efficiency of the proposed method with the classical
approach. While the robot ventures in to two narrow passages
out of three and moves very close to obstacles as depicted
in 10(a) and taking sharp turns (top left of path) in the
classical approach travelling 39.91m, the proposed approach
avoids entering all the narrow passages and completes the
exploration mission in 32.99m and conducts a more efficient
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exploration mission as expected.

TABLE I

PERFORMANCE OF EXPLORATION MISSIONS

(γ, PT ) Avg. Travel
Dist.

Std-dev. #
Avg.
Can-
cels

# +ve Gains
(out of 10

experi-
ments)

100% 95% 100% 95% 100% 95%

(*,0) 44.48 39.94 6.53 4.99 - -

(45,0.1) 39.36 35.71 5.53 4.84 8 9 8

(45,0.2) 40.29 35.32 4.66 5.28 14 8 8

(45,0.3) 39.23 35.90 3.95 4.24 22 9 8

(60,0.1) 42.31 36.98 3.04 5.28 7 6 6

(60,0.2) 41.44 37.72 3.76 3.82 9 8 7

(60,0.3) 41.20 37.44 4.52 4.10 15 8 6

(60,0.4) 41.91 37.94 4.33 4.55 19 7 7

(60,0.5) 40.13 35.67 4.14 4.80 23 7 8
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Fig. 9. (a)Histogram of travelled distance gain for 100% exploration (b)
Histogram of travelled distance gain for 95% exploration

(a) (b)

Fig. 10. Qualitative comparison of classical exploration approach and the
proposed approach. Robot start from starting point No. 2. (a) The path taken
by robot during the classical exploration mission. Travel distance 39.91m
(b) The path taken by robot with interruption. Travel distance 32.99m

VI. CONCLUSIONS AND FUTURE WORK

This work augmented the classical frontier based ex-
ploration strategy to include a decision step that cancels
sensing tasks if they are no longer desirable. The check for
desirability was formulated as a probabilitic decision step and
the classical approach is shown to be a special case of this
augmented strategy. The experiments revealed that the aug-
mented strategy is capable of conducting efficient exploration
missions than the classical approach with high probability.

However, the experiments on a single environment type was
not sufficient to evaluate the effect of two parameters and
variances in efficiency on complete exploration missions
though their effect on a single sensing task were evaluated.
In future works, we expect to conduct more experiments in
different environments to evaluate and find the best range of
parameter values for the proposed approach.
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Abstract—Path planning is one of the most vital elements of 

mobile robotics. With a priori knowledge of the environment, 

global path planning provides a collision-free route through the 

workspace. The global path plan can be calculated with a variety 

of informed search algorithms, most notably the A* search 

method, guaranteed to deliver a complete and optimal solution 

that minimizes the path cost. Path planning optimization 

typically looks to minimize the distance traversed from start to 

goal, but many mobile robot applications call for additional path 

planning objectives, presenting a multiobjective optimization 

(MOO) problem. Past studies have applied genetic algorithms to 

MOO path planning problems, but these may have the 

disadvantages of computational complexity and suboptimal 

solutions. Alternatively, the algorithm in this paper approaches 

MOO path planning with the use of Pareto fronts, or finding 

non-dominated solutions. The algorithm presented incorporates 

Pareto optimality into every step of A* search, thus it is named 

A*-PO. Results of simulations show A*-PO outperformed several 

variations of the standard A* algorithm for MOO path planning. 

A planetary exploration rover case study was added to 

demonstrate the viability of A*-PO in a real-world application. 

Keywords—multiobjective optimization; path plan; search 

algorithm; A*; Pareto; mobile robot; Mars rover 

I. INTRODUCTION 

A crucial task for mobile robots is to navigate intelligently 
through their environment. It can be argued that path planning 
is one of the most important issues in the navigation process 
[1], and subsequently much research in field robotics is 
concerned with path planning [2], [3]. To complete the 
navigation task, methods will read the map of the environment 
and search algorithms will attempt to find free paths for the 
robot to traverse. The robot’s path is generated by defining a 
sequence of waypoints between the initial and end positions, 
while avoiding objects and obstacles. Path planning methods 
find a path connecting the defined start and goal positions, 
while environmental parameters play the role as algorithm 
inputs, and the output is an optimized path from the start to 
goal [4]. The important issue in mobile robot navigation is 
optimizing path efficiency according to some parameters such 
as cost, distance, energy, and time. Of these criteria, time and 
distance are typically the most important for researchers [5], 
and methods typically optimize the path efficiency for only one 
criterion [6]. Yet, many mobile robot operations call for a path 
plan that optimizes for several parameters. Path optimization 

over several parameters – e.g. distance and energy – is a 
multiobjective optimization (MOO) problem. The best path is 
not necessarily the shortest path, nor the path calling for the 
least amount of energy expenditure. 

Combining the optimization criteria into a single objective 
function is a common approach, often with tools such as 
thresholds and penalty functions, and weights for linear 
combinations of attribute values. But these methods are 
problematic as the final solution is typically very sensitive to 
small adjustments in the penalty function coefficients and 
weighting factors [7]. Evolutionary algorithms, particularly 
genetic algorithms, have been used widely for MOO problems, 
including success in path planning [6], [8]. The merging of 
path segments can result in offspring solutions with high scores 
across several fitness criteria. The non-dominated paths are 
favored in the population, and this increases generation over 
generation [10]. Non-dominated solutions are those in which 
there exist no other solutions superior in all attributes. In 
attribute space, the set of non-dominated solutions lie on a 
surface known as the Pareto front. Fig. 1 illustrates the two-
dimensional case, where there is a tradeoff between 
minimizing both f1 and f2. The goal of a Pareto evolutionary 
algorithm is to find a set of solutions along the Pareto front, 
optimal for a combination of criteria [9]. Some state-of-the-art 
algorithms for multi-objective evolutionary computation 
include NSGA-II and SPEA2 [11], [12]. 

 
Fig. 1. Two-dimensional Pareto space, where points x1 and x2 lie on the 

Pareto front [13]. 
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This study looks to use multiobjective optimization for 
mobile robot path planning, but with a Pareto front cost 
function. Other studies have applied Pareto optimality to 
evolutionary planning for synchronous optimization of several 
objectives [8], and domination metrics are used in some 
evolutionary algorithms for path planning, including NSGA-II 
and SPEA2 [11], [12]. Yet these algorithms compare complete 
paths for domination. In order to sort a population according to 
the level of non-domination, each path must be compared with 
every other path in the population to find if it is dominated [9]. 
The algorithm presented in this study, however, checks for 
non-domination at each search step, resulting in a single, 
optimal path. The path planning algorithm is novel because 
each step is Pareto optimal. 

 The next section further discusses Pareto optimality 
and the application to mobile robot path planning.  Section III 
discusses the technical approach used in this study, and Section 
IV presents the results. Included in Section IV is a Mars rover 
case study as an example application of the new A*-PO 
algorithm. Other applications for mobile robots with global 
path planning include agricultural harvesting and information 
gathering (i.e. drones), disaster relief, DARPA challenges, 
factory and residential robot workers, and exploration rovers. 
Section V concludes the paper with discussion and future 
work. 

II. MATERIALS AND METHODS 

A. Mobile Robot Path Planning 

The aim of mobile robot path planning is to provide an 
efficient path from start to goal that avoids objects and 
obstacles. An efficient path is one which minimizes path costs, 
where the cost is typically the travel distance or time. 

Path planning methods can be categorized as either static or 
dynamic, according to the environmental conditions. The 
positions of all obstacles and objects in the static environment 
are fixed and known. The dynamic environment, on the other 
hand, may have obstacles and objects which vary positions 
with time. Similarly, an unknown environment calls for 
dynamic path planning because more is learned as the mobile 
robot progresses through the environment. The algorithms for 
path planning are also in two categories: local and global. 
Local algorithms function as the robot moves through the 
environment, revising the path based on environmental 
changes. Global algorithms use a priori knowledge of the 
environment to plan the path, and are thus applicable to 
planning in static environments. Each method has its own pros 
and cons depending on the environment and application type 
[8]. 

The control architecture in mobile robotics is typically a 
combination of local and global planners, organized as shown 
in Fig 2. The reactive layer handles local information, with 
real-time constraints. The deliberative, or global, layer 
considers the entire world, likely requiring computation time 
proportional to the problem size [15]. The algorithm presented 
in this paper is a global path planner. 

 
Fig. 2. High-level block diagram of the standard hybrid control system 

architecture for mobile robots [14]. The focus here is global path planning. 

There are two main components of global path planning. 
First is the robot representation of the world in the 
configuration space: data structures that show the position and 
orientations of objects and robots in the workspace area, 
including both the free and obstructed regions. The 
configuration spaces of path planning algorithms are usually 
represented by either an occupancy grid, a vertex graph, a 
Voronoi diagram, generalized cones, or a quad-tree [1]. 

