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Foreword 
Autonomous driving and navigation is a major research issue which would affect our lives in near future. The 

purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation and of 

driving assistance in open and dynamic environments. Technologies related to application fields such as 

unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 

technological point of views. Several research questions located on the cutting edge of the state of the art will be 

addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 

to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 

the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. These 

new technologies can be applied efficiently for other application field such as unmanned vehicles, mobile service 

robots, or mobile devices for motion assistance to elderly or disable peoples. Technologies related to this area, 

such as autonomous outdoor vehicles, achievements, challenges and open questions would be presented, including 

the following topics: Road scene understanding, Lane detection and lane keeping, Pedestrian and vehicle 

detection, Detection, tracking and classification, Feature extraction and feature selection, Cooperative techniques, 

Collision prediction and avoidance, Driver assistance systems, Environment perception, vehicle localization and 

autonomous navigation, Real-time perception and sensor fusion, SLAM in dynamic environments, Real-time 

motion planning in dynamic environments, 3D Modelling and reconstruction, Human-Robot Interaction, Behavior 

modeling and learning, Robust sensor-based 3D reconstruction, Modeling and Control of mobile robot, Multi-

agent based architectures, Cooperative unmanned vehicles (not restricted to ground transportation), Multi 

autonomous vehicles studies, models, techniques and simulations. 

 

Previously, seven workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop 

was held in Roma during ICRA'07 (around 60 attendees), the second PPNIV'08 was in Nice during IROS'08 (more 

than 90 registered people), and the third edition PPNIV'09 was in Saint-Louis (around 70 attendees) during 

IROS'09 . In parallel, we have also organized SNODE'07 in San Diego during IROS'07 (around 80 attendees), 

SNODE'09 in Kobe during ICRA'09 (around 70 attendees), and RITS'10 in Anchrorage during ICRA'10 (around 

35 attendees), and the last one PNAVHE11 in San Francisco during the last IROS11(around 50 attendees).  

 

This workshop is composed with 4 invited talks and 15 selected papers (8 selected for oral presentation and 7 

selected for interactive session. Five sessions have been organized: 

 Session I: Localization & mapping 

 Session II: Multiple Vehicles/Robots & Interaction 

 Session III: Interactive session 

 Session IV: Navigation, Control, Planning 

 Session V: Perception & Situation awareness 

 

Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 

planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 

transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 

and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 

 

Alberto Broggi, Christian Laugier, Philippe Martinet, Urbano Nunes and Christoph stiller 
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 Keynote speaker: Philippe Bonnifait (UTC, Compiegne, France)  

Title: Navigable Maps for Intelligent Vehicles Localization and Perception 

 

 Title: Robot Localization using efficient planar features matching  

Authors: B. Charmette, E. Royer, Frédéric Chausse and L. Lequievre 

 

 Title: Application of Visual-Inertial SLAM for 3D Mapping of Underground 

Environments 

Authors: A. Ferreira, J. Almeida and E. Silva 
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Session I 

 
Keynote speaker: Philippe Bonnifait  

(UTC, Compiegne, France)  

 

Navigable Maps for Intelligent Vehicles Localization and Perception 

 
 

 

Abstract : Intelligent Vehicles are robotic systems that assist the driver in safe and comfortable operation by 

providing pertinent information or by controlling the vehicle itself. Real-time and safe perception of the driving 

environment is one of the key issues. Recent evolutions of navigable maps make them suitable to assist 

localization and perception processes since they provide additional information that can be exploited with 

anticipation. This talk focuses on some autonomous techniques that merge the map information with on-board 

sensors data like GPS measurements, CAN -bus proprioceptive sensors, exteroceptive cameras and multi-layers 

lidars. Macro-scale maps with poly-lines representation of the road network can be exploited as an a priori 

knowledge in order to enhance GPS availability, particularly in urban canyons where satellites signals are often 

blocked. Such kind of map technology is also planned to be used for Map-aided ADAS (Advanced Driver 

Assistance Systems). However, maps can be obsolete or contain errors, resulting in malfunctions of context-based 

ADAS and possibly generating hazardous situations. The talk will present a sequential fault detection test able to 

detect and localise map errors in an autonomous manner using the on-board sensors. Meso-scale maps provide 

more refined information that describes the drivable space of the roads. The talk will present how 3-D facets 

geometry can be used for contracting East, North and altitude estimates when solving a localization problem. The 

use of this kind of 3D representation to characterize the drivable space (useful for path planning or obstacle 

avoidance) will be also presented and discussed. Finally, the talk will focus on visual landmarks that can be 

managed in a specific layer of the map. A method for mobile mapping lane markings and exploiting them in 

dynamic localization will be described. Experimental results showing the key role of navigable maps for 

intelligent vehicles localization and perception will be systematically presented. 

 
Biography: Philippe Bonnifait joined the University of Technology of Compiegne (UTC) 1998. He is now a 

Professor in the Computer Science and Engineering Department. Prof. Bonnifait received the Electrical 

Engineering degree (French Engineer degree) from the Ecole Supérieure d’Electronique de l’Ouest (ESEO - 

Angers- France) in 1992. He graduated from the Ecole Centrale de Nantes (ECN) in 1994 (Master of Science 

degree). He received the Ph. D. degree in Automatic Control and Computer Science from the ECN in 1997. In 

December 2005, he obtained the Habilitation à Diriger des Recherches from the University de Technology of 

Compiegne (UTC). He joined the Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN 

UMR 6597), France, in 1993. In 1998, he was recipient of the Novatlante Award from the district of Nantes for his 

Ph.D on Outdoor Mobile Robots Localization using Goniometry. Between 1998 and 2007, Ph. Bonnifait has been 

Maitre de Conferences in the Computer Science and Engineering Department of UTC. He is currently full 

Professor. He is also with the Heudiasyc Laboratory, a joint research unit between CNRS and UTC. He is head of 

the research group “Automation, Embedded Systems and Robotics” (ASER) of the lab Heudiasyc. He is an IEEE 

and French SIA Member.  
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Navigable Maps  
for Intelligent Vehicles 

Localization and Perception 
Philippe Bonnifait 

Heudiasyc UMR7253 CNRS 
Université de Technologie de Compiègne 

France 
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Abstract 
Intelligent Vehicles assist the driver in safe and comfortable operation by providing pertinent 

information or by controlling the vehicle itself. Real-time and safe perception of the driving 
environment is one of the key issues. Recent evolutions of navigable maps make them suitable to 
assist localization and perception processes since they provide additional information that can be 
exploited with anticipation.   

This talk focuses on some autonomous techniques that merge the map information with on-
board sensors data like GPS measurements, CAN –bus proprioceptive sensors, exteroceptive cameras 
and multi-layers lidars.  

Macro-scale maps with poly-lines representation of the road network can be exploited as an a 
priori knowledge in order to enhance GPS availability, particularly in urban canyons where satellites 
signals are often blocked. Such kind of map technology is also planned to be used for Map-aided 
ADAS (Advanced Driver Assistance Systems). However, maps can be obsolete or contain errors, 
resulting in malfunctions of context-based ADAS and possibly generating hazardous situations. The 
talk will present a sequential fault detection test able to detect and localise map errors in an 
autonomous manner using the on-board sensors. 

Meso-scale maps provide more refined information that describes the drivable space of the 
roads. The talk will present how 3-D facets geometry can be used for contracting East, North and 
altitude estimates when solving a localization problem. The use of this kind of 3D representation to 
characterize the drivable space (useful for path planning or obstacle avoidance) will be also presented 
and discussed.  

Finally, the talk will focus on visual landmarks that can be managed in a specific layer of the 
map. A method for mobile mapping lane markings and exploiting them in dynamic localization will be 
described.  

Experimental results showing the key role of navigable maps for intelligent vehicles localization 
and perception will be systematically presented. 
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Outline 

Localization Quality of Service 

Map Technology 

Tightly coupled GNSS/map localization 

Error detection and localization  

Enhancing maps with lane marking 

Experimental results 

Conclusion 
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Localization Quality of Service  
International Civil Aviation Organization 

4 attributes 
Accuracy  
Integrity  
Availability  
Continuity of service  

Accuracy  
The degree of conformity of the position provided by the navigation 

system relative to the actual value. 

Integrity  
A measure of the trust that can be put in the information from the 

navigation system, i.e., the likelihood of undetected failures in the 
specified accuracy of the system. 
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Localization uncertainty 

Knowledge of positioning uncertainty is necessary to decide if 
position information is relevant for the current application 
 
Localization uncertainty is time and location dependent 

Geometry - Satellites - Noise - Faults 
 
You are most probably here... 

...and less probably here 

You are somewhere inside this box 

Second order moments Protection levels 
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Map Technology 

For road network representation 
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Usual representation 
•  Poly-lines with  

• nodes (connectivity)  
• shape points (geometry) 

• Often 2D geographic coordinates (WGS84)  
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1300
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3D map of the drivable space 

Produced by the French Institut Géographique National 

• Photogrammetry from aerial photographs 

• Surface generated from sidewalk limits 

• Triangular facets 

• Precision of vertices  

5 cm planar / 20 cm altitude 
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GNSS receiver 

Proprioceptive sensor 1 

Proprioceptive sensor 2 

Sensor data fusion 

X, Y, Z, V… 

λ, φ, H 

Standard approach:  
Positioning then map-matching 

You are here, on this segment, at this abscissa 

Navigable Map 

 
Map-

matching 
 

Position on the 
map 

Relevant 
attributes of the 

road segment 

You are here. 
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GNSS receiver 

Proprioceptive sensor 1 

Proprioceptive sensor 2 

Sensor data fusion  
and map-matching 

Navigable Map 

Position on the 
map 

Relevant 
attributes of the 

road segment 

Raw data 

Tightly coupled GNSS/Map localization 
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terrestrial 

ellipsoid  

constraint 

straight line 

Map cache 

X 

Y 

Z 

WGS84 

ECEF  

O 

Tightly Coupling GNSS and map data 
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Bayesian data fusion  
• Static approach 

• Unknown elimination  
• Soft-constraint 

• Dynamic approach  
• Soft-constraint: Multi-hypothesis Kalman filtering  
• Hard-constraint: Road tracking using Particle filtering 
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Experimental vehicle: Carmen 
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Experimental results 
Initialization with 3 satellites 
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Tracking with two satellites only 
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Experimental results 
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Bounded-error approach 
Use of interval analysis 
 

Compute a positioning confidence domain 
The set of positions compatible with the measurements and 
constraints 
 
 

• Arbitrary shaped solution set 

• Disconnected sets in case of ambiguity 

• With a integrity risk computed using the pdf of the noise 
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Bounded-error GPS positioning 

Bounded-error framework 
• Measurements = Intervals 

• Intervals are assumed to include the true value with 

a given probability 

Positioning is a Constraint Satisfaction Problem 

• Measurements = Constraints on position 

• Position = Intersection of constraints 
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Bounded-error GPS positioning 
Receiver measures pseudo-ranges: 
                   range + offset 
 
4 unknowns: x, y, z, dtu -> 4-D boxes 
 
Pseudo-range observation model: 
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Pseudorange constraint 

Each measurement is a constraint 
on position 
 
Prior position box is contracted 
with « fall - climb » constraint 
propagation 
The domains of the variables are 
narrowed without losing solution 
Contraction is successively applied 
with each pseudo-range, until a 
fixed point 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 

prior position box 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 
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Simplified 2D example 

constraint from B1 
range measurement 

constraint from B2 

constraint from B3 

contracted position box 
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Subpavings 

Boxes only provide a rough approximation 
 
Better approximation of arbitrary sets: subpavings 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

36



P. Bonnifait 

3D facets constraint 

1 facet constraint 
• Vertices coordinates are boxes (uncertainty) 

• Facet plane constraint 

 

• 3 facet edges constraints 

prior box 
contracted box 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

37



P. Bonnifait 

3D facets constraint 

Drivable space constraint 
• Union of facet constraints 

prior box 
contracted box 
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Facet selection (map matching) 

Use topology to mark eligible 
neighbors from previous 
epoch facets set. 
 

• Speeds up computation 

• Limits ambiguous 

solutions in poor GPS 

conditions and dense 

road networks 

 

facet consistent 
with x(tk-1) 

facets compatible 
with prediction 

topological facet 
selection 
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Positioning algorithm 

Rough Prediction with 
odometry 

Facet selection 

SIVIA 

Pick a box 

GPS contraction 

Map contraction 

Bisection 

prior box candidate facets 

solution subpaving kk+1 
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Experiment 
12th arrondissement Mairie in Paris 
Septentrio PolaRx, SNR threshold of 35dBHz 
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Evaluation methodology 
Availability  

• bounding box of the sub-paving 
• its radius is compared with a 10-meter Alarm Limit (HAL) 

Integrity validation of the solution 
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Results with a 10% risk 
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Availability and integrity statistics 

Integrity risk r=0.01% r=10% r=50% 
Availability 37% 54% 56% 
Integrity OK 100% 91% 48% 

Integrity unknown 0% 9% 44% 
Integrity lost 0% 0% 8% 
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• Maps are always out-of-date 
– Evolution of the road network 
– Errors in mapping process 

Multi-modal perception using digital map 
 

Integrity of road maps for ADAS 
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Error detection and localization  

Page's test 
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Enhancing maps with lane marking 
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Modeling 

9 41 
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Experimental results 

Lateral error 
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Conclusion 
Navigable maps provide pertinent information to assist 

localization and perception processes 

In particular, maps are useful to increase the quality of 
localization 

In terms of 
Precision 
Availability  
Integrity  
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Associated publications 
• Drevelle, V. and Bonnifait, P. “iGPS: Global Positioning in Urban Canyons with 

Road Surface Maps”, IEEE Intelligent Transportation Systems Magazine, July 

2012 

• Fouque, C. and Bonnifait, Ph. "Matching Raw GPS Measurements on a 

Navigable Map Without Computing a Global Position”, IEEE Transactions on 

Intelligent Transportation Systems, June 2012 

• Drevelle, V. and Bonnifait, P. (2011) A set-membership approach for high 

integrity height-aided satellite positioning. GPS Solutions 

• Drevelle, V. and Bonnifait, P. (2011) Global Positioning in Urban Areas with 3-

D Maps. 2011 IEEE Intelligent Vehicles Symposium, Baden-Baden 

• Drevelle, V. and Bonnifait, P. (2010) Robust Positioning Using Relaxed 
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4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

52



 
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 

October 7th, 2012 Vilamoura, Algarve, Portugal 

 

 

 

 

Session I 

 

Localization & mapping 

 

 Title: Robot Localization using efficient planar features matching  

Authors: B. Charmette, E. Royer, Frédéric Chausse and L. Lequievre 

 

 Title: Application of Visual-Inertial SLAM for 3D Mapping of Underground 

Environments 

Authors: A. Ferreira, J. Almeida and E. Silva 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

53



 
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 

October 7th, 2012 Vilamoura, Algarve, Portugal 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

54



Robot Localization using efficient planar features matching

Baptiste Charmette
baptiste.charmette@univ-bpclermont.fr

Éric Royer, Frédéric Chausse and Laurent Lequievre
Clermont Universités, Institut Pascal, BP 10448, F-63000 CLERMONT-FERRAND

CNRS, UMR 6602, Institut Pascal, F-63177 AUBIÈRE

Abstract— Real-time accurate localization is a key component
of an autonomous mobile robot. Visual localization algorithms
usually rely on feature matching between the current view and
a map using point descriptors. Many descriptors such as SIFT
or SURF are designed to recognize features seen from different
viewpoint. But in a robotic context, the robot movement can
be modeled and bring useful information for the matching
problem. In this paper we detail a way of matching features with
a local 3D model of the features taking advantage of the motion
model of the robot. We describe then methods to describe the
motion model. The experimental results show how useful the
motion model of robot movement is, and prove that use of
other sensors can greatly improve precision and robustness of
the localization.

I. INTRODUCTION

Autonomous navigation of a robot along a trajectory is
possible provided that its pose can be computed at any time.
Indeed, the robot has to stay on the expected trajectory and
correct its movement as soon as necessary. When localization
relies on vision, it is usually achieved by matching features
between the current view and a map of landmarks. In our
case, the map is built during an off-line learning step.
Then, the robot has to be localized in this map during the
autonomous navigation phase. The main difficulty to achieve
this goal consists in matching points seen from different
viewpoints.

Some feature descriptors such as SIFT [1] or SURF [2] are
designed to be almost invariant to changes of viewpoint. But
they need a lot of computation time. To achieve real-time
performance, many authors [3], [4], [5] have implemented
these methods on a Graphical Processing Unit (GPU). Other
matching processes [6], [7] use a 3D modeling of the features
to make viewpoint-independent descriptor.

However in a robotic context, the robot movement can
generally be modeled, because vehicle is moving contin-
uously — without being teleported from one point to an
other. It seems interesting to take part of this fact to improve
the matching and the localization. For this reason other
matching methods [8], [9], [10] based on 3D models of the
features have recently been proposed. These methods, instead
of generating a viewpoint independent descriptor, consider
landmarks as points lying on locally planar surfaces. Then,
using an approximate position of the robot, the plane is
projected in the current view, making the matching easier.
Contrarily to [9], the present work uses monocular vision
instead of stereo. And building the map off-line allows to

use a much larger map than in the SLAM approach of [8].
These methods can take as much computation time as the
previously cited descriptor based method. For this reason,
our algorithm is implement on a GPU with CUDA to achieve
real-time performance, as described in [11].

The weakest point in this method is that matching part and
consequently, pose computation is highly dependent of the
predicted position of the robot. In our work we have defined
three prediction models and use this algorithm with every one
in real conditions. With this experiment we have determined
how the prediction can change the result of localization and
how localization can be more precise and robust.

After a summary of the algorithm in section II, the
prediction model are detailed in part III. After that, our
experiment in the whole localization process is described in
section IV.

II. LOCALIZATION ALGORITHM

The algorithm is designed to have first a learning stage.
During this stage, the vehicle is manually driven in the test
area to find some features. These features are considered as
planar features, whose orientation and position are computed
as described in part II-A. Then in the second stage the
vehicle is automatically driven computing its position with
the features compared to the images seen by the camera.
The localization part is described in part II-B. Result of the
localization are combined in the dynamic model of the robot
described in part III.

A. Planar feature

Planar feature generation from the learning sequence
use the process described in [10]. Some points are tracked
on every images, using the Harris [12] interest point
detector, and matched according to the Zero Normalized
Cross Correlation (ZNCC). Then the structure from motion
algorithm [13] computes 3D coordinates of the features and
the camera pose of each view.

After that, the features are considered to be lying on
a locally planar surface. Considering 2 poses Pi and Pj
from where the feature can be seen, an homography Hi→ j
induced by the plane can be defined to transform the image
of the feature seen from Pi into the image seen from Pj.
Hi→ j depends on the pose Pi and Pj and on the normal
to the plane. Hi→ j is used to warp the image taken from
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Pi in an other view and compared with the real image
as shown if the figure 1. If we note I j

i the image of the

Fig. 1: Summary of the real image and warped image

feature taken from pose Pi and warped by the homography
to have the appearance of the feature in the pose Pj.
Then for different values of the normal, the image I j

i is
compared with the image I j

j . An optimization algorithm
whose variation parameter is the normal of the surface
minimizes the difference between I j

i and I j
j to find the value

of the normal.

Then a virtual pose Pre f is defined to describe the final
texture of the patch. For every pose i, the final value of
the normal is used to compute Hi→re f , homography which
transforms image Ii

i in an image Ii
re f of the feature as seen

from Pre f . Then, every image Ii
re f is averaged to have the

image Ire f of the feature. Ire f is considered as the appearance
of the feature —the texture of the patch— as seen from Pre f .

We can note that Pre f is not a fronto-parallel pose,
but a pose located close to the pose of the image where
the feature was seen. This avoids to have an important
resampling when the feature was seen from a grazing angle.

After that, the texture Ire f is compared to the image Ii
re f

of the feature to determine the quality of this patch. Indeed,
in case of bad matching, or when the feature is not lying
on a planar surface, Ire f is a very blurred image useless for
the localization. Comparison with the image give a quality
factor used to remove a feature not usable.

Finally the pose Pi where the feature was observed gives
an estimation of the position from where the patch can be
seen. The area around these positions is computed to have
the observability area. In the localization part, when the
camera is not in the observability area, the matching process
can be avoided on the feature.

To sum up the patches generated are composed with

• The 3D coordinates of the feature
• The orientation of the normal to the surface
• The planar texture Ire f
• The pose Pre f associated to the texture
• The observability area

B. Localization

The localization part is done in a second stage, when the
vehicle is moving autonomously in the area. The image shot
by the camera is compared to the patches and when their
positions in the image are found, a triangulation algorithm is
applied to compute the camera pose. The chart on figure 2
describe the localization algorithm used to compare features
with the image sent by the camera.

1) Pose Prediction: The first step consists in predicting
the camera pose Ppred , using dynamic model of the robot and
the previous position computed. As the robot is moving on
the road, the predicted parameters are only its coordinates
and the yaw angle. The pitch and roll angle are supposed
constant and are not used in the prediction. This prediction
is made by the model described in III.

2) Patch Projection: With the pose prediction, the camera
position is approximatively known and only patches whose
observability area include the camera predicted position are
considered. Moreover, as Ppred is known with a certain
variance, for each patch, a region of interest (ROI) is
computed defining the area where the patches can be located.
The homography induced by the plane is computed and the
texture is resampled to obtain image Ipred of the patch, as it
was observed from the pose Ppred . Then a descriptor Dpatch is
computed with the image using for each pixel x the equation
1

Dpatch(x) =
Ipred(x)− Ipred√

∑x∈Epatch
(Ipred(x)− Ipred)2/Npatch

(1)

where Epatch represent every pixel of Ipred , and Npatch the
number of element of Epatch

3) Image processing: At the same time the image from
the camera is processed. First, the camera calibration is
used to remove any distortion on the image. Then, an
interest point detector — the same as the one used for the
planar feature generation in section II-A — is applied on
the image. After that, for every interest point, a descriptor
DIP is computed, using an equation similar to equation 1,
using the neighborhood of the point — a window of 16 by
16 pixel in our case — instead of Ipred .

4) Matching: Every interest point lying in an uncertainty
area of a patch is considered as a candidate to be matched
with the patch. To compute their matching score S, the
descriptor Dpatch and the descriptor DIP are combined with
the equation 2

S =
1
N ∑

x∈E
DpatchDIP (2)
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Fig. 2: Chart showing the localization algorithm

where E = EIP ∩ Epatch is the set of value common with
Epatch and EPI and N its number of element.

Image

IPProjection

Fig. 3: Patch Projection on an image, where are shown the
set EPI neighborhood of an interest point and the set Epatch,
area where the patch is projected

We can note that, as shown on the figure 3, the
reprojection process make the set Epatch not fit in the set
EIP. For this reason the matching score is not exactly the
same as a classic ZNCC score. However, the areas are not
very different and the score computed with this method is
highly similar to the real correlation computed on the region
E.

The matching pairs with a score higher than a threshold —
0.5 in our experiments — are kept. When every candidate
matching on every patches have been computed, they are
compared and if a patch or IP is present in several different
pairs, only the pair with the best score is kept.

After this operation the 2D coordinates of interest point
are linked with the 3D coordinates of the patches. With
these, the algorithm described in [14] is applied to compute
the camera pose and the variance associated.

5) GPU Implementation: The implementation of the al-
gorithm on a classical processor needs a lot of computation
time, mainly during the projection of patch. For this reason
an implementation on GPU (graphics processing unit) has
been done and is described in details in [11]. In particular,
the major improvements happen in the resampling part of the
algorithm, in the image correction and the patch projection.
The resampling is done on the GPU with the texture mem-
ory, which is designed to compute hardware interpolation
explaining why such an improvement can be done.

An other improvement is due to the massive paralleliza-
tion of the GPU, which allows to compute several patches
simultaneously.

To evaluate the improvement made by the GPU imple-
mentation, some measurement of the execution time of the
localization have been made. The global time has been

decreased to less than 200 ms per image and made it possible
to use it in real time for the navigation of a mobile robot.
The position is then send to the dynamic model of the robot
which will predict the position in the next iteration.

III. DYNAMIC MODEL OF THE ROBOT

The position computed with the image analysis is inte-
grated in a dynamic model of the robot. This model is then
used to compute the prediction of the next position needed
in the first part of the localization algorithm. Three models
have been developed for our tests.

A. Simple model

The first model used considers only that the robot is not
moving quickly and so uses the previous camera pose as the
prediction. With this model, the uncertainty of the prediction
is not changing, and the covariance matrix associated to the
position is the sum of the covariance matrix of the previous
pose and a constant matrix, big enough to insure the new
position of the robot is in the uncertainty area. The main
advantage of this model is that no assumption are made on
the vehicle movement. But the uncertainty area has to be
important to consider any change of position. Moreover, the
prediction is not very reliable because generally, the vehicle
is moving.

B. Constant speed model

The second model uses an extended Kalman filter [15] to
predict the evolution of the robot. The model is considered
only in 2D, in the ground plane. The main idea of this
model is to consider that the linear speed — written v —
and angular speed — written θ̇ — are constant. The state
vector X is defined with X = (x,z,θ ,v, θ̇)T where θ is the
yaw angle. The vehicle is modeled with the tricycle model
showed on figure 4. In the discrete time, the value at iteration
k +1 is defined by equation 3.

xk+1
zk+1
θk+1
vk+1
θ̇k+1

=


xk− vk

θ̇k

(
cos(θk− θ̇k∆tk)− cosθk

)
zk− vk

θ̇k

(
sin(θk− θ̇k∆tk)− sinθk

)
θk + θ̇k∆tk

vk
θ̇k

+W k (3)

with ∆tk the elapsed time between iteration k and k + 1
and W k a noise vector of the same dimension as X whose
coordinates are supposed uncorrelated zero-mean Gaussian
values. In the extended Kalman filter implementation, the
covariance matrix Qk associated to W k is constant. In our
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Fig. 4: Model used to describe the vehicle

case, experimental values taken for this matrix is 10−5I with
I, the identity matrix of size 5.

The vision localization algorithm updates directly the first
three values of the state vector using Kalman equation. The
noise on the measure is computed in the localization process
using the projection error of every features.

This model gives better prediction than the simple model,
because vehicle speed is taken in consideration. The predic-
tion errors occur mainly when the vehicle is turning and/or
changing its speed.

C. Data fusion with odometry

To help the prediction and predict the change of speed,
some information from odometry is used in the last model.
The same filter as the constant speed model is used but
besides the vision, data from odometry are used to update the
filter. The sensors embedded in the vehicle measure the linear
speed of the left and right wheel and the angular deviation
of the front wheel in the tricycle model. These value are
respectively written odol , odor and ∆r and symbolized in
red on figure 4. To integrate these values in the filter, the
observation function is given by equation 4.

Y k =

odol
odor
∆r

=

 v+ θ̇e/2
v− θ̇e/2

arctan
(

lθ̇
v

)
 (4)

with l the distance between rear and front wheel and e
distance between left and right wheel.

This model can give the best information available at
every time, mainly because data from odometry is available
at high frequency.

The three models can be used to predict the pose in
the localization process. But in the case of autonomous
navigation, they can be used at any time — even between
image acquisition — to evaluate the current position of the
vehicle and, for example send correct orders to the robot
actuator.
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Experimentation sequence

Learning sequence

Fig. 5: GPS Track of the learning and test sequence

IV. EXPERIMENT

The whole algorithm has been tested to localize a vehicle.
First a learning sequence has been acquired with the vehicle
moving on the right side of the road. Then the vehicle is
manually driven along the left side of the same road, and
the algorithm analyzes the camera image to determine the
position of the vehicle relatively to the learning sequence.
The vehicle has a differential GPS with centimeter precision
on board to define a localization reference. Image used have
a resolution of 512×384 pixels and the localization was
composed of 1232 images. Figure 5 shows the GPS track of
the vehicle trajectory while saving learning and localization
sequence. Figure 6b shows an image used to generate the
patches, 6a shows an image saved in the localization process
and 6c the projection of every patch in the pose of this image.

A. Precision Evaluation

The localization process used the patches built in the
learning sequence. Obviously, the GPS reference is only
used a as the ground truth to compare the result and not
used for the localization. To compare the vision results with
the GPS localization, the learning trajectory is used to find
the transformation needed to convert vision localization in a
GPS reference. Then the position found with every prediction
model can be compared with the reference.

Figure 7 shows the localization results for every method
and numerical evaluation of the localization error is summed
up in the table I. We can see directly on the top view that
with the simple model, localization is failing before the end.
The comparison with the reference shown in figure 7b and in
the table I are taken on the beginning of the trajectory, when
the localization has not failed. Even in this part the first
model has less precision than the other. It proves that the
simple model gives a quite bad prediction to the algorithm.
The fact that localization failed show that prediction is very
important in the process. Indeed when the prediction is bad,
the patch reprojections are bad and can not be matched with
the current view.

For the other localization algorithm, there is no real
difference in localization, and no algorithm can be considered
more accurate than another. We can conclude that, concern-
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(a) Localization image (b) Learning image (c) Patches reconstruction

Fig. 6: Extract from the test Sequence

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0

−25

−20

−15

−10

−5

0

5

10

15

 

 

 

data fusion with odometry

Constant speed model

Simple model

Odometry only

GPS

(a) Top view of the localization

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

total distance from beginning (m)

d
is

ta
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 (
m

)

 

 

 

data fusion with odometry

Constant speed model

Simple model

(b) Localization error. Only the part where
every method are localized is shown.

Fig. 7: Results of the localization

average error standard deviation median error maximum error
Simple model 0.441543 0.177010 0.427648 1.276092

Constant speed model 0.422777 0.157316 0.422250 0.767080
Data fusion with odometry 0.419063 0.157680 0.422715 0.789980

TABLE I: Result of the localization process on the beginning of the sequence (where no localization has failed)

ing the precision of the localization, when the prediction is
quite correct, it has no influence.

B. Robustness Evaluation

If the precision is the same with or without odometry,
the use of an other sensor is not useless. Actually in
harder conditions, for exemple if there is some problem
with the camera, the use of the odometry improves the
localization. To evaluate this point an other experimentation
was conducted. The same sequence was used, but several
images were removed. The lack of images simulate for
example an occultation of the camera or a temporary under
or overexposure which is common in the case of indoor-
outdoor transition. With this kind of problems, the vehicle
can make an important movement between two well exposed
images. Results are shown on figure 8. In this experiment,
localization using the simple model failed in the first turn
with a lack of images. It seems logical because in the case
of a turn, the features are moving a lot in the image. If the
prediction is still the same pose as before, no projected patch
can be matched on the current view.

Using the model without odometry creates several differ-
ences and localization failed in the middle of the trajectory.
Figure 8b shows that even in the first part, localization is
quite bad after every lack of image, mainly when the vehicule
is turning. It is confirmed with statiscal analysis of the data
in the table II. The use of odometry greatly improves the
prediction, having a correct localization in every situation.

V. CONCLUSIONS AND FUTURE WORKS
A. Future Works

To use directly Kalman filter equation in the Constant
speed model, the covariance on the model and on the
measured value have to be known. Measure variance is
evaluated with the reprojection error given by the pose
computation. The model uncertainty is not so easy to know.
In fact, it symbolizes the time variation of the speed, or in
other word the acceleration. For the moment, the uncertainity
is considered as constant and applied in the same way on
every value. A future work could be to model the noise only
as an acceleration part on every iteration and combine it
in the Kalman filter. This can decrease uncertainty on the
prediction method and then decrease computation time of
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Fig. 8: Results of the localization after removing images

average error standard deviation median error maximum error
Constant speed model 1.13 1.42 0.47 6.43

Odometry fusion 0.41 0.15 0.41 1.23

TABLE II: Result of the localization process on the beginning of the sequence (where no localization has failed) where
several images have been removed

the localization because less matching candidates would be
analysed.

An other way of improvement could be to use the predic-
tion to make a previous selection of the patches before the
projection. Although the observability area is filtering several
patches, a lot of them are still processed and are not useful,
because they are not matching any interest point. A previous
analysis could avoid to make too many projection, and prefer
to project only the best patches which are sufficient to
achieve a good localization.

B. Conclusions

We have shown that a new matching method based on
planar feature modelling and reprojection can be used for
the robust pose computation of a mobile robot. Thanks to
an efficient GPU implementation, the localization algorithm
can be used for real time autonomous navigation. The
experimental resuts outline that the prediction step is really
important for the robustness of the algorithm. the information
given by other sensor such as odometry can also improve the
algorithm particularly in difficult cases when the position
computed with vision momentarily unavailable.

VI. ACKNOWLEDGMENTS

This work was supported by the french ANR national
agency in the CityVIP project

REFERENCES

[1] D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV, 1999, pp. 1150–1157.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346–359, 2008.

[3] S. Sinha, J. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video fea-
ture tracking and matching,” in EDGE, Workshop on Edge Computing
Using New Commodity Architectures, vol. 278. Citeseer, 2006.

[4] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection
and matching on programmable graphics hardware,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
Workshops, 2008. CVPR Workshops 2008, 2008, pp. 1–8.

[5] M. Schweitzer and H.-J. Wuensche, “Efficient Keypoint Matching for
Robot Vision using GPUs,” in Fifth IEEE Workshop on Embedded
Computer Vision (ECV’09), 2009.

[6] K. Koser and R. Koch, “Perspectively invariant normal features,” in
ICCV 2007, 2007, pp. 1–8.

[7] C. Wu, B. Clipp, X. Li, J. Frahm, and M. Pollefeys, “3D model
matching with Viewpoint-Invariant Patches (VIP),” in CVPR 2008,
2008, pp. 1–8.

