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2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Foreword 
The purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation 
and of driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. This 
workshop will address robotics technologies, which are at the very core of this major shift in the automobile 
paradigm. Technologies related to this area, such as autonomous outdoor vehicles, achievements, challenges and 
open questions would be presented. Main topics include: Road scene understanding, Lane detection and lane 
keeping, Pedestrian and vehicle detection, Detection, tracking and classification, Feature extraction and feature 
selection, Cooperative techniques, Collision prediction and avoidance, Advanced driver assistance systems, 
Environment perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, 
SLAM in dynamic environments, Mapping and maps for navigation, Real-time motion planning in dynamic 
environments, 3D Modeling and reconstruction, Human-Robot Interaction, Behavior modeling and learning, 
Robust sensor-based 3D reconstruction, Modeling and Control of mobile robot, Multi-agent based architectures, 
Cooperative unmanned vehicles (not restricted to ground transportation), Multi autonomous vehicles studies, 
models, techniques and simulations. 
 
Previously, several workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 
was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 
than 90 registered people), the third PPNIV'09 was in Saint-Louis (around 70 attendees) during IROS'09, and the 
fourth edition PPNIV'12 was in Vilamoura (over 95 attendees) during IROS'12. 
In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), SNODE'09 in 
Kobe during ICRA'09 (around 70 attendees), and RITS'10 in Anchrorage during ICRA'10 (around 35 attendees), 
and the last one PNAVHE11 in San Francisco during the last IROS11 (around 50 attendees).  
 
This workshop is composed with 4 invited talks and 18 selected papers (8 selected for oral presentation and 10 
selected for interactive session. Five sessions have been organized: 

• Session I: Localization & mapping 
• Session II: Perception 
• Session III: Interactive session 
• Session IV: Navigation, Control, Planning 
• Session V: Situation awareness & Risk Assessment 

 
Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 
 
Philippe Bonnifait, Christian Laugier, Philippe Martinet, Urbano Nunes and Christoph stiller 
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Session I 

 
Localization & Mapping 

 
• Keynote speaker: Martin Adams (Universidad de Chile, Santiago, Chile)  

Title: New Concepts in Robotic Mapping: PHD Filter SLAM 
 

• Title: Large-Scale Dense 3D Reconstruction from Stereo Imagery 
Authors: Pablo F. Alcantarilla, Chris Beall, Frank Dellaert 

 
• Title: Generation of Accurate Lane-Level Maps from Coarse Prior Maps and 

Lidar 
Authors: Avdhut Joshi, Michael R. James 
 

 
 
 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

5



 
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

6



 
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 

Session I 
 

Keynote speaker: Martin Adams 
(Universidad de Chile, Santiago, Chile)  

 
New Concepts in Robotic Mapping: PHD Filter SLAM 

 
 

Abstract : Applications for autonomous robots have long been identified in challenging environments including 
built-up areas, mines, disaster scenes, underwater and in the air. Robust solutions to autonomous navigation 
remain a key enabling issue behind any realistic success in these areas. Arguably, the most successful robot 
navigation algorithms to-date, have been derived from a probabilistic perspective, which takes into account vehicle 
motion and terrain uncertainty as well as sensor noise. Over the past decades, a great deal of interest in the 
estimation of an autonomous robot?s location state, and that of its surroundings, known as Simultaneous 
Localisation And Map building (SLAM), has been evident. This presentation will explain recent advances in the 
representations of robotic measurements and the map itself, and their consequences on the robustness of SLAM. 
Fundamentally, the concept of a set based measurement and map state representation allows all of the 
measurement information, spatial and detection, to be incorporated into joint Bayesian SLAM frameworks. 
Representing measurements and the map state as sets, rather than the traditionally adopted vectors, is not merely a 
triviality of notation. It will be demonstrated that a set based framework circumvents the necessity for any fragile 
data association and map management heuristics, which are necessary, and often the cause of failure, in vector 
based solutions. Implementation details of the Bayesian set based estimator - the Probability Hypothesis Density 
(PHD) Filter, and its application to SLAM will be the focus of the presentation. Experimental results, 
demonstrating SLAM with laser, radar and vision based sensors in urban and marine environments will be 
demonstrated. Comparisons of PHD Filter based SLAM and state of the art vector based implementations will 
demonstrate the robustness of the former to the realistic situations of sensor false alarms, missed detections and 
clutter. 

 
Biography: Martin Adams 
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Martin Adams 

Dept. Electrical Engineering, CMRSP, AMTC 
University of Chile (martin@ing.uchile.cl) 

 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
 

New Concepts in 
Robotic Mapping: 
PHD Filter SLAM 
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1. What’s in a Measurement: 
 

• Landmark Existence and Spatial Uncertainty 
 

• Why Radar? 
 

2. Simultaneous Localisation & Map Building (SLAM). 
 

• A Random Finite Set (RFS) Approach. 
 

• PHD SLAM - Implementation. 
 

3. Comparison of Vector Based SLAM (MH-FastSLAM) and  
 PHD-SLAM – Results. 
 
 

Presentation Outline 
 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
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Acumine Radar 360 deg. 
scanning unit, 94GHz FMCW 

 
 
Sick LD-LRS1000 Scanning LRF 

 
 
Microsoft Kinect camera system 

 
 
 

    

Clearpath Robotic Skid Steer Platform 

Sensing the Environment 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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What’s in a Measurement? 

Robotic Interpretation: 
 
 
 

Radar Interpretation: 
 
 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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What’s in a Measurement? 

 
• In reality – Probability of Detection less than unity, but may not be 
known. 
 
• However, landmark/feature measurements in SLAM result from a  
feature detection algorithm. 
 
• Principled algorithms provide estimates of                , or they can 
be estimated a-priori (e.g. RANSAC). 
 

• Ideal scenario: Represent all detection hypotheses in terms of their:  
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(i.e. range, spatial uncertainty, detection 
uncertainty and false alarm probability). 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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 Wider beam width  
 Foliage penetration 

Radar Based Projects: A*Star - Radar vs. Ladar 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Q: Why do we even care about error in the 
number of landmarks?  

 Catastrophic consequences in applications  such  as 
search & rescue, obstacle avoidance, UAV mission… 

A: 

 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
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Radar detections registered to ground truth location. 

Importance of P    –  False Alarms fa 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Radar Based Projects: A*Star - Radar vs. Ladar 

 
 
Video: Raw_Data_Display.avi 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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1. What’s in a Measurement: 
 

• Landmark Existence and Spatial Uncertainty 
 

• Why Radar? 
 

2. Simultaneous Localisation & Map Building (SLAM). 
 

• A Random Finite Set (RFS) Approach. 
 

• PHD SLAM - Implementation. 
 

3. Comparison of Vector Based SLAM (MH-FastSLAM) and  
 PHD-SLAM – Results. 
 
 

Presentation Outline 
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• In an unknown environment – robot & feature positions 
    must be estimated simultaneously  -  SLAM. 

 
• SLAM is a probabilistic algorithm 

1 : 1 :

 

1 :
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SLAM Fundamentals 

•  Update distribution estimate with Bayes theorem. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Approximate Particle Solutions – FastSLAM 
A Factorised Solution to SLAM (FastSLAM): 

Define joint vehicle trajectory & map vector state: [ ]kkk MX ,:0:0 =ζ

Particles represent trajectory distribution: 

each with their own EKF map estimate. 
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SLAM: Approximate Particle Solutions – FastSLAM 
Finding the particle weights: 

Each particle receives weight related to how well the measurements  
(sensor scan), recorded from the true pose, when superimposed onto 
each particle, match the expected measurements. 
 
 
This is:   

Requires usual (fragile) feature association and management routines. 

Particle resampling then takes place, based on the particle weights. 
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Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Approximate Particle Solutions – FastSLAM 
Finding the particle weights: 

Each particle receives weight related to how well the measurements  
(sensor scan), recorded from the true pose, when superimposed onto 
each particle, match the expected measurements. 
 
 
This is:   

Requires usual (fragile) feature association and management routines. 

Particle resampling then takes place, based on the particle weights. 
 
Highest weight particle chosen as estimated trajectory & its map  
as estimated map (MAP estimate). 
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Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Multi-Hypothesis FastSLAM: 
 
For each trajectory particle, multiple feature to detection  
associations are possible. 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Multi-Hypothesis FastSLAM: 
 
For each trajectory particle, multiple feature to detection  
associations are possible. 
 
For each possible association, an intermediate particle is defined. 
 
For each of these particles, the measurement likelihoods are  
Calculated, and a corresponding weight determined. 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Ground-truth robot and feature positions & single particle  
representation: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Ground-truth robot and feature positions & single particle  
representation: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Ground-truth robot and feature positions & single particle  
representation: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Record sensor scan (range, bearing) – from ACTUAL pose. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Superimpose recorded scan onto particle. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 

 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

29



SLAM: Multi-Hypothesis (MH) FastSLAM 
Move robot via computer input steering and velocity commands. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Apply motion model and sampled noise to particle. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Predict new measurements. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Record new scan (range, bearing) – From ACTUAL new pose. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Superimpose new scan onto new particle pose. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Generate new particle, at same pose, which carries  
data association possibility 1. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Generate new particle, at same pose, which carries  
data association possibility 2. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Generate new particle, at same pose, which carries  
data association possibility 3. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Generate new particle, at same pose, which carries  
false alarm possibility. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Generate new particle, at same pose, which carries  
New feature possibility. 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Multi-Hypothesis FastSLAM: 
 
For each trajectory particle, multiple feature to detection  
associations are possible. 
 
For each possible association, an intermediate particle is defined. 
 
For each of these particles, the measurement likelihoods are  
Calculated, and a corresponding weight determined. 
 
Resampling, based on the weights is carried out, yielding the same  
Initial particle number. 
 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Multi-Hypothesis FastSLAM: 
 
For each trajectory particle, multiple feature to detection  
associations are possible. 
 
For each possible association, an intermediate particle is defined. 
 
For each of these particles, the measurement likelihoods are  
Calculated, and a corresponding weight determined. 
 
Resampling, based on the weights is carried out, yielding the same  
Initial particle number. 
 
A general vector based SLAM method, allowing MH feature  
Association. 
 
 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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SLAM: Multi-Hypothesis (MH) FastSLAM 
Multi-Hypothesis FastSLAM: 
 
For each trajectory particle, multiple feature to detection  
associations are possible. 
 
For each possible association, an intermediate particle is defined. 
 
For each of these particles, the measurement likelihoods are  
Calculated, and a corresponding weight determined. 
 
Resampling, based on the weights is carried out, yielding the same  
Initial particle number. 
 
A general vector based SLAM method, allowing MH feature  
Association. 
 
However, not clear how to include detection probabilities, and  
MH tracking has not been proved Bayes optimal. 
 Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 

 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

42



• Estimated map vector depends  
   on vehicle trajectory ? 

 
• RFS makes more sense as order of features cannot/should 

not be significant [Mullane, Adams 2009]. 
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A Random Finite Set (RFS) Approach [Mullane, Vo, Adams ‘09] 
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                             ?

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Z = [z , z , z , z , z , z , z ]

M = [m ,m ,m ,m ,m ,m ,m ]

Untangle: 

A Random Finite Set (RFS) Approach 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Untangle: 

A Random Finite Set (RFS) Approach 
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1 2 3 4 5 6 7

1 2 3 4 5 6 7

Z = [z , z , z , z , z , z , z ]

M = [m ,m ,m ,m ,m ,m ,m ]

Untangle: 

Current vector formulations require data 
association (DA) prior to Bayesian update: 
 
Why?  Features & measurements rigidly  
ordered in vector-valued map state. 
 
RFS approach does not require DA. 
 
Why?  Features & measurements are finite 
valued sets. No distinct order assumed. 

A Random Finite Set (RFS) Approach 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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How to relate measurements and 
states of different dimensions? 

A Random Finite Set (RFS) Approach 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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What is a RFS Measurement? 

[Ronald Mahler, Lockheed Tactical Systems] 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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RFSs versus Vectors for SLAM 

Vector Based Mapping and SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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PDFs of Random Finite Sets 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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• RB-PHD-SLAM vs. FastSLAM 
• Data association 

– In RB-PHD SLAM, all possible data associations considered by each particle 
– In FastSLAM, each particle considers one data association hypothesis 

 
 

 
 
 

• Map update 
 

– In RB-PHD SLAM, every landmark estimate updated with every measurement, creating a set of weighted 
Gaussians based on measurement likelihood. 

– In FastSLAM, every landmark is updated with its associated measurement. 
 

 
 

– The FastSLAM map is a subset of the RB-PHD SLAM map. 

 
 

• Importance Weighting 

Measurements 

Landmark Estimates 

RB-PHD SLAM FastSLAM 
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• Importance Weighting 
– FastSLAM: 

 
 
 
 

– RB-PHD SLAM: 
 
 
 
 
 
 
 
 
 

 
– Assume known map size 
– Assume probability of detection = 1 for associated landmarks, and 0 for unassociated ones 
– Then: 
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RFSs versus Vectors for SLAM 

RFS Based Mapping and SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 

 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

53



From Point Process Theory: 
 
A Random Finite Set can be approximated by its first  
order moment – The Intensity function      [Mahler 2003, Vo 2006]. kv

How to do RFS SLAM – Intensity Function 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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From Point Process Theory: 
 
A Random Finite Set can be approximated by its first  
order moment – The Intensity function      [Mahler 2003, Vo 2006]. kv

     has the following properties: 
 

kv

RFS SLAM – Intensity Function 
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From Point Process Theory: 
 
A Random Finite Set can be approximated by its first  
order moment – The Intensity function      [Mahler 2003, Vo 2006]. kv

     has the following properties: 
 
1. Its integral, over the set, gives the estimated number  
of elements within the set. 
 

kv

RFS SLAM – Intensity Function 
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From Point Process Theory: 
 
A Random Finite Set can be approximated by its first  
order moment – The Intensity function      [Mahler 2003, Vo 2006]. kv

     has the following properties: 
 
1. Its integral, over the set, gives the estimated number  
of elements within the set. 
 
2. The locations of its maxima correspond to the  
estimated values of the set members. 
 

kv

RFS SLAM – Intensity Function 
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From Point Process Theory: 
 
A Random Finite Set can be approximated by its first  
order moment – The Intensity function      [Mahler 2003, Vo 2006]. kv

     has the following properties: 
 
1. Its integral, over the set, gives the estimated number  
of elements within the set. 
 
2. The locations of its maxima correspond to the  
estimated values of the set members. 
 

kv

Intensity function can be propagated through the  
Probability Hypothesis Density (PHD) filter. 

RFS SLAM – Intensity Function 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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E.g. 2 Features located at x=1 and x=4 with spatial variance: 
i.e. Feature set {1,  4} [Mahler 2007]. 
 
Suitable Gaussian Mixture PHD:  

Example: 1D Intensity Function (PHD) 
12 =σ
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E.g. 2 Features located at x=1 and x=4 with spatial variance: 
i.e. Feature set {1,  4} [Mahler 2007]. 
 
Suitable Gaussian Mixture PHD:  

Example: 1D Intensity Function (PHD) 
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E.g. 2 Features located at x=1 and x=4 with spatial variance: 
i.e. Feature set {1,  4} [Mahler 2007]. 
 
Suitable Gaussian Mixture PHD:  

Example: 1D Intensity Function (PHD) 
12 =σ
















 −
−+







 −
−= 2

2

2

2

2
)4(exp

2
)1(exp

2
1)(PHD

σσσπ
xxx

Note: Maxima of PHD occur near x=1 and x=4 and  
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Important Point: 
 
A PHD is NOT a PDF, since in 
general it does not integrate to 
unity! 
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Implementing PHD SLAM – PHD Predictor 

PHD Predictor Equation: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Implementing PHD SLAM – PHD Predictor 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Implementing PHD SLAM – PHD Corrector 

PHD Corrector Equation: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Implementing PHD SLAM – PHD Corrector 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Implementing PHD SLAM – Particle updates 

RB PHD SLAM: 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Implementing PHD SLAM – SLAM EAP Map 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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• Open source, with BSD-3 License 
• Dependencies: 

– Boost::math_c99 1.48 
– Boost::timer 1.48 
– Boost::system 1.48 
– Boost::thread 1.48 
– Eigen3 

• Tested on Ubuntu 13.04 
• Template library 

– Define your own process models 
– Define your own measurement models 

• Includes an implementation of the RB-PHD Filter 
• Includes a 2-d SLAM example 
• Well documented 
• Will be updated with new published research 
• Download at: https://github.com/kykleung/RFS-SLAM 
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1. What’s in a Measurement: 
 

• Landmark Existence and Spatial Uncertainty 
 

• Why Radar? 
 

2. Simultaneous Localisation & Map Building (SLAM). 
 

• A Random Finite Set (RFS) Approach. 
 

• PHD SLAM - Implementation. 
 

3. Comparison of Vector Based SLAM (MH-FastSLAM) and  
 PHD-SLAM – Results. 
 
 

Presentation Outline 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Comparative results for the proposed GM-PHD SLAM filter (black) 
and that of FastSLAM (red), compared to ground truth (green). 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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The raw dataset at a clutter density of 0.03        . -2m

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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The estimated trajectories of the GM-PHD SLAM filter (black) and 
that of FastSLAM (red). Estimated feature locations (crosses) are 

also shown with the true features (green circles). 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Feature number estimates. 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Sample data registered from radar. 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Extracted point feature measurements registered to odometry. 

SLAM input: Odometry path + radar data 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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EKF, FastSLAM and PHD-SLAM with Radar data. 

RFS Versus Vector Based SLAM 
NN-EKF FastSLAM PHD-SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 

 What’s in a Measurement?        Simultaneous Localisation & Map Building        Comparison of Vector and RFS SLAM  
5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

77



Autonomous Kayak Surface Vehicle with Radar 
 

 

Singapore – MIT Alliance: CENSAM Project 
• Environmental monitoring of coastal waters. 
 
• Navigation and map info. necessary above/below water surface. 
 
• Fusion of sea surface radar, sub-sea sonar data for  
   combined surface/sub-sea mapping. 
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Singapore – MIT Alliance: CENSAM Project 
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Coastal Mapping, Surveillance, HARTS / AIS verification 
 
Mobile platform can remove blind spots from land-based 
radar. 
 
Video: CoastalModelling.avi 

Singapore – MIT Alliance: CENSAM Project 

 
 
Video: CoastalandAIS.avi 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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GPS Trajectory (Green Line), GPS point feature coordinates 
(Green Points), Point feature measurement history (Black dots). 

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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Top: Posterior MHT SLAM estimate (red). 
Bottom: Posterior RB-PHD SLAM estimate (blue). 

Ground truth (Green).  

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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(Red) MHT SLAM Feature Number estimate. 
(Blue) PRB-PHD SLAM Feature Number estimate. 

(Green) Actual Number to enter FoV at each time index.  

RFS Versus Vector Based SLAM 

Planning, Perception and Navigation for Intelligent Vehicles, IROS 2013 
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1. Feature based maps more appropriately modelled as RFS than a 

random vector. 
 
2. RFS Frameworks take into account detection as well as spatial 

uncertainty information. 
 
3. PHD Filter approximation demonstrated – circumvents fragile 

data association necessary in vector based methods. 
 
4. Superior results in cluttered environments. 
 

Conclusions & Future Work 
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Large-Scale Dense 3D Reconstruction from Stereo Imagery

Pablo F. Alcantarilla, Chris Beall and Frank Dellaert

Abstract— In this paper we propose a novel method for large-
scale dense 3D reconstruction from stereo imagery. Assuming
that stereo camera calibration and camera motion are known,
our method is able to reconstruct accurately dense 3D models
of urban environments in the form of point clouds. We take
advantage of recent stereo matching techniques that are able
to build dense and accurate disparity maps from two rectified
images. Then, we fuse the information from multiple disparity
maps into a global model by using an efficient data associa-
tion technique that takes into account stereo uncertainty and
performs geometric and photometric consistency validation in
a multi-view setup. Finally, we use efficient voxel grid filtering
techniques to deal with storage requirements in large-scale
environments. In addition, our method automatically discards
possible moving obstacles in the scene. We show experimental
results on real video large-scale sequences and compare our
approach with respect to other state-of-the-art methods such
as PMVS and StereoScan.

I. INTRODUCTION

Structure from Motion (SfM) and visual Simultaneous
Localization and Mapping (vSLAM) algorithms [1, 11] aim
to recover a sparse 3D reconstruction and the estimated
camera poses in large-scale environments. These methods
track features between different frames and optimize 3D
structure and camera poses in a nonlinear optimization which
incorporates the geometric multi-view constraints between
3D structure, camera poses and image measurements. This
nonlinear optimization problem is normally solved by using
bundle adjustment variants [10].

Sparse 3D models do not provide enough detail to fully
appreciate the underlying structure of the environment. To
this end, there have been various efforts towards automated
dense 3D reconstruction in the last few years [8, 14, 3,
4, 13, 6]. Automated dense 3D modeling facilitates scene
understanding and has countless applications in different ar-
eas such as augmented reality, cultural heritage preservation,
autonomous vehicles and robotics in general.

One of the key ingredients in dense 3D reconstruction
methods is Multi-View Stereo (MVS) [16]. MVS algorithms
can be roughly classified into four different categories: de-
formable polygonal meshes [2], requiring a visual hull model
as an initialization; voxel-based [13], requiring a bounding
box that contains the scene and the accuracy is limited by the
voxel grid size; patch-based [3], requires reconstruction of
a collection of multiple small surface patches, and multiple
depth maps [8, 14, 6], that demands fusing multiple maps
into a single global model. As mentioned in [3], MVS
algorithms can also be thought of in terms of the datasets they

3 The authors are with the School of Interactive Comput-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA.
{pfa3,cbeall3,frank}@cc.gatech.edu

(a) (b)

Fig. 1. Details (a) and aerial view (b) of dense 3D reconstruction results
for a sequence of 2.2 Km and 2760 frames. The number of reconstructed
3D points is 5,770,704.

can handle: a single object, large-scale scenarios, crowded
environments, etc. The choice of a particular MVS algorithm
highly depends on the type of dataset and application of
interest.

In this paper, we are interested in dense 3D reconstruction
of large-scale environments using stereo imagery from a
moving platform. We focus on the scenario of a stereo
camera mounted on a vehicle or a robot exploring a large
scene such as the one depicted in Figure 1. Large-scale
environments pose new challenges to the dense 3D recon-
struction problem such as large storage requirements and
computational complexity.

We propose a novel MVS approach that efficiently com-
bines the best of previous MVS approaches for our target
application. Instead of fusing raw disparity maps from each
stereo frame (which invariably yields large storage require-
ments), we use the dense disparity maps as an initialization
for a patch-based surface reconstruction considering multi-
ple views. In this way, taking advantage of the flexibility
of patch-based methods, we can check for geometric and
photometric consistency of each individual patch, which
facilitates discarding moving objects from the final recon-
struction. Then, we use efficient voxel grid filtering to down-
sample the dense point cloud for dealing with large storage
requirements.

Our algorithm makes the assumption that the stereo rig
calibration and camera motion are already known. Stereo
calibration can be obtained offline, while camera motion
can be obtained either online by incremental egomotion
estimation methods such as visual odometry [6] or with an
offline bundle adjustment optimization including loop closure
constraints. Our algorithm has the following advantages:

• Exploits dense disparity maps using efficient stereo
matching.
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• Performs efficient data association, checking for ge-
ometric and photometric consistency in a multi-view
setup taking into account the uncertainty of stereo
measurements.

• Handles large storage requirements due to the use of
voxel grid filtering techniques.

• Is able to reject outliers and moving objects or obstacles
in the scene.

• It is faster than state-of-the-art techniques.

II. RELATED WORK

One of the most popular MVS techniques is the patch-
based approach also known as PMVS [3]. This method builds
a dense 3D reconstruction of a scene based on collections
of multiple small surface patches. PMVS basically consists
of three different steps: feature matching, expansion and
filtering. In the matching step, a sparse 3D reconstruction
of the scene is obtained from a set of 2D features. Then, in
the expansion step, this sparse 3D point cloud is densified
by an iterative procedure that estimates patch geometry by
minimizing a photometric cost function. Finally, outliers are
removed in the filtering step. PMVS is able to handle moving
objects thanks to the photometric consistency check between
different images. The main limitation of PMVS is that it
is computationally very expensive due mainly to the patch
expansion step. For large-scale scenarios, such as the ones
we are interested in, PMVS would require several days to
obtain dense 3D reconstructions even when using efficient
clustering techniques for the set of input images [4].

Pollefeys et al. [14] presented an efficient approach for
real-time 3D reconstruction from video of urban scenes.
Their approach considers a system equipped with 8 cameras
plus GPS/INS data mounted on a moving car, exploiting par-
allelization and GPU processing. They use plane-sweeping
stereo as a stereo matcher for obtaining dense disparity
maps from different views. Then, multiple depth maps are
fused into a single global model by exploiting visibility
information.

Recently, Newcombe et al. presented an impressive voxel-
based dense 3D reconstruction approach from monocular
imagery [13]. This approach works well for small scale
environments and requires prior knowledge for a bounding
box that contains the scene, limiting the accuracy of the 3D
reconstruction to the voxel grid resolution.

The approach most similar to ours is the StereoScan
system described in [6]. In this approach, the authors propose
a dense 3D reconstruction pipeline fusing information from
dense disparity maps obtained from stereo imagery. In order
to deal with the large amount of data from the fusion
of multiple disparity maps, the authors propose a greedy
approach for solving the data association problem between
two consecutive stereo frames. This greedy approach simply
reprojects reconstructed 3D points of the previous frame into
the image plane of the current frame. When a point projects
to a valid disparity, the 3D points from the current and pre-
vious frames are fused by computing their 3D mean. Similar
to our approach, the authors assume that the camera motion

is obtained from an independent visual odometry pipeline
working in parallel. The main limitation of StereoScan is
its greedy data association approach that considers only
two consecutive frames without checking for geometric and
photometric consistency between the reconstructed points.
Limiting the data association to just two frames and without
checking for geometric and photometric consistency intro-
duces many noisy points into the final model, without being
able to deal with possible artifacts caused by dynamic objects
that will corrupt the 3D model. In addition, without filtering,
the storage requirements quickly become prohibitive for
large-scale scenarios.

III. STEREO VISION

Stereo vision makes it possible to estimate 3D scene
geometry given only two images from the same scene. We
consider a conventional stereo rig in which two cameras are
separated by a horizontal baseline. Rectification [9] consider-
ably simplifies the stereo correspondence problem and allows
for straight-forward computation of dense disparity maps,
which form the base for the dense 3D reconstruction. Each
value in the disparity map can be reprojected to a 3D point
hi = (x, y, z)

t ∈ R3 with respect to the camera coordinate
frame based on the projective camera equations:

z = f · B
uR−uL

= f · B
du

x = z · (uL−u0)
f

y = z · (v−v0)
f

(1)

where f is the camera focal length, (u0, v0) is the principal
point, B is the stereo baseline and (uL, vL) and (uR, vR)
are the stereo measurements in the left and right images,
respectively. Note that for rectified stereo images vL = vR =
v. The horizontal disparity du is the difference in pixels
between the horizontal image projections of the same 3D
point in the right and left images.

Similarly to [12], our sensor error model is composed of
two parts: pointing error σp and matching error σm. Pointing
error is the error in image measurements due to camera
calibration inaccuracy, whereas matching error is due to the
inaccuracy of the stereo matching algorithm. Given these
values, we can compute the covariance matrix of the stereo
measurements (uL, v, du)

t in the disparity space as:

Si =

 σ2
p 0 0
0 σ2

p 0
0 0 σ2

m

 (2)

To obtain the covariance matrix Pi of the reconstructed 3D
point hi associated with stereo measurements (uL, v, du)

t,
the error is propagated from the 2D measurement space to
3D by means of linear uncertainty propagation as:

Pi = Ji ·Si · J t
i (3)
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Ji =
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∂du
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∂du

∂z
∂uL

∂z
∂v

∂z
∂du

 =


B
du

0 −uLB
d2
u

0 B
du

− vB
d2
u

0 0 − fB
d2
u


(4)

where Ji is the Jacobian of the 3D point hi with respect to the
stereo measurements (uL, v, du)

t. The covariance matrix Pi

estimates the uncertainty we can expect from a reconstructed
3D point. The uncertainty error grows quadratically with
respect to the depth. We denote by wi = trace(Pi) the
trace of the covariance matrix Pi, and this is used as a
measure of the uncertainty and as a weighting function for
the reconstructed 3D points and color information in our
MVS approach.

IV. DENSE 3D RECONSTRUCTION

Our approach assumes that stereo camera calibration and
motion are known. In addition, we assume that images are
given in a time-ordered sequence. Our approach is applicable
in batch as well as incremental modes. Camera motion can
be obtained online by egomotion estimation methods such
as visual odometry or after an offline bundle adjustment
optimization including possible loop closure constraints.

Our dense reconstruction approach has these main steps:
1) Dense stereo matching.
2) Patch-based reconstruction with multi-view geometric

and photometric consistency analysis.
3) Outlier removal and voxel grid filtering.
We first select a subset of stereo keyframes from the input

images to enforce a minimum distance in camera motion
between frames which will be processed. This is to avoid
adding redundant images which would not contribute any
new information to the dense 3D model, but only increase
computational complexity. Each stereo keyframe Fk with
k = 1 . . . N comprises:

• Camera rotation, Rk ∈ SO(3).
• Camera translation, tk ∈ R3.
• Left rectified RGB image, IkL: R2 → R3.
• Normalized zero mean and unit variance left rectified

RGB image, IkLnorm: R2 → R3.
• Right rectified RGB image, IkR: R2 → R3.
• Disparity map, IkD: R2 → R.
The camera rotation and translation are defined such that a

3D point Yi = (x, y, z)
t ∈ R3 in the world coordinate frame

can be transformed into the camera coordinate frame with:

hi = Rk
(
Yi − tk

)
(5)

and assuming a pin-hole camera model, the projection of
the 3D point hi into the image plane is:

Ui = K
(
Rk

(
Yi − tk

))
(6)

where K is the matrix representing the camera intrinsics
and Ui = (u, v, 1)

t is the vector of pixel measurements in

homogeneous coordinates. In addition, each 3D point hi has
an associated RGB color vector ci = (r, g, b)

t ∈ R3. Now,
we will describe in detail each of the main steps in our MVS
algorithm.

A. Dense Stereo Matching

Reliable stereo matching is critical in order to obtain
accurate dense 3D point clouds. For this purpose, we use
the Efficient Large-Scale Stereo Matching (ELAS) method
which is freely available [5]. ELAS provides dense high
quality disparity maps without global optimization, while
remaining faster than many other stereo methods. For each
stereo keyframe Fk we obtain a dense disparity map IkDisp

image from the left and right rectified images.

B. Multi-View Geometric and Photometric Consistency

Considering that each stereo frame gives rise to thousands
of 3D points, transforming all of these into a global 3D
model would yield a very noisy reconstruction with lots
of redundant points, and consequently storage requirements
of prohibitive proportions for large scenarios. Therefore, to
avoid the introduction of many redundant points we solve the
data association problem between multiple stereo frames and
verify geometric and photometric consistency for all points.
This is in principle similar to the photometric consistency
employed in MVS approaches [8, 3] with the key difference
that for each pixel we rely on the depth provided by the stereo
matching algorithm instead of minimizing a photometric cost
function to find the globally optimal depth of each patch.
Figure 2 depicts a graphical example of our multi-view stereo
approach considering three views.

Fig. 2. Multi-view stereo approach checking geometric and photometric
consistency. For a pixel p in the left reference image that has a valid
disparity, we check first for geometric consistency between the different
views. If the geometric consistency is successful, we perform the photo-
metric consistency analysis.

We choose a central reference stereo keyframe Fr in a
local neighborhood of m stereo views (in our experiments
we consider m = 3, 5). The index of the reference stereo
keyframe r in the local neighborhood of m stereo frames is
taken as the central view, r = (m− 1) /2 + 1.

For each pixel p = (uL, vL) from the left reference
keyframe image IrL which has a valid disparity du, we first
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perform a geometric consistency check with respect to the
other views in the neighborhood. We compute the 3D point
hi and the associated covariance Pi as described in Eq. 1
and Eq. 3 respectively. If the trace of the covariance matrix
wi is below some threshold Tcov, we then project the point
hi into the left images for the other m − 1 views in the
neighborhood. We then check that the projection of each 3D
point hi from the reference view into neighboring frames
has a valid disparity and low uncertainty. Finally, we also
check that the 3D difference between all reconstructed 3D
points expressed in the world coordinate frame is within a
threshold Tdist.

For all 3D points from the reference image which passed
the geometric consistency check, our algorithm then proceeds
to a photometric consistency check with respect to the other
views in the neighborhood. For each pixel p = (uL, vL)
from the left reference image, we compute the normalized
cross correlation NCC (Fr, Fk, p) between a µ×µ window
centered on p and the corresponding windows centered on the
projections in each of the views Fk with subpixel accuracy.
For the NCC we use the textures from the normalized zero
mean unit variance left images IkLnorm. Similar to [8] we
use a version of NCC for l-dimensional RGB color vectors
with normalization per color channel.

NCC (c0, c1) =

l−1∑
j=0

(c0 (j)− c0) · (c1 (j)− c1)√
l−1∑
j=0

(c0 (j)− c0)
2 ·

l−1∑
j=0

(c1 (j)− c1)
2

(7)
The NCC returns a scalar value between [−1, 1], where

1 indicates perfect correlation. We compute an average pho-
tometric score g(p) that comprises the sum of photometric
scores for the pixel p between the reference image and the
rest of views Fk ∈ V where the point is visible:

g(p) =
1

|V |

k=r+n∑
k=r−n

NCC (Fr, Fk, p) (8)

where n = (m − 1)/2 for the sake of brevity, and |V |
denotes the number of views where the point p is predicted
to be visible, i.e. the number of views for which the point
passed the geometric consistency check. If the mean photo-
metric score gp exceeds a threshold value Tphoto and |V | is
3 or greater, we proceed to fuse the 3D point with respect
to the world coordinate frame and color information into the
dense reconstruction as the following weighted average:

Yi =

k=r+n∑
k=r−n

wi,k ·Yi,k

k=r+n∑
k=r−n

wi,k

, ci =

k=r+n∑
k=r−n

wi,k · ci,k
k=r+n∑
k=r−n

wi,k

(9)

where wi,k is the uncertainty weight of the reconstruction
of point hi from the view k. Similarly, Yi,k and ci,k denote
the 3D point with respect to the world coordinate frame and
color information for point i from view k.

In order to reduce computational complexity and to avoid
adding redundant 3D points as the neighborhood window

slides through the sequence, we keep track of image projec-
tions of already reconstructed 3D points in their respective
images using a mask. In this way, for each new reference
view, we check the visibility masks to reconstruct only those
3D points which were not reconstructed previously.

C. Outliers Removal and Voxel Grid Filtering

Once we have computed a dense 3D point cloud from
a reference stereo keyframe Fr, we filter possible outliers
by means of a radius removal filter. This filter removes
those 3D points that do not have at least some number
of neighbors within a certain range. Then, in order to
reduce the computational burden and storage requirements,
we downsample the 3D point cloud using a voxel grid filter
that fits to the dimensions of the input point cloud. In each
voxel, the 3D points are approximated with their centroid,
representing more accurately the underlying surface. Once
we have processed one stereo keyframe, we repeat the same
procedure for the next keyframe until the sequence finishes.
After processing all stereo keyframes, we apply the voxel
grid filter over the whole dense 3D point cloud to fuse the
3D points into a global voxel grid structure.

V. RESULTS

We use the KITTI visual odometry RGB dataset [7] for
the evaluation of our dense 3D reconstruction approach.
This dataset consists of stereo imagery with accurate stereo
calibration. The images have a resolution of 1241 × 376
pixels. For the greedy projection surface reconstruction and
the radius removal and voxel grid filters, we use the efficient
implementations from the Point Cloud Library (PCL) [15].

Typical values for the parameters in our method are: σp =
0.5 pixels, σm = 1.0 pixel, Tcov = 0.5, Tdist = 0.5 m,
Tphoto = 0.7 and patch size 7× 7 pixels. All timing results
were obtained with an Intel Core i7-3770 CPU.

A. Comparison to PMVS and StereoScan

We compare our dense 3D reconstruction approach to
PMVS and StereoScan. For PMVS we use the PMVS2
implementation1. We configure PMVS options so that it
processes images in sequence, enforcing the algorithm to use
only images with nearby indices to reconstruct 3D points. For
the StereoScan case we use our own implementation and fuse
the information between two corresponding 3D points if both
disparities are valid and the distance between reconstructed
3D points is below the threshold Tdist. In our method we
consider m = 3 views, a voxel grid resolution of 5 cm and a
photometric consistency threshold Tphoto = 0.7. This value
is also used in PMVS.

Figure 3(a) depicts a comparison of our method to PMVS
and StereoScan showing the computation time versus the
number of input images for the first sequence in the KITTI
dataset. We observe that our method is the fastest one. The
reason why it is faster than StereoScan is due to the use
of a visibility mask, keeping track of image projections of
the reconstructed 3D points in their visible images, reducing

1Available from: http://www.di.ens.fr/pmvs/

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

92



computational complexity. PMVS is highly time consuming
even for a small set of images. This is because it tries
to optimize the 3D position and normal of each patch in
each reference image by minimizing a cost function based
on the photometric error in a multi-view setup. In contrast,
our method and StereoScan use the available 3D geometry
from the disparity map and perform data association between
different views, which is faster than running an iterative non-
linear optimization per patch.

Figure 3(b) shows a comparison of our method to PMVS
and StereoScan showing the number of reconstructed 3D
points versus the number of input images. The number of
reconstructed 3D points in the StereoScan case was scaled
down by a factor of ten for clarity reasons. StereoScan
produces large amount of 3D points, some of which are
noisy and redundant. In large-scale environments the stor-
age requirements of StereoScan can become prohibitive. In
contrast, our method returns a more reasonable number of
3D points. In addition, one can control the output number
of 3D points with the photometric threshold and the voxel
grid resolution. PMVS returns the lowest number of recon-
structed 3D points. PMVS is more targeted to Photosynth-
type systems [1], where there is a large number of images
from the same object in a small area. In this case, redundant
viewpoints improve the estimation of the patch geometry.

(a) (b)

Fig. 3. Comparison to PMVS and StereoScan: (a) Computational time vs
number of images (b) Number of reconstructed 3D points vs number of
images. Note that the number of reconstructed 3D points that is reported
for StereoScan is scaled by a factor of ten for clarity reasons.

Table I shows information about the number of recon-
structed 3D points at each level of our MVS approach con-
sidering two different photometric thresholds Tphoto = 0.2
and Tphoto = 0.8. In addition, we also show the percentage
between the number of accepted points at each step and the
number of points that have a valid disparity for each stereo
frame. We can observe that in both cases the number of
3D points obtained after the voxel grid filtering is a small
fraction of the original number of points facilitating storage
requirements in large-scale scenarios.

B. Detection of Moving Objects

One of the nice properties of PMVS and similar patch-
based methods such as ours, is that they can discard specular
highlights or moving objects in the scene (pedestrians, cars,
etc.). Assuming that the surface of an object is Lambertian,
the photometric score function g(p) will give low scores for

Step Our method Our method
Tphoto = 0.2 Tphoto = 0.8

# Points Disparity 323,420 323,420
# Points Geometric 133,334 133,334

% Accepted 41.23 41.23
# Points Photometric 57,675 9,310

% Accepted 17.83 2.88
# Points Fusion 8,851 1,885

% Accepted 2.74 0.58

TABLE I
AVERAGE NUMBER OF RECONSTRUCTED 3D POINTS PER STEP AND

PERCENTAGE OF ACCEPTED POINTS WITH RESPECT TO POINTS WITH

VALID DISPARITY PER STEREO FRAME.

areas which have specular highlights or moving objects in the
image, and therefore these points will not be added to the
final 3D model. Figure 4 depicts an example of one sequence
where there are several moving objects (cars). StereoScan
fails to reject these points and adds them to the final model,
creating artifacts in the final model. This occurs because
StereoScan only considers two consecutive stereo frames for
data association based on the disparity information. In such
a limited multi-view setup moving objects are not detected
properly. In contrast, our method and PMVS are able to
discard those 3D points from the final model.

Fig. 4. Detection of moving objects. Top: Two frames from a sequence
where there are moving objects in the scene. Bottom left: view of the dense
3D reconstruction with our method. Bottom right: view of the dense 3D
reconstruction with StereoScan. Notice how artifacts due to the moving
objects are introduced in the final model.

C. 3D Reconstruction Results

Figure 5 depicts some dense 3D large-scale reconstruction
results from different viewpoints. It can be noticed that the
dense 3D point clouds contain high level of detail, enough
for visualization purposes.

D. Timing Evaluation

Table II shows average timing results for the most impor-
tant operations in our MVS approach. We can observe that
on average obtaining one incremental update to the dense
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Fig. 5. Details of large-scale dense 3D reconstruction results. The cars in the point clouds correspond to static objects in the environment.

3D point cloud takes slightly less than 2 seconds for one
stereo view. This time could be further reduced by using
GPU implementations since the operations in the multi-view
3D reconstruction approach are independent per pixel.

Step Time (ms)
Stereo Matching 157.74

RGB Normalization 2.51
Multi-view 3D (m=3) 1303.28

Outlier Removal 351.32
Voxel Grid Filter 2.76

Total 1811.61

TABLE II
COMPUTATION TIMES IN MS FOR THE MAIN STEPS OF OUR MVS

APPROACH.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel MVS approch
for dense 3D reconstruction in large-scale environments
using stereo imagery. We have shown that efficiently fusing
disparity maps, while checking geometric and photometric
consistency of patches in a multi-view setup, yields detailed
3D models with low storage requirements. In the future we
are interested in possible applications of the dense 3D models
for planning and scene understanding.
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Generation of Accurate Lane-Level Maps from Coarse Prior Maps and
Lidar

Avdhut Joshi1 and Michael R. James1

Abstract— While many research projects on autonomous
driving and advanced driver support systems make heavy use
of highly accurate lane-level maps covering large areas, there is
relatively little work on methods for automatically generating
such maps. Here, we present a method that combines coarse,
inaccurate prior maps from OpenStreetMap (OSM) with local
sensor information from 3D Lidar and a positioning system. The
algorithm leverages the coarse structural information present
in OSM, and integrates it with the highly accurate local
sensor measurements. The resulting maps have extremely good
alignment with manually constructed baseline maps generated
for autonomous driving experiments.

I. INTRODUCTION

Many existing approaches [1], [2] for autonomous driving
systems make heavy use of maps that encode lane-level infor-
mation at high levels of precision. The lane-level information
is used in a variety of situations, from generating smooth
trajectories for path planning [1], to predicting the behavior
of other vehicles [3], [4], and for planning and reasoning
about proper behavior in intersections [5]. In many cases,
such maps are generated either through a tedious manual
annotation process [2], or by driving the exact lane layout
with a test vehicle [6] or by analyzing a collection of GPS
tracks [7]. These methods require significant amounts of
manual work, either through annotation or in the amount of
data collection required. In this paper, we present a method
for overcoming these limitations, which opens the door for
creating more robust systems with the ability to create their
own high-fidelity maps with less manual work.

While there has been extensive work in lane detection
[8], [9], [10], [11] and lane tracking [12], [13] using a
variety of sensors, we are unaware of any previous work
that combines coarse prior information with sensor data to
result in consistent, high-quality, large-scale maps such as
we generate.

This paper presents a method for estimating the structure
and layout of lanes within real-world road scenes, by com-
bining

1) structurally informative, easily obtained, coarse maps
used as prior information from the Open Street Map
(OSM) [14] project, with

2) sensor data obtained from a test vehicle with 3D Lidar
as well as a high-precision positioning system.

We are typically able to infer lane structure for an entire
road by driving the road once, and not once for each lane.

1Toyota Research Institute, North America, Toyota Technical
Center, Ann Arbor, MI 48105, USA avdhutj@gmail.com,
michael.r.james@gmail.com

Fig. 1: TRI-NA test vehicle, showing the sensors used for
various advanced safety and autonomous driving research
projects. Details of the sensors used for lane mapping are in
the text.

This method is robust to differing styles of driving of the
test vehicle, as the algorithm is based only on road-paint
detection using intensity returns from the Lidar, and does
not use the path of the test vehicle in lane estimation.
Specifically, we contribute the following:

• Modeling of the inference problem that combines coarse
structural prior map data with precise Lidar measure-
ments in a (number of) tractable inference algorithms

• Algorithm for MAP inference of lane positions and
identity management

• Evaluation on a real-world dataset

II. APPROACH

The lane estimation algorithm is based on a dataset
that has first been refined using Slam in order to ensure
consistent position estimates on loop closures. In Section
III, we provide an overview of this algorithm; a varient
of GraphSlam [15] run on datasets gathered from multiple
runs on only partially overlapping roads, see Figure 2. This
serves to both align the laser scans, as well as to ground
the data in a consistent and physically meaningful reference
frame. However, our main contribution, the lane estimation
algorithm, can be run on any dataset that has been refined
using this or similar methods.

The lane estimation algorithm Section IV is comprised
of two phases, the first of which is the generation of mid-
level lane features, which then serve as observations for the
measurement function within the second phase which uses
particle filtering to estimate the lanes. We experiment with
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three variations of particle filters, a conventional approach, a
dual formulation, and a mixture of the two. We also extend
the mixture PF to leverage prior map information.

Our test vehicle (Figure 1) has a very similar hardware
setup to many other autonomous vehicle projects [15], [1],
[16]. The pose and motion estimates come from an Applanix
POS-LV 220 inertial GPS navigation system. This system
generates pose estimates at 100 Hz. The Lidar data is from
a Velodyne HDL-64E, which uses 64 laser beams and spins
at 10 Hz. In addition to 3D position for each Lidar return,
the HDL-64E also measures an 8 bit intensity. Appropriate
subsets of each Lidar spin are timestamped to the Applanix
data, so that refinement of the vehicle poses using Slam will
also result in refined Lidar positions, as is outlined next.

III. GRAPHSLAM

In order to generate a consistent dataset on which to run
the lane estimation algorithm, we1 first apply a varient of
GraphSlam presented in [15], but modified to optimize the
vehicle trajectory with respect to a number of distinctive
features that can be readily identified from Lidar data. The
features include lane markers/paint, curbs, road signs, and
poles. The features corresponding to lane markers are of spe-
cial interest to us, as they are our primary sensor data used for
lane estimation. The construction of this feature is done first
by applying a 1D Laplacian filter to the intensity (reflectivity)
returns for each beam of the 3D laser. This gives a response
due to road-paint having different reflectivity characteristics
than the road surface. Then a RANSAC algorithm is applied
using the 3D positional data associated with each response,
to remove outliers and to generate line-segment features λ.
See Figure 3 (Left).

The Slam algorithm iterates between a data association
step and an optimization step. The data association step uses
a threshold based on distance. On each data association step,
new positions are calculated for each feature based on the
new vehicle positions generated from the optimization step.
The threshold is increasingly tightened, and this process is
repeated until convergence. The output of the algorithm is
a refined vehicle trajectory, which is subsequently used to
re-project the Lidar scans.

IV. PROBABILISTIC LANE ESTIMATION

Both the lane marker estimation and the particle filtering
portions of the approach make use of our weak prior in-
formation, in the form of an OSM map. This information
is limited in that it first has large positional inaccuracy (up
to few meters for our test scenario), and second it does not
contain data about the number of lanes. Thus we have to
leverage significant local data from our Lidar scans to infer
precise positional estimates of all lanes in the scene. Our
approach to particle filtering is unconventional in that the
state of each particle is tied to nodes within the OSM map,
rather than being defined in an Euclidean space. Similarly,

1Thanks to Masahiro Harada (TRI-NA) for use of his SLAM implemen-
tation and feature detectors

Fig. 2: Results were evaluated on the road network shown in
this map. Total road network is about 28km including urban
and highway roads. Map data c©2013 Google.

the OSM map defines the subset of local sensor data to be
processed at each step, as explained next.

A. Feature-based Lane Marker Estimation

We use OSM map data as a weak prior on position
and existence of a road. A way in OSM is defined by
{p1, p2, ...pn}: a set of n nodes along the way. These nodes
are evenly spaced at δo = 1 meter intervals. The lane marker
estimation process uses the same lane marker/paint features
that were used in the GraphSlam algorithm from Section III,
which take the form of relatively short (0.5 to 2 meter) line
segments λ specified by 3d coordinates of both endpoints.
For each OSM node pi, first the angle θi to node pi+1

is computed, and then a search is performed to find the
line markers lateral to the OSM node. The search is over a
rectangle defined by the vectors of length δo/2 forward and
backward along θi, and for a fixed distance in both directions
perpendicular to θi. All line segments falling within this
rectangle are collected into a set Λ̃i = {λj}. This set is then
filtered based on each segments’ alignment to θi, resulting
in Λi = {λj : λj ∈ Λ̃i, ‖θλj − θi‖ < θthresh}, where θλj
is the angle of the line segment. We then cluster all the line
segments in λ using a greedy approach based on separation
distance, and call the resulting clusters lane markers. For
each lane marker, we compute the mean offset distance zi
from the OSM node pi. This offset distance will be used as
an observation tied to this particular OSM node within the
particle filter. See Figure 3 (Middle).

Next, we group the lane markers longitudinally, using a
greedy, flood-fill algorithm in the longitudinal direction. The
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Fig. 3: Lane Features. At left are the lane marker responses from Laplacian filter on the Velodyne intensity data, shown
as line segments. In the middle are results of clustering the responses perpendicularly and tying the results to OSM nodes,
defining the observations (small circles) for the PF. On the right are the derived binary features. See text for details.

purpose of this step is to generate additional binary features
for each lane marker. Some groups of lane markers, such as
those corresponding to solid, well-painted lines, will extend
for a long longitudinal distance (tens or hundreds of meters)
on rural or semi-rural roads, while in other cases such as
dashed lines, or areas with many intersections, the groups
will be short, on the order of meters.

Given these groupings, three additional features are com-
puted which prove to be useful for lane estimation. First
we calculate two binary features which encodes on which
side(s) of the lane marker a lane can exist (e.g. for a right
most lane marking, a lane on the right cannot exist). We
compute these binary features namely, has-l and has-r by
looking at the entire lane segment data. For the entire lane
segment, we count the number of lane marking observations
(zi) that lie on the either side (clk and crk). Then,

has-j = (cjk ≥ δc), j ∈ {l, r}

where δc is a threshold parameter. The third binary variable
encodes whether a lane marker is dashed. We first filter out
all the lanes which are bigger than a standard dashed lane
found in US. Then we connect lane marker groups which are
at a set distance apart and have similar orientation. These are
marked as a dashed.

The above binary features illustrated in Figure 3 (Right),
give important cues to interpreting the lane data, as will be
shown in the development of the measurement function for
the particle filters described in Section IV-C

B. Particle Filtering

We have experimented with multiple approaches for par-
ticle filtering for this domain. In the following sections,
we outline these approaches starting here with some basic
definitions that are common to all. As noted above, the
particle filter evolution is based on the structure of the OSM
nodes, with successive steps in the filter transitioning from
one OSM node to the next. The state of each particle is
based on its relation to the OSM node (which then ties it
to a physical location). With this in mind, we now derive

our filtering equations starting from a basic definition of the
state of the map that we want to estimate:

Xn : {x1n, x2n...xmn };

where m is number of lanes estimated at nth node in OSM
way and xin is state of the lane estimate. The state of each
lane is its offset from the OSM node and its width {oin, win}.
Using the observations zn → { Lane markers observed at nth

OSM node } from Section IV-A, our belief state is

Bel(xn) = p(xn|zn, zn−1...z0) (1)

Using recursive Bayes filtering as defined in [17] for equation
(1) we have

Bel(xn) ∝ p(zn|xn)

∫
p(xn|xn−1)Bel(xn−1)dxn−1 (2)

To implement a particle filter, we need to estimate the quanti-
ties p(zn|xn) and p(xn|xn−1)Bel(xn−1). For all algorithms,
we represent Bel(xn) as a set of m weighted particles

Bel(x) ≈ {x(i), φ(i)}i=1,...m

where x(i) is a sample of state (lane estimate) and φ(i) is
a non-negative parameter called the importance factor or
weight. The other necessary quantities are described in depth
in each of the following sections.

C. Conventional Particle Filter

Our implementation of the conventional particle filter
follows the following three steps:

1) Sampling: Sample x
(i)
n−1 ∼ Bel(xn−1) from the

weighted sample set representing Bel(xn−1).
2) Proposal Distribution: We sample x(i)n ∼ p(xn|x(i)n−1)

Since the particle state only evolves in relation to
OSM nodes, and OSM maps are highly inaccurate in
both position and direction, we sample xn by adding
Gaussian noise to x(i)n−1.

x(i)n : {on−1 +N (0, σo), w
(i)
n−1 +N (0, σw)}
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Fig. 4: Conventional Particle Filter. Small circles are observa-
tions, with observations displayed for all OSM nodes. Circles
crossed with lines are lane-center estimates for the current
OSM node, and close inspection reveals that the crossed lines
are actually particles, distributed laterally and colored by
importance. To make this approach tractable, only a limited
number of new proposed particles may be added each step,
and so the filter fails to capture narrow bike lane on the top.

Now pair (x
(i)
n , x

(i)
n−1) is distributed according to

p(xn|xn−1)Bel(xn−1)

.
3) Update Function: We update the weight of each sample

according to following distribution.

φ(i)n = p(zn|x(i)n )

zn : {l1, l2, ...lk}, where lj are lane markers observed
at nth node.

a) For each x(i)n , perform data association with lane
observations. i.e determine associated lane mark-
ings for x(i)n .

b) Compute new observed lane offset and lane width
from the observations {õ(i)n , w̃

(i)
n }

c) Compute φ(i)n using following equation

φ(i)n =
1

2σo
e(

−(õ
(i)
n −o(i)n )2

2σo
) 1

2σw
e(

−(w̃
(i)
n −w(i)

n )2

2σw
)

where σo and σw are parameters selected to fit
typical standard deviations on width and location
based on our data.