The methods discussed in this study use an occupancy grid, 
where the environment is represented by a two-dimensional 
layout of square cells. The values of these cells are binary 
states, where 0s and 1s represent free and occupied spaces, 
respectively. The robot occupies a cell, with or without 
orientation. For a given cell currently occupied by the robot, 
there are eight feasible cells in the path that can be successors. 
This is shown in Fig. 3, where the robot in the green position is 
capable of moving into a neighboring yellow position, but not 
the occupied gray cells. Feasible solution paths never collide 
the robot with an obstacle. 

 
Fig. 3. (a) The robot (green cell) has at most eight possible path steps. (b) 

The set of feasible successor cells is narrowed because of the three occupied 

cells (gray) [9]. 

The second main component of global path planning is 
implementing an algorithm to find an optimal path from start to 
goal states. That is, for two arbitrary points in the area – the 
start and the goal – the algorithm finds a drivable path between 
them that minimizes distance, energy, or some other criteria. 
The algorithm employed for the problem must coordinate with 
the configuration space representation [1]. Potential solution 
paths connect the start cell to the goal cell via free cells. 
Searching for the optimum path is an optimization problem, 
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where the optimum path is defined as that which minimizes the 
path cost, or the objective function. 

A candidate path can be denoted by 

 (1) 

where  is the th waypoint of the path . The MOO 
problem is then framed as determining a path 

 (2) 

that satisfies 

 (3) 

where denotes the th cost function of the path planning 
problem. The study here considers three cost functions, or 

. They are defined in (4) and (5) below, and (6) later in 
the Mars rover case study. 

 Equation (4) gives the total length of the path: 

 

(4) 

where  is the Euclidean distance between 

subsequent cells in the path. Minimizing  finds the path of 
shortest length from start to goal. 

 Equation (5) gives the average elevation of the path: 

 

(5) 

where  is the elevation at waypoint . With the fixed 
start and goal states at constant elevation, the minimization of 

 gives the path which climbs up the least amount of incline 
(or alternatively moves the robot down the most decline). 

Search algorithms are employed for finding the minimal 
cost paths through the configuration space. Uninformed search 
methods are used when no information about the states are 
known beyond the problem definition [14]. The global path 
planning problem discussed here has a priori knowledge – a 
map of the exploration area. Thus uninformed search methods, 
like Dijkstra’s breadth-first algorithm, can be ignored in favor 
of informed search methods. The general approach of these 
methods is best-first, which traverses a graph or grid using a 
priority queue to find the shortest, collision-free path [4]. The 
decision of the next node expanded, the successor, is based on 

an evaluation function, : estimated cost of the cheapest 

solution through node . The choice of  determines the 
search strategy. A bonus of informed search is including a 

heuristic function : the estimated cost of the cheapest path 

from a node  to the goal state. Greedy best-first search is built 

solely on this heuristic, where , expanding the 
node closest to the goal at each search step. The incorporation 
of the heuristic into the path cost makes the search algorithm 
more efficient. 

Algorithm 1 A* Search 

1  Initialize open and closed lists 

2  Put the starting node in the open list 

3  Define f, the cost function 

4  While the open list is not empty 

5      q  node on open list with smallest f 

6      Remove q from open list 

7      Generate q's 8 successors, set their parents to q 

8      For each successor 

9          If successor is a goal, then stop search 

10        successor.g  q.g + distance between successor and q 

11        successor.h  distance from successor to goal 

12        successor.f  successor.g + successor.h 

13        If a node with same position as successor is in the 

open list & has a lower f than successor, then skip this 

successor 

14        If a node with same position as successor is in the 

closed list & has a lower f than successor, then skip this 

successor 

15         Else, add the node to the open list 

16     End For 

17     Push q to the closed list 

18 End While 

 
The A* algorithm is perhaps the most popular best-first 

search method, adding to the heuristic the cost to reach the 

node, . That is, . The search 
algorithm, looking for the cheapest path, tries (expands) the 

node with the lowest  [15], [16]. To determine the optimal 
sequence of waypoints, the A* algorithm is a favorite for route 
search problems [17], [18]. For graph search, as opposed to 
tree search, a consistency condition is required to guarantee 

optimality. A heuristic is consistent if, for every node  and 

every successor  of  generated by any action , the 

estimated cost of reaching the goal from  is no greater than 

the step cost of getting to  plus the estimated cost of reaching 

the goal from : 

 (6) 

Norvig and Russel [15] explain how the A* heuristic 
satisfies the consistency condition, and also that A* is 
optimally efficient: no other optimal algorithm is guaranteed to 
expand fewer nodes than A*. As long as a better-informed 
heuristic is not used, A* will find the least-cost path solution at 
least as fast as any other method. 

For real-time planning, where computational speed is a 
priority, previous studies [19], [20] have modified A* for fast 
planning. The D* algorithm is a dynamic version of A*, built 
to be capable of fast rerouting when the robot encounters new 
obstacles in the environment [4]. The speed of these searching 
algorithms is increased dramatically, but at the cost of sub-
optimal solution paths [14]. 

B. Pareto Optimality 

The MOO problem presents multiple cost criteria, where a 
solution stronger for one criterion may be weaker for another. 
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There are two general approaches to optimizing for multiple 
objectives: (i) combine the individual objectives into one 
composite function, and (ii) determine a Pareto optimal 
solution set. The first can be accomplished with weighted sums 
or utility functions, but selection of parameters is difficult 
because small perturbations in the weights can lead to very 
different solutions. The second option finds the Pareto optimal 
set of the population, which is a set of solutions that are non-
dominated with respect to each other. That is, moving between 
Pareto solutions, there is always sacrifice in one objective to 
achieve gain in another objective [21]. It is advantageous to 
incorporate Pareto fronts in evolutionary algorithm fitness 
functions when tackling MOO problems. Simply summing 
over the fitness criteria presents difficulties. Yet in search 
methods it is common the cost function sums over the cost 

criteria at each step; the A* algorithm sums  and . 

For minimization of objective function , a point  is said 

to be a Pareto optimal point if there is no  such that 

 for all , where there are  
optimization objectives. 

Point  is a non-inferior solution if for some 

neighborhood of  there does not exist a  such that 

,  

 , and 

  for at least one . 

Multiobjective optimization is, therefore, concerned with 
the generation and selection of non-inferior solution points – 
those on the Pareto front. Pareto optimality is a crucial concept 
for finding solutions to MOO problems because identifying a 
single solution that simultaneously optimizes across several 
objectives is an impossible task [22]. 

It is worth noting that summing over the costs to calculate a 

composite  presents another possible issue in search 
algorithms: depending on the current development of the path, 
some cost criteria may be favored over others, and this changes 
as the path development continues. For instance, the A* 
heuristic – the estimated cost of the cheapest path from the 
current cell to the goal cell – will contribute more to the cost 
function close to the start than it will close to the goal. That is, 

near the start state  will have greater influence on  than 

will , and vise-versa for the goal state. Thus, as the path 
develops from start to goal, the heuristic value will contribute 
less and less. Using a Pareto front solves this issue because 
each cost criterion is valued as its own dimension in the Pareto 
space, not summed together. 

III. TECHNICAL APPROACH 

A. Costmap 

To calculate cost functions at each step the search 
algorithm uses a costmap. This representation of the 
configuration space is built off of the aforementioned 
occupancy grid, but now a cost value is assigned to each cell. 

Traversing a free space adds a unit cost to the path total, and 
the obstacles are represented by infinite cost; thus, they are not 
traversable. If traversing straight across a cell carries a unit 
distance cost, the cost for traversing a cell at a diagonal (a 45° 

angle) carries a cost of . 

Yet this costmap only reflects the distance of taking a given 
path through the configuration space. For a MOO problem, the 
path cost needs to consider the other cost criteria, for which we 
use additional layers. Each additional cost layer adds a 
dimension to the Pareto space, from which the Pareto front is 

calculated. The first costmap layer is the distance cost, . 

The second layer is the heuristic, . These two suffice for 
traditional A* search, but we’re also interested in optimizing 
the robot’s path for elevation – i.e. minimize (5). A third layer, 

, is then added to the costmap. With three layers, the 
Pareto space is three-dimensional. That is, points on the Pareto 
front are optimal across the three dimensions, one for each cost 
– distance, the heuristic, and elevation. 

B. A*-PO Search Algorithm 

 The algorithm presented in this study, A*-PO, is essentially 
the standard A* search algorithm but for a key modification: 

rather than computing the cost function  by summing cost 
criteria, A*-PO calculates the Pareto front of the cost criteria. 
Lines 8-16 in the A* pseudocode of Fig. 3 are replaced by the 
pseudocode shown below. 

 With a set of at most eight possible directions for the robot 
to continue at each step, it is very possible the Pareto front will 
contain multiple successor nodes. That is, q may contain 
multiple Pareto points. For this scenario where multiple nodes 
makeup the Pareto front, one is chosen from the set of Pareto 
points via the normalized A* cost calculation. For instance, of 
eight directions on a given step of the path, perhaps three fall 
on the Pareto front. The algorithm will first normalize the three 
nodes for each cost criteria such that the range for each 
criterion is [0:1] for the set of nodes on the open list. Then the 
A* cost metric is used to decide between these Pareto front 
nodes. Thus, the A*-PO search algorithm still maintains the 
quality that every step is Pareto optimal. 