[8] N. Molton, A. Davison, and I. Reid, “Locally planar patch features
for real-time structure from motion,” in BMVC, 2004.

[9] C. Berger and S. Lacroix, “Using planar facets for stereovision
SLAM,” in IROS, 2008, pp. 1606–1611.
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Abstract—The underground scenarios are one of the most
challenging environments for accurate and precise 3d mapping
where hostile conditions like absence of Global Positioning
Systems, extreme lighting variations and geometrically smooth
surfaces may be expected. So far, the state-of-the-art methods
in underground modelling remain restricted to environments
in which pronounced geometric features are abundant. This
limitation is a consequence of the scan matching algorithms used
to solve the localization and registration problems.

This paper contributes to the expansion of the modelling
capabilities to structures characterized by uniform geometry and
smooth surfaces, as is the case of road and train tunnels. To
achieve that, we combine some state of the art techniques from
mobile robotics, and propose a method for 6DOF platform posi-
tioning in such scenarios, that is latter used for the environment
modelling.

A visual monocular Simultaneous Localization and Mapping
(MonoSLAM) approach based on the Extended Kalman Filter
(EKF), complemented by the introduction of inertial measure-
ments in the prediction step, allows our system to localize himself
over long distances, using exclusively sensors carried on board a
mobile platform. By feeding the Extended Kalman Filter with
inertial data we were able to overcome the major problem
related with MonoSLAM implementations, known as scale factor
ambiguity. Despite extreme lighting variations, reliable visual
features were extracted through the SIFT algorithm, and in-
serted directly in the EKF mechanism according to the Inverse
Depth Parametrization. Through the 1-Point RANSAC (Random
Sample Consensus) wrong frame-to-frame feature matches were
rejected.

The developed method was tested based on a dataset acquired
inside a road tunnel and the navigation results compared with a
ground truth obtained by post-processing a high grade Inertial
Navigation System and L1/L2 RTK-GPS measurements acquired
outside the tunnel. Results from the localization strategy are
presented and analyzed.

I. INTRODUCTION

Over the last few years some successful underground mo-
bile modelling implementations were documented [1] [2] [3].
These approaches, designed specifically to operate in mines,
are characterized by one common aspect: they all use laser
range finder sensors as the main (and in some cases the
only) source of information. The model is built by placing
laser range finder scans in a virtual three-dimensional world –
process called registration. For this purpose, relative position
and orientation between scans have to be determined. In
previous approaches, this task is accomplished via a scan
matching algorithm [7], which restricts the systems to non-
uniform structures, since this technique requires that notorious

and well-differentiated geometric features stand out along
overlapping scans.

Our work extends the underground mobile modelling sys-
tems to galleries characterized by uniform and smooth sur-
faces. In this type of scenario the scan matching approaches are
condemned to failure, so the previous state-of-the-art systems
become ineffective. Without artificial landmarks and no access
to Global Positioning Systems, self-localization becomes an
hard problem. In inertial based localization the errors accu-
mulated over time cause a monotonic growth in localization
uncertainty. On the other hand, a vision based approach
may be affected by the lighting conditions, additionally, the
parametrization of landmarks far from the cameras raises extra
difficulties due to the depth uncertainty.

Similarly to [3], our solution uses 2D laser range finders to
gather a sequence of vertical scans along the gallery. Absolute
position and orientation of each scan is computed by an
independent localization process, that estimates the systems’
trajectory based on inertial measurements and a sequence of
images.

We employ an alternative localization solution to overcome
both the structural monotony and the lack of Global Position-
ing Systems, adopting the SLAM (Simultaneous Localization
and Mapping) concept [8] [9] to estimate the platforms local-
ization in 6DoF (Six Degrees of Freedom). Following the tra-
ditional approach, the probabilistic SLAM algorithm is based
on the EKF (Extended Kalman Filter). Since for landmarks
far from the cameras, stereoscopic systems do not provide
satisfactory depth measurements, a visual monocular algorithm
was implemented instead, ensuring tracking of landmarks at
any depth.

In order to identify visual landmarks to be used in the
SLAM algorithm, highly distinctive visual features, invariant
to scale, rotation and linear illumination variations, are ex-
tracted from the images using the SIFT algorithm [11]. To
each feature is assigned at least one descriptor, that embod-
ies the image properties in the features’ neighborhood. The
descriptors are used to establish the frame-to-frame feature
matches.

Our system combines another advanced state-of-the-art
methods such as Inverse Depth Parametrization [5], and the
1-Point RANSAC algorithm [6], for outlier rejection.

Through the Inverse Depth Parametrization, undelayed
initialization of landmarks within the EKF framework be-
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Fig. 1: High level system architecture

comes possible. However another major problem of monocular
SLAM applications still needs to be solved: a single camera
moving through the scene does not provide metric measure-
ments, leading to scale ambiguity in the estimated map and
motion. As suggested in [4] inertial measurements, provided
by a low-cost IMU, feed the filter with metric data in order
to prevent the scale factor degeneration. This strategy keeps
the map and motion estimates constrained to the meaningful
metric system, in our case for distances over more than one
hundred meters.

To build the model, all vertical cross sections are placed
on a common reference frame according to the localization
estimates, resulting in a point cloud model, which is finally
converted into a triangular mesh through the Ball Pivoting
Algorithm [10], to reach a more explicit representation without
information losses. Texture captured by the cameras is also
added to the model to enhance the visual realism.

This document is organized as follows: Section II presents a
brief architecture description with emphasis on the localization
and modelling algorithms. Section III is devoted to the dataset
acquisition that takes places inside a road tunnel. We then
present and discuss our implementation results (Section IV)
and finally, Section V, provides a conclusion and sets some
future goals.

II. SYSTEM ARCHITECTURE

Our system is divided in three main blocks, executed by
the following order: data acquisition, localization and three-
dimensional modelling (see Fig. 1).

In the first step, a sensor platform mounted on board a car
is used to collect a wide range of synchronized measurements
inside the underground galleries, including images captured
by two CCD cameras, 2D scans from two laser range finders
and inertial measurements provided by a low cost inertial
measurement unit. The platform carries also a INS/GPS system
that gives accurate ground truth information, used to measure
the performance of our localization strategy.

The localization estimation and modelling tasks are pre-
formed offline based on this data, according to the methods
described next.

Fig. 2: Localization algorithm overview

A. Localization Algorithm

In underground galleries it is expected to find reliable visual
features that can be used as reference points to build the SLAM
map. The process starts with a feature pre-selection stage (see
Fig. 2) to fulfill the following objectives:

• Reduce the computational complexity of the SLAM
cycle, by performing feature extraction and frame-to-
frame matching in advance. The feature extraction is
accomplished by the SIFT algorithm [11], that produces
descriptors invariant to scale, orientation, and linear il-
lumination changes, used to compute the frame-to-frame
feature matches;

• Identify features with large number of observations and
use only those to build the map. By doing so, we intend
to minimize the computational demands, ensuring that all
landmarks in the map persist over an acceptable frame
interval.

1) State Vector: The SLAM cycle is implemented accord-
ing to the EKF method. The state vector stores the localization
and map states. Since the system does not have prior infor-
mation about the environment, the initial state vector includes
only 9 states related to the platforms’ localization: position
xn, orientation Θn (expressed in terms of Euler angles) and
velocity vn, all defined in the local level reference frame (see
Fig. 3).

x(k) = (xb)n(k) =

 xn(k)
Θn(k)
vn(k)

 (1)

As new landmarks are observed, the state vector is expanded
to accommodate the respective states (equation 2).

x(k) =


(xb)n(k)
L1(k)
L2(k)

...
Ln(k)

 (2)
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Fig. 3: Reference frames used in the localization and mod-
elling algorithms. Local level frame (N), body frame (B),
camera frame (C) and laser range finder frame (L).

Initially, each landmark Li is coded in the SLAM map
using the Inverse Depth Parametrization [5], which requires
six parameters (Fig. 4): position of the cameras’ optical center
at the moment of first observation [xn

i y
n
i zn

i ], azimuth θi and
elevation φi angles of the projection ray that passes through
the optical center and the landmark, and finally the inverse of
the distance ρi between the optical center and the landmark
in the world (inverse depth).

Li = [xn
i , y

n
i , z

n
i , θi, φi, ρi]T (3)

The state uncertainty of this overparameterized represen-
tation can be modelled by Gaussian distributions, regardless
to the distance between the landmark and the camera, there-
fore this is an efficient and accurate solution for undelayed
initialization of new landmarks within the EKF. The EKF
computational complexity grows quadratically with respect to
the state vector dimension, so when the uncertainty in the
landmark’s location reveals a Gaussian behavior, indicated by
the linearity index introduced in [12], the conversion to the
standard Cartesian representation is accomplished applying the
formula below: Lxi

Lyi

Lzi

 =

 xn
i

yn
i

zn
i

+
1
ρi
m(θi, φi) (4)

being [Lxi, Lyi, Lzi] the Cartesian coordinates of the land-
mark and m(θi, φi) a unitary vector (see Fig. 4), calculated
from the azimuth and elevation angles:

m(θi, φi) =

 −cos(φi)sin(θi)
sin(φi)

cos(φi)cos(θi)

 (5)

2) Landmark Initialization: From the six parameters that
define an Inverse Depth landmark, only the azimuth and ele-
vation angles need to be computed, since the camera position
is already defined in the state vector, and the initial inverse

depth consists on a fixed value defined in advance. To compute
the angles, the feature is first projected from the image to the
camera reference frame, using the pinhole camera model. A
distortion model is applied next to compensate for the lens
distortion. From this operation results a three-dimensional non-
unitary vector hc with the same orientation as the projection
ray. The vector expressed in the navigation frame is given by:

hn = Cn
b C

b
ch

c (6)

where Cn
b and Cb

c are the rotations matrices from the body
frame to the navigation frame and from the camera frame to
the body frame, respectively (see Fig. 3).

From hn, the orientation angles can be finally computed as
follows:[

θi

φi

]
=
[

arctan(−hn
x , h

n
z )

arctan
(
hn

y ,
√

(hn
x)2 + (hn

z )2
) ] (7)

3) Landmark Prediction and Outliers Rejection: At the
update step of the Extended Kalman Filter the position of the
features observed in the image is compared to the expected
projection of the map landmarks in the image. The projection
of a landmark in the map to the image starts with the
transformation from the navigation frame to the camera frame:

hc = Cc
bC

b
n

ρi

 xn
i

yn
i

zn
i

− (xb)n − Cn
b (xc)b

+m(θi, φi)


(8)

The distortion model is then applied to hc, followed by the
pinhole model, to determine the projection in the image.

Finally, wrong feature matches are rejected through the 1-
Point RANSAC algorithm [6], that takes into account the
prior probabilistic distributions maintained by the EKF to
reduced the minimal sample size to only one feature match,
significantly reducing the computational complexity associated
with the standard RANSAC algorithm.

Fig. 4: Representation of the Inverse Depth parameters
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4) Inertial Based State Prediction: To avoid the scale factor
ambiguity, the main limitation of monocular SLAM caused by
the absence of metric information, inertial measurements from
a low cost IMU are injected in the EKF prediction step. Since
the map landmarks are static, only the platform localization
states are subjected to the motion model, that consists on
the inertial mechanization in the local level reference frame,
respecting the following equations: xn(k)

Θn(k)
vn(k)

 =

 xn(k − 1) + vn(k)∆t
Θn(k − 1) + En

b w
b(k)∆t

vn(k − 1) +
(
Cn

b a
b(k) + gn

)
∆t

 (9)

where the IMU inputs are identified by ab and wb, respectively
the linear accelerations and angular velocities, measured in
the body reference frame. Cn

b is the direction cosine matrix
obtained from the platform orientation and En

b is a 3 by 3
matrix that converts the angular velocities into the Euler angles
rate of change:

En
b =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

 (10)

B. Modelling Algorithm

The three-dimensional model is constructed by placing all
gallery cross-sections, taken by the vertical laser range finder,
into a common coordinate system.

First, laser range finder scans, initially expressed in polar
coordinates, are converted to the Cartesian coordinate system
with origin matching the center of the laser range finder. Next,
specific position and orientation of each scan is derived from
the two closest localization points in time. Given the calibra-
tion parameters that describe the spatial relationship between
sensors, determined in advance, and using the calculated scan
localization, all vertical cross-sections are transformed to the
local level frame according to the formula below:

Pn = Cn
b

(
Cb

c

(
Cc

l

(
P l − (xl)c

)
− (xc)b

)
− (xb)n

)
(11)

where Pn is the final point in the local level frame, whereas P l

refers to the original point in the sensor Cartesian system. The
rotation matrices Cb

c and Cc
l establish the rotation from camera

to body and laser to camera reference frames, respectively
(see Fig. 3). Whereas (xc)b define the camera position in
the body frame and (xl)c the laser position with respect to
the camera frame. Finally Cn

b and (xb)n enclose the rigid
body transformation from the body to the local level reference
frame.

After applying formula (11) to all points of all scans, a
point cloud model is achieved. Usually, the interpretation of
point clouds is not easy due to lack of surfaces. To improve
the scene’s perception, original surfaces are reconstructed by
converting the point cloud into a triangular mesh, using the
Ball Pivoting Algorithm (BPA) [10]. The models realism is
also enhanced by introducing texture information captured by
the cameras.

To reduce the noise and produce smoother surfaces, a Lapla-
cian filter is applied to the whole triangular mesh, computing
a new position for each vertex according to local information
given by adjacent points.

Both the point cloud model and the triangular mesh are
coded in the VRML format to be displayed in a virtual reality
application.

III. DATASET ACQUISITION

Solving the localization and modelling problems demands
previous acquisition of a variety of measurements. To this
purpose different types of sensors where assembled in a rigid
platform (see Fig. 5), which in turn is mounted on top of a
car.

The vertical cross-sections are taken by the vertical laser
range finder (SICK LMS-200) at 75Hz with an angular res-
olution of 1◦. There are two pointing-forward cameras (JAI
CB-080GE), arranged in a stereoscopic configuration, with a
resolution of 1032(h)x778(v) and controlled by an external
trigger at a frame rate of 7 fps. Only the images from the left
camera are used in our SLAM system.

The low cost IMU (MicroStrain 3DM-GX1), placed above
the left camera, gives the linear acceleration and angular
velocity measurements used in the EKF prediction step, at
a frequency of 100Hz.

Ground truth with a 400 Hz rate is obtained by a tactical
grade INS/GPS system (iMAR iNAV-FMS-E) placed in the
center of the platform. This system provides raw inertial data
and GPS measurements acquired outside the gallery, that are
post-processed in a commercial software (Waypoint Inertial
Explorer) to produce an accurate trajectory estimation. This
trajectory is only used as ground truth to evaluate the SLAM
performance.

All system reference clocks are synchronized with respect
to GPS clock, to assure a consistent time base.

The data acquisition experiment took place on a road tunnel
with approximately 140 meters located at Vilar de Luz – Porto
(see Fig. 6). All data were correctly logged. However the

Fig. 5: Sensor platform used for data acquisition
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Fig. 6: Preparation for the data acquisition experiment in the
tunnel area

Fig. 7: Image instability as consequence of the illumination
variations along the tunnel.

images reflect the huge lighting variations between the interior
and exterior of the tunnel (see Fig. 7).

IV. RESULTS

An accurate localization estimate is crucial to obtain a
reliable model reproducing the real gallery characteristics.
Using the ground truth trajectory the error associated with the
estimated localization is determined. Furthermore, to realize
the benefits of fusing inertial and visual measurements, both
inertial navigation and MonoSLAM approaches were imple-
mented, and the results are compared with the ones achieved
by the inertial and visual SLAM approach.

The errors in the position states for each method are outlined
in Fig. 8. The path calculated by MonoSLAM shows the
worst results due to the scale ambiguity, accumulating an error
of 11.7 meters. As expected, inertial navigation drifts with
time due to error integration, resulting in a total drift of 8.7
meters. Our approach produces the smallest error, showing the
advantage of inertial and visual data fusion, with a maximum
value of 1.29 meters and an error of 0.95 meters at the
final position. The insertion of inertial measurements in the
MonoSLAM mechanism successfully prevents the scale factor
ambiguity, whereas visual data contributes to the inertial drift
compensation, particularly to the orientation states correction.

The distribution of the features along the image is shown in
Fig. 9. The image space is equally divided in four quadrants
and an histogram is computed for each portion. It can be seen
that the top quadrants provide the most reliable features, in
terms of number and long observation sequence. The land-
marks introduced in the SLAM map are observed over more

Fig. 8: Position errors produced by each localization strategy:
SLAM fusing inertial and visual data (blue line), inertial
mechanization (green line) and monocular SLAM (red line)

then 6 frames, and the most persistent ones last a maximum
of 50 frames. The short periods of observation reduce the
possibility of observing sufficient parallax to convert inverse
depth landmarks to the Cartesian form (see Fig. 10).

As the system approaches the end of the tunnel, the effects
of image saturation are visible at the final moments in Fig.
10. In the last 20 meters, the 1-Point RANSAC algorithm
rejects a considerable amount of wrong feature matches, and
the respective landmarks are deleted from the SLAM map.

As previously mentioned, the point cloud models can be-
come really hard to interpret, depending on the view point

Fig. 9: Histograms that represent the total number of features
in respect to the number of observations, for image sub-regions
of equal size.
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Fig. 10: Landmarks parametrization in the SLAM map along
the trajectory.

and scale. In order to reach a more explicit and realistic
representation, a triangular mesh is constructed from the point
cloud without data losses, through the Ball Pivoting Algorithm.
In the final step the surfaces are filtered by a Laplacian
smoother, and texture acquired by the cameras is added to
the model (see Fig. 11).

V. CONCLUSION

The development of a mobile modelling system for large
scale underground environments raises some difficult chal-
lenges, especially when dealing with monotonous geometry.
Based on inertial and visual data we have implemented a
localization method that does not depend on the geometric
properties of the environment, thus it is specifically suited to
operate inside smooth shape galleries like traffic tunnels.

Through localization results the benefit of fusing inertial
data within the MonoSLAM strategy became evident. In
the most aggressive configuration, with a pointing forward
camera, forward motion and large illumination variance, our
localization estimate reached an error of 0.95% of the total

Fig. 11: Triangular mesh model after Laplacian filtering.

displacement, which constitutes a quite impressive accom-
plishment given the low cost sensors used.

Despite the poor image quality, reliable visual features and
descriptors where extracted by the SIFT algorithm, exploiting
the algorithm’s immunity to rotation scale and linear illu-
mination variations, enabling robust frame-to-frame feature
matching.

In the future, localization accuracy could be improved by
adding other types of information, for instance, laser range
finder measurements to provide a better approximation of the
landmarks initial depth. A stereo vision system will also be
implemented to enable instant computation of close landmark
coordinates. The use of cameras with larger field of view will
also be beneficial, enabling the observation of landmarks with
high parallax and hence low depth uncertainty.
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Abstract— Many successful implementations of intelligent
vehicles are using laser based technology to obtain a 360
degrees view of the area around the vehicle, providing a
very dense 3D point cloud that covers an extended range.
However, such technology is still too expensive to be a candidate
for series production, and its integration requirements are
hardly compatible with cost and style constraints dictated
by the mainstream automotive market. On the other hand
computer vision is reaching close enough results in terms of
sensing performance to be a viable alternative. Vision also
brings additional advantages such as a much lower price and
less integration requirements. This paper compares the two
technologies, and discusses some possible implementations.

I. INTRODUCTION

Driving in urban traffic needs 360 degrees perception
capabilities in a variety of conditions, in order to timely
react to a constantly changing scenario. This requirement
holds for humans as well as for intelligent and autonomous
vehicles, but while in the first case the sensing system is
fixed, in the latter sensors selection becomes a key design
decision, which must satisfy a number of constraints besides
environment mapping performance.

During the 2007 DARPA Urban Challenge two fundamen-
tally different approaches emerged to achieve the required
long-range, fast and accurate 3D reconstruction of the vehicle
surroundings: one exploiting high-end LIDAR units [1], [2],
[3], the other heavily relying on computer vision [4]. Since
then this trend has continued, with more prototypes being
developed around the world: some notable examples include
Google’s driverless car and VisLab’s BRAiVE autonomous
vehicle [5], both depicted in Fig.1.

Other technologies, such as RADAR and sonar sensors,
have been widely tested as well, and are currently used
in a number of commercial advanced driving assistance
systems [8]; however, usually they do not provide a rep-
resentation of the vehicle surroundings detailed and accurate
enough to perform autonomous navigation, and as such will
not be discussed in the following. Instead, this work will
focus on the key differences between the two most promising
technologies to date, pointing out their key strengths and
weaknesses.

As it will be shown in the rest of this paper, both LIDAR
and computer vision can provide a comparable amount of
information, but with very different trade-offs in terms of
cost, integration, field of view, and failure modes, all aspects

(a)

(b)

Fig. 1. Autonomous vehicle designs compared: a) Google’s driverless
car, featuring a prominent high-end LIDAR unit as its main sensor, and
b) VisLab’s BRAiVE more integrated design, heavily relying on computer
vision: 10 cameras have been mounted on-board, following the experience
gained while developing the perception layer for the TerraMax autonomous
vehicle during the 2005 and 2007 DARPA Challenges [6], [7].

which have a direct impact on the applicability of a given
technology in the mainstream automotive market.

II. ENVIRONMENT MAPPING TECHNOLOGIES
COMPARED

Both LIDAR units and stereo cameras provide data as a 3D
point cloud, so the most straightforward way of comparing
the mapping capabilities of the two sensors is to analyze the
characteristics of the information they produce in terms of
density, accuracy, range, and output rate. Moreover, to get a
clear understanding of the amount of information included in
the acquired data, a qualitative comparison between the raw
points corresponding to a pedestrian standing at a distance
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of about 55 m from the sensors will be performed. Finally,
to complete the comparison, other aspects related to the
applicability in the automotive market, such as price and
size will be covered as well.

A. High-definition LIDAR

Many intelligent vehicles implementations [1], [3], [9]
are based on the Velodyne HDL-64E S2 [10] high-definition
LIDAR unit, depicted in Fig. 2.

Fig. 2. A Velodyne HDL-64E S2 unit.

Some key figures regarding the device are presented in
Tab. I.

TABLE I
HDL-64E S2 SPECIFICATIONS

Horizontal FOV 360°
Horizontal resolution 0.09°

Vertical FOV 26.8°
Vertical resolution 0.4°/ 64 planes

Range 50-120 m (reflectivity dependent)
Measurement error < 2 cm

Frequency up to 15 Hz
Shutter rolling

Mechanical 25 cm tall cylinder, 20 cm ∅, 13 Kg, 900 RPM
Price 75,000 $

When spinning at 10 Hz the unit produces about 2.5
million distance estimations per second, effectively allowing
for an accurate reconstruction of the vehicle surroundings.
Sensor coverage depends on the mounting position, which
directly influences the size of the blind area around the
vehicle, the fixed angular resolution, and the reflectance of
the measured targets.

Rolling shutter causes a deformation in the resulting data,
especially if the sensor is mounted on a moving platform:
when traveling straight at 10 m/s (i.e. 36 km/h) and operating
at 10 Hz, the reference system moves 1 m between the start
and the end of the scan, producing even larger errors when
other objects move as well.

B. Stereo camera system

When it comes to the setup of a stereo vision system
there are many degrees of freedom involved, since imagers,
optics, and processing platforms selection offer a number
of different trade-offs. As a reference, we consider the setup

presented in [11], since its characteristics are similar to those
commonly found in autonomous and intelligent vehicles.
Moreover, this vehicle features a HDL-64E unit, and the re-
sulting synchronized LIDAR and video data is made publicly
available. In that setup, the sensors employed are two Sony
ICX267 1/2 ” CCDs at a resolution of 1382×512 pixels, with
4.2 mm lenses, and a baseline of 0.54 m.

Many algorithms do exist that achieve dense real-time
stereo reconstruction. One of the best performing is currently
the so-called Semi-Global Matching, or SGM [12] approach,
which has been used to produce the data in the following.

Processing platforms can also vary greatly, including
traditional SIMD-capable CPUs [13], newer-generation
GPUs [14], or programmable hardware, typically
FPGAs [15]. Whatever the system, running dense
stereo reconstruction at high resolution on commodity
hardware would hardly meet the 10 Hz limit which is
usually considered the lower bound for autonomous
navigation. However, a commonly used technique is to
keep full-resolution input images, and only perform the
computationally intensive part of the algorithm on a fraction
of the pixels, thus significantly reducing the processing time
while retaining the original measurement accuracy [16].

Tab.II summarizes some of the key performance values of
the considered stereo-based system.

TABLE II
STEREO SAMPLE SYSTEM SPECIFICATIONS

Horizontal FOV 80°
Horizontal resolution 1232 px

Vertical FOV 29°
Vertical resolution 375 px

Max disparity value 127
Matching accuracy 0.25 px

Algorithm SGM
Density 85 %
Range 55 m

Measurement error 0.01 m@5 m 1.9 m@55 m
Frequency up to 10 Hz

Shutter global
Mechanical two 5×5 cm sensors 54 cm apart, control unit

Price 2,500 $ with COTS hardware

Running in this configuration at 10 Hz a stereo unit
produces about 3.7 million distance estimations per second.
Clearly, being an indirect measure, the noise affecting the
measurements is higher than with the LIDAR technology;
however, thorough benchmarks [11] show that in typical
automotive environments the amount of bad values is around
4.5 % with a disparity error threshold of 2 pixels. This leads
to around 1.4 million correct measurements per second,
which is comparable to what can be obtained with the
analyzed LIDAR unit.

C. Data evaluation

To obtain a better understanding of each sensor capa-
bilities, a sample of the 3D data generated in an urban
setting [11] is presented in Fig. 3. It is easy to see from
Fig. 3 c,d that a single LIDAR unit mounted on top of the
vehicle is enough to cover the whole area, while a single
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(a)

(b)

(c) (d)

(e) (f)

Fig. 3. Qualitative comparison between LIDAR and stereo-generated 3D point clouds. a) stereo and b) LIDAR data as seen from the right camera
perspective, with black areas corresponding to image pixels not being evaluated; c), d) bird’s eye view of the scene, with red points in d) representing
values seen from the LIDAR but not from the stereo system; e), f) a closeup of the area in front of the vehicle. Data courtesy of The KITTI Vision
Benchmark Suite, available online at http://www.cvlibs.net/datasets/kitti
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stereo system can only monitor the front portion of the scene.
A closer inspection (Fig. 3 a,b,e,f) confirms that stereo vision
produces much denser information, although with less and
less accuracy as distance increases.

One of the most critical tasks to perform when driving is
pedestrian detection. Its results must be available as soon as
possible to allow for a safe maneuvering; Fig. 4 a) highlights
in red a pedestrian walking across the street 50 m ahead of
the vehicle. Approximating it with a rectangular target 1 m
wide (because of the legs spread walking) and 1.7 m high,
the LIDAR unit detects around 20 points over a theoretical
maximum of 60, while the stereo systems maps almost all
of the 250 points it frames. The same happens for the traffic
light and road sign marked in green, which can be clearly
distinguished in the stereo data, but are much harder to spot
and classify in the LIDAR scan.

(a)

(b)

(c)

Fig. 4. Targets detection and classification. a) highlighted in green, a traffic
light and in red, a pedestrian both at a distance of 50 m as seen from the
right camera. The same targets are also shown in b) the LIDAR scan and
c) the stereo 3D point cloud.

Some challenges however still remain when using com-
puter vision: night-time operation requires the use of dedi-
cated hardware, being it thermal cameras or powerful illumi-
nation systems; challenging lighting conditions should also
not be overlooked, although they can be handled with the use
of smart exposure control algorithms, or very high dynamic

range cameras [17]. Also, field of view and measuring
precision for a stereo system are lower than those of a LIDAR
unit, but can be both improved by fusing together more
narrow-viewing stereo systems.

Anyway, camera-based 3D mapping already has a number
of features which are making it very attractive for automotive
use: the cost is only a tiny fraction of the price of a typical
LIDAR device, and can offer much better integration options
within the vehicle. There are no moving parts, which makes
it far more robust to vibrations; also there is no risk of
interference when many units are operating close to each
other, as it would happen during a traffic jam. Smoke, rain
and dust are also less critical, since they must be present in
significant amounts to hinder the detection capabilities of a
stereo system, as can be seen in Fig. 5.

(a)

(b)

Fig. 5. Environment mapping in challenging scenarions: a) rain drops
and b) dust do not prevent correct stereovision-based ground and obstacles
detection, even if they cover a significant portion of the image.

On the algorithmic side, images provide a greater amount
of information in the texture domain, which eases a lot
tasks such as classification and pattern recognition, allowing
at the same time simultaneous extraction of position and
speed of each point in the space [18], which makes scene
understanding both easier and more robust.

III. FUTURE PERSPECTIVES

The 2005 and 2007 DARPA Challenges saw high perfor-
mance LIDAR sensors as a key factor for winning teams
success, because of their performance and reliability; as a
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matter of fact their appeal lasted, and similar design choices
are still being made by top players in the field of autonomous
and intelligent vehicles.

During the same period, however, a totally different ap-
proach, based on stereo-vision gained a renewed interest.
This kind of technology successfully powered the TerraMax
vehicle, and later on the autonomous vans employed during
the 13000 km VIAC expedition [19], showing its viability as
a first-class citizen in the field of environment perception.

Predicting which technology will eventually become the
most widespread one is hard. Too many factors beyond
pure measuring performance will influence their diffusion,
however it is good to see two alternative approaches compete
and evolve to provide advanced perception capabilities for
next generation vehicles.
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Multiple Robots in a Cooperative Task: Exploration and Mapping.

Adão de Melo Neto, Paulo Fernando Ferreira Rosa, Thiago Eustaquio Alves de Oliveira, Paulo César Pellanda

Abstract— In this work is investigated the exploration of an
environment with multiple vehicles using a strategy based on
occupancy grids and a technique of simultaneous localization
and mapping (SLAM). The exploration strategy uses concepts
of costs and utility from frontier-cells. Besides, the used SLAM
method is based on a FastSLAM algorithm with landmarks
extracted from visual sensors and a features map common to
vehicles. Both activities - location of the vehicles and exploration
of the environment - are coordinated by a central agent. The
results show that when two vehicles can communicate with a
central agent building a features map common to vehicles, the
exploration task becomes more efficient than that performed
with dedicated maps, because the accuracy of vehicle position
and orientation is increased with the use of an even number
of particles. In this paper we also present and evaluate the
implementation of the approach in a real environment.

I. INTRODUCTION

Integrated exploration of an environment is a high-level
activity where methods of exploration, locating, mapping and
navigation have to be combined so that autonomous vehicles
be able to map the environment maximizing gains (e.g.,
accuracy of position and orientation - pose - of the vehicles)
and minimizing costs (e.g., time spent in the exploration).

SLAM is a robotic research field related to the vehicle
ability to locate itself and obtain a features map of landmarks
(something that can be easily detected and described) of the
environment. Localization and mapping are interdependent
and related functionalities since if, on the one hand, it is
necessary to know the vehicle location to build a map of
the environment in which it is situated, on the other, an
environment map is needed to locate the vehicle. In many
cases, for vehicle location, is used the combination of a
GPS (global positioning system) with an IMU (inertial mea-
surement unit). However, the information quality obtained
through this system may be affected by the number of
satellites in view and electromagnetic interference as well
as by odometry errors. As result, they have a low precision
for navigation in an indoor environment. The SLAM problem
can be stated as follows [1]: given an autonomous vehicle
within an unknown environment and, using only observa-
tions relative to detectable landmarks in the environment
in relation to the vehicle, build a features map for those
landmarks and simultaneously compute an estimation of the
vehicles location based on this map. In this work is used
a SLAM technique known as FastSLAM [2] to locate the
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vehicles. Since a SLAM algorithm is ensuring the location of
a vehicle, an occupancy grid can be simultaneously generated
to assist the environment exploration [9], considering that the
workspace has a limited size.

The objective of this paper is to show that we can explore
an indoor environment with multiply vehicles in a efficient
way when we are using a FastSLAM algorithm so as to
locate them, considering landmarks extracted through of
SIFT algorithm [13], a computer vision algorithm used to
detect and describe features in images, and a features map
common to vehicles. In this approach, the vehicles increase
the accuracy in the pose in relation the exploration with
the use of dedicated maps. The improvement in accuracy,
due to the use of a common features map, is obtained
using the same number of particles (a particle represents an
estimate of the pose of the vehicle and of the features map
of landmarks detected - Eq.5). The main contribution of this
paper is to show that the approach increases the accuracy
in the pose of the vehicles, as well as present and evaluate
the implementation of the approach using vehicles pioneer
3DX with sensors LMS-200 and LMS kinect [15]. Section II
discusses some works related to SLAM. We treat FastSLAM
considering one and two vehicles in sections III and IV.
Section V focuses on exploration strategy, and the section
VI describe experiments and an evaluation of the approach.
We explain our conclusions in the section VII.