During the data association, we check for the appropriate
binary variable has-l and has-r and remove ambiguous data
associations. (e.g. if the state of a particle is to the left of
the left most lane, then it is not associated with the any lane
markings). If the above data association fails, we penalize
the φ(i)n by a penalty factor γ. We relax this penalty factor
if dashed lane markings are present as we expect them to be
missing periodically.

Fig. 5: Dual Particle Filter, showing observations for many
OSM nodes, the lane center estimates, and particle distribu-
tions for the current node. This approach proposes particles
based on observations, and so is able to estimate bike lane
on the top.

In order to recover from lane additions or exits in natural
road environment, we extend the sampling scheme stated
above. We introduce a new parameter t which is percentage
of new particles introduced in the system on every update.
Hence we sample according to Algorithm 1, where µw is
the expected lane width. Note that selecting large standard
deviations means that a large number of new proposed
particles (and corresponding computational cost) are required
to sufficiently cover the state space. Further, having large
standard deviations increases the chance of proposing an
erroneous particle that matches noise in the data.

Figure 4 illustrates the output of Regular Particle Filter
estimating lanes at one of the OSM nodes.

Input: m → number of particles
Input: t → percentage of new particles
for i = 1:m ∗ (1− t) do

Sample x(i)n−1 ∼ Bel(xn−1);
Add x(i)n−1 → B̃el(xn−1);

end
for i = 1:m ∗ t do

Generate new state x(i)n−1 : {N (0, σo)N (µw, σw)};
Set φ(i)n−1 : ε;
Add x(i)n−1 → B̃el(xn−1);

end
Replace Bel(xn−1) with B̃el(xn−1);

Algorithm 1: Modified Re-sampling algorithm

D. Dual Particle Filter

One major limitation observed when applying the con-
ventional particle filter is its failure to capture lanes with
abnormal specifications (like biking lanes or extra wide
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ramps) as shown in Figure 4. While this could be addressed
by increasing the standard deviation of new particles, this
solution is suboptimal for reasons discussed above. We will
now describe a dual method in order to tackle this problem
formally. In the dual configuration, we reverse the role of
proposal distribution and measurement function as stated
above. At every iteration we sample new particles based on
their agreement with the observations

x(i)n ∼ p(zn|xn)

and importance factors are set using

φ(i)n =

∫
p(x(i)n |x

(i)
n−1)Bel(xn−1)dxn−1

The algorithm is then:
1) Proposal Distribution: We propose new particles based

on the observations. Let zn : {l1, ..lk} be k lane
markers observed at nth OSM node, sorted by location.
We uniformly select j ∈ {1, (k − 1)} and propose

x(i)n : { lj + lj+1

2
+N (0, σo); (lj+1 − lj) +N (0, σw)}

2) Update Function: Importance factors for each particle
are then corrected using prior belief Bel(xn−1). To
approximate this distribution over the continuous state
space, we take a kernel density approach. We first gen-
erate m samples as done for the proposal distribution
in a conventional particle filter.

x̃(i)n ∼ p(xn|xn−1)Bel(xn−1)

Writing h({x̃n};x) to denote the parameterized kernel
density function approximating this distribution, the
importance factor for each particle is given by

φ(i)n = h({x̃n};x(i)n )

As shown in Figure 5, the Dual Particle Filter is able
to estimate non-standard bike lane which the Conventional
Particle Filter failed to capture.

E. Mixture Particle Filter

While the pure Dual Particle Filter is able to capture
abnormal lane specifications, it will fail in the situation where
new lanes are added. Proposed particles for new lanes cannot
be matched to any in the previous distribution, thus getting
essentially zero weight. The approach described in [17] fixes
this problem using a combination of both Conventional and
Dual Particle Filter. In the Mixture approach, we use a
variable mixture ratio θ(0 ≤ θ ≤ 1) and sample from
the Conventional method with probability 1 − θ and with
probability θ using the Dual.

Additionally, the Mixture Particle Filter allows for more
flexible modeling based on situational information. For in-
stance we can vary the mixture ratio θ based on structural
information from the OSM map. Specifically, we reduce the
ratio closer to intersections where performance of Dual is
significantly bad due to the lack of lane markings. Varia-
tions on this theme, and whether such dependencies can be
learned, are an interesting source of future work.

F. Clustering and Lane Indexing

Our generated map will have only a finite number of
lanes, each with a single lane position and width estimate for
each OSM node. Further, these lanes should be linked over
iterations using IDs. This requires one further processing
step. The particle filters above result in a discrete approxi-
mation of Bel(xn|zn) represented by a set of particles. This
distribution can be observed in Figure 4. This distribution
is multi-modal and number of modes are unknown apriori.
We use a EM-based weighted clustering algorithm on the
distribution to find the maximum-a-posteriori modes. These
cluster centers are final lane estimates. This clustering is done
in the space of x (i.e. on both offset and width).

To generate temporal links between iterations, we assign
an index to each cluster using Algorithm 2.

Input: p → set of particles
Input: C → Clusters
for c = 1 : C do

i → Most common index in the set of particles
belonging to cluster c;
if i then

assign index i → to cluster c and all the
particles belonging to cluster c;

else
assign new index → to cluster c and all the
particles belonging to cluster c;

end
end

Algorithm 2: Cluster Indexing algorithm

V. RESULTS

To evaluate the accuracy of our approach, we compare
our lane estimates with hand labeled road network data for
28 km of road. Our hand-labeled road network data consists
of rural roads, urban roads and freeways which is shown
in Figure 2, but unfortunately, this does not include bicycle
lanes. For all our experiments, we set the number of particles
to 5000 and for mixture case, we had mixture ratio set to
0.3. As discussed above, the mixture ratio is set to zero near
intersections, i.e. we relied only on regular particle filter
in that case. Figure 6 illustrates qualitative results of lane
estimates for each type of scene. We did not evaluate the
dual approach on its own.

We evaluate our results using two metrics, mean posi-
tional error and number of nodes for which we incorrectly
estimated a lane centers. Quantitative results are shown in
Table I. These results show that both the regular and mixture
approaches generate highly accurate lane-level maps, with
the mixture approach being slightly better in some cases.

For the entire dataset, we were not able to associate our
estimates with hand labeled data for 2.3% of the estimated
lane center nodes for the regular particle filter, and for 6.2%
for the mixture case. The number of missed estimates is
higher for the mixture case as we do not have hand labeled
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Fig. 6: Qualitative Results. left two figures show lane estimation on country roads. Even though there is missing data at
intersections, we are able to track lanes successfully. Third figure shows lane estimation on highway with dashed lanes. Last
figure illustrates our results on multi-lane urban roads. Note that for all those roads, we did not have any prior information
about number of lanes

Method Mean Error(m) Max Error(m)
Regular Particle Filtering - urban 0.06 0.38
Regular Particle Filtering - highway 0.05 0.13
Regular Particle Filtering - all data 0.06 0.38
Mixture Particle Filtering - urban 0.06 0.22
Mixture Particle Filtering - highway 0.04 0.08
Mixture Particle Filtering - all data 0.05 0.22

TABLE I: Quantitative Results

data for bike lanes for which mixture particle filter is able
to guess lane estimates correctly, in other words, the more
flexible modeling capability of the mixture approach actually
hurts it in this metric. Analysis of the locations where errors
occur, indicates that errors mainly stem from noisy data at
intersections where lanes markings are missing.

VI. CONCLUSIONS
In this work, we have shown how structural priors can be

leveraged in a real-world outdoor mapping task requiring,
and compared against, accurate lane-level maps. Our results
are encouraging, this approach is able to generate maps that
agree with hand-made maps to a high level of accuracy.
Application of this work will allow our system to generate
accurate large-scale lane-level maps suitable for advanced
driver support and autonomous driving applications.

Additionally, we find the general approach of combining
structural priors with accurate local information extremely
interesting and are working on a number of ideas for ex-
tending it including:

• Improve the use of prior information in intersection
handling

• Learning a model of how and when to modify inference
algorithm based on situations

• Develop a method for detecting and correcting maps
when world changes

• Use this approach in an on-line algorithm
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Unmanned Aerial Vehicles 

Mass 
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Search and 
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Environment 
Monitoring 

Remote  
Inspection 

Motivation 
5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

107



Davide Scaramuzza – rpg.ifi.uzh.ch 

Custom made quad  
(same embedded computer as NanoQuad) 

NanoQuad from KMeilRobotics 
Visual SLAM running fully onboard (55 fps) 
Embedded Computer: Odroid (ARM Cortex A-9) 
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Outline 

 Visual Navigation in GPS-denied Environments 

 Open Problems and Challenges  

 with Vision 

 with Quadrotors 

 Air-ground collaboration 

 Event-based Vision 
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Why not GPS ? 

 It does not work indoors 
 Even outdoors it is not a reliable service 

? 
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This robot is «blind» 

Why is Perception Important ? 

It allows a robot to be truly autonomous 
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Motion capture system 

Markers 

Why is Perception Important ? 

It allows a robot to be truly autonomous 

This robot is «blind» 
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This robot can «see» 

Why is Perception Important ? 

It allows a robot to be truly autonomous 

This robot is «blind» 

Motion capture system 

Markers 
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How Does it Work ? 

Image 1 Image 2 

𝑅, 𝑇 
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How do we Globally Localize? 

• Visual SLAM helps the robot to stabilize and localize w.r.t. its own map 

• But what if we wanted to localize in an urban environment, without GPS? 
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MAV Urban Localization from Google Street View Data 

IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

MAV Urban Localization from Google Street View Data, Majdik, Albers-Schoenberg, Scaramuzza 
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Goal: Image to GPS 

 Detect the global position of the MAV by recognizing visually-similar places 
(appearance based localization for MAVs) 

 Large viewpoint changes -> air-ground matching 

Take Picture 

Compare to database 

Localize 

Lat: 47.384345, Long: 8.545037, Heading: 161.01 
IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

MAV Urban Localization from Google Street View Data, Majdik, Albers-Schoenberg, Scaramuzza 
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Air-ground matching is challenging  

IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 
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Air-ground matching is challenging  
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Air-ground matching is challenging  

 Repetitive and self-similar structures 
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Localization Results 
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Comparison among state-of-the-art  
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IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles, Forster, Lynen, Kneip, Scaramuzza 
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IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles, Forster, Lynen, Kneip, Scaramuzza 
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Outline 

 Vision-controlled Quadrotors in GPS-denied Environments 

 Open Problems and Challenges  

 with Vision 

 with quadrotors 

 Air-ground collaboration 

 Event-based Vision 
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Open Problems and Challenges in Vision 

 Lack of texture 

 Illumination changes 

 Dynamic environments 
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Monocular, Real-Time 3D Dense Reconstruction for MAVs 

 Tracks every pixel (like DTAM [Newcombe, CVPR’10]) 

 Running live from video streamed (8 ms in CUDA, on i7 laptop) 

 Allows tracking with low texture surfaces 

[Pizzoli, Forster, Scaramuzza, ICRA’14 SUBMISSION] 
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Outline 

 Vision-controlled Quadrotors in GPS-denied Environments 

 Open Problems and Challenges  

 With Vision 

 With Quadrotors 

 Air-ground collaboration 

 Event-based Vision 
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 Search and rescue missions can benefit from robotic technologies (Fukushima, 
Gotthard rock slide, Italy earthquake) 

 Current robots are teleoperated by trained professionals 

 Ground robots would benefit 
from an external “flying eye” 
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2011 - Fukushima Nuclear Power Plant 
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Synergistic Collaboration between Ground and Aerial Vehicles 

Air-ground exploration Air-ground collaborative grasping 
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Collaborative Localization and Mapping with Complementary 

Sensing Modalities (kinect on the ground robot and single camera on the flying robot) 

IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

Air-Ground Localization and Map Augmentation Using Monocular Dense Reconstruction, Forster, Pizzoli, 
Scaramuzza 
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Collaborative Localization and Mapping with Complementary 

Sensing Modalities (kinect on the ground robot and single camera on the flying robot) 

IROS Presentation TOMORROW – Session: «Unmanned Aerial Vehicles IV» 

Air-Ground Localization and Map Augmentation Using Monocular Dense Reconstruction, Forster, Pizzoli, 
Scaramuzza 

Watch video at http://rpg.ifi.uzh.ch  
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Collaborative Grasping 
Watch video at http://rpg.ifi.uzh.ch  
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Outline 

 Vision-controlled Quadrotors in GPS-denied Environments 

 Open Problems and Challenges  

 With Vision 

 With Quadrotors 

 Air-ground collaboration 

 Event-based Vision 
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Open Problems and Challenges with Micro Helicopters 

 Current flight maneuvers achieved with onboard cameras are still to slow 
compared to those attainable with Motion Capture Systems 

D. Mellinger, V. Kumar S. Lupashin, R. D’Andrea 
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How fast can we go with a camera? 

 

Let’s assume that we have perfect perception (i.e., localization) 

 

Can we achieve the same flight performances  

atteinable with motion capture systems? 
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4
1 

 At the current state, the agility of a robot is limited by the latency and 
temporal discretization of its sensing pipeline 

 

time 
frame next frame 

command command 

latency 

computation 

temporal discretization 

Towards Aggressive Maneuvers with Onboard Vision 
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Towards Aggressive Maneuvers with Onboard Vision 

 At the current state, the agility of a robot is limited by the latency and 
temporal discretization of its sensing pipeline 

 

 Can we create a low-latency, low-discretization control architecture? 

 

Yes... 

...if we use a camera where pixels do not spike all at the same time 

... in a way like we humans do... 
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time 
events stream 

latency discretization 

Towards Aggressive Maneuvers with Onboard Vision 

 At the current state, the agility of a robot is limited by the latency and 
temporal discretization of its sensing pipeline 

 

 Can we create a low-latency, low-discretization control architecture? 
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4

4 

       

Dynamic Vision Sensor (DVS) 44 

 This is an idealization of a very complicated circuit 

time 

frame next frame 

 In a DVS, an event is generated each time a single pixel changes value: 

time 

events stream 

event: 

[S. Liu and T. Delbruck,  
Neuromorphic sensory 
systems’03 ] 

 In a traditional camera, frames arrive at fixed intervals: 
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4
5 Dynamic Vision Sensor (DVS) 

 We can render the DVS data as a normal 
frame-based animation 

 Each frame is a histogram of the events 
received in a given time slice 

 For visualization only! 
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1 video frame = 33 ms (real time) 

4
6 

 We can render the DVS data as a normal 
frame-based animation 

 Each frame is a histogram of the events 
received in a given time slice 

 For visualization only! 
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1 video frame = 1 ms 

4
7 

 We can render the DVS data as a normal 
frame-based animation 

 Each frame is a histogram of the events 
received in a given time slice 

 For visualization only! 
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Flip: video frame = 33 ms (i.e., real time) 

Andrea censi 

IROS Presentation TOMORROW – Session: «Localization II» 
LocLow-latency localization by Active LED Markers tracking using a Dynamic Vision Sensor , Censi, Brandli, 
Delbruck, Scaramuzza 
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Flip: video frame = 1ms 

IROS Presentation TOMORROW – Session: «Localization II» 
LocLow-latency localization by Active LED Markers tracking using a Dynamic Vision Sensor, Censi, Brandli, 
Delbruck, Scaramuzza 
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5
0 

“slow”, “cognitive” 

level 
 

“fast” sensors 

low-latency 
control loop 

 

“context” 

“slow” sensors 

commands 

Outlook 

We might imagine a two-level architecture in which agile behavior is obtained by 

low-latency control action which uses the data from a sensor like DVS, while, at 

slower time-scales, other tasks such as SLAM are done based on slower traditional 

sensors. 

 

IROS Presentation TOMORROW – Session: «Localization II» 
LocLow-latency localization by Active LED Markers tracking using a Dynamic Vision Sensor, Censi, Brandli, 
Delbruck, Scaramuzza 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

154



Davide Scaramuzza – rpg.ifi.uzh.ch 

rpg.ifi.uzh.ch 

Thanks! 
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Our next IROS talks: Monday and Tuesday, Nov. 4-5 

Session Unmanned Aerial Vehicles IV 

 

 Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles 
by Christian Forster 
 

 Air-Ground Localization and Map Augmentation Using Monocular Dense 
Reconstruction 
by Christian Forster 

 

 MAV Urban Localization from Google Street View Data 
by Andras Majdik 

 

Session: Localization II 

 Low-Latency Localization by Active LED Markers Tracking Using a Dynamic 
Vision Sensor 
by Andrea Censi 

 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

156



 
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 

 
 
 
 

Session II 
 

Perception 
 

• Title: Enabling Efficient Registration using Adaptive Iterative Closest 
Keypoint 
Authors: Johan Ekekrantz, Andrzej Pronobis, John Folkesson, Patric Jensfelt 
 

 
• Title: Information fusion and evidential grammars for object class 

segmentation 
Authors: Jean-Baptiste Bordes, Philippe Xu, Franck Davoine, Huijing Zhao, 
Thierry Denoeux 
 
 

 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

157



 
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

158



Enabling Efficient Registration using

Adaptive Iterative Closest Keypoint

Johan Ekekrantz1, Andrzej Pronobis2, John Folkesson1 and Patric Jensfelt1

Abstract—Registering frames of 3D sensor data is a key func-
tionality in many robot applications, from multi-view 3D object
recognition to SLAM. With the advent of cheap and widely
available, so called, RGB-D sensors acquiring such data has
become possible also from small robots or other mobile devices.
Such robots and devices typically have limited resources and
being able to perform registration in a computationally efficient
manner is therefore very important. In our recent work [1] we
proposed a fast and simple method for registering RGB-D data,
building on the principle of the Iterative Closest Point (ICP)
algorithm. This paper outlines this new method and shows how
it can facilitate a significant reduction in computational cost
while maintaining or even improving performance in terms
of accuracy and convergence properties. As a contribution we
present a method to efficiently measure the quality of a found
registration.

I. INTRODUCTION

Data registration is the natural next step after acquisition of

sensory data. The goal is to align two frames of sensor data of

the same scene taken from different locations. Registration is

often used as a way to replace or enhance odometry obtained

from wheel encoders. Registration is important because a

robot’s behavior is based on its world model and that world

model requires accumulation of data in a consistent reference

frame. Therefore, a more accurate data registration allows the

robot to make better inferences and decisions.

The recent advancements in RGB-D cameras have led

to increasing use of range image data in robotics. The

availability of both depth and visual information can largely

simplify the registration itself. In this work, we focus on the

problem of registration of RGB-D views and actively exploit

the visual content to improve both accuracy and efficiency.

In [1], we present Adaptive Iterative Closest Keypoint

(AICK), a registration algorithm for RGB-D views which

builds on the idea of Iterative Closest Point (ICP) [2].

Algorithms based on the principle of ICP are able to provide

very accurate estimations, given an initial transformation that

is close to the final result. Unfortunately, the performance of

standard ICP often deteriorates steeply with the decrease of

the quality of the initial guess, as often happens in case of

registration of views captured during fast sensor rotations.

Additionally, noise can drastically affect the convergence of

the iterative optimization method, with local minima being

a common problem.

1The authors are with the Centre for Autonomous System at
KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
{ekz,johnf,patric}@csc.kth.se

2 A. Pronobis is with the Robotics and State Estimation Lab at the
University of Washington. pronobis@cs.washington.edu

AICK preserves the accuracy of ICP for small transforma-

tions, while providing a drastic improvement of robustness

to larger view rotations and translations without the need for

an initial guess given sufficient overlap between the frames.

Our algorithm exploits both depth and visual information and

relies on keypoints detected in images associated with 3D

positions in the local reference frame and a visual descriptor.

The key property of the algorithm is the ability to weigh

the importance of the visual descriptor and the 3D position

while iteratively optimizing the transformation. This allows

us to exploit the distinctiveness of appearance features for

improved initial robustness and accuracy of point locations

for the final precision.

In this paper we compare the proposed method to gener-

alized ICP (GICP) [3], the 3D normal distribution transform

(3D-NDT) [4] and a method based on RANSAC [5] and

keypoints which we will call 3-point RANSAC and show

how our method provides a significant reduction in compu-

tational cost without sacrificing performance and improving

it significantly in most use cases. The evaluation of the four

algorithms is performed on a publicly available dataset [6]

and we base our quantitative analysis on an established

benchmarking procedure and performance measure [6]. In

this paper we also present an efficient way to assess the

quality of the registration between two frames.

In the remaining parts of the paper, we first provide an

overview of registration methods. Section III provides details

of the proposed algorithm. Section IV covers the setup for

the experimental evaluation. Finally, we present the results

of the experimental evaluation in Section V.

II. RELATED WORK

Most of the point cloud registration methods are based

on the Iterative Closest Point (ICP) algorithm introduced

in [2]. The most computationally expensive part of ICP

is typically finding the closest points. The standard way

of performing the matching is to use nearest neighbour

matching in Euclidean space. This has a complexity of

O(N2) in a naive implementation. A common way to speed

this up is to use a kd-tree (or a set of trees) which reduces

the complexity to O(Nlog(N)).
Each point cloud is a sample of the real world and even

small perturbations in the sensor pose can lead to sampling

different structures or parts thereof. A common way to

address this is to make a parametric model and then, for

example, fit the points in one frame against planes in the

other as in [7] or more recently in the GICP algorithm [3]

where both point clouds are models with planar surfaces.
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The 3D normal distribution transform (3D-NDT) [4], [8] fit

Gaussian ellipsoids to the data which both address the issue

of noise and reduces the dimensionality of the data, thus

speeding up the processing. Similar work has been presented

in [9]. The Multi-scaled EM-ICP [10] share some properties

with AICK. It does not assume one data association but

rather consider a weighted combination of matches with the

scale setting the weight.

Using key points (such as SIFT [11], SURF[12],

BRIEF [13], BRISK[14] and FREAK [15]) typically ex-

tracted from the RGB information, reduces the need to treat

all pixels and using feature descriptors allows for reliable

associations. An example of using key points and ICP to

register RGB images is given by [16]. In this work we use

SURF and ORB [17] which extends BRIEF with invariance

to rotation. Key points are often detected by FAST [18] or

Harris corners [19].

The Kinect Fusion algorithm [20] uses a dense, non-

parametric, representation for the reference frame from

which an artificial point cloud is sampled and registered

against.

A common data association problem is that of looking

for a match between one frame and all frames previously

seen. Finding these, so called, loop closures are key to a

successful implementation of SLAM. Here the question is

first if the two frames match at all and if so what the

transformation is. Matching feature by feature in each frame

is prohibitively slow. A common approach taken is to make

use of visual vocabularies [21]. The basic idea is to form

clusters in descriptor space and assign a label to each cluster

or word. The discretisation of descriptors into words means

that feature matching can be done by comparison two integer

indices (the label of the word). This has laid the foundation

for FAB-MAP [22] and its follow-ups.

A major part of registration is the problem of outlier

rejection i.e. the fact that there may be regions with no

overlap. Using a suitable model, RANSAC [5] can be used to

separate inliers from outliers and calculate model parameters.

III. THE AICK ALGORITHM

The AICK algorithm is an efficient and accurate way to

register two frames of RGB-D data. It exploits keypoints

that have both a 3D position in space as used by ICP and a

descriptor which characterizes the surrounding context of the

point. In contrast to ICP, it is able to find a good registration

even when no initial guess is given. AICK is an iterative

algorithm that adaptively changes from emphasizing the

descriptor match to emphasizing the geometric fit between

the points in the two frames. At the later stages it becomes

essentially ICP but having avoided the local minima that

result from incorrect initial matches. The results are thus as

for ICP with less failures.

As said, in ICP one must start with an initial guess of

the transformation between the two frames. One then finds

all the matching pairs of points. The matching criteria is

the smallest Euclidean distance, de between the 3D points.

After finding all matches where de is below a threshold, the

transformation is recomputed to minimize the sum of these

distances.

The main strength of the ICP method is that it gives very

accurate transformations when the matches are correct. It is

most suitable for dense point clouds where sampling artifacts

are not significant.

The main weakness of ICP is that if the initial guess

leads to too many incorrect matches the solution can get

’stuck’ trying to make those fit. It needs most of the initial

matches to either be correct or at least on the correct smooth

surfaces. The need to have a good guess to start with is rather

problematic as it is just this transformation that we are after.

It would be better if the method did not require any initial

guess, especially when looking for loop closures. In AICK

the initial match is independent of the transformation as it is

based solely on the descriptor information.

AICK does not match dense point clouds but rather

keypoints. Two similar features or the same feature seen from

different angles will have descriptors that are close in this

descriptor space. This way we reduce the number of points

to consider for matching to only those points that have a key

point associated with it. This then addresses the problem of

which points to select as well.

AICK does the same two phases, match and optimize, as

ICP but it uses a different matching metric which adapts over

the course of the iterations. Instead of de we use di,

di = (1− αi)de + αidd, (1)

where i ∈ {0, 1, 2, 3, . . . } is the iteration number, dd is

the distance, L2 norm, in descriptor space and the constant

parameter α ∈ [0, 1] is the decay factor to move from pure

descriptor distance, (i = 0) to nearly only Euclidean distance,
(αi << 1)

In addition to assessing what points are closest, the dis-

tance metric is also used to reject points that are too far away.

The distance de and dd have different units and finding a

threshold for the combined distances requires some thought.

We define this threshold according to

λi = (1− αi)λe + αiλd, (2)

where λe is the outlier rejection corresponding to the eu-

clidean distance and λd corresponding to the feature distance.

A. Non exhaustive search strategy

AICK reduces the computational requirement compared to

standard ICP in several ways. Firstly, because it only uses

points with an associated key point. Experiments also show

that we do not have to perform an exhaustive search for

the best matches. That is, even if we limit the search for the

keypoints in one frame to only a small subset and miss some

matches performance is maintained high given that we start

with enough key points. This opens up ways to make the

algorithm more efficient by trading off the expensive step of

finding all the matches that fall below our threshold.

A common way to reduce the cost of matching, which we

also make use of, is to use a so called ’vocabulary’ of words

do this we use the method of learning a ’vocabulary’ of words
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as in the bag of words method.1 We learn the words using

different data from what we test on. Learning corresponds

to clustering the descriptors from all the training images into

a predetermined number of clusters. The words are then the

mean descriptors for each cluster.

With every keypoint, pk, we associate a list of its closest

words in that frame, which we denote as Ψ(pk). Ψ(pk)
contains the words to which the descriptor distance of the

keypoint is less than a threshold, Rw. This can be done

swiftly if the vocabulary contains few clusters or if the words

are arranged in a tree structure that speeds up this search.

Note that this is only done once per frame, i.e., if we match

the frames to many other frames we need not recompute Ψ.

This is key for applications such as SLAM where detection

of loop closures look at the same frame for matches several

times. To look for matches for a key point in frame A to

key points in frame B we start with the closest words in

frame A and match the key point only to the key points

associated with the same words in the other frame. This can

be made very fast by creating an index per frame from words

to keypoints. Instead of having to match all points to all

points we only match each point to a (small) subset of the

points in the other frame. This can speed up the expensive

association step by an order of magnitude in most cases. We

consider this a generalization of the original algorithm as

using Rw = ∞ is equivalent to the original algorithm.

B. Quality of registration

To assess the quality of the registration we subsample

every RGB-D frame using a grid in the image plane. We

store one validation point for each intersection point in this

grid. When two frames are matched the validation points in

the two frames are backprojected into the depth of the other

frame.

These points are scored based on the difference di between

the backprojected depth and the measured depth. If the abso-

lute value of di is smaller than a threshold Γgood this point is

considered valid. In order to make use of knowledge of open

space between the sensor and the depth reading, validation

points that end up much closer(quantified in the form of a

threshold Γbad) to the sensor than the measured depth are

penalized by assigning it a value δ < 0. The definition of

score(di) is summarized in the following equation.

score(di) =











1, |d| < Γgood

δ < 0, d > Γbad

0, otherwise

(3)

The overall quality measure, W , is given

W =
1

M

N
∑

i=1

score(di) (4)

where N is the number of overlapping validation points and

M = max(Mmin, N), withMmin ensuring thatW becomes

small when N is small, i.e. when there is a small overlap.

1We do not use the ’bags’ in this work only the words. The bags might
be useful to chose which two frames to try to register to one another which
is a question not addressed here.

IV. EXPERIMENTAL SETUP

For evaluation we use [6] which is a publicly available

dataset designed for the purpose of benchmarking RGB-

D SLAM algorithms in realistic indoor environments. The

dataset is complete with ground truth and contains sequences

of RGB-D data captured using a Kinect. To be specific, we

use the sequence fr1/room which at the time of writing this

paper was the longest of all the sequences in the natural

office environment subset. This data set is well suited to

its designed purpose of testing state of the art registration

algorithms in that the motion has all 6 degrees of freedom

and the movement is both rapid and uneven.

A. Performance Measure

We employed a performance measure provided together

with the dataset [6]. The measure is based on the relative pose

error, which is found by first transforming the origin pose

using the estimated transformation and then transforming it

back using the inverse of the ground truth transformation. In

a perfect case without error, this results in a pose matching

the origin pose.

Ei = G−1

i Qi − I, (5)

where Gi is the ground truth transformation for transfor-

mation i, Qi is the estimated transformation and I is the

identity matrix. We analyze the translation component of

Ei by measuring the relative distance between the pose

obtained after the two transformations described above and

the origin pose as suggested in [6]. This error will be given

in meters, see (6) for mathematical formulation. As a means

of summarizing the results for a set of translation errors we

define successratio as the ratio of translation errors smaller

than some threshold λt in the set. That is the registration is

considered a ’success’ if it satisfies (6).

ETranslation
i = (

2
∑

j=0

||Ei,j,3||
2)1/2 < λt. (6)

It is worth noting that when successratio = 0.5, λt is

the median error. Similarly to using the median error the

successratio considers all outliers as equal, meaning that

gross outliers does not bias the analysis. This formulation

allows us to analyze the distribution of errors by varying the

threshold λt.

B. Algorithms tested

Three different registration algorithms in addition to

AICK2 were ran and compared on the test set. The param-

eters for the algorithms were optimized by hand by testing

a large set of values to yield good performance within a

maximum of roughly five minutes of execution time per

pairwise registration.

1) GICP: We use the GICP implementation provided by

the Point Cloud Library (PCL [23])3.

2AICK using λe = 0.01m and λf = 0.2.
3GICP was allowed to run for 25 iterations. Rejection threshold =

0.004m.
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2) 3D-NDT: We use the 3D-NDT implementation pro-

vided by the Point Cloud Library (PCL [23])4.

3) 3-POINT RANSAC: We used the RANSAC algorithm

on this problem by first forming a list of potential matching

keypoint pairs based on the similarity of the descriptors only.

We then randomly select three of these pairs to define a

transformation between the frames, which we will call the

’model’. We then count the number of ’inliers’ according

to the model. The model with the most inliers is chosen

and updated by using all of the found inliers. In forming

the list of potential matched pairs only associations between

keypoints with descriptor distance dd ≤ λf are used. Inliers

are calculated by transforming the keypoints in one frame by

the model and associating the transformed keypoints to the

closest keypoint in the other frame. If the euclidean distance

de ≤ λe between these keypoints the association is counted

as an inlier5. For the 3-point RANSAC algorithm we use

SURF keypoints.

We will use two different types of keypoints, SURF [12]

and ORB [17]. The Surf keypoints will be extracted using

OpenSURF Library[24]. Using our test set we found an

average of 906 surf keypoints with valid depthdata in an

average of 0.12 seconds. To extract the ORB keypoints we

use OpenCV [25]. Using our test set we found an average

of 857 ORB keypoints with valid depthdata in an average of

0.011 seconds.

C. Experimental Procedure

The registration experiments were performed by estimat-

ing transformations between consecutive frames of the data

sequence. In order to test robustness to larger transforma-

tions, we performed the experiments for pairs of frames

separated by different lengths of time. Performance is mea-

sured quantitatively using the measure described in (6). The

point clouds were created with calibrated camera parameters.

In section V-C we visualize the effects of accumulat-

ing a sequence of consecutive frame transformations and

transforming the appropriate pointclouds into a common

coordinate frame.

V. EXPERIMENTAL RESULTS

We plot the successratio versus a varying λt for (6) up to

0.05 meters using consecutive frames (around 30ms apart)

for the different algorithms in fig. (1)6 . This allows us to

see both the size and variation of the translation error of the

different methods when the transformation between frames

is relatively small. A steep curve can be interpreted as good

performance as that would mean that the method often yields

a transformation with a small translation error. One sees

that, for consecutive frames, all of the methods reach nearly

100% successratio at a relatively small λt. The conclusion is

4To keep the runtime reasonably low the pointclouds were subsampled
through the use of a voxelgrid with a voxel size of 0.02m. 3D-NDT was
allowed to run for 25 iterations, with resolution = 0.1 and stepsize =

0.09.
5We iterated the RANSAC over 400 random models in searching for the

best model using λe = 0.02m and λf = 0.2.
6 AICK was run for 25 iterations with α = 0.8 and Rw = ∞

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Translation performance

threshold [m]

s
u
c
c
e
s
s
 r

a
ti
o

 

 

AICK surf

AICK orb

NDT

GICP

3−point RANSAC

Fig. 1. The successratio as a function of the threshold on the translation
error in m. Here we use all the found keypoints. The red dashed line shows
the threshold used in fig. (2). Meaning that the intersections with the red
dashed line are equivalent to values for the successratio in fig. (2) when the
time difference between frames equals 30 ms.
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Fig. 2. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m. Here we use all
the found keypoints.

that while AICK using surf keypoints outperforms the other

methods in this test all of the methods are fairly accurate

given small displacements of the camera. It is also interesting

to note that the difference between the use of surf and orb

keypoints is relatively small for AICK.

It is also informative to see the result on the successratio

by using a fixed threshold and varying the time difference

between the frames being matched. This is shown in fig. (2)6

for a threshold of 0.01 meters. It is clear that the AICK and 3-

point RANSAC degrades much slower than GICP and NDT

when the camera displacement increases.

A. Quality of registration

By rejecting bad transformations we can ensure a higher

performance for the non-rejected transformations. Fig. (3)7

shows the effects on the successratio for two different

thresholds on W (see eq. (4)). Notice the large difference

7 Using a 10-by-10 subsampling grid with a minimum overlap of 500
samples, Γgood = 0.01m, Γbad = 0.075m and δ = −2.
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Algorithm successratio for threshold λt

Keypoints Rw Iterations Avg runtime [s] λt = 0.0033 λt = 0.01 λt = 0.05

AICK on avarage 906 surf keypoints ∞ 25 0.180 0.374 0.944 0.993

AICK on avarage 857 orb keypoints ∞ 25 0.135 0.276 0.885 0.999

AICK max 200 surf keypoints ∞ 5 0.00385 0.281 0.902 0.993

AICK max 350 orb keypoints ∞ 10 0.0113 0.209 0.833 0.998

AICK max 200 surf keypoints 0.26 5 0.000445 0.258 0.888 0.992

AICK max 200 surf keypoints W > 0.7 0.26 5 0.000480 0.313 0.953 0.999

AICK max 200 surf keypoints W ≤ 0.7 0.26 5 0.000480 0.156 0.740 0.977

AICK max 200 surf keypoints W > 0.5 0.26 5 0.000480 0.285 0.931 0.999

AICK max 200 surf keypoints W ≤ 0.5 0.26 5 0.000480 0.075 0.500 0.932

AICK max 350 orb keypoints 0.165 10 0.000717 0.209 0.828 0.995

GICP 25 224 0.070 0.366 0.996

NDT 25 237 0.177 0.706 1

3-point ransac 400 4.09 0.255 0.860 0.993

TABLE I

RUNTIME COSTS AND PERFORMANCES FOR THE TESTED ALGORITHMS. Rw IS THE RADIUS AROUND THE KEYPOINT TO FIND MATCHING WORDS.
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Fig. 3. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m.

between the cases when the W is over a specified threshold

as compared to being under this threshold.

B. Runtime

We can control the runtime to performance trade-off of

the algorithm using three main parameters: the number of

keypoints used, the number of iterations the algorithm is

allowed to run and the threhold Rw. The effects on the

successratio from limiting these parameters can be seen in

Table I for registration of two consecutive views. The cost

for extracting keypoints used by AICK or 3-point RANSAC

is not included in the table. The reason being that in many

applications keypoint extratction is only done once per frame

whereas frame to frame registration may be run multiple

times per frame. For the frames in the test set we found an

average of 906 surf keypoints with valid depthdata in an av-

erage of 0.12 seconds and an average of 857 ORB keypoints

with valid depthdata in an average of 0.011 seconds. It can

be seen that the keypoint based methods are much faster

than the non-keypoint based methods. Obviously runtime is

dependent on implementation but since the keypoint methods

deal with a lot less data there are less calculations to be done.

By controlling the parameters for the AICK algorithm results
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Fig. 4. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m.

similar to that of the 3-point RANSAC can be achieved in

a fraction of the time. It can also be seen in table (I) that

extracting an estimate of the quality of the registration can

be done at a small computational load.

The performance of AICK using different parameter set-

tings is shown in table (I) and in fig. (4)8,9. Rw = ∞
indicates not using words at all. Table (I) shows that tuning

the parameters of the algorithm can greatly speed up the reg-

istration while fig. (4)8,9 shows that the drop in performance

was relatively small.

C. Visual inspection

The AICK algorithm clearly outperforms the other meth-

ods in both robustness and precision as the above results

show. In fig. (5) we visualize the results of accumulating

transformations estimated by AICK over a sequence of

1000 frames. This is a common and effective way to allow

for a qualitative evaluation by visual inspection. Because

8AICK orb fast was run 10 iterations with α = 0.6, a maximum of 350
orb keypoints and Rw = 0.165.

9AICK surf fast was run 5 iterations with α = 0.3, a maximum of 200
surf keypoints and Rw = 0.26.
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Fig. 5. Rendering of the the points given by frame-to-frame transformation
estimates when walking past a series of bookshelfs in the KTH library. The
data is displayed from three different view points. The bookshelves are lined
up in the library and the upper part of the image shows that our method
produces results very close to this even using pure dead-reckoning.

transformations are added frame by frame, i.e. pure dead-

reckoning, errors, especially in orientation, will result in

clearly visible distortions. To remove the background and

avoid displaying noisy data, only data captured close to

the sensor is displayed. The absence of distortions lends

credibility to the practical use of the AICK method on real

world systems.

VI. SUMMARY AND CONCLUSIONS

In this paper we have clearly shown that AICK is natural

choice for small robots, mobile devices and other embedded

systems with limited resources but where high performance

is needed. This is made possible by transitioning between

coarse, appearance-based registration such that no initial esti-

mate is needed and fine registration using position-based ICP

on distinctive keypoints. In order to verify the performance of

our method, we employed a standard benchmark consisting

of a dataset and performance measure [6]. We compared the

method to three different high performance registration tech-

niques. In the experiments our method showed a significant

improvement of both robustness to larger transformations

and precision of the final result which can be attributed to

the adaptive distance metric. Furthermore, sub-sampling of

the point cloud into a selection of keypoints resulted in an

algorithm orders of magnitudes faster than algorithms used

for comparison.
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Information fusion and evidential grammars for object class
segmentation

Jean-Baptiste Bordes1 Philippe Xu1,2 Franck Davoine2 Huijing Zhao2 Thierry Denœux1

Abstract— In this paper, an original method for traffic scene
images understanding based on the theory of belief functions is
presented. Our approach takes place in a multi-sensors context
and decomposes a scene into objects through the following
steps: at first, an over-segmentation of the image is performed
and a set of detection modules provides for each segment a
belief function defined on the set of the classes. Then, these
belief functions are combined and the segments are clustered
into objects using an evidential grammar framework. The
tasks of image segmentation and object identification are then
formulated as the research of the best parse graph of the
image, which is its hierarchical decomposition from the scene,
to objects and segments while taking into account the spatial
layout. A consistency criterion is defined for any parse tree, and
the search of the optimal interpretation of an image formulated
as an optimization problem. We show that our framework is
flexible enough to include new sensors as well as new classes
of object. The work is validated on real and publicly available
urban driving scene data.

I. INTRODUCTION

Automatic understanding of the scene in front of a car
is an essential task for advanced driver assistance or safety
systems. Automatic understanding denotes generally a seg-
mentation of the image scene into its constituting objects,
augmented eventually with spatial or functional relationships.
However, there are many classes of objects which can be
found in traffic scenes, and for most of them, their level
of variability is very high. Indeed, detecting even a single
kind of object can be very challenging since the highly
cluttered environment as well as the dynamically changing
backgrounds, among others, contribute to the difficulty of
such a task. Many approaches have been proposed recently
to tackle individual problems such as road detection or
pedestrian detection, and they can use different kinds of
sensors.

A. Related Work

In the last decade, the accuracy of object detection meth-
ods has increased substantially thanks to the appearance of
efficient visual descriptors in images such as SIFT as well as
the success of computer vision challenges such as PASCAL.
In the field of intelligent vehicles, they are mainly applied to
pedestrian detection which is the most studied case [7], even
if more classes have also been considered [8]. However, to
reach better performances, more sensors are generally used:

1Jean-Baptiste Bordes, Philippe Xu and Thierry Denœux are with UMR
CNRS 7253, Université de Technologie de Compiègne, BP 20529, 60205
Compiègne Cedex, France. bordes@nlpr.ia.ac.cn

2Philippe Xu, Franck Davoine and Huijing Zhao are with LIAMA, CNRS,
Key Lab of Machine Perception (MOE), Peking University, Beijing, P.R.
China. philippe.xu@hds.utc.fr
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Fig. 1. Overview of the system. The scene is perceived by several
sensors among which a camera provides an over-segmented image. A set
of independent classification modules then gives some partial information
which are finally combined through a global optimization scheme.

LIDAR sensors are widely used to detect static structures but
also moving objects [14]. Depth information from stereo
camera systems has also been used by Ess et al. [8] as
well as Gavrila et al. [10] for pedestrian detection, it has
also proven to be efficient to detect obstacles and navigable
space [2]. Most of these methods are based on local visual
clues, but some other approaches add to this local step a
post-processing to take advantage of some consistency clues.
Wojek et al. [15] perform joint object detection to take into
account the spatial relationships between objects. Brehar [4]
uses openCyc ontology to exploit inter-class relationships
between classes in traffic scenes. Impressive results have
also been obtained in [17] on a great variety of databases
including traffic scenes using visual grammars, which is an
adaptation of formal grammars for visual data. The objects
and their components are first defined in the model and then,
given a new image, a parse graph is computed, which is the
decomposition of the scene into objects and parts of objects,
down to the image primitives. Visual grammars have shown
generalization capabilities and provide efficient way to face
problems such as occlusion and scale.

B. Contribution

In this work, instead of presenting new efficient descriptors
which are already numerous in the literature, we present a
method to make the most of the existing works. For this
purpose, the Dempster Shafer theory on belief functions is
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used to properly fuse a set of relevant sources of information,
that we call in this article ”modules”, even when each one of
them is reasoning independently in its own decision space.
This framework has several strong advantages. First of all, it
provides a high level of flexibility to the system: new sensors
and modules can be added easily, and their output will
be fused in a common space. Reversely, the independence
of the modules before fusion makes our system robust to
sensor failure. Moreover, we will show that new classes
can be added easily as well, since belief functions make it
possible to work on sets of classes and not only on individual
classes. Some expert information on the relative position of
the objects in a scene is also taken into account as an other
source of information by the use of an innovative framework
called “evidential grammar”.

C. Overview

The architecture of the system we consider, illustrated
on Fig. 1, consists of a set of sensors including a camera.
The image provided by the camera is over-segmented as
a first step of image processing. We also consider a set
of independent modules (road detection module, pedestrian
detection module, etc.) receiving data from the sensors, the
output of which is transformed into belief function before
being fused at the segment level. Finally, the evidential gram-
mars provide some kind of “global fusion” to this segment
level information and strengthen weak detections as well as
prune misdetections. We will show how this framework can
be applied in practice by considering a monocular camera,
stereo camera and a LIDAR. Our system is validated on the
KITTI Vision Benchmark Suite [9].

II. MULTI-MODAL AND MULTI-CLASS FUSION

When working in a multi-modal context, several chal-
lenges arise. First of all, the sources of information may
be of very different nature, they may come from several
types of sensors or even from prior knowledge. Each source
having its own specificity, complementary information can
be fetched from them. For example, 3D information from a
stereo camera or a LIDAR can be used to detect obstacles
while texture and color, from a monocular camera, can be
used to detect vegetation or the sky. The second challenge is
now to properly combine information about different classes
of objects.

We follow the framework proposed in [16] which can
deal with those two issues. The information from all the
sources are projected onto the image space and formulated
as an image labeling problem. Meaning that each pixel of
the image has to be classified. A first over-segmentation is
however done so that the classification do not have to be done
at the pixel level which is often too local. The combination
over different sets of classes is handled using the theory of
belief functions.

A. Dempster Shafer’s theory of belief functions

1) Reasoning on sets with belief functions: The belief
functions theory is an extension of classical probability

which is especially well adapted for reasoning on sets. Given
a set of classes Ω = {ω1, . . . ,ωK}, a mass function, or
basic belief assignment (BBA), is a function m : 2Ω→ [0,1]
verifying:

m( /0) = 0, ∑
A⊆Ω

m(A) = 1. (1)

Contrary to a probability distribution which assigns a prob-
ability to every class, a mass function can assign a mass on
any set of classes. Let us notice that a mass function whose
non-zero values are only on singletons is equivalent to a
Bayesian probability.

The plausibility is another measure often used to manip-
ulate mass functions, it is defined as:

pl(A) = ∑
B∩A6= /0

m(B), ∀A⊆Ω. (2)

When a decision has to be made, the singleton with maxi-
mum plausibility is usually a good choice.

Given two mass functions m1 and m2, they can be com-
bined by using the Dempster’s rule of combination to give a
new mass m1,2 = m1⊕m2 defined as:

m1,2( /0) = 0,

m1,2(A) =
1

1−κ
∑

B∩C=A
m1(B)m2(C), (3)

where κ = ∑B∩C= /0 m1(B)m2(C) measures the amount of
conflict between the two mass functions.

2) Reasoning in the product space: In the method de-
scribed in this paper, it will be necessary to introduce a set
of evidential variables, and thus mass functions have to be
manipulated on product spaces. Some well known operations
that are used for Bayesian functions have to be introduced for
mass functions. In all this section, two evidential variables
X and Y are defined respectively on ΩX and ΩY .

a) Marginalization: In this problem, the joint mass
function mXY is assumed to be known, the operation of
marginalization can be used to get mX :

mXY↓X (B) = ∑
A⊆ΩXY |A↓ΩX=B

mXY (A), ∀B⊆ΩX . (4)

b) Vacuous extension: In this problem, the belief mass
mX is assumed to be known and we wish to extend it to the
product space. The belief function theory suggests to choose
the least informative mass function which provides mX after
it marginalization:

mX↑XY (A) =

{
mX (B) if A = B×ΩY ,
0 otherwise. (5)

c) Conditioning: In this problem, the joint mass func-
tion mXY is assumed to be known and X is supposed
to belong to B, we denote: mB

X (B) = 1. The conditioning
operation is defined by:

mY |X (.|B) = (mB
X↑XY ⊕mXY )XY↓Y . (6)

The mass function mY |X (.|B) is called conditional mass
function knowing that B⊆ΩX .

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

166



d) Deconditioning: In this problem, the conditional
mass function mY |X (.|B) and we wish to evaluate mXY .
The belief function theory suggests to choose the least
informative mass function which provides mY |X (.|B) after
conditioning:

mXY (C) =

{
mY |X (A|B) if C = (B×A)∪ (B×ΩY ),
0 if different for all C ⊆ΩXY .

(7)

B. Constructing belief functions

There are different ways to construct a belief function
from data. Several classifiers such as the evidential k-nearest
neighbors and neural network from Denoeux [5], [6] directly
give a mass function as output.

For binary classification problem (Ω = {C,C}), the gen-
eral formulation proposed by Xu et al. [16] is used to
transform the classifier output into a mass function. In this
paper, our method is also enriched by taking into account
the outputs of classical multiclass classifiers such as SVM or
boosting which provide a set of score measures for each class
which is denoted here (s1,s2, . . . ,sK). To extract from this
output a mass function, the following steps are processed,
similarly to [1]:
• The scores are transformed into a probability distribu-

tion using a softmax function:

p(ωk) =
exp(sk)

∑
K
j=1 exp(s j)

. (8)

• The probability are then transformed into a possibility:

poss({ωk}) = ∑
ω j∈{ω1,...,ωK}

min(p(ωk), p(ω j)). (9)

• The possibilities πk = poss({ωk}) are sorted so that:

π1 ≥ π2 ≥ . . .≥ πK . (10)

• The possibility is finally transformed into a consonant
mass function:

m(A) =

 πk−πk+1 if A = {ω1, . . . ,ωk},
πK if A = Ω,
0 otherwise.

(11)

III. GLOBAL FUSION PROCESS USING EVIDENTIAL
GRAMMARS

The previous step is local since for every segment, the
belief function describing its class is computed only with
the information lying inside the segment. In this section,
a global fusion process on the top of this local fusion
step will be presented using evidential grammars. Thus, the
mass functions of the segments will be combined, and prior
information provided by experts about the possible relative
positions of objects in a traffic scene will be added as
well. The goals which are expected from this stage are:
segmentation of the scene into objects by grouping the
segments corresponding to a single instance of a class and
disambiguation of the belief functions at the local level as
well as reduction of false positives.

A. Evidential Grammars

A grammar is defined as a 4-tuple {VN ,VT ,S,Γ} where
VN is a finite set of non-terminal nodes, VT a finite set of
terminal nodes, S a start symbol at the root, and Γ is a
set of production (or derivation) rules. A production rule
γ ∈ Γ changes a string of symbols (containing at least one
non-terminal symbol) into another string of symbols. The
production process starts with the S symbol and stops when
the string is composed only of terminal symbols. The set of
all the possible strings which can be produced by a grammar
is called a language. The strength of grammars lies in the
fact the language generated by a grammar can be large even
when the vocabulary, that is to say VT and VN contain few
elements.

To deal with image grammars, the natural left-to-right or-
dering is replaced with spatial relationships such as “hinge”,
“border”, or “occlude”, which are used to combine segments
into complex and structured objects. Moreover, to rank
alternative interpretations and take into account uncertainty
(on the class of the objects, on their relationships and on the
derivation process), the grammar is augmented to a 5-tuple
{VN ,VT ,S,Γ,µ} by adding a fifth component µ containing a
set of conditional mass functions expressing our knowledge
about the decomposition of the scene and the objects. This
5-tuple is called “evidential grammar”, the global framework
of which has been detailed in [3], we thus expose here briefly
the main aspects of this method.

B. Model of an image interpretation

The image interpretation is represented by a parse hy-
pergraph. A parse tree is a decomposition of a scene into
its components. For this purpose, several partitions of the
image into regions are considered, each one corresponding
to a level of description: objects, parts-of-objects, segments
etc. An evidential variable Xi is set for every region Ri to
describe its class, and every region is assumed to contain one
single instance of an object: let us emphasize that uncertainty
on the value of Xi doesn’t mean than several classes might
be mixed in Ri. To group them into a single entity, the pair
(Ri,Xi) is called a “node” denoted Ni. Except in the case
when Xi is associated to a region at the segment level, Ri
is partitioned into regions of the lower level of description
the corresponding nodes of which will be called “children
nodes” of Ni. To get a parse hypergraph, the parse tree is
augmented with spatial and contextual relationships between
the children of a given node. These relationships depend
of the level of interpretation where the nodes are lying,
relationships such as ”aligned” or ”borders” can be used at
a part-of-object level, ”occludes” or ”supports” at an object
level. These relationships are taken into account by adding
an evidential variable Ξi in the graph taking its value in the
discernment frame composed of the set of relationships for
the corresponding level of description. This makes it possible
for instance to model a pedestrian as a head “over a” body.

In [3], it is shown that a parse hypergraph can be set
in relationship with an evidential network by assuming that
the joint belief function of a node and its children can be
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Fig. 2. Correspondence between a partition of an object into p components
and the graphical dependency of the related variables. The variable Ξ

describes the spatiale relationships between the regions R1, R2 . . . Rp.

expressed independently of the other nodes of the graph. The
evidential variables describing the content of the segments
are provided as the output of the local fusion step. Given an
evidential network, the belief is propagated from the leave
nodes to the other nodes of the network up to the scene
level through a bottom-up inference stage. This is performed
through a succession of classical operations of belief func-
tions: deconditioning, vacuous extension, Dempster’s com-
bination in the production space, and marginalization on the
variable of the father’s node. More precisely, if Y is a node
the children nodes of which are denoted X1,X2, . . .Xp and
the spatial relationship between those latter nodes is denoted
as an evidential variable Ξ as illustrated on Fig. 2. In a first
step, the vacuous extension is applied to the functions mX1 ,
mX2 , . . . , mXp and mΞ. The resulting functions are denoted
mX1↑X1,X2,...,Xp,Ξ,Y , mX2↑X1,X2,...,Xp,Ξ,Y , . . . , mXp↑X1,X2,...,Xp,Ξ,Y ,
and mΞ↑X1,X2,...,Xp,Ξ,Y . These belief functions characterize the
contents of disjoint regions and are thus supposed to be
independent pieces of evidence. These belief functions are
then combined using Dempster’s rule:

m1
X1,X2,...,Xp,Ξ,Y =

(
p⊕

i=1

mXi↑X1,X2,...,Xp,Ξ,Y

)
. . .⊕

mΞ↑X1,X2,...,Xp,Ξ,Y . (12)

In a second step, all the N conditional belief functions
corresponding to grammar rules involving the rewriting of
a symbol into p symbols are deconditioned into a set
of N functions denoted here mk defined on the product
space {X1, . . . ,Xp,Ξ,Y}. These belief functions correspond to
distinct production rules which themselves encode different
semantic information about the decomposition of the objects
and the scene. They are thus supposed to be independent
pieces of information and Dempster’s rule of combination is
consequently applied. We have:

m2
X1,X2,...,Xp,Ξ,Y =

N⊕
k=1

mk
X1,X2,...,Xp,Ξ,Y . (13)

where Ξ is the observable variable defining the spatial
relation between the regions. m2 is then combined with m1,
and a belief function taking into account all the available
information is thus obtained:

mX1,X2,...,Xp,Ξ,Y = m1
X1,X2,...,Xp,Ξ,Y ⊕m2

X1,X2,...,Xp,Ξ,Y . (14)

The joint mass mX1,X2,...,Xp,Ξ,Y is finally marginalized to
extract mY :

mY = mX1,X2,...,Xp,Ξ,Y↓Y . (15)

C. Search for the optimal interpretation

By using the scheme detailed in the previous section, the
belief is propagated from the segments up to the root to get
an interpretation of an image. However, a large number of
possible parse trees can be considered and consequently as
many possible interpretations of a same image. We choose
here to define the optimal parse tree as the one minimizing
the conflict on the root node. Since, the non-normalized
Dempster combination is applied, the root node aggregates
all the conflict contained in the evidential network and thus
gives a measure of the quality of the hierarchy.