 

Algorithm 2 A*-PO Search (replaces line 8+ of Alg.1) 

8      For each successor 

9          If successor is a goal, then stop search 

10        successor.g  q.g + distance between successor and q 

11        successor.h  distance from successor to goal 

12        successor.e  elevation of succesor 

13        scoreMatrix(successor)  [successor.g, … 

successor.h, successor.e] 

14    End For 

15    q  Calculate Pareto front of scoreMatrix 

16    If multiple points on Pareto front 

17        Normalize scoreMatrix 

18        q  run std. A* cost function on Pareto front nodes 

19    Push q to the closed list 

20 End While 
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IV. RESULTS 

The MOO path planning algorithms are tested in simulated 
mobile robot environments. The computer simulation 
environment includes a Lenovo notebook computer with Intel 
Core i5 vPro CPU and 4 GB memory, running on Windows 
8.1. The software is written in MATLAB R2013a. 

A. Algorithm Comparison 

The A* search algorithm, and subsequently the A*-PO 
algorithm presented here, are guaranteed complete and optimal, 
but not necessarily for MOO path problems. We evaluated A*-
PO by comparing it with A* for a set of 40 simulated 
environments. 

The workspaces were setup as a 20x18 cell grids of 
randomly assigned free spaces and obstacles, the obstacles 
accounting for 20% of the workspace. The start and goal 
locations were fixed at the upper left (0,0) and lower right 
(20,18), respectively. The elevations for the goal and start 
states were at 0 in each in configuration, where the terrain 
ranged [0:1]. Eight unique terrains were used in the 
simulations. 

The optimization objectives, as presented above in (3) and 
(4), were to minimize the total path distance and elevation. Fig. 
4 shows an example of the resulting paths for each search 
method in pink, where the gray squares represent the path 
steps; the red and green marked squares represent the start and 
goal states, respectively. The left side diagrams of Fig. 4 are 
the final solution paths over a grid of obstacles (black) and free 
spaces (white), representing the occupancy grid layer of the 
costmap. The right side diagrams show the same paths over a 
contour map, representing the elevation layer of the costmap. 

For one of the 40 simulation runs, Fig. 4a shows the final 
solution path of the standard A* algorithm for the distance 
travelled, the heuristic, and the elevation cost criteria. At each 
search step the costs for each criteria were normalized [0:1] 
over the nodes in the open list. It was necessary to normalize 
the path costs at each search step because the elevation values 
are small relative to the distance values; without normalization 
the elevation metric would be insignificant. This normalization 
is unnecessary for the A*-PO algorithm because each cost 
value is relative to the cost metric’s dimension in Pareto space. 
Fig. 4b shows the solution path for the A*-PO algorithm of the 
same simulation environment as A* in Fig. 4a.

 

(a)   

(b)  
 

Fig. 4. Solution paths for (a) A* and (b) A*-PO from one of the 40 simulation runs., where the path cost at each step includes distance travelled, the heuristic, 

and elevation. The divergence in the two paths is plotted  with a black square. 
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For the sample workspace and terrain in this example, it is 
clear to see the benefits of calculating the Pareto front at each 
search step. The data over the set of 40 simulations echo these 
results, as shown in Table 1. The A*-PO algorithm 
outperforms the other A* variations for the optimization 
objective functions  and , the path length (steps) 
and  average elevation (normalized), respectively. The search 
time results show paths with Pareto optimal steps can be 
obtained efficiently with the A*-PO algorithm, with only a 
slight increase in computation time over the standard A* search 
algorithm. All algorithms gave complete solution paths. 

The average elevation of each solution path is used as a 
metric to compare the robot’s net incline from start to goal. A 
path of a given average elevation implies the robot traversed up 
less slope (or down more slope) as compared to a path of 
higher average elevation. 

B. Case Study 

A case study is presented to demonstrate the application of 
the A*-PO algorithm in a real environment. An example Mars 
terrain was sourced from HiRISE, the High Resolution 
Imaging Science Experiment conducted by the University of 
Arizona, NASA, JPL, and USGS [23]. Fig. 5 shows a digital 
terrain model of a Mars landscape, from which a section (red 
square) was extracted for use in the case study. 

The extracted section was converted to a terrain map with 
elevation values [0:1], as shown in Fig. 6. The overlaid 
occupancy grid was generated randomly, with obstacles 
accounting for 30% of the workspace. The dimensions are 
100x100, where each cell represents a 1m2 area. 

 
Fig. 5. Terrain map showing exposures of layered bedrock northwest of the 

Hellas Region of Mars. The selection within the red square was used for 

simulation. 

In addition to the path planning objectives used above, the 
case study included an additional aim of maximizing the solar 
incidence on the rear of the rover. That is, the MOO problem 
included an additional optimization objective to minimize the 
total angular deflection of sunlight from the solar panel. This 
was computed by minimizing the dot product of the rover 

vector  and the solar ray vector : 

 (7) 

The solar incidence cost criteria was incorporated as an 
additional layer to the costmap. However, this layer was 
dependent on the robot’s orientation in the configuration space, 
and was thus dynamic. That is, the costmap changed at each 
step in the path, depending on the two-dimensional rover 
vector. For this case study, the solar incidence angle was held 
constant and two-dimensional. Thus, there were eight possible 
variations of the solar costmap, or one for each angle between 
the solar and rover vectors. 

 

TABLE I.  RESULTS – SIMULATION AND CASE STUDY 
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Fig. 6. The A*-PO solution paths through the Mars workspace (total elevation variation is 34.4m). The two paths both minimized the criteria for distance 

travelled, the heuristic, elevation, and solar angle deflection. The white path reflects solar incidence at angle 70°, while the black path is for 250°.

The result paths shown in Fig. 6 are Pareto optimal at each 

step across three independent cost functions,  of (4), (5), 
(7). The three functions cover the four cost criteria because 

both the distance travelled and the heuristic contribute to . 
The case study shows the A*-PO algorithm provides the least-
cost global path according to several independent preferences 
for a mobile robot in practice. 

Further studies may aim to more accurately include the 
solar incidence as a cost metric. This can be done by varying 
the angle of sunlight with time, as the rover progresses along 
its path. Or calculating the solar incidence in three-dimensional 
space. Additionally, one may account for more elaborate 
thermal constraints, such as heating of sensitive components by 
direct sunlight. 

V. CONCLUSION 

In this study, global path planning for mobile robots is 
investigated. The optimal path is generated according to 
several cost criteria, solving the multiobjective optimization 
problem with the presented A*-PO algorithm. As demonstrated 
in the previous section, A*-PO is capable of providing paths 
where each step is Pareto optimal, and computes these 
solutions efficiently. In comparison to the traditional A* 
algorithm, it can be concluded the incorporation of Pareto 
fronts in A*-PO offers a better MOO search algorithm. 

In future work, Pareto optimality may be incorporated into 
other algorithms of the mobile robot control system 
architecture (Fig. 1). The mobile robot community has put an 
increased emphasis on suboptimal path planning methods 
which meet the time-critical constraints over slow, optimal 
algorithms [14]. Local and dynamic path planners, such as D*, 
may improve with Pareto cost functions. 
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Modeling Mobile Robots
… for High Speed and Off Road  

… autonomous and supervisory control 

Alonzo Kelly
Professor

Robotics Institute
Carnegie Mellon University 

1 Modeling Mobile Robots 9/16/2014 
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Computations 
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• Upper levels: 
– Symbols 
– Graphs 
– Propositions 
– Concepts 

• Lower levels: 
– Signals 
– Fields 
– Vectors 
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Autonomy in 5 Layers 

• Nested control loops. 
– Commands, state, and 

models at all levels. 

• Processing Levels 
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– Perceive = see 
– React = … 
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Need Fast, Accurate Models 
• Need correct predictions 

for:
– Estimation 
– Control 
– Planning 
– Human interfaces 

• Need 1000X faster than 
real time (with 1% CPU). 
– 10 X a second 
– simulate 10 seconds 

motion 
– for 10 trajectories. 

8 

Trying to avoid the obstacle 
On left side at high speed

will cause a collision 
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WMR Models : Nature 

• Differential: 
 
• Underactuated: 
 
 
• OverConstrained: 

9/16/2014 Modeling Mobile Robots 10 

Manipulator 

WMR 

x c 123L3 c12L2 c1L1+ +=
y s123L3 s 12L2 s1 L1+ +=

1 2 3+ +=

td
d

x t
y t

t

cos t sin t– 0
sin t cos t 0

0 0 1

Vx t

Vy t
· t

=

= ( , , ) 

          

 =    = (x,y) 

td
d

x
y

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
139



Implications 

• IK does not exist in 
closed form. 
– Best case is Fresnel 

integrals. 
– Requires a numerical 

approach 
• Solution does not 

exist at all for 
arbitrary trajectories. 
– Only some motions 

are feasible. 
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Enabling Kinematics - 
Transport Theorem 

• Basic mechanism to convert measurements 
from moving (robot) frame to fixed (world) 
frame. 

13 

f

m 

o

object 
   

 
r = position 
v =velocity 

= ang vel  
of frame m 

wrt frame f 

Notation 
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Wheel Equation 

• Vector formulation 
that relates wheel 
rotation rates to 
body linear and 
angular velocities. 