II. RELATED WORKS

Several studies on mapping have already been published.
Some approaches estimate the vehicles pose only using
odometers, which often leads to inaccuracy. Others use
SLAM techniques (EKF-SLAM [1] and FastSLAM [2])
with extraction of features from raw data provided by laser
and sonar sensors ([3]). In [4] a Rao-Blackwellized particle
filter [2] is applied to estimate simultaneously the map
and the path of a single vehicle. In the mentioned work,
SIFT features are used as landmarks in the environment and
extracted using a pair of stereo cameras. SLAM approaches
with multiple vehicles can be grouped into two solutions. In
the first group, each vehicle estimates its own individual map
using its observations and, at a later stage, a common map is
formed by fusing the individual maps of the vehicles. In the
second one, the estimation of the trajectories and the map
are made jointly. A single map is computed simultaneously
by using the observations of all the vehicles. The work
presented in [6] and [8] can be classified in the first group.
In [6], each robot builds its own map and at the same
time continuously attempts to localize in the maps built by
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other vehicles using particle filters. The approach can cope
with the situation where the initial locations of the vehicles
are unknown, however, the fusion of the individual maps
is computationally expensive. [8] proposes an algorithm for
multiple vehicles based on [2] where they can start from
unknown pose in advance. In this approach, each vehicle
builds and maintains its own map. When they are on the same
line of sight, the maps are fused. The approach presented
in [7] and [5] belong to the second group. [7] uses an
extended Kalman filter (EKF) to estimate a state vector
formed by the poses of all the vehicles and a set of 2D
landmarks. The vehicles obtain observations and construct a
single unified map using the update equations of the classical
EKF [1]. The initial positions of the vehicles must be known
in advance and the data association is assumed to be known.
In this case, the main drawback stems from the fact that a
single hypothesis about the pose of vehicle is maintained. [5]
presents an algorithm based on [2] where the map is common
for vehicles and it is assumed they have initial pose known in
advance. The authors show, through experiments conducted
in the Matlab and the observation of visual landmarks, that
the approach proposed is suitable for a small groups of
vehicles. As regards the exploration strategies, we highlight
the approaches described in [10] that uses concepts of costs
and utility from frontier-cells.

This work shows that in the context of an integrated
exploration with multiply vehicles (we used two vehicles for
validation), that the FastSLAM approach with a common
map increases the accuracy in the pose of vehicles. The
FastSLAM approach differs from EKF-SLAM for multiple
hypothesis data association. Four experiments were con-
ducted. In the first a Player/Stage simulator was used to test
the complete approach, considering each 3D visual landmark
represented by an image that has only a SIFT feature. In the
second one, the data association is analyzed using images
taken with a kinect visual sensor, an active stereo sensor
which reduces the correspondence problem in a stereo pair
and has a effective range of 0.8 to 3.5 meters. In the third
and fourth experiments a Pioneer 3DX vehicle with laser and
kinect sensors is used. The main contribution of this paper
is to show that the above approach increases the accuracy
in the pose of the vehicles presenting and evaluating the
implementation of the approach using a Pioneer 3DX vehicle
with sensors laser and kinect.

III. FASTSLAM

FastSLAM [2] decomposes the SLAM problem into a
vehicle localization problem, and a collection of landmark
estimation problems that are conditioned to the vehicle pose
estimation. Let ut be a control action responsible for the
exchange of state of a vehicle at time t. In robotics, the pose
χt of a vehicle and the observation zt of a landmark θj are
modeled by probabilistic laws

p(χt|χt−1, ut) and p(zt|χt, θj) (1)

with values sampled by functions usually nonlinear in their
arguments (h and g) with a Gaussian noise added with mean

0 and, respectively, covariance Qt and Rt:

χt = h(ut, χt−1) +N(0, Qt) and zt = g(χt, θj) +N(0, Rt)
(2)

FastSLAM estimates the posterior probability distribution of
the vehicle’s path χt = {χ1, . . . , χt} and the map Θ (Eq.3)
considering the observations zt = {z1, . . . , zt}, control ac-
tions ut = {u1, . . . , ut} and associations at = {a1, . . . , at}
between the features of landmark that were observed and the
features of landmarks in the map

p(χt,Θ|zt, ut, at) (3)

It is shown that if the path χt is known, then the position
of landmarks θi in Θ are conditionally independent, which
allows to factor the problem of estimating the posterior
probability distribution of χt and Θ as a product of simple
terms (Eq.4).

p(χt,Θ|zt, ut, at) = p(χt|zt, ut, at)︸ ︷︷ ︸
Path

N∏
n=1

p(θn|χt, zt, ut, at)︸ ︷︷ ︸
Landmark

(4)

Posterior probability distribution of χt is estimated using a
particle filter [11] and the posterior probability distribution
for the N landmarks θi of each particle are estimated by N
Extended Kalman filters (EKF) [11] conditioned to the path
χt. The particle filter represents the distribution using a set
St = {S[1]

t , . . . , S
[M ]
t } of particles

S
[m]
t =

χ[m]
t , ψ

[m]
1,t ,Σ

[m]
1,t , d

[m]
1 , ..., ψ

[m]
n,t ,Σ

[m]
n,t , d

[m]
n , ...,︸ ︷︷ ︸

Θ[m]

w
[m]
t


(5)

where, ψ[m]
n,t and Σ

[m]
n,t are the mean value and covariance

for the coordinates of θn conditioned to the path χt,[m];
d

[m]
n is the descriptor of its features and w[m]

t is the weight
of the particle. When the vehicle makes an observation it
must update its map. Since the sensors are prone to errors,
each information embedded in the map may have a certain
amount of uncertainty. This inaccuracy can lead to errors
in data association and in update. Update errors can be
minimized through successive observations and, therefore,
in order to improve accuracy in the map, it is necessary
to close the loop, i.e., observe again a landmark previously
observed. This error is also due to the linearization performed
by EKF. Error in data association, caused by the erroneous
association (correspondence) of features of a landmark on
map and features of a landmark observed can be avoided
using a robust set of features, as is the case of SIFT features,
whose descriptor, a vector of dimension 128 is invariant to
scale and rotating of the image and partially invariant to
changes in lighting and 3D viewpoint of the camera. The
FastSLAM algorithm used here is shown in sequence. We
consider an observation vt = {zt, dt} where dt is the SIFT
descriptor of a visual landmark and zt = [dx, dy, dz]

T the
distance between the landmark and the vehicle (Fig.1).
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FastSLAM (St−1, zt, dt, ut)

1. St = Saux = ∅
2. For each particle S[m]

t−1 in St−1

1. Sample χ[m]
t ∼ p(χt|χ[m]

t−1, ut)

2. For each landmark θ[m]
n in map Θ[m] compute

1.E[m]
n = Mahalanobis(d

[m]
n , dt) = (d

[m]
n − dt)(d[m]

n − dt)T

2.p[m]
n,t = f(zt, θ

[m]
n )

3. End For
4. j = Find p[m]

n,t ≥ P0

5. at = argminj E
[m]
j

6. If E[m]
at ≤ E0

1. Update of landmark θ[m]
at

2. w[m]
t = p

[m]
at,t

7. Else
1. New landmark in Θ[m]

8. End If
9. S[m]

t ⇒ Saux

3. End For
4. id =Best particle (St)
5. Resampling(St)
6. Return St

For each particle S
[m]
t−1 in St−1, the vehicle movement

model is sampled (step 2.1, Eq.1, Eq.2). On the other
hand, for each landmark θ[m]

n in the map Θ[m] is computed
the distance E

[m]
n between the SIFT descriptor dt of the

landmark observed and the descriptor d[m]
n of θ[m]

n (step
2.2.1), and the quality of the association of θ[m]

n with zt
through a function of the FastSLAM (step 2.2.2). The data

Fig. 1. Observation Model of a visual landmark 3D.

association chooses a set j of landmarks with association
probability greater than P0 (step 2.4) and select, in this set,
the landmark that minimizes E[m]

j (step 2.5). If E[m]
at is less

than a threshold value E0 (step 2.6), the data association is
considered correct and the estimation of the coordinates of
landmark θ

[m]
at is updated with equations of the EKF (step

2.6.1). Otherwise, a new landmark is created on the map
(step 2.7.1)[5]. The weight of the particle wt corresponds
to quality of the association p

[m]
t,at of landmark θ

[m]
at which

is associated with the observation zt (step 2.6.2). The best
particle - which corresponds to a estimate of location - has
the greatest weight (step 4). In resampling step (step 5),
particles with higher weight w[i]

t are replicated.
The FastSLAM algorithm in the case of one vehicle

requires time MN . This is because M particles need to
be processed, whereas, for each particle the data association
needs to iterate over the N landmarks in the map. However,
if each particle is stored in a kd-tree structure with dimension
of the SIFT descriptor (128), the research in each structure
by a list of landmarks (nearest neighbors at a distance E0)

costs logN , which accelerates the data association, implying
a time of MlogN (step 2.2). In this list, is chosen those
which have association probability greater than P0 (step 2.4).

The success obtained with SLAM has motivated the re-
search on SLAM with multiple vehicles, as discussed in the
next section.

IV. FASTSLAM WITH MULTIPLE VEHICLES

When multiple vehicles have the possibility to communi-
cate with a central coordinator agent, they can work together
to reduce the exploration time and allows a cooperation in
observing landmarks from the environment.

Fig. 2. Scheme of exploration with two vehicle in which a central agent
is responsible for building the map (localization) and the grid (exploration).

If k vehicles explore the environment building a common
map (Fig.2), and at instant t the vehicle (i), in pose χt,(i),
performs a single observation zt,(i), the posterior probability
distribution of the path χ(1:k) of k vehicles and the map Θ
can be estimated from the following function [5]:

p(χt(1:k),Θ|z
t
(1:k), u

t
(1:k), a

t) =

p(χt(1:k)|z
t
(1:k), u

t
(1:k), a

t)︸ ︷︷ ︸
Path

∏N
n=1 p(θn|χ

t
(1:k), z

t
(1:k), u

t
(1:k), a

t)︸ ︷︷ ︸
Landmark

where χt(1:k) = {χt(1), . . . , χ
t
(k)}, u

t
(1:k) = {ut(1), . . . , u

t
(k)}

and zt(1:k) = {zt(1), . . . , z
t
(k)} are respectively the set of paths,

actions, and observation of k vehicles and at = {a1, . . . , at}
is the data associations history. Posterior probability distri-
bution of χt(1:k) is estimated using k particles filters. On
the other hand, the posterior probability distribution of N
landmarks θi, corresponding to each particle, is estimated
by kN independent extended Kalman filters, conditional on
the paths χt(1:k). Since the map is common to vehicles, k
particle filters produce the same set St of particles

S
[m]
t =

χ[m]

(1:k),t
, ψ

[m]
1,t ,Σ

[m]
1,t , d

[m]
1 , . . . , ψ

[m]
N,t,Σ

[m]
N,t, d

[m]
N︸ ︷︷ ︸

Θ[m]

, w
[m]
t


(6)

Note that the state to be estimated is composed by the pose
χt,(1:k) of the k vehicles. An algorithm for multiple vehicle
SLAM is shown as follows [5]. The routine FastSLAM∗ in
algorithm corresponds to the FastSLAM algorithm of the
section III considering only steps 1-3.

FastSLAM with Multiple (two) Vehicles

1.St = ∅
2.For t = 1 to End do

1.[zt,(1), dt,(1), zt,(2), dt,(2)] = Observations()
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2.[St, wt,(1)] = FastSLAM∗(St−1, zt,(1), dt,(1)ut,(1))
3.[St, wt,(2)] = FastSLAM∗(St−1, zt,(2), dt,(2)ut,(2))
4.wt = wt,(1)wt,(2)

5.St = Resampling (St, wt)

3. End For

This algorithm consider that the vehicles begin exploration
from a pose known by the central agent. Considering that
vehicles start from nearby positions, the pose relative can
be obtained by laser sensor. Since the map is common to
vehicles, for each particle S

[m]
t defined in equation 6, k

weights are calculated and the total weight associated with
particle S[m]

t is defined as

wt =
k∏
i=1

w
[m]
t,(i) (7)

FastSLAM algorithm in the case of k vehicles require time
kMlogN .

We present below the adopted exploration strategy.

V. EXPLORATION STRATEGY

In an exploration activity, the path to be followed by a
vehicle must be controlled for the sake of efficiency. In
the considered approach [10], a target - frontier-cell of an
occupancy grid [9] - is chosen according to a function that
evaluates the cost of navigation and the utility of the target.

A. Costs

In order to determine the cost of reaching the current
frontier-cells, we compute the optimal path from the current
position of the vehicle to all the frontier-cells based on
a deterministic variant of the value iteration, a popular
dynamic programming algorithm [14]. It is considered that
the cost for traversing a grid cell (x, y) is proportional to
its occupancy value P (occxy). The minimum-cost path is
computed using the two steps below:

1) Initialization. The grid cell that contains the location
of vehicle is initialized with 0, and all others with ∞

Vx,y ←
{

0, if (x,y) is the vehicle position
∞, otherwise

2) Update loop. For all grid cells (x, y) do

Vx,y ←
min{Vx+∆x,y+∆y +

√
∆x2 + ∆y2P (occx+∆x,y+∆y)}

| ∆x,∆y ∈ {−1, 0, 1}, P (occx+∆x,y+∆y) ∈ [0, occmax]

where occmax is the maximum occupancy probability value
of a grid cell the vehicle is allowed to transverse. This
technique updates the value of all grid cells by the value of
their best neighbors, plus the cost of moving to this neighbor.
Here, cost is equivalent to the probability P (occx,y) that a
grid cell (x, y) is occupied times the distance to the cell. The
update rule is repeated until convergence. All in all each
value Vx,y corresponds to the cumulative cost of moving
from the current position of the vehicle to (x, y).

B. Utilities of frontier-cells

If there is already a vehicle that moves to a frontier-cell,
the utility of this cell must be lower for other vehicles. Let
us suppose that in the beginning each frontier-cell t has
the utility Ut which is equal for all frontier-cells. Then, we
compute the utility U(tn|t1, . . . , tn−1) of a frontier-cell tn
given that the cells t1, . . . , tn−1 have already been assigned
to the vehicles 1, . . . , n− 1 as

U(tn|t1, . . . , tn−1) = Utn −
n−1∑
i=1

P (||(tn − ti||︸ ︷︷ ︸
d

) (8)

where P (d) is the probability that the sensor of vehicle
(a laser sensor in our case). will cover cells in distance
d. According to Equation 8, the more vehicles move to a
location from where tn is likely to be visible, the lower is
the utility of tn. We compute P (d) as

P (d)←
{

1− d
max range , if d < max range

0, otherwise
(9)

where max range is the maximum range reading provided
by sensor.

C. Target Point Selection

In the selection of destinations, is considered for each
vehicle i, a balance between the cost V it of moving to a
destination t and the utility Ut of this target [10].

The next section describes the experimental set up and
some results.

VI. EXPERIMENTS AND RESULTS
Four experiments were conducted. In the first, a

Player/Stage simulator (Fig. 3) was used to test the complete
approach. In the second one, only the data association is
verified through images obtained with a kinect sensor, an
active stereo sensor, in a pre-defined path (Fig. 7) of a real
environment. In the third and fourth experiments a pioneer
3DX vehicle with laser LMS-200 and kinect sensors is
used. The results of the first and fourth experiments were
obtained considering the use of dedicated maps (case ”a”)
and common map (case ”b”).

A. Experiment 1

In the first experiment, a laser sensor Sick LMS-200
embedded in each Pioneer 3DX were utilized to build the
occupancy grid. On the other hand, to simulate a stereo
visual sensor with a field of view of 180o, 3D landmarks
represented by images were used. Each landmark contains
only one SIFT feature and its coordinates [θx, θy, θz]

T were
artificially assigned (Fig.1). The images are differents and
therefore, the data association is known. When a visual
landmark is within the field of vision, the SIFT algorithm
extracts the descriptor of image and compute the distance τ
and the orientations φ1 and φ2 of landmark in relation to the
vehicle (Fig.1).

Selection of destinations was done as described in section
V, where an occupancy grid with cells of size 0.5m x 0.5m
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Fig. 3. Explored environment (17m x 10.5m) with vehicles in their initial
pose

TABLE I
SAMPLING OF THE MOTION (FIG.4) AND OBSERVATION (FIG.1)

MODEL

N(0, σ) is a normal distribution with zero mean and standard deviation σ.
Values in meters and radians.

Variable Average error

xt+1 = xt + ∆xt + dN(0, σ) 0 (∆xt = 0) or d = 5
100d (∆xt 6= 0)

yt+1 = yt + ∆yt + dN(0, σ) 0 (∆yt = 0) or d = 5
100d (∆yt 6= 0)

ϕt+1 = ϕt + ∆ϕt + gN(0, σ) g = 3π
180

τ = τ + τN(0, σ) τ = 0.1

φi = φi + φiN(0, σ) φi

was used. After selecting the destination, the path to be
traveled by the vehicle was computed using A-star algorithm
[12]. The position of the vehicle (x and y) and its orientation
(ϕ) at each step in the occupancy grid (Fig. 4), distance τ
and orientations φ1 and φ2 (Fig.1) were sampled according
to the table I.

Fig. 4. Motion model used

In the experiment, the following parameters were adopted:
σ = 0.5, φi = 0.1π

180 rad, d = 0.5 m, E0 = 0, P0 = 0.9, 2000
particles and range of the visual sensor of 3.5 meters. Since
each landmark has only one (unique) SIFT descriptor, we
did E0 = 0. Our goal is to show that in the context of
a perfect data association, the approach with common map
increases the accuracy in the pose of the vehicles. Figure 5
and 6 show the trajectories traveled by the vehicles in tasks
of exploration.

Fig. 5. Trajectory traveled by vehicles in an exploration task: vehicle
01 (continuous line) and vehicle 02 (dashed line). The arrows indicate the
initial position of vehicles. Total number of steps per vehicle: 28.

Fig. 6. Trajectory traveled by vehicles in an exploration task: vehicle
01 (continuous line) and vehicle 02 (dashed line). The arrows indicate the
initial position of vehicles. Total number of steps per vehicle: 16.

The results of the table II is related to figure 5. The
results of the tables III is related to figure 6. In table II
we can see that the accuracy and amount of estimates of
location obtained in exploration of the case ”b” (common
map) increased in relation to the case ”a” (dedicated maps).
Note that we are using a very restrictive condition P0 to
ensure a good accuracy.

TABLE II
RESULTS IN PLAYER/STAGE SIMULATOR (FIG.5)

Error (RMS) in coordinates x,y and orientation α; amount of estimate of location
obtained divided by the number of steps used in exploration; and amount of updates

of landmark on the map.

Case x y α Estimate
Step Update

a 1 0.042 0.040 0.108 16/28 106
a 2 0.042 0.037 0.105 17/28 71
b 1 0.045 0.043 0.066 23/28 180
b 2 0.038 0.041 0.073 25/28 215

Maximum and minimum values (average ± standard deviation)

Case xmin xmax ymin ymax αmin αmax
Estimate
Step

a 1 0.020 0.064 0.022 0.058 0.066 0.150 57%
a 2 0.019 0.064 0.022 0.052 0.065 0.145 61%
b 1 0.022 0.068 0.031 0.055 0.037 0.096 82%
b 2 0.025 0.050 0.029 0.053 0.052 0.095 89%

TABLE III
RESULTS IN PLAYER/STAGE SIMULATOR (FIG.6)

Error (RMS) in coordinates x,y and orientation α; amount of estimate of location
obtained divided by the number of steps used in exploration; and amount of updates

of landmark on the map

Case x y α Estimates
Steps Update

a 1 0.027 0.032 0.062 13/16 92

a 2 0.032 0.029 0.066 13/16 82

b 1 0.026 0.032 0.069 14/16 140

b 2 0.029 0.028 0.059 15/16 143

Maximum and minimum values (average ± standard deviation)

Case xmin xmax ymin ymax αmin αmax
Estimate
Step

a 1 0.018 0.037 0.021 0.042 0.032 0.093 81%
a 2 0.015 0.048 0.019 0.039 0.034 0.097 88%

b 1 0.018 0.034 0.022 0.042 0.037 0.101 87%
b 2 0.017 0.043 0.022 0.034 0.035 0.084 93%

When a vehicle is exploring an environment, the accuracy
of the estimated pose tends to decrease, since it depends on
the estimated accuracy of the landmarks mapped. In turn,
the estimated coordinates of the landmarks mapped depend
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on the accuracy of the estimated pose of the vehicle, which
tends to decrease as the vehicle explores the environment if it
does not occur corrections through observations of landmarks
mapped previously. Therefore, a greater number of updates
of landmarks tends to improve the accuracy of the pose
estimated by SLAM and it is better that they occur as often
as possible. The SLAM allows to estimate the pose of the
vehicle based on the estimation error of the odometer of
the vehicle and of the model of observation. This estimate
of the pose is used to correct the error in odometry of the
vehicle, considering that the environment is small, since the
estimate depends on the accuracy of the landmarks detected.
The use of FastSLAM with common map is justified by the
fact that the update of landmarks tends to happen more often,
and in a shorter distance traveled by the vehicle. Even with
a increase in the size of the problem to be estimated by
FastSLAM (pose of two vehicles), the experiments confirms
that this approach produces a good estimate of vehicle
location, because a vehicle can update a landmark detected
by itself or by another vehicle, so that, probabilistically,
updates occur more often. Using a common map is more
advantageous in the situation where a vehicle has to pass
close to a region where another vehicle has already covered
(Fig.5). In this approach, although the choose of best particle
is made individually by each vehicle, the weight of each
particle is the product of the weight of the estimates of each
vehicle (Eq.7) and the resampling of particles is done based
on this weight, which means that a particle updated only by
a vehicle will be resampled to a less proportion. However,
the SIFT algorithm allows to obtain many landmarks and
the addition of more vehicles will increase the number of
updates of landmarks, since this update can be done in a
landmark mapped by any of the vehicles. The results of table
III confirm that the FastSLAM with common map is a good
estimator because when a vehicle does not update landmarks
on map inserted by another vehicle (the sensor range is 3.5
meters and the path of the vehicles are different), the results
(accuracy and number of estimates of location by step) are
similar to FastSLAM with dedicated maps.

B. Experiment 2

In the third experiment, a path (Fig.7) in an environment
containing chairs, desks, computers, so on, was travelled with
a visual sensor kinect and, at each step, an image and a file
containing the distances [dx, dy, dz]

T of pixels to the sensor
was obtained and stored to then be used to simulate a vehicle
running a FastSLAM algorithm.

The figure 8 shows the variation in number of updates on
the map, considering, respectively, the variation in limits P0

and E0 (Fig. 8). In the simulation, the distance τ and the
orientations φ1 and φ2 (Fig.1) for SIFT landmarks detected
were obtained from the distance [dx, dy, dz]

T . The following
parameters were adopted: 1000 particles, σ = 0.5, φi = 0.1π

180
rad, d = 1.0 m and effective range of kinect (0.8 to 3.5
meters). We can conclude that, respectively, a P0 too high
and a E0 too low may inhibit updates. On the other hand,
a value of P0 much low with a value of E0 much high can

degrade the map and the FastSLAM algorithm. The ideal is
a high value of P0 and a value of E0 sufficiently low.

Fig. 7. Path (10 meters) in an unstructured environment containing desks,
chairs, computers, and so on, traveled - of simulated manner - by the vehicle
(left) and picture of the environment mentioned (right)

Fig. 8. Average number of updating on map in function of P0 (E0 = 1.2)
- above - and E0 (P0 = 0.9) - below.

To define the value of E0, we did a separate analysis
of SIFT descriptors regardless of the effective range of the
kinect. We obtained the descriptors of all images (3125)and
compute, for each descriptor, the Mahanalobis distance to
other descriptors. We found that the descriptors obtained in
a same image are different, ie, all distances are different
from 0. The average Mahanalobis distance was equal to 1.2.
The table IV shows the percentage of distances between the
descriptors of all images that are below certain limits.

TABLE IV
ANALYSIS OF DESCRIPTORS 2

Distance-Limit (E0) Quantity of distances Percentage

0.1 0 0
0.3 252 0.003
0.5 6362 0.065
0.7 53588 0.550
0.9 298898 3.061
1.1 1559184 15.971
1.2 3319498 34.002

As the SIFT descriptor is partially invariant to the point of
sight 3D and lighting, we did an analysis of the correspon-
dence (association) of the descriptors of two images (Fig.9).
From the results obtained and consolidated in the table V,
we found that the values E0 = 0.4 and E0 = 0.5 provides
a good combination in relation to the number of correct
correspondences (large) and to number of correspondences
possible (little). In that table the calculations were made
considering that there are SIFT features corresponding in
the two images (Fig.9). However, in the FastSLAM the
correspondence (association) is made between an observed
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landmark of an image and the landmarks of the feature map
of a particle. Let’s assume that the landmark observed does
not have a correspondence on the map (is the first time what
was observed), then, an association (erroneous) will occur
only if the position of the associated landmark is very close to
the predicted position by the particle of the FastSLAM, since
we are using P0 = 0.9 (a high value). Therefore, the lower
the value of E0, the better the quality of the data association,
since we have a smaller number of possible correspondences
(Tab.V).

Fig. 9. Correspondence of descriptors of the images obtained in steps 2
and 3 (Fig.7) considering E0 = 0.4

TABLE V
ANALYSIS OF DESCRIPTORS 3

E0
correct associations
Total associations

0.4 04/04 = 100%

0.5 13/14 = 93%

0.6 22/25 = 88%

0.7 31/42 = 74%

C. Experiment 3

In the fourth experiment we traveled an environment
(Fig.10) with a Pionner 3DX vehicle following the path
defined in the figure 10. In the experiment, the following
parameters were adopted: σ = 0.5, φi = 0.1π

180 rad, 1000
particles and effective range of kinect.

Fig. 10. Path (16 steps) travelled by Pioneer 3DX (Each step has 0.5 or
1.0 meters) and corresponding images in the poses (0,0,0) and (4,3.5,180).

In the figure 11 we have the processing time per step
in function on number of landmarks on the map. The total
time spent was 494 sec. Assuming that each step we expect
10 seconds for the displacement of the vehicle, the total
processing time of the FastSLAM was 334 seconds (5.56
min or 21 sec/steps). If we had not used the kd-tree structure,
the time would grow linearly with the number of landmarks
on the map. In 50% of steps was obtained an estimate of
location. In the figure 12 we have the higher resolution grid
- laser map - considering in each step the best particle.

In order to assess the impact of the choice of E0 in
processing time of the FastSLAM, from the images and from

Fig. 11. Processing time per step in function on number of landmarks on
the map (P0 = 0.9 and E0 = 0.5)

Fig. 12. Higher resolution grid - laser map - generated by best particle
(P0 = 0.9 and E0 = 0.5).

the file containing the distances [dx, dy, dz]
T of pixels in

relation to sensor that was stored during the experiment, we
get the amount of estimates of location, amount of updates
of landmarks and processing time (Tab.VI) considering 1000
particles. From the results we can conclude that the process-
ing time not varied considerably.

TABLE VI
RESULTS IN FUNCTION OF E0 CONSIDERING 1000 PARTICLES.

E0
Estimates
Steps Updates Time (sec) Time (min)

0.3 3/16 03 299 4.98
0.4 6/16 15 319 5.31
0.5 8/16 37 334 5.56
0.6 9/16 88 369 6.15

D. Experiment 4

In the fifth experiment, from the images and files con-
taining the distances [dx, dy, dz]

T of the pixels in relation
to kinect of the experiment 4, we simulate two vehicles
traveling the paths described in figure 13 and using Fast-
SLAM with dedicated maps (case ”a”) and common map
(case ”b”).The following parameters were adopted: 1000
particles, σ = 0.5, φi = 0.1π

180 rad and effective range of
the kinect. This experiment considered in case ”b” that a

Fig. 13. Path (13 meters) traveled - of simulated manner - by vehicle 01
(continuous line) and 02 (dashed line). Each step has 0.5 or 1.0 meters.

vehicle will only insert a new landmark on the map if the
region was not mapped by another vehicle (the vehicle 2
will insert landmarks only in the step 1 and 2). In this
case the vehicle 2 (case ”b”) obtained a greater amount of
estimate of location and updates of landmarks (Tab.VII). This
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implies that there was observations of landmarks previously
observed by vehicle 1. The figure 14 shows the landmarks
map generated by the best particle. In the case ”b”, each
particle which updated a landmark, did it in just a few
of them (P0 > 0.9), Ncm ' 0.57 ∗ (Ndm1

+ Ndm2
) and

the searching of nearest neighbors selected 1.98 times more
landmarks.

TABLE VII
RESULTS CONSIDERING IN FUNCTION OF E0 = 0.5 AND CONSIDERING

1000 PARTICLES.

Case vehicle Estimates
Steps Updates Time (min)

a 1 05/13 38 4.10
a 2 08/13 47 3.71
b 1 05/13 54 9.98
b 2 12/13 831 9.98

Case ”b” - Common map

Fig. 14. 2D Map generated by the best particle (P0 = 0.9, E0 = 0.5)

E. Evaluation of the approach

The results show that using the same number of particles,
the exploration conducted with common map increases the
accuracy in pose of vehicles. It was expected that the increase
in number of vehicles used in the exploration entailed the
need to increase the number of particles in order to achieve
a similar pose error estimation, which turned out to be
unnecessary. In both approaches, the accuracy achieved by
each vehicle depends on the updates of landmarks. When
using a common map to vehicles, this number tends to
increase because these updates can be made also in a
landmark previously mapped by another vehicle. When using
a common map, all processing will get concentrated in the
central agent, which should have a capacity equivalent to the
number of vehicles used (two in our case) so that time spent
in the exploration is similar. The approach with common map
requires a time 2MlogNcm instead of MlogNdm (Ncm '
0.5∗(Ndm1

+Ndm2
)). Although there is an increased compu-

tational cost, the order of complexity remains O(MlogNcm)
and landmarks are stored in a kd-tree structure. Therefore,
this increase can be compensated by a greater computational
power in central agent or paralleling the approach with
common map. The processing of landmarks observed by
vehicles can be parallelized, since a particle represents an
estimate of the pose of the vehicle with their respective set of
estimated landmarks. It is expected that the processing time
with common map and dedicated maps are approximately
identical. In relation to complexity in extraction of landmarks
with algorithm SIFT, we consider that it is done individually

by each vehicle. Regarding the need for communication for
the transmission of descriptors for the central agent, this
communication is also required for transmission of upgrades
of the occupation grid.

VII. CONCLUSION

In this work we show that we can explore an indoor
environment with multiply vehicles in a efficient way when
we are using a FastSLAM algorithm so as to locate them,
considering landmarks extracted through of SIFT algorithm
and features map common to vehicles. This is because the
vehicles increases the accuracy in the pose, everything in
relation the use of dedicated maps. The improvement is
obtained with the same number of particles, which could
potentially be larger, since the estimated problem is greater.
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Abstract— This paper deals with the navigation of a multi-
robot system (MRS). The latter must reach and maintain a
specific formation in dynamic environment. In such areas,
the collision avoidance between the robots themselves and
with other obstacles (static and dynamic) is a challenging
issue. To deal with it, a reactive and a distributed control
architecture is proposed. The navigation in formation of the
MRS is insured while tracking a global virtual structure. In
addition, according to the robots’ perception context (e.g., static
or dynamic obstacle), the most suitable obstacle avoidance
strategy is activated. These approaches use mainly thelimit-
cycle principle and a penalty function to obtain linear and
angular robots’ velocities. The proposed control law guarantees
the stability (using Lyapunov function) and the safety of
the MRS. The robustness and the efficiency of the proposed
control architecture is demonstrated through a multitude of
experiments which shows the MRS in different configuration
of avoidance.

I. INTRODUCTION

Navigation of multiple mobile robots is a recurrent re-
search subject due to a large amount of the met issues.
Obstacle avoidance is among the most important ones. In
fact, it is a basic action that each mobile robot has to
accomplish in its environment in order to prevent collision
(with walls, trees, walkers, other robots, etc.), and to insure
a safe navigation.

Collision avoidance is then widely investigated in the
literature for multi-robot systems. It is tackled through two
main approaches. The first one considers the robots control,
entirely based on path planning methods which involve the
prior knowledge of the robots environment. The objective
is to find the best path to all the robots in order to avoid
each other while minimizing a cost function [1], [2], [3].
This method requires a significant computational complexity,
especially when the environment is highly dynamic. In fact,
the robot has to frequently replan its path to take environment
changes into account.

Rather than a prior knowledge of the environment, reactive
methods are based on local robots sensors information. At
each sample time, robot’s control is computed according
to its perceived environment. Potential field methods [4]
are the most common ones: each robot is subject to a
sum of an attractive virtual force generated by the goal to
reach and repulsive forces generated by the other robots

and obstacles [5], [6], [7]. An other reactive method is
the Deformable Virtual Zone (DVZ) [8]: every robot is
surrounded by a virtual risk area. If an obstacle enters
inside this DVZ, it deforms it. The aim of the generated
control is then to minimize this deformation leading to avoid
collision among robots [9]. The reactive methods given above
suffer from local minima problems when for instance, the
sum of potential forces is null, or when the deformation
of the DVZ is symmetric (as the U shape obstacle). In
[10], authors propose the Distributed Reactive Collision
Avoidance algorithm (DRCA). This method is based on
an equilibrium point which continuously pushes the robots
away from each other by increasing their relative velocities.
Hence, this algorithm is not suitable for the navigation in
formation where robots regularly have to move with the
same velocity. Generally, reactive methods do not require
high computational complexities, since robots actions must
be given in real-time according to the perception.

This paper deals with this last kind of methods. The
studied task is the navigation in formation. It is accomplished
through a distributed control architecture. This architecture
was developed in [11] and permits for a group of mobiles
robots to reach and maintain a specific formation. In this
last work, obstacle avoidance was not addressed neither for
dynamical obstacles nor to avoid other robots participating in
the formation. In [11] the used strategy deals with the virtual
structure. The formation is considered as a virtual rigid body
and the control law for each robot is derived by defining
the dynamics of this body [6], [12], [13]. Virtual structure
is often associated to potential field applications since they
are simple and allow collision avoidance. However, potential
forces are limited, especially when the formation shape needs
to be frequently reconfigured. In fact, it means that the robot
is submitted to a frequently-changing number/amplitude of
forces leading to more local minima, oscillations, etc. Hence,
it was proposed that the robots track a virtual body without
using potential forces. Since collision avoidance must stay
possible despite the absence of potential fields, behavior-
based concept [14], [15] was introduced. This allows to
divide the task into two different behaviors (controllers):
attraction to a dynamic target, andobstacle avoidance. The
latter was based on limit-cycle differential equations [16].
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Fig. 1. The proposed architecture of control embedded in each robot.