A greedy algorithm is finally used to search for the optimal
parse hypergraph in reasonable computation time. The main
idea of this algorithm is to initiate a complex configuration
which is simplified step by step as long as the consistency
measure of the parse tree decreases:
• A parse tree is first initialized by linking all the nodes

corresponding to the segments of the image directly to
the root node. This is equivalent to considering that
every segment is interpreted as one object.

• As long as the consistency measure of the parse tree
decreases:

– The consistency measure is computed for a set of
alternative hypergraphs, each one being obtained by
applying one single elementary modification to the
current parse hypergraph. The elementary modifi-
cations that we consider are the merging of every
pair of nodes of the same level of the hierarchy of
the parse graph. If the nodes are terminal nodes, a
new node is created which is linked with this pair
of nodes. If the nodes are not terminal nodes, a
new node is created which is composed of all the
children of this pair of nodes.

– The parse hypergraph minimizing the consistency
measure is kept for the next iteration.

• The last parse hypergraph is kept as the output of the
method.

IV. EXPERIMENTS

The KITTI Benchmark Suite [9] was used to validate our
approach. A set of 140 images has been annotated manually
with a total of 14 classes as listed in Tab. I. Several modules
were trained on 100 images and tested on the 40 others.

A. Sensors and modules

We used a monocular camera, a stereo camera and a LIDAR
as sensors. The principal monocular classification module
is the Automatic Labeling Environment (ALE) proposed by
Ladický et al. [12], which can be directly learned over all the
previously defined classes. The second monocular module,
from the works of Hoiem et al. [11], estimates the scene
geometry from one single image. The classification output
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TABLE I
CLASSES OF OBJECTS CONSIDERED IN OUR EXPERIMENTS. THERE ARE

14 CLASSES IN TOTAL, SOME OF THEM CAN BE GROUPED INTO SETS.

is limited to the three classes: ground, obstacles and sky. In
our case, the ground class is the union of road, sidewalk,
lane marking and grass, while the obstacles class includes
everything else except the sky. The class membership scores
from those two modules are transformed into a mass function
following the steps (8-11).

Then the 3D information from the stereo camera and the
LIDAR are used to detect the ground as in [16], by assuming
that the ground is planar. Again, the classes ground and non-
ground are actually sets of other classes. We clearly see the
interest of working with sets of classes.

B. Grammar model

A three levels grammar model was considered: scene,
objects, and segments. No parts of objects (such as “wheel”
or “head”) were considered in these experiments, and the
objects are supposed to be derived directly into the set
of their constituting segments which can be considered as
elementary pieces of the objects. Consequently, the size of
the discernment space at the segment level is the same as
the one at the object level. The pairwise links “occlude”,
“is occluded by”, “bordering” and “disjoint” were used to
describe spatial relationships between the objects. The root
node can produce any arbitrary combination of instances of
the 14 types of objects we consider under a set of 30 spatial
constraints. These constraints correspond to the derivation
rules which are formulated as a set of prohibited configura-
tions between pairs of objects, for example: “The sky cannot
occlude an other object”, “ A car cannot border a building”,
“The road cannot occlude an other object”, etc. Each object
can be decomposed in an arbitrary combination of patches
of the corresponding object under a spatial constraint of
neighborhood. It should be noticed that this model takes little
advantage of the potential of the grammars to decompose
complex objects in structured reusable components. Indeed,
no database annotated with parts of objects were available
for that purpose.

C. Results

The inputs and outputs of our system are illustrated on
Fig. 3. The average precision of the multi-class classification
is showed on Tab. II. We can see that using more information
often improve the results, and it never significantly degrades

them. At the local level, no notion of object is handled. After
using the global approach, different cars can be separated and
segmented using geometric constraints.

V. CONCLUSIONS

We have showed an information fusion based system
which is flexible to include many sensors and modules
defined over different sets of classes. It is based on the
framework proposed in [16] and has been augmented by a
global grammar-based reasoning [3]. Fusion at the segments
level improves local accuracy and global fusion enables to
have object level reasoning.

Future works will enhance object classification by intro-
ducing sliding windows based approaches as well as part-
based object detections so as to use the full potential of visual
grammars. New sources of information such maps will also
be considered.
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Fig. 3. Input data and results from the different modules. (a) Raw image from the left camera. (b) Over-segmented image. (c) Disparity computed from
the stereo camera. (d) Lidar impact points. (e) Ground truth with 14 classes. (f) Output from ALE, the color of each pixel is the class with highest score.
(g) Classification probability from the geometric context, the red, green and blue intensities represent the probability of having an obstacle, the ground
and the sky respectively. (h-i) Ground/Non-ground classification using 3D information, the green color represents the mass put on the class “ground” and
the red the one on “non-ground”, the black color represents the ignorance. The results are from the data (c-d) respectively. (j) Final combined information
and segmentation from the evidential grammar.
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Hierarchical Traffic Control for Partially Decentralized Coordination of
Multi AGV Systems in Industrial Environments

Valerio Digani, Lorenzo Sabattini, Cristian Secchi and Cesare Fantuzzi

Abstract— This paper deals with decentralized coordination
of Automated Guided Vehicles (AGVs) used for logistics oper-
ations in industrial environments. We propose a hierarchical
traffic control algorithm, that implements path planning on a
two layer architecture. The high-level layer describes the topo-
logical relationships among different areas of the environment.
In the low-level layer, each area includes a set of fixed routes,
along which the AGVs have to move. In the proposed control
architecture, each AGV autonomously computes its path, on
both layers. The coordination among the AGVs is obtained
exploiting shared resources (i.e. centralized information) and
local negotiation (i.e. decentralized coordination). The proposed
strategy is validated by means of simulations. This work is
developed within the PAN-Robots European project.

I. INTRODUCTION

This paper deals with the path planning and coordination
of multiple Automated Guided Vehicles (AGVs) in an auto-
mated warehouse.

The standard approach to coordinate a fleet of AGVs
lies in a centralized supervisor (the control center) which
manages all the information coming form the Warehouse
Management System (WMS) and from the environment. The
control center handles the coordination of the fleet, solving
a multi-robot path planning problem. Several works can
be found in the literature that face this kind of problem.
Generally speaking, multi-robot path planning can be solved
exploiting centralized or decentralized strategies.

With centralized strategies, a single decision maker de-
termines the entire path plan for all the robots. These
approaches can theoretically find optimal solutions for multi-
robot path planning problems [1], but they are restrictive
in the number of robots for which they can plan, as the
complexity of planning grows exponentially with the number
of robots. Thus, while they provide the highest-quality solu-
tions overall, they are generally intractable for large teams.
Several centralized strategies can be found in the literature.
For instance [1], [2] solve the problem of coordinating a
multi-robot system using a coordination space representation
of the robot motions. The basic idea is to reduce the size of
the problem (exponential with the number of robots involved)
exploiting a path decomposition method, which decomposes
it into its elementary pieces consisting of either straight line
segments or arcs of a circle.

Authors are with the Department of Science and Methods
for Engineering (DISMI), University of Modena and Reggio
Emilia, Italy {valerio.digani,lorenzo.sabattini,
cristian.secchi, cesare.fantuzzi}@unimore.it

This paper is written within PAN-Robots project. The research leading
to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n. 314193.

Another method to reduce the search space is to weakly
constrain the allowable paths that robots can follow by
limiting the motion of the robots to lie on route maps in the
environment. Intuitively, route maps are akin to automotive
highways, where robots move from their starting position to
a route map, move along the route map to the proximity
of the goal, and then move off the route map to the specific
goal location. Several strategies can be found in the literature
for the coordination of multi-robot systems on a route map,
based on different optimality principles [3]–[7]. In order
to solve local conflicts, traffic rules may be defined [8]. If
robots are allowed to locally exchange information, several
strategies can be found in the literature that consider the
segments of the route map as resources to be allocated [9],
and solve the allocation problem by means of negotiation
[10].

The dimension of the multi-robot space may be reduced
using of a multi-layer structure to represent the world.
As explained in [11], [12], the approach is to construct a
hierarchical route map which can abstract the traversable
areas using the adequate number of nodes and edges of a
graph. The path is searched using the graphs of the several
layers.

Conversely, completely decentralized approaches are very
attractive. In these approaches, each robot autonomously
determines its routes, dissolving the conflicts and collect-
ing information from other robots. Decentralized techniques
are generally faster than centralized ones, but they present
several drawbacks, such as failing in finding valid paths for
all robots due to deadlocks [13], [14].

In this paper we present a partially decentralized control
strategy for the coordination of multi AGV systems. Specifi-
cally, our idea is based on a hierarchical control architecture
[13]. In detail, two layers are used in order to reduce the total
complexity and to simplify the control. The first layer is a
topological graph of the plant. The global map of the plant is
divided into several macro-areas, called sectors. Each sector
corresponds to a node of the graph. Its main purpose is to
permit a dynamic re-planning of the paths in case of dynamic
events. The second layer is the real route map on which the
AGVs move. The coordination on the route map is limited
only to a single sector of the first layer. In other words, in
each sector, the traffic is managed in a decentralized manner
on a local route map. Preliminary results on these topics were
introduced in [15].
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II. PROBLEM STATEMENT

In this paper we will present a strategy for path planning
of multiple AGVs over a route map.

We first introduce the definition of a path on a route map.

Fig. 1: Elements of a route map

Definition 1 Paths Given a route map, a path is a set of
consecutive segments.

A path can be assigned to an AGV, that is then allowed to
move along the segments in the path.

We introduce the following definition of admissible set of
paths.

Definition 2 Admissible set of paths Given a fleet of n
AGVs moving on a route map, an admissible set of paths is
a set of n paths defined in such a way that, assigning a path
to each AGV, it is possible to define a velocity profile for
each AGV such that collisions are avoided.

The problem can be formally stated as follows:

Problem 1 Multi AGV path planning Consider:

• a fleet of n AGVs
• a route map
• the initial and final positions for all the AGVs

Define an admissible set of paths such that each AGV is able
to move from its initial position to its assigned final position.

Therefore, the problem consists in planning a path for each
AGV so that conflicts and deadlocks are avoided. Each AGV
starts its path in a initial position, and has to reach its own
pick/drop position.

The following Assumptions are made on the system

A1 The environment is represented with a 2D static layout,
in which free areas and occupied ones are depicted.

A2 Each AGV has a prior knowledge of the geometry of
the environment, and of the route map.

A3 Each AGV can communicate with the others in its
neighborhood.

A4 Each AGV has access to shared data stored in a central-
ized layer.

A5 The maximum velocity and acceleration are the same for
all the AGVs. In other words, the fleet is composed of
homogeneous AGVs.

A6 Each AGV is modeled as a kinematic agents, whose
linear and angular velocities can be controlled.

A7 No unforeseen events, such as the presence dynamic
obstacles (manual forklift, people, etc.) are considered.

It is worth noting that removing Assumption 7 would lead
to the solution of the dynamic version of the multi AGV path
planning problem, in which the set of path initially defined
has to be modified in case of unforeseen events. In other
words, a path re-planning or a dynamic planning is needed.

The task assignment (that is, the goal given to each AGV)
is out of the scope of this paper, and will therefore not be
considered.

III. TWO LAYER CONTROL ARCHITECTURE

In this section, the main idea of the paper is explained.
The problem of coordinating a elevated number of AGVs is
faced splitting the control through a multi-layer architecture.
In our idea two layers are used. The top-layer, or Topological
Layer, is a topological map representing the global map,
with different macro-cells called sectors. The layer below,
or second layer, is the geometric map of each sector of the
first layer, and will be hereafter referred to as Route Map
Layer.

Therefore the path planning is done on two levels. Topol-
ogy path planning searches for the best path to the final goal
(actually to the final sector where the real goal is) from the
current sector. Route map planning computes the path on the
route map and makes the coordination inside the sector.

A. Topological layer

The first layer is the most abstract layer, it is generated
by a subdivision of the geometric layout in several sectors.

1) Sector division: A sector is an area, or a region, which
can be distinguished from the other ones based on topological
aspects, material flow, logistical aspects and geometrical
ones. The layer gives a topological representation of the real
map.

A sector is an abstract entity, that owns the following
properties:

• Geometric space
• Topological information
• Constraints
The constraints are defined based on the characteristics of

the operational environment. For instance, constraints can be
defined in terms of maximum number of AGVs contained in
a single sector, or in terms of maximum number of operations
of loading/unloading. This kind of information is owned by
the sectors and is stored in a centralized manner. In this
way, the information is visible to all the AGVs and is shared
among them from the centralized storage.

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

174



(a) Grid-based sector division (b) Topological graph

Fig. 2: The topological sector division: in 2a the geometric
map is divided into regular sectors; in 2b the graph repre-
sentation generated by the sector division is shown

2) Path planning on the topological layer: The informa-
tion owned by the sectors are used to plan the sub-optimal
route for an AGV. Each vehicle has to reach its destination
minimizing several cost functions, such as the crossing time,
average velocity, travel distance, etc.

The map of sectors (i.e. the first layer) can be represented
by means of a graph: each sector is a node of a directed
graph, and the links among neighboring sectors are the edges
of the graph.

The path from the start sector to the goal one is searched
by means of the D* algorithm [16]. D* algorithm is an
incremental search algorithm which solves the path planning
problems where a robot has to navigate to given goal
coordinates in unknown terrain. It makes assumptions about
the unknown part of the terrain and finds a shortest path from
its current coordinates to the goal coordinates under these
assumptions. During the path following, the new information
(such as previously unknown obstacles) is added to the map,
and, if necessary, the algorithm re-plans a new shortest path
from its current coordinates to the given goal coordinates.
The choice of this search algorithm is due to the need of
re-planning the path in a dynamic way on the topological
layer.

Furthermore a MPC (model predictive control [17], [18])
mechanism has been added. That is, at each step, the AGV
checks if the previously assigned path is still admissible.
Actually the MPC approach lies in the fact that only a portion
of the path is checked and the horizon can be extended or
reduced. This approach provides an optimal local solution
but a sub-optimal global one, because only the part of the
path inside the horizon is interested by the optimization.

Therefore each AGV computes autonomously its own path
through the grid of sectors without paying attention to the
other AGVs’ planned routes. The relationship among them
is provided only by the shared data about the state of the
sectors.

The procedure described so far is summarized in Algo-
rithm 1.

B. Route Map layer

The route map layer contains the geometric information
of the environment and the route map itself. The route
map is a set of routes as a highway, and it is composed

(a) Global path planning (b) Checking inside the receding hori-
zon

(c) Re-planing of the path

Fig. 3: The path planning on the topological layer: in 3a the
path is searched by means the D* algorithm; in 3b the AGV
moves along its path and checks the next sectors; in 3c a
re-planning of the path is needed due to the new condition
of the next sector

Algorithm 1: Path planning on the topological layer

1 Each AGV computes its path from the current sector to
the sector of destination;

2 for each step do
3 if next sector still available then
4 go to next sector;
5 else
6 Re-compute the path, avoiding that sector;
7 end
8 end

by distinguished elements called segments. The AGVs are
constrained to follow the route map and its segments.

Inside each sector the coordination among AGVs is
needed. The second layer manages the real path following of
the route map and the avoidance of deadlocks and conflicts
among AGVs or among AGVs and obstacles. The coordina-
tion is managed locally (in each sector) in a decentralized
manner. With this hierarchical architecture it is possible to
simplify the whole control in order to focus the coordination
of the AGVs only inside each sector in a local way.

Two main contributions appear in this layer. The first deals
with the fact that the route map is built according to specific
constraints, and the second is the real coordination algorithm.

1) Route map properties: We will hereafter assume that
the route map is designed according to the following Prop-
erties:

P1 The route map is a directed graph: each edge is unidi-
rectional in order to avoid the situation in which two
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or more AGVs are on the same road but with opposite
directions

P2 There are at least two exits, two entries and one inter-
section in a sector

P3 AGVs on different segments can’t collide. The minimum
distance between two segments has to be sufficient to
ensure the passage of the AGVs without collision. If this
condition is not possible, then the two segments will be
intersected with an intersection

P4 An intersection (node shared by several segments) is a
resource to be allocated to a single AGV and it can be
free or occupied

P5 The intersection is defined with a cross point and some
attention points (see Fig. 4a)

• Cross points: it is the real intersection due to the
collision of two or more segments

• Attention points: points linked with the cross point.
They are the extremes of the colliding segments

(a) A Route map intersection (b) General route map in a sector

Fig. 4: Route map properties

2) Coordination on the route map layer: The objective for
each AGV is to compute a path to reach the next assigned
sector. The path planning inside a sector consists in assigning
a set of segments to each AGV. The algorithm used to find
the path is the simple A*. The choice is due to the fact that
the route map is fixed, and local dynamic changes are not
considered.

When a path has been assigned to every AGV, a coordi-
nation to avoid conflicts in the intersection among the paths
is needed. The coordination is fulfilled by means of a hybrid
approach, exploiting a resource allocation and negotiation
mechanisms in order to obtain the advantages of both. It is
managed locally, because it takes place exclusively inside
the sector: the AGVs share information among each other,
without the participation of a centralized supervisor. The data
exchange among AGVs concerns:

• AGV priority: each AGV can have different tasks with
different levels of priority.

• Intersection request: an AGV which is approaching an
intersection has to communicate this intention to the
others-

• Intersection allocation: an AGV allowed to go through
an intersection has to communicate this to the others.

The coordination is defined as a combination of negoti-
ation and resource allocation: the resource (intersection) is

allocated only to a single AGV in order to avoid conflicts,
and the negotiation permits to avoid deadlocks.

The coordination procedure is described in details in
Algorithm 2.

Algorithm 2: Coordination on the route map layer

1 if AGV approaching intersection then
2 request intersection;
3 if other AGVs requested intersection then
4 share priority;
5 perform negotiation;
6 establish the winner;
7 end
8 end
9 ;

10 move to the attention point;
11 if AGV is the winner and intersection is free then
12 go through the intersection;
13 leave the intersection;
14 withdraw the previous request;
15 else
16 stop;
17 go to line 2;
18 end

To sum up, the global flowchart diagram is shown in figure
5.

IV. SIMULATIONS

In order to evaluate the idea, the algorithm is implemented
using Matlab. A portion of a real plant is used to simulate
the environment.
Fig. 6 shows the scenario: the black rectangles are the real
block storages and the free space is shown in white. Based
on that plant, a simple geometric route map is built. In order
to simulate the current behavior of the AGVs, a segment
division of the route map is fulfilled. In this way, no more
than one AGV is allowed to stay on a segment, at a given
time.

The tests are conducted under the same conditions, in
particular, the scenario consists in:

• map of a real plant
• 25 sectors
• maximum limit of 4 AGVs allowed in each sector
• one AGV allowed per segment
• start positions of the AGVs are different
• a queue of tasks is generated randomly
• the simulation stops when all the AGVs reach their

goals and the queue of tasks is empty
• the priority is generated randomly for each AGV
• 20 AGVs
In order to simulate a fleet of decentralized AGVs, the

algorithm is executed in a parallel manner by implementing
one single dedicated process per AGV. Fig. 7 shows the
sequence of events and actions of several AGVs. In particular
two AGVS are approaching an intersection and, based on
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(a) Approaching the intersection (b) Negotiation phase

(c) The winner goes on (d) The looser can go

Fig. 7: The screen-shots show the coordination at intersection. In these pictures, the red lines are the segment’s borders and
the dots are the nodes of the route map

the priority, one AGV goes on and the other one has to stop
temporarily.

Although the development of the idea is in an early
phase, a statistical analysis is made in order to figure out
the computational needs of the algorithm. Several tests are
executed changing the number of AGVs, in particular the
tests concern 5, 10, 15 and 20 AGVs. In all of them the
elapsed time is monitored. The results (see Fig. 8) show
a linear behavior of the elapsed time in function of the
number of AGVs. The higher is the number of AGVs, the
higher is the time for the computation. It is worth noting
that with the increase of the number of AGVs, also the
variance of results increases. This is due to the high number
of negotiations which, depending on the random priority of
the AGVs, can provide different results on tests performed
in similar conditions.

V. CONCLUSION

The paper describes a coordination strategy for a fleet
of AGVs, through an architecture based on a two-layer
approach. The presented idea tries to treat the planning and
the path optimization as a common entity. The coordination
and the traffic management are treated as global functions. In
order to achieve this, a hybrid path planning and coordination

is achieved. The path planning is split on the two layers in
order to simplify the problem. The path planning executed by
each AGV is totally decentralized, but the information about
the occupation of the sectors is managed in a centralized
way. The local coordination is also totally decentralized. In
this case, the AGVs share the information among them in
order to negotiate the access to the shared resources (i.e. the
intersections).

The simulations have shown that it is easily possible to
manage a high number of AGVs with this approach avoiding
conflicts among them. The studied scenario is actually a
strong simplification of a real plant. Therefore in the next
steps, it will be necessary to validate the algorithm on
a realistic scenario using the route map of a real plant
both through virtual simulation and implementation in a
real industrial environment. An experimental comparison
with existing methodologies will also be performed. Current
efforts also aims at mathematically analyzing the complexity
of the proposed algorithm.

Moreover, future work will aim at implementing an au-
tomatic procedure for the definition of the route map itself,
possibly considering bi-directional segments and more com-
plex intersection structures.
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Fig. 5: Flowchart diagram of the path planning and coordi-
nation procedures.
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Abstract—Pedestrians and bicycles are the most vulnerable 

participants in urban traffic. Numerous Pedestrian detection 

methods have been proposed in the last ten years. However, most 

of them cannot meet the real-time requirement of intelligent 

vehicles. At the same time, there is little paper on bicycle 

detection or tracking. This paper proposes a real-time pedestrian 

and bicycle tracking method based on TLD 

(Tracking-Learning-Detection), which is an award-winning, 

real-time algorithm for tracking of unknown objects. In order to 

solve the background movement arising from the moving 

observation platform, the location of feature points of the 

tracking part of TLD is adjusted according to the characteristic 

of moving pedestrian and bicycle. Then gradient feature is used 

instead of gray feature in original TLD algorithm, in order to 

solve the pedestrians and bicycles’ deformation problem. 

Experimental results demonstrated that the effectiveness and 

real-time performance of the proposed method. 

 

Key words: pedestrian tracking, bicycle tracking, gradient 

feature, TLD, intelligent vehicles 

 

I. INTRODUCTION 

Over the past decade, a lot of pedestrian detection 

algorithms have been proposed. For example, the typical 

pedestrian detection algorithm HOG (Histogram Of Gradient, 

HOG) + SVM (Support Vector Machine) [1] was proposed by 

the French Dalal , as well as the Discriminatively trained 

deformable part models method[2] which was proposed by P. 

Felzenszwalb. This algorithm’s most significant characteristic 

is detecting the whole and the part of the target separately. 

These pedestrian detection algorithms are able to get great 

effectiveness on detecting pedestrians on a single frame. 

However, if these algorithms are used in tracking pedestrians 

in a video stream, they won’t meet the real-time requirement. 

For tracking pedestrian algorithm, R. Benenson proposed a 

stereo vision based pedestrian tracking algorithm, called Stixel 

computation[3]. This algorithm’s processing speed in 

pedestrian tracking can reach 100 frames per second. In other 

words, it’s able to meet the real-time requirement in tracking 

pedestrian fully. However, this algorithm has a limitation, the 

stereo camera is necessary in this tracking algorithm as a 

hardware support. So it increases the cost of the pedestrian 

tracking.  

 
 

Meanwhile, the existing pedestrian tracking algorithm is 

basically used in the fixed camera, such as the surveillance 

cameras which is installed on crossroads or parking. In other 

words, only pedestrians are moving within the field of vision. 

The background is stationary. For pedestrian tracking in 

intelligent vehicles, the camera is located in the intelligent 

vehicles. The background movement arising from the moving 

observation platform will affect the pedestrian tracking.  

 The tracking algorithm which is suitable for static 

background can not simply be transplanted to the dynamic 

background environment. With the continuous development of 

the pedestrian detection and tracking algorithm, there is a little 

detection and tracking algorithm for bicycles. This paper 

proposes a tracking algorithm for weak traffic participants 

based TLD algorithm, which is used in the dynamic 

background occasions pedestrians and bicycles tracking. 

TLD[4] is a tracking algorithm for long-term tracking of 

unknown object, which is proposed by Zdenek Kalal who is a 

Czech doctoral student at University of Surrey Guildford, UK. 

It explicitly decomposes the long-term tracking task into 

tracking, learning and detection. The tracker follows the object 

from frame to frame. The detector localizes all appearances 

that have been observed so far and corrects the tracker if 

necessary. The learning estimates detector’s errors and 

updates it to avoid these errors in the future. [4] It’s an 

award-winning, real-time tracking algorithm.  

After experiment, the success rate in pedestrian tracking is 

low and the bounding box has serious deviation in the tracking 

process. And the reason is the complex deformation of moving 

pedestrian and the background movement arising from the 

moving observation platform. Based on the above two points, 

this paper makes a series of improvements to TLD algorithm.  

 

II. OBJECT DETECTION 

A. Pedestrian Detection 

Every time users want to track pedestrian using TLD 

algorithm, they should draw a bounding box to localize the 

location of the tracking target before. Of course this is a waste 

of time step. And if users waste too much time in this step, the 

tracking effectiveness will be influenced. So this paper uses 

the default HOG + SVM[1] pedestrian detector of OpenCV to 

initialize the pedestrian tracking of TLD algorithm. It can 
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bring convenience to users and ensure the effectiveness of 

tracking. 

B. The Choice of Pedestrian Detecting Features 

The detector scans the input image by a scanning-window 

and for each patch decides about presence or absence of the 

object. [4] 

TLD algorithm’s detector uses a cascade classifier which is 

composed of three parts, and they are the Variance classifier, 

Ensemble classifier and Nearest Neighbor classifier. 

The detector of TLD algorithm uses gray feature to 

distinguish foreground and background. But when people are 

walking, its gray feature will change a lot because the complex 

deformation of pedestrian. And the useless background 

information in the bounding box will have a large difference in 

gray feature according to the environment. As shown in Figure 

1 and Figure 2. 

           
Fig. 1. The Same Pedestrian in Different Environment and Pose 

 

             
Fig. 2. The Difference of Pedestrian’s Gray Feature 

 

Therefore, gray feature is not suitable for tracking pedestrian. 

In order to solve this problem, this paper substitutes the 

original gray feature of TLD for the gradient feature. Most of 

all pedestrian detection algorithms use gradient feature. When 

people are moving, the changes of their gradient feature are 

slighter than gray feature. And the gradient feature is mainly 

from the boundary of foreground and background. In other 

word, the useless background information in the bounding box 

will have a smaller impact of gradient feature. As shown in 

Figure 3. 

            
Fig. 3. The Difference of Pedestrian’s Gradient Feature 

Because of these, this paper create a new classifier based on 

HOG feature. Then this paper uses this HOG classifier to 

replace the original NNClassifier (Nearest Neighbor Classifier) 

of TLD algorithm’s detection cascade.  

This paper removes the NNClassifier from the detection 

cascade of TLD algorithm, but the Variation classifier and the 

Ensemble classifier are retained. The gradient features of 

different pedestrians are different in some degree, but they are 

largely the same. That is to say the gradient feature is hard to 

distinguish between different people. So this paper retains two 

of the classifiers based on gray feature, to distinguish between 

different people and reduce the burden of HOG classifier. 

C. Screen Scan Windows According to the Limitation of 

Target Motion 

The movement of the target which the algorithm tracks must 

be limited between frame and frame. Pedestrian, bicycle and 

most of all objects’ movements are limited in limited time. 

According to this, this paper adds a new part in the detector of 

TLD algorithm, to screen the scan windows before they enter 

into the detection cascade.  

If the current bounding box’s location is confirmed, and it 

can represent the position and scale of the target, the position 

of the target in next frame must be very close to the current 

bounding box. And the scale of the bounding box won’t 

change too much. So if the confidence coefficient of current 

bounding box is high enough, only the scan windows which are 

very close to it and the scale of them is similar to it will enter 

into the detection cascade.  

After experiment, it proves that the screen scan windows part 

can surely enhance the real-time performance of TLD 

algorithm. But it will bring some false detection problem. 

D. The Method of Eliminating Positive Examples and 

Negative Examples 

The number of positive examples and negative examples will 

also affect the processing speed of TLD algorithm.  

This paper has finished some experiments to show the 

influence of the number of examples. 

The experimental result is shown in Figure 4. 

 

 
Fig. 4. Tracking Success Rate and Average FPS on a Function of the Number 

of Positive Examples 

The experimental results show that the processing speed of 

TLD algorithm will decrease with the growing of the number 

of positive examples. In addition, the effectiveness of tracking 

won’t increase when the number of positive examples reaches 

a constant value. Because of this, it’s necessary to limit the 
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number of positive examples and the negative examples. So 

this paper proposes a method to eliminate the positive 

examples and negative examples to control the number of 

them. 

For positive examples, because every positive example may 

be useful in the future tracking, this paper uses the easiest way 

to eliminate positive examples. When the number of positive 

examples reaches a constant value, they will be eliminated 

randomly. In addition, the first positive example is the most 

believable positive example, so it won’t be eliminated until the 

tracking is over. 

For negative examples, because the negative examples are 

collected from the background, and the background is moving, 

the early negative examples won’t be used in future tracking. 

This paper uses a queue to store the negative examples. When 

the number of negative examples reaches a constant value, the 

negative example on the top of the queue will be eliminated. 

By this method, the number of negative examples can be 

controlled, and the useless negative examples can be 

eliminated. 

The method of eliminate positive examples and negative 

examples will enhance the real-time performance of TLD 

algorithm, and save the memory space. 

 

III. OBJECT TRACKING 

A. Adjustment of the Pedestrian Tracking Feature Points’ 

Location 

The tracking method in TLD algorithm is called the median 

flow tracking method. Median flow tracking method is mainly 

used Lucas-Kanade optical flow tracking[5][6], and the 

Forward-Backward Error[7] plus NCC （ Normalized 

Cross-Correlation）approach which is proposed by the original 

author of TLD. For the Lucas-Kanade optical flow tracking 

results, the Forward-Backward Error plus NCC approach as 

feedback, to screen the significant feature points of tracking.  

Finally, on this basis, the original author of TLD proposes a 

tracking failure detection algorithm. [4] 

Before the tracking is start, the tracker of original TLD 

algorithm will put the tracking feature points evenly in the 

bounding box. But there is not only foreground information in 

the bounding box. If the tracking feature points are put evenly, 

they will inevitably be put in the background. And because of 

the background movement arising from the movement of 

observation platform, the tracking feature points in the 

background will have a bad influence in tracking. In addition, 

the tracking feature points will be put in the arms and legs of 

people. These are the most deformable parts of pedestrian. The 

feature points on them are also bad to tracking. As shown in 

Figure 5.  

In Figure 5 (a), the points which are put on the background 

are red. The points which are put on the most deformable parts 

of pedestrian are yellow. But the green points mean that they 

are put on the location where the deformation is small. Only 9 

points in 100 points are green. The rest of 91 red and yellow 

points will have a serious influence in tracking. 

So, this paper adjusts the location of feature points of the 

tracker of TLD algorithm according to the characteristic of 

moving pedestrian. In other word, this paper put the feature 

points in the back and hips of pedestrian, which the 

deformation is slight. As shown in Figure 5 (b). 

 

           
(a) Before Adjustment    (b) After Adjustment 

Fig. 5. Adjustment of the Pedestrian Tracking Feature Points’ Location 

 

After the modification, the tracker of TLD algorithm can 

eliminate the influence cause by the movement of background 

and the complex deformation of walking people. 

B. Adjustment of the Bicycle Tracking Feature Points’ 

Location 

After pedestrian tracking, this paper wants to use this new 

TLD algorithm to track bicycles. This paper adjusts the 

location of feature points of the tracker of TLD algorithm 

according to the characteristic of bicycle. The feature points of 

tracking bicycle are similar to the pedestrian. They are all on 

the rider’s back and hip. As shown in Figure 6. 

 

 
Fig.6. the Location of the Feature Points in Bicycle Tracking 

 

Then, this paper adjusts some parameters in TLD algorithm 

according to the characteristic of bicycles. 

 

IV. EXPERIMENT RESULTS AND ANALYSIS 

The experimental platform of all this paper’s experiments is 

PC and the system is Microsoft Windows XP, the processor is 

Pentium (R) Dual-Core CPU T4200 2.00GHz. At last, the 

memory is 3.00GB. 

For comparison purposes, all this paper’s experiments will 

use the TLD algorithm which is modified to pure C + + version 

by Alan Torres.  

In order to describe the tracking results better, this paper has 

the following definitions: 

 Valid Frames: The number of frames which contain 
the target in a video sequences. 
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 Tracking Success Frames: The number of frames 
which the bounding boxes in them contain the target. 

 False Detection Frames: The number of frames which 
the bounding boxes in them don’t contain the target. 

 Success Rate: Tracking Success Frames accounted for 
the percentage of Valid Frames. 

A. Pedestrian Tracking Experiment by Original TLD 

Algorithm 

Use the TLD algorithm which is not adding any 

modifications to complete the pedestrian tracking experiment. 

The test videos are test data 1 and test data 2. They are shot 

by vehicle-mounted camera. The pedestrian in test data 1 

wears white shirt and black pants. And the pedestrian in test 

data 2 wears black jacket and black pants.  

The experimental result is shown in Table I. 

TABLE I.  THE PEDESTRIAN TRACKING RESULTS OF ORIGINAL TLD 

ALGORITHM 

Experimental 

Data 

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Average 

FPS 

test data 1 832 585 151 70.31 6.821 

test data 2 744 642 9 86.29 6.826 

Experimental parameters of test data 1: the start frame: 46, 

initial bounding box: x = 347 y = 181 width = 84 height = 217. 

Experimental parameters of test data 2: the start frame: 40, 

initial bounding box: x = 324 y = 197 width = 79 height = 198. 

As can be seen from the table I, using the original TLD 

algorithm to track pedestrians in two video sequences, the 

tracking success rate is not high. Not only that, the bounding 

box has serious deviation while the process of tracking. The 

deviation can be shown in Figure 7 and Figure 8. 

 

 
Fig. 7. The Original TLD Algorithm Experimental Results of Test Data 1. 

 

 

 
Fig. 8. The Original TLD Algorithm Experimental Results of Test Data 2. 

From the experimental results, the reason why the tracking 

success rate is low and the bounding box has serious deviation 

in the tracking process is the complex deformation of moving 

pedestrian and the background movement arising from the 

moving observation platform. Based on the above two points, 

this paper makes a series of improvements to TLD algorithm.  

B. Screen Scan Windows Experiment 

This paper has finished some experiments to show the 

screen scan windows part’s influence in algorithm’s real-time 

performance and false detection. The two kinds of algorithms 

in the experiment are completely the same except the screen 

scan windows part. 

The experimental result is shown in Table II, Table III and 

Figure 9. 

TABLE II.  THE SCREEN SCAN WINDOWS PART’S INFLUENCE IN FALSE 

DETECTION 

  

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Original 

Algorithm 2233 2182 84 97.72 

Using Screen 

Scan Windows 2233 2130 117 95.39 

Experimental parameters: test video: test data 5, starting 

frame: 31, initial bounding box: x = 306 y = 267 width = 70 

height = 63. 

TABLE III.  THE SCREEN SCAN WINDOWS PART’S INFLUENCE IN 

REAL-TIME PERFORMANCE 

 

The Average Number 

of Scan Windows 

Enter into the Detector 

Average 

FPS 

Average 

Processing 

Time (ms) 

Original 

Algorithm 294975 4.9911 203.177 

Using Screen 

Scan Windows 166114.7 10.41 103.687 

Experimental parameters: test video: test data 5, starting 

frame: 141, initial bounding box: x = 294 y = 272 width = 81 

height = 60, the total number of frames involved in the 

calculation: 1000, the total number of scan windows: 294975. 

And the data in Table II and III can be shown in Figure 9. 

 
Fig. 9. The Screen Scan Windows Part’s Influence in Real-Time Performance 

and False Detection Frames 

 

The experimental results show that the screen scan windows 

part can surely enhance the real-time performance of TLD 

algorithm. And the experimental results also show the screen 

scan windows part will bring some false detection problem. 

Because if the false detection happens, the screen scan 

windows part will hinder the error correction. But because of 

the movement of background, the false detection won’t last too 

long. So the false detection problem is within the acceptable 

range. 
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C. Pedestrian Tracking Experiment by Modified TLD 

Algorithm 

After the modification above, this paper finishes a lot of 

experiments to prove that this paper’s TLD algorithm has 

better effectiveness of tracking and has higher processing 

speed than original TLD algorithm in pedestrian tracking. 

The test videos are not only test data 1 and test data 2, but 

also the test data 3 from the ETH pedestrian datasets’ 

LINTHESCHER video sequence 

The experimental result is shown in Table IV, V, VI, and 

Figure 7, 8, 10, 11, 12, 13, 14 and 15. 

TABLE IV.  THE EXPERIMENTAL RESULTS OF TEST DATA 1 

  

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Average 

FPS 

Original TLD 

Algorithm 832 585 151 70.31 6.821 

This Paper’s 

TLD Algorithm 832 806 0 96.88 10.69 

Experimental parameters of test data 1: the start frame: 46, 

initial bounding box: x = 347 y = 181 width = 84 height = 217. 

 

 

 
Fig. 10. The Modified TLD Algorithm Experimental Results of Test Data 

1. 

TABLE V.  THE EXPERIMENTAL RESULTS OF TEST DATA 2 

  

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Average 

FPS 

Original TLD 

Algorithm 744 642 9 86.29 6.827 

This Paper’s 

TLD Algorithm 744 684 0 91.94 10.30 

Experimental parameters of test data 2: the start frame: 40, 

initial bounding box: x = 324 y = 197 width = 79 height = 198. 

 

 

 
Fig. 11. The Modified TLD Algorithm Experimental Results of Test Data 

2. 

 

TABLE VI.  THE EXPERIMENTAL RESULTS OF TEST DATA 3 

  

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Average 

FPS 

Original TLD 

Algorithm 578 103 8 17.82 2.922 

This Paper’s 

TLD Algorithm 578 571 0 98.79 11.67 

Experimental parameters of test data 3: the start frame: 601, 

initial bounding box: x = 406 y = 104 width = 108 height = 

285. 

 

 

 
Fig. 12. The Original TLD Algorithm Experimental Results of Test Data 3. 

 

 

 
Fig. 13. The Modified TLD Algorithm Experimental Results of Test Data 

3. 

 

Experimental results above show that this paper’s modified 

TLD algorithm greatly improves the tracking success rate in 

pedestrian tracking. In addition, it enhances the algorithm’s 

real-time performance, and eliminates false detection 

problems, but also solves the bounding box deviation problem 

which is shown in Figure 7 and Figure 8.  

D. Bicycle Tracking Experiment by Modified TLD 

Algorithm 

After the adjustment of tracking feature points’ location and 

some parameters, this paper finishes some experiments to 

prove that this paper’s TLD algorithm has better performance 

in bicycle tracking. 

The test video is test data 4. It’s shot by vehicle-mounted 

camera. The experimental result is shown in Table VII, Figure 

14 and 15. 

TABLE VII.  THE EXPERIMENTAL RESULTS OF TEST DATA 4 

  

Valid 

Frames 

Tracking 

Success 

Frames 

False 

Detection 

Frames 

Success 

Rate 

(%) 

Average 

FPS 

Original TLD 

Algorithm 1557 1490 54 95.70 6.722 

This Paper’s 

TLD Algorithm 1557 1548 0 99.42 7.469 

Experimental parameters of test data 4: the start frame: 48, 

initial bounding box: x = 352 y = 290 width = 62 height = 167. 

 

 

 
Fig. 14. The Original TLD Algorithm Experimental Results of Test Data 4. 
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Fig. 15. The Modified TLD Algorithm Experimental Results of Test Data 

4. 

 

Experimental results above show that this paper’s modified 

TLD algorithm greatly improves the tracking success rate in 

bicycle tracking, and enhances the algorithm’s real-time 

performance, and eliminates false detection problems in 

bicycle tracking.  

 

V. CONCLUSIONS 

This paper proposes a lot of methods to modify the original 

TLD algorithm, in order to make the original TLD algorithm 

more suitable for pedestrian and bicycle tracking. These 

methods not only enhance the effectiveness of tracking 

pedestrian and bicycle, but also greatly improve the real-time 

performance of the TLD algorithm. At last, this paper finished 

a lot of experiments to show the new TLD algorithm’s 

advantages in effectiveness of tracking and real-time 

performance. 

In a single pedestrian tracking, this paper has achieved good 

effectiveness. The future work should be devoted to track 

more than one pedestrian in a video sequence.  
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Abstract—In this work, a new method is introduced for
localization and keyframe identification to solve a Simultaneous
Localization and Mapping (SLAM) problem. The proposed
approach is based on a dense spherical acquisition system that
synthesizes spherical intensity and depth images at arbitrary
locations. The images are related by a graph of 6 degrees-of-
freedom (DOF) poses which are estimated through spherical
registration. A direct image-based method is provided to estimate
pose by using both depth and color information simultaneously.
A new keyframe identification method is proposed to build the
map of the environment by using the covariance matrix between
raletive 6 DOF poses, which is basically the uncertainty of the
estimated pose. This new approach is shown to be more robust
than an error-based keyframe identification method. Navigation
using the maps built from our method also gives less trajectory
error than using maps from other methods.

Index Terms—SLAM, spherical system, keyframe identifica-
tion, covariance matrix.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) has
been one of the most discussed research topics in the

domain of autonomous robotics. In the general visual SLAM
problem, the camera pose and environment structure are esti-
mated simultaneously and incrementally using a combination
of sensors. A visual SLAM approach is interesting in a wide
range of robotics applications where a precise map of the
environment does not exist.

In the last decade, many methods have been explored to
perform robust full translation and rotation (6DOF) localiza-
tion and mapping. In particular, some of the visual SLAM ap-
proaches [1], [2] have used feature-based techniques combined
with depth and pose estimation. Unfortunately, these methods
are still based on error-prone feature extraction techniques.
Furthermore, it is necessary to match the features between
images over time which is also another source of error since
feature mapping sometimes is not necessarily one-to-one.

One can also refer to appearance and optical flow based
techniques to avoid the feature-based problems, by directly
minimizing the errors between image measurements. Methods
that have similar approach like this fall into the category of
image-based or direct methods. One of the earlier works [3]
uses a planar homography model, so that perspective effects
or non-planar objects are not considered. Recent work [4], [5]
uses a stereo rig and a quadrifocal warping function which
closes a non-linear iterative estimation loop directly with
images. Visual odometry methods are however incremental

and prone to small drifts, which when integrated over time
become increasingly significant over a large distance.

A solution to reduce drift in visual odometry is to use image-
based keyframe techniques such as in [6], [7], where each pose
is estimated with respect to a reference image (keyframe) that
has been acquired from learning phase. This is one of the
solutions for mapping problem in SLAM, where the environ-
ment is represented by a set of connected image keyframes.
This approach is also referred to as graph-based SLAM. Most
of the work in this domain focused on the back-end which
optimizes the obtained graph, such as the method in [8] that
performs pose graph optimization by exploiting the sparseness
of the Jacobian of the system. However, such methods do not
investigate the importance of a keyframe, subsequently do not
reduce the number of keyframes. Traditionally, the choice of
keyframes is solely based on the travelled distance by the robot
or the passing time in between keyframes. This is, however,
not the best way to select, from an image sequence, the best
images to build the structure of the environment. In the earlier
work [9], a statistical approach to identify keyframes using a
direct-method was proposed, which is based on the median
absolute deviation (MAD) of the residuals. The drawback of
this method is that it depends on a threshold value that does
not apply for all types of sequences, so that different values
are given for different kind of environment, making the map
learning process totally empirical.

In the last few years, dense techniques have started to
become popular. In particular, an early work [10] performing
dense 6DOF SLAM over large distances was based on warping
and minimizing the intensity difference using omnidirectional
spherical sensors. Alternatively, other approaches have focused
only on the geometry of the structure [11]. However, these
techniques limit themselves either to photometric optimization
only or to geometric information only. Dropping one or the
other information means that there are important characteris-
tics from the complete information that are being overlooked
which might degrade in terms of robustness, efficiency and
precision.

More recently, some techniques have considered to include
both photometric and geometric information in the pose esti-
mation process. In [12], a direct ICP technique was proposed
which minimizes the error of both information simultaneously.
Unfortunately, the approach is not well constrained in the
technique because the minimization of the geometric error is
only performed on the Z-component of the scene, not the
whole 3D component. In this paper, it is argued that the
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error minimization should incorporate all information provided
from an omnidirectional spherical camera system, i.e. the
photometric and depth (thus, 3D geometric) information, as
also proposed in [10], [9]. By using all data, it is ensured
that nothing will be overlooked while performing localization.
The main contribution of this paper is to investigate a new
keyframe identification method for graph-based SLAM that
can be applied to general visual SLAM problem. However, in
this case, a model of the environment is built by incrementally
selecting a subset of the images from the learning sequence
to be our reference spheres.

II. SPHERICAL TRACKING AND MAPPING

An environment will be represented as a graph containing
nodes that correspond to robot poses and to all information
obtained from those poses, as laid out in [10]. Every edge
between two nodes corresponds to the spatial constraints
between them. The 3D model of the environment is defined by
a graph G = {S1, ..,Sk;x1, ..,xm} where Si are augmented
spheres that are connected by a minimal parameterisation xi

which is the 6 degree of freedom (DOF) velocity twist between
two spheres, expressed in exponentional map. For every sphere
S , it is defined by a set of {I,Q,Z} where

• I = {i1, . . . , in} is the spherical photometric image.
• Z = {z1, . . . , zn} is the depth image.
• Q = {q1, . . . ,qn} is a set of equally spaced and

uniformly sampled points on unit sphere where q ∈ S2

is expressed in spherical coordinate system (θ, φ, ρ) and
belongs to a unit sphere (ρ = 1)

A. Localization

Robot motion can be represented by a transformation T(x)
that takes the parameter x that consists of two vectors rep-
resenting: translation velocity v =

[
vx vy vz

]T
and

rotation velocity ω =
[
ωx ωy ωz

]T
. The parameter

x ∈ R6 is defined by the Lie algebra as x =
∫ 1

0
(ω,v) dt ∈

SE(3) which is the integral of a constant velocity twist which
produces a transformation T. The transformation and twist are

related via the exponential map as T(x) = e
[x]

ˆ , where the
operator [.]

ˆ
is defined as follows:

[x]
ˆ
=

[
[ω]× v
0 0

]
(1)

where [.]× represents the skew symmetric matrix operator.
For localization of a sphere S, an initial guess T̂ =

(R̂, t̂) ∈ SE(3) of the current vehicle position with respect
to a reference sphere S∗ = {I∗,Q∗,Z∗} is available, where
R̂ ∈ SO(3) is a rotation matrix and t̂ ∈ R3 is a translational
vector. Since it is assumed that the initial guess T̂ is available,
the tracking problem boils down to the estimation of an
incremental pose T(x) such that T̄ = T(x)T̂, where T̄ is
the estimated pose of the current sphere.

The pose and the trajectory of the camera can be estimated
by minimizing a non-linear least squares cost function[13]:

C(x) = eTI eI + λ2
Pe

T
PeP (2)

where, for every pair of spherical point and depth
{q∗

i , z
∗
i } ∈ S∗:

eI =

 I
(
w
(
T̄;q∗

1, z
∗
1

))
− I∗ (q∗

1)
...

I
(
w
(
T̄;q∗

n, z
∗
n

))
− I∗ (q∗

n)

 (3)

eP =


(
R̄n∗

1

)T (
P̄
(
w
(
T̄;q∗

1, z
∗
1

))
− T̄P̄∗

1

)
...(

R̄n∗
n

)T (
P̄
(
w
(
T̄;q∗

n, z
∗
n

))
− T̄P̄∗

n

)
 (4)

where eI is a vector containing the intensity errors, eP is a
vector containing the structural errors, Pi is the i-th 3D point
on the current sphere, P̄∗

i is the homogeneous coordinate of
P∗

i on the reference sphere, n∗
i is the surface normal at point

P∗
i , R̄n∗

i is the normal at point T̄P̄∗
i , and w(.) represents the

warping of a 3D point from a sphere to another, as shown in
Figure 1.

x

z

y

S1

S2

P

q1

q2

x

z

y

θ
φ

R,t

Figure 1. Illustration of spherical warping where the warping goes from S1

to S2 and P is a 3D point in the coordinate frame of S1.

The localization can now be considered as a minimization
problem. The aim is to minimize simultaneously the cost
function in an accurate, robust and efficient manner. Using
an iterative approach, the estimate is updated at each step by
a homogeneous transformation T̂ ← T(x)T̂. Using Gauss-
Newton algorithm, the pose update x can be obtained itera-
tively from:

x = −(JTJ)−1JT

[
eI

λPeP

]
(5)

where J is the Jacobian of the cost function which is its
derivative with respect to the 6DOF twist, and (JTJ)−1JT

is the pseudo-inverse of the Jacobian. The Jacobian can be

expressed as J(x) =

[
JeI

λPJeP

]
. By using chain rule, one

can rewrite the Jacobian into more modular parts:

JeI = JIJwJTP∗ (6)

JeP = 4PT JRn∗ +
(
R̄n∗)T (JPJwJTP∗ − JTP∗ )(7)

where:
• JI is the intensity gradient with respect to its spherical

coordinate position (θ, φ). It is of dimension n × 2n.
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In [10], an efficient way to compute JI using efficient
second-order minimization is presented. The same tech-
nique is applied in this paper.

• Jw is the derivative of Cartesian to spherical conversion
function. It is of dimension 2n× 3n.

• JTP∗ is the derivative (velocity) of point transformation
with a dimension 3n× 6.

• JP is the 3D point gradient with respect to its spherical
coordinate position (θ, φ). It is of dimension 3n× 2n.

• 4P is the difference between the transformed points and
the warped points

(
P̄w − T̄P̄∗)

• JRn∗ is the derivative with respect to the normal rotation.
It is of dimension 3n× 6.

B. Robust Estimation

During the navigation, the environment can vary between
the keyframe and the current images due to moving objects,
illumination changes and occlusions. To deal with them, a ro-
bust M-estimator is used. The idea of M-estimator is to reduce
the effect of outliers by replacing the residuals with another
function of the residual. After applying the M-estimator to the
residual, the pose update x can be obtained from:

x = −(JTWJ)−1JTW

[
eI

λPeP

]
(8)

where W is the weighting matrix where the diagonal
corresponds to the weight computed by the weight function
[14].

III. KEYFRAME IDENTIFICATION

In graph-based SLAM, selecting keyframes (i.e. reference
spheres in this case) to be put as nodes in the final map
is an important step. Taking too many references will cause
the system to suffer from a high accumulated error because
every time a new reference is taken, the residual error of
the new reference will always be integrated in the following
pose estimates, resulting in an accumulated drift. The error
can be due to interpolations, occlusions, illumination change,
and the dynamic of the environment (e.g moving cars). Yet
needless to say, taking a new reference is also necessary to
perform localization because the already mapped reference
image goes out of view over large distances. Several strategies
for keyframe selection will now be presented.

A. Median Absolute Deviation (MAD) [9]

One technique to achieve this goal locally is to observe the
statistical dispersion of the residual error e obtained from the
pose estimation process. The most common way to measure
this is by computing the standard deviation (STD). However,
the standard deviation is not a robust method because of its
sensitivity to outliers. The MAD, on the other hand, is one of
the simplest robust methods. It has a breakdown point of 50%,
which means that the measurement still holds up close to 50%
contamination of outliers, while STD has 0% breakdown point
since a single large outlier can throw it off.

A new reference sphere is then placed according to the
MAD of the weighted error:

γ < med(|We−med(We)|) (9)

where med(.) is a function to extract the median of data
and γ is the threshold for keyframe placement decision.

This approach is computationally cheap and optimized in
many frameworks, resulting in a possibility to be applied for
real-time applications. However, the criterion signifies that a
new reference should be taken when the robust variance is too
high, while ’too high’ is an open statement. A drawback of this
criterion is that we need to define a value to be the threshold.
This process is totally empirical based on experiments and
highly dependent on the characteristics of the sequence. Note
that MAD can be applied to univariate data, hence the MAD
is applied only on the intensity error since there isn’t a good
way to merge the two errors into the same scale and unit.