14 

dimensions 

angular velocity steering 

linear velocity 

Kelly & Seegmiller, Recursive Kinematic Propagation, to appear IJRR. 
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Example: 4 Wheel Steer 
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Why DAEs 

• Solves for unknown 
constraint 
forces/velocities 
automatically.  

• Provides 
constrained 
derivatives needed 
for fast, accurate 
ODE solvers. 
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Notation 
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= ( , , ) 

“state” 
(x,y, ) 

“state derivative” 
(velocity etc.) 

“inputs” 
(speed, steer) 

time 
(omitted) 

= , ,   
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• We formulate velocity kinematics for wheeled 
vehicles as a constrained, first order, differential 
equation: 
 
 
 

• Compare that with Lagrange dynamics: 
 

DAEs 

19 

 ( , , ) = 0 

2nd order ODE 

Constraints 

 ( , ) = 0 

1st order ODE 

Constraints 

=  ( , , ) 

=  ( , ) 
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DAE Formulation 

• Constrained ODE: 
 
 
 

• Solve for Lagrange Multipliers (or do nullspace 
projection) at each iteration: 
 
 
 

• Then integrate w.r.t. time. 

system dynamics 

terrain following 

wheel no-slip 

Kelly & Seegmiller, WMR modelling with DAEs, submitted IJRR. 
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Example of DAE Models 
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Wheel Slip Constraint 
• Write the wheel equation in contact point 

coordinates. = +  
 

• Set lateral component to zero. 
 =  
 

• This is a constraint on V. 
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Terrain Following Constraint 

• Disallow wheel motion 
along terrain normal. 
 
 

• Compute the gradient 
of this by dot product 
with system Jacobian. 
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System Identification - Slip 

• Model prediction error as an 
unknown variation (perturbation). 

• Form prediction residuals and solve 
for parameters iteratively in real 
time. 

27 

state observation 

Measurement 
update 
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Real Time Slip Model Identification 
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Results at Extremes 
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Kelly & Seegmiller, Integrated Prediction Error Minimization, IJRR. 
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Results at Extremes 
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20° Roll Angle 20° Pitch Angle 

System Identification - 
Mass 

• Calibrate parameters (c.g., stiffness) 
in motion and structural dynamics. 
 
 
 
 
 

• Use results for adaptive stability 
control. 
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Cg Calibration and Adaptive 
Stability Control 

9/16/2014 32 Diaz-Calderon & Kelly, Online Stability Margin …, IJRR 

Outline 

• Autonomy 
• WMR Models 
• Applications 

– State Estimation  
– Trajectory Generation  
– Motion Planning in Traffic 
– Motion Planning in General 
– Remote Control 

• Conclusion 

9/16/2014 Modeling Mobile Robots 33 

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
150



State Est: Inertial Navigation 

• Performance of Tactical Grade 
Inertial Nav: 
– Governed by velocity aiding 
– Wheel slip corrupts those 

measurements. 

34 

Key
R - Position

V – Velocity

– Orientation (Euler)

f – Non-gravitational   

a – acceleration

g – Gravity

– Angular rate

R – Position error

V – Velocity error

– Orientation error

f – Accelerometer bias

– Gyro bias 

z – Kalman measurement

Inertial 
Navigation

R,V,

Complementary
Kalman Filter

f,

z= V 

R, V, 
f,

g
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INS Results: Performance 

• Unaided (free) inertial is 
not viable at all. 

• Odometry + slip is far 
better than odometry 
alone. 

• IMU + odometry + slip 
model somewhat better 
than IMU + odometry. 
– Azimuth error is the 

dominant component and 
gyro is already excellent. 
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Calibrating Odometry in 3D 

• Calibrate 
– Kinematics 
– Slip 

• Results after 
travelling 200 
meters + 4 three-
point turns 
– 0.25 m (0.1%) 
– 2.3° yaw 

9/16/2014

Zoe Rover Traversing Ramps Repeatedly 
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Seegmiller and Kelly, Enhanced Kinematic Models, RSS 2014. 

Results 
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Outline 

• Autonomy 
• WMR Models 
• Applications 

– State Estimation 
– Inverting Dynamics
– Trajectory Generation  
– Motion Planning in Traffic 
– Motion Planning in General  
– Remote Control 

• Conclusion 
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Inverting Dynamics 
• The equivalent of inverse 

kinematics in a 
manipulator is… 

• Invert a differential 
equation. Yikes!! 

• In general, there is no 
solution. 
– For arbitrary trajectory x. 

• In practice, you need one 
anyway. 

40 9/16/2014 Modeling Mobile Robots 
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JPL Field Experimentation 

Impaired Mobility and Wheel Slip Models 
(May/June 2007)

Initial State

Goal Target State

Result of Trajectory Generated w/o Model

Trench Developed by Dragging Wheel
vx

z
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Outline 
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– State Estimation 
– Inverting Dynamics
– Trajectory Generation  
– Motion Planning in Traffic 
– Motion Planning in General  
– Remote Control 

• Conclusion 
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Trajectory Gen 

• Original motivation was to get a rover/fork 
truck to a particular terminal pose. 

43 

ft

f dtt
0

,,uxfxt,,uxfx

x(t): state 
u(t): inputs fx specified )(tuSolve for Pallet 

Forktruck 
9/16/2014 Modeling Mobile Robots 

E.g. Polynomial Spirals 

• Parameterization: 
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= + + + +  

p3 u(p)

p1
p2

)()( ttp xu

Optimal 
Control

Nonlinear 
Programming

)(tuu ),( tpuu

t,,uxfx t,pfx

Kelly & Nagy, Parametric Optimal Control, IJRR. 
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Architecture: 3 Loops 

Integration
Suspension

u(p)
xs(t) xp(t)

x(t)
u(t)

Input
Generation

terrain

Endpoint
Prediction

x(p)
ft

dt
0

System
Model

t,pfx

Parameter
Update

p
p

p
p f

f
1

Front View

Overhead View

Initial

Final 
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Convergence & Solution 

Howard & Kelly, Rough Terrain Trajectory Generation, IJRR. 
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Trajectory Control 
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Outline 
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– State Estimation  
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– Trajectory Generation  
– Motion Planning in Traffic 
– Motion Planning in General 
– Remote Control 

• Conclusion 
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State Space Sampling 

• Road Navigation example: 
– Controls satisfy terminal pose constraints. 
– Search available option for safe and feasible 

trajectory. 

 

49 

Howard, Green, & Kelly State Space Sampling, FSR 2007 

In Lane Traffic Planner 
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Outline 

• Autonomy 
• WMR Models
• Applications 

– State Estimation  
– Inverting Dynamics 
– Trajectory Generation  
– Motion Planning in Traffic 
– Motion Planning in General 
– Remote Control 

• Conclusion 
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Symmetric, Feasible Controls 

• Forms the basis of a symmetric reachability graph. 
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For Real 

55 Pivtoraiko, Kelly & Knepper,  Planning in State Lattices, JFR 2009 

Graduated Fidelity 

56 Pivtoraiko & Kelly, Graduated Fidelity, IROS 2008 
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Outline 

• Autonomy 
• WMR Models
• Applications 

– State Estimation  
– Inverting Dynamics 
– Trajectory Generation  
– Path Following 
– Motion Planning 
– Remote Control 

• Conclusion 
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Hardware and Synthetic 
Imagery 

Xilinx Spartan 3 
FPGA Based 

Processing Unit

Stereo Camera

FLIR CameraLadar

Electronics
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Video Reprojection 
real colorized
range camera

virtual camera

computer graphics 
data base

model 
building
process

rendering
process

Computer
Vision

Computer
Graphics

Rendered Information Comes from Real Video 
So its highly realistic 

Latency Compensation via  
Motion Prediction 

Distort video 
gathered at 
posn 1 

 

Last Image to
Arrive at OCS

Present
Position

Commands
arrive

Posn 1

Posn 3
Posn 2

To produce video 
that would be 
sensed at posn 3 
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3D Video 
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Test Results 

First Result : 30% Reduction in Test Course Completion Time
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– State Estimation  
– Inverting Dynamics 
– Trajectory Generation  
– Path Following 
– Motion Planning 
– Remote Control 

• Conclusion 
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Conclusion 

• (Self) Modeling is the most basic ingredient 
in predictive control. 

• Formulated correctly, it is a DAE. 
• WMRs much harder than manipulators. 

– But doable! 

• Once done, leads to capacity to act much 
more intelligently in real applications. 
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Modified flatbed tow truck model for stable and safe platooning in
presences of lags, communication and sensing delays

Alan ALI1, Gaëtan GARCIA2 and Philippe MARTINET1

Abstract— Many ideas have been proposed to reduce traffic
congestion problems. One of the proposed ideas is driving
in platoon. Constant spacing policy is the most important
control policy. It increases traffic density, but it needs very
reliable communication channel. Driving with a constant time
headway between vehicle is also well known policy and robust
control law, but the inter-vehicle distances are very large. We
have proposed in [1], [2] a modification for the constant time
headway policy. This modification reduces the inter-vehicle
distances largely using only one information shared between
all vehicles.