Limit-cycle navigation was already used for obstacle avoid-
ance [17], [18]. Limit-cycle approach allows to choose the
obstacle avoidance direction (clockwise or counterclockwise)
in order to rapidly join the assigned target. Here, it is
proposed to extend this method to dynamic obstacles and
to robots of the same system without loosing the control
reactivity. Unlike most of algorithms addressing dynamic
obstacles, no communication is required among the robots
to accomplish the task. Avoidance is based only on the local
perception of each robot. As in [19], [18] or [20] the idea is
to find the best direction of avoidance. It will be seen that
the velocity vector of the obstacle is sufficient to deduce this
direction.

The remainder of the paper is organized as follows. Sec-
tion II gives the principle of the navigation in formation and
the general control architecture. Basic controllers and the the
control law are given in this section. We mainly focus on the
obstacle avoidance controller applied to dynamic obstacles.
In section III, apenalty function is introduced in the linear
velocity of each robot to permits to take into account the
multi-robot interactions. Section IV validates the proposed
algorithm with experimental results. Finally, we conclude
and give some perspectives in section V.

II. CONTROL ARCHITECTURE

The used control architecture includes two controllers:
Attraction to a Dynamic Target and Obstacle Avoidance.
The virtual structure is built through theParameters of the
Formation to Achieve block (cf. Figure 1).

According to environment information collected by the
Perceptions and Communication block (sensors) and the
robot’s current state, one controller is chosen thanks to the
Hierarchical Set-Point Selection block.

The corresponding set-points(PSi
, θSi

) (position and ori-
entation) are then sent to theControl Law block which
calculates the linear and angular velocities notedvi andwi

respectively (cf. Figure 1).

A. Parameters of the Formation to Achieve block

This subsection briefly describes the adopted virtual struc-
ture principle. ConsiderN robots with the objective of
reaching and maintaining them in a given formation. The
proposed virtual structure that must be followed by the group
of robots is defined as follow:

• Define one point which is called the main dynamic
target (cf. Figure 2),

• Define the virtual structure to follow by definingNT

nodes (virtual targets) to obtain the desired geometry.
Each nodei is called a secondary target and is defined
according to a specific distanceDi and angleΦi with
respect to the main target. Secondary targets defined by
this way have then the same orientationθT . However,
each targeti will have its linear velocityvTi

. The
number of these targetsNT must beNT ≥ N .

A cooperative strategy between the robots allows to each
one to choose the closest target by negotiating it with the
others thanks to Relative Cost Coefficients. To focus mainly
on obstacle avoidance, this strategy is deactivated. Each robot
i has then to track a predefined targeti. An exemple to get
a triangular formation is given in figure 2.

Di 

Dj 

 j 

 T 

Ow Xw 

Yw 

Main dynamical 

target 
Secondary target  

vT 

Dk 

 k  i 

Robotq 

Robotp 

Robotr 

Fig. 2. Keeping a triangular formation by defining a virtual geometrical
structure.

B. Attraction to a Dynamic Target controller

To remind the attraction to a Dynamic Target Controller
which allows to keep the formation, consider a roboti
with (xi, yi, θi) pose. This robot has to track its secondary
dynamic target. To simplify notations in the following, the
same subscript of the robot is given to its target. The latter
is then notedTi(xTi

, yTi
, θT ) (cf. Figure 3) and the variation

of its position can be described by
{
ẋTi

= vTi
.cos(θT )

ẏTi
= vTi

.sin(θT )
(1)

Let’s also introduce the used robot model (cf. Figure 3).
Experimental results are made on Khepera robots, which
are unicycle mobile robots. Their kinematic model can be
described by the well-known equations (cf. Equation 2).
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Fig. 3. Attraction to a dynamic target.






ẋi = vi.cos(θi)

ẏi = vi.sin(θi)

θ̇i = ωi

(2)

whereθi, vi andωi are respectively the robot orientation,
the linear and angular velocities.

The set-point angle that the robot must follow, to reach its
dynamic target, is given by

θSati
= arcsin(b sin(θT − γi)) + γi (3)

Whereb =
vTi

vi
. γi is the angle that the robot would have

if it was directed to its target (cf. Figure 3). This set-point
has been obtained by keepingγi constant. More details and
proofs are available in [11].

The corresponding set-points(PSi
, θSi

) (cf. Figure 1)
given by theAttraction to Dynamic Target controller are
composed by:

• (PSi
= (xTi

, yTi
)): the current position of the dynamic

target (cf. Figure 3),
• (θSi

= θSati
) given by equation (3).

C. Obstacle Avoidance controller

A particular attention is given to this task since the
objective of the paper is to extend the already proposed
orbital obstacle avoidance strategy [18], so that it becomes
more appropriate to deal with dynamic obstacles. As cited
in section I, common potential field approaches for obstacle
avoidance are not used because of their drawbacks in robots
formation. The task is then performed through the limit
cycle methods. The robot follows the limit cycle vector fields
described by the following differential equations:

ẋs = (sign)ys + xs(R
2
I − x2

s − y2
s)

ẏs = −(sign)xs + ys(R
2
I − x2

s − y2
s)

(4)

where (xs, ys) corresponds to the relative position of
the robot according to the center of the convergence circle
(characterized by anRI radius).

The functionsign allows to define the direction of the
trajectories described by these equations. Hence, two cases
are possible

• sign = 1, the motion is clockwise.
• sign = −1, the motion is counterclockwise.

Figure 4 shows the limit cycles with a radiusRI = 1.
Obstacles are then modeled as circles ofRI radius. The latter

is chosen as the sum of the obstacle radius, the robot radius
and a safety margin.

The set-point angleθSoa
of the Obstacle Avoidance con-

troller is given by the the following relation

θSoa
= arctan(

ẏs

ẋs
) (5)

The corresponding set-points(PSi
, θSi

), when theObsta-
cle Avoidance controller is chosen byHierarchical Set-Point
Selection block (cf. Figure 1), are defined such thatPSoa

corresponds to the center position of the obstacle(xo, yo)
whereasθSi

= θSoa
.

It is noticed that previous works on limit-cycle methods
applied to obstacle avoidance [17], [18] do not consider
dynamic obstacles. Here, it is proposed to extend this reactive
method to deal with them.

According to the nature of the obstacle, three cases are
considered:

1) static obstacles,
2) dynamic obstacles,
3) robots of the same system.
These strategies are explained in the next paragraphs.
1) Static obstacles: The same strategy proposed in [18]

is maintained. Summarily, the value ofsign is specified by
the ordinate of the robotys in the relative obstacle’s frame
(OoXoYo) (cf. Figure 5). TheXo axis of this orthonormal
frame is defined thanks to two points: the center of the
obstacle (which makes the origin of the frame) and the target
to reach.

sign =

{
1 if ys ≥ 0 (clockwise avoidance)

−1 if ys < 0 (counterclockwise avoidance)
(6)

Figure 5 shows an example of a robot choosing its
avoidance direction (clockwise) thanks to its relative ordinate
ys > 0. The chosen direction by this strategy allows then
to join the target by the side offering the smallest covered
distance.

2) Dynamic obstacles: When a movement of the obstacle
position is detected, it is considered as a dynamic obstacle
by the robot. The objective for the robot is always to
choose the most suitable side of avoidance (clockwise or
counterclockwise) which allows to succeed this mission. The
proposed solution is always to act on the functionsign
(cf. Equation 4). Nevertheless, for dynamic obstacles, the
ordinateys cannot be used as the adequate information to
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Fig. 4. Possible trajectories of the limit-cycles
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Fig. 5. Avoiding a static obstacle.

decide on the avoidance direction. In figure 6, it can be
noticed that if the robot decides a clockwise motion (based
on its relative positive ordinateys > 0), it fails to avoid this
obstacle. In fact, the robot will go in the same direction as
the obstacle (vector~vO on the figure). It may then uselessly
diverge from its target by persisting in this direction.
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Fig. 6. Avoiding a dynamic obstacle.

Rather than analyzingys, it is then proposed that the robot
uses the obstacle’s vector velocity~vO. The idea is to project
this vector on theYo axis of the relative frame(OoXoYo)
defined in paragraph II-C.1. NotedvOy

, this projection is
expressed as vOy

= vOsin(ϕ− α) (7)

whereα andϕ define the direction of theXo axis and~vO

in the absolute frame respectively. The functionsign (cf.
Equation 4) is then defined according tovOy

as follows:

sign =

{
1 if vOy

≤ 0 (clockwise avoidance)

−1 if vOy
> 0 (counterclockwise avoidance)

(8)
By using the projectionvOy

of the obstacle velocity, the
obstacle is always avoided round the back such that the robot
does not cut off the obstacle’s trajectory.

3) Robots of the same system: One can consider that
every robot of the MRS is treated as a dynamic obstacle and
projects its velocity vector to deduce the side of avoidance
(cf. Equation 8). However, a conflict problem could appear
when, for instance, two robots have to avoid each other.
Once each robot projects the velocity vector of the other one,
they have opposite directions of motion. They can endlessly
hinder each other which leads to divergence from their

targets. This problem is illustrated by a simulation example
in figure 7.
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Fig. 7. Divergence of the robots from their targets due to two different
directions of avoidance.

To deal with this kind of conflicts, and assuming that
each robot is able to identify those of the same system, it
is proposed to impose one reference direction for all the
system. Hence, when one robot detects a disturbing robot of
the same group, it avoids it counterclockwise.

D. The control law block

This block allows for the roboti to converge to its set-
point given by theHierarchical set-point selection block(cf.
Figure 1). It is expressed as

vi = vmax − (vmax − vT )e−(d2

Si
/σ2) (9a)

ωi = ωSi
+ k1θ̃i (9b)

where

• vmax is the maximum linear speed of the robot,
• σ, k1 are positive constants,
• vi andωi are linear and angular velocities of the robot.
wSi

= θ̇Si
.

θ̃i = θSi
− θi (10)

where θSi
is the set-point angle according to the active

controller and was already computed (cf. Equation (3), (5)).
By derivating

˙̃
θi = wSi

− ωi (11)

Consider the well known Lyapunov function

V= 1
2 θ̃i

2 (12)

The angular control law is asymptotically stable ifV̇ < 0.

V̇ = k1θ̃i
˙̃
θi

By replacing equation (11) in the control law (9b), we get˙̃
θi = −k1θ̃i

and V̇ becomes V̇ = −k1θ̃
2
i < 0

for every θ̃i 6= 0 sincek1 > 0.
In addition to the obstacle avoidance controller (cf. Section

II-C), it is proposed to better prevent the collision risk.
The idea, described in next section, is to increase time of
maneuvering for the robot by reducing the relative velocity
between it and the hindering obstacles.
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III. TOWARD A NULL RISK OF COLLISION

It is here proposed to modify the linear velocity of
the robot according to the distance separating it from the
hindering obstacle through a functionψ. This function is
called apenalty function. The linear velocity of each robot
i (cf. Equation 9a) is then modified by the penalty function
related to the obstaclej and notedψj(dij). dij is the distance
separating roboti and obstaclej.

To defineψj(dij), the robot i is surrounded with two
additional virtual circles (cf. Figure 8):

• a circle of radiusRext such thatRext ≥ RIi, (RIi is
the radius of the limit cycle surrounding the robot),

• a circle of radiusRinti such thatRinti < RIi.

The penalty function can then be defined as follows:

ψj(dij) =






(dij−Rinti
)

(Rext−Rinti
) (Rinti

< dij < Rext andxOj/Ri > 0)

0 dij ≤ Rinti

1 otherwise
(13)

wherexOj/Ri is the relative position of the obstaclej in
the relative frame of the roboti (cf. Figure 8). In fact, by
imposingxOj/Ri > 0, only the obstacles in front of the robot
i impact its velocity. Robots behind it do not modify it.

When the robot is hindered byM obstacles, its new
velocity notedv

′

i is then given by

v
′

i = vi

M∏

j=1,j 6=i

ψj(dij) (14)

wherevi is the velocity of the robots given by theControl
Law block without penalty (cf. Equation 9a).

Note that if one hindering obstacle is a robot of the same
MRS, the penalty function may cause local minima where
two robots (at least) are stopped by each other. In fact, if
Rinti

= Rintj
anddij ≤ Rinti

, thenψj(dij = ψi(dji = 0.
This means thatv

′

i = v
′

j = 0 (cf. Equation 14). To overcome
this minima, and for every couple of robotsk andl such that
(k, l ∈ {1..N}) , radiusRintk andRintl, are attributed such
that

|Rintk −Rintl| ≥ ξ

whereξ is the tolerance margin of the robots sensor.
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Fig. 8. Virtual circles defining the penalty functionψj(dij ).

IV. EXPERIMENTAL RESULTS

Experimentations are made on Khepera III robots. A
central camera, at the top of the platform gives positions
of all the robots and the obstacles thanks to circular bar
codes installed on them. The objective on the long view
is to use the local sensors of the robots in order to get a
completely decentralized architecture. Experimental results
can be illustrated in two paragraph : first, the dynamic
obstacle avoidance is shown thanks to a robot joining a static
target. In the second paragraph, three robots avoid each other
before attaining a dynamic virtual structure.

A. Avoiding a dynamic obstacle

One robot has to reach its static targetvT = 0 (cf.
Equation 9a) while avoiding an other robot considered
as a dynamic obstacle. The strategy of avoiding dynamic
obstacles using the projection of their velocity vector is
then shown. Figure 9 shows the robot and the obstacle
trajectories. It can be seen that the robot avoids the obstacle
by surrounding it behind and attains its final target. Figure
10 shows the variation of the linear velocity of the robot and
the distance separating it from the obstacle. It can be seen
that when this distance isd ≤ Rext, the robot decelerates
(its velocity is decreasing) modified by the penalty function
ψ (cf. Equation 13) of the obstacle. When the robot avoids
it, it accelerates again and starts deceleration by reaching the
target (cf. Equation 9a).
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Fig. 9. Avoiding a dynamic obstacle.
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Fig. 10. Linear velocity of the robot and distancedRO separating the
robot from the obstacle.

B. Attaining a formation while avoiding collision between
the robots

Three robots have to join a triangular virtual structure.
They are put in an initial condition such that they must
avoid each other using the proposed obstacle avoidance
controller (robots of the same system) (cf. Section II-C.3). It
is observed that the robots proceed to collision avoidance
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before attaining the formation. No conflict was observed
since avoidance is done in one direction (counterclockwise).
The formation is successfully attained as shown in figure
11 illustrating the trajectories of the three robots. More-
over, the penalty function allows to each one deceleration
when it approaches other robots offering a bigger time of
maneuvering. Figures 12 and 13 represents the variation of
the linear velocities and the distances separating each other
respectively. By analyzing them, it can be seen how the
penalty functions appear when the distances become small
(dij ≤ Rext). This explains the diminution of the velocities
before reaching the target (cf. Figure 12).

Trajectory of the 

virtual structure along 

the circle 

R3 (t1) 

R2 (t1) R1 (t1) 

R1 (t2) 
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Fig. 11. Trajectories of the robots attaining the formation.
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Fig. 12. Linear velocities of the robots.
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Fig. 13. Distancesdij between the robots.

V. CONCLUSION

A new reactive collision avoidance method, based on
limit-cycle approach, is proposed to deal with multi-robot
system (MRS). Hence, the control architecture, which allows
the navigation in formation of a MRS, is enriched with a
more flexible and reliable obstacle avoidance strategies. This

allows to deal with static and dynamic obstacles and permits
also to avoid collisions between the robots of the same group.
Thus, some conflicts, which were possible when using limit-
cycle method for dynamic obstacles, are solved. In addition,
the proposedpenalty function makes the obstacle avoidance
controller more robust against collisions, since it permits to
take into account the different local interactions between
robots and their environment. Future works will consider
the kinematic constraints of the robot while generating the
convergence toward the control set-points. The objective is
to insure the safety of the robot and the control feasibility.

REFERENCES

[1] P. Fiorini and Z. Shiller. Motion planning in dynamic environments
using velocity obstacles. The International Journal of Robotics
Research, 17:760–772, 1998.

[2] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and
P. Dubey. Clearpath: Highly parallel collision avoidance for multi-
agent simulation. InACM SIGGRAPH Eurographics symposium on
computer animation, 2009.

[3] A. Pongpunwattana and R. Rysdyk. Real-time planning for multiple
autonomous vehicles in dynamic uncertain environments.Journal of
Aerospace Computing, Information and Communication, 1:580–604,
2004.

[4] O. Khatib. Real time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5:90–99, 1986.

[5] E. Lalish, K.A. Morgansen, and T. Tsukamaki. Formation tracking
control using virtual structures and deconfliction.IEEE Conference
on Decision and Control, 2006.

[6] P. Ogren, E. Fiorelli, and Leonard N. E. Formations with a mission:
Stable coordination of vehicle group maneuvers. In15th International
Symposium on Mathematical Theory of Networks and Systems, 2002.

[7] S. Mastellone, D.M. Stipanovic, and M.W. Spong. Remote formation
control and collision avoidance for multi-agent nonholonomic systems.
In IEEE International Conference on Robotics and Automation, pages
1062–1067, 2007.

[8] R. Zapata and P. Lepinay. Reactive behaviors of fast mobile robots.
Journal of Robotics Systems, 11:13–20, 1994.

[9] P. Fraisse, R. Zapata, W. Zarrad, and D. Andreu. Remote decentralized
control strategy for cooperative mobile robots.Advanced Robotics
Journal, Robotics Society of Japan, 19:1027–1040, 2005.

[10] E. Lalish and K.A. Morgansen. Distributed reactive collision avoid-
ance.Autonomous Robots, 32, 2012.

[11] A. Benzerrouk, L. Adouane, L. Lequievre, and P. Martinet. Navigation
of multi-robot formation in unstructured environment using dynamical
virtual structures. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010.

[12] X. Li, J. Xiao, and Z. Cai. Backstepping based multiple mobile robots
formation control. InIEEE International Conference on Intelligent
Robots and Systems, pages 887 – 892, 2005.

[13] K. D. Do. Formation tracking control of unicycle-type mobile robots.
In IEEE International Conference on Robotics and Automation, pages
527–538, 2007.

[14] T. Balch and R.C. Arkin. Behavior-based formation control for multi-
robot teams.IEEE Transactions on Robotics and Autmation, 1999.

[15] G. Antonelli, F. Arrichiello, and S. Chiaverini. The nsb control: a
behavior-based approach for multi-robot systems.PALADYN Journal
of Behavioral Robotics, 1:48–56, 2010.

[16] H.K. Khalil. Frequency domain analysis of feedback systems (chapter
7). 2002.

[17] D. Kim and J. Kim. A real-time limit-cycle navigation method for
fast mobile robots and its application to robot soccer.Robotics and
Autonomous Systems, 42:17–30, 2003.

[18] L. Adouane. Orbital obstacle avoidance algorithm for reliable and
on-line mobile robot navigation. In9th Conference on Autonomous
Robot Systems and Competitions, May 2009.

[19] J.O. Kim, C.J. Im, H. Shin, K. Y. Yi, and H. G. Lee. A new task-based
control architecture for personal robots.International Conference on
Intelligent Robots and Systems, 2:1481–1486, 2003.

[20] L. Adouane, A. Benzerrouk, and P. Martinet. Mobile robot navigation
in cluttered environment using reactive elliptic trajectories. In18th
IFAC World Congress, 2011.

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

92



 
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 

October 7th, 2012 Vilamoura, Algarve, Portugal 

 

 

 

 

Session III 

 

Interactive session 

 
 Title: Development of an Autonomous Vehicle for High-speed Navigation and 

Obstacle Avoidance  

Authors: J.H. Ryu, D. Ogay, S. Bulavintsev, H. Kim, and J.S.Park  

 

 Title: Kinodynamic motion planning with state Lattice Motion Primitives  

Authors: M. Pivoraiko and A. Kelly  

 

 Title: Detection of Moving and Stationary Objects at High Velocities using Cost-

Efficient Sensors, Curve-Fitting and Neural Networks  

Authors: F. Mirus, J. Pfadt, C. Connette, B. Ewert, D. Grudl, A. Verl  

 

 Title: ESTRO: Design and Development of Intelligent Autonomous Vehicle for Shuttle 

Service in the ETRI  

Authors: J. Byun, K.I. Na, M. Noh and S. Kim  

 

 Title: An effective 6DoF motion model for 3D-6DoF Monte Carlo Localization  

Authors: A. L. Ballardini, A. Furlan, A. Galbiati, M. Matteucci, F. Sacchi, D. G. Sorrenti  

 

 Title: Visual trajectory learning and following in unknown routes for autonomous 

navigation  

Authors: D. A. Marquez-Gamez and M. Devy  

 

 Title: Eigen analysis and gray alignment for shadow detection applied to urban scene 

images  

Authors: T. Souza, L. Schnitman and L. Oliveira  
 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

93



 
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 

October 7th, 2012 Vilamoura, Algarve, Portugal 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

94



Development of an Autonomous Vehicle for High-speed Navigation and
Obstacle Avoidance

Jee-Hwan Ryu,Member, IEEE, Dmitriy Ogay, Sergey Bulavintsev,
Hyuk Kim, and Jang-Sik Park

Abstract— This paper introduces the autonomous vehicle
Pharos, which participated in the 2010 Autonomous Vehicle
Competition organized by Hyundai-Kia motors. Pharos was
developed for high-speed on/off-road unmanned driving avoid-
ing diverse patterns of obstacles. For the high speed traveling
up to 60 Km/h, long range terrain perception, real-time path
planning and high speed vehicle motion control algorithms
are developed. This paper describes the major hardware and
software components of our vehicle.

I. I NTRODUCTION

The first autonomous vehicle competition in South Korea
organized by Hyundai-Kia Motors took place on November,
2011 [11]. The mission of the competition was unmanned
traveling about 4 Km on/off road clearing 7 different patterns
of obstacles. Lane keeping and stop within 1 m of cross-
walk were also included. Eleven universities in South Korea
were participated in the main competition out of 20 initial
applicants, and “Pharos”, developed by our team, finished
the course in 8 min 52 sec clearing all the missions except
crosswalk, which got 5 min penalty, and Pharos took 4th

place.
Recently there have been many research activities in au-

tonomous vehicle area. Especially, DARPA Grand Challenge
[1], [8] and Urban Challenge [10] made a big progress on the
area of autonomous vehicle. However, there are still many
open issues for high speed unmanned traveling such as long
range terrain perception [9], real-time obstacle avoidance and
trajectory planning [3], [6], and high speed vehicle motion
control [5] et al.

In this paper, autonomous vehicle based on real Sport
Utility Vehicle (SUV) is introduced motivated by the com-
petition. The main challenging issue in the development of
the vehicle was to build a reliable system, able to traveling
high speed up to 60 Km/h through on-road and unstructured
off-road while avoiding different types of obstacles. To
satisfy these requirements, new methods were developed
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and extended based on existing methods in the field of
autonomous navigation such as long-range obstacle detection
and mapping, real-time collision avoidance and trajectory
planning, and stable vehicle control on slippery and rugged
terrain.

II. H ARDWARE DESIGN

Fig. 1 shows the outlook of Pharos at the competition.
Pharos is based on a Gasoline-powered Hyundai Santafe CM.
Reinforced front bumper has been installed to protect the
vehicle from the environmental impact.

Fig. 1. Pharos was standing at the finishing line on the competition track

A geared DC motor is attached to the steering column
to allow electronic steering control. Required torque and
rotational speed was estimated through the experimental
analysis. We found that 4.41 Nm continuous torque with
3000 rpm was required for controlling the steering column.
Smart motor from Animatic Co. with 1:4 gear ratio was
selected as a steering motor. With this motor, 5.8 Nm
continuous torque with 4000 rpm can be achieved at 24V,
which is sufficient to control the steering column.

Fig. 2 shows the assembled 3D CAD model of the
steering actuation mechanism. one-to-one pulley powered
transmission mechanism was used, and steering angle sensor
was moved to the motor output axis to measure the absolute
steering angle.

To motorize braking system, another geared DC motor
is installed near by the braking pedal. Through the initial
experiment, we found that 60 mm travel distance with 8 N
pressing force is required max. for controlling the breaking
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Fig. 2. Assembled 3D CAD model of the steering actuation mechanism

system. one-to-five gear ratio was used to give enough force.
It also allows fine position control of the breaking pedal.

Throttle is also modified to be controlled electronically
through APS signal modification. APS signal is modified to
control the throttle. From 0.8 V to 5 V was given for idling
to maximum acceleration.

Vehicle data, such as steering angle, vehicle speed, APS
signal and et al. are automatically sensed and communicated
to the computer system through Ethernet interface.

Fig. 3. View of custom made roof rack with sensors

Fig. 3 shows the custom-made roof rack. Most of the
sensors are installed on it. Four SICK laser scanners are
installed on the roof rack since it can provide best visibility of
the terrain. All scanners are facing forward along the driving
direction of the vehicle, but with slightly different angles. A
single CMOS camera with housing is also installed on the
roof rack for crosswalk detection. GPS receiver, RF modem
and a radio antenna for E-stop are also installed on the roof
rack. The E-stop system is provided by Hyundai-Kia motors
for allowing the chasing vehicle safely stop the vehicle in
emergent situation with wireless link. Three manual E-stop
buttons are installed also on the roof rack and backside of
trunk.

Pharos’s controllers and communication system are lo-
cated inside of trunk as shown in Fig. 4. Six Compact
PCI, NI-CompactRIO, Gigabit Ethernet switches and various

Fig. 4. Controllers and communication system in the trunk of the vehicle

types of interfaces for physical sensors and actuators are
installed on a shock-mounted rack. Custom-made power
system with backup batteries are installed underneath of the
rack for supplying power to all the electrical components. A
six degree-of-freedom IMU is rigidly attached to the vehicle
frame underneath the vehicle roof.

The added instrument is required approximately 2.4 KW
in addition. Two 12V alternators are installed in addition
to supply power, and it provides 24V, 3.4 KW. Therefore,
Pharos can even run all the system more than an hour without
recharging.

III. SOFTWARE ARCHITECTURE

A. Overview

The main principles that we wanted to follow when
developing the system architecture were: reliability of a sys-
tem, ability to distribute software over several independent
computers, easy configuration, simulation and development.
To reach these requirements we have chosen an architecture,
where each module was an independent program that could
be run stand alone in a separate process of an operating
system. Communication between modules is done through
publish-subscribe mechanism.

There is no central process, which encapsulates modules,
as it could reduce reliability of the system, if such a process
dies. All communication is done through a lightweight mes-
saging server, which supports connectivity through network
protocols. It allowed us to easily distribute modules over
several computers, and even gave opportunity to run different
modules on different operating systems.

This approach also makes development of the modules
simpler, because each module is an independent program and
can be run stand alone in an environment, where all inputs
and outputs can stubbed. For example we could substitute
actual data from the sensors by data from file for simulation.

In a running integrated system all blocks are put on watch-
dogs, so they are restarted if fail, or they can be controlled
remotely from the user interface or health monitoring system.
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Fig. 5. Overview of the software architecture

B. System Components

Our system has multiple processing layers, when data
flow from sensors through consecutive layers, until it reaches
steering and braking-acceleration actuators. These layers are:
sensor interface, perception layer, planning layer, and control
layer. Each layer consists of several modules as shown in Fig.
5.

Sensor interface layer consists of modules that receive
data directly from sensors, using sensor protocols, and then
publishes the data in a format used inside our system.
They run on frequency determined by corresponding sensors,
which are 75Hz for laser scanners and 100 Hz for GPS/IMU.

Perception layer has several independent parts that are:
localization for estimating vehicle state, laser mapping for
generating obstacle occupancy grid map from laser scanner
data, and vision mapping for detecting road markings. Data
to the path planner are sent at 10 Hz frequency.

Planning layer consists of path planning module that uses
2D obstacle map to generate traversable path, speed planning
layer that plans speed taking into account current vehicle
speed, speed limits imposed by competition requirements,
and shape of the generated path.

Control layer consists of a Trajectory Observer, which cal-
culates difference between planned path and current vehicle
position and sends it to the motion control module, which
is run in a separate real-time system. Unlike path planner,
which is non-deterministic, Trajectory Observer is run at 100
Hz frequency, monitors vehicle position and stops vehicle if
no data from path planner come, which can occur in case of

a process failure.
All modules also generate health monitoring messages,

which are listened by a health monitoring block.

IV. OBSTACLE DETECTION AND MAPPING

To make safely avoid obstacles, Pharos must be able to
create a precise terrain map with sufficient range of view for
undertaking appropriate actions. The map should contains
accurate position of the obstacles to maintain the movement
of the vehicle even in the narrow path, comparable with
the width of the vehicle. Detection range of the obstacles
is considered as well since that faster speed of the vehicle
results in the longer perceiving distance. To satisfy these
main criteria, medium range laser scanners were chosen.
It has 75Hz update rate with accuracy 1cm on the 30 m
distance. Laser scanner system of the Pharos consists of
three laser scanners, mounted on the roof, tilted downward
and two scanners, installed on the front bumper with 45
degree yaw angle with respect to the vehicle to provide wider
area of view. Different obstacle classification algorithms are
used for scanners installed on the roof and on the bumper.
Each laser scanner acquires distance information in its own
local coordinate frame. By using estimated position and
orientation of the vehicle, data from scanners are transformed
into points in global coordinate frame and represent 3D point
cloud. Each point in 3D point cloud can be described as
(Xi

m,Y
i
m,Z

i
m) wherem is the index of the individual scanner

and i is the index of each measurement in one scan.
Deterministic algorithm is used for the roof laser scanners

because it has shown more reliable performance compared
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to other algorithms that had been tested. The classification
method is based on the occupancy grid map [2]. The map
represents 2D map consists of cells, and each cell contains
position information and one of the possible conditions:
occupied or unknown. The size of the cells is decided
considering maximum resolution at the distance 30 m. To
classify a cell as obstacle, two nearby points in 3D point
cloud must be found and their vertical distance must satisfy
condition |Zi

k − Z j
l | > ε, where i and j are indices of two

closest points in 3D cloud point from two different laser
scanners andε is the threshold, assumed to being obstacle.
If no such points can be found or no value is acquired, this
cell is assigned as unknown. Unknown zone considered as
drivable. Fig. 6 shows the occupancy grid map, drawn in
our campus. Gray color means unknown area or drivable
and white color represents obstacles.

Fig. 6. An example of occupancy grid map

The advantage of this algorithm is that the measurements
from two different scanners are used to detect obstacles. This
excludes possibility to detect fake obstacles due to the error
in the orientation estimation of the vehicle. In addition, it is
possible to make six combinations when three scanners are
used, therefore reliability of the algorithm can be increased.
On other hand, algorithm can be possibly less reliable in case
of fault in laser scanner hardware. Bumper laser scanners use
different way for obstacle classification. Those are mounted
on some known height relate to the ground and scans in
horizontal plane. Cell is assigned to be an obstacle if points
with sameX andY location satisfies condition∑n

j=1 p j(Z j >

|h−δ |) ·w> 0.5, where j is the time index for the series of
height measurements acquired for same cell,w is weight of
the possibility that point is obstacle andδ is vertical distance
that determines size of the obstacle. If same point has been
classified as obstacle several times, likelihood of the obstacle
presence in this location increases and obstacle is detected.

In practice both algorithms have shown reliable perfor-
mance and allow our vehicle avoiding obstacles on the
distance around 30 m ahead with speed up to 60 km/h.

V. ROAD BOUNDARY ESTIMATION

One of the problems that can occur during autonomous
driving is reference path drifting, due to the shifting of
the base coordinates of the DGPS, which varies depend on
the various conditions. To avoid it, we develop algorithm,
which helps to determine the position of the vehicle with
respect to the road boundary and removes the effect of the
drifting. On the asphalt road, where static obstacles usually
aren’t encountered, vehicle has to keep traveling right side
of the road. Therefore our task simply was to define lateral
distance between car and one of the road sides. To distinguish
actual road from off-road, we use reflection properties of the
road. Flat asphalt surfaces have lower reflection value than
rough terrain. Based on this reflection, occupancy grid can
be built. The cell is assumed as non-drivable if reflection
value at that location higher than certain limit. Accumulated
average reflection value is used. The reference path assumed
to be parallel to the road side, but usually lateral offset
changes over the time and it involves the unstable behavior
of the vehicle when unfiltered offset is used to correct car
position. To find lateral distance, one-dimensional low-pass
Kalman filter is used. The state of the Kalman filter is
distance between reference path and the road boundary. The
Kalman filter searches for largest offset along discrete search
pattern orthogonal to the reference path. The Fig. 7 shows
an example of discrete search pattern. In that case the road
boundaries change slowly. Sudden increases in reflection, for
example when obstacles appear which normally have higher
reflection value, result in small affect in the boundary road
estimation. Output from Kalman filter defines offset which
is used by path planner, which necessary to prevent road
boundary crossing and removing influence of the DGPS drift.

Fig. 7. An example of road boundary estimation

VI . PATH AND SPEEDPLANNING

A. Mission

The main mission that car should accomplish is the
following of a pre-recorded reference path. Artificial and
natural obstacles can be present on a reference path, so
vehicle should avoid them, and also edges of a road can
be natural obstacle, because of GPS localization drifting.

The reference path is stored in a text file. Before being
given as an input to the path planner, the reference path
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is smoothed, and such parameters as tangential vector and
curvature of the path are calculated for each reference point.