B. Incremental Ellipsoid

In the pose estimation process, one can compute the un-
certainty of the estimation by using the covariance matrix. We
propose a method that further observes the error ellipsoid. The
orientation of the ellipse can be obtained by computing the
eigenvector of the sub-covariance matrices. The orientation of
the ellipsoid is, however, not used in the proposed criterion
since the orientation of the error is invariant because it is
based on the magnitude of the uncertainty. Instead, the semi
axes s =

[
sx sy sz

]T
of the error ellipsoid are more

interesting to monitor since they are directly connected to the
magnitude of the uncertainty. A new keyframe will be added
to the map whenever:∥∥st|t∗∥∥ >

∥∥st|t−1

∥∥+
∥∥st−1|t∗

∥∥ (10)

where st|t∗ are the semi-axes resulting from warping the
current sphere to the reference sphere, st|t−1 are the semi-
axes for warping the current sphere to the previous current
sphere, st−1|t∗ are the semi-axes for warping the previous
current sphere to the reference sphere. The diagram of the
comparison is shown in Figure 2.

S* St-1
St

Et-1|t*

Et|t-1

Et|t*

Tt|t*

Tt-1|t*
Tt|t-1

Figure 2. Illustration of incremental ellipsoid criterion

C. Symmetric Ellipsoid

The incremental error ellipsoid is, however, biased to the
direction of computing the sequence. It is almost certain that
if the direction of the exploration is inverted (i.e moving from
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the end to the beginning of the sequence), the selected nodes
will not be the same. This shows the method for selecting
reference spheres is not based on the underlying information
in the measurement, but depends on the computation order. If
it is assumed that the complete sequence and its connectivity is
already acquired (before the map learning is performed), a less
biased method can be implemented. Instead of selecting the
references incrementally, all the images in the sequence will
initially be considered as references in the graph. In order to
get the best nodes symmetrically, a symmetric comparison is
added in the three-node groups. In this case, both forward and
backward uncertainty is considered, as shown in Figure 3. The
inequality in Equation 10 is now:

∥∥st|t∗∥∥+∥∥st∗|t∥∥ >
∥∥st|t−1

∥∥+∥∥st−1|t∗
∥∥+∥∥st∗|t−1

∥∥+∥∥st−1|t
∥∥

(11)

S* St-1
St

Et-1|t* Et|t-1

Et|t*

Et*|t

Et-1|t
Et*|t-1

Figure 3. Illustration of symmetric ellipsoid criterion

IV. EXPERIMENTS

A. Experimental Setup

To test the method, four synthetic sequences have been
made. These sequences simulate indoor environment, however
the system is designed to work in both outdoor and indoor
environments. The detail of the sequences can be seen in
Table I and some images are shown in Figure 4. The first
two sequences are used to build the map and the last two
are used during the map testing phase. We will compare the
performance of our keyframe identification methods with the
MAD criterion. In this experiment, two MAD thresholds γ are
used: 8 and 12.

(a) (b)

Figure 4. Image with (a) spherical and (b) diffuse illumination

Our quantitative evaluation involves the number of refer-
ences during the map building as well as the trajectory error
with respect to the ground truth that can be computed from:

4T = T̃−1T̂ (12)

where T̃ is the ground truth and T̂ is the estimated pose.
The 6 DOF error between the estimated and the ground truth

Table I
SEQUENCE DATA

Seq #Images Size Illumination Distance Traveled
1 1549 1024×512 Spherical 142 m
2 1549 1024×512 Diffuse 142 m
3 1400 512×256 Spherical 169 m
4 1400 512×256 Diffuse 169 m

can be obtained by computing the logarithmic map of 4T,
such that 4x = log (4T). The trajectory error 4x will be
a 6-element vector that caintains the difference of translation
velocity 4v and rotation velocity 4ω.

B. Map Building Result

From Table II, it can be seen that there is a huge increase of
number of references in the maps using MAD criteria on the
sequence with spherical illumination (Sequence 1) compared
to the sequence with diffuse illumination (Sequence 2). This
is inevitable due to the higher intensity error introduced in
the Sequence 1, meaning that the MAD threshold is easily
reached after only a few images. The number of references
using the incremental ellipsoid criterion, however, does not
vary much with respect to the change in illumination: 32 and
30 for Sequence 1 and 2 respectively. In contrast, the number
of keyframes in the maps using the MAD criteria varies with
changes in lighting condition: 30 to 150 for MAD-8, and 19
to 77 for MAD-12.

From this result, it can be seen that the ellipsoid criteria are
better in terms of automatically choosing a consistent number
of references for both types of sequences because it does
not include a scalar threshold that has to be tuned before
map learning process. In other words, the value 8 or 12 is
not the best threshold value for the MAD criterion to select
keyframes from Sequence 1. This verifies our argument that
the MAD has a disadvantage due to its threshold that needs to
be adjusted depending on the condition on the sequence, unlike
the ellipsoid-based criteria that do not need any adjustments.

To observe the pose error, we can refer to Figure 5 that
shows graphs of the chosen keyframes index against their
pose error. If we look closely on the graphs, keyframes in
the maps built by using the MAD are rather uniformly picked
along the sequence. On the other hand, the ellipsoid criteria do
not behave the same way and pick more keyframes at certain
points along the sequence. These are the points where the robot
is taking a turn and going to another corridor. By doing such
turns, there will be a lot of new information introduced in the
sequence and naturally it is favorable to take new keyframes
when a lot of new information is introduced. The implication
of this new information in the sequence is that higher error
and higher uncertainty will be computed, resulting in more
keyframes during the turns. However at some other points, the
criteria pick less keyframes. This is the counter part of taking
a turn which is going through a straight trajectory. Since we
are working with a dense spherical system, going through such
straight trajectory (in a corridor) does not introduce a lot of
new information in the images. So, the criteria will only decide

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

188



5

to take a new keyframe when the interpolation error starts to
decrease the accuracy of the tracking system.

Table II
MAP BUILDING RESULT

Seq. Criterion #Ref Avg. transl. err. (m) Avg. rot. err.

1

MAD-8 150 0.1972 0.0183
MAD-12 77 0.1484 0.0121
Inc. ell. 32 0.0979 0.0065

Sym. ell. 33 0.0982 0.0055

2

MAD-8 30 0.0999 0.0091
MAD-12 19 0.1045 0.0086
Inc. ell. 30 0.0814 0.0066

Sym. ell. 34 0.0983 0.0061
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Figure 5. Keyframe’s translational error for: (a) Sequence 1 and (b) Sequence
2. The rotational error is similar.

So far, we can conclude that in Sequence 1 the two ellipsoid
criteria are superior compared to the MAD, in terms of
number of references and pose error. Almost at every point
in the maps obtained by ellipsoid criteria, the keyframes’
pose error is less than the ones by the MAD. Although it
is also the case for Sequence 2, we can not conclude yet
whether the ellipsoid criteria are better than MAD criteria
since the keyframes’ pose error is not very different in the
maps. However, we can see in Figure 6 that the reconstructed
structures using ellipsoid criteria are slightly better, as the
reconstructed structures of the second floor from MAD criteria
are slightly slanted compared to the ground truth because the
MAD criteria give more rotational error in the maps compared
to the ellipsoid criteria. This can be the effect of reference
placement choice by the criteria which has been mentioned
previously, in which ellipsoid criteria select more keyframes
on the turns than on straight trajectories. The reconstructed

structures from Sequence 1 also have similar results, in which
the structures reconstructed using MAD criterion are slanted
compared to the ellipsoid criteria.

(a) (b)

(c) (d)

Figure 6. Map quality on the second floor in the order of MAD-8, MAD-12,
incremental, and symmetric ellipsoid ((a),(b),(c),(d)) on Sequence 2. The
structure in green is the ground truth.

C. Map Testing Result

The first noticeable result from the trajectory error in Figure
7 is that there are a lot of spikes in the translational error graph.
These spikes are caused by the changing of reference during
navigation because the minimiziation process is still biased to
the previous reference. This can be avoided by taking multiple
keyframes simultaneously as references during navigation,
as mentioned in [13], such that when a new reference is
considered, change is not so radical since other references are
kept during reference switching.

Referring to the trajectory error for environment with
spherical illumination (Sequence 3) in Figure 7-a, it can be
seen that tracking with the maps obtained by using MAD
gives higher error. This drift is naturally caused by the
reference pose error during the map learning. In addition to
higher pose errors, other problems might appear in maps with
high number of keyframes. Such maps make creating edges
in the graph challenging, making it necessary to consider
more sophisticated methods to build the connections between
keyframes. With a high number of keyframes, they can be
easily connected by false connections (false loop closures).
These wrong connections can lead to wrong changes during
navigation process, which will result in failure in tracking and
higher trajectory errors.

The incremental and symmetric ellipsoid methods seem to
perform equally well, with slightly better performance from
incremental ellipsoid, except at the end of the sequence. This
might be the result of bias in direction. The incremental
ellipsoid only considers one direction of the trajectory during
learning which is the same direction as the testing sequence.
So, the minimization scheme favors the incremental ellipsoid
more than the symmetric ellipsoid.

If the case with diffuse illumination is considered, as shown
in Figure 7-b, the performance of all four criteria pretty much
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the same. Even so, at some points the ellipsoid criteria perform
better than the MAD criteria and vice versa. This is highly
related to the reference pose estimation error during the map
building phase.

Table III
MAP TESTING RESULTS

Seq. Criterion Avg. transl. err. (m) Avg. rot. err.

3

MAD-8 0.2026 0.0161
MAD-12 0.1706 00116
Inc. ell. 0.1193 0.0077

Sym. ell. 0.1207 0.0065

4

MAD-8 0.1247 0.0102
MAD-12 0.1292 0.0088
Inc. ell. 0.102 0.0069

Sym. ell. 0.1241 0.0065

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

Image index

T
ra

ns
la

tio
n 

E
rr

or
 (

m
et

er
)

 

 
MAD 8
MAD 12
Ellipsoid
Sym Ellipsoid

(a)

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

Image index

T
ra

ns
la

tio
n 

E
rr

or
 (

m
et

er
)

 

 
MAD 8
MAD 12
Ellipsoid
Sym Ellipsoid

(b)

Figure 7. Translational error during navigation test on: (a) Sequence 3 and
(b) Sequence 4. The rotational error is similar.

V. CONCLUSIONS

A new spherical localization method was proposed that uses
all photometric and geometric information for dense visual
SLAM. A novel keyframe identification method (incremental
ellipsoid) was proposed that incorporates the covariance ma-
trix and compares the uncertainty ellipsoid between spheres.
We have also extended it to work on symmetric navigation
paths within the pose graph (symmetric ellipsoid) to ensure
best selection of the keyframes. Although the MAD has the
advantage of computational efficiency, it has been shown that

the MAD has a drawback due to its scalar threshold value that
needs to be adjusted accordingly to the characteristics of the
sequence. On the other hand, the proposed methods don’t need
this adjustment and have better statistical properties, in terms
of number of references as well as the quality of the maps. It
has been shown that the method is more robust to variations
in the lighting condition of the map.

There are still several aspects that remain to be explored
within the proposed model. All the criteria presented in this
paper are still biased to the first image in the sequence since
it has to be included in the final map. By combining the
symmetric ellipsoid criterion and loop-closure detection during
keyframe identification, this bias can be eliminated since the
first keyframe can be pruned during the map building phase. It
has been mentioned beforehand that the work presented here
is just improving the front-end of the graph-based SLAM.
Some testing should also be done after applying it to the back-
end. By doing this, the graph optimization method that will
adjust the position of the nodes in the graph accordingly to its
constraints. However, no pruning is needed since the selected
nodes are already optimized in the mapping process.
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Online Spatiotemporal-Coherent Semantic Maps
for Advanced Robot Navigation

Ioannis Kostavelis, Konstantinos Charalampous and Antonios Gasteratos

Abstract— In this paper we introduce a novel online semantic
mapping framework apt to establish the seamless cooperation
between the low level geometrical information and the high
level environment’s perception. Its main contribution involves
the online formation of a semantic map, relying on the memo-
rization of abstract place representations and capitalizing both
on space quantization and time proximity. A time evolving
Augmented Navigation Graph is formed describing the semantic
topology of the explored environment and the connectivity
among the places visited, which is expressed as the inter-
places transition probability. A side contribution of this paper
involves the utilization of the learned semantic maps for efficient
navigation in the explored environment. Moreover, a specific
human-robot interaction paradigm is proposed by illustrating
a competent methodology to address the go-to tasks. The
performance of the proposed framework was evaluated on long
range robot datasets in an unstructured office environment and
it exhibits remarkable performance by inferring semantic maps
in previously unexplored environments.

I. INTRODUCTION

In modern human societies it is of great importance to
build up machines that can be operated by non specialists or
even by technologically illiterate people, such as youngsters
or elderly. An obvious solution to this challenge is to build up
cognitive robot companions ample to competently perceive
and interpret their surroundings. In particular, considering
navigation the robots should retain cognitive interpretation
capacities to understand human concepts for places and
objects and, in order to proficiently deploy in domestic
environments, they should be able to construct geometrical
maps and simultaneously draw semantic inferences about
their ambient.

Multiple definitions about semantic mapping have been
proposed in the literature [1], the majority of which con-
verges to the aspect that a semantic map is an aug-
mented representation of the explored environment, which
-complementary to the geometrical information- entails high
level qualitative features. Those features might be the ab-
straction of the spatial knowledge, the place labeling and
even the connectivity information regarding the perceived
places. Significant research efforts have been devoted to
geometrical map construction and their results can be distin-
guished into three main categories, viz. metric [2], topologi-
cal [3] and hybrid [4]. Although these methods proved to be
capable of driving robots into specific target positions, they

I. Kostavelis, K. Charalampous and A. Gasteratos are with the De-
partment of Production and Management Engineering, Democritus Uni-
versity of Thrace, Robotics and Automation Laboratory {gkostave, kchara,

agaster}@pme.duth.gr

lack of high level cognition attributes, which would allow
them to bring the human-robot interaction one step beyond.

Aiming to remove this barrier, the proposed work is
oriented towards the direction of incorporating the following
goals:

• online partitioning of the places visited into distin-
guished annotated rooms to form a semantic layer on
top of the geometrical one

• spatiotemporal connectivity among the detected places
expressed in terms of transition probability

• functionalities that enable the user to pass high level
navigation orders directly to a mobile robot, such as
”go to the living room”

More precisely, the sole prior knowledge this paper utilizes
is a learned visual vocabulary encompassing abstract rep-
resentations of the possible place categories the robot may
visit during its journey. As the robot wanders, it partitions
its surroundings into places according to their spatiotemporal
relation employing the space quantization functionality of
the Hierarchical Temporal Memory (HTM) networks [5].
The used nodes allow the extraction of specific semantic
and localization attributes able to outline the space and,
thus, to form a topological map, which evolves with time.
Considering the temporal proximity, a Markov Model is
evolved progressively and grouped online in consequent
frames, proportionally to the already learned places, which
derives the formation of an interconnected Augmented Nav-
igation Graph (ANG), describing both the learned places
and the transition probability among them. The formulated
scheme constitutes the proposed semantic map which brings
together navigation and cognitive information by seamlessly
integrating the low level topological graphs into the high
level ANG, thus incorporating spatiotemporal and semantic
attributes at the same time. Given the semantic map in hand,
the user is able to pass high level commands to redirect the
robot from one learned place to another. The execution of
these actions is treated hierarchically by employing simple
graph traversing algorithms that firstly detect the sequence
of the places the robot should progressively follow and
then retrieving the corresponding topological graphs that
connect those places in terms of robot’s localization. A video
illustrating the proposed framework is also available 1

The rest of the paper is organized as follows: in Sec. II
a review of the related literature is outlined. In Sec. III
the framework for the formation of the semantic map is
presented, while in Sec. IV its application is illustrated.
Section V describes the experimental evaluation proving the
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significance of the proposed method and, last, in Sec. VI
conclusions are drawn.

II. RELATED WORK

Albeit the plethora of laborious research conducted in the
specific field [6], each of the respective work tackles the
problem of semantic mapping only partially. Typically this
problem can be further decomposed to its primitives such as
the localization, the mapping, the navigation and the place
categorization [7], [8], [9], [10], where significant findings
have already been accomplished. The most common char-
acteristic of all these methods is that they encode the space
attributes using abstract spatial representations of the sensory
input, howbeit, they utilize this knowledge to improve the
geometrical aspect of the navigation framework only.

Contrary to the aforementioned methods, there are various
semantic mapping approaches that embody both geometrical
and cognitive characteristics for navigation. In a preliminary
method described in [11], an intelligent object recognition
system operating on a mobile robot is illustrated. This
work relies solely on the ability of the system to correctly
recognize and locate different objects in an environment.
The authors in [12] introduced an augmented method for
semantic mapping utilizing semantic symbols, yet assigned
by a human. In [13] a similar algorithm based on the
place geometry and the object information is presented.
In particular, a laser scanner mounted on a mobile robot
enables the acquisition of dense point clouds, which are then
partitioned and annotated with semantic labels using object
recognition techniques. In a more sophisticated manner, the
work in [14] encloses significant semantic characteristics to
form concept oriented representations of space, as well as
to infer about the explored environment relied on object
recognition. The main advantage of such methods is the
employment of conceptual strategies to determine the bound-
aries of the detected places. However, in cases that similar
objects appear in different locations this method would fail
to produce a consistent semantic map. Moreover, the method
described in [15], utilizes Image Sequence Partitioning (ISP)
techniques to group visually similar images as topological
graph nodes. An interesting aspect of the semantic mapping
described in [16] utilizes a clustering algorithm according to
the recognized objects in a scene retaining both spatial and
appearance based information. In this algorithm the semantic
map is formed by superimposing an object map over the
geometrical one. Additionally, the authors in [17] designed
a method that forms augmented semantic maps integrating
multiple cues, such as place geometry and object information
by employing both laser and vision data. This method also
integrates the geometrical and the semantic maps in terms of
a navigation graph under the supervision of the conceptual
abstraction of the detected places. In a more recent work [1],
the authors presented a probabilistic framework combining
heterogeneous cues such as object observations, geometrical

1You may find the full version of the video at: http://utopia.
duth.gr/˜gkostave/downloads/semantic_video.rar.

characteristics, conceptual common-sense and even human
assentation to form a semantic map. Although this scheme
exhibits encouraging performance, it highly depends on the
human input during the formation of the semantic map.
Moreover, it needs to detect doors in order to annotate a
topological graph with a specific place label, which might
be tricky in arbitrary uneven environments with irregular
passages.

III. PART A: FORMING THE SEMANTIC MAP

A. Learning a Bag-of-Words

Learning a visual vocabulary in the arrangement of Bag-
of-Words (BoW) [18] comprises the sole off-line procedure
in the proposed framework, as depicted in Fig. 1. We
considered a labeled sequence of images that corresponds
to a robot’s trajectory containing various instances from all
the place categories to be memorized. This sequence of
images was independent of the target one, on which the
proposed framework will be later evaluated. Specifically,
the scale-invariant feature transform (SIFT) [19] is applied
on each single image of the sequence and the detected
feature points are concatenated framewise. The resulting
feature space is denoted by a data matrix S, which represents
a BoW problem and comprises a substantial description
of the entire space to be memorized. Following the work

Fig. 1. The upper line depicts the procedure concerning the creation of
the vocabulary, the appearance based histograms and the SVM training,
whilst the lower line describes the formation of the appearance based
histograms using the pre-computed vocabulary and the L2 norm for the
SVM classification.

presented in [20] S is clustered by a vector quantization
algorithm, namely the Neural Gas one, which has been
preferred instead of the k-means to avoid local minimum
solutions. Given S, a subset of visual words should be
defined that characterize the entire input space in an abstract
form. Thereupon, the set of Q centers of the resulting space
quantization C128×·Q = [c1, c2, ..., cQ] comprises the visual
vocabulary and provides a satisfactory representation of the
initial space. The visual words are then utilized to create
an appearance based histogram for each respective image
of the sequence. Given the detected features we form a
representative consistency histogram hSk

∈ <Q for each
image k = 1, 2, ...,M spread over the Q visual words. The
L2 norm between the detected features and the visual words
is calculated and the representative histogram is formed;
the binning is performed according to the smaller distance.
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Consequently, each image in the sequence has been replaced
by a respective appearance based histogram, which is utilized
to execute any further comparison. Hence, the computational
burden is simplified due to the fact that there is no need to
elaborate full images.

The learning of the different place categories is accom-
plished by means of Support Vector Machines (SVM) [21].
The reason of this choice is based on the excessive per-
formance of the SVMs in several visual recognition tasks
[22]. Given the fact that the robot should learn various place
categories, the one-against-all strategy has been preferred,
i.e. for each different class a respective SVM is trained to
separate this single class from all the others. The linear SVM
yielded remarkable recognition accuracy, while it kept low
the number of parameters that have to be tuned.

B. Spatiotemporal Place Memorization

The place memorization is undertaken by a spatial and
temporal pooler which evolves simultaneously with time in
an online fashion. This architecture is inspired by the single
node functionality in the HTM networks, as analytically
described in our previous work [23].

The spatial pooler is exposed to the target sequence and
memorizes in an online fashion the quantization space of the
appearance based histograms. The subset of such histograms
-eventually added to the spatial pooler- are the quantization
centers. The pooling of new centers is governed by two
specific conditions that should be both satisfied as follows:

• The extracted histogram hSi
∈ <Q, corresponding to

frame i, is checked against the existing quantization
centers according to a threshold value and it is con-
sidered different in case that the respective L2 norm is
found greater. In this case hSi

is marked as a candidate
to retain in the spatial pooler as a new quantization
center, otherwise, it is ignored.

• A voting procedure of the SVM models decides about
the place label of the candidate quantization center. To
infer about the place label of a new candidate, the w
neighbors of the hSi

participate in a majority vote pro-
cess with aim to infer about the place label of the new
candidate. This constrain exploits the time proximity of
the successive frames during the robot’s exploration and
boosts confidence in the place categorization.

Each quantization center is accompanied by the robot’s
current location estimation and, therefore, it is considered as
a node in the topological graph of the explored environment.
A unique attribute in our method is that a new node is added
in the topological graph each time the current appearance
based information, i.e. the set of nodes on the topological
graph, is not sufficient to describe the explored environment.
Moreover, the nodes classified in the same class describe
a specific area providing semantic attributes in the formed
topological graph. The latter is decomposed into multiple
interconnected subgraphs, each of which describes a detected
place in the explored environment and exhibits excessive
spatial coherence. Figure 2(a) depicts the resulted topological
graph during a robot’s exploration, which contains semantic

(a)

(b)

Fig. 2. a) The topological graph superimposed over the robots trajectory.
Three different places have been detected: the ”Printer Area”, the ”Corridor”
and the ”Office”. The topological graph is expressed as the MST among
the existed nodes; b) The normalized TAM, where the partitioning of the
quantization centers according to their class label and the transitions among
the different groups are illustrated. Note that among the ”Printer Area”
and the ”Office”, there are no transitions in the TAM, which indicates that
passing directly from the one place to another is not possible.

information about the places visited. This comprises an
important novelty comparing to similar works [4], where a
node is added in the topological graph whenever the robot
has traveled a certain distance, thus the system’s agility in
managing intelligence weakens.

The temporal pooler operates simultaneously with the
spatial one forming a temporal adjacency matrix (TAM).
Assuming that the spatial pooler consists of N quantization
centers -nodes in the topological graph- an N × N square
matrix T is created. The rows and the columns of the matrix
correspond to the nodes triggered at time t and t + 1,
respectively. Matrix T follows the first order Markov Model
as its elements contain the respective number of transitions
among the existing quantization centers. T constantly up-
dates itself by examining the consecutive occurrences within
two successive histograms. In the specific cases that the
spatial pooler does not add a new quantization center, the
transition among the consecutive input histograms updates
the TAM as follows: the respective input histograms at times
t and t + 1 are examined with respect to the minimum L2
norm among all the existed quantization centers in the spatial
pooler. Assuming that the ith, jth quantization centers
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have been triggered during this procedure at times t and
t + 1, then the T (i, j) element of the TAM is increased by
one. In a different case, when a new quantization center is
added in the spatial pooler, the TAM expands, maintaining
its square form and initializing the new row and column
elements. The physical meaning of this procedure is that
the nodes in the topological graph that share great spatial
and temporal proximity are grouped together around the
diagonal of the TAM. The mutual transition probabilities
among the quantization centers, which represent the nodes in
the topological graph, are obtained by normalizing the TAM
(Fig. 2(b)).

C. Augmented Navigation Graph and Place Connectivity

The ANG derives from the online segmentation of the
normalized TAM. The aim of this procedure is to group the
labeled places, while it computes the transition probability
from one group to the other according to the physical
arrangement of the nodes on the topological graph as well
as the intra-node transitions. Thereupon, the high level se-
mantic information is amalgamated online with the low level
geometrical one along the robot’s perambulation.

More precisely, the last formed TAM is partitioned into
groups: the goal is to divide the set of quantization centers
-nodes in the topological graph- into spatiotemporal coherent
subgroups corresponding to the different places. On the one
hand, the temporal coherence is obtained by utilizing the
sequential temporal transitions of TAM. On the other hand,
the spatial consistency of the places is ensured due to the
fact that the TAM is partitioned into specific groups by taking
into consideration the place label of the quantization centers.
Each of the groups formed contains quantization centers with
identical labels and, consequently, they belong to the same
place. The quantization centers that belong to the same group
are most likely to exhibit both spatial and temporal adja-
cency, expressed by nodes’ locations on the topological graph
and their transitions on the TAM, respectively. The transition
probability among different places (groups) is estimated
by computing the intersection of the transitions between
the quantization centers of different groups in the TAM.
The detected places and their mutual transition probabilities
comprise the Augmented Navigation Graph. Considering the
TAM in Fig. 2(b) the partitioning procedure results into three
detected places, namely the ”Printer Area”, the ”Corridor”
and the ”Office”, hence three different respective groups are
formed, each of which constitutes a node in the ANG as
depicted in Fig. 3. It is worth noting that each node in
the graph consists solely of quantization centers similarly
classified by the SVM models and the weights in the graph
denote the transition probability between different groups.

A unique attribute in our method is that it simultaneously
handles the existence of more than one similar types of
places appearing in the explored environment, e.g. in a school
building, where multiple classrooms exist. The formation of
the ANG is further constrained by the currently estimated
location of the robot. The detection of multiple places e.g.
”Office1” and ”Office2”, that bear the same label is accom-

plished by applying the Minimal Spanning Tree algorithm
(MST) on the set of the nodes in a topological graph. In
particular, the MST is applied on the localization output of
the nodes being grouped together during the partitioning of
the TAM. The resulting edges connect all the quantization
centers according to their minimum Euclidean distance. In
case that an edge possesses a value greater than an adaptive
threshold, then the corresponding group is partitioned and
this procedure repeats until no in-between edge is greater
than the threshold. The distribution of the intra-node dis-
tances is computed and the outliers determine the value of the
threshold. The utilization of the MST ensures the detection
of similar places according to the low level geometrical
adjacency, while it simultaneously retains the formation of
the ANG in case that the robot visits the same place more
than once.

Fig. 3. The ANG that corresponds to the topological graph and the
TAM depicted in Fig. 2. The weights on the graph indicate the transition
probability among the places. Note that the transition probability from the
”Printer Area” to the ”Office” is zero, indicating that the robot should firstly
pass through the ”Corridor” in order to traverse from the one place to
another.

IV. PART B: TRAVERSING THE SEMANTIC MAP

The annotated topological graph accompanied by the ANG
comprises the semantic map of the proposed work. This high
level map can be utilized by a user to pass directly high
level orders to the robot in order to move from one place to
another. Since the proposed method is an online one, the user
may intervene at any moment and pass a go-to command to
the robot relative to the places already seen in the explored
environment.

Given that the topological graph possesses low level spatial
attributes and remains transparent to the user, the latter
may interact only with the ANG. Towards this direction,
the traversing of the semantic map can be treated as a
hierarchical procedure that comprises two distinct phases.
The user is constantly aware about the current location of
the robot, i.e. the robot infers about its current location and,
therefore, it can be redirected to any other known place.
In the first phase the robot examines the ANG to find the
conductivities among its current place and the target one.
Given the fact that the ANG retains information about the
place connectivity, the robot can plan a high level route.
Considering the example presented in Fig. 3 the robot is
not able to move from the ”Printer Area” to the ”Office”,
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unless it passes through the ”Corridor”. This high level graph
traversing is accomplished using the Dijkstra algorithm,
where the corresponding weights in the ANG are expressed
as the inverse transition probabilities. The first phase imposes
the sequence of places the robot has to pass through in
order to reach the target. Given the detected nodes that
have been triggered on the ANG during the first phase, only
the respective quantization centers of the topological graph
participate in the second one. More precisely, for each group
corresponding to a specific place, the MST is computed
for the respective nodes in the topological graph. Next, the
derived paths are concatenated forming the minimum cost
path that -in geometrical terms- connects the corresponding
places. The formation of such a constrained path is physically
explained taking into consideration that the corresponding
sequence of places is indeed a feasible route connecting the
current and the selected place. In a similar fashion to the one
described in [12] the sequence of the nodes that form the
selected route can be embodied to the robot’s path planner
in order to autonomously navigate towards the target place.

V. EXPERIMENTS

The proposed semantic mapping framework has been
evaluated by means of the COLD dataset [24]. This is a
large database suitable for vision based recognition systems,
inasmuch as it consists of three sub-datasets, acquired in dif-
ferent Universities viz. Freiburg, Ljubljana and Saarbrucken.
Given the fact that the introduction of a localization and
mapping algorithm is not within the goals of this paper,
the location data provided by the COLD dataset have been
used in our experiments. During the off-line learning phase,
the SVM classifiers were trained on the Freiburg and Saar-
brucken sub-datasets utilizing the classes that intersect all
sub-datasets. Moreover, we considered that the proposed
framework should operate in previously unseen places, hence
it was evaluated on the Ljubljana sub-dataset.

As far as the formation of the vocabulary in the BoW is
concerned, the parameter Q in the Neural Gas was set equal
to 200, to offer a decent compromise between the classifi-
cation accuracy and the computational cost. The system has
been trained off-line using linear SVMs in a ten-fold cross
validation fashion resulting in the relaxation parameter C
equal to 100. The classification accuracy is summarized in
the confusion matrix as shown in Table I, exhibiting more
than 93% accuracy in all cases. The trained SVM models

TABLE I
CONFUSION MATRIX CONCERNING THE CLASSIFICATION ACCURACY OF

THE SVM MODELS AFTER THE TEN-FOLD CROSS VALIDATION.

Pr. Area Kitchen Corr. Office Lab. Bath.
Pr. Area 97% 0.0 3% 0.0 0.0 0.0
Kitchen 0.0 100% 0.0 0.0 0.0 0.0
Corr. 0.0 0.0 100% 0.0 0.0 0.0
Office 1% 0.0 0.0 94% 5% 0.0
Lab. 0.0 0.0 0.0 4% 96% 0.0
Bath. 0.0 1% 0.0 0.0 0.0 99%

where used for the evaluation of the semantic mapping

framework during the online experiments. In particular, the
parameter w in the voting procedure was set equal to 4,
i.e. the four neighbors around the candidate quantization
center are examined. A trajectory for the evaluation of the
semantic mapping framework on the Ljubljana sub-dataset
(Fig. 4(a)) that consists of six places (”Printer Area”, ”Cor-
ridor”, ”Office”, ”Bathroom” ”Kitchen” and ”Laboratory”),
has been utilized. It is clear that the semantic annotated
topological graph has been correctly formed by detecting
precisely all the existed places that observed during the
robot’s exploration. One attribute that is spotted is that the
places labeled as ”Corridor” have been sufficiently mem-
orized and the topological graph does not pool additional
nodes until the appearance based histograms significantly
differentiate. Another attribute also highlighted here is that
the ”Corridor” is split into two different places according to
the MST partitioning of the topological graph. The spatial
connectivity in all cases is correctly formed indicating the
precise formation of the groups in topological graphs, given
their geometrical attributes. Regarding the respective ANG
of the places visited, it has also been correctly evolved during
the robot’s exploration. The edges with the omitted transition
probability values are zero, thus indicating the absence
of direct connections among non-adjacent places. As an
example, in order to traverse from the ”Printer Area” to the
”Bathroom”, the direct transition is unfeasible and the robot
has to pass through the ”Corridor2” and ”Corridor5”, thus
optimizing its route by including only the essential known
places, in order to reach its target, as depicted in Fig. 4(b).
Additional experiments were conducted proving the correct
execution of the go-to orders for arbitrary positions operating
precisely on the high level ANG, while the low level nodes
in the topological graph are correctly triggered, Fig. 4(c)).

VI. CONCLUSIONS

In this paper a method to seamlessly conjugate semantic
and geometrical maps has been presented with ultimate aim
to bring closer the robot navigation to the human one.
An online semantic mapping framework has been intro-
duced based solely on visual input and, given an off-line
learned vocabulary, the proposed framework draws accurate
semantic inferences about its surroundings. The proposed
method reveals spatiotemporal coherency leading to rational
topological graphs. The main innovation in our method
is that the high level ANG is formed online during the
robot’s exploration and it exhibits semantic attributes of
the detected places, while it express the spatiotemporal
connectivity among them in terms of transition probability.
Wherefore, the proposed ANG reveals qualitative navigation
characteristics similar to the ones apprehended by a user,
whilst it preserves also tokens of quantitative ones, in terms
of traversability quantification among places. To this end, the
ANG can be further exploited by the user to pass direct high
level commands to the robot. The execution of such orders is
performed hierarchically, firstly by planning an abstract route
and then by triggering the appropriate sequence of nodes in
the topological graph. Moreover, the proposed method has
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(a)

(b)

(c)

Fig. 4. a) The ANG and the respective semantic annotated topological map
during the robots exploration in the small sequence Sunny1 of the COLD
dataset. The existed places are a ”Printer Area”, a ”Kitchen”, a ”Laboratory”,
a ”Corridor”, an ”Office” and a ”Bathroom”. Examples of go-to actions b)
from the ”Printer Area to the Bathroom” and c) from the ”Office to the
Bathroom”, are presented.

been thoroughly examined on long range indoor datasets
yielding remarkable performance.
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Use of a Monocular Camera to Analyze a Ground Vehicle’s Lateral
Movements for Reliable Autonomous City Driving

Young-Woo Seo and Ragunathan (Raj) Rajkumar

Abstract— For safe urban driving, one prerequisite is to keep
a car within a road-lane boundary. This requires human and
robotic drivers to recognize the boundary of a road-lane and
the location of the vehicle with respect to the boundary of
a road-lane that the vehicle happens to be driving in. We
present a new computer vision system that analyzes a stream
of perspective images to produce information about a vehicle’s
lateral movements, such as distances from a vehicle to a road-
lane’s boundary and detection of lane-changing maneuvers.
We improve existing work in this field and develop new
algorithms to tackle more challenging cases, such as driving on
inter-city highways. Tests on real inter-city highways showed
that our system provides stable and reliable performance in
terms of computing lateral distances, while yielding reasonable
performance in detecting lane-changing maneuvers.

I. I NTRODUCTION

In city-driving scenarios, an essential component of safe
driving is keeping the vehicle in a road-lane boundary. In
fact, such a capability is a prerequisite for various advanced
driver assistance systems (ADAS) [3], [5], [12] as well as for
executing reliable autonomous driving [15], [20]. One way to
achieve this capability, for human drivers, is to design lane-
departure warning systems. By analyzing steering commands
from in-vehicle data and lane-markings through a forward-
looking camera, such a warning system can alert drivers
when they unintentionally deviate from their paths. A self-
driving car, to be deployed on urban streets, should be
capable of keeping itself in a road lane before executing
any other urban autonomous driving maneuvers, such as
changing lanes and circumventing stalled or slow-moving
vehicles.

The task of staying within a road-lane begins with per-
ceiving longitudinal lane-markings. A successful detection of
such lane-markings leads to the extraction of other important
information – the vehicle’s location with respect to the
boundary of the road-lane. Such information about lateral
distances of the vehicle to the left and right boundaries of
a road-lane help a human driver and a robot driver keep the
vehicle in the road-lane boundary. The capability of driving
within designated lanes is critical for autonomous driving on
urban streets, where GPS signals are either degraded or can
be readily disrupted.

Some earlier work, using 3D LIDARs, demonstrated im-
pressive results in understanding road geometry. In partic-
ular, four of the autonomous driving applications installed
multiple off-the-shelf laser range finders toward the ground
and measured the reflectivity values of road surfaces. In such
manner they analyzed the geometry of the current roadway
[6], [11], [15], [20]. Two of ADAS applications proposed

Young-Woo Seo is with the Robotics Institute and Ragunathan Ra-
jkumar is with Dept of Electrical Computer Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,young-
woo.seo@ri.cmu.edu, raj@ece.cmu.edu

lane-departure warning systems using automotive-grade laser
range scanners. Instead of multiple LIDARs, they used a
single LIDAR with multiple horizontal planes: six for Ogawa
and Takagi [17] and four for Kibbel et al. [10]. Both methods
recognized lane-markings in a similar way: 1) handpicking
some of the scan points, 2) finding a list of parameters, (e.g.,
curvature, lane-width, lateral offset, and yaw-angle), and 3)
representing the lane with a polynomial (e.g., quadratic or
cubic).

However, such a high-end, expensive LIDAR may not
always be available. Instead of relying on such active range
sensors, many researchers as an alternative, with an eye on
lower costs and installation flexibility, have studied the use
of vision sensors. Researchers have actively studied road ge-
ometry understanding through lane-marking detection; some
research results have been successfully commercialized as
well [3]. Some utilize inverse perspective mapping to remove
perspective distortions [1], [16], others use in-vehicle data,
such as steering angle, velocity, whether a wiper is turned
on [3], [12]. Some have implemented Bayes filters, to make
their lane-detection methods robust [9], [10], [16], [17].
However, most of this research using a vision sensor focuses
on developing driver-assistance systems for manual driving,
where the outputs are not always expected to be produced
and human drivers can, if necessary, override the incorrect
outputs [1], [3], [5], [12], [16]. For a self-driving car, in
contrast, the information about a vehicle’s location with re-
spect to a road-lane boundary should be available throughout
navigation and in a bounded performance. Otherwise, when
driving on regions with unreliable GPS signal reception (e.g.,
urban canyons), an autonomous vehicle might easily veer
from the centerline of a road-lane, resulting in unacceptable
consequences.

To produce a vehicle’s relative motions within a road-
lane, we develop a vision algorithm that analyzes perspective
images acquired from a monocular camera to extract infor-
mation about a vehicle’s lateral movements, metric offset
measurements from road-lane boundaries, and detection of
lane-changing maneuvers. To this end, our algorithm first
extracts longitudinal lane-markings from input perspective
images and, on inverse perspective images, analyzes their
geometric relation. This step yields the local geometry of a
current roadway. The algorithms then solve a homography
between a camera plane and a roadway plane to assign the
identified geometry with metric information.

The contributions of this paper include 1) a method of
analyzing the geometry of a current roadway, 2) a method
of computing metric information of points on the ground
plane, and 3) a new vision system for computing a vehicle’s
lateral movements.
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(a) An example of lane-marking detection re-
sults. Our lane-marking detector produces a
binary image about lane-markings and the de-
tected lane-markings are represented as a list
of pixel groups (or blobs). Each of the red
boxes shows a bounding-box of a detected lane-
marking blob.

(b) The initial lane-marking detection results
are overlayed onto, after false positive re-
moval, the input image. The blue rectangle
defines the image region that is transformed
into an inverse perspective image.

(c) This subfigure shows only a part of an
inverse perspective image to enlarge the image
sub-region where lane-marking blobs appear.

Fig. 1: Results of a lane-marking detection.

II. U NDERSTANDING LATERAL MOTIONS OFA GROUND
VEHICLE FROM A SINGLE IMAGE

Our goal in this work is to provide a ground vehicle with
information about its lateral movements. We call the road-
lane, which our vehicle happens to be driving on, the host
road-lane. The information provided includes the vehicle’s
lateral location in meters relative to the host road-lane’s
boundary and occurrences of lane-changing maneuvers. To
acquire such information, our vision algorithms first detect
longitudinal lane-markings on the images acquired from
a forward-looking camera, and classify their colors (e.g.,
yellow or white); then transform a perspective image into an
inverse perspective image to obtain the information about the
geometric structure of the host roadway, such as the number
of road-lanes in the current roadway and the index of the
host road-lane from the leftmost road-lane; and, finally, we
compute metric measurements of the identified regions to
obtain information about the vehicle’s lateral motion.

In what follows, we detail how we recognize lane-
markings from perspective images and compute the geometry
of a local roadway from inverse perspective images. We then
explain how we compute 3-dimensional world coordinates of
2-dimensional image coordinates of the identified roadway
geometry so as to produce the information about the vehicle’s
lateral motion in meters.

A. Recognizing Lane-Markings for Understanding Local Ge-
ometry of Roadway

Road-markings define how drivable regions are used to
guide vehicles’ navigation. They are obviously important
cues to understanding the geometric structure of a roadway.
Among these, the ones we want to detect are those that
longitudinally depict boundaries of individual road-lanes. In
a forward-looking image of urban-streets, we can readily,
with the naked eye, distinguish lane-markings. They have
distinguishing colors (white and yellow), relatively higher
intensity than their neighboring pixels, and occupy approx-
imately known locations. However, these salient features
are not always available for image processing; after all the
actual values of lane-marking pixels vary based on image
acquisition conditions.

Instead of dealing directly with these challenging vari-
ations in lane-marking pixels’ appearances, we identify
lane-marking image regions by implementing a simple fil-
ter, which emphasizes the intensity contrast between lane-
marking pixels and their neighboring pixels. Our lane-
marking detection algorithm was inspired by the one devel-
oped by Nieto and his colleagues [16].

Normal longitudinal pavement lane markings on highways
(i.e., inter-city and inter-state highways in the U.S.) are 4∼12
inches wide (10∼30.48 centimeters) [13]. Given this fact, we
can readily compute the number of pixels used to depict lane-
markings on each row of the input image. For example, for a
given pre-computed lane-marking pixel width,wi, our filter
transforms the original image intensity value,I(u, v), into
I(u, v)′ by

I(u, v)′ = 2× I(u, v)− {I(u− wi, v) + I(u+ wi, v)}

− |I(u− wi, v)− I(u+ wi, v)|

If I(u, v)′ is greater than a predefined maximum value, we
set it to that maximum value (e.g, 255). IfI(u, v)′ is lesser
than zero, we set it to 0. To produce a binary image of
lane-markings from this filter response, we do a thresholding
that keeps only pixels of which values are greater than a
given threshold. Figure 1a shows an example of lane-marking
detection results. Even with many (readily discernible) false
positive outputs, our lane-marking detection outputs are suf-
ficient because their false negatives are quite small, meaning
that our detector picked up almost all true longitudinal lane-
markings appearing in the image. We then represent the lane-
marking detection result as a list of pixel groups (or blobs)
and analyze their geometric properties, such as heading and
length, to filter out some non-lane-marking blobs. To further
filter out false positives, we also compute the ratio of the sum
of a blob’s width to that of a true lane-marking to estimate the
likelihood that a lane-marking blob is a true lane-marking.

γ(bi) =

∑

vj
|uj,1 − uj,|uj |

|
∑

v∗

j

|u∗j,1 − u∗j,|uj |
|

where bi is the ith lane-marking blob,uj,1 (uj,|uj |
) is the

jth row’s first (last) column of theithe blob, andv∗j is the
corresponding information of the true lane-marking blob.
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The color of a lane-marking plays an important role
of determining its semantics. For example, in the U.S., a
yellow (or white) longitudinal lane-marking separates traffic
flows in the opposite (same) direction [13]. To obtain such
semantic information about a lane-marking, we classify,
using a Gaussian mixture color model, the color of a detected
lane-marking blob into one of three categories: yellow, white,
and other. In particular, the color class of a detected lane-
marking blob is determined by computing,argminc∈C(µb−
µc)

T (Σb +Σc)
−1(µb − µc), whereµb andΣb are the mean

and covariance of HSV (Hue-Saturation-Value) color of a
lane-marking blob andµc andΣc are a color model’s mean
and covariance. We reserve an “other” class for handling all
other colors of lane-marking blobs other than the two major
color classes: yellow and white.

To obtain the information about the geometric structure
of the current roadway, we compute an inverse perspec-
tive image from a given perspective image. The inverse
perspective mapping is an image warping technique that
is frequently used to remove the perspective effect from
the field of lane-marking detection [1], [5], [12], [16]. This
mapping essentially defines two transformations of a point,
X, from a perspective image to an inverse perspective image,
Xinv = Tinv

perX
per , and vice versa,Xper = T

per
invX

inv.
Figure 1c shows a part of the inverse perspective image of
the perspective image shown in Figure 1b.

Before we analyze the geometry of the current roadway,
we further filter out false-positive lane-marking blobs from
inverse perspective images where two parallel lane-markings
are (nearly) parallel to each other. We removed lane-marking
blobs from further consideration if their orientations were
not aligned with the primary orientation. The primary ori-
entation of lane-marking blobs is that of the longest lane-
marking blob. This selection is based on the assumption
that the longest lane-marking blob is always aligned with
the roadway’s driving direction, regardless of whether it
is truly a lane-marking. For the remaining lane-marking
blobs, we select any lane-marking blob pairs if their distance
is probabilistically significant. In other words, we assume
that the widths of legitimate road-lanes follow a Gaussian
distribution,P (wi) ∼ N(µ, σ). We pick a lane-marking blob
and a neighboring lane-marking blob. And then we compute
the average distance betweenk selected points from the lane-
marking blob pair and use that as the width between the pair.
We keep the pair for further consideration if the probability
of the approximated width is significant (e.g., within 1σ).
This process results in a list of lane-marking blobs, some of
which are in fact true longitudinal boundary lane-markings.
Our approach of selecting a road-lane hypothesis is similar
to that of [9] in terms of probabilistic hypothesis generation,
but different in that Kim [9] used a combination of RANSAC
and a particle filter to generate road-lane hypotheses.

To finalize the search of road-lane boundary lane-
markings, we use the lane-marking color classification results
to handpick some of the selected lane-marking blob pairs. In
addition, we use two pieces of prior information: the most
frequent number of road-lanes and the semantic meaning
of lane-markings’ colors. In particular, from government-
published highway statistics [14], the majority of highways
are four-lane, with two lanes each for traffic in each driving
direction. In the U.S., where the vehicles drive on the right

side of a road, when a driver observes a yellow lane-marking
on the left side, that lane-marking almost certainly indicates
the left boundary of the road-lane. This also holds true when
one observes a (solid) white lane-marking on his left side
to the immediate left.1 Once we find one of lane-marking
blobs on the left, either white or yellow, we choose its right-
side counterpart based on the pre-defined maximum number
of road-lanes. The strength of each individual hypothesis is
also probabilistically evaluated as before. Figure 2 shows
the results of our algorithm on recognizing the structure of
a highway in Pittsburgh, PA USA. Although there are many
false positive lane-marking blobs (depicted in green), the
appearances of which are legitimate, our algorithm was able
to pick up the right combination of lane-markings for delin-
eating road-lane boundaries. For the internal representation,
we interpolate the centerline of two identified boundary lane-
markings of the host road-lane and fit a quadratic function
to estimate the curvature of the current roadway.

Fig. 2: The road-lane boundaries detected by our algorithm
are depicted by a series of blue stars.

B. Metric Information Computation

Using the method described in the previous section, we
recognized some of the detected lane-marking blobs as
boundary lane-markings for the current roadway. This infor-
mation enables us to understand 1) how many road-lanes are
in the current roadway and 2) the index of the current road-
lane from the leftmost road-lane. In the example shown in
Figure 2, we know that our vehicle is driving on the leftmost
road-lane of a two-lane (inter-city) highway. We now need
to compute the lateral distances of our vehicle from the left
and the right boundaries of the host road-lane.

To this end, we define a homography between a roadway
plane and an image plane to estimate 3-dimensional coor-
dinates of interesting points on the roadway plane. A 3D
world coordinate computation through such a homography
works well when the camera plane and the roadway plane
are perpendicular to one another. Occasionally, however, such
an assumption falls apart because of the vehicle’s ego-motion
and uneven ground surface. To handle with such cases, we

1We know which lane-marking blobs are located at the left of our vehicle
because we know the image coordinates of the point our camera is projected
on, in a perspective image.
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estimate the angle between the camera plane and the ground
plane using the vanishing point.

In what follows, we first explain how we compute a
vanishing point along the horizon line and then details how
we compute world coordinates of interesting points on the
ground plane.

1) Vanishing Point Detection for Estimating Pitch Angle:
Knowledge of a vanishing point’s location and the horizon
line on a perspective image provides a great deal of useful
information about road scene geometry. Among these, we are
interested in estimating the angle between the camera plane
and the ground plane. A vanishing point is an intersection
point of two parallel lines on a perspective image. In urban
street scenes, one might obtain plenty of parallel line pairs,
pairs such as longitudinal lane-markings and building con-
tour lines. To obtain these contour lines and other lines, we
tried three methods: Kahn’s method [8], the probabilistic, and
the standard Hough transform [18]. We found that the Kahn’s
method works best in terms of the number of resulting
lines and their lengths. The Kahn’s method basically uses
the principal eigen vector of a pixel group’s coordinates, to
compute the orientation of a line fitting to that group. Figure
3 shows one result of our line extraction, where each of the
extracted lines is depicted in a different color based on its
orientation.

Fig. 3: An example of vanishing point detection result. The
red “x” in a green circle represents the computed vanishing
point along the horizon line. The yellow line represents the
identified horizon line.

Given a set of extracted lines, we use RANSAC to find the
best estimation of a vanishing point. In particular, we first
set two priors for the horizontal and vertical line groups as
vph = [0, 0, 1]

T
,vpv = [0, 1, 0]

T in the camera coordinate.
We then categorize each of the extracted lines into one
of these two groups based on the Euclidean distance to
horizontal and vertical priors. For each line pair randomly
selected from the horizontal and vertical line groups, we first
compute the cross-product of two lines,vpij = li × lj , to
find an intersection point. We use this intersection point as
a vanishing point candidate. We then claim the vanishing
point candidate with the smallest outliers as the vanishing
point for that line group. A line pair is regarded as an
outlier if the angle between a vanishing point candidate and

the vanishing point obtained from the line pair is greater
than a pre-defined threshold (e.g., 5 degrees). We repeat this
procedure until a vertical vanishing point is found and more
than one horizontal vanishing point is obtained. The horizon
line is obtained by linking all of those horizontal vanishing
points. Figure 3 shows one result of our vanishing point
computation.

2) A Perspective Transformation between Camera Plane
and Road Plane:This section details how we model the
perspective transformation between an image plane,π, and
a road plane,n. We assume that a world coordinate frame
aligned with the camera center and the roadway plane is flat.
Figure 4 illustrates the perspective transformation we used in
our study. The camera coordinate is oriented such that thezc-
axis is looking along a road’s driving direction, theyc-axis is
looking down orthogonal to the road plane, and thexc-axis
is oriented perpendicular to the driving direction of the road.
In addition, we model, based on our vehicle coordinates, the
coordinate frame of the road plane such that theXR-axis
of the road plane is aligned with thezc-axis of the camera
(or world) coordinate and theYR-axis of the road plane is
aligned with thexc axis of the camera (or world) coordinate.

Fig. 4: A perspective transformation between the camera
plane and the roadway plane.

In this setting, a point in the real-world,XW = (X,Y, Z),
can be represented asXW = (YR, hc, XR), where hc is
the camera’s mounting height from the road plane. We use
the basic pinhole model [4] to define the perspective central
projection between a point in the world,XW and a point in
a camera plane,xcam = (xcam, ycam). Note that a point in
an image plane is further mapped throughtxim = Kxcam,
whereK is a camera calibration matrix defining a camera’s
intrinsic parameters [4].

xcam = PXW (1)

whereP is the camera projection matrix that defines the
geometric relationship between two points,xcam andXW .
The projection matrix, in particular, consists of a rotation
matrix, R3×3(φ, θ, ψ) and a translation matrixt3×1(hc),
P = [R(φ, θ, ψ)|t(hc)], whereφ, θ, ψ define roll, pitch, and
yaw angles. Assuming that roll and yaw angles are zero, the
central projection equation is detailed as

xcam = [R3×3|t3×1]

[

XW

1

]

4×1
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= RXW + t

XW = RTxcam −RT t = [RT | −RT t]xcam

where R =





1 0 0
0 cθ sθ
0 −sθ cθ



 , t =





0
hc
0





where cθ is cos θ and sθ is sin θ. We solve Equation 1
algebraically to obtain the coordinates of a point in the real
world, (XR, YR).
[

XR

YR

]

2×1

=

[

xcamp33 − p13 xcamp31 − p11
−ycamp33 + p33 −ycamp31 + p21

]

−1

2×2

×

[

−xcam(p32hc + p34) + p12hc + p14
ycam(p32hc + p34)− p22hc − p24

]

2×1

(2)

where (XR, YR) is a point on the road plane in the world
coordinate. Once we obtain these coordinates, it is straight-
forward to compute metric measurement of a point on the
road plane. For example,XR is the distance from the camera
center.

To precisely compute such a metric measurement, it is
necessary to obtain Euler angles, particularly the pitch angle,
the angle between the camera plane and the ground plane.
We approximate the pitch angle from a vanishing point
computation in the following way. Suppose that a vanishing
point at the horizon line is defined as [7]:

vp∗

h(φ, θ, ψ) =

[

cφsψ − sφsθcψ

cθcψ
,
−sφsψ − cφsθcψ

cθcψ

]T

Suppose that the yaw and the roll angles are zero, the above
equation yields:

vp∗

h(φ = 0, θ, ψ = 0) =

[

0

cθ
,−

sθ

cθ

]

If a road plane is flat and perpendicular to an image plane,
the vanishing point along the horizon line is exactly mapped
to the camera center, resulting in the pitch angle being zero.
From this fact, we can compute the pitch angle by analyzing
the difference between they coordinate of a vanishing point
and that of the principal point,tan−1 (|Py − vpy|), where
Py is they coordinate of the principal point.