In this work we propose an additional modification of our
control law. This modification makes our control law similar,
in form, to the classical constant spacing policy, but it only
uses the same shared information. This modification improves
the stability of the platoon. We proved the robustness of the
control law in presence of parasitic actuating lags, sensing and
communication delays.

This prove can be also used for proving the stability of
classical spacing policy in presence of all previous delays,
contrary to what have been proved in some papers in the
literatures.

I. INTRODUCTION

Many ideas have been proposed to solve traffic conges-
tions. Platooning using automated car seems to be promising
idea. It increase traffic density and safety, at the same
time it decrease fuel consumption and driver tiredness [14].
There are many projects on highways platooning, such as
the platooning project in the PATH program (Partners for
Advanced Transit and Highways) [15], SARTRE Project [6],
and CHAUFFEUR 2 project [7]. Nevertheless, research is
still going on for highways and urban areas platooning.

It was concluded that for high capacity traffic the constant
spacing policy is necessary at the price of inter-vehicle
communication [17].

Using communication may cause instability due to trans-
mission delays or data drop. In [8] the effect of commu-
nication delays on string stability has been studied. It has
been proved that the platoon becomes un stable for any
propagation delays in the communicated leader informations.
A solution was proposed in [18] by synchronizing all the
vehicles to update their controllers at the same time and
using the same leader information, it was shown that string
stability can be maintained if the delay in preceding vehicle
information is small. The effects of clock jitter, which may
cause instability, was briefly mentioned. [10] proved string

1 A. ALI and P. MARTINET are with Institut de Recherche en Commu-
nications et Cybernétique de Nantes (IRCCYN), Ecole Centrale de Nantes
(ECN), Nantes, France

2 G. GARCIA is with Ecole Centrale de Nantes (ECN), Nantes, France

stability for the leader-predecessor and predecessor-successor
framework neglecting information delays between vehicles.
The effect of losing the communication is presented in [17].
It has been proved that string stability can be retained,
with limited spacing error, by estimating lead vehicle’s state
during losses.

Another parasitic time delays and lags may be introduced
in the physical systems due to actuating and sensing times.
This delays may have also significant effects on stability if
they are not taken into account. Stability conditions for many
control laws, in presence of lags and parasitic delays, can
be founded [10], [13], [16], [19]. A detailed study of the
effect of delays and lags when using classical time headway
policy for homogeneous and heterogeneous platoons is found
in [9]. The results show that the time headway policy is more
immune, to parasitic sensing and communication delays and
actuating lags, than the constant spacing policy. But the large
spacings between vehicle make it less important.

In [1], [2] we have proposed a modification of the time
headway policy, which reduces the inter-vehicle distances
largely to become nearly equal to the desired distance. These
works were generalized to urban platoons [3], [4]. In lateral
control, we used sliding mode control to ensure stability
and robustness. Safety of platoon, when using this control
law, was briefly studied in [1], [4] and deeply treated during
critical scenarios in [5] . These scenarios include leader and
followers hard braking taking into account even in case of
communication loss.

In this paper, we continue our previous work. We con-
centrate on controlling identical tourist cars on nearly flat
highways. We propose a modification to our control law.
This modification enhances the robustness of the control and
increase the immunity to parasitic actuating lags, sensing and
even larges communication delays.

This paper is organized as follows: in section II we present
a model for the vehicle with and without taking the lags and
delays into account, In addition we will give a model for the
platoon. The control law will be given in section III. String
stability is proved in section IV. Then in section V, we show
simulation results. Conclusion and perspective are done in
the final section.

II. MODELING

A. Longitudinal Model of the Vehicle

We take a simplified longitudinal dynamic model [2], [9]:

ẍ = v̇ = W (1)
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xL

xi−1

xi ei L

xi+1 xi xi−1 Leader

Fig. 1. A platoon

where x: Position of the vehicle, W : is the control input.

B. Vehicle model taking into account parasitic time delays
and lags

The model given in (1) is ideal modem and is not sufficient
in reality. Using it may lead to unstable control due to
presence of parasitic delays and lags. Lags make the net
engine torque not immediately equal to the desired torque
computed by the controller. Another source of instability is
the delay in the communicated data. This delay is due to
heavy communications or data drops.

A system model taking into account actuating lags and
sensing delays is found in [9]. We extend this model to take
into account communication delay, this give us the following
vehicle model:

τi v̈i(t) + v̇i(t) = u(t−∆i, τci) (2)

where τi is the combination of the all the lags taken as a
lumped lag, ∆i is the combination of the all the sensing
time delays taken as a lumped delay, τci is communication
delay.

C. Platoon Model

The platoon is a set of vehicles moving together at the
same speed and keeping a desired distance L between each
two consecutive vehicles.

The spacing error of the i-th vehicle, assuming a point
mass model for all vehicles, is defined as follow:

ei = ∆Xi − L (3)

where:
• ∆Xi = xi−1 − xi: real spacing between car number i

and its predecessor, car number i− 1.
• xi: position of i-th vehicle.
• L: desired inter-vehicle distance.
• ėi = ẋi−1− ẋi = vi−1− vi :the kinematic evolution of

the spacing error
• vi = ẋi represents the speed of the i-th vehicle.
The longitudinal model of the platoon, shown in fig. 2 is

called flatbed tow track model [1]. It is a set of vehicles vir-
tually connected by one-directional spring-damper systems,
and a virtual truck which is set to drive at a speed V , the
value of V being known to all vehicles of the platoon. In this
paper, we proposed to add new virtual spring between each
vehicle and the virtual truck. This enhanced the stability and
made our control law similar to constant spacing policy. The

main difference is that in our case all the vehicles receive
only the speed of the virtual truck V then each vehicle
compute the position of the virtual truck XV by integration.

vi+1−V vi−V v0−V V
kv ėi

kpei

kv ėi+1

kpei+1

h.kp(vi−V )

kp1eVi

h.kp(vi+1−V )

kp1eVi+1

Leader

Fig. 2. Enhanced flatbed tow truck model

III. CONTROL LAW AND SPACING ERROR
DYNAMICS

A. Control Objectives

The main objectives of the control law are:

1) Make the inter-vehicle distance equal to L so ei → 0.
2) All vehicles must move at the same speed so vi → vL.
3) Stable platoon (String stability).
4) Increase traffic density.
5) Safety (collision free).
6) Stability and safety in case of communication losses.
7) Stability and safety even in presence of sensor time

delay, actuator lags and communication delays.

Objectives from 1 to 6 are deeply studied in [1]–[5]. In
this work we deal with Objectives 7.

B. Longitudinal Control

Introducing the virtual truck in the new longitudinal model
enable us to deal with relative speed instead of the absolute
speed, this enhances the performance of the longitudinal
control by reducing the distance required to ensure string
stability. This model is a modification of the classical time
headway policy by subtracting a new term V form all speeds.

Spacing error becomes [2]:

δi = ei − h (vi − V ) = ei + h ėVi
i = 1...N (4)

We add new term λ1

h eVi to our control law given in [2].
The new term is proportional to the distance between the
i-th vehicle and the truck:

Wi =
ėi + λ δi + λ1 eVi

h
, i = 1...N (5)

Where eVi
= XVi

− xi − i L,
N : is the total number of vehicles in the platoon.
V : is a common speed value shared by all vehicles of the

platoon, it must be the same value for all the vehicles at the
same sampling time [1], [2].
XVi

: is the position of the virtual camion, it can be
computed by accumulating V .
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ei

Gvi(s) e
−τcis

V

ei−1
Gei(s)

Fig. 3. Spacing error model taking delays and lags into account

C. Longitudinal Control With Delays and Lags:

The control law of the platoon when taking into account
delays and lags becomes the following:

Wi(t,∆i, τci) =
ėi(t−∆i) + λδi(t,∆i, τci) + λ1eVi(t,∆i, τci)

h
(6)

Where:

δi(t,∆i, τci) = ei(t−∆i)−h (vi(t−∆i)−V (t−(∆i+τci)))
(7)

eVi
(t,∆i, τci) = XV (t− (∆i+τci))−xi(t−∆i)− i L (8)

With no loss of generality, we assume that vN (0) =
vi(0) = ... = v0(0) , aN (0) = ai(0) = ... = a0(0),
δN (0) = δi(0) = ... = δ0(0) (0 ≤ i ≤ N) at the initial
conditions.

We define ∆ci = τci−1
− τci the propagation delay, form

vehicle i to vehicle i− 1, of the leader’s transmitted data.
For homogeneous platoon we have :
∆i = ∆i−1 = ... = ∆, τi = τi−1 = ... = τ , τci−1 − τci =

∆ci = ... = ∆c1 = ∆c so τci = i ∆c. Hence, Gei =
Gei(s) = Gei−1

= ... = Ge1 = Ge, GVi
= GVi−1

= ... =
GV1

= GV .
Using (6), (7) and (2) and then by calculating Laplace

transformation taking into account the previous assumptions
we get:

ei(s) = Ge(s)ei−1(s) +GV (s)e−τcisV (s), i = 2...N
(9)

Where

Ge(s) =
(s+ λ) e−∆ s

hτs3 + h s2 + ((1 + hλ)s+ λ+ λ1)e−∆ s
(10)

GV (s) =
(λ h s+ λ1) e−∆ s(e−∆c s − 1)

s(hτs3 + h s2 + ((1 + hλ)s+ λ+ λ1)e−∆ s)
(11)

Equation (9) shows that the error of the i-th vehicle is not
just a function of ei−1 but it is also a function of the shared
speed V (s) as shown in fig. 3, this is due to presence of
communication delay.