B. Path Planner

For our implementation, we have chosen RRT [7] based
approach, as it can drive vehicle through a very narrow path
and can take kinematic constraints of a vehicle into account.
But computation speed is a challenge for the development of
real-time algorithms [4]. We wanted our vehicle to response
faster to the environment changes, because the range of car’s
perception was limited. And fast path planner response would
allow us to increase car’s speed.

To cope with those challenges we made some modifica-
tions to original RRT algorithm and also developed a new
method to increase computing time efficiency of the path
planner. It should be mentioned that our path planner is run
in a single thread and has re-planning time about 100 ms,
which is enough to drive vehicle at speeds up to 60 km/h,
given car’s perception range.

Original RRT algorithm is modified in several ways,
including biased sampling, which is made along lines per-
pendicular to the reference way points. The state consists
of three components, which are: x and y coordinates, and a
heading angle of a vehicle.

To plan kinematic behavior of a vehicle we assumed that
vehicle travels in short arcs. This let us use curvature of a
planned path to calculate lateral acceleration and determine
maximum speed, given limited lateral acceleration, which is
the safe speed. Then we use time component based on this
safe speed in our cost function, which measures distance
between states in RRT. The main optimization criteria are
fast and smooth motion. Fig. 8 shows an example of the
path planning inside of an artificially made narrow tunnel.
The area beyond the walls on Fig. 8(a) is valid for sampling
in original RRT algorithm, but that area is not reachable by
a car. Fig. 8(b) shows that the proposed planner allows us to
achieve computing time efficiency by not propagating path
to the points that are potentially not reachable.

Before planned path is sent as output it is run through a
Savitzky-Golay low-pass filter at first to be smoothed, but
mainly to calculate tangential vectors and curvatures of the
path at every point.

C. Speed Planner

The main task for a speed planner is to follow maximum
safe speed, while taking into account speed limit zones, that
are recorded together with reference path, and maximum
braking deceleration to avoid collisions if there is some
sudden change in a safe speed. As it was mentioned before,
safe speed is determined by a curvature of a planned path.
And, if there is a sudden change in a path curvature, speed
planner should react in advance.

D. Trajectory Observer

Trajectory Observer is a special block, running at a high
frequency which measures difference between current state
of a vehicle and planned path. Then it sends the data to

the control block. There were two reasons to introduce this
block. At first it is an interface between the whole system
run on a general purpose operating system, which is linux in
our case and a real time system. At second it improves safety
of a vehicle, as it is deterministic and does have delays or
failures like path planner.

Fig. 8. Comparison of sampling distribution (black dots) of non-optimized
algorithm (a), and optimized algorithm (b). Passing artificially made narrow
tunnel

VII. R EAL-TIME VEHICLE MOTION CONTROL

Once the errors to the reference trajectory of the vehicle
is given from the trajectory observer, the motion controller
produces appropriate steering, throttle and brake command
to achieve the given trajectory. This issue will be described
in two parts: steering control and speed control.

A. Steering Control

Lateral offset, angle difference and curvature of the ref-
erence path are given to the steering controller as inputs.
The steering controller gives steering commands to the
steering motor at a rate of 100 Hz. The basic steering
angle control law is very similar to the one in Stanley [8]
except look ahead consideration. Simple kinematic based PD
feedback controller is used for compensating Lateral offset,
which measures the lateral distance of the center of the
vehicle’s front wheels from the nearest point on the reference
trajectory, and angle difference, which is the orientation of
the nearest path segment, measured relative to the vehicle’s
own orientation. Basically, compensating angle difference
only allows our vehicle to track the reference trajectory at
some level, however without lateral offset consideration it
can not compensate steady state error. To copy with the
continuous change of the reference trajectory, curvature of
the trajectory at an adaptive look ahead point was used as a
feed forward control input. Each gains were scheduled to the
vehicle velocity, and has proven stable trajectory following
on terrain from pavement to off-road, and trajectories with
tight curvature.

Fig. 9 shows steering performance while Pharos was mak-
ing a corner of 40 m radius curved road. Steering controller
maintained within 30 cm lateral offset around 60 km/h.
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(a) Tracking performance of the steering controller
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Fig. 9. Steering performance of the vehicle on 40m radius curved road

B. Speed Control

Speed planner and cross walk detection module give
speed command to a low-level speed controller. The low-
level speed controller translates the speed commands from
each modules into actual throttle and brake commands. The
minimum of the two recommended speed is always used.

Once the desired speed is determined, low-level speed con-
troller control the brake level and throttle level exclusively.
It treats the break and throttle as two opposing single-acting
actuators that produce longitudinal force on the vehicle. The
controller computes weighted sum plus weighted integration
of the speed error. Based on the sign of the computed value,
either brake or throttle level is controlled. By considering
dead-zone, the controller is able to avoid the chattering
behavior. Fig. 10 shows the control performance of the
proposed speed controller. It tracks the desired speed very
well.
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Fig. 10. Control performance of the speed controller

VII I. D ISCUSSION

This paper provides an overview of the autonomous vehi-
cle Pharos, developed to participate in the 2010 Autonomous
Vehicle Competition in South Korea.

From a broad perspective of view, Pharos’s control soft-
ware mirrors common methodology in the area of au-
tonomous vehicle. However many of the individual modules
have developed to achieve the high speed unmanned driving.
Long range terrain perception and obstacle detection algo-
rithm, real-time trajectory planning and obstacle avoidance
algorithm, and high speed vehicle motion control method
are developed and integrated all together. All the developed
algorithms are extensively tested in the field to prove the
reliability.

Even though our vehicle could successfully finish the race,
there are many issues to improve our vehicle further. Only
static environment was considered in perception. Pharos is
unable to properly interact with moving objects. Perception
range was limited within 30 m, which limited the maximum
speed of our vehicle. In some case, to avoid an obstacle it
was necessary to move up to 6 m to lateral direction from
the reference path. If the perception range is limited, vehicle
must reduce the approaching speed to avoid an obstacle
which has large lateral offset from the reference path. We
expect our methodology can allow us to perceive longer
range than 30 m.
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Generating State Lattice Motion Primitives for
Differentially Constrained Motion Planning

Mihail Pivtoraiko and Alonzo Kelly

Abstract— We propose a method of generating motion prim-
itives for motion planning under differential constraints. These
primitives lend themselves particularly well to off-line pre-
computation. In this manner, they are attractive due to their
capacity to capture the mobility constraints of the robot and to
establish a state sampling policy that is conducive to efficient
search. The first objective allows encoding mobility constraints
into primitives, thereby enabling fast unconstrained search to
produce feasible solutions. The second objective enables high
quality (lattice) sampling of state space, further speeding up
exploration during search. A number of techniques, novel
in differentially constrained planning, are enabled with this
approach, including incremental search, efficient bi-directional
search and incremental sampling.

I. INTRODUCTION

Differentially constrained motion planning is an open and
challenging area of research in part due to the complexity
involved in representing the feasible motions of the system.
Since it is intractable to search the continuum of a system’s
reachability, approximation methods based on sampling must
be developed. To that end, a number of approaches to
sampling system control space have been developed over the
last several decades [1–7]. Related to that, there has been
significant interest recently in developing motion primitives,
sequences of control samples that are frequently designed a
priori, in other words pre-computed, and represent feasible
motions, i.e. those that satisfy the constraints of the system.
Motion planners can utilize these primitives to enact efficient
search in state space by ignoring system constraints, instead
focusing on the environment and other constraints – thereby
improving efficiency of the planning. The role of primitives
in planning and the importance of their quality have been
motivated both in deterministic [6, 8, 9] and randomized [10]
planning domains. Their importance was also noted in the
related area of reactive obstacle avoidance in the context of
mobile robot navigation [5, 11, 12]. A number of popular
approaches to kinematic and kinodynamic planning can
readily incorporate primitives in their design. The requisite
local planner in [13–15] can be implemented as a process
that chooses an appropriate element from a set of primitives
[10]. In deterministic approaches [1, 8, 9, 16–18], the vertex
expansion (set of edges emanating from a vertex) can be a
pre-determined set of primitives based on the state value that
the vertex represents.

This work was supported in part by the NASA Graduate Student
Researchers Program Fellowship.

The authors are with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, USA {mihail,
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Motion primitives have been designed in the past through
sampling control space in such a way as to result in good
sampling in state space in terms of discrepancy, dispersion
or path diversity [5, 6, 8, 11, 12, 19]. We refer to this line of
work as control-sampling primitives. In general, designing
such primitives is difficult due to the complexity of the
relationship between the robot’s control and state spaces
under kinematics and dynamics constraints. On the other
hand, a reverse design process has been proposed [20, 21].
First, an attractive sampling rule in state space, perhaps one
that is convenient and efficient for the planning problem
(e.g. commensurate with the robot’s world model, such as
an occupancy grid), is established. Then, we compute the
controls that steer the system between these samples using
a boundary value problem (BVP) solver. The approach can
be viewed as a way of extending the Lazy LRM [22] to
handle kinematics and dynamics constraints by leveraging
the related research in BVP. Such solvers are available for
a variety of systems, such as car-like [23], chained form
[19, 24], as well as in rough terrain [25] and dynamics
[26, 27] settings. A simple example of a set of car-like
primitives in a three-dimensional (2D position and heading)
state space is shown in Figure 1. A functional planner would
require such a set for each of the 8 discrete values of heading,
the multiples of π/4.

The benefits of this type of primitives are four-fold. First,
by providing the freedom to choose an arbitrary sampling
of state space for primitive endpoints, quality state sampling
policies (low discrepancy and dispersion) may be utilized,
leading to efficient exploration of state space during search.
As Figure 1 illustrates, the resulting primitives may feature
good path diversity as well. Second, under certain assump-
tions, such as flat and uniform terrain for the example above,
this freedom allows designing primitives to be position-
invariant. Experience with fielded applications demonstrated
that position-invariance assumptions are often satisfied in

Fig. 1. The state lattice motion primitives are regularly arranged in state
space. To design them, a convenient state sampling rule is chosen (e.g. a
low discrepancy lattice), then a BVP solver is used to connect the samples
via feasible motions.
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practice, as long as a trajectory following controller absorbs
external perturbations [28]; if necessary, trajectory post-
processing may also be performed [29]. Once computed,
position-invariant primitives can be utilized anywhere in
search space, thereby moving integration of the controls
to planner design phase. This is more efficient than affine
invariance [8], since primitive transformation during search is
limited to translation. Third, special reachability tree pruning
rules can be easily designed. In contrast to control-sampling
primitives, where primitive endpoints are dense in state
space, state lattice ones yield a structure, where all paths
leading to a region in state space also lead to a unique
state value, as illustrated in Figure 2. This structure can be
exploited to attain unprecedented search efficiency in the area
of kinodynamic planning, including incremental search (a
potential to speed up planning by orders of magnitude) [30],
incremental sampling [22] and bi-directional search [31].
Finally, the freedom in state sampling may allow fitting the
search space to the known structure of the environment. This
strength of the approach was utilized recently to fit search
spaces to such settings as parking lots [9], roads [32], mines
[17] and indoor environments [33].

One drawback that may be experienced with the proposed
primitives is the potentially significant computation that may
be required to design this type of primitives (perhaps running
the BVP solver repeatedly). However, this computation is
off-line and does not affect the runtime of the planner.
As another potential difficulty in certain applications, the
constraint that the motions are arranged in a particular
manner may conflict with other relevant objectives. For
example, minimizing the length of primitives may be helpful
for planning amidst dense obstacles, since shorter motions
are less likely to be obstructed [6, 34]. Meeting such an ob-
jective may be more challenging if a constraint on endpoint
arrangements is placed. Finally, even though the motions
computed using lattice primitives are feasible and may be
executed by the system verbatim, most physical systems
suffer from inaccuracy in control leading to trajectory follow-
ing error. Some applications may still require a trajectory-
following controller, motivated above to satisfy position-
invariance assumptions in rough terrain and similar scenarios.
Significant disturbances in the environment, such as slopes or
wind may be accounted for as additional state variables. The
recommendation for a trajectory following controller does
not offset the value of planning feasible motions, since non-
feasible ones are more difficult or impossible to follow.

This paper provides a more general exposition of lattice
primitives introduced in [20] and motivates them beyond
field robotics [28]. It also proposes new applications of these
primitives in incremental and randomized search (Section II),
as well as D* decomposition, a novel algorithm to apply
elements of D* search [30] to representation design, whereby
near-minimal sets of lattice primitives are generated automat-
ically (Section III). Experimental validation is discussed in
Section IV.

Fig. 2. State cell predecessors. Three control-sampling primitives,
edges {es,e′s,e

′′
s }, emanate from their corresponding predecessor vertices

{vp,v′p,v
′′
p} and arrive at successor vertices {vs,v′s,v

′′
s }.

II. MOTION PLANNING WITH LATTICE PRIMITIVES

In this section, we discuss the specifics of applying the
state lattice primitives in planning using two prominent
classes of search algorithms: deterministic (e.g. A*, D* [30]
and their variants) and randomized (e.g. PRM [14], EST
[13], RRT [15] and their variants). The planning problem
is specified with a seven-tuple (X ,X f ree,xinit ,xgoal ,U, f ,c).
The robot state space, X ⊂Rn, is an n-dimensional compact
differentiable manifold, equipped with a metric ρ . X f ree ⊆ X
is the set of states that satisfy global constraints (e.g. control
bounds, obstacle avoidance, etc.). The boundary conditions
for the planning problem are xinit ∈ X f ree and xgoal ∈ X f ree.
The set of robot controls U contains the inputs that the
system accepts. The function f is the system model (equation
of motion) and encodes kinematics and dynamics constraints:
ẋ = f (x,u), where x ∈ X ,u ∈U . The function c : U×X →R
specifies the cost of executing a control u ∈ U in X . The
solution to the planning problem is a control us : [t0, t f ]→U ,
where t0 is the starting time and t f is the final time, such
that c(us,xinit) is minimized. The corresponding path πs :
[t0, t f ]→ X f ree (obtained by integrating f (xinit ,us)) satisfies
πs(t0) = xinit and πs(t f ) = xgoal .

Finding the exact solution involves optimization over the
continuum of X and U , a difficult problem because of
obstacles and local optima in X . Instead, it is common to
establish pruning rules that reduce the system’s reachability
in X and U to discretized representations, often structured as
graphs. We assume a directed graph G =V ∪E, where V is
a set of vertices, representing samples in X , and E is a set
of edges, representing samples in U . Each edge is one of the
pre-computed, feasible primitives. The dimensionality of V
is chosen so that a concatenation of edges is also a feasible
motion. The least-cost path in the graph is the solution to
the planning problem.

A. Deterministic Search

The strengths of deterministic, exhaustive search include
attractive guarantees, such as optimality (under certain
conditions, such as heuristic admissibility) and resolution-
completeness. One drawback, however, is the so-called
“curse of dimensionality”, the exponential growth of com-
plexity with dimension of the search space. Nevertheless,
this search technique remains attractive for systems that can
be modeled well in a few dimensions, including car-like [9],
tracked [17], flying [8] and other systems of practical interest.
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Such approaches to deterministic nonholonomic planning
typically guarantee feasibility by elaborating the primitives
es ∈ E by choosing a control us ∈U and integrating f (vp,us)
for a certain ∆t. The successor vertex vs is established at
the endpoint of es. Since, in general, such edges and their
endpoints will be dense in X , such planners attempt to prune
the edges that are very similar, redundant or otherwise do
not contribute to efficient exploration of X . For example,
if the endpoint of a certain edge es is a vertex vs, then a
second edge e′s terminating in v′s is discouraged if distance
ρ(vs,v′s) is small. To this end, these approaches establish
a discretization of X into cells, as shown in Figure 2. If
a cell contains vs, then e′s is ignored if v′s would occupy
the same cell. The proposed lattice primitives may be used
identically, except that the need to detect similar edge end-
points is eliminated, since all motions are designed to arrive
at specific state values, e.g. vc in Figure 2. A similar pruning
rule is in effect in this setting, except that it is developed off-
line during search space design.

Well-informed search heuristics have the potential to in-
crease the efficiency of the search substantially. Developing
good heuristics for planning with differential constraints is a
challenging problem, and various approaches are being de-
veloped [17, 35]. By position invariance of lattice primitives,
applications are enabled to pre-compute the free-space costs
of motions, stored in a look-up table, leading to the perfect
heuristic in terms of mobility constraints [36].

1) Incremental Search: In many applications featuring
physical robots, it is beneficial to perform incremental
search: once a plan is computed, it is efficiently modified
(by reusing previous computation) should new information
about the environment invalidate it [30]. This enables the
planner to react quickly to frequent changes of the world
model, including those due to uncertainty and noise of the
perception, localization and other systems. This type of
search is a standard component in many fielded robotics
systems, since plan repair can be vastly more efficient than
replanning from scratch.

The reachability pruning schemes above, necessary for
control-sampling primitives, are not fully compatible with
incremental search. The operation of such search requires an
ability to enumerate the edges that lead to a particular state,
e.g. the edges {es,e′s,e

′′
s } leading to a cell containing vs in

Figure 2. A key component of incremental search algorithms
is the rhs-value, the one-step lookahead cost value, that is
defined as [30]:

rhs(vs) =

{
0 if vs = xinit

minvp∈Pred(vs) (g(vp)+ c(vp,vs)) otherwise
(1)

where g(vp) denotes the cost of the vertex vp, Pred(vs) is
the set of the predecessors of vs, e.g. {vp,v′p,v

′′
p} in Figure

2. One of the ways of reusing previous computation is the
capacity to pick a different predecessor of a state in the
event that the current predecessor edge increases its cost.
However, as depicted in Figure 2, the predecessor edges

cannot be swapped in general because the distance between
their endpoints ρ(vs,v′s) 6= 0 (by their density). This issue is
resolved with lattice primitives: this distance is zero, since
all successors converge to the identical vc. Note that this is
similar to traditional applications of incremental search in
grids.

Moreover, in grids, it is typically easy to determine the
set of cells (and, consequently, edges) that are affected
when a region in workspace changes cost. With arbitrary
motion primitives, this computation is more involved, since
the edges may span several cells. As discussed in [28], this
computation can be done a priori by virtue of the lattice
structure. Once we compute the swaths of all primitives, we
collect and store a list of edges that pass through the origin
cell. By position invariance, this list may be reused anywhere
in the search space.

2) Incremental Sampling: The advent of randomized
planning in recent years has spurred inquiry into effective
sampling methods that avoid the “curse of dimensionality”
while offering better solution quality and completeness guar-
antees than standard randomized approaches. Deterministic
incremental sampling techniques have been proposed as vi-
able alternatives [22]. One of them is the Halton points, a d-
dimensional generalization of the van der Corput sequences
of d bases, one for each coordinate [37]. A basic version of
such incremental sampling in square grids can be thought
of as increasing discretization resolution by a factor of 2di,
i ∈ N.

The planners that do not enforce structure in edge con-
nectivity would be required to regenerate the plan from
scratch every time the sampling resolution is incremented.
However, lattice primitives enable the reuse of previous
computation via the same mechanism that allows incremental
search. Due to regular structure, the connections between
primitives belonging to different resolution levels become
trivial, thereby allowing the results of planning at different
resolution to be reused. One application of this approach is
anytime planning, where the quality of the computed plan is
improved with more computation.

B. Randomized Search

Lattice primitives may be utilized in randomized search
in a manner that is similar to other types of primitives [10].
As suggested in Section I, the local planner component in
[13–15] and similar planners may be designed to choose an
element of a set of primitives that is a good fit to extend
the tree or the graph towards a random sample. However,
by virtue of the regular structure of the state samples,
lattice primitives would enable additional capacity to execute
parallelized kinodynamic planning, e.g. bi-directional [31],
as well as a series of independent searches [38]. Figure 3
illustrates that, unlike control-sampling primitives that would
likely require multiple BVP solutions to connect partial
planning results, the layout of lattice primitives makes this
connection automatic.
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Fig. 3. Bidirectional search with lattice primitives. The BVP problem of
connecting the leaves of the two trees is eliminated with lattice primitives
that feature regularity of endpoints in state space.

III. DESIGNING LATTICE PRIMITIVES

Having motivated the proposed type of primitives, we
suggest a principled approach to designing them given the
planning problem formulated in Section II. Assuming a
system model and a corresponding BVP solver, we discuss
this design in three stages: making a choice of the dimensions
to include in the state space representation, developing the
sampling rule in that state space, and designing a compatible,
near-minimal set of lattice primitives that is a good repre-
sentation of the system’s reachability. The first two stages
(Section III-A) determine the set of controls Ul ⊂U that can
possibly be represented with such primitives. Generally, this
set is infinite; Section III-B is dedicated to developing a near-
minimal primitive set Ea ⊂Ul that, when used as the vertex
expansion in search, will reconstruct a good approximation to
Ul . More precisely, a planner, based on optimal (exhaustive)
search and equipped with Ea, will be able to compute the
motions in Ul (preserve completeness) and will guarantee
bounds on suboptimality of these motions w.r.t. Ul . An
algorithm that computes Ea automatically is presented.

A. State Space Sampling

In general, the problem of selecting the minimal number of
dimensions that adequately represent the planning problem is
quite challenging. In the case of designing lattice primitives,
this issue is influenced by the choice of the BVP solver. In
case the solver does not fix the dimensionality, an iterative
dimensionality reduction process may be undertaken. Once a
set of lattice primitives is designed at the highest dimension-
ality, it may be repeated with one of the dimensions removed.
The process iterates until the loss of representation quality
exceeds application tolerances.

Once state dimensionality is fixed, we develop a state
sampling rule using two principles. First, it is beneficial for
the sampling rule to minimize discrepancy or dispersion [22].
Grids and similar regular lattice structures typically minimize
these measures, and they are frequently used in this setting.
Second, among similarly performing search spaces, those
with more coarse sampling are preferred. This is an Occam’s
razor statement: a simpler approach is likely to lead to a
solution that is easier to develop and test. Since controls are
induced by state sampling in this setting, it is beneficial to
choose state samples that reduce the cost of controls, e.g.
lead to a greater number of straight-line motions. The above
principles are purposefully broad: each application imposes

specific requirements on state sampling. For example, sam-
pling of position and orientation variables of robots is often
closely related to other design specifications, such as the
fidelity of perception information and control accuracy of
the vehicle.

B. Primitive Set Decomposition

Even though the representable set of controls Ul is infinite,
the reachability of many systems of practical interest can
be captured well by analyzing a finite, albeit very large,
subset Ûl . For example, for car-like robots, we could define
Ûl as the set of motions that are contained in a region
(centered around the robot) that is much larger in extent
than the robot’s minimum turning radius. This motion set
will include many maneuvers that the robot is capable of
executing, including multi-point turns in close quarters. Next
we develop an explicit and exact representation of Ûl as a
graph Ĝl = V̂l ∪ Êl , as justified in Section II.

By the given lattice state sampling rule, the set V̂l is
known. Theorem 1 develops a primitive set EO that generates
Êl , a superset of Ûl , when used as the Dijkstra’s vertex
expansion; free space is assumed below, unless otherwise
noted. More precisely, EO is a set of primitive sets defined
for all possible trajetory initial states in V̂l , up to the invariant
dimensions (e.g. position). For example, different values of
heading in Figure 1 would require different vertex expan-
sions; EO can be viewed as the union of the corresponding
primitive sets.

Theorem 1: Suppose origin vertices O ⊂ V̂l are chosen
(up to invariant dimensions). For every vertex vi ∈ V̂l , an
edge from each element of O to vi is computed using the
BVP solver and added to EO (initially empty). When used as
the Dijkstra’s vertex expansion, EO will search (equivalently,
generate) a Ĝl such that Êl ⊇ Ûl .

Proof: First, by construction, we conclude that EO
contains V̂l as endpoints of its primitives. Using EO as the
Dijkstra’s vertex expansion amounts to replicating its edges
at every vi ∈ V̂l . If, per connectivity of Ûl , a certain vi
connects to a set of vertices {v j}, then EO, when replicated
at vi, will connect it to at least the same vertices, since
{v j} ⊆ V̂l . Thus, the process of replicating EO at vi ∈ V̂l
generates at least the edges present in Ûl , and therefore the
induced set of edges Êl ⊇ Ûl .

Using EO as the vertex expansion represents an extreme
of quality-complexity trade-off. The cost of the capacity to
explore at least all of Ûl during search is a very large branch-
ing factor, |EO|. Next we discuss an approach to manage
this trade-off by computing an approximation primitive set
Ea ⊂ EO of much smaller cardinality, while guaranteeing
bounded suboptimality of computable motions w.r.t. Ûl in
terms of arbitrary notion of cost.

This process attempts to decompose each motion in Êl
into two or more other motions that are also in Êl . Decom-
position (Figure 4) is allowed only if the concatenation of
the components is within a user-specified threshold on cost
increase, defined as a cost ratio ct > 1 of the concatenated
motion vs. the original one:
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vs

O

Fig. 4. Motion decomposition. A motion (solid line) is approximated by
a concatenation of two shorter motions (dashed lines). The ratio of their
combined cost to the original cost is constrained not to exceed a user-
specified threshold.

g(vp)+ c(vp,vs)≤ ctg(vs) (2)

The component motions that can be reused to generate other
motions are collected into Ea. Ea is designed to be capable
of generating every one of the motions in Êl , within the
specified cost increase threshold.

A brute-force approach to decomposing Êl by enumerating
all possible motion decompositions would be exponential in∣∣Êl
∣∣ and therefore prohibitively expensive. We propose two

greedy algorithms that produce near-minimal Ea, given Êl
and ct .

1) Leave-one-out Decomposition: This algorithm decom-
poses the motions in Êl in decreasing order of their cost.
This implements a heuristic on managing the dependencies
of component motions, namely that the higher-cost motions
are likely to be decomposed by lower-cost motions. Each
motion es to be decomposed is selected and removed from
Êl . Next, optimal A* search is used to compute a motion
from O to the endpoint of es using vertex expansion Êl \{es}.
If the least cost motion represents a cost increase greater than
ct , the es is reinserted into Êl , since it cannot be decomposed
satisfactorily. Otherwise, it is left out of Êl , and the algorithm
repeats by selecting the next motion to decompose. Very
large values of ct will lead to a degeneracy where almost
all motions are decomposed. This condition can be detected
by observing the resulting Ea.

2) D* Decomposition: The previous algorithm has a
disadvantage in complexity: it requires running A* “from
scratch”

∣∣Êl
∣∣ times, in graphs with large (albeit reducing)

branching factors. Inspired by the capacity of incremental
search algorithms, e.g. D* Lite [30], to prevent repetitive
“from scratch” search by virtue of reusing computation, we
propose an alternative with much better runtime (Algorithm
1). It does a single Dijkstra’s elaboration of EO vertex
expansion to explore the extent of Ûl (line 2) and then
performs the decomposition analysis from Section III-B.1
while reusing the collected vertex predecessors, similar to
evaluating the rhs-value (1). In this manner, unlike the
traditional application in planning, the principles of the D*
algorithm are used here for search space design.

Once the predecessors are computed, only those that can
possibly yield ct -decompositions are retained (lines 3-7). If a
state has only a single predecessor, it implies by construction
that the one and only motion that connects it to the origin
is the original edge in Êl , and motion decomposition cannot
succeed. This edge is entered into Ea. Since the motions

Input: finite control set Êl , cost threshold ct
Output: approximating control set Ea
Ea = /0;1

Run Dijkstra’s search with Êl , starting at O;2

foreach es ∈ Êl do3

Predct (vs) = {vp, s.t. g(vp)+ c(vp,vs)≤ ctg(vs)};4

db(vs) = ct ;5

if |Predct (vs)|= 1 then6

Ea = Ea∪ es;7

Esort = sort(Êl);8

foreach es ∈ Esort do9

if |Predct (vs)|= 1 then10

Ea = Ea∪ es;11

continue;12

foreach vp ∈ sort(Predct (vs)) do13

if evp,vs ∈ Ea then14

adjust threshold(vp, vs);15

goto 9;16

v∗p = argmin
vp∈Predct (vs)

g(vp)+ c(vp,vs);
17

adjust threshold(v∗p, vs);18

Ea = Ea∪ ev∗p,vs ;19

Algorithm 1: D* Decomposition.

Input: vertices vp and vs
Output: db(vp), Predct (vp), and Esort modified
α = (g(vp)+ c(vp,vs))/g(vs);1

c′t =
db(vs)g(vs)−c(vp,vs)

αg(vs)−c(vp,vs)
;2

if c′t < db(vp) then3

db(vp) = c′t ;4

Predct (vp) = {v′p, s.t.5

g(v′p)+ c(v′p,vp)≤ db(vp)g(vp)};
if g(vp)≥ g(vs) then6

Esort = Esort ∪ ep;7

Algorithm 2: adjust threshold function.

that form decompositions may be further decomposed them-
selves, we keep track of per-vertex cost thresholds with a
database db; thresholds for all vertices are initially set to ct
on line 5.

Line 8 follows the cost-sorting heuristic discussed in
Section III-B.1. The next line selects edges in decreasing
order of cost of their destination endpoints. Lines 10-12
re-evaluate the number of admissible predecessors. Line 13
enumerates the options for decomposing the edge es leading
to vs. The algorithm attempts to select the decomposition
that is likely to minimize the final Ea. To this end, it
uses two other heuristics. The first one is sorting potential
decompositions in increasing order of cost (sort on line 13),
in an attempt to choose a decomposition with cumulative
cost that is as close as possible to the original motion. The
second heuristic is preferring a decomposition, in which one
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of the segments is already found in Ea (lines 14-16), in an
attempt to avoid adding new elements to Ea.

Once an edge is decomposed into two segments con-
necting at vertex vp, the segment leading to vp may in
turn be decomposed; however the cost threshold for its
decomposition may have to be different from ct . To see
this reasonsing, suppose path length is taken as cost (Figure
4). Using the cost sorting heuristic, the longer, original
motion (terminating in vs) will be decomposed before the
first segment of decomposition (terminating in vp). When
the latter is in turn selected for decomposition, we rewrite
(2) as:

c′tg(vp)+ c(vp,vs)≤ ctg(vs) (3)

Depending on the value of c(vp,vs), the required cost
increase threshold c′t for the recursive decomposition of vp
may be c′t < ct . Thus, as soon as a decomposition relationship
is established between the vertices, the necessary reduction
of cost threshold of the predecessor vertex is computed with
the function adjust threshold. If the algorithm gets to line
17, no decomposition opportunities have been selected by
the heuristics. This line selects a decomposition with the
least-cost predecessor; it is added to Ea on line 19.

Algorithm 2 presents the adjust threshold function. In line
2, it computes c′t , the new cost threshold for the predecessor
vertex vp. If this value is less than the previous one, it is
recorded on line 4, and the list of admissible predecessors
is reviewed on line 5. Lines 6-7 address the case where the
cost sorting heuristic is incorrect, and the predecessor vp has
equal or greater cost than vs. In this case, any changes done
to vp need to be propagated to its potential predecessors, so
the next iteration of Algorithm 1 must select vp’s edge, ep
(line 3).

IV. EXPERIMENTAL RESULTS

We present experimental validation results of kinodynamic
planning using two examples: a double integrator system
inspired by [16] and a car-like system with complex dynam-
ics. We also describe a multi-query BVP approach (Section
IV-B) that is helpful for implementing the second example,
presented in Section IV-C. Both examples were developed
by applying the design principles in Section III (Figure 6).
The primitives, developed with Algorithm 1, are then used to
perform incremental search by utilizing the unmodified D*
Lite algorithm [30] (Figure 7).

A. Double Integrator

The double integrator is a simple dynamics system,
where the acceleration is controlled directly. Formally, it
is governed by a second-order differential equation ẍ = u,
where x,u ∈ R. We look at a one-dimensional example
here, although more dimensions, similarly defined, can be
added easily due to their independence. The state transition
equation ẋ = f (x,u) can be written as (ẋ1, ẋ2) = (x2,u).
Thus, the terminal states of a trajectory, xinit and xgoal are
specified by the corresponding positions and velocities. A

q

q

(a)

q

q

(b)

(c)

Fig. 5. Double integrator system example.

discrete-time model with controls given by u = {−1,0,1}
has reachability tree trapped on a lattice (Figure 5a).

To illustrate the application of Algorithm 1 to this system,
consider an example in Figure 5b. The system starts at zero
position and zero velocity and attempts to reach a specified
position value with zero terminal velocity. The trajectory in
this example is the sequence of black arrows in part b) of the
figure. Part c) shows a few of the elements of the set Êl for
this example; the whole set is prohibitively large to illustrate.
Given this input, the algorithm does Dijkstra’s (line 2), which
generates the sets of admissible predecessors of the vertices.
This set for the goal state, Predct (xgoal) is shown in gray
in Figure 5b. Since the edges between all the states in this
set come from the original selection of edges allowed in this
problem setup, we observe that the solution Ea contains the
same set of edges we started with (Figure 5a). In the case of
this simple problem, the algorithm is able to find the optimal
solution (that is, resulting ct ratio is 1.0), however it is usually
not the case for more realistic problems, as suggested by the
following sections. The solution path (black line in part b)
of the figure) can be constructed with the replanning search
algorithms we consider here.