Figure 5 presents an example result from our local road-
way geometry analysis. At the top left, we display informa-
tion about the geometric structure of the host roadway, such
as the number of road-lanes, the index of the host road-lane,
and the host road-lane’s width in meters. In particular, our
vehicle is driving on the first lane of a two-lane road in which
the width of the host road-lane is estimated to be 3.52 meters
and the true road-width is 3.6 meters. Two (red) bars along
the left road-lane boundary indicate the estimated distances
from the camera center (in this case, 3.80 and 9.82 meters).
Finally, the lateral distances of our vehicle from the left and
right boundaries are computed as 1.028 and 0.577 meters.

With this information, we can also detect whether our
vehicle ever crosses a boundary of the host road-lane. In
particular, we represent the estimated lateral distances of
our vehicle from the left with negative numbers and from
the right with positive numbers. To detect a lane-detection
maneuver, we first observe these numbers up tok previous
time steps (or frames), determine which lateral offset is

smaller (or which side is closer to the vehicle), and claim a
lane-changing maneuver when the sign of the closest side is
changed. To go back to normal driving status, we observe
these sequential values again and claim “normal” driving if
we observek− l number of the same signs. It is important to
observe a series of similar values before triggering the state
change. If we only respond to a sign change, our algorithm
would fail to distinguish zig-zaging from a lane-changing
maneuver. Figure 6 presents a series of images as an example
of lane-changing maneuver detection.

Fig. 5: An example result from our local roadway geometry
analysis.

III. E XPERIMENTS

In this section, we present our detailed experimental set-
tings and results. We drove a robotic vehicle equipped with a
pose estimation system. The accuracy of our pose estimator
is from approximately 0.1 to 0.3 meter. We drove the vehicle
one km along a curvy and hilly segment of road. Our manual
measurement recorded a true lane width of 3.6 meters, but
some regions of the testing path had different widths due to
road geometry (i.e., intersections) or designated U-turn areas.

Figure 7 shows results of metric computation for the
estimated local roadway geometry. Thex-axis is time and
the y-axis is computed metric in meters. A (green) dashed
horizontal line is depicted at 3.6 to indicate the true lane-
width. We intentionally drove the vehicle along the centerline
of the testing roads until time step 400 and then, before
taking a U-turn between 790 and 910, we drove the vehicle
in a zig-zag fashion. While making a U-turn, our system
generated no outputs, which were correct. After the U-turn,
we zig-zagged at a higher fluctuation. At the upper part
of the Figure, the results of lane-width computation are
shown, whereas at the lower part, the results of lateral offset
computation are shown, where the magenta circles (the cyan
triangles) represent the left (right) lateral offsets.

On average, the lane width estimation varied between
3 and 4.5 meters with a variation of 0.342 meter. To
clearly differentiate measurement errors, a different shape
is depicted at the top of a lane-width estimate: A blue
square for when the error is less than 0.2 meter, a cyan
circle for when it is between 0.2 and 0.3 meter, and a
green circle for all remaining estimates. We could improve
the performance if we intentionally removed the lane-width
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(a) frame=5. (b) frame=7. (c) frame=9. (d) frame=11. (e) frame=16. (f) frame=19.

(g) frame=5. (h) frame=7. (i) frame=9. (j) frame=11. (k) frame=16. (l) frame=19.

Fig. 6: An example of lane-changing maneuver detection. Images at the upper row show a series of perspective images
whereas the ones at the lower row present a corresponding pairs of inverse-perspective images.

estimate, when its value is greater than 3.9 meters. Although
such a thresholding is valid, in terms of using a prior
information, we did not do this, to measure the accuracy
as it is.
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Fig. 7: Results of metric computation for the local road-
way geometry. In the upper part, the results of lane-width
computations are presented with different shapes based on
the computation error whereas, in the lower part, the results
of lateral offsets are presented in different colors (magenta
(cyan) for left (right) lateral offset).

While conducting this experiment, we had no means,
unfortunately, of measuring the true lateral offsets. One way
we could possibly measure the performance of lateral offset
computation is to look into the accuracy of the lane-width
computation. This is because the error of the lateral offset
computation is basically a sum of its own error and that of
the lane-width computation.

To evaluate the performance of our system’s lane-changing
maneuver detection, we also recorded several hours of videos
on different dates that included highway and city drivings.
We manually identified 33 lane-changing maneuvers. We
could also measure the performance of our system’s metric

computation from this data, but only looked at these man-
ually identified maneuvers. For thek and l, which are the
parameters for the temporal window of observing the closest
lane-marking, we found 20 and 5 worked best. Our system
was able to detect 27 out of 33 lane-changing maneuvers,
resulting in a recall rate of (27/33 =) 0.81. Twice the system
incorrectly produced outputs, resulting in a precision rate of
(27/29 =) 0.93.

IV. CONCLUSIONS ANDFUTURE WORK

This paper has presented a computer vision system that
analyzes a stream of perspective images from a forward-
looking camera to acquire information about a ground vehi-
cle’s lateral movements. The outputs include the information
about the geometric structure of the host roadway such as
the number of road-lanes, the index of the host road-lane,
and the width of host road-lane in meters. These pieces of
information enabled us to determine the lateral distances
of our vehicle from the left and right boundaries of the
host road-lane in meters and whether our vehicle crossed
any road-lane boundaries. From the actual road-tests, we
found our system showed stable and reliable performance
in computing lateral distance and reasonable performance in
detecting lane-changing maneuvers.

As future work, we would like to investigate whether a
Bayes filter would help improve the current implementation,
which analyzes image frames individually in order to under-
stand the geometric structure analysis of the host roadway.
For the lane-markings’ color classification, we learned, under
a batch mode, the color model from a set of manually labeled
color samples and used the model for the classification. The
learned model is biased to the sample data and may result,
when the color distribution of testing data is significantly
different, in unacceptable performance. To find a remedy to
this problem, we also would like to investigate whether an
incremental update of the color model would help improve
the performance of the color classification.
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Object-Level View Image Retrieval via Bag-of-Bounding-Boxes

Ando Masatoshi Chokushi Yuuto Inagaki Yousuke Hanada Shogo Tanaka Kanji

Abstract— We propose a novel bag-of-words (BoW) frame-
work to build and retrieve a compact database of view images,
toward robotic localization, mapping and SLAM applications.
Our method does not explain an image by many small local fea-
tures (e.g. bag-of-SIFT-features) as most previous methods do.
Instead, the proposed bag-of-bounding-boxes (BoBB) approach
attempts to explain an image by fewer larger object patterns,
which leads to a semantic and compact image descriptor. To
make the view retrieval system more practical and autonomous,
the object patterns are discovered in an unsupervised manner,
via common pattern discovery (CPD) between the input and
a known reference images, which does not require pre-trained
object detector. Moreover, our CPD task does not rely on good
image segmentation and can handle scale variations, exploiting
the recently developed CPD technique, spatial random par-
tition. By exploiting traditional bounding box -based object
annotation and knowledge transfer, we compactly describe an
image in a form of bag-of-bounding-boxes (BoBB). With a
slightly modified inverted file system, we efficiently index/search
the BoBB descriptors. Experiments with publicly available
“RobotCar” dataset show that the proposed method achieves
accurate object-level view image retrieval with significantly
compact image descriptors, e.g. 20 words per image.

I. INTRODUCTION

View image retrieval on compact database of view images
is a fundamental building block for robotic localization,
mapping and SLAM systems [1]–[3]. Applications include
large scale maps and information sharing, where the spatial
cost for storage [1], [2] and information transfer [3] of
view database becomes critical issue. One of best known
ways to address this problem is the popular bag-of-visual-
features (BoVF) [4]–[7], which was originally inspired by
the traditional bag-of-words (BoW) model from text infor-
mation retrieval, and where the indexing (or retrieval) process
proceeds as follows:

1) extract local visual features from an input database (or
query) view image;

2) translate the features into visual words using a feature
dictionary;

3) index (or exact search) the inverted file system using
the visual words.

Our approach proposed in this paper also follows a similar
pipeline consisting of three steps 1)-2)-3), but it does not
explain an image by many small local features (e.g. bag-of-
SIFT-features) as most BoVF frameworks do. Instead, we
attempt to explain an image by fewer larger object patterns,
which leads to a semantic and compact image descriptor.

This work was partially supported by MECSST Grant (23700229,
30325899), by KURATA grants and by TATEISI Science And Technology
Foundation.

The authors are with Graduate School of Engineering, University of
Fukui, Japan. tnkknj@u-fukui.ac.jp

This study is motivated by recent success in object-
level correspondence techniques (e.g. co-segmentation) for
common pattern discovery, i.e. mining common object pat-
terns across images [8]–[11]. A known limitation of feature-
level correspondence techniques (e.g. BoVF) is that they
are largely influenced by the extracted features, and cannot
exploit further information beyond the detected features,
whose size and shape are typically small and must be defined
prior to the feature extraction (i.e. 1st) stage. To counter this,
different lines of researches on object-level correspondence,
including common pattern discovery [8], co-segmentation
[9], subimage search [10], and visual phrase [11] have
been developed. By simultaneously looking at a pair of
images, those techniques attempt to find larger object-level
correspondence based on the fact that true correspondences
are supported by larger object region than false ones.

We are particularly inspired by the spatial random parti-
tion (SRP), a common pattern discovery (CPD) technique
originally proposed in [12] and recently developed in [11],
where an input image is characterized by a pool of over-
lapping subimages randomly sampled from it. For CPD,
each subimage is queried and matched against the subimage
pool, based on the fact that a common pattern is likely to
be present in a good number of subimages across different
images. From our viewpoint of object-level view retrieval,
SRP has several desirable properties: 1) It does not rely on
good image segmentation techniques; 2) It does not require
a priori knowledge on how many common object patterns
exist in the input views; 3) It does not rely on quantization
of visual features; and 4) It is able to handle scale variations
of the object. Our proposed approach is designed to leverage
those desirable properties of SRP.

In this paper, we focus on use of the object-level corre-
spondence techniques within the general BoW framework.
Accordingly, our indexing (or retrieval) process is slightly
different from that of the BoVF framework, and proceeds as
follows (Fig.1):

1) extract object patterns that well explain an input image
from a known reference image;

2) translate the object patterns discovered to visual words;
3) index (or similarity search) the inverted file system

using the visual words.
Following the BoW literature, the 1st and 2nd stages for
database images are done in offline and ready for paral-
lelization and large-scale view retrieval. At the 1st stage, a
known reference image is simply used as a view dictionary,
in contrast to the pre-learned feature dictionary used by
traditional BoVF frameworks.
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(a) Stretching and partitioning input images (a grassy place)

(b) A pool of subimages

(c) A known reference image and common object pattern (i.e. grassy objects) discovered

(d) Bag-of-Bounding-Boxes
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(f) A visualization of the inverted file system as a word frequency histogram

Fig. 1. Our BoW pipeline. An input image is stretched vertically and horizontally as shown in (a), and randomly partitioned into a pool of subimages
(b). The subimages are matched between the input image and a known reference image, based on the fact that a common pattern is likely to be present
in a good number of subimages across different images (c). The resulted bag-of-bounding-boxes (d) is used as a compact BoW descriptor (e) for indexing
and retrieving the inverted file system (f).

There are five key properties about the proposed approach:
• An image is semantically characterized by object-level

information, in contrast to feature-level image charac-
terization in existing BoW frameworks;

• The object pattern discovery process is unsupervised,
without requiring manually labeled examples and/or
pre-trained object detector;

• An image is compactly described in a form of bag-
of-bounding-boxes (BoBB), employing traditional BB-
based object annotation and knowledge transfer [13];

• The BoBB framework inherits the efficiency in indexing
and retrieval from the general BoW framework by using
a slightly modified inverted file system;

• The BoBB framework leverages the state-of-the-art
CPD technique, spatial random partition (SRP) [11],
which has desirable properties as aforementioned.

Experiments with publicly available “RobotCar” dataset [1]
show that the proposed approach achieves accurate object-
level view image retrieval using significantly compact de-
scription of view images, e.g. 20 words per image.

II. RELATION TO OTHER WORK

Image retrieval in a large number of images has recently
received increasing attention [1], [7], [14]–[22]. Previous
studies have dealt with various aspect of the BoW frame-
work, including the quantization method and its speed [1],
[7], [14], the post processing based on a global spatial geo-
metric verification [15], the matching distance of descriptors

[16], and with various types of visual features including local
feature (e.g. SIFT, SURF), global feature (e.g. GIST), filter
bank (e.g. color, texture, object), and other feature modeling
techniques. While most of the above systems work on large
image databases, several efforts also focused on compactness
of the image database [19]–[22]. [21] has improved the
memory usage per image introducing a method for projecting
the BoW vectors onto a set of pre-defined sparse projection
functions. In [22], we also employed the BoW projection
technique and used it within a multi-cue BoW framework
for scalable scene retrieval applications. However, almost
all of those efforts to compact view database focused on
feature-level correspondence, and little study has attempted
on the object-level correspondence, as we propose to do in
this study.

The problem of object retrieval, whose goal is to accu-
rately locate the target object in image collections [11], is
clearly different from our view retrieval problem. Object
retrieval is a challenging task due to the fact that the target
object usually occupy only a small portion of an image with
cluttered background, and can differ significantly from the
query in scale, orientation, viewpoint and in color. One of
most effective ways to address this problem is the use of
spatial context [11], where the input images are partitioned
into small subimages and then matched against one another
based on the fact that a common object pattern is likely
to co-exist in a good number of subimages across different
images. However, existing works focus on object retrieval
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tasks, and often concerned with setting where feature-based
inference is possible, e.g. demanding rich features for geo-
metric verification. From our view retrieval standpoint, the
object retrieval approaches would waste a large amount of
memory resource to index those individual objects, and not
suited for our objective, i.e. compact description of view
images.

Although object-level scene representation is a central
importance in robotic mapping, localization and SLAM [23],
existing efforts to compact the view image database focus
on feature-level approaches relying on dimension reduc-
tion techniques. [24] developed a self-localization system
by combining the SIFT feature descriptor with principal
component analysis (PCA) dimension reduction techniques,
and achieved accurate track of the position of a robot in
a real environment. Many efforts have also been made on
various types of feature descriptors and advanced dimension
reduction techniques [1], [2], [25]–[28]. In our previous
papers, we also have developed localization systems ex-
ploiting dimension reduction techniques, including locality
sensitive hashing (LSH) [26], semantic hashing (SH) [27],
and compact projection (CP) [28]. In contrast, our current
paper focuses on an object-based scene characterization.

The problem of common pattern discovery (CPD), multi-
ple objects co-segmentation, or co-recognition, which aims
at automatic discovery of common object patterns across
images is an active and open research issue [8], [29]–[31].
Because no prior knowledge is available on the common
object patterns, this task is very challenging, and much
more difficult than traditional tasks such as detection and
retrieval of object patterns, since the search space (e.g.
appearance, size, shape, number of objects) is enormous. The
existing solutions include earth mover’s distance (EMD) [8]
and other model learning techniques, co-segmentation [29],
and correspondence growing [30]. In [31], we also have
developed a CPD technique in a form of correspondence
growing algorithm by employing a probabilistic MCMC
framework. However, improving existing common pattern
discovery techniques is not the objective of our current paper.
In this study, we focus on use of common pattern discovery
as a method for the object-level image characterization within
the general BoW framework.

III. BAG-OF-BOUNDING-BOXES (BOBB) FRAMEWORK

The proposed BoBB framework is slightly different from
the BoVF framework in three important aspects: 1) definition
of visual word; 2) representation of dictionary; and 3) search
criteria. We describe the basic idea behind each of them in
the following, and then explain the BoBB framework step-
by-step in subsections III-A, III-B, III-C, III-D, and III-E.

First, we define a visual word as a common object pattern
that well explains an input query/database image, discovered
from a known reference image via common pattern discovery
(CPD). Accordingly, our visual word extraction process
becomes an iteration of the CPD between an input and
the reference images, which consists of hypothesization and
verification of common object patterns: 1) Each iteration

begins by randomly stretching and shrinking each image
to deal with variations of scale, viewpoint and occlusions
(Fig.1a); 2) For the hypothesization, inspired by the spa-
tial random partition technique [11], a pool of subimages
are randomly sampled from both images and each pair of
subimages is used as a hypothesis of common object pattern
(Fig.1b); 3) For the verification, correspondence between
the subimage pair is verified (Fig.1c) by using any type
of correspondence measure (e.g. EMD [8], multiple objects
co-segmentation [29], correspondence growing [30]); In this
paper’s experiments, the normalized image correlation will
be used as the correspondence measure; 4) Common object
patterns discovered are compactly described in a form of bag-
of-bounding-boxes (Fig.1d), employing traditional bounding
box -based object annotation and knowledge transfer [13].

Second, we use a known reference image as a view dictio-
nary. This is in contrast to the feature dictionary used by the
BoVF framework for dimension reduction or quantization of
visual features. To make the view retrieval more practical
and autonomous, we do not assume any special indexing
architecture for the dictionary, such as ImageNet. Instead, our
view dictionary consists of raw images (e.g. JPEG images)
being acquired by the robot-self or shared via distributed
robot networks, without supervised categorization. Although
a dictionary for the BoW framework in general should be
designed to contain visual words that are frequently used
[4], it is beyond the scope of this paper to discuss such an
optimal design or adaptive learning of the dictionary image.
In this paper’s experiments, we will simply use dictionary
images consisting of 8-64 raw images, as shown in Fig.3.

Third, our search criteria is based on similarity search, in
contrast to the exact search (either single- or multi- probe
strategy [21]) commonly used by the BoVF framework.
Because our visual word is defined as a bounding box with
its pose and shape attributes, the similarity used for search
criteria is designed to evaluate similarity of those attributes.
In the current paper, the area of overlap between bounding
boxes will be simply used as the similarity measure.

A. Problem: View Image Retrieval

The goal of view image retrieval is to retrieve images
similar to a given query image IQ by comparing the query
image IQ and each image ID in the image database D= {ID},
given a reference image R and an object-level correspon-
dence measure S.

B. Common Pattern Discovery

Unlike the BoVF framework, the database building process
consists of an iteration of the common pattern discovery
between an input I and the reference R images, which
proceeds as follows:

1) randomly partition the input and the reference images
I and R for multiple times, and obtain a pool of
overlapping subimages {Ik} and {Rk} (Fig.1a,b);

2) evaluate the likelihood of each subimage pair (Ik,Rk)
being a match pair by using the correspondence mea-
sure S;
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3) rank all the subimage pairs in descending order of the
likelihood score;

4) select a set {(Ik,Rk)}T
k=1 of T top ranked subimage

pairs as common object patterns (Fig.1c).
Currently, the likelihood at the step 2 is evaluated by
comparing geometry and appearance between the subimage
pair. More formally, height and width of bounding box is
compared between the subimage pair, and if width or height
of taller bounding box does not exceed a pre-defined ratio
(1+ r) than shorter box, the subimage pair is viewed as a
potential match, and then, the likelihood for such a potential
match is evaluated by the given correspondence measure:
S(Ik,Rk).

C. Visual Word Extraction

We compute a bounding box for each of the regions of the
T common object patterns output by the above process, and
represent it by the coordinates xmin, xmax, ymin, ymax (Fig.1d).
The pose (xmin,ymin) and the shape (w,h) of each bounding
box, where 2w and 2h respectively represent the width
and height of the box, is computed and the 4D parameter
(xmin,ymin,w,h) is mapped to the visual word.

D. Indexing

The procedure for indexing the inverted file system given
bag-of-bounding-boxes (BoBB) descriptors is straightfor-
ward. The BoBB descriptor is represented by a 4D parameter
and transformed to a 1D visual word. Since we have to
store one entry for each bounding box existing in the pool
[21], each input image requires space linear to the number
of bounding boxes (i.e. visual words) per image.

E. Similarity Search

Given a query image IQ, the similarity search process aims
to retrieve and score images in the database D, and proceeds
in the following steps:

1) extract a bag-of-bounding-boxes {IQ
i } from the query

image IQ in the same manner as in III-B, III-C
(Fig.1d);

2) For each query BB IQ
i =(x,y,w,h),

a) retrieve images Di(⊂ D) whose BB can overlap
with IQ

i or belongs to the following area

Z = [x− (2+ r)w,x+(2+ r)w]× [y− (2+ r)h,y+(2+ r)h]

×[w/(1+ r),w(1+ r)]× [h/(1+ r),h(1+ r)],

in the BB parameter space;
b) evaluate similarity between every pair of BBs

from IQ and each IDi
j (∈Di), according to the area

of overlap between BBs;
3) compute the aggregate score v j for each of the retrieved

database images Di, while set score v j = 0 for those
database images that are not retrieved;

4) Rank all the database images in descending order of
the aggregate score v j.

query image relevant image top ranked image

Fig. 2. Input images and retrieval results for 5 different retrieval tasks.
In each of them, the retrieval was successful and the relevant images are
assigned high ANR rankings [%], 3, 3, 9, 4 and 2, respectively.

Fig. 3. Reference images. From top to bottom, images named “1”, “2”, “3”,
“4”, “5”, “6”, “7”, “8”, “12”, “34”, “56”, “78”, “1234”, “5678”, “12345678”
are shown (zoom in for detail).

IV. EXPERIMENTS

We conducted view retrieval experiments by utilizing the
“RobotCar” dataset provided by the authors of [1] (“FAB-
MAP 2.0”). The original dataset consists of GPS, stereo,
and omni-directional image data acquired by a car robot
during its driving 1,000km in outdoor environments. An
omni-directional image consists of 5 images from each of
the five side-facing cameras #1-#5 of Ladybug cameras
mounted on the robot car. For view retrieval experiments,
we chose images from the camera#1 which is directed to
the right and use image data within a rectangular region,
y ∈ [100,250], and GPS data for ground truth. We expect the
input images to be contaminated by variations in viewpoints,
illumination and partial occlusions. To counter this, each
view is represented by a small set of 10 frames sampled
from a short frame sequence, and similarity between a given
view pair is defined as the average of the 10× 10 frame
pairs from the view pair. Each retrieval experiment uses
independent dataset, which consists of a query view and
a size N = 100 view database. Each database consists of
one relevant view and a set of random (N − 1) distracter
views which do not overlap with either query or relevant
view. We utilize the information of loop closing provided
as a part of the “RobotCar” dataset, and use each of the
beginning and the ending of a loop respectively as a query
and a relevant views. The resulted datasets consist of images
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TABLE I
ANR PERFORMANCE OF DIFFERENT BOW FRAMEWORKS

Dataset name ANR(%)
“RobotCar” 10K words BoVF vocabulary 42.59
1K words BoVF vocabulary (20 words per image) 41.85
BoBB vocabulary (20 words per image) 35.38

TABLE II
INFLUENCE OF SUBIMAGE PROPERTIES.

crop
w: 0.5 w: 0.9

h: 0.5 h: 0.9 h: 0.5 h: 0.9

scale
w: 1.0 h: 1.0 38.73 36.19 41.22 44.41

h: 1.25 39.14 36.66 38.44 44.60

w: 1.25 h: 1.0 38.72 35.38 42.01 45.35
h: 1.25 40.34 36.89 40.56 44.13

taken of the same scene from different viewpoints, and
the appearance variations are attributed to various factors
including viewpoint change, illumination change, occlusion,
which makes the view retrieval tasks challenging.

For performance evaluation, we use the averaged normal-
ized rank (ANR) [4] as performance measure. The normal-
ized correlation is used as the correspondence measure S.
The number of common patterns per image is set T = 20
as default. The size of bounding box for a size w×h input
image is set (w · crop.w)×(h · crop.h), where crop.w = 0.5
and crop.h = 0.9 are used as default. The scaling factor
for shrinking/stretching bounding boxes along the horizontal
and vertical directions are respectively set scale.w = 1.25
and scale.h = 1.0 in default. The default reference image
is constructed by appending 8 images sampled from the
image set, each of which does not overlap with any query
or database image, and shown as “1” in Fig.3.

Although our BoBB (i.e. object-level) framework is com-
plementary to existing BoVF (i.e. feature-level) frameworks,
for the sake of evaluation, the BoVF framework was also
implemented and compared with the proposed BoBB frame-
work. In this study, two types of BoVF view retrieval systems
were developed. One is based on the BoVF data provided as
a part of the “RobotCar” dataset. We weighted the original
BoVF vectors with standard TF-IDF weighting scheme,
then index and retrieve the view database using an inverted
file system, and evaluate the performance using the ANR
measure. From our standpoint, a major inconvenience of the
above publicly available BoVF data is that its vocabulary is
learned from images acquired by the whole omni-directional
camera, i.e. not the camera#1 we use. We hence constructed
another independent BoVF data which is learned from the
images acquired by the camera#1. A set of training images
that are independent from the query and the database images
are randomly sampled from the entire image set, and for each
training image, a bag of SIFT feature vectors are extracted at
keypoints extracted by a grid sampling technique, and then
quantized into a bag of visual words using the approximated
k-means (AKM) quantization technique in [15]. In this study,
we set the vocabulary size to 1K words. Table I reports the
ANR performance comparing the proposed BoBB framework
with the other two BoVF frameworks. The BoVF frameworks
on our view retrieval problem is not as impressive as we ex-
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Fig. 4. ANR performance for different reference images.

pected. This is because of that in the current dataset, matched
objects often occupy only a small portion of an image, which
are very difficult to be identified (Fig.2). Although the object
retrieval techniques (e.g. geometric verification) have been
used to counter this problem in literature, they require many
words per image, and not suited for compact view database
as discussed in II. In contrast, our BoBB framework based
on compact description of object patterns achieves much
better retrieval performance with requiring only 20 words
per image.

So far, the experiments have focused on the case where an
input image is characterized by a pool of small subimages. To
evaluate effectiveness of this strategy, we also implemented
an alternative strategy where the pool of subimages consists
of big subimages almost the same size (e.g. 90%) as the
input image, and compare it with the proposed strategy. In
this study, we evaluate 16 different cases (crop.w, crop.h,
scale.w, scale.h)= {0.5, 0.9} ×{0.5, 0.9} ×{0.5, 0.9} ×{0.5,
0.9}. Tab II reports the comparison results. It can be seen
that the strategies with crop.w=0.5 clearly outperform the
ones with crop.w=0.9. This is due to the fact in the current
car robot applications, there are large variations in the
viewpoint particularly in the horizontal direction, and setting
the parameter to a small value crop.w=0.5 allows the robot to
adaptively learn the size and pose of the subimages according
to those variations.

One of key properties of the proposed BoBB framework
is that the BoBB image descriptor is strongly dependent
on the choice of the reference image that is used for
common pattern discovery. We are particularly interested in
understanding the impact of the choice of the reference image
on the retrieval performance. Thus, we further conducted
series of independent retrieval experiments using 15 different
reference images, which is created from 8 reference images
with the same size shown as “1”-“8” in Fig.3 by appending
horizontally a pair of images (e.g. “1234” is an append of
a pair of “12” and “34”), as shown in Fig.3. The graph
in Fig.4 reports the ANR performance for each of the 15
reference images, where the vertical axis is the normalized
rank [%] and the horizontal axis is the sorted query ID
[%]. It can be seen that the proposed BoBB framework is
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stable and successful for almost all the reference images used
in this study. However, since our algorithm is designed to
represent an input image by a pool of cropped reference
images, our algorithm would not be suitable for general cases
where whole regions of the input image is dissimilar from
the reference image, e.g. obviously not suited for the case
where the reference image is indoor. In the future we shall
study a way for automatically choosing the reference images
adaptively for a given set of database images.

To investigate the relationship between the number of
words per image and the retrieval performance, we conducted
additional retrieval experiments, using different number of
words per image, 5, 10, 20, 40, and 80. For each case, we got
the ANR performance 38.76, 36.19, 35.58, 34.61, 34.33, as
summarized in Fig.5. The large number of words per image
was used, the better was the ANR performance. However,
increasing the number of words per image requires larger
number of entries per image and decrease the compactness
of the image database, thus there is a tradeoff between
compactness and retrieval performance. In future, we would
like to explore methods to improve this tradeoff.

V. CONCLUSIONS

We proposed a novel BoW approach, bag-of-bounding-
boxes (BoBB), to build and retrieve a compact view image
database, which is characterized by (1) semantic object-level
image characterization, (2) unsupervised scene modeling,
(3) compact view image descriptor, (4) efficient indexing
and retrieval, and (5) the state-of-the-art CPD techniques.
Experiments on challenging outdoor datasets show that our
framework is insensitive to system parameters and robust
to variations in the viewpoint, contaminations of images by
noise, color and partial occlusions. Future work will explore
the optimization and adaptive learning of dictionary image
for unseen environments and compact the description of view
images which are enabled by the proposed bag-of-bounding-
boxes framework.
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Cart-O-matic project* : autonomous and collaborative multi-robot
localization, exploration and mapping.
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Abstract— The aim of the Cart-O-matic project was to design
and build a multi-robot system able to autonomously map an
unknown building. This work has been done in the framework
of a French robotics contest called Defi CAROTTE organized by
the General Delegation for Armaments (DGA) and the French
National Research Agency (ANR). The scientific issues of this
project deal with Simultaneous Localization And Mapping
(SLAM), multi-robot collaboration and object recognition. In
this paper, we will mainly focussed on the two first topics : after
a general introduction, we will briefly describe the innovative
simultaneous localization and mapping algorithm used during
the competition. We will next explain how this algorithm can
deal with multi-robots systems and 3D mapping. The next
part of the paper will be dedicated to the multi-robot path-
planning and exploration strategy. The last section will illustrate
the results with 2D and 3D maps, collaborative exploration
strategies and example of planned trajectories.

I. INTRODUCTION

Localization and mapping become the basis of many
mobile robotics systems. Vacuum cleaners and mowers are
great illustrations in tune with the times. Such systems may
also be of prime interest for defence, military applications
and rescue [9]. In 2008, the french research agency (ANR)
and the General Delegation for Armaments (DGA) launched
a robotics challenge called CAROTTE (CArtographie par
un ROboT d’un TEritoire - Autonomous mapping of an
area with a robot). Five teams ([15], [5] and [12]) have
been selected and founded to participate in this challenge
organized as a robotics competition similar to [13]. Each
team had to design and build an autonomous grounded
robotics system able to map a planar stage of a building
in less than 30 minutes. The system must output at the end
of the run the following data :
• a 2D map of the building,
• a 3D map of the building,
• a topological map of the building,
• location and type of walls,
• location and classification of objects.

Three events were organized in 2010, 2011 and 2012 and
the results of the five teams were scientifically measured
and compared. Unfortunately the results of the comparison

*This work was partially supported by the French National Research
Agency (ANR) and General Delegation for Armaments (DGA) through the
Cart-O-matic project in the CAROTTE challenge.

1MAIA Group, INRIA Lorraine, LORIA, Campus scien-
tifique, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France.
firstname.lastname@loria.fr

2LISA - University of Angers, 62 avenue Notre Dame du Lac, 49000
Angers , France firstname.lastname@univ-angers.fr

stay confidential but the rank of each team was published.
As the reader probably understood, we were one of the
team engaged in the competition. Our system reached the
first overall rank during the last evaluation (2012, June) and
the aim of this paper is to present and share our solution.
Each selected team was specialized in a given topic and
the characteristic of our team was to proposed a multi-robot
solution (the reader can refer to [8] for previous works). The
philosophy behind this approach is the reliability (if a robot
encounters a failure, it does not compromise the mission)
and the speed improvement of the mission (sharing the area
between several robots decreases the exploration time).
The first part of this paper is mainly focussed on localization
and mapping, the next section will present the multi-robot
exploration strategy. An overview of the experimental sets
and results will be described and a general conclusion ends
the paper.

II. SLAM-O-MATIC

For such exploration missions, localization and mapping
are clearly key items of the development of the architecture.
We proposed a novel SLAM algorithm based on scan match-
ing called Slam-O-matic [11]. This algorithm is odometry-
free and only requires LIDAR data. It is based on scan
matching: the key idea is to find the transformation (two
translations (∆y and ∆Ψ) and one rotation (∆Ψ) for 2D
SLAM) that offers the best matching between the LIDAR
data and the known map. The principle of Slam-O-matic
is similar to the one used for Hector Slam [10] which is
based on the computation of the map derivatives and use the
Gauss-Newton algorithm to maximize the matching between
scan data and the map. Slam-O-matic does not require the
computation of the derivatives and uses the Nelder and Mead
algorithm for minimizing the distance between scans and
known map (Cd on Equation 1). Nelder and Mead is a
derivative-free optimization algorithm.
SLAM is thus reformulated as an optimization problem
where ∆x, ∆y and ∆Ψ are the parameters to optimize. The
objective function is the sum of absolute distances between
each end-point of the scan and each obstacle of the map is
the scalar to minimize:

Cd(∆x,∆y,∆Ψ) =
n∑

i=1

√
(Xi

s −Xi
m)2 + (Y i

s − Y i
m)2)

(1)
where :

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

210



• Xi
s, Y

i
s are the coordinates of the ist point of the scan

data according to ∆x,∆y,∆Ψ.
• Xi

m, Y
i
m are the coordinates of the closest occupied cell

of the map in regard with the ist point of the scan data.
The environment is represented as a grip map [16], i.e.

a value associated to each cell of the map is representing
the current estimation of chances of having an obstacle.
When the occupancy reaches a given threshold (half of
the maximum value in practice) the cell is considered as
an obstacle otherwise it is considered as a free space.
For each cell of the map considered as an obstacle, the
distance to the closest occupied cell is computed as shown on
Figure 1. Unlike existing algorithm [1] where the distance is
approximated, the Euclidean distance is here pre-computed
thanks to a Look-Up-Table.

Fig. 1. Occupancy grid map (Left) and associated map with locally
computed distances (Right)

When a new LIDAR scan is available the location of each
end-point of the scan is located in the maps (occupancy and
distances map) based on the assumption that the the previous
estimated pose is the best known. It becomes thus very
simple and fast to compute the cumulated distance between
the new scan and the known map (Figure 2). This principle
allows a fast estimation of the cumulated distances for any
given transformation (∆x, ∆y and ∆Ψ). In other words, this
provides a quick numerical evaluation of the mathematical
function Cd(∆x,∆y,∆Ψ).

Fig. 2. New scan located in the map (Left) and surimposed maps:
occupancy, distances and new scan (Right)

The first intuitive idea is to take advantage of the distance
map (that can be seen as a gradient) to find the attractive
direction of the transformation as it is done in [1]. Unfor-
tunately, such gradient descent approach needs parameters
tuning (size of the steps for example) that may prevent

the algorithm to converge and may be sensitive to inital
conditions. We preferred the Nelder and Mead algorithm
(also called downhill simplex method) that is based on
iterative transformations of a simplex defined in the search
space. A map illustration is presented on Figure 3.

Fig. 3. Illustration of a map (63m long building) created without loop
closure.

III. MULTI-ROBOT SLAM

As explained in the introduction our objective is multi-
robot exploration that necessarily involves multi-robot
SLAM. In 2011, we experimented the following strategy :
each robot locally computes the best location for its own
current scan data and send to the other robots the result of
the optimization (best computed location and scan data). The
other robots have no more computation to perform while
the optimization has been previously done by the involved
robot. They just have to update their maps with the received
information. This strategy takes advantage of the multi-
robot to perform distributed computation. It also ensures (if
we assume there is no communication failure) that all the
robots have the same map. Unfortunately, in practice, this
solution appeared to be unsatisfactory due to communication
problems. With a complete sharing of the information of each
robot, the wireless bandwidth quickly saturated due to the
amount of sent data.
In 2012, based on our experience, the global map was not
computed on line: each robot computes it own local map
and stores scan data in memory. At the end of the mission,
raw data were sent via a wired network to a central laptop
for computing a single map for the whole system. This acts
exactly as the solution used in 2011, except that scan data
are gathered on a central computer to avoid communication
failure.

IV. RGB-3D MAPPING

As explain in the introduction, a 3D map of the building
was requested. Each robot was equipped with a RGB-D
sensor that provide RGB images and letter ”D” stands for
depth image. This combination makes the acquisition of a 3D
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colored image as illustrated in Figure 4. A popular solution
for realization of such a device is the KINECT™.

Fig. 4. Raw output of the RGB-D camera, and illustration of 3D image
forged by combination of depth and color information.

We knew, according to the rules, that the floor was planar
in the explored building. Once the robot are located in the 2D
map it becomes easy to build a 3D map since the RGB-D sen-
sor of each robot is calibrated before the mission. Calibration
consists in estimating the transformation between the LIDAR
and the KINECT. First step consists in computing roll and
pitch while the robot is resting on a planar floor (ground is
used as a reference). Next step consists in estimating yaw
in front of a wall : the wall is simultaneously observed
by the LIDAR and the RGB-D sensor. A line and a plane
are extracted respectively from the scan and 3D data that
provides the yaw angle between the LIDAR and the RGB-
D sensor. Similar operations are performed for estimating
translation parameters. Once sensors are calibrated, 3D data
can easily be located according to the 2D map. Figure 13
shows an illustration of the 3D map.

V. MULTI-ROBOT EXPLORATION

Our multi-robot exploration strategy is frontier-based [17]
i.e. the targets assigned to robots are borders between known
and unknown cells. The problem consists in assigning a
frontier to each robot during the exploration process. The
originality of the approach is to favour the distribution of
robots among the frontier directions. For this purpose, we do
not only take into account the distance between robots and
frontiers, but we also consider the notion of rank of a robot
towards a frontier, by counting how many robots are closer
to the frontier than the considered one. By reasoning on
ranks instead of distances, two close robots will be assigned
on frontiers having distinct directions where they will be
in first position whatever the distances. Such an approach
tends to separate robots on different directions favouring a
well balanced assignation on frontiers.

To cooperate, each robot broadcasts periodically its loca-
tion and a sub-sampled map of the environment. Each robot
autonomously decides its next target when it has reached the
previous one. This decision is based on the robot current
available information.

To formally define the algorithm, let’s introduce the fol-
lowing notations :
• R the set of robots, R : {R1...Rn} with n = |R| the

total number of robots,
• F the set of frontiers, F : {F1...Fm} with m = |F|

the number of frontiers,
• C a cost matrix with Cij the path distance from robot
Ri to frontier Fj ,

• A an assignment matrix with αij ∈ [0, 1] defined as
follows :

αij =

{
1 if robot Ri is assigned to Fj ,
0 otherwise.

Let RKij be the rank of the robot Ri towards the frontier
Fj . RKij is equal to the number of robots which are closer to
the frontier than the robot Ri. Algorithm 1 formally defines
the algorithm, named MinPos, processed by each robot for
computing its assignment.

Algorithm 1: MinPos
Input: C cost matrix
Output: αij assignment of robot Ri

foreach Fj ∈ F do

RKij = Card (R̃) with R̃ = {∀Rk ∈ R | Ckj < Cij}

end
j = argmin

j|Fj∈F
RKij (If several RKij are minimum then

choose the one with lowest cost Cij)
αij = 1

Figure 5 illustrates the exploration with 3 robots in a
35m2 rooms environment. The trajectories of each robot
demonstrate the validity and efficiency of the proposed
approach, indeed each robot explored a different part of the
environment.

Fig. 5. Photo of the environment and map with trajectories resulting from
an exploration with 3 robots.

Simulation results demonstrated that our MinPos algorithm
outperforms the nearest frontier algorithm [18]. Depending
on the environment topology and the number of robots,
our algorithm outperforms or gives similar results than
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utility greedy algorithm [4]. However, our approach has a
lower computational complexity (O(nm)) than the greedy
algorithm (O(n2m)).

Figure 6 compares the exploration times given in simula-
tion steps of different methods, while varying the number of
robots. The methods compared are the nearest frontier algo-
rithm [18], the Burgard et al. greedy-based algorithm [4] and
our MinPos algorithm, on an hospital section environment.
Results shown are an average of 60 runs of each algorithm
with a given robot count. We observe that the Burgard et al.
and MinPos algorithms are more efficient improving by 13%
on average the number exploration steps required to fully
explore the environment. We improve the greedy approach
when the number of robots is low, as MinPos forces a well
balanced spatial distribution. Details can be found in [3].

Fig. 6. Results from the exploration of the hospital environment when
varying the number of robots

The computation of this novel rank criteria depends on the
information of the cost matrix. To compute this matrix, dis-
tances are evaluated using a wavefront propagation algorithm
[2] on a discrete environment representation. A wavefront
computes path distances incrementally around a source.
Here, the idea is to propagate a wavefront from each frontier.
For a robot assignment, the propagation of a wavefront is
stopped when it encounters its location. Thus, it gives the
shortest paths (on the grid) to the frontier from all points
closer than the robot’s location. This is sufficient to know the
distances from the other robot’s location useful to compute
the robot rank. This approach is computationally efficient
especially when the number of robot is large, compared to
computing the path distance using an A* algorithm from
the frontier to every robot. Such a wavefront propagation is
illustrated in Figure 7.

VI. TRAJECTORY-PLANNING

The wavefront propagation used to compute the robots
assignment also provides paths that could be used for the
robot navigation. However, it does not take into account the
dynamic and nonholonomic constraints.

Fig. 7. Illustration . Wavefronts are stopped on the encounter of the
yellow robot computing its assignment. Color code : white=explored,
gray=unknown, black=walls, red-green-blue=frontier and gradient wavefront
propagation result, only the wavefront closest to the frontier is shown where
waves are superimposed.

To tackle this issue, we perform an A* algorithm in 4D
(x, y, orientation, speed) using the wavefront distances, pre-
viously computed, as heuristics. The computational time of
A* depends on the heuristics. Using the euclidean distance,
as heuristic, is computationally costly. The originality of our
trajectory planning is that we use the already computed 2D
wavefront propagation as heuristic (introduced in section V).

Trajectory planning is quite efficient. However, as it uses
the almost-shortest path the robot tends to graze obstacles.
We therefore added a penalty to nodes close to obstacle with
a value inversely proportional to its distance to the closest
obstacle. This generates smooth and safe trajectories. Figure
8 illustrates such a planned trajectory.

To evaluate our technique we randomly draw 500 points
and compute a trajectory passing by all these points in the
order they were generated in. On average, the trajectory
planning in an office environment (14 rooms along a corridor
in a 1 million pixels image) takes :
• 264.2 ms with no heuristics,
• 20.6 ms with euclidean distance heuristics,
• 14.6 ms with the potential field heuristics (11.7 ms for

the A* and 2.8 ms for the wavefront propagation).

Fig. 8. Exemple of a planned trajectory keeping away from obstacles
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VII. RESULTS

A. MiniRex

MiniRex (MINI Robot for EXploration) is a robot, ded-
icated to the project, designed and build in our laboratory.
The main specification was to design a low cost, reliable and
small robot. The robot has a square shape (0.25 x 0.25m
width) by 0.5m height. It is a tracked robot actuated by two
DC geared motors (Faulhaber 2657 012 CR). A PC (Kontron
pITX-SP - Intel Atom Z530 1.6GHz) and a real-time dedi-
cated processor (ATmega2560) are embedded and powered
by two Lithium-Polymer batteries (22.2V 3300mAh). Several
sensors provide internal and external information : ultrasonic
ranging and proximity sensors, voltage battery sensors, incli-
nometer, track encoders, KINECT™and an actuated LIDAR
(Hokuyo UTM-30LX). Figures 9 and 10 show details and
illustration of the robot.

Fig. 9. Specifications of the MiniRex robot.

Fig. 10. Minirex exploring a test area in our laboratory.

Seven robots were built. According to the area size (about
120m2), we decided to engage only five robots in the
exploration to prevent congestion during the exploration. The
sixth robot was keep as a spare robot and the seventh for
spare parts.

B. Results

This section presents the results of the final run during the
last year competition. Figure 11 shows the global map and
trajectories of the robots. The exploration task was clearly
distributed between the robots and each area (not to say each
room) was explored by a robot. During the mission, one
robot got stuck in the gravel and was not able to reach its

starting point (on the bottom of the area located in the left
of the map). Despite the fact that a failure occurred during
the mission, the other robots successfully end their task and
the failure didn’t compromise the whole mission. Figure 13
shows the 3D map built thanks to the RGB-D sensor.

Fig. 11. Map and trajectories of the robots.

Fig. 12. Map with the location of the RGB-D captures.

Fig. 13. 3D map of the building.

For a global overview of the mission, object recognition
has been illustrated on Figure 14 although this topic is not
the aim of the present paper. For more information about
object recognition, the reader is referred to [14].

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

214



Fig. 14. Object recognition and localization.

VIII. CONCLUSIONS
This paper described an overview of the software and

hardware architecture of the project Cart-O-matic. We
presented a SLAM algorithm called Slam-O-matic with a
quick overview of the performances. During the competition,
a comparison of the map produced by each team has been
performed. Detailed results are confidential, but we know
that Slam-O-matic reached the first rank in term of accuracy.
However, a comparison with similar algorithm (Gmapping
[6], Hector Slam [10], ICP [7] ...) would be interesting to
compare computation time, memory space and reliability.

We presented the MinPos algorithm for multi-robot explo-
ration strategy, which uses a novel criteria ensuring a well
balanced distribution of robots among different directions.
Results in simulation and with MiniRex robots demonstrated
the efficiency in exploration time of this algorithm. More
generally, our multi-robot approach showed good robustness
and efficiency during the French national robotics challenge
’Carotte’, that we won in 2012. We now aim to extend this
work to the exploration and mapping of dynamic environ-
ments.
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Abstract—Indoor personal electric vehicle “STAVi” was 

developed to reduce the burden of moving for elderly people in 

the progress of the aging population in Japan, in order to 

improve their quality of life. The STAVi is a front-wheel-drive 

EV which is operated through an 8-directional joystick by the 

driver. However, the over-steering caused by two rear caster 

wheels leads to unstable vehicle dynamics and difficult to control 

in some driving scenarios. This paper presents a novel Lidar 

SLAM based driving intention assistance algorithm which 

employs Line Segment Matching SLAM technique for fast 

SLAM matching for indoor scenario. Line Segment Matching 

provides more accurate result than the conventional 

corner-based Scan Matching. Model Error Compensator (MEC) 

is used in our feedback controller to assist STAVi moving 

correctly by driving intention. Real indoor experimental results 

show the effectiveness of the proposed algorithm. 

Keywords—personal mobility; STAVi; SLAM; Driving 

Assistance System; MEC; Autonomous robot; 

I. INTRODUCTION  

Japan's elderly population has rapidly grown to 24.1% of the 

total population in 2012 and with projections to 33.4% in 

2035 [1]. Personal mobility systems and electric wheel chairs 

are used by elderly to reduce their burden of everyday 

transportation. Personal vehicle “STAVi” was developed by 

Sanwa-Hitech Co. Ltd [2] (Fig.1). The STAVi has some 

characteristics that can be used in the field of welfare. Elderly 

and handicapped people can easily access (to get on, to get 

off) the STAVi and the seat can be shifted up and down to 

provide better eye-line and to reach higher places easily. With 

the help of this personal mobility tool, elderly and 

handicapped people are able to greatly improve their quality 

of life.  

Our goal is to build an intelligent driving assistance system 

based on the STAVi platform to help driver drive safely and 

smoothly. To achieve this goal, several sensors and controllers 

are installed on STAVi, including a Hokuyo Lidar range finder 

(LRF) in the lower frontal bumper, a Kinect 2.5D image 

sensor on the top of frontal chassis and two ultrasonic sensors 

in the rear bumper positions. LRF is used for building the 

mid-range environment map and collision avoidance. Kinect is 

employed to detect, recognize and track the specified target  

 

like a pedestrian, leading STAVi or docking station. Rear 

ultrasonic sensors are used to avoid rear collision.  

The STAVi is a front-wheel-drive EV which is operated 

through an 8-directional joystick by the driver. However, the 

over-steering caused by two rear caster wheels leads to 

unstable vehicle dynamics and difficult to control in some 

driving scenarios. This paper presents a novel Lidar SLAM 

based driving intention assistance algorithm which employs 

Line Segment Matching SLAM technique for fast SLAM 

matching for indoor scenario. Line Segment Matching 

provides more accurate result than the conventional 

corner-based Scan Matching. Model Error Compensator 

(MEC) is used in our feedback controller to assist STAVi 

moving correctly by driving intention. In MEC, instead of 

initial sensor, we use the yaw rate and velocity data estimated 

from SLAM as feedback to control the movement. Real indoor 

experimental results show the effectiveness of the proposed 

algorithm. 
The paper is organized as follows: Section II quickly 

reviews STAVi and gives the over-steering characters; MEC 

controller design concept and our driving intention assistance 

control strategy are described in Section III. Section IV 

provides previous works in Lidar SLAM and our Line 

Segment Matching algorithm. Section V shows 

implementation details and experimental results. 

 

 

Figure 1. Personal electric vehicle “STAVi” 

 

II. CHARACTERISTICS OF PERSONAL VEHICLE “STAVI” 

The front-wheel-drive STAVi is designed for elderly and 

handicapped people. It uses two rear free caster wheels to 

make a flat rear deck. This design is considered that driver 

can easily access from bed or wheel chair. STAVi also has a 

movable seat that can be shifted up and down. A driver 

controls the STAVi through an 8-directional joystick. 
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However, the over-steering caused by two rear caster 

wheels leads to unstable vehicle dynamics and difficult to 

control in some driving scenarios [5], for example, driver 

always needs to adjust the joystick direction even when 

going straight. Characteristic of over steering on flat floor 

is shown in Fig. 2. 

To overcome the over-steering problem of STAVi, Model 

Error Compensator (MEC) is used in our feedback controller 

to assist STAVi moving correctly by driving intention. 

 

 
Figure 2. Over steering characteristic 

III. CONTROL BLOCK WITH MEC 

As described above, STAVi has the characteristic of 

over-steering. Since STAVi’s self weight is only 250 lb, the 

vehicle dynamics is variable when loading different drivers, 

which makes the vehicle difficult to operate, even on a flat 

road. Therefore the traditional feedback controller like PID 

controller cannot provide a good performance. Instead of 

attempting to minimize the effects of the disturbance as in 

the robust filters or to decouple the disturbance as in the 

unknown input observers, it is proposed to estimate the 

disturbance estimation is used to reduce the model error 

and thus to improve the state estimation. This technique is 

denoted as model error compensator (MEC) [8].  

 

A. Controller interface 

STAVi is operated through an 8-directional joystick as 

shown in Fig. 3. Moving the stick along X-axis controls 

rotation angle and moving along Y-axis controls vehicle 

speed. For example, pushing the stick forward will move 

the vehicle go straight forward and pushing the stick 

toward left side will make the vehicle turn left in the same 

location. Joystick position will be converted to the input 

voltages in both speed and direction to the controller box. 

 

 
Figure 3. Joystick controller 

 

B. MEC controller design 
As described in Section II, STAVi has the over-steering 

characteristic and need to assist even for moving straight on 

a flat surface. However, since STAVi system dynamics is 

variable with different drivers, we need a simple and 

powerful controller to reduce the model error. MEC is an 

ideal controller for this purpose. With the input of plant 

output and ideal model output, MEC is able to control the 

system overall output to get closer to the ideal output. 

To compensate the dynamic model change and 

disturbance of input observers, a novel MEC feedback 

controller is proposed. Figure 4 shows the controller block 

with MEC. Regarding to MEC concept details, please refer 

to [8]. 

 
Speed, Direction : input voltage from joystick operation 

Vu, ωu : control to STAVi motor 

P : plant - STAVi 
Vo, ωo : observation of velocity and angular velocity with SLAM 

C : PI controller 
Vi, ωi : ideal velocity and angular from ideal model. 

Pm : ideal dynamic model 

 

Figure 4. MEC Feedback Controller 

Pm is the ideal dynamic model which is estimated by 

experiments of driving on a flat floor. Real velocity and 

angular velocity are subtracted from the ideal velocity and 

angular velocity. The subtracted value is inputted to PI 

controller C. The controlled value is added to input value of 

speed and direction.  

Status equation is shown like follows: 
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Where, S and D are joystick input value for speed and 

direction control. τv, τω is integration delay time for PI 

control. Vo, ωo are estimated by SLAM shown in the next 

section. 

IV. LINE SEGMENT MATCHING SLAM  

In the previous section, observation of velocity and angular 
velocity in the MEC feedback controller block diagram could 
use sensor output from the odometer and gyroscope or yaw rate 
sensor. However, all these local measurements need to be 
integrated in order to obtain the position and track. Large 
accumulated error cannot be avoided while driving a longer 
distance or continuous turning. 

Simultaneous localization and mapping (SLAM) is an 
alternate solution which uses Lidar, vision or fused sensor to 
obtain a continuous obstacle map as well as own localization. 
Many approaches have been proposed for the last several 
decades [3][4][6][7]. To estimate the vehicle position, an 
internal sensor is generally used also known as dead reckoning. 
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However, using only odometers to estimate the position of the 
vehicle causes a stack of error due to a slipped tire on a slope 
and rough road.  

To reduce this stack of error, external sensor such as the 
LRF enables to estimate SLAM accurately. On the contrary, if 
the external sensor extracts very few landmarks, ambiguity of 
matching positions between continuous frames will lead to a 
big error. In indoor environment, we have confirmed that 
line-based scan matching approach is more efficient than 
corner-based one. Because the corner-based scan matching is 
difficult to extract the feature point. Line-based scan matching 
algorithm is shown in Figure 5.  

 

 

Figure 5. Line-Matching SLAM 
 

1) Line Detection:  

The equipped LRF, Hokuyo UTM 30-LX, has the 

maximum detection distance of 30m, scanning angle from 

-135°to 135° with the resolution of 0.25°. The received 

range data will be converted to scan image at 20mm/pixel 

resolution. Line segments are extracted from scan data by 

Hough transform. Each segment has its property 

descriptions like length, orientation, center position, end 

point. 
2) Line Segment Matching for Rotation Calculation 

Center position, orientation and length are used to 

match these line segments between two consequential 

frames. Figure 7 shows the detected and corresponded 

lines in frames. Vehicle rotation between two 

consequential frames is calculated by the average of 

orientation differences between matched line segment 

pairs.  