It is very important to compute the dynamics of e1. This
dynamics has an important effect on the stability and the
safety of the platoon. By using (6), (7) and (2) and by adding
and subtracting (τhv̈0 + hv̇0 + λhv0 + λ1x0) we get the
dynamics of e1 as a function of the speed of the leader v0

and V :

τh
...
e 1(t) + hë1(t) + (1 + λh)ė1(t−∆) + λe1(t−∆) =

τhv̈0(t) + hv̇0(t) + λhv0(t−∆)− λhV (t− (∆ + τc1))

+λ1x0(t−∆)− λ1XV (t− (∆ + τc1))

(12)

We compute Laplace transformation:

e1(s) = Fev0(s)− FV V (s) (13)

Fe =
τhs3 + h s2 + (λhs+ λ1)e−∆ s

s(τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s)
(14)

FV =
(λhs+ λ1)e−(∆+∆c)s

s(τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s)
(15)

IV. STABILITY

A. String Stability of Longitudinal Control

The general string stability definition in the time domain is
given in [15], in essence, it means all the states are bounded
if the initial states (position, speed and acceleration errors)
are bounded and summable.

In [12] we find a sufficient condition for string stability:

‖ei‖∞ ≤ ‖ei−1‖∞ (16)

which means that the spacing error must not increase as it
propagates through the platoon. To verify this condition, the
spacing error propagation transfer function is defined by:

Gi(s) =
ei(s)

ei−1(s)
(17)

A sufficient condition for string stability in the frequency
domain is derived:

‖Gi(s)‖∞ ≤ 1 and gi(t) > 0 i = 1, 2..N (18)

where gi(t) is error propagation impulse response of the
i-th vehicle.

We proved the stability of the platoon in two steps:
firstly by finding stability conditions taking into account
only parasitic sensing time delay and lags, Then we add the
communications delays and we checked stability.
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B. System Stability With Parasitic Time Delay and Lags:

We neglect communication delays. All the equation and
the condition which will be found here will be also used
when taking into account the communication delay.

Neglecting communication delays makes GV (s) = 0 and
we get:

ei(s) = Ge(s)ei−1(s) (19)

In this case we can use (18) to check the stability so we
have to verify that ‖Ge‖ < 1.

We have:

||Ge(ω)|| =
√

a

a+ µ+ λ2
1 + 2λλ1

(20)

A sufficient condition to ensure the stability is µ ≥ 0.
This gives a group of conditions that verify the stability of
the platoon in presence of lags and sensor delays:

λ ≤ h−2(∆+τ)+2λ1τ∆
2(h(∆+τ)−∆τ) & λ1

λ < h
2 &

λ ≥ λ1τ−1
h−τ & h ≥ 2(∆ + τ)

 (21)

The last condition is to ensure that λ ≥ 0.

C. System Stability with Communication Delays:

Stability can be verified easily using condition (18) when
the error is only a function of the previous error. When the
errors become a function of additional variables we have to
check the maximum limits of the state variables (spacing,
speed and acceleration errors). The system is stable if state
variables in the platoon are always bounded [15].

Using (9) we can get progressively the relation between
ei(s) and e1(s):

ei(s) = Gi−1
e e1 +GV e−i∆c s 1− (Ge e

−∆cs)i−2

1−Ge e−∆cs
V (s)

(22)

So we have:

‖ei‖ ≤ ‖Ge‖i−1 ‖e1‖︸ ︷︷ ︸
ξ1

+ ‖Gv‖
∥∥∥∥1− (Ge e

−∆cs)i−2

1−Ge e−∆cs

∥∥∥∥ ‖V ‖︸ ︷︷ ︸
ξ2

(23)

In the following we study the limits of spacing error of
the vehicle i when i −→∞.

The first term ξ1 is bounded (∀ω and i −→∞) if ||Ge|| ≤
1 and ||e1|| is bounded.

The conditions that keep ||Ge|| ≤ 1 are already given in
(21).

From (13) we can prove that ||e1|| is also bounded because
the norm of ||Fe|| and ||FV || converge toward zero for

high frequencies. For low frequencies e1 becomes equal to
λh(V −vi)+λ1(XV −x0), this can be bounded if we choose
V correctly. For all other frequencies, the nominator of ||Fe||
and ||FV || is always larger or equal to

√
ω2(λ+ λ1)2 (we

already proved that µ ≥ 0). This means that the nominators
are larger than zero ∀ω 6= 0; So ∃ α1 ≤ ∞ and α2 ≤ ∞ :
||Fe|| ≤ α1 and ||FV || ≤ α1 ∀ω 6= 0. Then the first term
always converge toward zero ∀ω when i −→∞.

For the second term ξ2 we have 0 < ||1−Ge e−∆cs|| ≤ 2,
0 < ||1−(Ge e

−∆cs)i|| ≤ 2. We can also prove that ||GV || is
always limited for all ω; so ξ2 is limited for all frequencies
even when ω = 0 hence the platoon is stable for limited
communications delays.

So we can conclude that the platoon is stable in presence
of lags, sensing delays and even communication delays. The
conditions of stability in presence of lags and sensing delays
are given in (21). While the maximum acceptable commu-
nication delay ∆cmax

can be defined by safety conditions.

V. SIMULATIONS

Simulation has been done using Matlab. A large platoon,
consisted of 60 vehicles, is created. In reality, the platoons
are much more smaller, but we use this big platoon just to
verify that the error is not increasing even for the vehicle with
a big index (i −→ ∞). The desired inter-vehicle distance
L = 10 m. The leader accelerates from stationary state to
reach a speed of 140 km/h and then it make emergency stop.
We take parasitic sensing delay equal to ∆ = 200 ms, the
actuating lags equal τ = 200 ms and a communication delay
between each consecutive vehicles equal to ∆ = 50 ms.
We take h = 2, λ = 0.7, λ1 = 0.2. To ensure safety, the
maximum acceptable acceleration/deceleration to keep safety
is ∓4.5 m.s−2. For clarity, we only show one speed from
each ten consecutive vehicles.

We can see in fig.4 that the platoon is stable because the
errors are not increasing through the platoon. In addition,
we can see that the spacings between vehicles are always
larger than zero so the platoon is safe. Previously in [2]
we chose L = 5m, we notice here that we have doubled
the desired inter-vehicle distance to accommodate the errors
generated from lags and delays. We tested the system with
the worst cases (acceleration from zero to maximum speed
with maximum acceleration and then we applied the emer-
gency stopping) to verify the stability and safety in its limits.
In practice we add additional safety distance in the desired
distance to ensure more safety.

VI. DISCUSSION

• The new modification improves the performance of our
control law, without requiring new data from other
vehicle. Each car can compute the current position of
the truck using the shared speed V . So XV is always
the same for all vehicles.

• In case of communication loss, all vehicles switch to
autonomous stable mode by making V → 0 and Xv →
xi (for the i-th vehicle). This enable the vehicles to
switch to classical time headway policy.
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Fig. 4. Inter-vehicle spacings in presence of lags, sensing and communi-
cation delays

• No need to transmit the value of XV because it is
computed in each vehicle by integrating V . Losing the
communication will prevent the vehicles to have the
same value for XV ; so it is necessary to update XV for
all the vehicles after each communication loss.

• The error of integration will have no effect on the
stability because this error will be the same for all the
vehicles. But the most important condition is to keep
Xv − x0 limited.
We can see that this control law with our control law
proposed in our previous works [2] and the classical
time headway represent integrated frame work for con-
trolling the platoon with decreasing communication rate
respectively and we can switch from one law to another
smoothly in case of communication difficulties.

VII. CONCLUSION

In this paper we have addressed the control of platoons
on highways. The longitudinal dynamics is modeled using
modified flatbed tow truck model. We proved the robustness
of this control law to lags, parasitic delays and even for
communication delays. Sufficient stability conditions was
given in (21). In the future work, passenger comfort and
the safety of the platoon will be studied.
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Global Robot Ego-localization Combining Image Retrieval and
HMM-based Filtering

Cédric Le Barz1, Nicolas Thome2, Matthieu Cord2, Stéphane Herbin3 and Martial Sanfourche3

Abstract— This paper addresses the problem of global visual
ego-localization of a robot equipped with a monocular camera
that has to navigate autonomously in an urban environment.
The robot has access to a database of geo-referenced images
of its environment and to the outputs of an odometric system
(Inertial Measurement Unit or visual odometry). We suppose
that no GPS information is available. The goal of the approach
described and evaluated in this paper is to exploit a Hidden
Markov Model (HMM) to combine the localization estimates
provided by the odometric system and the visual similarities
between acquired images and the geo-localized image database.
It is shown that the use of spatial and temporal constraints
reduces the mean localization error from 16 m to 4 m over a
11 km path evaluated on the Google Pittsburgh dataset when
compared to an image based method alone.