B. Multi-Query BVP Approach via Reachability Analysis

Since the BVP solver was not available for this system,
we utilized an alternative approach; it is described here
because it illuminates the experimental setup. First, a dense
reachability tree of the system was generated via significant
computation using high-resolution, regular sampling in two-
dimensional control space, consisting of angular wheel veloc-
ity and the steering angle. A reachability pruning technique
[1, 8, 18] was utilized via high-resolution, regular sampling
in seven-dimensional state space, consisting of 2D position,
heading, steering angle, longitudinal, lateral and angular
velocities of robot body. The generated reachability was
analyzed to engineer appropriate dimensionality of represen-
tation. It was observed that the lateral and angular velocity
dimensions could be dropped without a significant loss of
representation quality: the subset of reachability with these
variables considered to be zero (per pruning resolution) was
henceforth considered. This reasoning was motivated by
dimensionality reduction considerations in Section III-A.
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A sampling scheme of the remaining five dimensions was
developed via an application-minded approach. First, the
chosen state sampling resolution was lower than the reacha-
bility resolution by an integer multiple. Since minimum turn-
ing radius was small compared to vehicle size, the position
was sampled as a grid with cell size equal to approximately
half of min. turning radius. Heading was sampled in 16
non-uniform values: half were multiples of π/4, and the
other half were related to arctan(1/2) to maximize straight
paths toward nearby cells. Only extremal values of steering
angle (including 0) and longitudinal velocity (three and two,
respectively), were chosen in order to explore the envelope of
the system dynamics. This sampling rule generated another,
yet smaller, subset of system reachability, denoted Ul in
Section III-B. Since the state resolution was a multiple of the
reachability pruning resolution, the endpoints of the primi-
tives were close to their respective state cell centers. Those
that were not sufficiently close were improved via gradient
descent optimization by treating the durations of control
space samples, comprising the trajectory, as variables and
the distance of the end-point to cell center as the objective.
This was a significant computation, since gradient estimation
involved repeated execution of the physics simulation.

C. Car-like Robot with Dynamics

The system in this example is a wheeled robot with three
driven wheels, one of which steers, as shown in Figure
7b. The system is simulated using the Open Dynamics
EngineTMsoftware; the system model is not available in
closed form. The vehicle has significant mass, is capable
of achieving high speeds and is placed on a very slippery
flat surface to highlight the effects of dynamics, such as
significant drift, sliding sideways, etc.

A comparative study of lattice and high-diversity primi-
tives [5, 6], based on A* search, showed that the difference in
performance in terms of runtime, solution quality and com-
pleteness of both types of primitives is less than statistically
significant.

The benefit of the principled approach here is that the
length of primitives is selected automatically, while it is fixed
for path diversity primitives.

Next we describe experimental validation of incremental

Fig. 6. Automatic pruning of primitive sets. Several subsets of primitives,
generated for the given system, are shown; abundance of high curvature
is due to extreme dynamics. Top and bottom rows include primitives at
low and high velocity, resp. The columns show the primitives with final
headings 0◦, 90◦ and 180◦ (left to right). Gray motions have been pruned,
as concatenations of black motions can replicate them within specified cost
increase threshold.

search in this context, although other planning approaches
may benefit from such primitives, as discussed in Section II.
Figure 7 illustrates an example where a new obstacle inval-
idated a segment of the previously computed trajectory. D*
modified the plan efficiently by limiting vertex expansions
to a small neighborhood. The initial plan was computed in
1.42 seconds (on commodity hardware), and was repaired
in 0.35 seconds – a nearly 4-fold speedup with respect to
re-planning from scratch.

Fig. 7. Kinodynamic incremental planning. Robot is avoiding a number
of obstacles (black cells), while traveling at high speed on slippery surface.
A new obstacle (dark gray cells) is discovered and invalidates a segment
of the previous trajectory (dotted line). D* repairs the path by expanding
states (light gray) only in the affected region.

V. CONCLUSIONS AND FUTURE WORK

We discussed a type of primitives that is designed via
regular sampling in state spaces. These primitives are pre-
computed to meet two objectives: to capture the mobility
constraints of the robot as well as possible and to establish
a state sampling policy that is conducive to efficient search.
The first objective allows encoding mobility constraints into
primitives, thereby enabling fast unconstrained search to
produce feasible solutions. The second objective enables high
quality (lattice) sampling of state space, further speeding up
exploration during search. We further discuss several novel
results enabled by using such primitives for kinodynamic
planning, including incremental, bi-directional search and
incremental sampling. Future work includes identifying new
state and control sampling techniques that further improve
properties of planning in deterministic and randomized do-
mains.
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Detection of Moving and Stationary Objects at High Velocities using
Cost-Efficient Sensors, Curve-Fitting and Neural Networks

Florian Mirus1, Jürgen Pfadt1, Christian Connette1, Björn Ewert2, Dietmar Grüdl2, Alexander Verl1

Abstract— In recent years, driver-assistance systems have
emerged as one major possibility to increase comfort and –
even more important – safety in road traffic. Still, cost is one
major hindrance to the widespread use of safety systems such as
lane change or blind spot warning. To facilitate the widespread
adoption of such assistance systems, thus increasing safety for
all traffic participants, the use of cost-efficient components is
of crucial importance.
This paper investigates the usage of cost-efficient, widely used
ultrasonic sensors for blind spot warning at high velocities.
After discussing the requirements and setup of such a system
a model-based approach for the detection of moving and sta-
tionary objects is outlined. The sensor-signal is compared with
a precalculated curve data base and the correlation-coefficients
are feeded into a neural network. To revise its performance the
concept at hand is qualitatively and quantitatively evaluated in
real road traffic situations under different driving conditions.

I. INTRODUCTION

During the last decade, autonomous driving has made a
huge jump from the first DARPA challenge [1] over the last
Urban Challenge [2], [3], [4] to the latest experiments of
Google in the field of autonomous driving. Although legal
considerations and costs might be an insurmountable obstacle
for a long time, driver-assistance systems have emerged as
one major possibility to increase comfort and safety in road
traffic [5].

Besides mainly introspective systems such as ABS and
ESP recent developments [6] build more and more on
exteroreceptive sensors to detect and react on potentially
dangerous situations. To facilitate the widespread adoption of
such assistance systems the use of cost-efficient components
is of crucial importance. Ultrasonic sensors fulfill these re-
quirements on cost-efficiency. Consequently, they are widely
used in the automotive industry for periphery surveillance in
context of low velocities [7], [8], [9]. A prominent example is
the meanwhile ubiquitous parking assistant, giving feedback
on the distance to possible obstacles while the driver is
backing into a parking lot. However, the sensitivity of ultra-
sonic sensors to external disturbances such as gusts of wind
or rain and their restricted range [10], [11] was for a long
time prohibiting in context of high-speed applications, such
as the detection of cars in the blind spot of the driver. Another
hindrance is the comparably low amount of information

1Florian Mirus, Jürgen Pfadt, Christian Connette and Alexander Verl
are with the Fraunhofer Institute for Manufacturing Engineering and Au-
tomation IPA, Robot Systems, Nobelstraße 12, 70569 Stuttgart, Germany
www.ipa.fraunhofer.de

2Björn Ewert and Dietmar Grüdl are with Valeo Schalter und Sen-
soren GmbH, Laiernstraße 12, 74321 Bietigheim-Bissingen, Germany
www.valeo.com

Fig. 1. Approaching car in the host vehicle’s blind spot

contained in the signal. In contrast to more expensive radar,
lidar or camera systems [12], [13] that offer an acceptable
angular resolution, us-sensors often have a wide aperture.
That makes it difficult to distinguish the source or location
of an echo.
The work at hand provides an insight into the development of
a lane-change-assistent system using cost-efficient ultrasonic-
sensors for the detection of objects in the driver’s blind spot
zone at absolute velocities of up to 160 km/h. A fuzzy-
markov based approach using an inverse-geometric model
has been proposed in [14] achieving promising detection
rates. One hindrance is that this concept delivers no infor-
mation about the type and velocity of the object in the blind
spot zone. Another problem is the high number of underlying
parameters that need to be tuned individually.
To tackle these issues, the work at hand investigates a model-
based approach incorporating artifical neural networks. These
networks [15], [16] are applied to diverse tasks like image
analysis for traffic sign recognition in terms of driver-
assistance or car identification. The outlined approach com-
pares the ultrasonic signal with a precalculated curve data
base for different situations in the blind spot zone like
approaching cars, infrastructure or stationary objects. The
correlation-coefficients are feeded into an artificial neural
network and the trained network is used for the decision
process.
This paper is organized as follows. In Section II the system-
requirements and setup are discussed. Section III focuses on
the design of the algorithm incorporating curve-fitting and
neural networks. In Section IV the results are statistically
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Fig. 2. Outline of the host car setup with ultrasonic sensor cones and
orange blind spot zone; the grid is composed by 1 m to 1 m tiles

evaluated by comparing them to the requirements discussed
in Section II. A little prospect on possible improvements
concludes this paper.

II. PROBLEM FORMULATION

A. Preliminaries

The goal of a blind spot surveillance system is to assist
the driver when changing lanes and avoid possibly dangerous
situations. The blind spot zone ranges from 3 m behind the
car to the side mirrors and 3 m laterally. A warning signal
shall be emitted when a car occurs within this zone during a
lane change. To ensure applicability, some preconditions are
necessary. For an optimal performance, a maximal reaction
time of 300 ms is desired and the overall detection time
should not exceed 1500 ms. A low false-alarm-rate is also
required since too many missed or unnecessary warnings
corrupt the driver’s faith in the system’s reliability. The
operating range must be designed to detect blind spot alerts
to a speed difference between the host and traffic from 0 to
30 km/h.

B. System Setup

The host vehicle is equipped with 12 ultrasonic sensors
equally positioned at its front and its back side. To detect
overtaking vehicles, the approach at hand evaluates the
measurements of two sensors on each side of the host (dark
black cones in Figure 2), namely the front and rear outer
sensor. All other sensors are not used for blind spot detection.
The aperture of the two rear sensors is approximately 75◦,
while the aperture of the front sensors is set to 45◦. This
enables sharp measurements with the front sensor in order
to detect incoming traffic from the front or outgoing traffic
from the back. In case of traffic residing within the blind
spot zone, the driver is notified by illuminating a red light
in its side mirror.

y
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r3 r4 = r = ... = r5 n

rmrm+1

nhost
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d1

d2
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(a) Overtaking maneuver and pass of a traffic sign

(b) Corresponding sensor signals

Fig. 3. Correlation of driving situations and sensor signals

III. REALIZATION

A. Curve-Fitting

The incoming ultrasonic measurements provide the mini-
mal distance of the sensor to the object which reflected the
ultrasonic beam in meters. Analysis of simulations as well
as real road situations show that most overtaking maneuvers
can be modelled by a parallel passing of two objects with
constant orthogonal distance. This results ideally in a para-
bolic measurement signal.
Figure 3 illustrates the signal development for a car approa-
ching from behind and the host passing a traffic sign. At
timestamp t1 the target enters the rear left sensor’s range
with measured distance r1. The approach happens during
t2, t3 with sensor measurements r2,r3. Then the target vehicle
drives parallel to the host and the input signal fades to con-
stant measured distances r4, . . . ,rn. When the target leaves
the rear sensor’s range, the signal rebounds to its maximum.
Analogously, the measurements rm and rm+1 describe a traffic
sign passed by the host with an almost vertical line at
timestamp tm fading to an ascending parabolic function at
tm+1. Obviously, driving beside infrastructure like walls or
side rails can be modelled by horizontal signal lines.
The dependance of the functions on the orthogonal distance
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and the velocity is illustrated by the dotted lines in Figure
3(b). The orthogonal distance δ determines the maximal
signal amplitude in vertical direction.
The velocity affects the signal structure as follows. A higher
relative velocity νrel = νtar − νhost causes a higher instan-
taneous rate of change in the signal curve discribing the
minimal distance to the target vehicle which is denoted by
the dotted red line in Figure 3(b). Analogously, a lower host
speed νhost results in a slower rise of the distance to the
traffic sign denoted by the dotted green line in Figure 3(b).
The functions used for modelling overtaking maneuvers have
the form

fi(t) =
√

ai2t2 +ai1t +ai0 (1)

with coefficients ai j depending on the orthogonal distance δ

and the velocity νrel relative to the host speed to compare
the signal with. Let

δi ∈ {0.5,1,1.5, . . . ,4} in m, (2)
νi ∈ {1,3,5, . . . ,15} in m/s (3)

and rmax be the maximal range of the sensor, the coefficients
are calculated as follows: the sensor signal, i.e. the minimal
distance of the sensor to the object, is modelled by the
function fi(t), which shall be expressed in dependency on
δi and νi. As a start the pythagorean theorem is used to
express

fi(t)2 = δ
2
i + si(t)2 (4)

in dependency on the orthogonal distance δi, the distance
driven by the target vehicle

si(t) = smax−νit (5)

and the maximal parallel sensing distance

smax =
√

r2
max−δ 2

i . (6)

By application of the equations 5 and 6, equation 4 is
transformed to

fi(t)2 = ν
2
i t2−2νi

√
r2

max−δ 2
i t + r2

max, (7)

so the coefficients in equation 1 are

ai0 = r2
max, ai1 =−2νi

√
r2

max−δ 2
i , (8)

ai2 = ν
2
i . (9)

Analogously the parabolic signals caused by stationary
objects in the blind spot zone are modelled by functions
fi(t). In this case the host vehicle’s velocity νhost and the
relative speed νrel = νhost −0 coincide. The descending part
of the function can be neglected (see Figure 3). Infrastructure
like walls or side rails is modelled by horizontal signal
lines. Hence, the function data base contains 64 functions
depending on δi and the relative velocity νi for the detection
of approaching cars, 8 functions depending on δi and the
host speed νhost for the detection of small stationary objects
and horizontal lines simulating walls or side rails depending
on the sample mean of the measurements.
A moving window containing n sequenced measurements

of size n = 8 for short term and n = 32 for long term
analysis is considered. Let Wm = {x1, . . . ,xn} be the set
of the incoming data. For better results 2n function va-
lues Wfi = {yi1, . . . ,yi(2n)} are calculated and all subsets
{yi(1+k), . . . ,yi(n+k)} for k = 0,1, . . . ,n containing n se-
quenced elements of Wfi are compared wih Wm. For some
curves additional modifications like considering only the
relevant function values (i.e. ignoring too many subsequent
constant values) and shifting them to the center of the
window in order to improve the detection are made. The first
algorithmic step is the choice of an adequate fi satisfying

min
fi,k
{

n

∑
j=1

j 6= jmax

∣∣x j− yi( j+k)
∣∣}=: F(Wm, fi) (10)

with
jmax = max

j
{
∣∣x j− yi( j+k)

∣∣}. (11)

From the coefficients of the chosen function f the target
vehicle’s orthogonal distance to the host and relative speed
can be recalculated as follows

ν =
√

a2, δ =

√
r2

max−
a2

1
4a2

. (12)

Along with the characteristic values sample mean and cova-
riance in every sensor’s moving window Wm the calculated
distance δ and relative velocity ν form the input data of the
neural network.

B. Neural Networks

1) Design: Since the curve data base is calculated over
a lattice of orthogonal distance and relative velocity, it is
impossible to detect a unique fitting function in most cases.
As illustratd in Figure 4, there are several functions with
similar deviation values. An artificial neural network is able
to tackle this problem and refine the decision process.
In this paper a feedforward neural network, which means
that there are no cycles within, containing twenty neurons
within the hidden layer is used. The training was realized by
supervised learning using the recorded data from different
test drives as input values for the Levenberg-Marquardt-
Algorithm.
This input values are the sample mean and covariance of

all sensors in the current moving window Wm, the results
of the curve-fitting-process represented by a state variable
indicating whether an approaching car, a stationary object,
constant distance or none of those cases has been detected
and the sum of the detected states covering the last second of
measurements. Additionally, the deviation function F(Wm, f )
of the best fitting function f for every state and the host ve-
hicle’s velocity is entered. The approach at hand is illustrated
in Figure 5.
The neural network’s binary output value is 1 if a possibly
dangerous state has been detected, 0 otherwise. A warning
is emitted, if two of the last three output values are nonzero.
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Fig. 4. Deviation function over the distance-velocity-lattice

Fig. 5. Neural network for the detection of overtaking cars

2) Training: There are several ways to realize this neural
network approach. One possibility is to train different net-
works for each environment namely inner city, interurban
and motorway traffic. Another idea is to design some kind
of one-size-fits-all network, whose training set contains a mix
of test drives in different environments.
The work at hand illustrates both possibilities demonstrating
three neural networks Nauto,Ncity and Nmix. The training set
of Nauto contains three motorway files with 45 km driven
distances and 88 overtaking maneuvers, Ncity was trained
using two inner city files with 10 km driven distance and
46 overtaking maneuvers and the underlying training data
of Nmix is a combination of these motorway and inner city
test drives in a ratio of 3:2 with 55 km driven distance and
134 overtaking maneuvers. In this first attempt interurban
drives have been left out of the training files since the chosen
networks are expected to cover that cases at a satisfying level.

IV. RESULTS

A. Statistical Evaluation

To revise the functionality and perfomance of the proposed
procedure, extensive testing has been conducted. The host

(a) Detection rates without host speed limits

(b) Detection rates within 25 km/h to 50 km/h (moderate speed)

(c) Detection rates within high-speed-interval (over 70 km/h)

Fig. 6. Statistical evaluation of detection rates for different host speed
intervals

vehicle was equipped with one laser sensor on each side and
four color cameras mounted on top of the car to generate a
360◦ view of the environment. In order to ensure meaningful
results, differing types of target vehicles like cars, motorbikes
or trucks and different road environments like inner city,
interurban or motorway drives had to be considered. After
more than 2000 km of test drives, the data base contains over
3000 test cases for qualitative and quantitative evaluation.
The three networks Nauto,Ncity and Nmix have been applied
to a collection of test files containing approximately 356 km
driven on motorways and addionally about 20 km and 32 km
driven in city respectively interurban traffic.
According to the requirements stated in Section II-A the
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Fig. 7. False-alarm-rate for all networks and different host speed intervals

desired maxmial reaction time shall not exeed 300 ms. Hence
detection intevals of 0.3 s, 0.6 s, 1.5 sand the overall detecti-
on rate without any time limit are statistically evaluated. The
performance of the networks is compared in three settings
with different host speed intervals to illustrate their particular
strengths. Figure 6 illustrates the detection rates for the dif-
ferent speed-intervals. The first setting, illustrated in Figure
6(a), has no limitations concerning the host vehicle’s speed to
illustrate the overall performance of all networks. Figure 6(b)
shows the results in the second interval (moderate-speed-
interval) ranging from 25 km/h to 50 km/h to evaluate the
inner city efficiency. Finally the minimal host speed of the
third interval (high-speed-interval, see Figure 6(c)) is set to
70 km/h . Figure 7 shows the false-alarm-rate of all networks
relative to the total number of emitted warnings.

B. Discussion

The results demonstrated in Figure 6 and Figure 7 show
that the networks Nauto and Ncity achieve promising detection
rates for the particular driving situations they have been
trained for. As expected Ncity performs best in terms of
moderate velocities where a slightly elevated reaction time
is acceptable achieving an overall detection rate of 96.3%
and even 84% within 0.6 s. Analogously, Nauto provides
satisfying detection rates in terms of high velocities detecting
all vehicles and even 93.1% within 0.3 s. The one-size-fits-
all network Nmix provides low false-alarm-rates in the overall
and high-speed setting in exchange for a slightly elevated
reaction time but still achieving overall detection rates of at
least 96.3% in every setting.

C. Prospect

As a start the results of the neural network approach at
hand show promise. Since every network has its strengths
in particular situations, there are several possibilities for
future investigations. Although the one-size-fits-all network
provides a solid overall performance the training of diffe-
rent networks for several situations is prefered since the
specialized networks provide even better detection rates for
their particular strengths within less reaction time. Since it
is possible to detect the actual traffic situation via odometry
and curvature information, a deeper analysis of this approach

is intended.
Another aspect demanding further investigations is a neural
network trained for rain weather conditions including wet
roads and splash water. In this case, the ultrasonic sensor
signal contains a lot of noise, so it might be necessary to
consider alternative reference functions.
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 
Abstract— ESTRO(ETRI Smart Transport RObot) project 

aims at the development of autonomous vehicle to transport 

goods and people without the help of driver in the 

well-structured area such as campus. The autonomous vehicle, 

ESTRO has been designed and implemented by modifying 

electronic vehicle. In addition, the cost of sensors and the 

complexity of system are minimized on the purposed of a 

commercial autonomous driving system in urban traffic 

environment. This paper proposes the design of H/W and S/W 

architecture for the autonomous vehicle and describes the 

method of environmental perception and navigation. The 

implemented system has been tested in ETRI campus. 

I. INTRODUCTION 

Through the technologies of autonomous driving have 
developed, it is possible to drive safely and conveniently in 
complex environment with dynamic objects such as vehicles 
and pedestrians.  

Recently, autonomous vehicle has a lot of problems on the 
legal and technological issue for commercialization, so most of 
main technologies have been just applied for ADAS 
(Advanced Driver Assistance System) products until now. The 
Google driverless cars have officially licensed in Nevada, 
these vehicles are being tested around real traffic environment 
on the state [1]. The Stadtpilot project’ autonomous vehicle 
(Leonie) has shown to the ability of driving autonomously in 
real traffic environment of Braschchweig, Germany [2]. 
However, in the Republic of Korea, there is no legal 
framework which enables autonomous driving on public roads.  

Therefore, ESTRO project aims at autonomous driving 
with low-speed in the well-structured section such campus and 
area where the specialized traffic regulations are applied. 
ESTRO system has developed as a robotic vehicle for 
transporting supplies and carrying people to final destination 
without driver’s support. The ESTRO can perform the call 
service that user can call the autonomous vehicle to user’s 
requested place with mobile devices using wireless 
communication. 
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A. Relative Works 

Important events for the autonomous vehicle research are 
DARPA Grand Challenges and Urban Challenge. The Grand 
Challenges in 2004 and 2005 were held in the Mojave Desert, 
America. The objective of Grand Challenges was to create the 
first fully autonomous ground vehicle capable of completing a 
substantial off-road course within a limited time. There was no 
winner at the first Grand Challenge, but five vehicles 
successfully completed the race at the second Grand Challenge. 
The Urban Challenge in 2007 took place for further advanced 
vehicle requirements to include autonomous operation in the 
urban environment. In this competition, the six teams were 
successfully finished the given course. Mainly, the vehicles of 
Stanford University and Carnegie Mellon University are well 
operated in both the second Grand Challenge and the Urban 
Challenge. Both Junior of Stanford University and Boss of 
Carnegie Mellon University had Applanix POS-LV220/420, 
Velodyne HDL-64 3D LIDAR, IBEO Alasca XT LIDAR, 
RADAR and cameras. These vehicles mainly perceived 
surrounding information with LIDAR and continuously 
detected its position with GPS/INS equipment [3], [4]. This 
configuration for the autonomous vehicle has become common 
after these competitions. Furthermore, the autonomous vehicle 
has been researched much actively.    

Europe countries and America are actively researching and 
developing the autonomous vehicle. INRIA, France has been 
developing the robust electric autonomous vehicle, the 
Cybercar using 2D LRF-based SLAM and V2V/V2I 
communication [5]. In 2010, VisLab ran the VisLab 
Intercontinental Autonomous Challenge, a 15,000km test of 
autonomous vehicles from Parma, Italy to Shanghai, China [6]. 
Moreover, Autonomous Labs of Freie University, Germany 
has been developing the autonomous vehicles with 3D LIDAR 
and cameras [7]. This team also has succeeded the test 
autonomous driving in Berlin’s street and highways in 2011. 
MuCar-3 with the 3D LIDAR is being developed by university 
of the Bundeswehr Munich, Germany [8], [9]. This project 
mainly is focused on the LIDAR-based 3D object perception. 
Google have been developing fully autonomous vehicle, 
Google Driverless Car, equipped with cameras inside the car, a 
3D LIDAR on top of the vehicle, RADAR on the front of the 
vehicle and a position sensor attached to one of the rear wheels 
that helps locate the car's position on the map. This project is 
currently famous in autonomous vehicle research and is being 
led by Google engineer, Sebastian Thrun who is also director 
of the Stanford Artificial Intelligence Laboratory which 
developed both Stanley and Junior [10], [3].  
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B. Outline 

Section II describes the platform and the software 
architecture of the developed autonomous vehicle, ESTRO. In 
section III, the method for environmental perception will be 
described such as on-road marker detection with cameras, curb 
and obstacle detection with LRFs, and localization with GPS, 
odometer and on-road marker. Moreover, local map, the 
integration form of multiple sensory data will be also 
introduced. In section IV, the behavior planning, the path 
planning and its control will be introduced. Experimental 
scenarios such as normal road, intersection and parking lot will 
be demonstrated and discussed in section V. Finally, Section 
VI closes with conclusions.  

II. VEHICLE PLATFORM & SOFTWARE ARCHITECTURE 

A. Vehicle Platform 

ESTRO has been being developed since 2008 at ETRI. The 
objective of this autonomous vehicle is the unmanned shuttle 
system which can autonomously transfer human and load to 
everywhere in ETRI. It includes two LRFs; one is equipped on 
the top of the vehicle for extracting curb and the other is 
equipped at the front of the vehicle for detecting obstacles. 
Three CCD cameras are also used for detecting on-road 
markers such as lane, crosswalk, speed bump, and stop line. 
The GPS on the vehicle and the odometer at rear wheel were 
arranged for localization. Touch screen monitor and speakers 
are set for communication with users as shown in Fig. 1. 

 

Figure 1.  ESTRO hardware configuration 

B. Software Architecture 

The software architecture for the autonomous vehicle 
system has to be designed efficiently because the autonomous 
system is too complex and huge to operate in real-time and to 
understand its structure easily. ESTRO also has various types 
of devices and various components have to be separately 
executed at the same time. Therefore, the software architecture 
for ESTRO has also efficiently designed as shown in Fig. 2.a. 
The designed software architecture for ESTRO has four 
module; perception module, navigation module, GUI module, 
and system monitoring module.  

Perception module perceives environmental information 
such as on-road markers, curb, obstacles, and current position 
with cameras, LRFs, GPS, and odometer. It also builds the 
local map, which various types of sensor data were integrated 
into. Navigation module gets environmental information in the 
form of the local map from perception module and performs 
both behavior planning and path planning. In addition, it can 
also generate the directional commands to control the 
autonomous vehicle continuously for following the planned 
path. GUI module shows the current condition of the ESTRO 
periodically and transfers user commands to the vehicle 

operation system. The system monitoring module always 
monitors faults of the operating components and keeps them 
running safely. The designed software architecture for ESTRO 
is developed using OPRoS (Open Platform for Robotic Service) 
components [11]. According to the functions of component, 
components are distributed into each module and components 
in module consist of atomic components or composite 
components consisting of atomic components as Fig. 2.b. 

 

Figure 2.  Software architecture of ESTRO; it consists of perception module, 

navigation module, GUI module and system monitoring module  

III. ENVIRONMENTAL PERCEPTION 

For the environmental perception, ESTRO has various 
types of sensors such as three cameras, two LRFs, odometer, 
and GPS. The surrounding information on the road such as 
curb, obstacle, on-road markers and position are detected from 
each sensor component. All the acquired data from sensor 
components are integrated and displayed in the form of the 
local map, which is the occupancy grid map including 
surrounding information for navigation as shown in Fig. 3.  

 

Figure 3.  The generated local map 
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A. Road Recognition and Obstacle Detection  

Before collecting sensor data from cameras and LRFs 
equipped on ESTRO, intrinsic and extrinsic calibrations are 
performed with a planar checkerboard pattern [12]. After 
solving for constraints between the views of a planar 
checkerboard calibration pattern from cameras and LRFs, their 
coordinate systems are calibrated to the same vehicle 
coordinate system.  

For on-road markers detection, a raw colored image is 
converted into a gray scale image at first. Adaptive rectangular 
ROI (Region of Interest) extraction and noise filtering is also 
performed. Next, edge extraction through sobel approach and 
line fitting through Hough transformation method are achieved 
to get characteristics of the extracted lane. Speed bumper, 
crosswalk and stop line are also detected in the similar way to 
lane detection as shown in Fig. 4 [13]. 

 

Figure 4.  On-road markers extraction; (a) original image of normal road, (b) 

extraction for speed bumper, (c) original image of stop line, (d) extraction for 

stop line, (e) orginal image of lane, (f) extraction for lane 

The LRF on the top of the vehicle is used for detecting curb, 
which is the raised edge of a pavement or sidewalk. Firstly, 
curb shape is geometrically recognized and its position is also 
derived with LRF data. Secondly, the position of curb is 
estimated and is also tracked using particle filter approach 
[14]. 

Obstacles on road are detected by the LRF at the front of 
the vehicle, which is arranged in the parallel with ground as 
shown in Fig. 1. All the detected obstacles are segmented and 
its size and distance are also estimated [15] 

 

Figure 5.  Curb extraction; (a) image of continuous curb, (b) extraction for 

continuous curb, (c) image of discontinuous curbs, and (d) extraction for 

discontinuous curbs.  

B. Localization  

Firstly, the current position of ESTRO is continuously 
calculated using GPS and odometer. This derived position 
value contains some error. However, ESTRO is assumed to be 
operated at well-known roads such as ETRI campus where 
on-road marker information such as lane and stop line is 
already stored in the map. Therefore, both the lateral and the 
longitudinal distance error in the position calculated by GPS 
and odometer can be compensated using on-road marker with 
Extended Kalman Filter as shown in Fig. 6. Besides, for 
reducing the sensors error such as drift error and jumping 
position of GPS, Mahalanobis distance approach is also 
applied. As a result, the accuracy of the estimated position is 
better than normal EKF localization [16], [17]. 

 

Figure 6.  Comparison of two position estimates (EKF with and without 
adaptive parameter) near the stop line. (a) and (c) are the robot positions when 

the robot is detecting the stop lines. (b) and (d) are the bird-view images of 

mono-camera when the robot is detecting the stop line. 

C. Local Map Building  

For integrating multiple data from various sensors, local 
map is applied. On-road markers such as lane, speed bump, 
crosswalk, and stop line from cameras are described as typical 
representative values. For example, lane can be represented by 
its starting point and slope. In addition, crosswalk and speed 
bump are represented its distance and size. After transmitting 
these transformed data to the local map building component, 
they are integrated into the local map altogether. The detected 
curb and obstacle information are also described as relative 
position and size by LRF component and are also displayed in 
local map. 

The local map has to be continuously updated, because the 
vehicle is moving. To update the previous local map, both 
relative pose and position change of the vehicle has to be 
periodically measured such as rotation angle and translation 
value. The transformed previous local map is integrated to 
current local map which include only current sensory data as 
shown in Fig. 7. In other words, local map contains both 
previous and current surrounding information at the same time.  

In the local map, the position of the vehicle is fixed at 
bottom and middle of the map as shown in Fig. 3. The derived 
current position from localization component is matched with 
the fixed vehicle position in local map. In addition, the other 
positions of local map also are derived based on this position 
connectivity relatively.   
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Figure 7.  Local map transformation and update 

IV. PLANNING AND CONTROL 

A. Behavior Planning 

ESTRO can select proper behaviors corresponding to the 
changes of road environment for driving safely and efficiently. 
Most of real road environments are composed of normal road 
which has well-painted lane, intersection, speed bump, cross 
walk, etc. According to road environment, the vehicle should 
choose its proper driving mode. For example, the basic 
behavior mode, normal driving mode, is to keep the certain 
distance between the vehicle and well-painted lane on the road 
environment. 

 Moreover, the vehicle also performs obstacle avoidance 
by reducing the speed of the vehicle and avoiding obstacles 
when they suddenly appear in front of vehicle. Suitable states 
have to be selected according to input information and it also 
transits to another suitable state through proper surrounding 
information shown in the Fig. 8.a. The state transition diagram 
is designed by analyzing the pattern of driver’s behavior. 

 

Figure 8.  Behavioral planning; (a) Scenario of the driving control system 
depending on driving condition, driving mode and behaviors, and 

 (b) Diagram of driving condition transfer  

B.  Path Planning and Control 

To reach the desired destination by autonomous driving, it 
is essential to include both the global and the local path 
planning. Therefore, the ESTRO system is largely separated 
into two steps of path planning. First step is global path 
planning which generates routes to pass and to reach for final 
destination. The global path planer performs path planning 
with the topological map information includes in the road 
connection relation and physical distance among neighbor 
nodes. Furthermore, the optimal path is generated by 
minimizing cost function which means the total traveling 
distance based on Dijkstra algorithm. The results of it are 
information on list of the node included in road property and 
the relation among nodes, while it traveling from start point to 
final destination. Next step is local path planning which 
performs periodically according to change of environment, it is 
decided the way by the result of above introduced behavior 
planning where the vehicles drives on the normal road or free 
form road such as intersection and parking lot area. 

The implemented local path generator is based on three 
degree of Bezier curve [18]. The planned path could be smooth 
enough for ESTRO which is car-like model to track and to 
follow it. The important step for deciding the shape of Bezier 
curve is to pick up control points. By considering of processing 
time and complexity, the ESTRO system is based on three 
degree of Bezier curve as shown in Fig. 9.  

For the three degree of Bezier curve, the four points have to 
be decided as control points in the normal case. The first point 
means the current position of the vehicle and last point means 
the position of next node which is decide by global path 
planning. A lot of candidate paths are generated at the same 
time by changing the position of rest two points on the center 
line of the current road. To get an optimal path among a lot of 
generated paths, every path is evaluated with three criteria such 
as kinematics constraint, obstacle collision, degree of 
smoothness. Finally, the optimal path can be selected, which 
has low cost. 

 
Figure 9.  Beizir curve of degree 3 at t=0.5.  