3) Template matching for Translation Calculation 

To calculate the translation matrix, we use template 

matching technique to find the best matching between the 

rotated frame and the previous frame. Searching region size 

depends on vehicle speed and orientation. We use a simple 

Kalman filter to predict vehicle’s position and its variance 

to act as start position and searching region for template 

matching.  
4) Affine Transform for Merging Maps 

After calculating rotation and translation matrix, the 

new frame will be merged to the previous frame to build a 

continuous map through Affine transform. Figure 7 shows 

the merged map result.  
5) Building Global Map 

To avoid accumulated Affine transform error, the 

merged map in step 4) will be matched with the previous 

global map by template matching and the rotation and 

translation matrix are refined in this step. An example of 

global SLAM map result is shown in Figure 8. 

In this way, the proposed SLAM algorithm generates a 

global obstacle map and its own track, meanwhile, the 

position and attitude angle are also estimated for Vo, ωo  

of MEC controller feedback control described in Section 

III.  

 
    (a) Previous frame       (b) New frame 

Figure 6. Detected and corresponded lines  

 

 
Figure 7. Merged map by template matching where blue 

points are previous frame data and red ones are new 

frame data 

 

 
Figure 8. Global SLAM map result example 

Receive data from LRF

Line Detection by Hough Transform

Corresponding lines
Calcurated the rotation matrix

Template matching
for the translation matrix

Affine transform to the initial frame

Correct the affine transform matrix
By temlpate matching again

Draw the global map
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V.  EXPERIMENTAL RESULTS 

A. Vehicle Control System Description 

STAVi control system block diagram is shown in Figure 

9. Joystick module is connected to the R-Net Input port and 

R-NET Outputs control signal to the R-Net power module 

which generates the driving force to STAVi’s left/right 

motors. A switch is used to switch manual/autonomous 

operation mode. Autonomous mode connects a tablet PC to 

the R-Net IOM through RS-232 port.  

B. Line Segment Matching SLAM Result 
To compare the proposed Line Segment Matching 

SLAM algorithm with the corner-based SLAM algorithm, 

several indoor experiments were carried out. Example 

result is shown in Figure 10. Since indoor environment 

does not provide enough corners and false corners by the 

occlusion problem, Corner-based scan matching suffers 

from the mismatching problem. Therefore, the proposed 

line segment matching SLAM algorithm shows its 

advantages in indoor environments. 

To evaluate the quantitative measurement error of 

proposed line segment matching SLAM, we compared the 

measurement between manually measured result with our 

SLAM output for both translation and rotation matrix. In 

Figure 8, distance from point A to B is 24 m by manually 

measurement and SLAM result is 23.91 m, which gives 

the measurement error is 9cm (0.305%). From point B to 

C is 5.6m by manual measurement and our SLAM result 

is 5.55 m, therefore the measurement error is 5cm 

(0.169%). In Figure 11, the rotation measurement error is 

1.5 ~ 3 degrees. 

In Figure 12, the translation measurement error happens 

because of the two parallel of long line segments on the 

corridor that is disabled to make a distinction of moving 

forward or backward.  

R-Net
Power module

R-Net
Input/Output

Module

Joystick
Module

Arduino

Tablet
PC

USB serial communicatoin

RS-232

Communication Cable Communication Cable

SW

 

Figure 9. The experimental apparatus 

 
 (a) Corner based          (b) Line Segment based 

Figure 10. Comparing SLAM result 

 
Figure 11. Line Segment Matching SLAM rotation error 

 
Figure 12. Line Segment Matching SLAM translation error 

 
C. MEC Controller Design 

In order to obtain the ideal response between joystick 

input and motor output, we measured the STAVi transient 

response value (speed and angular velocity) based on 

joystick’s 11 steps of directional input (from -50 degrees 

to 50 degrees) and 11 steps speed input (from 10 to 110). 

Test results are shown in Table 1 (STAVi speed output) 

and Table 2 (STAVi angular velocity output). Delay time 

constants are also measured and the average time constant 

is adopted for the design of ideal first order lag system. All 

measurements are taken by our SLAM system. 

In Table 1 (real angular velocity), when the input value 

is 60 of the Direction against the Speed, the angular 

velocity is not zero. From the real dynamics (Table 1), we 

create an ideal dynamic model (see Fig. 13.).  The error 

between the real and ideal model is added to the input. 

 
Table 1. Transient response of STAVi velocity 

Direc- 

tion 

Speed 
-50 -40 -30 -20 -10 0 10 20 30 40 50 

Aver-

age 

80 20.2 - 13.7 8.6 10.2 9.1 7.8 11.2 - - 20.7 12.7 

90 26.8 23.7 19.2 17.6 17.0 15.5 15.5 16.6 17.0 21.1 25.8 19.6 

100 24.4 29.8 29.9 23.6 25.3 21.6 23.9 25.5 23.5 22.0 - 24.9 

110 26.2 32.9 35.9 33.4 33.5 32.6 30.1 32.3 30.6 32.7 33.2 32.1 

 
Table 2. Transient response of STAVi angular velocity 

Direc- 

tion 

Speed 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

80 57.7 - 32.9 12.8 4.1 0.1 -1.9 -12.9 - - -59.5 

90 80.5 63.5 44.3 23.1 8.0 2.8 -4.6 -14.4 -34.8 -54.0 -64.7 

100 57.8 60.1 57.7 31.7 11.9 1.4 -5.1 -23.0 -34.5 -63.0 - 

110 62.0 60.5 60.4 38.4 24.9 3.6 -10.4 -21.7 -40.0 -61.9 -62.9 

Average 64.5 61.4 48.8 26.5 12.2 2.0 -5.5 -18.0 -36.4 -59.6 -62.3 
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Figure 13. Ideal dynamic model 

 

In PI controller, the proportional gain Kvp and Kωp and 

integral gain Kvi and Kωi for input driving force are given 

by the following. 
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The optimal value is calculated by experiments. In the next 

section, the results by using this feedback controller are 

shown.  

D. Driving Intention Assistance results by SLAM 

Figure 14 Shows the trajectory of STAVi movement along a 

straight line on a flat floor. On the left side, it is with no 

control and right side is with control. As you can see, with 

the control there is an improved straightness trajectory by 

comparison with no control. The significant smoothness 

and efficiency helps driver driving with their intention. 

 

 
Figure 14.   Without MEC controller and with MEC (grid interval : 1m) 

 

VI. Conclusion and Future work 

Feedback from SLAM is proposed to control for indoor 

personal vehicle STAVi with our novel MEC controller. 

The Line matching SLAM approach is more efficient than 

corner matching SLAM for indoor environment. We 

developed the ideal dynamic by referenced experimental 

real dynamic. The STAVi becomes ideal dynamic model 

which has no over steering characteristic. It enables driver 

to control easily and no need to adjust the direction when 

going straight. 

In the future work, the autonomous vehicle will be 

produced using SLAM. Adding, we are developing path 

planning and recognizing obstacles and avoiding system. 

Furthermore, to be more intelligent vehicle we try to build 

a 3D map using Microsoft Kinect which enables STAVi to 

understand the environment accurately for precise control. 
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Ad-hoc heterogeneous (MAV-UGV) formations stabilized under a
top-view relative localization

Martin Saska and Vojtěch Vonásek and Tomáš Báča and Libor Přeučil

Abstract— A stabilization and navigation technique for ad-
hoc formations of autonomous ground and aerial robots is
investigated in this paper. The algorithm, which enables a
composing of heterogeneous teams via consequence splitting
and decoupling, is aimed at deployment of micro-scale robots
in environments without any precise global localization system.
The proposed approach is designed for utilization of an on-
board visual navigation and a top-view relative localization of
team members. The leader-follower formation driving method
is based on a novel avoidance function, in which the entire
3D formation is represented by a convex hull projected along a
desired path to be followed by the groups. This representation of
the formation shape is crucial to ensure that the direct visibility
between the team members in environments with obstacles is
kept, which is the key requirement of the top-view relative
localization. A Receding Horizon Control (RHC) concept is
employed to integrate this avoidance function. The RHC scheme
enables fluent splitting and decoupling of formations and re-
sponding to dynamic environment and team members’ failures.
All these abilities are verified in simulations and experiments,
which prove the possibility of formation driving based on the
visual navigation and top-view relative localization.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) may provide numerous
new possibilities in applications that are strictly addressed
to Unmanned Ground Vehicles (UGVs) recently. MAVs can
be employed in locations that are hardly reachable by UGVs.
They enable measurement and mapping in 3D environment.
In reconnaissance and surveillance missions, they provide a
top-view, which is important for a global overview of the
scene. Besides, the top-view from MAVs could be efficient
for a relative localization of team members in multi-robot
applications. The aim of this paper is to investigate possibil-
ities of utilization of such a visual top-view localization for
stabilization of heterogeneous MAV-UGV formations. This
approach may act as an enabling technique for deployment
of fleets of micro unmanned vehicles outside laboratories
equipped with a global localization system, which is usu-
ally used for stabilization of robotic groups in a compact
formation.

The work presented in this paper is motivated by a scenario
of multi-robot surveillance. In the illustrative mission, an
autonomous formation of mobile robots with surveillance
cameras has to repeatedly follow a predefined path in a
wide phalanx to cover a large operating space. The desired
path can be splitted into several branches to inspect smaller
areas simultaneously by sub-formations created ad-hoc from

Authors are with Department of Cybernet-
ics at the Czech Technical University in Prague.
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the larger group. The heterogeneous MAV-UGV formations
then can provide surveillance in large areas by spreading
into a wide searching phalanx, where MAVs and UGVs give
view from a different perspective and can visit locations
of different types. In large areas under surveillance, there
usually cannot be pre-installed a precise global localization
infrastructure and public available systems (as GPS) lack
sufficient precision for stabilization of compact formations.
Therefore, we propose the formation driving technique,
which is designed for the top-view visual relative localization
and for a simple vision based navigation. Both these methods
rely only on on-board sensory and computational resources
of micro-scale robots. The relative localization uses simple
light-weight cameras mounted on all MAVs and identifica-
tion patterns placed on UGVs and MAVs, where the distance
between the vehicles is available due to the known size of
the patterns. Details on the visual based relative localization
together with description of its precision and reliability is
provided in [1]. The navigation approach (referred to as
GeNav) uses image features detected by a monocular camera
carried by a robot of the formation. It enables to robustly
navigate the group along a pre-learnt path consisting of a
set of straight segments (a proof of stability of this method,
where the necessity of piecewise straight path is shown, can
be found in [2]).

II. STATE-OF-THE-ART AND PROGRESS BEYOND

In up-to-date literature, one can find works aimed at both
aspects investigated in this paper, the formation stabilization
[3], [4] and the path following by a formation [5], [6], [7].
The mentioned approaches rely on utilization of robots under
a precise external global localization system (e.g. VICON
system in [4], [6]) or only theoretical solutions verified by
simulations are provided [3], [5], [7]. Our work goes beyond
these approaches by strict utilization of on-board systems
for robots’ localization and navigation, which are inherently
included in the essence of the formation driving approach.
We rely on the Receding Horizon Control (RHC) to be able
to involve the requirements of available robust localization
and navigation techniques into the formation driving. In
particular, constraints imposed by the inter vehicle relations
(shape of the formation feasible for the top-view relative
localization) and by the GeNav technique employed for the
navigation of the entire group along straight line segments
of the desired path are included. This paper extends our
previous publication [8] with the description and verification
of the algorithm that provides the ability of the formations
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merging and splitting to be able to inspect smaller areas
simultaneously.

RHC is usually employed in the formation driving ap-
proaches due to its ability to respond to changes in dynamic
environment [7], [5], [6]. In [5] and [6] it was shown,
that the computational power of microprocessors available
on-board of unmanned helicopters enables to employ RHC
techniques also for the formation control of such a high
dynamic system, similarly as it is proposed here. Again, we
go beyond these papers mainly in the aspect of the formation
stabilization with included requirements of the top-view
relative localization, which could be an enabling technique
for deployment of heterogeneous MAVs-UGVs teams outside
the laboratories without any global localization. We present
a novel dynamic obstacle avoidance function with a simple
and effective representation of the 3D formation as a convex
hull. Besides, our formation driving method is designed for
the purpose of simple yet stable visual navigation [2], which
is well suited for the surveillance missions being our target
applications. Finally, our method is well suited for creating of
ad-hoc formations via merging and splitting under the RHC
stabilization.

III. PRELIMINARY NOTES

The problem of following desired paths by nF compact
UGV-MAV formations of given shapes is tackled in this
paper. Let us assume that the environment contains n0 of
compact static (in a known map) or dynamic and unknown
(detected by on-board sensors) obstacles. For the global
localization of each group, we assume that a robot of the
group, called GeNav leader, is equipped with the navigation
system based on the features detection. The GeNav system
is suited for guidance of robots along a path that consists
of set of straight segments. Beside the GeNav leader, each
formation consists of MAV followers (quadrotors) and may
consist also of UGV followers (robots without any localisa-
tion system available on-board). MAVs are equipped with a
bottom camera and the system for visual relative localization
between the camera and centres of identification patterns
carried by all UGVs and MAVs (except MAV flying in the
highest altitude).

For the formation driving description, let ψj(t) =
{xj(t), yj(t), zj(t), ϕj(t)}, where j ∈ {GL, V L, 1, . . . , nr},
denote configurations of the GeNav leader GL, a virtual
leader V L, and nr followers of each formation at time t.
GL is positioned in front of each formation and it is used
as a reference point for the coordinate system using the
top-view relative localization. V L is initially placed in the
same position and orientation as the GeNav leader and it
acts as a reference point for the proposed formation driving
technique. Using the presented trajectory following approach
(Section IV-B), it keeps the same position as GL except the
deviation caused by obstacles that could brake the top-view
localization or to cause collisions. Besides, V L is crucial for
merging of sub-formations into a compact formation, where
the relative error in position has to be diminished.

Fig. 1. Curvilinear coordinates of three formations going into the merging
point.

The Cartesian coordinates xj(t), yj(t) and zj(t) define
positions p̄j(t) of all robots (leaders and followers) and
ϕj(t) denotes their heading. Both platforms, MAVs and
UGVs, (except the robots assigned as the GeNav leaders)
are denoted as followers in this notation. For the MAVs, the
heading ϕj(t) becomes directly the yaw. Roll together with
pitch do not need to be included in the kinematic model
employed in RHC, but they depend on the type of utilized
MAVs as we have shown for a quadrotor in [9].

The kinematics for any robot j in 3D is described
by the simple nonholonomic kinematic model: ẋj(t) =
vj(t) cosϕj(t), ẏj(t) = vj(t) sinϕj(t), żj(t) = wj and
ϕ̇j(t) = Kj(t)vj(t), where feed-forward velocity vj(t),
curvature Kj(t) and ascent velocity wj(t) represent control
inputs denoted as ūj(t) = {vj(t),Kj(t), wj(t)}. We assume
that UGVs operate in a flat surface and that zj(·) = 0 and
wj(·) = 0 for each of the UGVs. In case of MAVs, vj(·),
Kj(·) and wj(·) values are inputs for the low level controller,
as shown in [9].

Let us now define a time interval [t0, tend] that consists
of a sequence of elements of increasing times {t0, t1, . . . ,
tend−1, tend}, such that t0 < t1 < . . . < tend−1 < tend. We
will refer to tk using its index k in this paper. The inputs of
the receding horizon control are held constant over each time
interval [tk, tk+1), where k ∈ {0, . . . , end}. We will call the
points at which the control inputs change as transition points
and we will refer to them with index k. ∆t will be a sampling
time, which is uniform in the whole interval [t0, tend]. The
control inputs vj(k+1), Kj(k+1) and wj(k+1) are constant
between transition points with index k and k + 1.

We propose to maintain the shape of each heterogeneous
formation using the leader-follower technique with the no-
tation visualized in Fig.1. In this method, both types of
followers, MAVs and UGVs, follow the trajectory of the
virtual leader in distances defined in {p, q, h} curvilinear co-
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ordinate system. The position of each follower i is uniquely
determined by states ψV L(tpi) in travelled distance pi from
the actual position of the virtual leader along the virtual
leader’s trajectory, by offset distance qi from the trajectory
in perpendicular direction and by elevation hi above the
trajectory. tpi is the time when the virtual leader was at the
travelled distance pi behind its actual position.

IV. DESCRIPTION OF THE FORMATION DRIVING METHOD

A. Overview of the formation driving method

The stabilization of each MAV-UGV formation is realized
separately in a decentralized manner, where only the desired
paths and shapes for each formation are distributed within
the teams by a coordination unite. The formation control
algorithm is divided into three main blocks (see Fig. 2).
The first block, GL leader, is responsible for navigation of
the entire formation in the environment. It provides control
inputs for the GeNav leader based on image features gained
by its on-board camera. The GeNav method enables to
navigate a robot or a group of robots along a pre-learnt path
consisting of straight segments.

Beside the GeNav leader steering, the output of the GL
module is a prediction of GeNav leader’s states. The pre-
dicted trajectory consists of n states derived with constant
sampling time ∆t and it acts as an input of the VL block.
This part is important for avoidance of obstacles and it
enables to follow the GeNav leader in connections of the
line segments of the desired path. In the VL part, the
Trajectory Following block provides control inputs for the
virtual leader, which respects the requirements of the top-
view relative localization through the model of the formation.
In the straight segments of the desired path, the trajectory
found by the Trajectory Following block follows the desired
trajectory with a minimal deviation. A significant deviation
arises mainly due to appearing obstacles or near to line
segment connections. Besides, it is important to diminish the
position error in case of the sub-formations merging. Details
on the trajectory following mechanism with emphasis on
incorporation of the 3D heterogeneous formation stabilized
under the top-view localization are presented in Section IV-
B.

The trajectory obtained in the Trajectory Following block
is described by a sequence of configurations of the virtual
leader ψV L(k), where k ∈ {1, . . . , N}, and by constant
control inputs applied in between the transition points. Ac-
cording the RHC concept, only a portion of the computed
control actions is applied on the interval 〈t0, t0 + n∆t〉,
known as the receding step. This process is then repeated
on the interval 〈t0 + n∆t, t0 +N∆t+ n∆t〉 as the finite
horizon moves by time steps n∆t, yielding a state feedback
control scheme strategy. The unused part of the trajectory can
be employed for re-initialization of the planning process in
each planning step, since the plan of the formation between
two consequent steps is usually changed only slightly. To
summarize this, n is number of transition points in the part
of the planning horizon, which is realized by robots in each

planning step and N is the total number of transition points
in the planning horizon.

In the proposed formation driving system, the trajectory
obtained in the Trajectory Following block is used as an
input for the Formation Driving module, where the transition
points of the trajectory are shifted for each of the follower
i by the vector V (tpi). The core of the third main block,
which is multiplied for MAVs and UGVs followers, is also
the Trajectory Following module. This part is responsible for
avoiding impending collisions with obstacles or team mem-
bers and it corrects deviations from the desired trajectory
provided by the virtual leader.

The physical communication via WiFi is required only
between the GL leader and particular followers. It is assumed
that the GL and VL modules as well as the Coordination
Unite are realized on the same vehicle. Also the data from
the relative localisation processes are stored there. Therefore,
the communication between the GL leader and followers is
limited to sending the desired trajectory and actual data from
the visual relative localization.

Finally, let us remark that the trajectories of VL leader
and followers are given in the local frame of the GL leader,
since all members of the formation know its relative position
provided by the top-view localization.

The ability of the system to ensure 3D formation sta-
bilization under the top-view visual relative localization in
environments with dynamic obstacles requires to integrate
an obstacle avoidance function into the trajectory following
methods (introduced in the previous subsection). The pro-
posed avoidance function is based on a representation of
the entire formation, which incorporates the requirement on
the direct visibility between the robots into the formation
stabilization process.

In the method, the 3D formation is represented by a convex
hull of positions of followers projected into a plane PV L,
which is orthogonal to the trajectory of the virtual leader in
its actual position. The convex hull of the set of projected
points is an appropriate representation of the 3D formation
under the top-view relative localization by two reasons: 1)
Each follower i intersects the plane PV L at the projected
point in future. 2) The convex hull of such a set of points
denotes borders of the area, which should stay obstacle free.
This ensures that the direct visibility between MAVs and
UGVs, which is crucial for the presented top-view visual
localization, is satisfied.

Moreover for the obstacle avoidance function presented
in Section IV-B, the convex hull needs to be dilated by a
detection boundary radius rs to keep obstacles in a desired
distance from followers. Only obstacles that are closer to the
convex hull than rs are considered in the avoidance function.
In the trajectory following process applied for the followers’
control, the dilated convex hull is reduced to a circle with
radius equal to rs to represent a single robot.

B. RHC trajectory following

The aim of the formation stabilization mechanism with the
obstacle avoidance function is to find a control sequence that
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Fig. 2. Relation between modules of the formation stabilization system.

Fig. 3. The dilated convex hull projected along the planned trajectory of
virtual leaders leading formations into a merging point.

steers the virtual leader along the desired path followed by
the GeNav leader and consequently to find control sequences
that stabilize the followers behind the virtual leader in desired
relative positions. The intention of the method is to keep
the virtual leader as close as possible to the GeNav leader
and followers as close as possible to their desired position
behind the virtual leader, while the requirements given by
the non-collision formation driving and the top-view relative
localization are satisfied.

To define the trajectory planning problem in a compact
form, we need to gather states ψj(k), where k ∈ {1, . . . , N}
and j ∈ {V L, 1, . . . , nr}, into vectors Ψj ∈ R4N and the
control inputs ūj(k) into vectors Uj ∈ R3N for each of
the formation. All variables describing the trajectory of the
virtual leader or a follower can be collected in a single
optimization vector: Ωj = [Ψj ,Uj ] ∈ R7N . Then, the
trajectory planning can be transformed to minimization of
a cost function Jj(Ωj), j ∈ {V L, 1, . . . , nr}, subject to sets
of equality constraints hj(k) = 0, ∀k ∈ {0, . . . , N −1}, and
inequality constraints gj(k) ≤ 0, ∀k ∈ {1, . . . , N}. The cost
function consists of three parts as described in details in [8].

Solutions with states deviated from the desired states
p̄d,j(k), where k ∈ {1, . . . , N}, are penalised in the first part.
The desired states are obtained by the prediction of the move-
ment of the GeNav leader in the virtual leader’s trajectory
tracking. In the followers’ trajectory planning, the desired
states are derived from the result of the virtual leader’s
trajectory tracking using the formation driving concept for
each of the followers.

The second term of Jj(Ωj) contributes to the final cost
when an obstacle is inside the projection of the dilated
convex hull along the planned trajectory. The convex hull
represents the entire formation in case of the virtual leader’s
trajectory planning or a single robot in case of the followers’

trajectory planning. Examples of the projected convex hull
are shown in Fig. 3. The value of the second term of Jj(Ωj)
will be increasing as the obstacle is approaching to the centre
of the convex hull.

The third part of the cost function Jj(Ωj) is crucial for
the failure tolerance of the system. This term is a sum of
avoidance functions in which the other members of the team
are considered also as dynamic obstacles if they are leaving
their desired position within the formation.

The equality constraints h(k) represent the discretized
kinematic model for all k ∈ {0, . . . , N − 1}, which en-
sures that the obtained trajectory stays feasible for the
utilized robots. The sets of inequality constraints g(k)
characterize bounds on control inputs ūj(k) for all k ∈
{1, . . . , N}. The control inputs are limited by vehicle me-
chanical capabilities (i.e., chassis and engine) as vmin,i ≤
vi(k) ≤ vmax,i, |Ki(k)| ≤ Kmax,i for all followers.
For MAVs also constraints wmin,j ≤ wj(k) ≤ wmax,j
have to be satisfied. These limits are extended for the
virtual leader planning, since the trajectory of the vir-
tual leader must be feasible for all followers in their
desired positions. For the virtual leader, the admissible
control set can be determined using the leader-follower
approach as maxi=1,...,nr

(
−Kmax,i

1−qiKmax,i

)
≤ KV L(k) ≤

mini=1,...,nr

(
Kmax,i

1+qiKmax,i

)
and maxi=1,...,nr

(
vmin,i

1+qiKL(t)

)
≤ vV L(k) ≤ mini=1,...,nr

(
vmax,i

1+qiKL(t)

)
. These restrictions

must be applied to respect different values of curvature
and speed of robots in different positions within the guided
formation. Intuitively, e.g. the robot following the inner
track during a turning movement goes slower but with a
bigger curvature than the robot further from the center of
the turning.

C. Splitting and merging

The formation splitting and merging process is realized
fully autonomously using the RHC stabilization method
presented in this paper. Firstly, let us analyse in which place
before the crossroad of desired paths to split the formation.
Two opposite requirements have to be satisfied. 1) The point
of splitting needs to be postponed to as late as possible,
since the robots connected to a single team better avoid
collisions within the formation and with obstacles. Then,
the coordination of robots may be ensured by the proposed
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formation driving approach. 2) The formation have to be
splitted under the control of independent virtual leaders once
the planning horizon reaches the crossroad. From this point,
the planning horizons have to follow different directions of
the desired roads. Therefore, the splitting point is placed
in distance lspl ahead of the center of the crossroad. lspl
is an upper bound of the length of the planning horizon:
lspl = N∆tmaxτ∈〈t;t+N∆t〉(vmax,L(τ)). In the switching
process, the virtual leader agent leading the old formation
is killed and new virtual leaders for each arising formations
are created. Dedicated robots (former followers) equipped
as GeNav leaders switch on the GeNav navigation algorithm
and the old GeNav leader becomes a follower if it is not
employed to lead one of the new formations.

The place of the formation merging is also restricted
by two antagonistic requirements: 1) again the sub-groups
should be merged as soon as possible to enable the cooper-
ative movement and 2) the virtual leaders of sub-formations
have to follow parallel desired paths. Therefore, the forma-
tions are merged if the positions of virtual leaders of all
formations are behind the crossroad of their desired paths.
The merging process is begun once all the sub-formations are
waiting in the merging position. Reversely to the splitting, the
redundant GeNav leaders become followers, the old virtual
leaders processes are killed and a new virtual leader is
created for leading the arising formation. The formations are
linked through the visual relative localization, which means
that the coordinate systems of the separate groups are unified
via new links between MAV cameras and identification
patterns on an MAV or UGV robot. Possible deviations in
positions of particular groups that are caused by positioning
error of the visual navigation are compensated in the next
few steps of the periodical RHC replanning.

V. VERIFICATION EXPERIMENTS

Results presented in this section have been obtained using
the proposed algorithm with parameters: n = 2, N =
8 and ∆t = 0.25s. We have employed the Sequential
Quadratic Programming (SQP) method [10] for solving the
optimization problems used in the virtual leader trajectory
tracking and for the stabilization and obstacle avoidance of
followers. This solver provided the best performance from
the tested available algorithms. Nevertheless, one can use
any optimization method, which is capable to solve such an
optimization problem.

The performance of the proposed approach in a complex
mission with static and dynamic obstacles is shown in the
video available on-line at [11] and reported in [8]. In the
experiment, the formation driving technique is employed in a
scenario with a heterogeneous team of 4 MAV followers and
8 UGV followers led by 1 UGV GeNav leader and 1 virtual
leader. The formation is periodically moving through three
rooms connected by a corridor. Three MAVs are positioned
in a lower altitude to be able to relatively localize the ground
robots and the fourth MAV is flying above to provide relative
positions of the lower MAVs. The objective of the mission
is to follow a given path and to keep a desired shape of the

Fig. 4. Formation splitting and merging. a) Overview of the scene with
depicted 3 single, 1 merged and 2 splitted formations. b) The merging
process. c) The splitting process.

formation (the shape can be autonomously changed only due
to an obstacle avoidance).

During the experiment, performance of the formation
driving resulting from the presented concept is shown. The
formation is temporarily shrunk to pass a narrow passage.
Then, it is avoiding overhead obstacles that are sufficiently
high to be passed under by all robots except the MAV
flying in the highest altitude. The GeNav leader can be
navigated without any influence of the obstacle, but the rest
of the formation has to move away from the desired path to
keep the constraints given by the relative localization, which
results in the deviation of the virtual leader from position
of the GeNav leader. This enables to avoid the obstacle in a
way that the obstacle is always situated outside the dilated
convex hull of the formation. Besides, the turning in connec-
tions of path segments of the desired path is demonstrated.
The virtual leader and the followers are always waiting
for the GeNav leader, which is turning on the spot. The
formation is deviated from the path to be able to smoothly
continue without any complicated manoeuvring. A failure
tolerance (steering of a follower is blocked) of the system
is presented with highlighted responses of other robots to
predictions of possible collisions. Finally, manoeuvres for
avoiding unknown and dynamic obstacles are presented. The
first obstacle is avoided using the virtual leader’s obstacle
avoidance function at the price of temporarily leaving the
desired path. The second dynamic obstacle cannot be avoided
by the virtual leader’s re-planning, since it was detected too
late by followers. Therefore, the shape of the formation has
to be temporarily changed (by the follower’s re-planning) to
keep the obstacle outside the dilated convex hull.
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In the second simulation, the ability of the formation
merging from smaller separate teams (Fig. 4 b)) and the
consequence splitting back into independent units (Fig. 4
c)) is shown. In the first snapshot in Fig. 4 b), the smaller
formation consisting of GeNav leader and 2 followers (MAV
and UGV) is waiting in the merging point for the two for-
mations. The first one consists of the GeNav leader, 1 MAV
follower and 3 UGV followers. The second one consists
of GeNav leader, 1 MAV follower and 3 UGV followers.
Once the merging point is reached, the three virtual leaders
leading the separate formations are switched off and a new
virtual agent is created in the position of the middle robot
equipped as the GeNav leader. The two remaining GeNav
leaders in the former outer formations become followers and
the whole group continues led by one shared GeNav leader
and one virtual leader into the splitting point at the end of
the wide corridor. In this point, the formation is divided into
two new sub-formations, each led by own virtual and GeNav
leaders. The GeNav leader employed for navigation of the
large formation becomes a follower.

The ability of the obstacle avoidance by temporary shrink-
ing of the formation is shown also in the hardware experi-
ment in Fig. 5. The Cameleon robot from ECA company has
been employed as the leader of the formation carrying the
localization tags for the system of visual relative localisation
on-board of MAVs. Two MikroKopter quad-rotors have been
used to the formation stabilization and the UGV following.
In Fig. 5 beside the pictures from the experiment, one can see
visualisation of plans of the robots found by the presented
approach. An experiment of the formation movement in
connections of path segments can be found in the report
in [8] and in video record of the experiment in [11]. In the
experiment, the Pioneer 3-AT robotic platform is employed
as the GeNav leader and two MMP5 platforms and the
Ar.Drone MAV act as followers. To be able to follow the
proposed approach, the MAV is equipped with a bottom
monocular camera and with a vision system [12] being able
to identify location and size of color dresses of UGVs in the
image. This information is used for the relative localization
of all members of the formation. Beside the pictures of
the formation movement, images used for the GeNav visual
navigation and for the top-view relative localization are
shown in [8].

VI. CONCLUSION

A novel approach for stabilization and navigation of 3D
UGV-MAV formations with splitting and merging abilities
was presented in this paper. The proposed formation driving
approach is based on visual navigation and relative localiza-
tion techniques using simple on-board sensors. The method
aims to enable utilization of teams of closely cooperating
micro-scale robots in environment without any pre-installed
global localization system.
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Abstract— This paper deals with the challenging issue of on-
line mobile robot navigation in cluttered environment. Indeed,
it is considered in this work, a mobile robot discovering the
environment during its navigation, it should thus, to react to
unexpected events (e.g., obstacles to avoid) while guarantee-
ing to reach its objective. Nevertheless, in addition to avoid
safely and on-line these obstacles, it is proposed to enhance
the smoothness of the obtained robot trajectories. Otherwise,
to quantify this smoothness, suitable indicators were used.
Specifically, this paper proposes to appropriately link on-line
set-points defined using elliptic limit-cycle trajectories with
a multi-controller architecture which guarantees the stability
(according to Lyapunov synthesis) and the smoothness of the
switch between controllers. Moreover, a comparison between
fully reactive mode (the aim of this paper) and planned mode
is given through the proposed control architecture which could
exhibits the two aspects. Many simulations in cluttered envi-
ronments permit to confirm the reliability and the robustness
of the overall proposed reactive control.

I. INTRODUCTION

Among the main challenges to obtain a fully autonomous
mobile robot navigation, is the ability for the robot to
react on-line to unpredictable events encountered in its
environment. The asked question is thus how to navigate
toward a goal in a cluttered environment when obstacles
are discovered in real time? [13]. Nevertheless, it is not
sufficient to avoid these obstacles. In fact, robot should
also guarantee a smooth navigation [7] for the comfort, for
example of the passengers. In [8], the author characterizes
this smooth navigation while using a cost functional J that
reflects the trade-off between the travel time and the integral
of acceleration (which characterizes the amount of jerking
of angular and linear robot velocity). All these criterion are
concatenated in one and modulated by weights which give
thus the priority for each one.

To obtain on-line, accurate, flexible and reliable naviga-
tion, one part of the literature in this domain considers that
the robot is fully actuated with no control bound and focuses
the attention on path planning and re-planning. Voronoı̈
diagrams and visibility graphs [12], navigation functions [18]
or planning based grid checking and trajectory generation
[17] are among these road-map-based methods. However, the
other part of the literature considers that to control a robot
with the above criterion, it is essential to accurately take into

*This work was supported by the French National Research Agency
(ANR) through the Safeplatoon project.

account: robot structural constraints (e.g., nonholonomy);
avoid command discontinuities and set-point jerk, etc. Our
proposed control architecture is linked to this last approach,
thus where the control stability is rigorously demonstrated.

It is commonly used in the literature a pre-planned ref-
erence trajectory, which means that it was appropriately
planned or selected before robot movement [14]. However,
in real motion conditions where the environment can to be
very cluttered and with high dynamic, these methods could
not be very efficient due, among others, to time consuming
to obtain the new re-planed trajectory [13]. Otherwise, a
large class of model-based techniques use optimization to
choose between a set of admissible trajectories [5], [16].
In the proposed paper, it is defined a fully reactive mobile
robot navigation. Indeed, at each sample time, the robot
should follows defined set-points, according to local robot
perceptions and objectives.

To guarantee multi-objective criteria, control architectures
can be elaborated in a modular and bottom-up way as intro-
duced in [6] and so-called behavioral architectures [3]. These
techniques are based on the concept that a robot can achieve
a complex global task while using only the coordination of
several elementary behaviors. In fact, to tackle this com-
plexity, behavioral control architecture decompose the global
controller into a set of elementary behavior/controller (e.g.,
attraction to the objective, obstacle avoidance, trajectory
following, etc.) to master better the overall robot behavior.
Moreover, it is considered in a lot of studies the investigation
of the potentialities of the hybrid systems controllers [21] to
provide a formal framework to demonstrate the robustness
and the stability of such architecture. In their most simple
description, hybrid systems are dynamical systems modeled
as a finite state automaton. These states correspond to a
continuous dynamic evolution, and the transitions can be
enabled by particular conditions reached by the continuous
part. This formalism permits a rigorous automatic control
analysis of the performances of the control architecture [4].

Among controllers which can make up a behavioral con-
trol architecture, obstacle avoidance controllers play a large
role to achieve autonomously and safely the navigation of
mobile robots in a cluttered and unstructured environments.
An interesting overview of obstacle avoidance methods is
accurately given in [13]. The proposed control architecture
integrates obstacle avoidance method which uses limit-cycle
vector field [10], [11], [1]. Moreover, it introduces an adap-
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Fig. 1. The proposed hybrid control architecture for mobile robot navigation

tive and flexible mechanism of control which guarantees
the stability and the smoothness of the switch between
controllers.

The rest of the paper is organized as follows. Section II
gives the specificities of the proposed control architecture.
In section III, the control architecture is applied to the task
of navigation in the presence of obstacles. It presents the
model of the considered robot and the different modules
constituting the proposed control architecture. Section IV
deals with safety mode mechanism. Section V is devoted to
the description and analysis of the simulation results. This
paper ends with some conclusions and further work.

II. CONTROL ARCHITECTURE

The proposed control architecture (cf. Figure 1) is dedi-
cated for the general framework of the navigation of mobile
robots in cluttered environments. It permits to manage the
interactions between different elementary controllers while
guaranteeing the stability and the smoothness of the overall
control. Moreover, a specific “safety mode” is proposed in
section IV to avoid undesirable robot behaviors (oscillations,
abrupt movement, etc.). The robot can therefore have very
smooth trajectories while guaranteeing safe obstacle avoid-
ance. The specific blocks composing this generic overall
control architecture are detailed below. In section III a
concrete control architecture applied for a real task is given.

A. Path planning for known environment

This path planner (and re-planner) block is activated only
if the entire mission is well known or when the navigation
is achieved in relatively low dynamic environment. The aim
of the proposed paper is to make the focus only around
reactive mobile robot navigation (where the environment is
discovered on-line). Therefore, the used path planner and its
interaction with low level control are not addressed here.
This part of the control was studied in [15] and will be the
subject of a future developments.

B. Set-points blocks

These blocks, which have as input the perceptions Pi, are
responsible to give for each dedicated controller block (e.g.,
obstacle avoidance, target to reach, etc.) the set-points useful

for its working (e.g., for attraction to target controller, the
relative position of the target to reach).

C. Controllers blocks

Every controller Fi is characterized by a stable nominal
law which is represented by the function:

Fi(Si, t) = ηi(Si, t) (1)

with Si is the set-point sent to the controller “i”. Otherwise,
in order to avoid the important controls jumps at the time
for example of the switch between controllers (e.g., from the
controller “j” toward the controller “i” at the instant t0), an
adaptation of the nominal law is proposed, Fi becomes thus:

Fi(Si, t) = ηi(Si, t) +Gi(Si, t) (2)

with Gi(Si, t) (cf. Equation 3) is a strictly monotonous
function that tends to zero after a certain amount of time
“T = Hi(Pi, Si)”. The value of this time depends on the
criticality of the controlleri to join as quickly as possible the
nominal law ηi(Si, t). It constitutes thus the controller safety
mode (cf. Section IV for a specific example for obstacle
avoidance controller).

Gi(Si, t0) = Fj(Sj , t0 −∆t)− ηi(Si, t0) (3)

where ∆t represents the sampling time between two control
set-points and t0 is the time of abrupt change in Si.

The definition of Gi(Si, t) allows to guarantee that the
control law (cf. Equation 2) tends toward the nominal control
law after a certain time T , thus:

Gi(Si, T ) = ε (4)

Where ε very small constant value ≈ 0. The adaptive
function Gi(Si, t) is updated by the “Parameters adaptation”
block every time a hard control switch concerning the “i”
controller occurs (cf. Section II-D) (cf. Figure 1). The main
challenge introduced by this kind of control is to guarantee
the stability of the updated control law (cf. Equation 2) even
during the period where |Gi(Si, t)| � ε.
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D. Parameters adaptation block

This block has as input the “conditional block”
(cf. Figure 1) that verifies if specific control switch event
occurs. So, if it is the case then it must update “Adaptive
Function” corresponding to the future active controller (cf.
Equation 3). The different configurations which need the
activation of parameters adaptation block are given below:

1) When a controller which should be active at the current
“t” instant is different than the one which was active
at the “t-∆ t” instant,

2) When an abrupt transition in the set-points Si of the
controlleri is encountered.

III. NAVIGATION IN PRESENCE OF OBSTACLES TASK

The navigation in a cluttered environment aims here to
lead the robot to reach a target-position while avoiding
obstacles (cf. Figure 2). The robot movement needs to be fast
and smooth while avoiding statical and dynamical obstacles
which could have different shapes.

One supposes in the setup that robot and obstacles are
surrounded by respectively cylindrical and elliptical boxes
(cf. Figure 2). The cylindrical box (the robot) is characterized
by RR radius and elliptical boxes (obstacles) are given by:

a(x− h)2 + b(y − k)2 + c(x− h)(y − k) = 1 (5)

With:
• h, k ∈ R, give the coordinate of the center of the ellipse,
• a ∈ R+, permits to give the half length A = 1/

√
a of

the longer side (major axis) of the ellipse,
• b ∈ R+, permits to give the half length B = 1/

√
b of

the shorter side (minor axis) of the ellipse (thus b > a),
• c ∈ R, permits to give the ellipse orientation

Ω = 0.5arctan(c/(b− a)) (cf. Figure 2). When a = b
equation 5 becomes a circle equation (Ω will do not
gives thus any more information).

The choice of ellipse box rather than circle as used in [11],
[9] or [1] is to have one more generic and flexible mean to
surround and fit accurately different kind of obstacles shapes
(specifically longitudinal shapes [2]).

The surrounded ellipse parameters (h, k, A, B and Ω) (cf.
equation 5 and figure 2) can be obtained on-line, while using
an appropriate weighted least square method on the data
range given by the robot infrared sensors [19]. An extension
of this approach while using Extended Kalman Filter and an
appropriate heuristic is given in [20].

A. Mobile robot model

Before proposing appropriate elementary controllers to
achieve the considered task, it is important to know the robot
model. Its model is given by the well known kinetic model
of a unicycle robot (cf. Figure 2):

ξ̇ =

 ẋ

ẏ

θ̇

 =

 cos θ 0
sin θ 0

0 1

( v
w

)
(6)
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Fig. 2. Robot pose and the used perceptions for the navigation.

With x, y, θ correspond to configuration state of the unicycle
and v and w correspond respectively to linear and angular
velocity of the robot at the point “Pt”.

Knowing the model of the robot as well as the task to
achieve, we present below the controller of Attraction to the
target and the Obstacle avoidance which are necessary to the
mobile robot navigation in cluttered environment. In section
III-C the control law used for the two controllers is presented.

B. The used controllers

1) Attraction to the target controller: This controller leads
the robot toward the target to reach. This target is represented
by a circle of (xT , yT ) center and RT radius (cf. Figure 2).

2) Obstacle avoidance controller: The objective of this
controller is to avoid obstacles which hinder the robot move-
ment toward the target. In what follows we will give only
few details about the overall obstacle avoidance algorithm in
order to make more the focus on the proposed mechanisms
of control which can guarantee at the same time: the stability
and the smoothness of the switch between controllers. More
details about the proposed obstacle avoidance algorithm are
given in [1] and [2].

To implement the obstacle avoidance behavior, limit-
cycles was used [10], [1]. The differential equations giving
elliptic limit-cycles are:

• For the clockwise trajectory motion (cf. Figure 3(a)):

ẋs = ys + xs(1− x2s/A2
lc − y2s/B2

lc − cxsys)
ẏs = −xs + ys(1− x2s/A2

lc − y2s/B2
lc − cxsys)

(7)

• For the counter-clockwise trajectory motion
(cf. Figure 3(b)):

ẋs = −ys + xs(1− x2s/A2
lc − y2s/B2

lc − cxsys)
ẏs = xs + ys(1− x2s/A2

lc − y2s/B2
lc − cxsys)

(8)

where (xs, ys) corresponds to the position of the robot ac-
cording to the center of the ellipse; Alc and Blc characterize
respectively major and minor elliptic axis (cf. Figure 2); c if
6= 0 gives the Ω ellipse angle (cf. Section III).

Figure 3 shows that the ellipse of a major axis = 2Alc

= 4 and of minor axis = 2Blc = 2 is a periodic orbit. This
periodic orbit is called a limit-cycle [10]. Figure 3(a) and
3(b) show the shape of equations (7) and (8) respectively.
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Fig. 3. Shape possibilities for the used elliptic limit-cycles for different
initial conditions (x0, y0).

They show the direction of trajectories (clockwise or counter-
clockwise) according to (xs, ys) axis. The trajectories from
all points (xs, ys) of X , Y reference frame, including inside
the ellipse, move towards the ellipse.

Summarily, the obstacle avoidance algorithm used in the
paper follow these steps [2]:

• Detect the most disturbing obstacle which avoids the
robot to reach the target, i.e., it is enough here to know if
it exists an intersect points between the line “l” and the
Ellipse of influence (cf. Figure 2). In fact, it is defined
for each perceived obstacle an Ellipse of influence which
has the following features:

– The same center (h, k) and tilt angle Ω as the
ellipse which surround the obstacle,

– The value of its major axis is 2Alc with
Alc = A+RR + Margin,

– The value of its minor axis is 2Blc with
Blc = B +RR + Margin.

Where Margin corresponds to a safety tolerance which
includes: perception uncertainty, control reliability and
accuracy, etc.

• According to the relative position of the robot with
regard to the disturbing obstacle and to the target to
reach, the direction of avoidance (clockwise or counter-
clockwise) is taken,

• The robot passes after by two steps, go into the orbit
of the obstaclei to avoid (Attractive phase) and after go
out the orbit of the obstaclei (Repulsive phase).

C. The used control law

To make a focus specifically around the efficiency of the
proposed adaptive control mechanism a simple control law
is used:

v = vmaxe
−Kv/d cos(θe) (9a)

w = θ̇d +Kpθe (9b)

where vmax is the robot maximum linear velocity, Kv and
Kp are constant values ∈ R+. and d is the distance between
the robot and the target when the attraction to the target
controller is activated, and d is equal to DROi (cf. Figure
2) if the obstacle avoidance is activated. The robot reaches

the target when 0 < d ≤ RT (cf. Figure 2). θe is the angular
error given by:

θe = θd − θ (10)

The desired robot orientation θd is given according the
following two cases:

1)

θd = arctan(
yT − y
xT − x

) (11)

Where (x, y) and (xT , yT ) correspond respectively to
the position of the robot and the target (cf. Figure 2)
in the case of the activation of attraction to the target
controller.

2) and it is equal to:

θd = arctan(
ẏs
ẋs

) (12)

Where ẋs and ẏs are given by differential equation of
the limit-cycle (7) or (8)) in the case of the activation
of obstacle avoidance controller.

It is interesting to note that only one control law is applied
to the robot even if its control architecture contains two
(or more) different controllers. Only the set-points change
according to the applied controller.

In what follows, a study is given to use the adaptive
control mechanism on the nominal angular control law (9b).
While using (9b), it is straightforward to demonstrate that
the evolution of θ̇e will be given by:

θ̇e = −Kpθe (13)

To guarantee the right transition between controllers as
described in section (II-C), the modification of the controller
law must be done, it becomes thus:

w = θ̇d +Kpθe +G(t) (14)

where G(t) the adaptive function. θ̇e = θ̇d− θ̇ will be given
now by:

θ̇e = −Kpθe −G(t) (15)

Let’s consider the following Lyapunov function

V = 1
2θ

2
e (16)

V̇ is equal then to θeθ̇e = −Kpθ
2
e −G(t)θe. To guarantee

that the proposed controller is asymptotically stable, we must
always have V̇ < 0, thus:

Kp > −
G(t)

θe
(17)

Where G(t) is a function chosen with respect to the con-
straints given in sections (II-C and II-D) and to the fact that
it decreases more quickly to zero than θe.

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

231



D. Hierarchical action selection block

The proposed control architecture uses a hierarchical ac-
tion selection mechanism to manage the switch, between
two or even more controllers, according to environment
perception. Obstacle avoidance strategy is integrated in a
more global multi-controller architecture. Otherwise, the
controllers’ activations are achieved in a reactive way as
in [6]. The proposed algorithm 1 activates the obstacle
avoidance controller as soon as it exists at least one obstacle
which can obstruct the future robot movement toward its
target.

if It exists at least one constrained obstacle
{i.e., it exists at least one intersect point between the
line “l” and the ellipse of influence (cf. Figure 2)} then

Activate Obstacle avoidance controller
else

Activate Attraction to the target controller
end

Algorithm 1: Hierarchical action selection

E. Parameters adaptation block

In the applied navigation task, the “conditional” block
activate the “parameters adaptation” block (cf. Figure 1)
when at least one of the following switch events occurs:

• the “Hierarchical action selection” block chose to switch
from one controller to another,

• the “obstacle avoidance” algorithm chose another ob-
stacle to avoid,

• the “obstacle avoidance” controller switch from attrac-
tive phase to the repulsive phase (cf. Section III-B.2).

IV. OBSTACLE AVOIDANCE SAFETY MODE

The adaptive function G(t) (cf. Equation 14) permits
mainly to obtain smooth control when a switch event occurs.
However, during “T ” time (cf. Section II-C) the obstacle
avoidance controller is far from its nominal law (given
when G(t) 6= 0) and the robot can collide with obstacles.
Therefore, to insure the smoothness of the control without
neglecting the robot safety, G will be parameterized accord-
ing to the robot-obstacle distance “d = DROi

” (cf. Figure
2), G becomes thus:

G(t, d) = AeBt (18)

Where:
• A value of the control difference between the control at

the instants “t−∆t” and “t” (cf. Equation 3),
• B = log

(
ε/|A|

)
/T (d) with:

– ε very small constant value ≈ 0 (cf. Equation 4),

–


T (d) = Tmax if d > DOEi

T (d) = c.d+ e if DOEi ≥ d ≥ DOEi − p.Margin

T (d) = ε if d < DOEi − p.Margin

Where:
- DOEi corresponds to the distance Obstacle-

Ellipse of Influence (cf. Figure 2),

- Margin defined in sub-section III-B.2,
- p positive constant < 1 which allows to

adapt the maximum distance “d” where the
adaptive function must be resetting to zero.
As small as p is, more the priority is given
to the safety behavior instead to the smooth-
ness of controllers switch,

- c = Tmax/p.Margin
- e = Tmax(1−DOEi/p.Margin)

Therefore, T (d) goes from Tmax until 0 while follow-
ing a linear decrease. If the robot is out of DOEi than
T = Tmax and decrease linearly to become 0 when d <
DOEi − (p.Margin). This function permits thus, when
d < DOEi−(p.Margin), to remove completely the effect of
adaptive control (which promote the smoothness of control)
and insures thus the complete safety of the robot navigation.

V. SIMULATION RESULTS

In this section, many simulations on different robot config-
urations and cluttered environments will permits to confirm
the reliability and the robustness of the proposed control
architecture (cf. Figure 1). Figure 4 shows the smoothness of
the obtained robot trajectories. It shows also the clockwise
and counter-clockwise obstacle avoidance using on-line set-
point based elliptic limit-cycle. In figure 4(a), it is showed
the tracks of “limit-cycle planned path”, which is not really
followed by the robot, in fact, at each sample time, the robot
computes the new control set-points given by equations (7)
and (8). The showed planned track corresponds to the limit-
cycle path obtained the first time that the robot see the
obstacle to avoid, this trajectory do not take into account
the robot constraints, e.g., its nonholonomy (cf. Equation 6).

Figures 5 (c) and (d) shows respectively the progress of
v and w robot velocities when the adaptive functions are
used (cf. Equation 3). These controls are thus less abrupt
and smoother than those obtained without adaptive functions
(cf. Figures 5 (a) and (b)). In addition, to demonstrate the
real smoothness enhancement of the obtained trajectories, a
statistical survey was made while doing a large number of
simulations in different cluttered environments and with for
each one, a navigation with and without adaptive function is
performed. We did specifically 1000 simulations with every
time, 10 obstacles with different random positions in the
environment (cf. figure 4(b) for an example of trajectory).
Otherwise, to quantify the smoothness of the obtained robot
trajectories [7], [8], it is proposed to use these two indicators:

Iv =

TT∫
0

|v̇|dt (19)

and

Iw =

TT∫
0

|ẇ|dt (20)

Where v̇ and ẇ correspond respectively to linear and
angular robot acceleration, and TT is the necessary time, for

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

232



0.5 1 1.5 2 2.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

Robot trajectory in the [O, X, Y] reference

X [m]

Y
 [

m
]

0.44 0.89 1.35

1.88

2.45

3.06
3.69 4.33 4.89 5.39

5.88

6.39

6.93

7.51
8.12 8.76

9.51

10.51

11.51

12.45

13.33

14.1514.89
15.52

16.07

16.6

17.13

17.69

18.31

19.1

20.45
22.25

  

 

 

 

Robot  
trajectory 

Obstacles 

Field of 
vision  

Ellipse of 
influence  

Target  

Limit-cycle 
planned path  

Time [s] 

(a) Environment with 3 obstacles

 

0 1 2 3 4 5 6 7 8 9 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1

2

3

4

5

6

7

8 9

10

Robot trajectory in the [O, X, Y] reference

X [m]

Y
 [

m
]

57.7

Robot trajectory 

Target 

Ellipses of influences 

U-Shaped  
obstacles 
configuration  

(b) Environment with 10 obstacles

Fig. 4. Some smooth robot trajectories obtained with the proposed on-line
control architecture.

the robot, to reach the target. According to these indicators
we can observe a significant gain in the smoothness of v and
w controls which are equal respectively to 30% and 35%.

The second step of simulations permits to demonstrate the
relevance of the proposed safety mode, especially when the
robot navigates very close to obstacles. Figure 6 shows the
case where obstacle avoidance controller apply or not the
safety mode (cf. Section IV). When it do not apply it, the
robot hit the obstacle (cf. Figure 6(a)). Figures 7 (a) and
(b) give the evolution of adaptive functions when the safety
mode is applied. We observe in these figures that the maximal
time Tmax to achieve the interpolation (=3s in the simulation
(cf. Section IV)) decreases every time that the robot moves
dangerously closer to the obstacle (cf. Figure 6(b)). Figure
7(c) shows that the overall proposed structure of control is
always stable even when the adaptive safety mode is applied.

The two peaks shown in Figure 7(c) correspond respec-
tively to the phase of the attraction toward the elliptic limit-
cycle and the repulsion from this one. The applied algorithm
is accurately explained in [1] and [2].
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Fig. 5. Adaptive Function (AF) influence on the v and w robot velocities
(cf. Section III-C).
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Fig. 7. Adaptive Functions (AF) with Safety Mode (SM) and Lyapunov
function evolution.