I. INTRODUCTION

The problem tackled in this paper is the visual autonomous
navigation of a robot operating in an urban environment [1].
A typical target application could be the delivery of goods
using unmanned ground or aerial vehicles where the robot
trajectory has been defined before hand on a given map,
and must be followed to reach its final destination (Fig. 1).
Absolute localization system like GPS may be shadowed or
completely unavailable in several areas of the trajectory and
substitute localization means must be used.

Visual information is an appealing alternative because
cameras and densely sampled geo-referenced images are now
commonly available. Nevertheless, the localization of a robot
exploiting only image content is challenging because two
images of the same place acquired at different times and with
different cameras may show huge appearance differences
due to illumination and colorimetry variations (e.g. sunny
or cloudy days), camera viewpoints changes, scene modi-
fications (e.g. seasonal changes, building construction) and
occlusions (e.g. by cars) (Fig. 2). Standard image retrieval
(IR) methods such as k Nearest Neighbour (kNN) votes or
Bag Of Visual Words (BoVW) [2] produce noisy results that
necessitate filtering to be robustly exploited as primary global
localization information source.

Odometric systems, IMU based or visually based, provide
localization information at low cost: however this informa-
tion is only relative to a given position and suffers from

1Cédric Le Barz is with Theresis department, THALES company, 91767
Palaiseau, France cedric.lebarz@thalesgroup.fr

2Nicolas Thome and Matthieu Cord are Sorbonne University,
UPMC University, Paris 06, UMR 7606, LIP6, 75005 Paris, France
nicolas.thome@lip6.fr, matthieu.cord@lip6.fr

3Stéphane Herbin and Martial Sanfourche are
with the French Aerospace Lab, ONERA, 91123
Palaiseau, France stephane.herbin@onera.fr,
martial.sanfourche@onera.fr

Fig. 1. Visual ego-localization system: Our system aims at matching
a sequence of images with geo-referenced database images in order to
determine accurate geo-localization from noisy odometric information.

drift especially on complex trajectories. It can only be used
reliably on small portions of the followed route and can’t be
the only source of measurement for absolute localization.

The main contribution of this paper is to describe a
general framework enabling to combine these two sources
of noisy localization information: local odometry and visual
similarity. More precisely, the solution we propose uses an
IR algorithm applied to a database of geo-referenced images
integrated into a Hidden Markov Model (HMM) accounting
for odometry uncertainty. The role of the HMM is to exploit
spatio-temporal constraints in order to filter out erroneous IR
results.

The effectiveness of our approach has been evaluated over
a 11 km path using two kinds of images: Google Streetview
images [4] simulating images acquired online by the robot
camera and Google Pittsburgh image dataset [3] as geo-
referenced image database.

II. RELATED WORK

Visual place recognition problems have been addressed
recently thanks to the availability of image databases. Most
of them rely on the extraction of 2D and/or 3D features,
that are compared to a geo-referenced feature database.
Unlike [5] [6] that are loop closure algorithms developed for
Simultaneous Localization and Mapping (SLAM) systems,
we focus on position tracking.

Zamir et al. propose in [7] a hierarchical method to
localize a group of images. SIFT descriptors from database
images are indexed using a tree. A nearest neighbour tree
search is then done for each SIFT query image feature.
Weak votes are removed and each reliable feature votes for
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Fig. 2. Google Streetview images (a) and Robot images (b). Note the
impact of different focal lenses, weather conditions, viewpoint changes and
the presence/absence of cars in the scene.

a location. All accumulated spatial votes are then filtered
by a Gaussian kernel. The geo-referenced image with the
highest number of votes determines the location. In [8], the
method described in [7] is improved by interpreting the 2D
map votes as a likelihood. This likelihood is then used in
a Bayesian tracking filter to estimate the temporal evolution
based on the previous state. Both solutions are dedicated to
web video annotation, and localization is not realized on the
fly which makes it useless for navigation.

In [9], the vehicle localization algorithm uses simple
visual features and 3D features. The solution requires in
a preliminary phase to build a compact map described as
a graph. Nodes include vehicle position at fixed distance
interval and visual and 3D features. At runtime, a Bayesian
filter is used to estimate the probability of the vehicle
position by matching features extracted from sensors with
database features. Their solution uses two lateral cameras
and two lateral LIDARs. Same sensors are used during the
map building step and the localization step. In contrast,
our solution is monocular and uses different cameras for
acquisition and reference database.

The solution proposed in [10] is based on the match of
visual odometric measurements with a 2D road-map. The
map is represented by a directed graph and a probabilistic
approach is defined in order to navigate within this graph.
They are able to localize themselves after a few seconds
of driving with an accuracy of 3 m on a 18 km2 map
containing 2150 km of roads. Our navigation solution does
not use any 2D road-map. It uses only visual features
from images along the specified trajectory combined with
odometric information.

In [11], the localization is achieved by recognizing tempo-
ral coherent sequences of local best matches. These local best
matches are based on a Sum of Absolute Difference (SAD)
on resolution-reduced and patch-normalized images between
last acquire image and M previous images. They make the

assumption that the robot velocity is constant between all
image sub-sequences. The proposed solution is robust to
extreme perceptual changes, but sensitive to point of view.

In [12], authors work on visual similarity for UAV ego-
localization. They propose to generate artificial views of the
scene in order to overcome the large view-point differences.
Nevertheless, spatio-temporal constraint is not taken into
account.

Another type of approach is to cast the problem as a clas-
sification task, as in [13]. A classifier for each image in the
database is trained using per-exemplar SVM approach. The
main contribution of the mentioned paper is the calibration
of all SVM classifiers using mainly negative examples in
order to be able to compare all classifiers scores.

As in [7] [8] [9] [11], our solution uses spatio-temporal
coherency. Along with this, our solution uses a HMM
enabling to take into account in a more flexible way robot
dynamics. No assumption is done concerning the constant
velocity of the robot, but as in [14] we consider coarse
position estimates provided by an odometric sensor and their
uncertainties. Furthermore, in contrast to [7] [8] [9], the latest
part of the trajectory is re-estimated for each new acquisition.

III. PROPOSED SOLUTION

Preliminary experiments made clear that IR approaches
are not selective enough for urban areas because the same
features tend to be shared by several neighbour images
and produce erroneous matches (Fig. 4). That is why we
propose to exploit the spatio-temporal coherency in order
to filter out the wrong matches provided by standard IR
algorithms. This is achieved by combining the similarities
supplied by an IR algorithm with a HMM where hidden
states represent places. The idea is to find the trajectory
that best explains the M past observations and therefore the
current position. The definition of a HMM for each new
image acquired by the robot will enable to re-estimate the
latest part of the trajectory so that past errors are corrected
on a long term basis. Furthermore, taking into account
odometric information reduces online the number of database
images used in the IR task.

A. General principle

At each time t the robot acquires an image Ok and receives
an estimate of its current position S̃k from the odometric
system. The goal of the global localization algorithm is to
produce a better estimate Ŝk of the current robot position
from the past observations and odometric estimate (Fig. 3).
The estimator is a function of the M past observations Ok =
{Ok−M+1, . . . Ok} (i.e. the current location estimate exploits
a set of observations in a sliding window based approach of
length M ) and the estimated position S̃k.

Estimation is realized in a classical random variable setting
where the robot location at time t is considered as a random
variable qt taking values in a discrete set of possible location
Sj j ∈ {1 . . . N}. The main modeling hypothesis is that its
random behaviour is represented by a HMM.
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Fig. 3. System overview: for each new observation Ok , an odometric
sensor provides a rough position estimate S̃k that is corrected thanks to a
new HMM λ combining visual information and spatio-temporal constraints.
This corrected position is noted Ŝk .

Using the classical notations of [18], the use of a
HMM requires the definition of the adequate model λ =
{N,M,Π, A,B} where N is the number of states, M is the
number of observations, Π is the prior on the initial state, A
is the transition probability matrix between the states and B
is the observation probability matrix given some states.

The HMM approach provides a standard way to estimate
the most likely state sequence Ŝk, i.e the M successive
places, explaining the sequence of observations Ok =
{Ok−M+1, ..., Ok−1, Ok} (Viterbi algorithm):

Ŝk = arg max
S

P (S|Ok, λ) (1)

The question is now to design the HMM adapted to the
global estimate of the robot location. This will be detailed
in two steps: construction of the state transition matrix A
and initial state vector, and computation of the conditional
observation matrix B.

B. State transition matrix and initial state vector

The state transition matrix A and initial state vector are
built from knowledge of the odometric system behaviour,
robot kinematics and quality of the available database of geo-
referenced images.

From the robot kinematics, images are approximately
acquired every D meters with an odometric uncertainty of ∆
meters. The image database consists of overlapping images
acquired every D

′
meters with D

′ ≤ D. In this setting, the
database is therefore assumed to have a bigger sampling rate
than the online image acquisition rate.

Each possible state location Sj is uniquely defined by a
geo-referenced database image Ij .