In the case of free-from road such as intersection and 
parking lot, the path planning module generates Bezier curve 
from the start configuration,  𝑠 = (𝑥𝑠 ,  𝑠, 𝜃𝑠)  to the target 
configuration   𝑡 = (𝑥𝑡 ,  𝑡 , 𝜃𝑡) . The feasible paths can be 
generated by changing the second control point  1  and the 
third control point  2  as shown in Fig. 9. The first control 
point  𝑜 and the fourth point  3 are located at the start and the 
target node. For considering the various positions of the second 
control point, they are propagated the constant along the line 
with  𝜃𝑠 slope. The third control point is accomplished with the 
same procedure. Therefore, the different paths for a target state 
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can be generated. As a result, the optimal path can be 
determined among candidate paths by evaluating and 
comparing cost of paths.  To follow accurately the generated 
optimal path above, the pure pursuit method is applied. The 
pure pursuit method generates steering angle and velocity of 
vehicle [19]. The important factor of this method is a 
look-ahead distance. The look-ahead distance can be decided 
based on prior knowledge of the road on the map. With this 
method, the lateral tracking error of ESTRO in the test site is 
fewer than 50cm. 

V. EXPERIMENT AND RESULT 

To show the performance of the developed autonomous 
vehicle, ESTRO, the real driving test was performed on 7 km 
road environment of ETRI including many possible traffic 
situations and various types of roads such as well-structured 
road, intersection, parking lot, etc. as shown in Fig. 10. In this 
test site, ESTRO conducted various types of driving including 
lane keeping, speed control, obstacle avoiding, intersection 
driving, etc. as shown in Fig. 11. 

 

Figure 10.  The map of ETRI campus(more than 7 km real road environment) 

 

Figure 11.  (a) ESTRO stopped in front of stop line for compensation on the 
intersection, and (b) ESTRO stopped when the pedestrian crossed the road. 

A. Normal Road 

Most of roads in the test site are well-structured road which 
has both lanes and curbs on one side or on both sides as Fig. 12. 
However, most of them are surrounded by trees and buildings, 

so it is not easy to get high accuracy position with the equipped 
low-cost GPS (over RMS 2m on average). Furthermore, it is 
impossible to drive autonomously depending on only 
localization information. Thus, the vehicle has to compensate 
position derived by GPS and odometer with pre-saved road 
information in the digital map such as lane, stop line, etc.  

The mid-point of current road is calculated by recognized 
curb and lanes and pre-saved road information such as the road 
width, the number of lanes, etc. The vehicle can drive by 
following the calculated midpoint. Speed of the vehicle is 
about 10 ~ 20 km/h. Average tracking error which is difference 
with mid-point of road is less than 30cm. 

 

Figure 12.  Well-structured noraml road which has lanes and curbs  

B. Intersection 

Autonomous driving highly depends on the accuracy of 
location in the area of intersection without lanes as show in Fig. 
13. Therefore, before the vehicle enters the intersection, 
position was compensated by left and right side lane and stop 
line information to improve the position accuracy. For this 
compensation, the vehicle has to stop for a short period when 
the distance between the front of vehicle and stop line is within 
1m. The vehicle went forward if there are not obstacles such as 
pedestrians and vehicles are on the generated route. When 
obstacles appear, the vehicle stopped and started again to 
follow the planned path on intersection after obstacles 
disappeared.  

 

Figure 13.  The exmpale of intersection area in our test site 
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C. Parking Lot Area 

As shown in Fig. 14, the driving in parking lot is based on 

the extraction of traversable area with the local map. The 

vehicle generates the virtual path to the next node on the 

traversable area of local map and generate steering angle for 

tracking the generated path. In parking lot, obstacle detection 

is important because the parked vehicle can be suddenly 

moved and pedestrian can appear.  

 

Figure 14.  The exmpale of parking lot area in our test site 

VI. CONCLUSION 

This paper explained about ESTRO project which aims at 
the development of autonomous vehicle to transport goods and 
people without the help of driver in the well-structured area 
such as campus. At the first, H/W configuration and S/W 
architecture of ESTRO were introduced. The methods for road 
recognition, obstacle detection, localization, and local map 
building for environmental perception were described. In 
addition, the methods for behavior planning, path planning, 
and control also were explained for planning and control. For 
demonstration of the developed vehicle, real driving test in 
ETRI campus was performed at normal road, intersection and 
parking lot.  
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An effective 6DoF motion model for 3D-6DoF Monte Carlo Localization

A. L. Ballardini1 A. Fúrlan1 A. Galbiati1 M. Matteucci2 F. Sacchi1 D. G. Sorrenti1

Abstract— This paper deals with the probabilistic 6DoF
motion model of a wheeled road vehicle. It allows to correctly
model the error introduced by dead reckoning. Furthermore, to
stress the importance of an appropriate motion model, i.e., that
different models are not equally good, we show that another
model, which was previously developed, does not allow a correct
representation of the uncertainty, therefore misguiding 3D-
6DoF Monte Carlo Localization. We also present some field
experiments to demonstrate that our model allow a consistent
determination of the 6DoF vehicle pose.

I. INTRODUCTION

In urban settings, autonomous driving is more similar
to mobile robotics, because of the need to have a global
localization of the vehicle. Localization cannot be managed
using purely dead reckoning, e.g., wheel based odometry
[1] [2] [3]. Wheel sliding, e.g., due to contact with the ground
surface, weather conditions, unexpected values of the wheels
diameters, etc., require the use of external sensors and the
corresponding algorithms, to determine the vehicle position
[2]. It must be noticed that in urban environments the GPS
system, apparently an immediately available solution, has
an absolutely not adequate reliability, with respect to the
localization and navigation requirements, due to the frequent
lack of signal [4] [5].

While the state of the art provides different solutions for
the 2D - 3DoF localization problem, these solutions are
primarily designed for indoor robotic environments, where
the analysis of the motion in a 3D space can be simplified,
favoring an estimation of the robot pose limited to a 3DoF
pose in the 2D plane. 3D approaches known in the literature,
e.g., [4], [5], [6] base on adapting 2D movements to the 3D
space. These approaches adopt a 3DoF probabilistic motion
model in 2D that do not allow accurate modeling of the
uncertainty of a 6DoF movement in a 3D space.

One might argue that a motion model might be not be
necessary at all. This might be true when the localization
algorithm could be executed at such an high frequency that
the displacement involved between two subsequent activa-
tions of it, is so short that it is reasonable to model the pose
uncertainty as normal, and affecting independently the single
components of the pose. The larger the displacement between
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two activations, the larger the uncertainty of the odometric
estimate. Such large uncertainty requires, on one hand a very
large number of samples (in current state of the art sample-
based approaches), on the other - most important - side, it
is unrealistically shaped. Conversely, a proper motion model
allows to focus samples where it is realistically possible to
have the true pose.

In [5] the robot poses are modeled only in 2D, i.e., the
state includes only the components x, y, and ϑ (yaw). The
other 3 components, i.e., z, the roll angle ϕ, and the pitch
angle ψ, are calculated from the 2D pose estimate and from
the structure of the ground surface. Furthermore, the motion
does not consider the interactions between the errors acting
on the components, and introduce uncertainty on the single
components of the movement according to a velocity model.
It is to be observed that the independency between the single
components of the pose is also assumed in other works [6].

In [4] a representation called multi-level surface maps
is used. This technique is proposed as an extension of
the elevation maps used in [7] and introduced in [8]. It
allows modeling vertical structures within a grid map used
for localization with laser range finders. However, these
structures do not allow the representation of some typical
urban outdoor situations, like bridges or multilevel parkings.
Furthermore, in [4] the motion model, more sophisticated
then to the one in [5], bases on an evolution of the model
introduced in [9], and is similar to that illustrated in [2],
again a purely 2D-3DoF motion model.

The inadequacy of these simplifications in urban outdoor
situations has driven us to develop a different probabilistic
motion model, based on the modeling of a spatial generic
movement considering all the components of the 6DoF
state. The model, adaptable to different vehicle kinematics,
accommodates 6DoF movements even when sensing of some
component is missing, e.g., in case of a wheeled vehicle
without an IMU.

The next section introduces the proposed motion model,
then in section III we compare the our proposal and model
that we developed previously, in order to clarify the rele-
vance of an appropriate model. We then conclude presenting
experimental data.

II. PROPOSED MOTION MODEL

The model we propose bases on the 2D-3DoF formulation
presented in [2, Sect. 5.4]. In that work a displacement is
divided in a sequence of 3 steps: an onsite rotation δrot1,
a translation δtransl, and another onsite rotation δrot2, see
Figure 1. This decomposition allows the introduction of the
uncertainty on each step in the form of a normal error. These
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Fig. 1. 2D-3DoF motion model from [2, Sect. 5.4].

Fig. 2. Uncertainty area of the 3D Model.

errors are zero-mean and are parameterized by a standard
deviation that is dimensioned according to the disturbances
acting on each step. The composition of the uncertainties of
the steps gives a realistic uncertainty affecting the pose, after
the application of the motion.

Similarly, the 6DoF motion model has to include motion
in all the 6 DoFs of the vehicle and, at the same time, it
should divide the whole displacement in a sequence of steps,
again zero-mean, so that a parameterized uncertainty on each
of the steps turns, after their composition, into a realistic
uncertainty on the final pose.

An extended odometer (dead reckoning) can include esti-
mates of displacements in all 6 DoFs, by integrating odom-
etry, i.e., displacements estimated from the rotation of the
wheels, with IMU data. In particular, ∆x, ∆y, and ∆ϑ
(yaw) can be output by a wheel odometer, while the ∆ϕ
(roll), ∆ψ (pitch), and ∆z, can be output by an IMU. Our
proposal includes a set of additional parameters, used when
the odometric readings lack some components; e.g., in the
case of an IMU-less vehicle.

The state vector has six components, to represent the pose
of a rigid body in a 3D world xt = |x, y, z, ϕ, ψ, ϑ|′. Let us
group the first 3 components in positiont and the last 3 in
orientationt, so that xt = |positiont, orientationt|′.

Our proposed decomposition of a displacement bases on
six steps, which can be grouped in 2 sets: 3 steps to define the
new position positiont

1, and 3 steps to define orientationt.
On each step some uncertainty will be added. We now review
the first 3 steps, with reference to Figure 2, which give
positiont.

1) Rotation δyaw1
, which represents a rotation around the

Z axis, is necessary to align orientationt−1 toward

1With the notation (abc) we refer to the prediction of the state abc,
obtained by the application of the motion model.

positiont in the XY plane; this step corresponds to
2D-3DoF rotation δrot1.

2) Rotation δpitch1
, which represents a rotation around the

Y axis, and is also necessary to align orientationt−1
toward positiont, but in the XZ plane; this step
introduces the possibility of a change in the value of
the elevation.

3) Translation δtransl, which represents a translation
along the X axis; this translation moves the reference
system, after the rotation by δyaw1 and δpitch1 , to
positiont; this step corresponds to 2D-3DoF transla-
tion δtransl.

The three parameters δyaw1 , δpitch1 , and δtransl can be seen
as the coordinates, in a spherical coordinate system, of the
origin of the new pose xt. To compute the motion parameters
from the extended odometer readings, equations 1 to 3 can
be used.

δyaw1
= arctan(

∆y

∆x
) (1)

δpitch1
= arctan(

∆z√
∆x2 +∆y2

) (2)

δtransl =
√
∆x2 +∆y2 +∆z2 (3)

For the computation of orientationt, our proposal is to
compose orientation(t−1) with a generic rotation, which
is in turn the composition of 3 last rotation steps. The
parameters of these steps, i.e., δroll, δpitch2 , δyaw2 , are sensed
directly by the extended odometer.

δroll = ∆ϕ; δpitch2
= ∆ψ; δyaw2

= ∆ϑ (4)

In order for the motion model to generate realistic motion
uncertainty, it is necessary to add randomness to the compo-
nents of the state vector xt, by acting on the parameters of the
motion model. This randomness will be normally distributed,
with zero mean. The standard deviation of the components
can be calculated according to the following considerations,
which are specific to each single step.

1) Rotation δyaw1
, as in [2], is influenced by:

• how much the vehicle has rotated, as measured by
the wheel odometer;

• how much space the vehicle has traveled, as mea-
sured by the wheel odometer.

For both factors, the larger the factor, i.e., the change
of orientation and/or the traveled distance, the larger
the potential mismatch between the odometric measure
and real pose.

2) Rotation δpitch1
, is influenced by:

• how much the z coordinate has changed, i.e., by
∆z, as measured by the extended odometer, from
the IMU.

3) Translation δtransl is influenced by:
• how much space the vehicle has traveled, as mea-

sured by the extended odometer; the longer the
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Fig. 3. REAL and CALCULATED (basing on odometry) trajectories,
which impact on the uncertainty on δtransl, as due to a change in pitch
(∆ψ).

Fig. 4. REAL and CALCULATED (basing on odometry) trajectories,
which impact on the uncertainty on δtransl, as due to a change in roll
(∆ϕ).

traveled distance, the larger the potential mismatch
between the odometric measure and real pose;

• how much the vehicle has rotated about the Y
axis, i.e., the variations ∆ψ, as measured by
the extended odometer. A change of pitch while
performing a translation, represents a situation
where the motion is taking place over a non
planar surface. Therefore the traveled distance is
larger and the uncertainty is also larger. Figure 3
illustrates the translation resulting from integration
of odometry, and the real translation.

• how much the vehicle has rotated about the X
axis, i.e., the variation in roll ∆ϕ, as measured
by the extended odometer. Figure 4 illustrates the
translation resulting from integration of odometry,
and the real translation.

• how much the vehicle has rotated about the Z axis,
i.e., the variation ∆ϑ, as measured by the extended
odometer. Figure 5 illustrates the translation re-
sulting from integration of odometry, and the real
translation.

4) Rotation δroll is influenced by:
• how much the vehicle has rotated around its X

axis, i.e., variation ∆ϕ, as measured by the ex-
tended odometer, from the IMU.

5) Rotation δpitch2
is influenced by:

• how much the vehicle has rotated around the Y
axis, i.e., the variation ∆ψ, as measured by the
extended odometer, from the IMU.

6) Rotation δyaw2 is influenced by:
• how much the vehicle has rotated around the Z

axis, i.e., the variation ∆ϑ, as measured by the
extended odometer, from the wheel odometer.

Fig. 5. REAL and CALCULATED (basing on odometry) trajectories,
which impacts on the uncertainty on δtransl, as due to a change in yaw
(∆ϑ).

• how much space the vehicle has traveled: the
longer the traveled distance, the larger the potential
mismatch between the odometric measure and
reality, as measured by the wheel odometer.

Basing on the above mentioned influences, we can define the
standard deviations of the noise representing the uncertainty
affecting the 6 steps. Finally, in order to gain a better control
on the model behavior and similarly to what has been done
in [2], we introduce a weight α, for each step.

σyaw1
= α1 · δyaw1

+ α2 · δtransl (5)

σpitch1 = α3 ·∆z (6)

σtransl = α4 ·δtransl+α5 ·δyaw2
+α6 ·(δroll + δpitch2

) (7)

σroll = α7 · δroll (8)

σpitch2 = α8 · δpitch2 (9)

σyaw2
= α9 · δyaw2

+ α10 · δtransl (10)

The IMU uncertainty is assumed not correlated with the
wheel odometer uncertainty. Moreover, notice that σroll,
σpitch1 , and σpitch2 are influenced only by the IMU part
of the extended odometer, while σtransl is influenced both
by the wheel odometer and the IMU, see Figure 4, 3, and 5.

The sampling motion model will be the following:

δ̂yaw1 =δyaw1+

SAMPLE {α1 · δyaw1 + α2 · δtransl }︸ ︷︷ ︸
σyaw1

(11)

δ̂pitch1 = δpitch1 + SAMPLE {α3 ·∆z}︸ ︷︷ ︸
σpitch1

(12)

δ̂transl =δtransl+

SAMPLE

α4 · δtransl + α5 · δyaw2
+

α6 · (δroll + δpitch2
)︸ ︷︷ ︸

σtransl

 (13)

δ̂roll = δroll + SAMPLE (α7 · δroll)︸ ︷︷ ︸
σroll

(14)
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δ̂pitch2 = δpitch2 + SAMPLE (α8 · δpitch2)︸ ︷︷ ︸
σpitch2

(15)

δ̂yaw2 =δyaw2+

SAMPLE (α9 · δyaw2 + α10 · δtransl)︸ ︷︷ ︸
σyaw2

(16)

In case an extended odometer is not available, the expected
value will of course be null, and we can use an a priori
standard deviation value for each parameter, determined on
the basis of the expectations on the change that the terrain
can induce in each degree of freedom. Of course this option
implies a larger uncertainty, which in turn requires a larger
computational effort.

A. Model thresholds

The model exploits a few parameters, i.e., thresholds, in
order to handle some situations.

1) Minimum thresholds: As it can be noticed in the
relationships above, and similarly to what is done in [2,
Sect 5.4], the standard deviations of the uncertainties are
proportional to the amount of motion involved into each step.
Whenever the motion is too small, the standard deviation gets
underestimated. These thresholds are used in such cases; they
guarantee a minimum dispersion of the sampled data, which
is necessary to correctly represent the real uncertainty.

2) Maximum thresholds: These thresholds have been in-
troduced in order to handle situations where the extended
odometer does not give out values in 6DoF, i.e., when there
is no IMU on the vehicle. Maximum thresholds represent the
maximum a priori uncertainty; on the other hand we expect
a better, i.e., more concentrated estimate of robot movements
when using a sensor. The σmax value that is associated to
every model parameter needs to be suitably large so to ensure
that samples can be generated with enough dispersion about
the mean value, in order to represent all possible changes on
the given degree of freedom. We have chosen the values of
these thresholds considering a maximum vehicle speed of 25
Km/h and a 20Hz sampling frequency for the odometer.

III. COMPARISON WITH ANOTHER MOTION MODEL

In order to clarify the relevance of a careful design of
the motion model, we present here also a different model
that we developed before the one proposed in this paper. We
came first to this model because it was, in our eyes, closely
resembling the 2D-3DoF model presented in [2, Sect 5.4].
This model is based on dividing the displacement into 3
steps, see Figure 6.

1) Rotation δrot1 , a rotation about an axis N1. To
obtain N1, let us call D the vector (positiont −
position(t−1)). N1 is the vector product of the X axis
of frame pose(t−1) and D.

N1 = (positiont − position(t−1))×Xpose(t−1)
(17)

Fig. 6. The first (naive) motion model that was developed.

2) Translation δtransl, a translation along the X axis of
the frame obtained at the previous step, i.e., after the
rotation of poset−1 by δrot1 . At the end the origin will
reach positiont.

3) Rotation δrot2 , a rotation about an axis N2. N2 is the
vector product of the X axis of frame poset and D.

N2 = (positiont − position(t−1))×Xposet (18)

This rotation aligns the reference frame, which has
been obtained rotating pose(t−1) by δrot1 and then
translating by δtransl, to orientationt.

The uncertainty on the components of the motion model
is sampled from normal distributions, for each of the 3
parameters δrot1 , δtransl, and δrot2 . Such distributions have
zero-mean and standard deviations computed similarly to
what has been done for the motion model in [2, Sect 5.4].
It is just a similarity because of the need to introduce other
degrees of freedom to the uncertainty affecting positiont,
which would be just 2 (δrot1 , and δtransl), for a 3D point.
We therefore add noise to the vector N1 as, if we added noise
to the vector D, we would obtain the model proposed above.
Notice that the 2 parameters of N1 are not independent w.r.t.
the uncertainty of rotating about N1, so the DoF count for
positiont is correct.

This naive model, which turned out not being well per-
forming, demonstrates how heavily the decomposition of
the overall displacement, i.e., the motion model, affects the
capability to produce realistic poses. Actually, the poses
generated by this model are not realistically distributed about
the real pose, see Figure 7 and Figure 8, where it can be
observed that the uncertainty is rotated along the X axis;
the larger ∆z, the more rotated the particle cloud. Figure 9
shows the corresponding uncertainty for the motion model
proposed above.

IV. EXPERIMENTAL RESULTS

We first tested the software implementation of the pro-
posed motion model in simulation; because of space limits
we report hereafter only some real tests performed on our
research vehicle. Testing have been performed is the parking
area of the U5 building of Università di Milano - Bicocca,
see Figures 10, 12, 13.
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Fig. 7. Uncertainty area for the naive motion model.

Fig. 8. 3D view of the particle set for the naive motion model. Notice
that the larger the overall ∆yaw and ∆z, the larger the distortion of the
particle set.

Fig. 9. 3D view of the particle set for the proposed motion model. Notice
the absence of the distortion that is affecting the particle set presented in
Figure 8

The motion model have been plugged into a state of the art
Monte Carlo Localization software [10]. We performed the
tests in this order: first we verified that the localization was
correct when moving on an almost planar surface, i.e., the
model was performing at least as the state of the art 2D-3DoF
model. This has been done in the underground garage of the
building, where the floor appears to be reasonably planar.
We did obtain results comparable to the ones obtained with
the 2D-3DoF state of the art software [10]. Secondly, we
drove along a path including a ramp, from the garage to the
outdoor parking area, see Figure 11. Also in these last tests
the localization was successful, one experiment is depicted
in Figure 14. As we have no ground truth for the pose, we
checked that at the end of the path, at about pose n. 8 in
Figure 10, the estimated pose was matching the real one,
and we always obtained this result.

On the other hand, the naive motion model fails in high
curvature curves, as it might be expected from observing, in
Figure 7, the unrealistic uncertainty implied by this model;
an example of failure is presented in Figure 15.

Despite roll and pitch data were available, thanks to
an MTi X-sens IMU sensor, we verified that using only
the available LIDAR sensors, altogether with appropriate

Fig. 10. Voxel representation of the U5 building underground garage. Here
it is shown the part that includes the ramp leading to the outdoor parking:
pose n. 8 is at the gate of the underground garage, pose n. 4 is in the outdoor
parking nearby where the cart is depicted in Figure 13, poses n. 3 and 5
are on the ramp, poses n. 1, 2, 6, 7 are in the road leading to the ramp.

minimum and maximum thresholds, sufficed for a correct
localization. We also noticed that using together both types
of LIDAR models we had available (Sick LMS111 and
LDMRS4001) is extremely useful, since they measure on
different scanning planes.

CONCLUSIONS

We presented a motion model for 3D-6DoF localization,
and showed that a careful design is required to obtain a
realistic representation of the involved uncertainties. The
presented model demonstrated its suitability in different
experiments and is currently in use for our research in urban
autonomous driving.
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Fig. 11. Snapshots along the path shown in Figure 10: from the
underground garage, through the ramp, to the outdoor parking lot and back
into the garage; 1) top to 8) bottom. Notice in 1), 3), 7) and 8) the cart
reference frame, shown in the same map used by the software. Notice in 3)
the frame pitching up along the ramp.

Fig. 12. U5 building - Aerial view, the ramp from the underground garage
can be noticed on the left of the largest tree.

Fig. 13. The ramp from the underground garage to the outdoor park,
picture taken from the outdoor park.

Fig. 14. The green path represents the odometric path; the red path
represents the localization obtained using the proposed motion model.
Notice at 1) i.e., nearby pose n. 8, the correctness of the localization.

Fig. 15. A typical experiment with the naive motion model. In the path, just
before 2), the localization system failed (whether this error is tolerable is not
analyzed here), but in 2) it could luckily recover; in 1) it fails completely,
without recovery.
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Visual trajectory learning and following in unknown routes for
autonomous navigation

David A. Márquez-Gámez and Michel Devy

Abstract— This paper describes the design and testing of
a system to enable large scale cooperative navigation of
autonomous vehicles moving on a priori unknown routes.
A large-scale learning-mapping approach and a map-based
replay-localization method are combined to achieve cooperative
navigation. The learning approach is based on a proposed hier-
archical/hybrid BiCam SLAM and the replay approach exploits
a localization method based on an active search procedure.
The system can be generalized to be executed on multiple
vehicles moving as a convoy. A global 3D map maintains the
relationships between a series of local maps built by the first
vehicle of the convoy (leader), defining a path that all other
vehicles (followers) must stay on. Only single camera setups
are considered. The overall approach is evaluated with real
data acquired in an urban environment.

I. INTRODUCTION

Many robotic missions can be more efficiently and ro-
bustly achieved by a team of robots. This paper is focused
on the cooperation of several vehicles, moving alone or as
a convoy in open environments, on a priori unknown routes.
Although most existing mobile robotic applications involve
a single robot, a wide range of potential applications require
multiple robots to execute joint tasks, e.g. rescue robotics,
cooperative monitoring [1], [2], [3]

Localization is a key technology to address how the robots
localize themselves in the operating unknown environment
and how they know their local poses with respect to other
objects. A variety of approaches have been reported for
localization of multirobot formations. In [4], the localization
problem of a leader-follower system, is based on EKF to es-
timate each follower’s pose with respect to the leader. In [5],
it is proposed a behavior-based approach for maintaining
formation of a team of robots, with experiments performed
on outdoor unmanned ground vehicles equipped with vision,
GPS and hazard sensors. In [6], a scheme for distributed
outdoor localization for a team of robots is based on het-
erogeneous sensors such as local area differential global
positioning system (LADGPS) and cameras. Most of the
above approaches focused on the relative localization only,
and a few of them discussed how to globally localize robots.
Many methods simply assume that robots are equipped with
absolute positioning capabilities.

We present a complete system for large scale autonomous
operation of a team of robots in a “convoy” formation
navigating in a dangerous, unknown and changing outdoor
environment, typically on routes that could be mined. The
proposed system consists of 2 steps: (1) learn first a safe path
using an unmanned robot, and (2) follow this same path by

CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France.
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; Toulouse, France
{dmarquez, michel} at laas.fr

other vehicles of the fleet. The two steps involve different
functions: the initial path learning requires SLAM, i.e. to
simultaneously memorize successive robot positions on the
path and landmark positions that are used by the robot to
locate itself. When the leader’s path is traveled again by
other vehicles of the convoy, the map will be exploited to
localize and control a vehicle so that it is maintained on the
same path, with a tolerance that must be minimized.

It is assumed that all vehicles are only equipped by
cameras and odometers, used during the learning or replay
steps. The temporal gap between the two steps depends on
the mission. (1) the learning and replay functions could
be executed independently, i.e. the map and the path are
acquired at time A, and the safe trajectory is followed again
later at time B, with B−A equal to several hours or days.
In such a situation, the environment could change between
the two steps: recorded landmarks could be removed during
the interval, or the path itself could get blocked. Moreover
vehicles used at time A and B could be the same, or could be
different, involving the use of different cameras, so possibly
different radiometric information. (2), these functions could
be executed on different communicating vehicles navigating
in a convoy formation. A leader vehicle records the map and
the path, and sends these information to the second vehicle
of the convoy using a wireless network; the first follower
stays on the path taken by the leader, updating the map from
its own observations and sends the updated map and the
path to the next follower. Mutual localization (the follower
sees the leader) is possible, but not mandatory. The leader
and followers are equipped with different cameras, involving
possible radiometric differences on images.

The contribution of this paper concern large scale nav-
igation in a “convoy” formation in unstructured, three-
dimensional terrain. Only perception is considered. More-
over, the environment is assumed to be static (no dynamic
obstacle), but it can be modified between the learning and
replay steps.

In section II the system description is presented. In section
III the learning-mapping approach is described. In section IV
the replay-localization method is presented. Section V gives
experimental results for the proposed system using a real
robot. Finally in section VI, current results and conclusions
are discussed.

II. SYSTEM DESCRIPTION

The major processing blocks of our system are depicted
in Fig. 1. The system consists of 2 steps: (1) the learning-
mapping step, where a leader vehicle, builds several 3D-
points maps and learn a safe path, and (2) the replay-
localization step, where the information learned and trans-
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mitted by the leader, allows other vehicles of the fleet,
to follow the learned safe path. The two steps involve
different functions: the initial path learning is based on a
proposed hierarchical SLAM using only vision in a BiCam
configuration and the replay procedure exploits a localization
method based on an active search procedure to localize and
control a vehicle so that it is maintained on the same path
than during the learning step, with a tolerance that must
be minimized. In sections III and IV learning and replay
procedures are described.

Fig. 1. An overview of the major processing blocks in our proposed system

III. LEARNING STEP: LEARN A SAFE TRAJECTORY

A. Hierarchical BiCam SLAM
Our application involves motions of robots in large en-

vironments: so the mapping problem is formulated using
submaps in a similar manner to hierarchical SLAM [7].
Independent consecutive local maps are represented in their
own reference frame (lrf), and the upper global level (wrf) is
a graph whose nodes correspond to local maps, and whose
edges are annotated by relative transformations between lrf s.
The principle is represented on Fig. 2.

1) Local Level: The local level contains the locally re-
ferred stochastic maps of landmarks, built with the BiCam
SLAM algorithm [8]. Here a landmark is a 3D point,
observed as an interest point in images. Each point is linked
to an image patch which is defined as a small image region
(traditionally 11x11 pixels). The k-th local map is defined by
xL

k = [xk,gk]
> (superscript “L” stands for local map) where

xk is the current pose of the robot, and gk = [lk1 · · · lkm]> is the
set of m mapped landmarks, both with respect to the k-th lrf.
The camera and robot positions are linked by a known rigid
transformation, so that BiCam SLAM can keep a Gaussian
estimate xL

k ∼N{x̂L
k ,P

L
k} of this map, namely

x̂L
k =

[
x̂k
ĝk

]
, PL

k =

[
Pxkxk Pxkgk

(Pxkgk)
> Pgkgk

]
(1)

Maps are built sequentially. Once a threshold is reached,
either in number of landmarks or in robot uncertainty, the
current map xL

k is closed and a new map xL
k+1 is created,

starting in a new lrf with robot pose x̂k+1 and error covari-
ance equal to zero. Each landmark known in xL

k reobserved
when the new map xL

k+1 is created, keeps the same label.
2) Global Level: The global level is represented as an

adjacency graph in which local maps xL
k in wrf are nodes,

and the edges between them are annotated first by the relative
transformations between successive lrf s, noted wk+1

k , and

Fig. 2. The map: a set of submaps with their own lrf s, and with common
landmarks, known either by euclidean coordinates for close points (blue
dots) or by IDP vectors generally for points at infinity (red X). Graphical
model as a simplified Bayesian network: submaps constitute the local level
(xk,gk) and the global level on top links the local submaps (Wk). The map
building is sequential, corresponding to the robot exploring and not closing
loops, having always wk

k+1 = xk .

secondly, by the list of labels of common landmarks, between
xL

k and xL
k+1. Let us define the global level as the Gaussian

state w∼N{ŵ;Pw} of relative transformations between local
maps, namely:

ŵ =

 ŵ1
0

...
ŵk+1

k

 , Pw =

 Pw1
0

0 0
0 · 0
0 0 Pwk+1

k

 (2)

Let us note Wk the origin of the local map xL
k , expressed

in the wrf ; it can be computed by compounding relative
transformations from w1

0 to wk
k−1. The global level can

be viewed as a sparse pose-SLAM as in [9], where local
maps are like landmarks hanging from robot poses in wrf.
The global state in our case contains transformations wk+1

k ,
instead of absolute poses Wk (Fig. 2).

B. Off line refinement of a map to be used later
In the case of a path recorded in order to be run later, the

final model is memorized as a hierarchical map. For an edge
between nodes i and i+ 1, a common landmark l has two
representations l(i) in the lrf i, and l(i+1) in the lrf i+1. This
model must be refined or transformed before to be exploited
later for navigation.

1) Refinement of the global map: In our context, a path
follows a route between two different areas, so that a classical
Loop Closure is not possible; the global graph has no cycle.
Nevertheless, the global map can be refined, by non linear
optimization. Successive submaps can be made consistent,
computing optimal and unic representations for all common
landmarks and optimizing transforms between submaps.
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We formulate the refinement of the global map as a local
submap joining problem in a similar manner that in [10]. The
algorithm is generalized and formulated as a least squares
optimization problem and solved by Extended Information
Filter (EIF) together with smoothing and iterations.

A local map is defined by equation (1). Since the local
map provides a consistent estimate of the relative position
from robot poses to local features, this map can be treated
as an observation made from the robot start pose to all
the features in the local map and a virtual robot located
at the robot end pose. The observation value is the local
map state estimate and the observation noise is a zero-mean
Gaussian pdf with the covariance matrix equal to the local
map covariance matrix. Thus, the refinement of the global
map becomes a large-scale estimation problem with only
local maps information.

The Extended Information Filter (EIF) is used to solve the
estimation problem. A non zero off-diagonal element in the
information matrix (a link between the two related objects)
occurs only when the two objects are within the same local
map. Since the size of each local map is limited, any object
will only have links with its nearby objects no matter how
many (overlapping) local maps are fused (Fig. 2). This results
in an exactly sparse information matrix similar to Smoothing
and Mapping (SAM) [11].

IV. REPLAY STEP: REPLAYING THE LEARNT TRAJECTORY

Using the map database (a set of optimized local maps)
produced by the leader robot, the followers robots are able
to repeat a learned path any number of times. Two modes
are considered: (1) in the replay mode the trajectory is
globally stored in a database by the leader, and executed
again long time after by another vehicle; (2) in the convoy
mode, submaps are successively transmitted from the leader
to the followers. Each follower reexecutes the path attached
to each submap, and possibly refines the landmark positions,
overall if it can observe the previous vehicle of the convoy.
During the execution, every 3D-point landmark of the map
is sent to an active search procedure. If a landmark is not
matched a number of times, then, it is removed from the map
and replaced by another one initialized in the same image
region.

A. Localization from the learned map
Before a vehicle replays a learnt path, it must be able to

localize itself from an initial position close to that the leader
initially had. Indeed, it is assumed that the follower vehicle
starts from a position close to that of the leader but not
necessarily identical. Then the follower must compare the
map information with its own perception of the environment
and compute its localization.