VI. CONCLUSION AND FURTHER WORK

This paper proposes to link, on-line control set-points us-
ing elliptic limit-cycle trajectories and a multi-mode control
architecture which uses an adaptive mechanism to guarantee
at the same time, the stability (according to Lyapunov syn-
thesis) and the smoothness of the switch between controllers.
Therefore, in addition to safe robot navigation, the robot
trajectories become also smoother. Otherwise, appropriate
indicators are used to quantify the trajectories smoothness.
Moreover, to obtain safer robot navigation, an appropriate
safety mode is proposed and experimented in cluttered
environment. Many simulations confirm the reliability and
the robustness of the proposed control architecture. Future
works aim, first to apply this control architecture in real
robots and secondly, to propose control architecture which
find the right balance between reactive and cognitive aspects
(planned).
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Intention Aware Planning for Autonomous Vehicles 
  
 

Abstract : As robots venture into new application domains as autonomous vehicles on the road or as domestic 
helpers at home, they must recognize human intentions and behaviors in order to operate effectively. This 
generates a new class of motion planning, problems with uncertainty in human intention. Identifying human 
intentions is difficult because of the diversity, subtlety of human behaviors and the lack of a powerful "intention 
sensor". The intentions have to be inferred from observations about the person's behavior. This is especially true 
for many cases of interactions between autonomous vehicles and human agents on the road where explicit 
communication channels are not always available. In this talk, I will mention some of the work we have been 
doing in developing an intention aware planning framework for autonomous vehicles on the road. I will present 
the framework in the context of Partially Observable Markov Decision Processes (POMDPs) and show how the 
recent advances in the field make Intention Aware Planning practical on real systems. 
 
Biography: Dr Tirthankar Bandyopadhyay is a Research Scientist at CSIRO Brisbane. Previously he was working 
with Prof. Emilio Frazzoli and Prof. Daniel Rus as a Research Scientist leading the Autonomy group at the Future 
Urban Mobility, (FM) at Singapore MIT Alliance for Research and Technology (SMART). He was investigating 
the utilization of autonomous vehicles in improving personal mobility in urban environments. They have 
developed a low cost autonomous platform, providing Mobility-on-Demand service in select locations of NUS 
campus. Prior to FM, he worked with Prof. Franz Hover and Prof. N. Patrikalakis in the Center for Environmental 
Sensing and Modeling (CENSAM) on developing robust navigation techniques for marine autonomous surface 
vehicles for Harbor like environments. They operated in Singapore waters to deploy and test our autonomous 
kayak. He did his Ph.D in Motion Planning for Target Tracking at the National University of Singapore under the 
supervision of Prof. David Hsu and Prof. Marcelo Ang. His research dealt with developing motion strategies in 2-
D as well as in 3-D, to track and follow a target of unknown intentions in an unknown environment, using only 
local information. His research interest is in developing robotics for the real world.  
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Safe highways platooning with minimized inter-vehicle distances of the
time headway policy

Alan ALI1, Gatan GARCIA2 and Philippe MARTINET3

Abstract— Optimizing the inter-distances between vehicles is
very important to reduce traffic congestion on highways.

Variable spacing and constant spacing are the two policies
for the longitudinal control of platoon. Variable spacing doesn’t
require a lot of data (position, speed...) from other vehicles, and
string stability using only on-board information is obtained.
However, inter-vehicle distances are very large, and hence traffic
density is low. Constant spacing can offer string stability with
high traffic density, but it requires at least data from the leader.

In [1], we have proposed a modification of the constant time
headway control law. This modification leads to inter-vehicle
distances that are close to those obtained with constant spacing
policies, while requiring only low rate information from the
leader.

In this paper, the work done in [1] is extended by taking
into account the model of the motor. This enables to reduce
the distance between the vehicles to 1 meter, and it has been
proved that the platoon is stable and safe in normal working
mode. Simulation results are done using TORCS simulator
environment.

I. INTRODUCTION

The problems of traffic congestion, pollution, and people
safety are becoming more and more important due to the
increase in the number of cars.

Proposed solutions to these problems on highways differ
from those in urban areas. On highways, road curvature is
smaller and there are less obstacles. Under normal condi-
tions, cars move faster than in urban areas.

Some proposed ideas require changes to the infrastructure
(automatic speed limits, roads monitoring, reversible lanes...)
Other ideas rely on automated vehicles to increase traffic
density and to avoid the oscillation of the platoon. Driving in
platoon has many advantages: it increases traffic density and
safety, while simultaneously decreasing fuel consumption
and driver tiredness [19].

From the modeling and control point of view, it is possible
to decouple the longitudinal and lateral behaviors, when road
curvature is assumed to be low, or by using techniques like
chained systems theory [15]. Lateral control can be per-
formed using different modalities like 3D laser (as used by
the famous Google car), magnetic markers (PATH project),
vision sensors [9]... So in a highway environment, it is

1 A. ALI is with Institut de Recherche en Communications et Cyberntique
de Nantes (IRCCYN), Ecole centrale de Nantes (ECN), 44300 Nantes,
France

2 G. GARCIA is with Ecole centrale de Nantes (ECN), 44300 Nantes,
France

3 P. MARTINET is with Institut de Recherche en
Communications et Cyberntique de Nantes (IRCCYN),
Ecole centrale de Nantes (ECN), 44300 Nantes, France
http://www.irccyn.ec-nantes.fr/ martinet/

common to concentrate on longitudinal behavior, including
modelling and control.

Platoon models can be found in [13], ranging from systems
which do not include communication between the vehicles
to systems which use full communications between them.
Other authors have build physics-inspired models of the
platoon: [2] considers the platoon as a multi agent system,
in which the agents (vehicles) interact according to physical
phenomena or mimick animal interaction behaviors, [17]
represents the interactions as virtual spring-dumper systems,
while [5] uses Newton forces.

In platooning applications, the desired behavior of a vehi-
cle is generally defined by a desired distance to the previous
vehicle in the platoon. Stability of the platoon control is
very important. It uses the concept of String Stability, which
requires that distance errors do not amplify as they propagate
along the platoon, and have the same sign to avoid collisions.
The definition is given in the time domain in [13] and in the
frequency domain in [8].

Local control uses data from adjacent vehicles only, while
global control depends on data from at least the leader. In lo-
cal control, the car is totally autonomous: it does not require
sophisticated sensors, and can be used in all environments,
but trajectory tracking and inter-vehicle distances keeping
are not very accurate. On the other hand, global control is
more accurate, but it requires more sophisticated sensors,
sometimes adaptation of the environment where it is used,
and finally it requires very reliable communication systems.

Two policies are used to control the spacing between
vehicles: constant spacing and variable spacing. Variable
spacing usually doesn’t require a lot of data from other
vehicles. In addition, it can ensure string stability using
on-board information only [4], but inter-vehicle distances
vary with velocity and can be very large, hence traffic
density is low. Constant spacing can achieve both string
stability and high traffic density, at the cost of inter-vehicle
communications.

Constant Time Headway (CTH) is the simplest and most
common variable spacing policy [14], [17]. Variable time
headway can vary linearly with the velocity, with relative
velocity [18], or even with vehicle dynamics and road
conditions [3].

In this paper, we will concentrate on the longitudinal
control of platoons on highways. We will propose a mod-
ification to the time headway policy, develop the corre-
sponding dynamic control law, study the stability of the
platoon and demonstrate the effectiveness and safety of the
novel approach for small inter-vehicle distances. The new
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control law is a mixture of local and global decentralized
control. This work is a preliminary work to be generalized
for platoons working in urban areas. Safety issues due to
abnormal working conditions will not be discussed in this
paper.

The paper is organized as follows. Section 2 describes the
vehicle and platoon models. The control and string stability
are presented in section 3. Section 4 explains the simula-
tion results. Finally, section 5 discusses the most important
advantages of the proposed approach, and compares it with
other existing approaches.

II. MODELING AND CONTROL

In the case of platooning on highways, where the road
curvature is small, it is known that longitudinal and lateral
controls can be considered as decoupled. In this paper, we
also make this safe assumption, which allows us to consider
only longitudinal control.

A. Longitudinal Dynamic Model of the Vehicle

Fig. 1. The applied forces

According to Newton’s law, we can write the dynamic
equation [12] of the vehicle in the platoon shown in figure
(1) as:

m ẍ = F + Fg + Faero + Fdrag

m ẍ = F −m g sin(θ)− ρ A Cd

2
ẋ2 sgn(ẋ)− dm (1)

Since the vehicles are assumed to travel in the same
direction at all times then we have sgn(ẋ) = 1

The engine of the vehicle is modeled as a first degree
system, and is given by the following equation

Ḟ = −τF + u (2)

So the model of the vehicle can be represented in figure
(2):

where:
• x: Position of the vehicle along X axis.
• F : Force produced by the vehicle engine.
• τ : The vehicle engine time constant.
• u: The control input to the vehicle engine.
• Fg , Faero, Fdrag : Gravitational, aero-dynamical and

mechanical drag force respectively.
• g: Acceleration of gravity.

Fig. 2. Dynamic model of the car

• θ: Angle between the road surface and the horizontal
plane.

• ρ: Specific mass of air,
• A, Cd: Cross-sectional area and drag coefficient of the

vehicle.
• dm: The amplitude of the mechanical drag force.
By taking the derivative of (1) and substituting (2) in the

resulting expression, we get the following:

m x(3) = −τ F −m g cos(θ) θ̇ − ρ A Cd ẋ ẍ+ u (3)

We can use exact linearization to linearize the previous
system. We obtain a linear model of the longitudinal dy-
namics of the car by taking:

u = m w + τ F +m g cos(θ) θ̇ + ρ A Cd ẋ ẍ (4)

F can be computed from (1).
Then, we get:

x(3) = w (5)

where w is the new control input for the linearized system
shown in figure (3).

Fig. 3. Linearized car model

B. Platoon definitions

Figure (4) shows a platoon which consists of N vehicles
required to move at the same speed vd with a desired inter
distance L between two successive vehicles. The leader of
the platoon can be driven by a human or autonomously. The
followers are controlled to maintain a desired inter-distance.

We define the spacing error of the i-th vehicle assuming
a point mass model for all vehicles :
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Fig. 4. A platoon

ei = ∆Xi − L (6)

where :
• ∆Xi = xi−1 − xi: real spacing between car number i

and its predecessor, car number i− 1.
• xi: position of i-th vehicle.
• L: desired inter-vehicle distance
The kinematic evolution of the spacing error is given by:

ėi = ẋi−1 − ẋi = vi−1 − vi

where vi represents the velocity of the i-th vehicle.

III. PLATOON CONTROL AND STABILITY

A. Control Objectives

The main objectives of the control law are to:
1) Keep the inter-vehicle distance equal to L, and make

all vehicles move at the same speed so ėi = 0.
2) Assure the string stability of the platoon (the spacing

error does not increase as it propagates through the
platoon).

3) Increase the traffic density.
4) Keep the system stable in case of total loss of com-

munication.

B. Control Law

In constant spacing control, the control law will make
ei → 0 so the inter-vehicle distance will become equal to
L. But this requires, at least, information from the leader to
assure the string stability of the platoon and robustness.

In time headway policy, a new term is added to the previ-
ous error, which will eliminate the need for communication
with the leader and increase the string stability. A new
spacing error is defined as:

δi = ei − h vi = ∆Xi − L− h vi

In this case, the control law makes δi → 0, so the steady state
of the inter-vehicle distance will be equal to ∆Xi = L+h vi,
which is proportional to vehicle speed and can become very
large when the vehicle travels at high speed.

Adding the time headway term (h vi) improves stability.
This improvement is not due to enlarging inter-vehicle dis-
tance, but to the fact that it is a function of the velocity. So,
the main idea of this paper is to propose a novel spacing

error, defining the time headway term as proportional to the
difference between the velocity of the vehicle and some value
V shared between all other vehicles in the platoon. We will
discuss later how to set the parameter V . In this case, we
define the novel error as:

δi = ei − h (vi − V ) = ∆Xi − L− h (vi − V )

where V is a velocity value shared between all the
vehicles at the same sampling time.

The new control law is defined by:

ui = −ka ẍi + kv ėi + kp δi

which is represented in figure (5) for the i-th vehicle.

Fig. 5. Control scheme of the i-th vehicle

To verify the effectiveness of the new law, the string
stability of the platoon under this control law must be
analyzed.

C. String Stability Analysis

The general string stability definition is given in [13].
In essence, it means that all the states are bounded if the
initial states (position and velocity errors) are bounded and
summable.

A sufficient condition for string stability is given in [8]:
‖ei‖∞ ≤ ‖ei−1‖∞ which means that the spacing error must
not increase as it propagates through the platoon. To verify
this condition, the spacing error propagation transfer function
is defined by:

Gi(s) =
ei(s)

ei−1(s)

A sufficient condition for string stability is given by:

‖Gi(s)‖∞ ≤ 1 and gi(t) > 0 i = 1, 2..N (7)

where gi(t) is the error propagation impulse response of
the i-th vehicle.

So, to verify the string stability of a platoon using the
novel spacing error, the spacing error propagation transfer
function G(s) must be calculated:
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Gi(s) =
kv s+ kp

s3 + ka s2 + (kv + h kp) s+ kp
(8)

So

‖Gi(ω)‖ =

√
k2p + k2v ω

2

(kp − ka ω2)2 + ((kv + kp h) ω − ω3)2

(9)

To ensure the stability we must verify the condition 7 so we
get :

ω6+(k2a−2(kv+kp h)) ω4+(k2p h
2+2 kp (kv h−ka)) ω2 ≥ 0

(10)

To simplifiy we choose : kv = ka/h, which makes the
coefficient of ω2 always positive, then the stability conditions
become:

{
h ka ≥ 2
h k2a − 2 ka − 4 kp h

2 ≤ 0

}

or

{
h ka ≤ 2
h k2a − 2 ka − 4 kp h

2 ≥ 0

}
or
{
h k2a − 2 ka − 2 kp h

2 ≥ 0
}

(11)

D. Maximum error amplitudes

In a stable platoon, the maximum error between vehicles
is the error between the leader and the first vehicle. If we
choose Vs = vleader then the transfer function of the first
error in the platoon is given by:

G1(s) =
e1(s)

wleader(s)
=

1

s3 + ka s2 + (kv + h kp) s+ kp
(12)

The magnitude of this function is given by:

‖G1(ω)‖ =
1√

(kp − ka ω2)2 + ((kv + kp h) ω + ω3)2

(13)

If the platoon is stable and by chossing kp > 1, we get:

‖G1‖ < ‖Gi‖ ≤ 1 (14)

then

‖e1‖ < ‖wleader‖ (15)

So the maximum error in the platoon is bounded by the
maximum control value of the leader (the jerk of the leader).

For passenger comfort [16] the maximum value of the jerk
should not be bigger than 0.5 − 0.6 m/s3, so it is clear
that we can get a maximum error between vehicle much
smaller than 1. So we have proved that we can get a stable
platoon system with inter-vehicle distance equal to 1 without
collision between vehicles.

IV. SIMULATIONS
The control law has been checked using TORCS, The

Open Racing Car Simulator, a software which give us
realistic results (as it takes many phenomena into account)
and allows visual output when applying the novel spacing
error.

TORCS is one of the most popular car racing simulators
[7]. It is written in C++ and is available under GPL license
from its web page. TORCS presents several advantages for
academic purposes, namely:

1) It lies between advanced simulators, like recent com-
mercial car racing games, and a fully customizable
environment, like the ones typically used by computa-
tional intelligence researchers for benchmark purposes.

2) It features a sophisticated physics engine (aerodynam-
ics, fuel consumption, traction...) as well as a 3D
graphics engine for the visualization of the races.

3) It was not conceived as a free alternative to commercial
racing games, but it was specifically designed to make
it as easy as possible to develop your own controller.

All the simulations were done on nearly straight roads
(small curvatures). The desired speed of the leader of the
platoon is changed three times (see figure 6), to check the
transit response and the stability of the platoon.

At the same time, a comparison between our control law
and the classical CTH control law will be performed using
the same parameters.

We consider 10 identical vehicles and we choose the
following parameters values: h = 3, kv = 1/3, kp =
5,Ka = 1. The desired inter-vehicle distance (bumper-to
bumper distance, so we omit all the cars lengths from all
following figures) is fixed to L = 1 m.

Fig. 6. Leader’s velocity profile

We can see in figure (8) that the system is stable, as the
errors are decreasing through the platoon. We can see also
that the maximum error is smaller than L.

When comparing our control law and the classical CTH
law we can see in figure (7) and figure (8) that the distances
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Fig. 7. Inter-vehicle distances and velocities using CTH law. Each curve
represents a different vehicle of the platoon.

between vehicles have been reduced from the range [5-40]
meters for CTH to the range [0.5-1.5] meters using our
control law. In addition, we can see that the system becomes
faster.

Fig. 8. Inter-vehicle distances and velocities using our control law

V. DISCUSSION
The proposed approach greatly reduces inter-vehicle dis-

tances required, while assuring stability. This is obtained
by making the distance proportional, not to velocity, but to
the difference between the vehicle velocity and a common
velocity value shared by all vehicles of the platoon.

A. Advantages and comparison

Using the new spacing policy and the corresponding new
control law, the advantages are the following:

String stability: The propagation function G(s), correspond-
ing to the new control law, is not related to V , so the value

of V will not affect the platoon stability. It can be noticed
that it is exactly the same propagation transfer function
as the classical time headway spacing policy, so with this
modification the system remains string stable.
Inter-vehicle distances: The most important effect of the
proposed modification is on the inter-vehicle distances. At
equilibrium, if all velocities become equal to leader velocity
vL then ∆Xi = L + h (vL − V ). By choosing V = vL
the inter-vehicle distance becomes ∆Xi = L, and during
dynamic changes the inter-vehicle distance becomes ∆Xi =
L+ h (vi − V ).

The inter-vehicle distance has been decreased from
∆Xi = L+h vi (which might be very large at high speeds)
in the case of the classical time headway policy [14], [6],
to become ∆Xi = L + h (vi − V ), which is equal to L
at equilibrium and slightly larger than L during transient
phases. So during transient phases, the length of the platoon
will be slightly different from the length of a platoon using
constant spacing policy [17], [13].

Another important point is the effect of increasing pa-
rameter h, which has a positive effect on stability. In CTH
it has a large negative effect on the inter-vehicle distance,
as this distance increases proportionally to h, and hence the
traffic density decreases. In our case, the inter distance is also
proportional to h but with a smaller coefficient (vi − V ), so
the inter distance changes will be smaller than the changes
in CTH.
Collisions: it is clear that the possibility of a collision be-
tween the vehicles is increased as the inter distance between
them is reduced. The problem of collision can be addressed
separately from the problem of stability by adding a new
term for the safety, but we have proved in this article that the
platoon is string stable and safe in normal working conditions
with small inter-vehicle distances.
Communication: Adding V to the control law impose ex-
changing data between the vehicles. We have seen previously
that stability is not related to V , so the rate of exchanged data
between the vehicles can be reduced by updating the value
of V every sample times acccording to the change rate of V
as it will be discussed later.
Stability without communication: The string stability can
be preserved even if the communication with the leader is
totally lost, by switching to the classical time headway pol-
icy, which corresponds to setting V = 0 (fully autonomous
mode). In this case, there is no need to communicate with
the leader. So this law can keep the platoon stable even if
communication is lost. On the contrary, it has been proved
that the constant spacing policy can not be string stable,
for homogeneous platoon with homogeneous control (all the
gains are equals), without using any information from other
vehicles [10].

Hand shaking protocol, between the leader and other vehi-
cles, is very important to detect any loss of communication.
If any loss is detected, the leader will transmit an order to
all vehicles to switch to full autonomous mode V = 0, while
the vehicle which has lost communication, will automatically
switch to this mode when it detects the communication loss.
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Simplicity and type of required data: The new control has
the same simplicity as CTH law. It uses the same variables as
CTH, plus a low frequency updating of the common speed
parameter V (which may be the leader or platoon speed).
This last variable is the only difference with the classical
time headway policy, while the constant spacing policy is
always more complicated, as it may requier the acceleration
or other information, at least from the leader.

B. Supervision of parameter V

As seen previously, the only condition to keep the platoon
stable with the new control law is to make V identical for
all the vehicles at any sample time. So, any value for V (e.g.
leader’s velocity, the medium velocity of the platoon or the
minimum velocity in the platoon...) can be chosen.

To increase the safety and to prevent collisions, one can
choose V = min(vLeader, v1, v2...., vN ). This will always
make h.(vi−V ) > 0. In that case, the inter vehicle distance
becomes ∆Xi = L + h (vi − V ) > L but of course it will
enlarge the inter-vehicle distance during velocity changes.

The rate of updating V define the rate of exchanged data
between vehicles. Reducing this rate will improve our control
law by avoiding the need for high rate communication and
reducing the effects of transmission delays and data lose. The
rate of changes of V is usually lower than the rate of the
changes of vi, ai, i = 1...N , so the update rate of V can be
lower than the sampling rate of control laws of each vehicle.
But, lowering the update rate may produce some jumps in V ,
which may have negative effects on the control and hence on
the performance. So V must be interpolated to get smoother
changes.

VI. CONCLUSIONS

In this paper, the design of longitudinal control of platoons
in highways has been addressed. We have improved the
response of our control law proposed in [1] by taking into
account the model of the motor of the vehicle. This enabled
to reduce the distance between the vehicles down to 1 meter
without losing the stability and the safety of the platoon when
working in the normal conditions. We have proved also that
most of the properties still correct for the model of third
degree for the vehicle. All the provided results have been
tested under TORCS to check the validity of the proposed
approach.
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Optical Flow Templates for Superpixel Labeling
in Autonomous Robot Navigation

Richard Roberts and Frank Dellaert
Georgia Institute of Technology

Abstract— Instantaneous image motion in a camera on-board
a mobile robot contains rich information about the structure
of the environment. We present a new framework, optical flow
templates, for capturing this information and an experimental
proof-of-concept that labels superpixels using them. Optical
flow templates encode the possible optical flow fields due to
egomotion for a specific environment shape and robot attitude.
We label optical flow in superpixels with the environment shape
they image according to how consistent they are with each
template. Specifically, in this paper we employ templates highly
relevant to mobile robot navigation. Image regions consistent
with ground plane and distant structure templates likely indicate
free and traversable space, while image regions consistent with
neither of these are likely to be nearby objects that are obstacles.
We evaluate our method qualitatively and quantitatively in an
urban driving scenario, labeling the ground plane, and obstacles
such as passing cars, lamp posts, and parked cars. One key
advantage of this framework is low computational complexity,
and we demonstrate per-frame computation times of 20ms,
excluding optical flow and superpixel calculation.

I. INTRODUCTION

For a camera attached to a mobile robot, instantaneous
image motion contains rich information about the robot’s
egomotion and the structure of the environment. In this paper,
our contribution is to present a new framework for capturing
this information, in which we attempt to address some
shortcomings of previous work, and present an experimental
proof-of-concept of this framework.

This framework, which we call optical flow templates,

Each template is a probabilistic optical flow subspace with a 
basis flow for each velocity component.  Linear combination 
by each component predicts the flow field from egomotion.

Template 1 (k = 1)
ground plane

Template 2 (k = 2)
distant structure

Input: Platform 
attitude

θ 

Observed frame and 
optical flow superpixels

ωx, ωy, ωz, 
vx, vy, vz

ωx ωy ωz

vx vy vz

ωx ωy ωz

vx vy vz

Superpixel 
labeling

Estimated 
velocity

Iteratively refine labeling and velocity so observed 
flow agrees with flow predicted by templates.

InputInference  Obstacle  — not 
explained by templates 

Fig. 1: Optical flow templates for superpixel labeling. Optical flow templates W k (θ), one for each structure class ground
plane (k = 1) and distant structure (k = 2), predict optical flow ui at each ith image location, given a platform velocity
estimate ξ = [ωx, ωy, ωz, vx, vy, vz]

T and attitude estimate θ ∈ SO (3). Each template consists of 6 flow fields that combine
linearly for each velocity component. For the optical flow color code, see Figure 3. Using observed optical flow, alternatively
refine the labeling ki for each ith superpixel and the estimated velocity ξ. The special class k = 0 indicates optical flow
pixels that cannot be explained by any template, which we label as obstacle.

illustrated in Figure 1, permits semantically labeling image
regions according to their observed optical flow and the
predicted optical flow of several templates. Optical flow
templates predict the optical flow due to robot egomotion,
for a given robot velocity and attitude, and for a particular
type of environment structure.

In this work, we use templates for ground plane and
distant structure, and label regions that are not consistent
with any other template as possible obstacles. Ground plane
labels are likely to indicate fairly flat ground that can be
driven upon. Far-away objects “at infinity” indicate line-
of-sight directions that are likely free of obstacles. Image
regions that are not consistent with either of these are likely
to be nearby objects or other moving objects to be considered
as obstacles.

The work to date towards using image motion for au-
tonomous navigation has several drawbacks that limit its
usefulness. While our framework does not completely solve
the problem, it is a new way of looking at the problem that
addresses some of the drawbacks.

In Section II we review related work and our position
with respect to it, in Sections III and IV we explain optical
flow templates and a method for labeling superpixels using
them, and in Section V evaluate the method qualitatively,
quantitatively, and in computational efficiency, in an urban
driving scenario.
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II. RELATED WORK

In autonomous driving, the current standard is to compute
a 2D traversability map for path planning using information
from 3D laser range scans, stereo correspondences, and
structure from motion; for examples see [1], [2]. Becker
et al. [3] accumulate optical flow information over short
spans of time to infer a dense 3D reconstruction of the
scene in front of the robot. The main drawback of these
methods is the expensive computation required to calculate
and then analyze large point clouds accumulated over many
frames, both optimization problems with many variables. In
comparison, our method uses very little computation because
it directly estimates labels from optical flow data between
pairs of frames, a single optimization problem with many
fewer variables.

Instead of this standard method of measuring or computing
3D point clouds, other lines of research semantically label
image regions using image appearance and machine learn-
ing [4], [5]. With applications outside of robotics as well,
Hoiem et al. [6] also uses monocular features and machine
learning to estimate 3D structure from single images. Our
method, which uses optical flow information, is complemen-
tary to these methods that use image appearance. In this
paper, our goal is to evaluate the utility of optical flow
information alone, and to combine it with the appearance
cues of this related work in future work.

Several lines of research combine 3D or image motion
information with image appearance information using ma-
chine learning methods both to estimate semantic image
labels and high-level semantic 3D structure. Brostow et
al. [7] segment images into relevant regions such as street,
sidewalk, car, etc. using structure-from-motion cues. Sturgess
et al. [8] estimate similar segmentations using motion appear-
ance and structure-from-motion information. These methods
work well but require much labeled training data, and here
we suggest that there is in fact a lot of information to be
extracted from optical flow before having to use hand-labeled
training data.

Geiger et al. [9] infer 3D street and traffic patterns from
video from a moving platform, combining information from
vehicle tracking, vanishing points, and image appearance.
The information extracted is very rich, but comes at a
high computational cost that makes it infeasible for small
platforms.

Perhaps most closely related in method to this paper is that
of Giachetti et al. [10], who use the differences between the
observed optical flow and the flow predicted given motion
on a ground plane to segment out other cars in the road.
Additionally, Nourani-Vatani et al. [11] use optical flow for
environment shape recognition with a discriminative learning
method, matching flow fields to a database of locations using
the flow field spatial statistics.

In contrast to planning over dense 2D or 3D maps, in
which interpretation can be very difficult and computation-
ally expensive, many researchers have investigated mobile
robot control directly from optical flow. Inspired by research

into the role of optical flow in animal and human naviga-
tion [12], [13], Duchon et al. [14] evaluate control laws
for chasing, escaping, and other behaviors. Srinivasan et al.
review a number of other bio-inspired optical flow control
strategies, developed both by their group and others [15]. The
main drawback of these methods is that they use heuristics,
such as left-right flow balancing, that make their behavior
difficult to predict and result in systematic errors. For that
reason, we explicitly leverage a geometric model.

Conroy et al. [16] and Hyslop and Humbert [17] develop
methods for autonomous robot control using “wide-field
optic flow integration”, which takes inner-products of the
observed flow fields with a set of template flow fields.
Using knowledge of possible coarse scene geometries such as
walls and corridors, they develop templates and control laws.
Our goal is different in that instead of inferring this coarse
structure, we label finer structures and individual obstacles.

III. OPTICAL FLOW TEMPLATES

An optical flow template encodes the space of possible
optical flow fields corresponding to a certain environment
structure, invariant to the platform velocity. In turn, optical
flow templates also specify a linear mapping from platform
velocity ξ = [ωx, ωy, ωz, vx, vy, vz]

T to optical flow, for a
given robot attitude, and for a particular environment struc-
ture class. Shown in Figure 1, in this paper we specifically
work with 3 possible classes: ground plane, distant structure,
and obstacle. Let W k (θ) ∈ R2wh×q be the optical flow
template for environment structure class k, where w and
h are the image width and height, and q is the velocity
dimension (in this paper q = 6). Optical flow templates
are nonlinear functions of the platform attitude θ. Thus they
predict a flow field for structure class k as uk = W k (θ) ξ.

A. Optical Flow as a Gaussian Mixture of Templates

Because each pixel may be generated from any template,
we model the optical flow ui at each pixel i as a Gaussian
mixture of the flow predicted ûki by each template,

p (ui |Λi, ξ) = N
(
0, Σ0

)Λ0
i

κ∏
k=1

N
(
ûki (ξ) , Σ

)Λk
i , (1)

where Λki ∈ {0, 1} is a binary indicator of 1 if pixel i takes
the discrete label k, and 0 otherwise. Σ is the covariance of
the Gaussian noise on the optical flow consistent with the
template, and Σ0 is the covariance of zero-mean Gaussian
noise on optical flow that is not consistent with any template,
i.e. is labeled as obstacle. ûki (v) = W k

i (θ) ξ is the optical
flow predicted by template k at pixel i, and we assume that
the platform attitude θ is known, as explained in Section III-B
where we calculate the templates. The notation W k

i selects
the pair of rows corresponding to pixel i from the optical
flow template W k. As is typical with notation in Gaussian
mixtures, raising each term to the power of the indicator
variable effectively makes only one term active for a given
labeling.

Because the optical flow templates result in a linear rela-
tionship between velocity and optical flow, the measurement
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likelihood in Eq. 1 is Gaussian, allowing inference to be fast
and guaranteeing convergence. Each optical flow template is
one instance of the optical flow subspace model introduced
in our previous work [18].

B. Calculating Optical Flow Templates

The optical flow field in a calibrated projective camera is
(see e.g. [19] for derivation)

ui =

[
yi

xiyi
f −f − x2

i

f
xi

zi

−f
zi

0

−xi f +
y2
i

f
−xiyi
f

yi
zi

0 −f
zi

]
ξ, (2)

where xi and yi are the horizontal and vertical image
coordinates (with the origin at the image center) at pixel i, zi
is the depth at pixel i, and f is the focal length. The matrix
is arranged such that ξ = [ωx, ωy, ωz, vx, vy, vz]

T is the
rotational and translational velocity in “robot coordinates”,
where the x-axis points forwards and the z-axis points down.

For a flow field u comprised of the concatenated flow
vectors ui ∈ R2, the optical flow template W k (θ) is thus
formed by stacking all of the matrices in Eq. 2. The depth
zi at each pixel depends on both the scene structure and
the platform attitude θ. In this paper, we consider templates
corresponding to ground plane and distant structure. For
ground plane, we compute zi using plane-line intersection
geometry. For brevity, we omit the derivation which is a
straightforward application of the tools in Chapter 2 of [20].
For distant structure, we use zi = ∞ everywhere. In
Figure 1, the ground plane template shows the camera is
pitched slightly down – the boundary between the black and
the colorful regions is the horizon.

In this paper, we assume the platform attitude θ is known.
In our experiments, we obtain it from an attitude/heading
reference system (AHRS). On autonomous ground vehicles
and aircraft, this is common equipment, and is typically
implemented using measurements from an accelerometer and
gyroscope [21].

IV. SUPERPIXEL LABELING

Our method assigns a probability that each superpixel
of optical flow in a frame of video belongs to each class,
with each class represented by an optical flow template.
Inference is a matter of labeling superpixels such that all
superpixels assigned to the same template exhibit consistent
optical flow within that template, and that all superpixels
across all templates predict a consistent platform velocity.
To simplify notation, we do not include frame numbers or
time steps, but each frame is labeled independently.

Let λj ∈ Rκ be the vector of probabilities that superpixel
j belongs to each class, and λkj ∈ R be the kth element,
i.e. the probability that superpixel j belongs to class k. Let
k ∈ {0, 1, 2}, where the special class k = 0 corresponds to
obstacle, and κ = 3 is the number of classes (including
obstacle). Both the superpixel labels λj and the velocity
estimate ξ are alternatively refined, but for simplicity we
omit iteration numbers from the notation.

A. Superpixel Labeling Given a Velocity Estimate
Our end goal is to label superpixels according to which

optical flow template they are consistent with. This requires
knowing the optical flow templates themselves (as obtained
in Section III-B). Although each optical flow template en-
codes an optical flow subspace that is invariant to platform
velocity, we want to enforce that all superpixels predict
a consistent platform velocity. Thus, we will iteratively
estimate the platform velocity (as explained in Section IV-B),
and in this section, take the current velocity estimate ξ.

While in the previous Section III we defined the density of
optical flow at a pixel i predicted by an optical flow template,
we now switch to superpixels. All of the inference here may
equally be performed at the pixel level, but using superpixels
greatly reduces the computational expense. We use the index
j to denote a superpixel, and use uj and Λj to denote the flow
and labeling of a superpixel, and W k

j (θ) to denote the pair
of rows corresponding to the pixel at the center of superpixel
j.

We estimate the probability λkj of each jth superpixel
belonging to each class. These probabilities define a multi-
nomial distribution p (Λj = ek) = λkj over the labels (where
ek ∈ Rκ is a vector with 1 in position k and 0 elsewhere,
i.e. an assignment of the discrete indicator variables). Each
assignment probability λkj is the normalized likelihood that
the superpixel is consistent with template k,

λkj =
l (Λj = ek | ũj , ξ)∑
k̄ l (Λj = ek̄ | ũj , ξ)

, (3)

where l (·) ∝ p (·) denotes a likelihood and ũj is the average
measured optical flow in superpixel j. We calculate the
likelihoods here using Bayes’ law,

l (Λj | ũj , ξ) = p (ũj |Λj , ξ) p (Λj) , (4)

where the measurement likelihood p (ũj |Λj , ξ) is as in
Eq. 1, except that the predicted flow ûki (ξ) is calculated
by choosing pixel i to be at the center of superpixel j.
p (Λj) is the class prior, which in our experiments is a simple
multinomial distribution.

In the next section, we describe refining the velocity
estimate ξ given the labeling estimated with Eq. 3 above. As
mentioned before, the velocity and labeling are alternatingly
refined until convergence.

B. Refining the Velocity Estimate Given the Labeling
To refine the velocity ξ, we treat the labeling Λj as a

hidden variable and update the velocity using expectation-
maximization (EM),

ξ ← arg max
ξ
〈L (ξ | ũ,Λ)〉 , (5)

where L (·) = log l (·) denotes a log-likelihood, ũ and Λ are
the collections of optical flow vectors and indicator vectors
for all superpixels, and the expectation 〈·〉 is with respect
to p (Λ | ũ, ξ). Using Bayes’ law and the linearity of the
expectation, we have

〈L (ξ | ũ,Λ)〉 = L (ξ) +
∑
j

〈L (ũj |Λj , ξ)〉 , (6)
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where the expectation is now with respect to p (Λj | ũj , ξ).
To compute the expected log measurement likelihood
〈L (ũj |Λj , ξ)〉, we note that the class probabilities λkj calcu-
lated in the previous section comprise the sufficient statistics
for this EM algorithm, giving everything we need to calculate

〈L (ũj |Λj , ξ)〉 =
∑
k

λkjL (ũj |Λj = ek, ξ) , (7)

where the the log measurement likelihood is the log of Eq. 1.
Note that the velocity ξ used in Eq. 1 is in fact the variable
being optimized for in this section, and is not fixed here as
it was in Section IV-A.

Because the measurement likelihood is Gaussian, the
expected log-likelihood is a quadratic, and thus refining
the velocity estimate with the maximization in Eq. 5 is a
linear least-squares problem that is easily solved using direct
methods.

C. Summary and Implementation of Method

Given each of the components we have introduced in this
section, we now summarize the steps that take place for each
incoming video frame here in Algorithm 1:

Algorithm 1: Superpixel labeling for each frame.
Input: Current and previous video frames.
Input: Platform attitude θ (e.g. from AHRS).
Result: Class label probabilities λkj for each superpixel

j and class k.

1 For current frame, compute SLIC superpixels [22].
2 For previous and current frames, compute TV-L1 [23],

[24] optical flow ũ and average flow ũj in each
superpixel.

3 Compute basis flows W k
j (θ), at image locations

corresponding to superpixel centers.
4 Initialize class label probabilities uniformly, λkj = 1

κ .
5 while change in 〈L (ξ | ũ,Λ)〉 is greater than

convergence threshold1 ε do
Update ξ ← arg maxξ 〈L (ξ | ũ,Λ)〉 (Sec. IV-B)
Update λkj ←

l(Λj=ek | ũj ,ξ)∑
k̄ l(Λj=ek̄ | ũj ,ξ)

(Sec. IV-A)
end

6 return λkj

V. EXPERIMENTS

Our experimental platform is a car equipped with a Point
Grey Flea3 (gigabit ethernet version) camera running at
1380×480 at 10Hz, and a MicroStrain 3DM-GX3-45 inertial
navigation system (INS), from which we use only the AHRS
attitude estimate. Both were connected to an Intel Core i7
laptop for data logging, and the computations described in
this paper were performed on the logged data.

1This convergence criteria relies on the likelihood normalization constant
remaining constant during optimization. To accomplish this, it is sufficient
to include in the likelihood calcaulations the normalization constants from
all Gaussians involving the velocity v.

We operated the car in an urban environment. In collecting
the dataset, we took care not to follow any car in front too
closely. We did not make any other special considerations in
driving style while collecting the dataset.

The parameters Σ = diag (7.0) and Σ0 = diag (15.0)
were used for the noise covariances. These values were se-
lected empirically: Too tight covariance causes too many su-
perpixels to be labeled as obstacle due to slight noise in opti-
cal flow measurements, while too loose covariance causes all
superpixels to be labeled only ground plane or distant struc-
ture. For the label priors, we used p (Λ = ground plane) =
0.4 and p (Λ = distant structure) = 0.4 for superpixels
below the horizon, and p (Λ = ground plane) = 0 and
p (Λ = distant structure) = 2/3 above the horizon (in each
case the remaining probability is for obstacle). These values
were chosen by manual estimation of the image portion
occupied by each class in several typical frames, although
the algorithm is not very sensitive to this prior.

Our implementation of the algorithms is in C++ using
the GTSAM factor graph library [25]. The C++ classes
are wrapped in MATLAB using the wrap utility included
in GTSAM, and we perform data loading, scripting, and
visualization in MATLAB. All source code and datasets will
be made available online on the authors’ web site by the
time of publication (link will be provided in camera-ready
version).

A. Qualitative Analysis

In Figure 2, we present examples of the labeling produced
by our method that we consider successful. These examples
are successful because the information they contain is useful
for autonomous navigation. For the most part the major
structure above the ground plane and close to the camera
is labeled as “obstacle” (red), and the ground plane (green)
and distant structure (blue) are mostly correctly labeled.
The obstacle structure above the ground plane is often
obstacles, road boundaries, or independently-moving objects.
Such structure could be avoided by a navigation method or
passed on to higher-detail vision processing.

Sometimes the labeling produced by our method contains
errors. One type of error arises because the optical flow
estimate is incorrect. Most frequently, this occurs in regions
with smooth or repetitive texture, as shown in Figure 4a.
This type of error points us towards future work because the
root cause of this problem is computing optical flow as an
input that is unaware of the global optical flow constraints
provided by our optical flow templates. We expand on this in
the discussion. Another type of error occurs when the differ-
ences between the predicted optical flow from two templates
becomes too small to distinguish from noise, as shown in
Figure 4b. In this case, superpixels on the ground plane may
be be labeled with 50% probability of belonging to either
the ground plane or distant structure classes, indicated in
the figure by the green/blue or turquoise blended color; also,
ground plane superpixels may be labeled as distant structure
if small error in the velocity estimate of our method causes
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(a) Car crossing perpendicularly
while platform stationary

(b) Passing lamps on right side
while driving forwards

(c) Passing cars parked on both
sides while driving forwards

(d) Encountering pedestrians during
a right turn

Fig. 2: Example video frames, superpixel optical flow fields, and superpixel labels by our method.

Fig. 3: The optical flow color code, as in [26]. Flow fields
(e.g. Figure 1) are displayed with a color at each pixel. The
hue indicates the direction of the flow and the saturation its
magnitude. Here, the center of the black cross (color white)
is zero flow. Yellow is downwards flow, red rightwards, etc.

(a) Error in labeling the ground as
obstacle due to optical flow errors
caused by smooth texture.

(b) Error in labeling ground plane
as distant structure due to similarity
between rotational and translational
basis flows.

Fig. 4: Examples demonstrating errors in labeling by our
method.

the optical flow on the ground plane to agree more closely
with rotational flow than with translational flow.

B. Quantitative Analysis

We hand-evaluated 200 frames of video and labels pro-
duced by our method, the results of which are shown in
Figure 5. In each frame, we determined the number of
objects or regions of environment structure mislabeled by our
method. “Extra obstacles” are image regions that our method
labels in the obstacle class, yet there is no structure above
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Fig. 5: Number of objects mislabeled by our method, evalu-
ated by hand-inspecting 200 frames labeled by our method.
We counted “extra obstacles”, which are image regions
detected by our method as the obstacle class when no nearby
structure was in fact present, and “missed obstacles”, where
nearby structure was present but not detected.

the ground plane near the camera in that region. “Missed
obstacles” are image regions containing structure above the
ground plane near the camera but that our method does not
label as obstacle. For example, in Figure 4a we would count
the region mislabeled on the ground plane as one “extra
obstacle”, and a missed car or pedestrian would count as one
“missed obstacle”. In hand-labeling, we took into account the
smoothing inherent in the optical flow calculation, so several
objects close together, for example poles on the side of the
road, are only counted as one object.

Because our method estimates superpixel labels jointly
with platform velocity, we test whether errors in superpixel
labels are coupled with errors in yaw-rate estimation. Fig-
ure 5 plots the yaw-rate error of our method as compared
with the vehicle’s gyroscope. While gross yaw errors would
certainly be coupled with many incorrect superpixel labels,
the comparison demonstrates that there is no correlation
between small yaw errors and errors in superpixel labeling.

C. Timing

Our research implementation is single-threaded, and takes
approximately 20 ms per frame (±2 ms) to infer superpixel
labels and velocity, already having the optical flow and
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superpixel segmentation available as input. For each frame,
the combined time to calculate TV-L1 optical flow and
SLIC superpixels on the CPU is 500 ms per frame, however,
there are GPU versions available of both algorithms that
achieve real-time performance using CUDA. All timings
were measured on an Intel Core i7 3.4 GHz desktop. The
nature of the linear least-squares problem makes it adaptable
to parallelization and GPU implementation.

VI. SUMMARY AND FUTURE WORK

We have presented a new framework for interpreting
optical flow observed by a mobile robot, called optical flow
templates. Using templates for ground plane and distant
structure, our method labels image regions whose flow is
consistent with these templates, as well as labeling flow
inconsistent with either as obstacle. This latter class com-
prises objects that occupy space above the ground plane near
to the robot, and may be passed on for more detailed and
computationally intensive processing.

The key aspects of the superpixel labeling method using
this framework, in relation to previous work, include that
computational complexity is very low, and geometric models
of optical flow remove the need for hand-labeled training data
or heuristics. We present an experimental proof-of-concept,
labeling video in an urban driving scenario.

One direction of future work is to jointly infer optical
flow along with the velocity and superpixel labels. We have
observed, as shown in Section V-A, that many of the errors
made by our method come from errors in optical flow esti-
mation. These errors especially occur in regions of smooth
texture, where the task of optical flow is underconstrained
and ill-posed without a global optical flow model. Our
optical flow templates in fact provide such a model, so joint
inference should make much more accurate labels possible.
Another benefit of joint inference will be sharper image
segmentations of objects and boundaries between classes,
which are currently blurred due to the smoothness terms
necessary to compute dense optical flow.
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Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Structure of the talk 

 Context, State of the Art, New Challenges & Approach 

 

 Bayesian Perception for Open & Dynamic Environments 

o Bayesian Perception paradigm 

o Embedded Perception & Bayesian Sensor Fusion  

 

 Situation Awareness & Risk Assessment 

o Learn & Predict Paradigm 

o Trajectory Prediction & Probabilistic Collision Risk 

o Comparing Intentions & Expectations for Cooperative Safety 

 

 Conclusion & Perspectives 
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3 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Socio-Economic & Technical context 

  Nowadays,  Human Society is no more accepting the incredible socio-

economic cost of traffic accidents ! 

 

 

 

 Driving Safety is now becoming a major issue for both governments 

(regulations & supporting plans) and automotive industry (technology) 

 
  

 

1.2 million fatalities / year in the world !!!! 
• USA (2007) : Accident every 5s =>41 059 killed & 2.6 million injured 

…. Similar numbers in Europe  

• France (2008): 37 million vehicles & 4443 fatalities  (number reduced by 

50% in the past  years, thanks to both  regulation  & improved car technology).  

  => Human & financial cost estimated to 23 Md €  for 2011 in  France ! 

 Thanks to the last decade advances in the field of  Robotics & ICT 

technologies, Smart Cars & ITS are gradually becoming a reality 
 => Driving assistance  & Autonomous driving, Passive & Active Safety systems, V2V & I2V 

communications, Green technologies … and  Sensors & Embedded Perception Systems 

  Legal issue has recently started to be addressed 
 =>  June 22, 2011:  Law Authorizing Driverless Cars on Nevada roads … and this law has also 

been adopted later on by California and some other states in USA 
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4 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Governments plans for Robotics & IV Innovation 

4 

Japan 
Next Generation Robots as one of the 
eight important areas promoted by the 
Government 

Korea 
A 10 years Government plan (US$ 316M) for 
developing Intelligent Robots 

“Korean robotics industry bursting into bloom” 
The Korea Herald/Asia News Network.  Jul 20, 2011  

2012~16 

President Obama announced 
Major Robotics Initiatives  

Bill Gates:  
“The next hot field 
will be Robotics” 

January 2007 

Taiwan 
Intelligent Robotics Industry designated as 
the next-generation industry by the 
Government (expected to reach over NT$ 90 
billion in period  2009~13) 

 +  34 Industrial Plans (3.5 Md€), including 

o Robotics (Bruno Bonnell, Infogrames) 

o Driverless Car (Carlos Ghosn, Renault) 

o Embedded Systems (Eric Bantegnie, Esterel) 

4 
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5 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

State of the Art – Cybercars technologies  

Movie : Floriade 2002, Amsterdam 

(2GetThere & Inria) 

Movie : Shanghai  public demo 2007 
(SJTU & Inria, EU FP7 project) 

  Several early large scale public experiments in Europe 

  An EU driven concept since the 90’s:  “Cybercars”  

 Autonomous Self Service Urban & Green Vehicles at low speed 

 Numerous R&D projects in Europe during the past 20 years 

 Several European cities involved  

 Some commercial products already exist for protected areas (e.g. airports, 

amusement parks …), e.g. Robosoft, 2GetThere , Induct… 

5 
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6 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

State of the Art – Fully Autonomous Driving  

2007 Darpa Urban Challenge 

97 km, 50 manned & unmanned 

vehicles, 35 teams 

2010 VIAC Intercontinental Autonomous Challenge  

13 000 km covered, 3 months race, leader +  followers  

=> See Spring 2011 IEEE RAM issue 

  Results & Major events  

  Fully Autonomous Driving 
 More than 25 years of research, for both Off-road & Road Vehicles 

 Significant recent steps towards fully autonomous driving …. Partly pushed 

forward by events such as DARPA Grand & Urban Challenges … and Google Car 

 Fully Autonomous driving is gradually becoming a reality,  for both the 

Technical & Legal  point of views (e.g. Recent Nevada law for driverless cars) 

2011 Google  Car project 

Fleet of 6 automated Toyota Prius 

140 000 miles covered on California roads 

with occasional human  interventions 

Pioneer work at INRIA (mid 90’s) 

6 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

284



7 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

=> DARPA Grand Challenge 2004 

 Significant step towards Motion Autonomy 

 But still some “Uncontrolled Behaviors” !!   

Current Autonomous Vehicles are able to exhibit quite impressive skills …. BUT 

they are not fully adapted to human environments and they are often Unsafe ! 

Some technologies are almost ready for use in some restricted or protected public areas 

BUT 

=> URBAN Challenge 2007 

 A large step towards road environments 

 But still some accidents, even at low speed !! 

 Fully Open & Dynamic environments are still beyond the state of the art ! 

 Safety is still not guaranteed ! 

 Many costly onboard sensors  &  High computing power are still required ! 

=> Google Cars 2011 & Other projects in Europe 

 Impressive results & fully autonomous driving capabilities 

 But costly Sensors + Dense 3D mapping required + 

Human Factor weakly addressed !! 
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8 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Intelligent Vehicles – Innovation & Products 

8 

  Cybercars : Some start-ups & first products 

Adaptive Cruise Control (ACC) Lane Guidance System (PCB and Camera sensor from Hundai) 

Cybergo (Induct) Cycab (Inria /Robosoft) Cybus, La Rochelle 2012 

(CityMobil & Inria) 

  ADAS : More and more equipped cars 

Amsterdam Schiphol Airport  
(2Get’There, 1997-2004) 

Collision Warning with Brake support 
(Lincoln MKS, 2009) 

Radar based Pre-Collision System 
(Toyota Lexus, 2003) 

Night / Bad Weather Vision 

Parallel Parking System 
(V1: Toyota Prius 2003 ; V2: Toyota Lexus 2006 & 2010) 

=> Inspired by Inria approach 1996 
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9 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Intelligent Vehicles & ITS –  Recent Literature 

Co-editors:   
C. laugier & J. Machan 

July 2013 

C. Laugier:  Associate Editor Part  
“Fully Autonomous Driving”   

C. Laugier et al: “Probabilistic Analysis of  
Dynamic Scenes and Collision Risks 

Assessment to Improve Driving Safety”   

Winter 2011 
Vol 3, Nb 4 

March 2012 
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10 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Intelligent Cars & ITS – Towards Driverless Cars ? 

Autonomous car:  An industrial challenge for tomorrow !  
The French Minister of Industry Arnaud Montebourg promotes driverless car 

Google Car  2011 

140 000 miles covered  

Nissan  promises a 

driverless car for 

2020 

Carlos Ghosn 
(Renault /Nissan) 

Toyota  

“Automated Highway Driving Assist” 

(Demo Tokyo 2013, Product 2015) 

But also:  

Tesla (90% Autonomous, => 2016),  

Volvo, Mercedes Class S, BMW … 

 Market Forecast : 8000 cars sold in 2020, about 95 millions in 2035 

 Still some open questions:  Why  driverless cars ? Intelligent co-Pilot  v/s  Full Autonomy ? 

Acceptability ? Legal issue ? Driver / Co-Pilot  Control transitions ? 

Horizon 2020-25 ? 
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11 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Car technology is almost ready for 
    Driving Assistance & Fully Autonomous Driving 

Steering by wire 
Brake by wire 
Shift by wire 

Virtual dash-board 
Modern “wheel” 

Navigation system 

Radar, Cameras, Night Vision, Multiple sensors ….. but also  
“Sensor based  Active Driving Assistance” (e.g. Automatic Parking ) 
=> Cost decreasing & Efficiency increasing (future mass production, 

embedded systems, SoC …) ! 
Wireless Communication  
Speech Recognition & Synthesis 
… Towards connected cars 

Navigation systems 
Driving assistance (speed, ABS, ESB …) 

5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, November 3rd, 2013, Tokyo, Japan 

289



12 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Car technology is almost ready for 
    Driving Assistance & Fully Autonomous Driving 

Steering by wire 
Brake by wire 
Shift by wire 

Virtual dash-board 
Modern “wheel” 

Navigation system 

Radar, Cameras, Night Vision, Various sensors, Parking assistance 

…. Cost decreasing & Efficiency increasing (future mass 

production, SOC, embedded systems …) !!!! 
Wireless Communication  
Speech Recognition & Synthesis 

Navigation systems 
Driving assistance (speed, ABS, ESB …) 

          …. But a real deployment of Advanced 

Technologies for ADAS & Autonomous Driving,  

requires first to more deeply address two main 

technical issues: 

 Robust, Integrated, and Cheap enough 

“Embedded Perception Systems” 

 Friendly Human – Vehicle Interactions 
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13 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Challenge 1: Multimodal Perception & Situation Awareness 

  Dynamicity & Uncertainty                                           
 => Space & Time + Probabilities 

  Interpretation ambiguities  & Semantics                     
 => History, context, prior knowledge + Sensor fusion 

  Prediction of  future states (recently addressed) 
 => Behaviors, prediction models 

  Embedded Perception (necessary for deployment)                       
 => Miniaturization & Software / Hardware integration 

e.g. Traffic scene understanding 

Context & Semantics is required  

Illustration: Traffic scene understanding 

=> Detect, Track, Classify, Predict 
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14 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Challenge 2: Human Aware Navigation & Interaction 

Human beings are unbeatable in 
taking decisions in complex situations 

Technology is better for “simple” but 
“fast” control decisions (ABS, ESP …) 

Share Control 
is mandatory ! 

Seat pressure Steering actions Pedal signals Head /Eye  
Visual analysis  

 …. But Driver inattention is still a major cause of accident !  