The filtering capacity of the HMM depends on the number
M of past observations. This control parameter is free and
its influence will be studied in the experiments.

One critical parameter is the localization uncertainty U
which defines the area where the robot is supposed to be.

Fig. 5. Relation between states to consider and localization uncertainty.

This localization uncertainty can be for example the initial
position uncertainty when the robot starts its mission.

The number of states N , i.e. the number of potentially
matching images in the database, the initial state probability
Π and the state transition probability matrix A depend on U ,
D, ∆ and M . They are defined the following way:

• N : Given the putative position of the robot S̃k = Sj , the
localization uncertainty U , the approximative displace-
ment D, and the observation number M , the potential
states, i.e. the set of database images considered for
matching is defined according to the schema on Fig. 5.

• Π: Π = {πj}j=N
j=1 where πj = P [q1 = Sj ]. It depends

on initial position estimate (i.e. estimated position by
previous HMM) and localization uncertainty U . We use
uniform uncertainty on interval of size F = 1 + 2 ·
dU/D′e.

• A: A = {aij} where aij = P [qt+1 = Sj |qt =
Si], 1 ≤ i, j ≤ N : To take into account odometric
uncertainty for a displacement D, we defined A as
aij = D

′

∆ rect∆/D′ (j − i− (D/D
′
)). 1

C. Observation matrix

The observation matrix B is computed from visual simi-
larity between the M observations and the set of potentially
matching database images as shown in Fig 5.

Visual similarity measurement is based on a state of the art
IR solution. During the navigation phase, SIFT descriptors
for all interest points detected by a SIFT detector [15] are
extracted in a similar way as during the off-line phase.
A kNN voting algorithm is then performed: 1) For each
descriptor of a query image the k nearest neighbours are
found from a subset of database descriptors, i.e. those that are
near to the putative robot position. This subset is determined
thanks to the estimated robot position S̃k, D, U , ∆ and
M . 2) As noisy interest points are usually detected in an
image, a filtering process based on the ratio of the distance
between the query descriptor and the first and second nearest
neighbours is used [15]. 3) Query descriptors that match
with multiple database descriptors are removed, and finally
4) Outliers are rejected through a geometric verification, i.e. a

1The function rectα(x) is the rectangular function defined by
rectα(x) = 1 if |x| ≤ α and else rectα(x) = 0.
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Fig. 4. Top images: Sequential database images considered for IR task - Bottom images: Sequential query images acquired by the robot - (a) Latest query
image, (b) image returned by an IR algorithm only and (c) by an IR algorithm combined with a HMM.

RANSAC [16] 4-point algorithm [17] (homography). Hence,
we get the number of descriptor correspondences between
the descriptors of the query image Ok acquired by the robot
and the descriptors of the database image Ij . This is our
similarity measure, noted f(Ok, Ij) .

The observation matrix B = {bj(k)}, where bj(k) =
P [Ok at t|qt = Sj ], 1 ≤ j ≤ N and 1 ≤ k ≤ M is the
probability of observing Ok when location is Sj . We propose
to compute this probability from the similarity measure using
the following formula:

bj(k) = P [Ok at t|qt = Sj ] =
α

1 + exp(a · (f(Ok, Ij) + b))
(2)

where a and b are two constants, f(Ok, Ij) is the visual
similarity measure and α is a normalization constant to
impose

∑j=N
j=1 bj(k) = 1.

A summary of the general estimation scheme is presented
in algorithm 1.

Given λ = {N,M,Π, A,B}, (3) can be solved.

Ŝk = arg max
S

P (Ok|S, λ) · P (S, λ)

= arg max
S

(
k=M∏
k=1

P (Ok|S, λ)

)
·

(
π1 ·

k=M∏
k=2

ak−1,k

) (3)

The first term of (3) refers to visual similarities between
observations and the image database, whereas the second
term refers to the dynamics of the robot and models spatio-
temporal constraints. We study in section IV the achieved
performances by mixing these two complementary aspects.

IV. EXPERIMENTAL RESULTS

To evaluate our solution in a realistic situation, we con-
ducted our experiments on a 11 km trajectory. The dataset

Algorithm 1: Vision based global localization from
odometric estimates
Input: Estimated robot position S̃k, Localization

uncertainty U , Estimated displacement D with
odometric uncertainty ∆, M last past
observations, Geo-referenced image features
database.

Output: Corrected robot position Ŝk.

HMM initialization (A and Π) from D, U , ∆ and M as1

explained in section III-B;
Select relevant database images from estimated position2

S̃k, D, U , ∆, and M (Fig. 5);
Compute similarities between the M past observations3

and relevant database images as explained in
section III-C;
Compute B from similarities with (2);4

Apply Viterbi algorithm to solve (3) to estimate the5

latest state Ŝk;

used has been acquired at different times (more than one
year between acquisitions) and with different camera fields of
view resulting in visual changes for the same scenes (Fig. 2).

A. Image datasets and settings

We performed experiments on the Google Pittsburgh
dataset as image database [3], and Google Streetview images
as query images [4]. Pittsburgh dataset images have been
resized to 640x480, so that their resolutions match the query
image resolution. About 1160 SIFT descriptors are extracted
and stored per image. From the original corpus, we keep
one image every D

′
= 5 m and remove non-informative

images (e.g. images acquired in tunnels) resulting in a corpus

6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 14th, 2014 

 
178



of 2215 images. Query images are downloaded from the
Internet via a HTTP request with the following settings: a
resolution of 640x480, a field of view of 100o and a camera
tilt of 5o. We requested one image every D = 10 m resulting
in 1105 query images. For (2), a was set to 1 and b was set
to -4.

B. Results

First, we compared our method (noted IR-HMM) to a
state of the art IR algorithm based on visual similarities
only (noted IR-Only). The meaningful metrics used are mean
localization error and recall rate2. The recall rate increases
from 36% to 84%, and the mean error localization decreases
from to 16 m to 4 m (Tab. I). This considerable improvement
confirms that exploiting the spatio-temporal constraint is
essential. Our solution corrects ambiguous image matches
(Fig. 4) thanks to spatio-temporal constraints imposed via
the A matrix.

TABLE I
MEAN ERROR DISTANCE AND RECALL RATE FOR AN IR ALGORITHM

BASED ON VISUAL SIMILARITIES ONLY (IR-ONLY), FOR AN IR
ALGORITHM FOLLOWED BY A SPATIAL-TEMPORAL FILTER (IR-ST) AND

FOR THE SAME IR ALGORITHM COMBINED WITH A HMM (IR-HMM)
ON PITTSBURGH DATASET FOR M = 15 AND U = 50 M.

IR-Only IR-ST IR-HMM
Mean error distance 15.8m 7.7m 3.9m

Recall 36.1% 71.2% 84.0%

Fig. 6. Mean localization error distance vs. Localization uncertainty U .
Spatio-temporal constraints reduce significantly false match that may appear
with an IR algorithm, improving the mean error localization distance.

Then, we compared our solution with a method similar to
the one described in [7] and reminded in section II: a Gaus-
sian spatial filter is applied on putative positions obtained
by query descriptor votes. Like ours, this method (noted
IR-ST) takes into account spatio-temporal information. We

2True positive images are defined as geo-referenced images whose
distance with ground truth image is less than 5 m.

Fig. 7. Mean localization error distance vs. observation number M . When
localization uncertainty increases, M must be also increased to guarantee a
given mean localization error.

noticed that for a localization uncertainty of 50 m, the use
of the HMM enables to decrease the mean localization error
from 8 m to 4 m (Fig. 6). Furthermore, when localization
uncertainty increases, performance differences between both
solutions increase. The trajectory estimate with a HMM is
more precise than with a spatio-temporal filter that tends to
smooth the trajectory. HMM removes impossible matches,
whereas in a spatio-temporal filter false matches are used
for position estimates.

Finally, we studied the sensitivity of our solution to
the number of past observations M used, according the
localization uncertainty U (Fig. 7). The higher U , the more
observations number have to be considered to keep the mean
error localization under a threshold. As M approaches 0,
only dynamics included in the A matrix is significant (3).
In this case, our definition of A (possible transitions have
equal probabilities) and Π (possible initial states have equal
probabilities) implies equal probabilities for different states
(3). The random selection performed among possible states
explains the mean error localization increase.

Therefore, using dynamics only, or using visual similarity
only, are insufficient in our context. Combining both im-
proves significantly results.

V. CONCLUSION

We have proposed a general approach for global ego-
localization able to combine noisy location estimates pro-
vided by an odometric system and visual place recognition.
No GPS information is used. The solution exploits a Hidden
Markov Model whose structure is adaptively defined from
knowledge of the odometric system behaviour. Each new
image acquisition by the robot allows a complete re-estimate
of the M past observation locations ensuring odometric error
correction on a long term basis.

The approach has been evaluated on the Pittsburgh Google
dataset. We demonstrated the benefits of combining simple
visual similarities and dynamics modelling: the proposed
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solution improves significantly the mean error localization
which decreases from 16 m to 4 m for a localization
uncertainty of 50 m.

Improved image retrieval solutions can be easily integrated
in the system without substantial structural modifications:
this is the avenue of future work.
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