Driver Monitoring (using on-board Perception) 
+ 

Safe & Socially Acceptable Human / Vehicle Interaction is necessary ! 
=> “Mutual Driver / Vehicle understanding” 
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15 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 

 Bayesian Perception paradigm (for Open & Dynamic Environments) 

 Embedded Perception & Bayesian Sensor Fusion  

Key Technology 1: 

“Bayesian Perception” 
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16 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 Bayesian Perception Paradigm 

  Grid approach based on Bayesian Filtering  for Dynamic Environments 

  Estimates at each time step the Occupation & Velocity probabilities                               

for each cell in a “Space-Velocity” grid 

  Bayesian Inferences performed using Probabilistic Sensor & Dynamic models 

 => More robust  to Sensing errors & Temporary occultation 

 => Designed for Sensor Fusion & Hardware implementation 
      (GPU, Multi-core architectures, SoC)  

 
[Coué et al IJRR 05] 

Occupancy & Velocity 
Probabilities 

Bayesian 
Filtering 

Unobservable  space 
(POcc= 0.5) 

Free  space (POcc= e) 

Static obstacle (POcc=1-e) 

Moving Obstacle 
(POcc=Weak in V0-slice) 

Slice V=0 

Bayesian Occupancy Filter (BOF) 

Patented by Inria & Probayes  
Commercialized by Probayes (2006) 

16 
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17 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

A fundamental property of BOF:  
Temporary Space/Velocity Data Persistence & Bayesian Inferences 

=> Application to Conservative Collision Anticipation 

[Coue et al IJRR 05] 

Autonomous 

Vehicle (Cycab) 

Parked Vehicle 

(occultation) 

Thanks to the prediction capability of the BOF technology, the Autonomous Vehicle “anticipates” the 

behavior of the pedestrian and brakes (even if the pedestrian is temporarily hidden by the parked vehicle) 
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18 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 Bayesian Perception for Dynamic Environments 

• Data association is performed as lately as possible 

• More robust to Perception errors & Temporary occlusions 

Bayesian Sensor Fusion + Detection & Tracking 

Fast Clustering and Tracking Algorithm (FCTA) 

Reducing False detection: Static / Dynamic classification using Motion 
data (IMU) & Sliding window & Counting detection occurrences 

[Qadeer et al 12] 

[Mekhnacha  09, Laugier et al  ITSM’11] 

Vehicle Detection & Recognition using Intensity & Depth 
features and codebook for characteristic parts of objects 
=> more robust to partial occlusions 

[Makris et al 12] 

U-disparity Occupancy Grid, with Road & Obstacle 
classification (superimposed on the camera image) 

Cartesian  
Occupancy 
Grid 

[Perrollaz et al 10-12] 

Road   

Possible  
obstacles  

Road  Obstacles  

8 layers of laser scan 

Resulting 
Occupancy Grid 

Free 
space 

Unobservable space 
(P=0.5) 

Obstacle 

[Adarve & Perrollaz ICRA’12] 

Detected &Tracked  
Objects 
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19 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Embedded Perception System (Lexus) 
 CPU+GPU+ROS   /  Stereo + 2 Lidars + GPS + IMU 

2 Lidars IBEO Lux 

Stereo camera TYZX 

GPS track example 
(Using Open Street Map & GPS & IMU & Odometry) 

PC + GPU + ROS 
Inertial sensor & GPS (Xsens Mti-G) 

Front view (camera) Fusion result using BOF 

OG from left Lidar OG from right Lidar OG from Stereo 

[Perrollaz et al 10] [Laugier et al ITSM 11] 

Iros Harashima Award 2012 

Navigable space & Collision risk 

19 
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20 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Bayesian Perception – Some experimental results 

Embedded perception on Lexus (cooperation Toyota) 

20 

People  Detection & Tracking using Fixed Cameras 
Inria & Probayes 

Navigable Space & Risk 
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21 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 

 Learn & Predict paradigm 

 Trajectory Prediction & Probabilistic Risk Assessment 

 Comparing Intention & Expectation for Cooperative Safety 

Key Technology 2: 

Situation Awareness & Risk Assessment 
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22 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Conservative TTC-based crash warning is 

not sufficient ! 

False alarm ! 

Previous observations 

Situation Awareness – Problem statement 
Behavior Prediction + Probabilistic Risk Assessment 

=> Understand the current situation & its likely evolution 

Illustration using a road scene 
(Highly structured environment + Strict traffic rules) 
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23 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

False alarm ! 

Previous observations 

Situation Awareness – Problem statement 
Behavior Prediction + Probabilistic Risk Assessment 

=> Consistent Prediction & Risk Assessment requires to reason about: 

 History of obstacles Positions & Velocities 
 => Perception (Datmo) or V2V Communications 
 
 Obstacles expected Behaviors  
 => Moving straight, turning, crossing, overtaking, stopping ... 
 
 Space geometry / topology 
 => Road lanes, curves, intersections … 
 
 Traffic rules  
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24 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

INRIA Entrance Hall 
(Ceiling camera) •  Concept  of “intentional motion” 

•  Observe & Learn “typical motions & goals” 

•  Continuously “Learn & Predict” 

 Learn => GHMM & Topological maps (SON) 

 Predict => Exact inference, linear complexity 

Learn  Predict  

Behavior Learning & Future Motion Prediction 
  Learn & Predict approach 
EU Euron PhD Thesis Award 09 

[Vasquez & Laugier 07] 

24 
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25 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Learn & Predict approach – Automotive application 

Experiments using Leeds University parking data 

[Vasquez et al 07] 
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26 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Trajectory Prediction & Probabilistic Collision Risk 

Probabilistic Collision Risk 
Calculated for a few seconds ahead 

Patent INRIA & Toyota & Probayes  2010 

[Tay 09] [Laugier et al 11] 

Gaussian Process + LSCM      

Behavior 
belief table 

Observations 

Behaviors 
models 

26 

Other Vehicle 

Behavior prediction 

Ego vehicle 

Risk estimation 

Experimental validation: 

Toyota Simulator + Driving device 

On-line Risk visualization (Lexus)  

Probayes: 

82 to 92 % success, 62% for overtaking 

Predicted 3s ahead 
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27 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Risk = Comparing Drivers Intentions & Expectations 
[Lefevre & Laugier  IV’12, Best student paper] 

Patent Inria & Renault 

Our approach: A Human-like reasoning paradigm  

 Exchanging vehicle states information (V2V communication and/or Perception 

 Estimating “Drivers Intentions” from Vehicles States Observations 

 Inferring “Behaviors Expectations” from Drivers Intentions & Traffic rules 

Risk = Comparing Maneuvers Intention & Expectation (Dynamic Bayesian Network) 

 => Taking traffic context into account (Topology, Geometry, Priority rules, Vehicles states) 

 => Digital map obtained using “Open Street Map” 

Risk assessment much more difficult !  
 Complex Geometry & Traffic context 

 Large number of Vehicles & Possible Maneuvers 

 Vehicle behaviors are Interdependent 

 Human Drivers in the loop ! 

Intersection safety: a challenge 
 40-60% of road accidents in most countries 

 5 accidents out of 7 in DARPA Urban Challenge 

Cooperation Stanford & Berkeley & Renault 

27 
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28 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 Human-like reasoning at a semantic level, based on a Dynamic Bayesian 

Network 
 

 Main idea:  Detect dangerous situations by comparing  « what drivers 

intend to do » with « what drivers are expected  to do » 

 Intention:  Estimated from the successive states observations (X,Y,θ,S,TS) 

 Expectation:  Estimated from Drivers Intentions & Traffic rules 

 Risk:  Based on 

Intention model Expectation model 

Risk 

model 

The Intention & Expectation approach 

Traffic Rules 
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29 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

 Two Renault passenger vehicles 

 Equipped with off-the-shelf V2V modems 

 Sharing position, heading, speed, turn signal information at 10 Hz 

 Collision scenarios (Blind rural intersection near Paris) 

 

 

 

Cooperative Roads Intersection Safety 
  Experimental Results (Field Trials) 

 Danger defined as 

=> Audio-visual warnings 

 

 

 90 instances, 9 Drivers (No accident) 

Video 
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30 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Conclusion 

  Thanks to recent advances in the field of Robotics & ICT technologies,                  

     Intelligent Cars  are gradually becoming a reality 

  Embedded Perception & Situation Awareness are two key functionalities 

for improving Driving Safety.  For addressing these issues, we have proposed 

and implemented four main technologies: 
 The “Embedded Bayesian Perception” approach for dealing with Open & 

Dynamic Environments 

 3 complementary approaches for “Risk Assessment & Decision Making” 

o Learn & Predict paradigm 

o Trajectories prediction + Probabilistic collision check 

o Comparing Intention & Expectation for cooperative safety 

Parking Assistant  (2004)  Fully Autonomous Driving  (2020 -25 ?) Volvo Pedestrian avoidance system   (2011) 

• Camera & Radar detection 

• Automatic braking (below 25km/h) 
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31 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Current & Future Work 

 

 Miniaturization & Increased efficiency (Software & Hardware integration) 
 Reduce drastically  Size, Weight, Energy consumption, Cost ... while improving Efficiency 

 Cooperation CEA (French Nuclear Energy Institute) & ST Microelectronics 

 

CPU + GPU 

ST-Horm Multi-core board (STM) => 2014 

SoC => 2018 ? 

Today Objective 2014 Validation & Demonstrations 

 Embedded Perception & Decision 
 Integrating Risk Assessment & Decision  =>  Paper IROS 2013 + Patent Inria & Berkeley 2013 

 Cooperation Berkeley & Renault 
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32 C. LAUGIER  – “Road Scenes Understanding & Risk Assessment using Embedded Bayesian 

Perception”  ---  Keynote talk, WS PPNIV’13, IROS’13, Tokyo (Nov. 2013) 

Thank you for your attention 

Any questions ? 

http://emotion.inrialpes.fr/laugier 

christian.laugier@inrialpes.fr 
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Detection of Unusual Behaviours for Estimation of Context Awareness at
Road Intersections

Alexandre Armand1,2, David Filliat1, Javier Ibanez-Guzman2

Abstract— In general, Advanced Driving Assistance Systems
(ADAS) warn drivers once a high risk situation has been
inferred. This is made under the assumption that all drivers
react in the same manner. However, it is not the case as
drivers react as a function of their own driving style. This
paper proposes a framework which allows the estimation of
the degree of awareness with regard to the focus object of
the context that is governing the vehicle behaviour (e.g. the
arrival to an intersection). The framework learns the manner
in which individual drivers behave for a given context, and
then detects whether or not the driver is behaving differently
under similar conditions. In this paper the principles of the
framework are applied to a fundamental use-case, the arrival to
a stop intersection. Results from experiments under controlled
conditions are included. They show that the formulation
allows for a coherent estimation of the driver awareness while
approaching to such intersections.

I. INTRODUCTION

Statistics have shown that most road accidents are due
to human errors, inferred by factors such as distraction,
tiredness, over speeds, etc [16]. These result in bad situation
understanding which often leads to abnormal and dangerous
situations.

Road intersections represent complex environments where
over 40% of collisions and 20% of fatalities occur [12].
Further, most of those involved in such collisions are young
inexperienced drivers and the elderly. Given the complexity
that exists at road intersections, namely the convergence of
various entities to the same area, intersections represent a
major challenge for ADAS.

An underlying framework for the estimation of unusual
behaviours with regard to the road context and the driver
individualities is presented. The tenet is that the vehicle
evolves within a context which is built of contextual ele-
ments. These impose constraints to the subject vehicle, and
usually one object has more influence than the rest. The
framework takes into consideration this contextual object,
and also the usual vehicle response (driver pattern) as it
interacts with this object. This is then compared with the
actual behaviour. If the driver actual behaviour differs much
from the expected one, it is considered as unusual, which
could be synonym of context misunderstanding and thus a
source of risk. This concept is exploited in a simple scenario,

1 ENSTA ParisTech/ INRIA FLOWERS team, 828 Boulevard des
Maréchaux, 91762 Palaiseau Cedex, France. alexandre.armand@ensta-
paristech.fr, david.filliat@ensta-paristech.fr.

2 Renault S.A.S, 1 av. du Golf, 78288 Guyancourt, France. javier.ibanez-
guzman@renault.com.

road intersections. The aim of the framework is not to warn
the driver when the situation becomes dangerous, but to
make sure that the driver has all necessary information for
coherent decision making.

The remainder of the paper is organized as follows.
Section II includes results of the state of the art review
for risk estimation at road intersections, followed by the
problem formulation. In Section III, the proposed model of
the framework is described, and Section IV presents prelim-
inary results from experiments applied to road intersections.
Section V concludes the paper.

II. RELATED WORK AND PROBLEM STATEMENT

A. Related Work

Road intersection safety is of much concern. Some
risk reduction has been achieved with the introduction of
roundabouts instead of classic intersections. Another long
term solution is to use communication technologies [6].
Currently, increasing driver awareness before arriving to the
intersection remains a challenge.

One of the most intuitive approaches consists in using
rules associated to the context. The set of rules, function
of contextual inputs (e.g. the vehicle state, the maximum
velocity, etc.) define the situations which can be considered
as risk situations. In [6], rules are set to define when the
velocity is not safe when a vehicle is reaching an intersec-
tion. The main problem of these approaches is the difficulty
to take uncertainties into account. In addition, when such
systems become complex, rules become interleaved and
hence difficult to trace.

Several of the algorithms available in the literature are
mainly based on the estimation of the so called Time To
Collision (TTC) [9], [7]. This indication estimates the time
remaining before a collision between two objects. Alerts
are usually given as soon as the TTC becomes lower than a
threshold. However no conclusion can be drawn before the
situation gets critical.

Other approaches include the driver as part of the system
to infer driver manoeuvres. Given a context, by observing
the differences between the driver intention and the ex-
pected behaviour, risky situations can be detected. In [8],
this risk is inferred within a Dynamic Bayesian Network
(DBN) implemented in cooperative vehicles. In [3], it is
proposed to decompose manoeuvres into a series of consec-
utive actions which are then represented as Hidden Markov
Models (HMM). A framework based on Support Vector
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Machines (SVM) coupled with HMM to determine the
driver’s behaviour is presented in [1]. The system proposed
in [13] also decomposes the manoeuvres into a sequence
of elementary states, and a multilayer perceptron is used
to learn the mapping between the current situation and the
future vehicle states. All these systems generate warning
only when the situation becomes dangerous. In addition,
except driver actuations, no information about the driver is
used to improve performances in term of reactivity.

In addition, several driver centric systems have been
studied. Most of them are using either physiological sensors
[5] or vision technologies [17] to look at the driver and
get some vigilance information. Whilst progress has been
achieved, reliability remains a problem. Moreover, using this
kind of technologies requires more sensors in the vehicle
which is not compatible with vehicle OEM constraints.

B. Problem Statement

The literature has shown that most of risk assessment
systems estimate the risk only when the situation becomes
dangerous and thus when an accident is imminent. These
systems can be called curative systems. Some studies have
highlighted the negative effects that ADAS can sometimes
have on drivers, for instance in term of emotions, and time to
react [11], [10]. Surrounding vehicles may also be directly
impacted by the consequence of an alert lately or not well
interpreted by the driver. In addition, these studies have
shown that early warnings improve the efficiency of the
alerts. Thus, the main challenge of risk assessment systems
remains the responsiveness of the system and the integrity
of generated information, so that such systems can become
preventive instead of remedial.

In addition, to our knowledge, there is no related work
that takes advantage of drivers’ individualities. Though,
some highlight the differences of behaviour between dif-
ferent drivers in similar contexts [4], [2]. For example, it is
unlikely that a driver used to decelerate smoothly decides
intentionally to decelerate much harder than usual.

In this paper, it is proposed to take advantage of driver
patterns with regard to road contexts, to detect unusual
behaviours which might be signs of incomplete situation
awareness. Multiple sources of data are used within the
framework, with respect to the subject vehicle, the road
context and the driver. An underlying architecture of the
system is presented, followed by a concrete exploitation
in a road intersection context. It is shown that the use of
driver individualities may help detect unusual behaviours
(i.e. indicators of situation unawareness) to provide early
advices instead of late warnings.

III. PROPOSED APPROACH

A. Concept

The aim of the framework is not to generate alerts when
the situation is getting dangerous, but rather to provide
advices as a human copilot would do. For instance, a fellow

DANGER

Driver 1

Driver 2

Limit before 100%
probable crash

Driver 3

Advice Warning
Active 
ADAS

Not enough time to 
give advice

Driver’s limit

Fig. 1. Solutions to avoid accident: advice, warning and active ADAS.
Drivers react more or less rapidly to the context, depending on their habits.
For some of them, early advices can be given instead of warnings.

traveller who feels that the driver did not understand or
perceive something would say “Have you seen ... ?” instead
of waiting the last minute to say “Brake !”. A copilot usually
knows the driver’s practices, and can estimate the need to
advice the driver in case of unusual behaviour.

Figure 1 illustrates the nuance between warnings and
advices, such as:

• Active ADAS: the situation is critical, and the TTC is
too small to let the driver react and brake. The vehicle
takes the control.

• Warning: the situation is dangerous, however the driver
has time to react and to avoid accidents. The system
warns the driver.

• Advice: the situation is not yet dangerous, however it
seems that the driver is not aware of a contextual object.
The system gives a pertinent advice to make sure that
the driver has all the required information for a coherent
decision making.

Depending on the manner a driver is used to drive and to
behave in particular contexts, advices can become relevant,
or not. For instance, a sporty driver usually starts braking
late at stop intersections. The situation becomes abnormal
for him very late, and the situation can become dangerous
very quickly. It is more relevant to warn the driver than
giving him an advice. On the contrary, a relaxed driver who
does not brake as early as usual can become suspect, and
even if the situation is not yet dangerous an advice can be
relevant for him.

B. Framework
The framework uses inputs from different information

sources, as illustrated in Figure 2:
• Environment & Context. The environment can be

known through digital maps which store informations
about the road network and infrastructure. On the other
hand, dynamic objects which cannot be included in
maps (vehicles, pedestrians, etc.) have to be perceived
in real time by using sensors such as cameras or radars.

• Vehicle State. The position, speed and other parameters
related to the subject vehicle are provided by localiza-
tion devices (GNSS, etc.) and the vehicle CAN bus.

• Driver. Actuations of the driver can be directly provided
by messages in the vehicle CAN bus. Driver patterns
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ENVIRONMENT

Perception

Digital Map

VEHICLE STATE

DRIVER

Actuations

Patterns

1.
Situation 

understanding
-

What context 
element to 
monitor ?

2.
Does the 

driver behave 
as usual ?

-
Is he aware of 
the context ?

3.
Would an 
advice be 
relevant ?

Fig. 2. Block Diagram of the proposed framework

(habits, in other words) have to be previously learnt.
For example, [2] proposes a method to learn approaches
to stop intersections.

The first step is to fuse environment data and vehicle state
data to clearly understand the context, and the influence of
every contextual object on the subject vehicle. Usually, one
object has more influence than the others on the vehicle,
and this influence leads to a particular vehicle parameter
to monitor (speed, etc.). This step is not the object of this
paper. In the rest of the paper, the most important contextual
object is manually set. Some works propose methods for
scene understanding, such as [15] and [18] which may be
used within the framework.

The second step is to estimate if the behaviour of the
driver matches with the behaviour expected in similar
contexts. Driver patterns are compared with the current
behaviour of the driver to estimate the awareness regarding
the main contextual element. This step will be described in
the rest of this paper.

C. Detection of unusual behaviours and awareness estima-
tion

This section aims at describing the box number 2 in-
troduced in Figure 2 which allows detection of unusual
behaviours and thus estimation of awareness. For this task,
a Bayesian Network (BN) [14] has been developed. BNs
offer a way to fuse different sources of information, taking
uncertainties into consideration.

It is assumed that the context has been understood (box
number 1) and that the parameter to monitor has been
identified.

1) Variables: Variables are separated into two categories,
depending on their observability:

a) Observable variables: These variables can be meas-
ured by the embedded sensors on a subject vehicle. They
are defined as follows:

• Pt ∈ R, the parameter to be monitored, with regard
to the contextual object considered by the box 1 (c.f.
Figure 2). It may be the vehicle speed, interdistance,
lateral position, etc.

• Rt ∈ {0, 1}, the reaction of the driver. The driver
can give an indication that he finally perceived/ took
into consideration the most important contextual object.
This variable is considered as a way to reduce the risk

Pt

Nt

At

Rt

Pt-1

Nt-1

At-1

Rt-1

Fig. 3. Graphical Representation of the Bayesian Network

of non-relevant advice. It is related to the parameter
to monitor, and may be an action on the brake pedal,
or for instance an information provided by vision (c.f.
[17]).
b) Hidden variables: These variables cannot be dir-

ectly measured. However the DBN enables to estimate their
values.

• Nt ∈ {0, 1}, the estimation of the “Normality” of
the driver’s behaviour. By “Normal behaviour”, it is
understood a behaviour that matches with the behaviour
that the driver usually has in a similar context.

• At ∈ {0, 1}, the estimation of the awareness of the
driver with regard to the contextual object taken into
consideration by the box number 1 (c.f. Figure 2).

2) Graphical Representation: The structure of the pro-
posed BN is shown in Figure 3; its corresponding joint
distribution is given by Eq.(1).

P (Pt, Nt, At, Rt) = P (Nt)× P (Rt)× P (Pt|Nt)

× P (At|Rt, Nt, At−1) (1)

The relationship between all the nodes has to be under-
stood as follows:

• A behaviour considered as Normal means that the
observed Parameter matches with the driver’s patterns,
and that the driver seems Aware of the main contextual
object.

• The Awareness of the driver (with regard to the main
contextual object) is inferred by the estimation of the
Normality of the driver’s behaviour, and also by a
Reaction of the driver.

3) Conditional probabilities: A description of the para-
metric form of the conditional probabilities is presented in
this section.

a) The Parameter to monitor, Pt: It is considered that
Pt follows the normal law such as:

P (Pt|Nt) = N (pmean, σs)

It means that whatever method can be used to provide
the usual driver’s behaviour, the only constraint is that the
provided value has to be composed by mean and variance.

Table I gives the value of Pt given the Normality of the
behaviour Nt:
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Nt Pt

0 N (pAbnormal, σAbnormal)
1 N (pNormal, σNormal)

TABLE I
CONDITIONAL PROBABILITY OF THE PARAMETER Pt

Cond. Prob.
# Nt At−1 Rt P (At = 1|Nt, At−1, Rt)

1 0 0 0 α
2 1 0 0 α
3 0 1 0 α
4 1 1 0 β
5 0 0 1 β
6 1 0 1 β
7 0 1 1 β
8 1 1 1 β

TABLE II
CONDITIONAL PROBABILITIES OF THE AWARENESS At

b) The Normality of the behaviour, Nt: The probability
that abnormal behaviours occur is low, it is defined as
follows:

P (Nt = 0) = γ

c) The Reaction of the driver, Rt: The probability that
the driver reacts because of the presence of a contextual
object is set as follows:

P (Rt = 1) = 0.5

d) The Awareness, At: It is assumed that there is con-
tinuity in the driver awareness. The conditional probabilities
of the Awareness node are defined in Table II.

It is considered that the driver may be not aware of the
main contextual object (i.e. α is small) if:

• At time t− 1, the driver is not considered as aware of
the context, and does not show any reaction at time t.

• Even if at time t−1 the driver was considered as aware
of the context, if the behaviour turns abnormal and no
reaction is perceived.

On the contrary, it is considered that the driver seems aware
of the main contextual object (i.e. β is high) if:

• A reaction is perceived at time t.
• At time t−1 it was estimated that the driver was aware

of the context, and his behaviour seems normal at time
t.

4) Behaviour Normality and Context awareness estima-
tion: The model is used to estimate the behaviour normality
and the degree of awareness regarding the contextual object
that is supposed to have the biggest influence on the subject
vehicle. This awareness is estimated by Eq. 2:

P ([Nt = 0], [At = 0]|Pt, Rt, At−1) (2)

V
el

o
ci

ty

The most important 
contextual object

Fig. 4. The use case: a typical stop intersection vs expected velocity
profile

IV. PRELIMINARY EVALUATION AND DISCUSSION

A. Use Case

A simple use case has been chosen to run a first evaluation
of the framework proposed in the previous section. A subject
vehicle is moving on a road that leads to a stop intersection.
There is no lead vehicle moving in front of the subject
vehicle, no pedestrian and no infrastructure such as speed
bumpers or crossing. Thus the intersection is the only
contextual object that has influence on the vehicle, and the
only vehicle parameter to monitor is the velocity. Figure 4
illustrates the use case.

B. Bayesian Network adaptation

The observable nodes of the DBN described in Section
III-C have to be adapted to the given use case:

1) The parameter Pt : This parameter to monitor is the
vehicle velocity. This velocity depends on the distance to
the stop intersection, as illustrated in Figure 4.

It is considered that a driver has an unusual behaviour
when he does not decelerate before the intersection.

The usual behaviour of the driver while he is approaching
to a stop intersection has to be learnt. In [2], it is proposed
to learn the customized velocity profile of a driver at the
approach to stop intersections. Gaussian Processes are used.
It has been shown that this method is well adapted for
this task, since it allows to model accurately the driver
patterns taking into account uncertainties which might exist
due to the driver and the quality of the on-board sensors.
In addition, the outputs follow the normal law and are
composed by mean and variance.

From a dozen of approaches recorded on real roads, the
framework described in [2] allows to provide learnt patterns
as the one shown in Figure 5. At any position before
the intersection, Gaussian Processes allow to compute the
velocity (mean and variance) at which the vehicle is usually
moving at the same position, in similar contexts.

2) The Reaction Rt: Usually, when approaching to a
road intersection, a driver decelerates or brakes. In the case
of stop intersections, a sign that the driver understood the
presence of the contextual object is that he pushes (more
or less) the brake pedal. For the proposed use case, the
framework uses the brake pedal state (0 or 1) as a reaction
of the driver.
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Fig. 5. Customized velocity profile provided by Gaussian Processes

3) Parameters α, β and γ : The value of these Bayesian
Network parameters are set manually such as α = γ = 0.1
and β = 0.9.

C. Results

Preliminary evaluations of the framework have been real-
ized, using real data recorded on open roads. Acquisitions
were accomplished with the same protocol as the one
described in [2].

Three scenarios have been chosen for the evaluation:

1) Scenario 1: Normal behaviour.
2) Scenario 2: Unusual late deceleration.
3) Scenario 3: No reaction, comparison with the use of

a generic profile.

1) Scenario 1: In this scenario, the driver behaves as he
usually behaves while approaching to a stop intersection.
The Figure 6 illustrates the behaviour of the DBN for this
normal behaviour (red curves). It is noticeable that:

• The velocity stays inside the individual envelope
defined by the customized driver pattern, and thus
seems to be adapted to the context.

• Since the velocity of the vehicle matches with the driver
pattern, the action of the driver on the brake pedal does
not have influence on the model.

• The model considers that the driver is aware of the stop
intersection.

2) Scenario 2: In this scenario, the driver does not
approach to the intersection with an usual behaviour, and
reacts lately. The Figure 6 illustrates the behaviour of the
DNB for this abnormal behaviour (green curves). It is
noticeable that:

• The velocity leaves the envelope defined by the per-
sonalized speed profile.

• As soon as the behaviour (i.e. the velocity) turns
unusual, the risk that the driver did not consider the
stop intersection starts increasing.

• When the driver starts pushing the brake pedal, the
system considers that he took the stop intersection
into consideration, and thus that he is aware of this
contextual object. The risk decreases close to 0.
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Fig. 6. Scenarios 1&2 : Normal behaviour and late reaction. In red,
data related to normal behaviour, in green data related to late reaction. In
windows A, the learnt pattern is in blue (mean and 95% confidence).

3) Scenario 3: In this scenario, it is simulated that the
driver does not decelerate and does not react at all while
approaching to a stop intersection. Figure 7 illustrates the
behaviour of the system for this scenario. The behaviour
of the DBN is tested using a profile customized for a
rather relaxed driver (in blue), and with an average generic
profile (in green). The generic profile shows a 2.4m/s²
deceleration rate which is an average rate at 50km/h,
as indicated in [19]. In addition, a −9m/s² deceleration
curve is drawn. This curve represents an average maximum
deceleration rate for emergency braking. It is noticeable that:

• As soon as the velocity leaves the envelopes (learnt and
generic envelopes) without any reaction (on the brake
pedal), the probability that the driver did not take the
stop intersection into account increases up to 0.9.

• This example highlights the advantage of using cus-
tomized patterns. For a relaxed driver (in blue), the
system detects a risk of context unawareness about 19m
before the estimation of a risk with the generic profile.
Moving at 50km/h, 19m are travelled in 1.35s which
may represent a high average reaction time for a driver.

• With the learnt pattern, the estimated probability that
the driver is not aware of the stop intersection reaches
a value of 0.9 34m before the maximum emergency
deceleration curve. Moving at 50km/h, this distance
is travelled in 2.42s. This is more than enough for
the driver to react to an advice (for example: “Have
you seen the stop intersection ?”) and to brake much
smoother than an emergency braking.

D. Discussion

According to the preliminary evaluation presented, the
proposed framework provides a coherent estimation of the
risk that a driver does not take into account the main
contextual object. However, a quantitative evaluation of the
system have to be done with a significant amount of data
recorded in real conditions.
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In addition, the use of customized driver patterns en-
hances the integrity of the generated information. Whilst
uncertainties are taken into account by the personalized
driver model, small uncertainties on measurements will lead
to better estimation of risk.

For drivers used to drive sportingly, the framework al-
lows also an estimation of unawareness. Nevertheless, this
information can come too late to have time to generate an
advice. In this case, it is better to generate warnings instead
of advices. Further works have to be done to estimate when
time is no longer sufficient to give an advice.

Finally, the simplicity of the use case enables to know
in a straightforward manner that the stop intersection had
to be monitored (c.f. Box 1 in Figure 2). In more complex
contexts, it is not that simple. Thus, further works have to
be done to automatically interpret the road context, and to
detect contextual objects which interfere with the subject
vehicle.

V. CONCLUSION

An underlying framework for the estimation of driver
awareness with regard to a particular contextual object has
been presented. It takes into account that all drivers have
different driver patterns, thus it learns how drivers behave
under different contextual situations. Then, it infers if drivers
are behaving differently as they approach similar situations.
The model has been used within a simple use case (stop road
intersection) to evaluate its relevance using a single observed
variable, the vehicle velocity profile as it approaches the
stop line. For this task, real data and customized driver
patterns have been used. This preliminary evaluation has
shown that the model provides a coherent estimation of
context awareness (with regard to the focus object), and
would make it possible to produce early advices to the
driver.

The proposed framework will be extended by including
other contextual objects, namely the presence of a lead

vehicle between the subject vehicle and the next road inter-
section. This use case requires the use of other observation
variables.
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Enhancing Mobile Object Classification
Using Geo-referenced Maps and Evidential Grids

Marek Kurdej, Julien Moras, Véronique Cherfaoui, Philippe Bonnifait

Abstract— Evidential grids have recently shown interesting
properties for mobile object perception. Evidential grids are
a generalisation of Bayesian occupancy grids using Dempster–
Shafer theory. In particular, these grids can handle efficiently
partial information. The novelty of this article is to propose
a perception scheme enhanced by geo-referenced maps used
as an additional source of information, which is fused with a
sensor grid. The paper presents the key stages of such a data
fusion process. An adaptation of conjunctive combination rule
is presented to refine the analysis of the conflicting information.
The method uses temporal accumulation to make the distinction
between stationary and mobile objects, and applies contextual
discounting for modelling information obsolescence. As a result,
the method is able to better characterise the occupied cells by
differentiating, for instance, moving objects, parked cars, urban
infrastructure and buildings. Experiments carried out on real-
world data illustrate the benefits of such an approach.

Index Terms— dynamic fusion, geo-referenced maps, mobile
perception, prior knowledge, evidential occupancy grid, au-
tonomous vehicle

I. INTRODUCTION

Autonomous driving has been an important challenge
in recent years. Navigation and precise localisation aside,
environment perception is an important on-board system of
a self-driven vehicle. The level of difficulty in autonomous
driving increases in urban environments, where a good scene
understanding makes the perception subsystem crucial. There
are several reasons that make cities a demanding environ-
ment. Poor satellite visibility deteriorates the precision of
GPS positioning. Vehicle trajectories are hard to predict due
to high variation in speed and direction. Also, the sheer
number of mobile objects poses a problem, e.g. for tracking
algorithms.

On the other hand, more and more detailed and pre-
cise geographic databases become available. This source
of information has not been well examined yet, hence
our approach of incorporating prior knowledge from digital
maps in order to improve perception scheme. A substantial
amount of research has focused on the mapping problem
for autonomous vehicles, e.g. Simultaneous Localisation and
Mapping (SLAM) approach [1], but the use of maps for
perception is still understudied.

In this article, we propose a new perception scheme for
intelligent vehicles. The information fusion method is based
on Dempster–Shafer theory of evidence [2]. The principal
innovation of the method is the use of meta-knowledge
obtained from a digital map. The map is considered as

* Authors are with UMR CNRS 7253 Heudiasyc
University of Technology of Compiègne, France. E-mail:
firstname.surname@hds.utc.fr

an additional source of information on a par with other
sources, e.g. sensors. We show the advantage of including
prior knowledge into an embedded perception system of
an autonomous car. To model the vehicle environment,
our approach uses multiple 2D evidential occupancy grids
described in [3]. Originally, occupancy grids containing
probabilistic information were proposed in [4].

Our method aims to model complex vehicle environment,
so that it can be used as a robust world representation
for other systems, such as navigation. We want to detect
mobile and static objects and distinguish stopped and moving
objects. The objective of the proposed scheme is to model
the free and navigable space as well.

This paper describes a robust and unified approach to
a variety of problems in spatial representation using the
Dempster–Shafer theory of evidence. The theory of evidence
was not combined with occupancy grids until recently to
build environment maps for robot perception [3]. Only recent
works take advantage of the theory of evidence in the context
of mobile perception [5]. There is also some research on
efficient probabilistic and 3-dimensional occupancy grids [6].
Some authors have also used a laser range scanner as an
exteroceptive source of information [5]. Some works use 3D
city model as a source of prior knowledge for localisation
and vision-based perception [7], whereas our method uses
maps for scene understanding. Geodata are also successfully
used for mobile navigation [8].

This article is organised as follows. Section II gives
necessary theoretical background of the Dempster–Shafer
theory of evidence. In section III, we describe the details of
the proposed method, starting with the description of needed
data and the purpose of each grid. Further, details on the
information fusion are given. Data-dependent computation
which are not in the heart of the method are described in
section IV. Section V presents the results obtained with
real-world data. Finally, section VI concludes the paper and
presents ideas for future work.

II. DEMPSTER–SHAFER THEORY OF EVIDENCE

The Dempster–Shafer theory (DST) is a mathematical the-
ory specially adapted to model the uncertainty and the lack of
information introduced by Dempster and further developed
by Shafer [2]. DST generalises the theory of probability,
the theory of possibilities and the theory of fuzzy sets. In
the Dempster–Shafer theory (DST), a set Ω = ω1, . . . , ωn
of mutually exclusive propositions is called the frame of
discernment (FOD). In case of closed-world hypothesis, the
FOD presents also an exhaustive set. Main difference in
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comparison to the theory of probability is the fact that the
mass of evidence is attributed not only to single hypotheses
(singletons), but to any subset of the FOD, including an
empty set.

As stated in the previous paragraph, beliefs about some
piece of evidence are modelled by the attribution of mass
to the corresponding set. This attribution of mass, called a
basic belief assignment (bba), or a mass function, is defined
as a mapping:

m(·) : 2Ω 7→ [0, 1] (1)∑
A⊆Ω

m(A) = 1 (2)

m(∅) = 0 (3)

In order to combine various information sources in the
DST, there are many rules of combination. Combined mass
functions have to be defined on the same FOD Ω or transform
to a common frame using refining functions. A refining is
defined as a one-to-many mapping from Ω1 to Ω2.

r : 2Ω1 7→ 2Ω2 \ ∅ (4)
r(ω) 6= ∅ ∀ω ∈ Ω1 (5)⋃

ω∈Ω1

r(ω) = Ω2 (6)

r(A) =
⋃
ω∈A

r(ω) (7)

The frame of discernment Ω2 is then called the refinement
of Ω1, and Ω1 is the coarsening of the Ω2.

When combined pieces of evidence expressed by bbas are
independent and both are reliable, then the conjunctive rule
and Dempster’s combination rule are commonly used. In the
case when the sources are independent, but only one of them
is judged reliable, a disjunctive rule is used.

In the following, let us suppose that m1,m2 are bbas.
Then, the conjunctive rule of combination denoted by ∩© is
defined as follows:

(m1 ∩©m2)(A) =
∑

A=B∩C
m1(B) ·m2(C) (8)

The combination using the conjunctive rule can generate
the mass on the empty set m(∅). This mass can be interpreted
as the conflict measure between the combined sources.
Therefore, a normalised version of conjunctive rule, called
Dempster’s conjunctive rule and noted ⊕ was defined:

(m1 ⊕ m2)(A) =
(m1 ∩©m2)(A)

1−K
(9)

(m1 ⊕ m2)(∅) = 0 (10)
K = (m1 ∩©m2)(∅) (11)

The disjunctive rule of combination, noted ∪© is defined
as follows:

(m1 ∪©m2)(A) =
∑

A=B∪C
m1(B) ·m2(C) (12)

∅ a b Ω = {a, b}
m1 0 0.2 0.6 0.2
m2 0 0.7 0.1 0.2

m1 ∩©m2 0.44 0.34 0.18 0.04
m1 ⊕ m2 0 0.61 0.32 0.07
m1 ∪©m2 0 0.14 0.06 0.8

αm1 0 0.18 0.54 0.28
betP1 0 0.3 0.7 1

TABLE I
EXAMPLE OF FUSION RULES, DISCOUNTING WITH α = 0.1 AND

PIGNISTIC PROBABILITY.

In the DST, a discounting operation is used in order to,
e.g. model information ageing. Discounting in its basic form
requires to set a discounting factor α and is defined as:

αm(A) = (1− α) ·m(A) ∀A ( Ω (13)
αm(Ω) = (1− α) ·m(Ω) + α (14)

Decision making in DST creates sometimes a necessity
of transforming a mass function into a probability function
[9]. Smets and Kennes proposed so called pignistic transfor-
mation in [10]. Pignistic probability betP has been defined
as:

betP(B) =
∑
A∈Ω

m(A) · |B ∩A|
|A|

(15)

where |A| is the cardinality of the set A.
Table I presents an example of different combination rules,

pignistic transform and discounting operation.

III. MULTI-GRID FUSION APPROACH

This section presents the proposed perception schemes.
We use three evidential occupancy grids to model prior
information, sensor acquisition and perception result. The
grid construction method is described in section III-B. We
detail all data processing steps in section III-D. Figure 1
presents a general overview of our approach. Following
sections correspond to different blocks of this diagram.

A. Heterogeneous data sources

There are three sources in our perception system: vehicle
pose, exteroceptive acquisition data and vector maps. Fig-
ure 1 illustrates all system inputs. The proposed approach is
based on the hypothesis that all these information sources
are available. Other hypotheses on the input data are done.
Firstly, a globally referenced vehicle pose is needed to situate
the system in the environment. The pose provided by a
proprioceptive sensor should be reliable, integrate and as
precise as possible. It is assumed that the pose reflects closely
the real state of the vehicle. Secondly, an exteroceptive
sensor supplies a partial view of the environment. This sensor
should be able to at least distinguish free and occupied
space, and model it in 2D x, y or 3D x, y, z coordinates.
The coordinates can be globally referenced or relative to the
vehicle. A typical exteroceptive sensor capable of satisfying
this assumption is a Lidar (laser range scanner), radar, or a
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Fig. 1. Method overview.

stereo camera system. Lastly, our method tries to exploit at
large the information contained in vector maps, so we assume
that the maps are sufficiently rich and contain valuable
accurate data. Typically, map data should contain information
on the location of buildings and the model of road surface.

B. Occupancy grids

An occupancy grid models the world using a tessellated
representation of spatial information. In general, it is a multi-
dimensional spatial lattice with cells storing some stochastic
information. In our case, each cell representing a box (a part
of environment) X×Y where X = [x−, x+], Y = [y−, y+]
stores a mass function.

1) SensorGrid (SG): In order to process the extero-
ceptive sensor data, an evidential occupancy grid is com-
puted when a new acquisition arrives, this grid is called
SensorGrid. Each cell of this grid stores a mass function
on the FOD ΩSG = {F,O}, where F refers to the free space
and O – to the occupied space. The basic belief assignment
reflects the sensor model.

2) PerceptionGrid (PG): To store the results of in-
formation fusion, an occupancy grid PG has been introduced
with a FOD ΩPG = {F, I, U, S, M}. The choice of such
a FOD is directly coupled with the objectives that we try to
achieve. Respective classes represent: free space F , mapped
infrastructure (buildings) I , unmapped infrastructure U , tem-
porarily stopped objects S and mobile moving M objects.
ΩPG is a common frame used for information fusion. By
using PG as a cumulative information storage, we are not
obliged to store preceding SensorGrids.

3) GISGrid (GG): This grid allows us to perform
a contextual information fusion incorporating some meta-
knowledge about the environment. GISGrid uses the same
frame of discernment ΩPG as PerceptionGrid. The grid
can be obtained, for instance, by projection of map data,
buildings and roads, onto a 2D grid with global coordinates.
However, the exact method of creating the GG depends on
available GIS information. Section IV-B presents how the
GG was constructed.

C. Combining prior knowledge

In our method, prior information contained in maps serves
to ameliorate the perception scheme. We have chosen to
combine the prior knowledge with the sensor data of the
SensorGrid. However, the Dempster–Shafer theory does
not allow to combine sources with different frames of
discernment. The frame of discernment ΩSG is distinct from
ΩPG used in GISGrid. Hence, we are obliged to find a
common frame for both sources. In order to enable the fusion
of SensorGrid (SG) and GISGrid (GG), we define a
refining:

rSG : 2ΩSG 7→ 2ΩPG (16)
rSG ({F}) = {F} (17)
rSG ({O}) = {I, U, S,M} (18)

rSG(A) =
⋃
θ∈A

rSG(θ) (19)

Refining r allows us to combine prior knowledge included
in GISGrid with instantaneous grid obtained from sen-
sor(s).

The refined mass function can be expressed as:

mΩPG

SG (rSG (A)) = mΩSG

SG (A) ∀A ⊆ ΩSG (20)

Then, Dempster’s rule described in section II is applied in
order to exploit the prior information included in GG:

m′ΩPG

SG, t = mΩPG

SG, t ⊕ mΩPG

GG (21)

We have chosen to use the Dempster’s rule of combination,
since the GIS data and the sensor data are independent.
Besides, we suppose that both sources are reliable, even if
errors are possible. In the end of this stage, we obtain a grid
being combination of the sensor data, SensorGrid, with
the prior knowledge from GISGrid.

D. Temporal fusion

The role of the fusion operation is to combine current
sensor acquisition with preceding perception result. The
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sensor acquisition input is already combined with prior in-
formation as described in preceding paragraphs. We propose
to exploit dynamic characteristics of the scene by analysing
produced conflict masses. As the preceding perception result
PerceptionGrid is partially out-of-date at the moment
of fusion, the contextual discounting operation is employed
to model this phenomena. Moreover, a counter of occupancy
has been introduced and a mass function specialisation is
performed to distinguish mobile, but temporarily stopped
objects.

1) Computing conflict masses: To distinguish between
two types of conflict which arise from the fact that the
environment is dynamic, the idea from [11] is used. ∅FO
denotes the conflict induced when a free cell in PG is fused
with an occupied cell in SG. Similarly, ∅OF indicates the
conflicted mass caused by an occupied cell in PG fused with
a free cell in SG.

Conflict masses are calculated using the formulas:

mPG, t (∅OF ) = mPG, t−1 (O) ·mSG, t (F ) (22)
mPG, t (∅FO) = mPG, t−1 (F ) ·mSG, t (O) (23)

where m(O) =
∑
A

m(A), ∀A ⊆ {I, U, S,M}. In an

error-free case, these conflicts represent, respectively, the
disappearance and the appearance of an object.

2) PerceptionGrid specialisation using an accumu-
lator: Mobile object detection is an important issue in
dynamic environments. We propose the introduction of an
accumulator ζ in each cell in order to include temporal
information on the cell occupancy. For this purpose, incre-
mentation and decrementation steps δinc ∈ [0, 1], δdec ∈
[0, 1], as well as threshold values γO, γ∅ have been defined.

ζ(t) = min
(

1, ζ(t−1) + δinc

)
(24)

if mPG(O) ≥ γO
and mPG (∅FO) +mPG (∅OF ) ≤ γ∅

ζ(t) = max
(

0, ζ(t−1) − δdec
)

(25)

if mPG (∅FO) +mPG (∅OF ) > γ∅

ζ(t) = ζ(t−1) (26)
otherwise (27)

Using ζ values, we impose a specialisation of mass
functions in PG using the equation:

m′PG, t (A) = S(A,B) ·mPG, t(B) (28)

where specialisation matrix S(·, ·) is defined as:

S(A\ {M} , A) = ζ ∀A ⊆ ΩPG and {M} ∈ A
S(A, A) = 1− ζ ∀A ⊆ ΩPG and {M} ∈ A
S(A, A) = 1 ∀A ⊆ ΩPG and {M} /∈ A
S(·, ·) = 0 otherwise

(29)

The idea behind the specialisation matrix and the accumu-
lator is that the mass attributed to set N,S,M or S,M will
be transferred to set N,S or S, respectively. The transferred
mass value is proportional to the time that the cell stayed
occupied. In this way, moving objects are differentiated from
static or stopped objects.

3) Fusion rule: An important part of the method con-
sists in performing the fusion operation of a discounted
and specialized PerceptionGrid from preceding epoch
αm′PG, t−1 with a SG combined with prior knowledge from
current epoch m′SG, t. The discounting operation is pre-
sented in section II and the specialisation is described in
the preceding paragraph. In the section III-C, combination
of prior knowledge with the SensorGrid is demonstrated.

mPG, t = αm′PG, t−1 ~m′SG, t (30)

The fusion rule ~ is a modified conjunctive rule adapted to
mobile object detection. There are of course many different
rules that could be used, but in order to distinguish between
moving and stationary objects some modifications had to be
performed. These modifications consist in transferring the
mass corresponding to a newly appeared object ∅FO to the
class of moving objects M as described by the equation 31.
Symbol ∩© denotes the conjunctive fusion rule.

(m1 ~m2) (A) = (m1 ∩©m2) (A)

∀A ( Ω ∧A 6= M

(m1 ~m2) (M) = (m1 ∩©m2) (M) + (m1 ∩©m2) (∅FO)

(m1 ~m2) (Ω) = (m1 ∩©m2) (Ω) + (m1 ∩©m2) (∅OF )

(m1 ~m2) (∅FO) = 0

(m1 ~m2) (∅OF ) = 0 (31)

All the above steps allow the construction of a PG con-
taining reach information on the environment state, including
the knowledge on mobile and static objects.

E. Fusion rule behaviour

Proposed fusion scheme behaves differently depending on
the context. In this section, we describe briefly the behaviour
of the fusion rule. For an in-depth analysis, the reader is
invited to read [12]. Context stands for prior knowledge
information contained in GISGrid. To demonstrate the
effect of the fusion operator, we have chosen two particular
cases, which clearly represent different contexts.

Building context: In the building context, i.e. when
m(F ) + m(I) + m(Ω) ≈ 1, our fusion operator is roughly
equivalent to the Yager’s rule. The sum of conflict masses
distinguished by the proposed rule is equal to the conflict
mass in a regular fusion scheme without conflict manage-
ment. This behaviour is relevant, since it is assumed that no
mobile obstacles are present in this context. Therefore, only
free space and infrastructure is to be distinguished.

Road and intermediate space: The conflict management
adapted to the perception scheme direct mass attribution to
moving obstacles (class M ). The introduction of occupied
space counter and PerceptionGrid specialisation (see
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section III-D.2) permits to transfer a part of the mass from
“moving or other” class to “other”, where other is context-
dependent.

IV. EXPERIMENTAL SETUP

A. Dataset

The data set used for experiments was acquired in the
12th district of Paris. The overall length of the trajectory was
about 9 kilometres. The vehicle pose comes from a system
based on on a PolaRx II GPS and a NovAtel SPAN-CPT
inertial measurement unit (IMU). The system is supposed to
provide precise positioning with high confidence. Our main
source of information about the environment is an IBEO
Alaska XT lidar able to provide a cloud of about 800 points
10 times per second. The digital maps that we use were
provided by the French National Geographic Institute (IGN)
and contain 3D building models as well as the road surface.
We also performed successful tests with freely available
OpenStreetMap project 2D maps [13], but here we limited
the use to building data. We assume the maps to be accurate
and up-to-date.

B. GISGrid construction

The map data can be represented by two sets of polygons
defining the 2D position of buildings and road surface by,
respectively,

B =

{
bi =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nB ]

}
(32)

R =

{
ri =

[
x1x2 . . . xmi

y1y2 . . . ymi

]
, i ∈ [0, nR]

}
(33)

Our dataset satisfies the condition: B ∩R = ∅.
We note that B = {I}, R = {F, S, M}, T =

{F, U, S, M} for convenience and readability only. Set A
denotes then all other strict subsets of Ω. These aliases
characterise the meta-information inferred from geographic
maps. For instance, on the road surface R, we encourage
the existence of free space F as well as stopped S and
moving M objects. Analogically, building information B
fosters mass transfer to I . Lastly, T denotes the intermediate
area, e.g. pavements, where mobile and stationary objects as
well as small urban infrastructure can be present. Please note
that neither buildings nor roads are present, so the existence
of mapped infrastructure I can be excluded, but the presence
of the other classes cannot. Also, a level of confidence β
is defined for each map source, possibly different for each
context. Let x̃ = x−+x+

2 , ỹ = y−+y+
2 , then:

mGG{X,Y }(B) =

{
βB if (x̃, ỹ) ∈ bi
0 otherwise

(34)

∀i ∈ [0, nB ]

mGG{X,Y }(R) =

{
βR if (x̃, ỹ) ∈ ri
0 otherwise

(35)

∀i ∈ [0, nR]

mGG{X,Y }(T ) =

{
0 if (x̃, ỹ) ∈ bi ∨ (x̃, ỹ) ∈ rj
βT otherwise

(36)
∀i ∈ [0, nB ],∀j ∈ [0, nR]

mGG{X,Y }(Ω) =


1− βB if (x̃, ỹ) ∈ bi
1− βR if (x̃, ỹ) ∈ ri
1− βT otherwise

(37)

∀i ∈ [0, nB ],∀j ∈ [0, nR]

mGG{X,Y }(A) = 0 (38)
∀A ( Ω and A /∈ {B,R, T}

C. Sensor model

This section describes the way in which the data obtained
from the sensor are transformed into the SensorGrid. If
another exteroceptive sensor is used, one has to define an
appropriate model. The model used in the presented method
is based on the one described in [5].

D. Parameters

The size of the grid cell in the occupancy grids was set to
0.5 m, which is sufficient to model a complex environment
with mobile objects. We have defined the map confidence
factor β by ourselves, but ideally, it should be given by
the map provider. β describes data currentness (age), errors
introduced by geometry simplification and spatial discretisa-
tion. β can also be used to depict the localisation accuracy.
Other parameters, such as counter steps δinc, δdec and
thresholds γO, γ∅ used for mobile object detection determine
the sensitiveness of mobile object detection and were set
by manual tuning. Parameters used for the construction of
SensorGrid, were set to µF = 0.7, µO = 0.8.

V. RESULTS

To assess the performance of our method, a comparison
of perception results when prior knowledge from maps is
present and when it is not available has been performed. In
this way, we show the interest of using a map-aided approach
to the perception problem.

The results for a particular instant of the approach tested
on real-world data are presented on figure 2. The visualisa-
tion of the PG has been obtained by attributing to each class
a colour proportional to the pignistic probability betP and
calculating the mean colour [9]. The presented scene contains
two moving cars (only one is visible in the camera image)
going in the direction perpendicular to the test vehicle.

The principal advantage gained by using map knowledge is
richer information on the detected objects. A clear difference
between a moving object (red, car) and a stopped objects
(blue) is visible. Also, stopped objects are distinct from
infrastructure when prior map information is available (which
is not highlighted on the figures). In addition, thanks to the
prior knowledge, stationary objects such as infrastructure are
distinguished from stopped objects on the road. Grids make
noticeable the effect of discounting, as information on the
environment behind the vehicle is being forgotten.
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Fig. 2. From left to right: (1) scene capture, (2) PerceptionGrid pignistic probability, (3) simple decision rule to detect free space, moving and
stopped obstacles, (4) trace of moving objects. Colour code for figures (3) and (4): green – free space, red – moving objects, blue – static objects (buildings,
stopped objects), black – unknown space.

Figure 2 shows also the effect of the discounting which
is particularly visible on the free space behind the vehicle.
The grid cells get discounted, so the mass on the free class
F diminishes gradually.

VI. CONCLUSION AND PERSPECTIVES

A new mobile perception scheme based on prior map
knowledge has been introduced. Geographic information
is exploited to reduce the number of possible hypotheses
delivered by an exteroceptive source. A modified fusion
rule taking into account the existence of mobile objects
has been defined. Furthermore, the variation in information
lifetime has been modelled by the introduction of contextual
discounting.

In the future, we anticipate removing the hypothesis that
the map is accurate. This approach will entail considerable
work on creating appropriate error models for the data
source. Moreover, we envision differentiating the free space
class into two complementary classes to distinguish naviga-
ble and non-navigable space. This will be a step towards
the use of our approach in autonomous navigation. Another
perspective is the use of reference data to validate the results,
choose the most appropriate fusion rule and learn algorithm
parameters. We envision using map information to predict
object movements. It rests also a future work to exploit fully
the 3D map information.
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