1) Initial position: In our approach, the follower vehicle
has to localize itself and navigate thanks to a 3D map with
accuracy and in real time. The initialization step is a critical
point because the vehicle location is not accurately known
in the map. In order to focus on its real localization, it
perceives its environment through its camera. So, each image
patch associated to the 3D point supposed to be observed is
actively searched within an elliptical region. The latter is
based on the projection of the uncertainty of the considered

point taking into account the vehicle position. A cross-
correlation measure based on ZNCC (Zero Normalized Cross
Correlation) is used ([12]). While this search is performed,
the best score for each image patch is stored, which provides
a first hypothesis of matching. For each pair of 3D− 2D
points, an update step is calculated through a Kalman filter
(details are explained in next section). Once the update, the
difference between the estimated projection of each point of
the map in the image and the result of the cross-correlation
measure decreases. This allow the selection of a first 2D−3D
couple.

2) On-line Localization: At this stage a good estimate
of the starting point is available. Thanks to the fairly close
estimate of the operating point, we can rely on a Kalman
filter to estimate the position with proprioceptive sensors and
refine it by using observations collected during the motion.
This method is fully described and evaluated in [13].

2.1) Prediction step: The first step of the Kalman filter
consists in the prediction through proprioceptive data. It
establishes a model of evolution of the vehicle using a
tricycle model. The equation model is:



Xk+1 = Xk +dscos(θk +α/2) + εX
Yk+1 = Yk +dssin(θk +α/2) + εY
Zk+1 = Zk +dssin(φ) + εZ
θk+1 = θk + εα

φk+1 = θk + εβ

ψk+1 = θk + εγ

(3)

where θ , φ , ψ are respectively the yaw, pitch and roll
angles. The length ds is a function of a priori traveled
distance and parameters which are specific to the vehicle.
It is supplied by odometry measurements. The angle α

reflects the constant steering angle between times k and
k+ 1 and the parameters of the vehicle. The uncertainty in
this estimate is provided by the Jacobians of the evolution
model. The variance-covariance matrix is then expressed as,
Pk+1|k = FX Pk|kF>X +Qk+1, where Q is the covariance of
process noise and FX is the Jacobian of the evolution model,
with respect to X .

2.2) Data association step: The search for correspondence
is limited by the projection of the uncertainty associated
with the movement of the vehicle and the uncertainty of
the position of the 3D point. A RANSAC algorithm, which
is similar in part to that described in [14], can reject absurd
tracking results and find the correct matchings.

2.3) Estimation step: This prediction is then refined with
the 2D observations of the 3D-world points. The association
provides information on data matching between the points
(uobs,νobs)

T of the 2D image and 3D points P3D of the
map. Let us define the rigid transformation between the
world and the reference frame of the vehicle as: R =
Rz(θk)Ry(φk)Rx(ψk) and T = (Xk,Yk,Zk)

>. The 3D points
of the map are projected in the image with the linear
relationship, P2D = KR>(P3D−T ) = (ku,kν ,k)>, where K
is the intrinsic parameter matrix of the camera.

The estimated coordinates are divided by the scale factor,
uest = ku/k and νest = kν/k
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uest = hu(P3D) =
K1R>(P3D−T )
K3R>(P3D−T )

νest = hν(P3D) =
K2R>(P3D−T )
K3R>(P3D−T )

(4)

where Ki is the i-th line from the intrinsic parameter
matrix and hu, hν are the part of the observation function
related to the u and ν coordinates.

The covariance of the innovation of the Kalman filter
(HX ), is obtained using the Jacobians of the observation
model. The Jacobians are calculated, using equation (4).
The Kalman gain associated with a pair can be calculated
by, Gk+1 =Pk+1|kHX

>(HX Pk+1|kHX
>+Robs)

−1, where Robs
denotes the covariance of the noise associated with the
observation, in pixels.

Finally, the data is updated from observation by:

Xk+1|k+1 = Xk+1|k +Gk+1

((
uobs
νobs

)
−
(

uest
νest

))
(5)

Pk+1|k+1 = Pk+1|k−Gk+1HX Pk+1|k (6)

This step is for each pair of 3D−2D points. Localization
accuracy depends on the number of points, the accuracy of
the initial positioning and of the learnt map.

B. Path tracker: trajectory following
Path tracker module have been developed in a similar

manner to Tiji [15], to integrate the replay step algorithm
into our proposed system. Fig. 3, shows the path tracker
processing block.

Fig. 3. An overview of the path tracker processing block in our proposed
system

Path tracker is an algorithm that computes a feasible
trajectory between a start and a goal state. The method
proposed, which relies upon a parametric trajectory repre-
sentation, is variational in nature. The trajectory parameters
are incrementally updated in order to optimize a cost function
involving the distance between the end of the trajectory
computed and the desired goal. Should the goal state be
unreachable (eg. if the final time is ill-chosen), path tracker
returns a trajectory that ends as close as possible to the
desired goal.

1) Trajectory planning: This module provides the algo-
rithm to plan and apply geometric transformation over a
discrete trajectory. This module does not include any global
motion planning approach as the current experiments have
been focused on repeating a learnt trajectory.

2) Trajectory following: This module encapsulates the
navigation algorithm. Taking as input the robot localization
provided by the replay-localization and the discrete repre-
sentation of the reference path provided by the learning
step, this module provides a reactive method trying to
follow a reference trajectory while providing at each time
step a parametric continuous control trajectory (continuous
sequence of input commands) until a given time horizon.

3) Control trajectory: Given the continuous control tra-
jectory provided by the previous step, the Control trajectory
module is aimed at checking if the control is still valid
and admissible for the robotic system (respects its motion
constraints) and computing a command to provide as input
of the actuators.

V. EXPERIMENTAL RESULTS

A. Learning and Replay

For this experiment, we have tested our system in the
parking lot of the LAAS-CNRS (see Fig. 4) using a ground
robot (Segway platform) equipped with two independent
stereo-vision benches. The first one used in the Learning
step is made of two Marlin 1280 x 960 cameras. The
second one used in the Replay step is made of two Flea2
1280 x 960 cameras (see Fig. 5). So the experiment was
undertaken with the same robot but with different cameras
between the learning (with Marlin cameras) and replay (with
Flea2 cameras) steps, exploited in a BiCam configuration.
Moreover the experiment was undertaken with path learning
and replay, done on different time, thus, the environment has
changed between the two steps.

The robot follows the trajectory shown in Fig. 4. The
main issues of this experiment are, first, learn a safe path,
computing the learning-mapping approach and second, re-
play the path autonomously using the replay-localization and
the path tracker method. During the first step, the learning-
mapping procedure was used to map 3D-points landmarks
and build the submaps. New local maps are created when
80 landmarks are in the map. In each submap, the poses
and their uncertainties are expressed in the associated lrf.
All submaps were merged in a final global map, expressed
in wrf using the refinement of the global map procedure
(see Fig. 6). As a second step to test the replay-localization
approach, the replay-robot must replay the path learned
during the learning-mapping procedure. We can note that
the initial position of the robot in the replay step is not
exactly the same that the initial position in the learning
step. The 3D global map and the global path are loaded
on the robot. In this point, the replay-robot, has a good
knowledge of the 3D map of the environment, thus, the robot
starts with a huge uncertainty and applies the algorithm of
replay-localization. The results obtained in this experiment1,
confirm the system performance in the learning-mapping
procedure as well as the accuracy of the replay-localization
along the path (Fig. 7). We can see that the replay step works
in spite of bad matchings on landmarks occluded or lost, due
to the environments changes (Fig. 8).

1A representative video of the experimental results can be seen at
http://homepages.laas.fr/dmarquez/maplaas
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Fig. 4. View of the learned and replayed trajectory in the experiment. The
robot follows the trajectory described by the sequence 0-1-2-3-4-5.

Fig. 5. The Segway platform used in the experiment. Two independent
stereo-vision benches. The first one made of two Marlin cameras (red
cameras) with a baseline of 0.40 m. The second one made of two Flea2
cameras (black cameras) with a baseline of 0.30 m.

Fig. 6. Learning and Replay experiment: 2D and 3D plots of the global
map obtained by joining 67 local submaps using our hierarchical/hybrid
BiCam SLAM approach with refinement of the global map procedure; red:
covariance ellipses of the features; black: the estimated robot trajectory.

Fig. 7. Learning and Replay experiment: robot trajectory estimate; black:
the robot trajectory learned path; red: the robot trajectory replayed path;
blue: the true robot trajectory (GPS).

B. The Convoy task
A second experiment using MORSE2 was undertaken.

MORSE is a domain independent simulator, where virtual
2http://morse.openrobots.org

Fig. 8. Learning and Replay experiment: images acquired on the same
area. (left) learning-mapping step; magenta: IDP landmarks; dark red: IDP
landmarks not observed in the frame; cyan: euclidean landmarks; dark blue:
euclidean landmarks not observed in the frame. (right) replay-localization
step; magenta: initial projections of 3D points from the learned 3D map;
cyan: projected and matched points using for localization.

robots can interact with a 3D environment, using sensors and
actuators that behave in the same way as their counterparts in
the real world. The main issues of this experiment is to make
a “Convoy” with two robots (leader and follower) where
the leader applies the learning-mapping approach to build
successive submaps, and to transmit online each submap
once it is built, defining a path that the follower must
stay on. The follower, waits for the first submap to start
and applies the replay-localization approach to follow the
trajectory, processing the information received (online) from
the leader. Thus the leader-robot start to explore the area and
build the first local map, this first submap is the origin of the
world. New local maps are created when 80 landmarks are
in the map, but before starting a new local map, the submap
and the local trajectory are expressed in wrf and transmitted
to the follower-robot. Immediately after, the follower-robot
pose is the new relative transformation in the global graph.
As results, 20 submaps were generated and sent from the
leader to the follower. The follower was able to process each
submap and apply the replay-localization approach to track
and follow (online) the path defined by the leader (see Fig. 9).
The results obtained in this experiment, confirm the system
performance in the convoy task (see Fig. 10)

VI. CONCLUSIONS

We have designed and tested a navigation system in order
to implement convoy navigation by robots that must navigate
in dangerous unknown routes. Only perception results have
been exhibited, a general method for trajectory control has
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Fig. 9. Convoy experiment: (left) global view of the experiment scenario;
(right-top) leader view, learning-mapping step; magenta: IDP landmarks;
cyan: euclidean landmarks. (right-down) follower view, replay-localization
step; magenta: initial projections of 3D points from the learned 3D map;
cyan: projected and matched points using for localization.

been used to maintain the follower on the learnt trajectory. A
mixed strategy combining path tracking with visual servoing
will be studied in the future.

It has been shown [16] that visual SLAM methods based
on non linear optimization (Incremental Sparse Bundle Ad-
justment, or SBA) converge better than EKF-SLAM or more
generally, methods based on filtering. Here why do we use an
EKF-SLAM method? First in this application, loop closure is
not considered: the method must both build the map and the
trajectory, but the evaluation criterion will be based on the
capability for a robot to replay a learned trajectory, whatever
the drift with respect to the exact localization in a global
frame. Non linear optimization is only used off line in order
to refine the map and the learned trajectory. Then for the

Fig. 10. Convoy experiment: Robot trajectory estimate; blue: the robot
trajectory learned path; red: the robot trajectory replayed path.

convoy configuration, off line refinement is forbidden. Thus,
in our system, EKF-SLAM has been selected has the best
way to generate submap’s that could be communicated from
the leader robot to the followers ones.
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Abstract— Urban scene analysis is very useful for many in-
telligent transportation systems (ITS), such as advanced driver
assistance, lane departure control and traffic flow analysis. All
these systems are prone to any kind of noise, which ultimately
harms system performance. Considering shadow as a noise
problem, this may represent a critical line between the success
or fail of an ITS framework. Therefore, shadow detection
usually provides benefits for further stages of machine vision
applications on ITS, although its practical use usually depends
on the computational load of the detection system. To cope
with those issues, a novel shadow detection method, applied
to urban scenes, is proposed in this paper. This method is
based on a measure of the energy defined by the summation
of the eigenvalues of image patches. The final decision of an
image region to contain a shadow is made according to a
new metric for unsupervised classification called here as gray
alignment. The characteristics of the proposed method include
no supervision, very low computational cost and mathematical
background unification, which turns the method very effective.
Our proposed approach was evaluated on two public datasets.

I. INTRODUCTION

While we need light to see the world, shadows come to
our eyes as an inevitable effect. When light casts shadow
over objects in a scene, shadow projections (umbra and
penumbra) on an image plane can bring either useful or
useless information. In the field of intelligent transportation
systems (ITS), as the aim is to develop advanced machine vi-
sion applications, such as video surveillance, advanced driver
assistance or traffic flow analysis, shadow detection usually
provides benefits for further stages of ITS frameworks. Just
to cite an example, object detection systems (ODS) rely on
features and classifiers in order to say where an object is
located in an image [1]; in this case, shadows can harm ODS
work, leading them to take shadows of objects as objects of
interest.

Recognizing image shadows still remains an open and
extremely challenging problem. In ITS field, we can cite
that Prati et al. [2] have classified existing approaches to
detect shadows in images as statistical and deterministic,
according to the nature of the classification algorithms. After
[2], algorithms which rely solely on statistical methods can
still be categorized as parametric [3] or non-parametric [7],
while the deterministic ones are based on model [8] or
non-model [9]. Although in [2], the goal was to compare

This work was supported by Fundação de Amparo à Pesquisa do Estado
da Bahia (FAPESB), Brazil, under the grant 6858/2011.

shadow detection methods based on moving techniques (i.e.,
applied on videos, and taking the temporal information in
favor), the proposed taxonomy fully spans all the categories
of classification methods used so far, whether on video or
still images. There are two points worth noting here: we are
particularly interested on still natural scene images, exploring
spatial information rather than temporal one; and, although
our method was conceived by means of a non-supervision
framework, (and, then, it would be classified as a non-model
based, deterministic approach), it cannot be seen as a learning
driven method. Conversely, the proposed method described
here can be described as a unified mathematical-grounded
method to recognize shadows, in a very fast way. Particularly
in traffic flow analysis, interests go to moving cast shadows,
since it can aid in a more accurate vehicle detection; this is
the case of Hsieh et al. [4], who tackle the problem of vehicle
occlusions, detecting and removing moving cast shadows.
For a survey of moving shadow algorithms, refer to [5].

For generic shadow detection systems, recent methods
pervasively use learning to classify shadow and non-shadow
image pixels, trying to tackle the problem as a composition
of many different features and classifiers. For example, Zhu
et al. [10] proposes a conditional random field (CRF) based
system to detect cast shadow in natural scenes; there, CRF
is integrated to boosted decision tree classifiers, and its
parameters are learnt by a Markov random field (MRF);
all classifiers run over a set of feature types, with the
goal of capturing all possible shadow information in grey
level images. Guo et al. [11] presents a shadow detection
method based on statistics of pair-wise regions; the proposed
method relies on computing illumination components from
color (using LAB and RGB color spaces) and texture in
each region, and comparing similar and different illumination
pairs; the inference over the image regions are accomplished
by means of a graph-cut based optimization. Lalonde et al.
[12] describes a method which explores the local cues of
the image shadow; local features are used to reason over
boundaries and edges, and to create a set of shadow cues
to be classified by a CRF and a decision tree. All of these
works use color images, but Zhu et al. and our work.

Differently from all, our work does use neither special
features, nor any learning method to decide between shadow
and non-shadow. Instead, our energy-based proposed method
represents a unified view which detects shadows at a glance,
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Fig. 1: Eigenvalue-based energy function. (a) Original image. (b) Heat map of the original image. (c) Heat map of the entropy
of the original image. (d) Heat map of the summation of the eigenvalues of image patches. Note that the heat map of the
eigenvalues (d) highlights shadow region in the same way that the heat map of the entropy (c) does, which demonstrates
the characteristics selected by the eigenvalue-based energy function.

just using algebraic operations over image eigenvalues. For
that, we compute the summation of the eigenvalues on image
patches, making decisions if a pixel is shadow or non-
shadow based on the similarity of its color channels. After
[6], pixels owing to cast shadow regions have its RGB
components inside a symmetry axis corresponding to the
background; such analysis leads to a geometric interpretation
to the problem and represents a weak classifier. As in [6],
we have adopted a geometric analysis, which searches for
similarities in the color channels in regions of low energy in
the scene. We call this task as gray alignment. Following this
approach, we have achieved a state-of-the-art performance
over a subset of [11]’s dataset with urban natural scenes,
and over a subset of [5]’s dataset (Highway I).

The motivation to use eigenvalues is twofold: i) darker
objects usually have high entropy than lighter objects, how-
ever shadowed objects (which is dark for our view) present
low entropy, which distinguishes them as a shadow; ii) on
the other hand, entropy filters are computationally heavy,
and, by computing the eigenvalues, we can save time in a
robust shadow detection. In conclusion, with an eigenvalue-
based energy function, one has lighting intensity and gradient
analyses all at once in a unified method to spatially detect
shadow. Figure 1 illustrates these ideas; in Figs 1b-1d,
the lighter objects represents shadows, while hotter objects
represents the rest of the image. Shadow regions is best
selected in Fig. 1d.

II. EIGENVALUE-BASED ENERGY FUNCTION

A. Definition of the proposed energy function

Let M be the normalized gray-level image from the RGB
image I . We can state that shadow areas of M present low
light intensity, small spatial gradients and low entropy, that is,
they present low magnitudes with small spatial fluctuations
if compared to lit image regions. Our goal is to find a
function which measures the energy distribution over the
image according to the characteristics above. Using that
function, we will be able to segment shadow regions of M by
means of the eigenvalues of the image subregions (patches).
For that, we will use the Gerschgorin’s circles theorem [13]
below.

Theorem 1: The eigenvalues of Q ∈ Cn×n are contained
in the union of the n Gerschgorin’s circles defined by
|z − qii| ≤ ri, where

ri =

n∑
j=1
j ̸=i

Q(i, j)

for i = 1, 2, ..., n.
After Gerschgorin[13], if a matrix presents small magni-

tude elements and small fluctuations in these magnitudes, so
its eigenvalues also present small magnitudes if compared
to a same size matrix which contradicts those preconditions.
Thus, if we find relatively small subregions in M , we are
able to classify such small regions as shadow or non-shadow,
without the need of a spatial analysis of texture, color or
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Fig. 2: Color intensity over the white line in the original image (a). Note the approximation among R, G, B intensities in
the shadow areas in contrast to lighter image regions (c)

gradients. This is possible since we are measuring, all-at-
once, the light intensity and spatial variation of that small
image region. Next, we present how we define our energy-
based function based on the aforementioned ideas.

Let us define S as a matrix whose elements will be
calculated as

Sij = f(λ1(A
TA), λ2(A

TA), ..., λn(A
TA)) , (1)

where A, of order n, is a square submatrix of M , whose
central element is located on the coordinates (i, j), and f is
a function of the eigenvalues λk, k = 1, ..., n, of ATA (the
product ATA was used to avoid complex eigenvalues that
could turn complex the computation of f ). It is noteworthy
that n is odd (further, this constraint will be relaxed).

If we define f as a multiplication operator among the
eigenvalues of ATA, then we have Sij = det(ATA). In
this case, if any eigenvalue of ATA is nil, Sij is also nil.
Furthermore, Sij will have a nil value if rows or columns are
equals in ATA. In practice, shadows regions can imply nil
eigenvalues, but it does not suffice to say that nil eigenvalues
imply shadow areas. This is a common situation in very
light image regions, and hence f cannot be considered as
a multiplication operator.

Even knowing that the eigenvalues of ATA are all real, it
is impossible to guarantee that all values are not nil, and
thus Sij cannot simply be a division relation among the
eigenvalues of ATA. A simple and coherent choice for f is a
summation, since Sij will be nil if and only if all eigenvalues
of ATA is nil. Because of all elements of A is non-negative,
the result of the summation will never be negative. According
to that, we can redefine S as

Sij =
n∑

k=1

λk(A
TA) . (2)

Note that this new S can have a high computational cost
to be computed, since all operations are pixel-wise over M .
This high cost becomes inevitable for high values of n. To

solve this problem, let us define An×n = (v1 v2 . . . vn)
where vk = (a1k a2k . . . ank)

T ∈ Rn and k = 1, 2, . . . , n.
Then, we have

ATA =


vT1 v1 vT1 v2 . . . vT1 vn
vT2 v1 vT2 v2 . . . vT2 vn

...
...

. . .
...

vTn v1 vTn v2 . . . vTn vn

 . (3)

From (3), we can write S as

Sij = Trace
(
ATA

)
=

n∑
k=1

vTk vk

=
n∑

k=1

∥vk∥22 . (4)

Following this approach, let A be a subregion of M ,
centered in a pixel located in (x, y) and Q = ATA (with
that, we guarantee that all eigenvalues of Q are real). In order
to increase the precision of our detector, we have associated
the summation of the eigenvalues of Q to a temporary matrix
E, defined as

Exy =

n∑
k=1

λk(Q)

=

n∑
k=1

λk(A
TA) (5)

B. Gray alignment-based unsupervised classifier

Figure 2 illustrates the phenomenon of shadow occurrence
on a surface. Note that each RGB channel over a pixel
becomes closer to the mean of RGB intensities, that is, there
is an alignment between the color vector (C⃗) and mean color
(p⃗) defined as
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Fig. 3: Determining the best threshold in function of the filter
order (point A, threshold = 0.39 and matrix order of 5).

Fig. 4: Geometric interpretation of gray alignment. Any point
out of the cylinder of radius equal to T⃗ is automatically
deemed as non-shadow.

C⃗ = Rr̂ +Gĝ +Bb̂ (6)
p⃗ = µ(r̂ + ĝ + b̂) , (7)

where

µ =
R+G+B

3
. (8)

This is equivalent to a saturation reduction of the color in
badly lit regions. Figure 4 depicts the geometric interpreta-
tion of the gray alignment principle, indicating a cylinder
around the line R = G = B, where out of that, no
combination of colors indicates that a pixel belongs to a
shadow area. Still according to Figure 4, we have that I(x, y)
belongs to a shadow area if, and only if, the associated color
to I(x, y) is contained inside the cylinder of radius equal to
|T⃗ |. Algebraically, it is given by

c⃗shadow =⇒ |V⃗ | = |C⃗ − p⃗| < |T⃗ | (9)

In order to minimize the computational load of Eq. (9),
we rewrote it as

(a)

Fig. 5: ROC curves on a subset of [10]’s dataset. There is no
significant impact on the detection performance by varying
the filter order. In FAR = 7%, HR = 89%.

(a)

Fig. 6: ROC curves on a subset of [5]’s dataset (Highway I).
The operating point corresponds to 80.91% of hit rate (HR)
and 25.97% of false alarm rate (FAR).

|R ·G ·B − µ3| < |T⃗ | , (10)

where the operation in the equation is pixel-wise.
For a pixel to be considered within a shadow area, it

needs to attend the required conditions of the gray alignment
classifier, and must have its energy level bellow a certain
value, according to the eigenvalue-based energy function.
Based on our experimental analyses, the best threshold for
the eigenvalue-based function was found to be 0.39 and |T⃗ |
was 0.005.

III. RESULT ANALYSIS

Our method requires just two parameters: the order n of
the sub-matrices and the threshold to binarize the image as
shadow or non-shadow. To determine the best threshold to
our classifier, the surface in Figure 3 was built by varying
the filter order (equivalent to the size of the image patch to
calculate the eigenvalues) and the threshold, in the interval
[0, 1], of the classifier defined in 10. This is found in point
A in the figure.

To evaluate the performance of the proposed system, two
datasets were used: a subset of [10]’s dataset with 39 images
of urban scenes, and a subset of [5]’s dataset with 80 images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 7: Detection examples. (a-i) near perfect detections: First line (a-c), original images; second line (d-f), detection
results; third line (g-i), ground truth. (j-r) bad detections: First line (j-l), original images; second line (m-o), detection
results; third line (p-r), ground truth.
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Shadow detection Shadow Non-shadow
Shadow (GT) 0.7498 0.0838
Non-shadow(GT) 0.2502 0.9162

TABLE I: Confusion matrix of the detector with approxi-
mately 75% of shadow detection and 92% of non-shadow
detection.

Figure 5 shows the ROC curve of our shadow detector
over [10]’s dataset. It is noteworthy that even varying the
eigenvalue matrix order (filter order), there was no significant
improvement in the detection performance. It indicates that
a lower matrix order can be more suitable in terms of
computation speed, since it reduces significantly the number
of operations to compute the summation of the eigenvalues.
Table I summarizes the confusion matrix with approximately
75% of shadow detection and 92% of non-shadow detection
over the [10]’s dataset.

Figure 6 shows the ROC curve of the proposed method
over a subset of [5]’s dataset (Highway I). The annotation
was remade since we did not find the original one. In view
of that, only the cast shadows (or those ones completely
projected on the ground) were considered. One important
fact which came with that choice was the method to make
mistakes over the shadows detected over the vehicles (see
Fig. 8). Even though, it was achieved approximately 81% of
hit rate.

In Figure 7, there are some examples of the resulting
images after the detection over [10]’s dataset: Figures 7 (d)-
(f) show some near perfect results, while Figures 7 (m)-(o)
show bad results. The bad results can be explained by the
detection of some penumbras in some sparse regions of the
image which were not annotated. In Figure 8, some resulting
images after performing the method over the subset of [5]’s
dataset are depicted. Annotation of the images of Highway
I’s dataset was performed considering only the cast shadow,
and it is noteworthy that shadows on the cars (form shadows)
represent detection mistakes (in practice, it is something
should also be removed as shadow).

IV. CONCLUSION

This paper has presented a novel method for image shadow
detection, based on eigenvalue-based energy function and
gray-level alignment classification. The motivation of the use
of eigenvalues over a matrix of the kind ATA, where A is an
image patch, is grounded on the fact that: i) darker objects
usually have high entropy than lighter objects, although
shadowed objects (which is dark in the image) presents low
entropy, which distinguishes them as a shadow; ii) entropy
filters are computationally heavy, and, by computing the
eigenvalues, we can save time in a robust shadow detection;
an eigenvalue-based energy function presents then a clear
distinction between lighting intensity and gradient informa-
tion all at a time, providing a unified method to spatially
detect shadow. Our proposed method have demonstrated to
own very low computational cost, to be unsupervised, and
to perform very efficiently over a subset of a public dataset.

(a) (b)

(c) (d)

Fig. 8: Results on [5]’s dataset (Highway I). First line (a-b),
shows detection results, while second line (c-d) shows the
annotations.

Future work goes toward the integration of the method in a
temporal framework.

REFERENCES

[1] Oliveira, L.; Nunes, U.; Peixoto, P., On exploration of classifier
ensemble synergism in pedestrian detection. IEEE Transactions on
Intelligent Transportation Systems, pp. 16–27, 2010.

[2] Prati, A.; Mikic, I.; Cucchiara, R.; Trivedi, M. M., Comparative
evaluation of moving shadow detection algorithms. In: IEEE CVPR
workshop on Empirical Evaluation Methods in Computer Vision, 2001.

[3] Mikic, I.; Cosman, P. C.; Kogut, G. T.; Trivedi, M. M., Moving shadow
and object detection in traffic scenes. In: International Conference on
Pattern Recognition, vol 1, pp. 321-324, 2000.

[4] Jun-Wei, H.; Shih-Hao, Y.; Yung-Sheng, C.; Wen-Fong, H., Automatic
traffic surveillance system for vehicle tracking and classification, In:
IEEE Transactions on Intelligent Transportation Systems, vol. 7, issue
2, pp. 175–187, 2006.

[5] Prati, A.; Mikic, I.; Trivedi, M.; Cucchiara, R., Detecting Moving
Shadows: Algorithms and Evaluation. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 25, issue 7, pp. 918–923,
2003

[6] Huang, J-B; Chen, C-S, Learning Moving Cast Shadows for Fore-
ground Detection, In: International Workshop on Visual Surveillance,
2008.

[7] Haritaoglu, I.; Harwood, D.; Davis, L. S., W4: Real-time surveillance
of people and their activities. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 809–830, 2000.

[8] Onoguchi, K., Shadow elimination method for moving object detec-
tion. In: International Conference on Pattern Recognition, vol. 1, 583–
587, 1998.

[9] Stander, J.; Mech, R.; Ostermann, J., Detection of moving cast
shadows for object segmentation. IEEE Transactions on Multimedia,
65-76, 1999.

[10] Zhu, J.; Samuel, K.; Masood, S.; Tappen, M., Learning to recognize
shadows in monochromatic natural images. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 223–230, 2010.

[11] Guo, R.; Dai, Q.; Hoiem, D., Single-image shadow detection and
removal using paired regions. In: IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

[12] Lalonde, J. F.; Efros, A. A.; Narasimhan, S. G., Detecting ground
shadows in outdoor consumer photographs. In: European Conference
on Computer Vision, pp. 322-335, 2010.
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2 

Introduction 

Autonomous cars have an encreasing role in transportation 
 

Automated transportation systems allow new car sharing concepts 
Cooperative Driving 
Safety and better use of road infrastructure   
Economical and comfortable 
… 

 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

In real life, traffic participants need to understand, plan, learn and to 
be self-aware of their perception and execution limitations 

These capabilities lead to Cognitive Car or Robotized Cars  
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3 

Outline of the talk 

Cognitive Automobiles 
Perception 
Interpretation and Learning 
Decision Making 
Applications 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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4 

COGNITIVE AUTOMOBILES 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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5 

Architecture 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

Behavior PlanningInterpretation and Learning

Perception

state hypotheses 
and models

Behavior Execution

Measurement

X

Z

C

B

PI

Environment

Evidence Behavior
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6 

Collaborative Research at HIS and FZI 

 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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Multicore Computation Systems 
 
Integrated Sensors 

PMD Camera front and rear 
Ladybug3 / Velodyne 
Driver observation cameras 2D/3D 
Front/Rear cameras 
Localization system 
3  IBEO Laser (2 front, 1 rear) 
Vital sensors 
 

Several Communication and Power Interfaces 
12V / 220V 
Firewire 
USB 
Ethernet 
MOST 
CAN 
 

Several Displays 
MMI Display 
Combi Display 

 
Actuators for autonomous driving 
 
Continuous integration of algorithms 

FZI Living Lab Automotive:The instrumented Test 
Vehicle 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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8 

Driving dynamics simulation 
Generation of virtual sensor data    
270° panoramic projection 
Integration of ADAS  
Force Feedback steering 

FZI Living Lab Automotive: Driving Simulator 
Mono Camera (Color) 

PMD Camera (3D) 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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9 

PERCEPTION 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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10 

Sign recognition, signpost and 
additional signs 

Pre-processing 
Feature based segmentation 

Form based, geometrical properties  
Colour based, retro reflection and 
illumination based 

Sub segmentation of complex signs 
Pictogram classification by cascaded 
SVM 
Text recognition  
Tracking and temporal fusion   
 

Relevance estimation  
Assignment to lanes  

Fusion with lane tracking 
Using a-priori knowledge  about signs 
Probabilistic approach (Mixture of 
Gaussian) 
 

Perception of Static and Semi-Static Environment  

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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Combining different sensor systems 
3D TOF, 2D Video, Radar, Stereo 
3D segmentation (U/V disparity or 
TOF ),  
2D detection by symmetry, shadow 
Viola Jones detector  
Gabor-features and SVM classification 
Kalman tracker  

 
Detection during dusk and at night 

Adaptive Gauss filtering  
Hypothesis generation 
Hypothesis verification by 
classification (coming soon) 
 

 Manoeuvre state detection 
Breaking , lane changing  
 

Perception of Dynamic Objects 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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12 

Blind spot detection 
Appearance based hypothesis 
generation  
(symmetry, shadow,…)  
HOG feature based hypothesis 
verification (classifcation)   
Optical flow (near field tracking) 
 

Pedestrian detection 
PMD based segmentation  
Vision based – Ada boost 
classification 
Tracking 

 
 

Perception of Dynamic Objects 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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13 

Driver Observation 

Tracking the driver‘s head movement 

Interpretation of Situative Sensor-Data and Continuous 
Decision Making for Cognitive Automobiles  
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Localization and Mapping 

IMU based Simultaneous Localization and Mapping 
Keeps a local 2D environment map to extend the sensor range 
Uses extended version of the GMapping algorithm  
(http://openslam.org/gmapping.html) 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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15 

STATE ESTIMATION AND 
LEARNING 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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16 

Situation Assessment 
Requirements 

Estimation of the environment state 
Behavior recognition of traffic 
participants 
Situation understanding 
Anticipation 
 
Learning 
Robust 

Sensor noise 
Partial observability 

 
 Basis for Behavior Decision 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

?
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Situation Assessment 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

Classical approach: Instantiate independent Kalman filters for all traffic 
participants 
not sufficient for traffic scenarios! 

 Interactions and situational context have to be considered 
 
 
 
 
 
 
Our approach: Reason about the decision-making of traffic participants 
to predict their behavior 
Situation      Behavior       Trajectory      Next vehicle state 
Formulation as Bayesian Filter 
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Bayesian Filter 

Dynamic Bayesian Network 
Combines symbolic and subsymbolic representations 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

X

B

Z

C

S

T

Vehicle States

Observations

Situations

Behaviors

Trajectories

Context
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Situation Assessment 
Behavior and Trajectory Estimation 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

Particles 
Estimation 
Ground Truth 
Measurement 
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Situation Assessment 
Behavior Estimation 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  
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Learning of behavior models from observations 

Observation of traffic participants allow model learning 
Many training samples can be obtained 
Online learning algorithms needed to cope with data size 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

Source: KITTI Vision Benchmark Suite (http://www.cvlibs.net/datasets/kitti) 
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Learning Algorithm 
Generalized Regression Trees 

 
 
 
 
 
 
 
 

 
 
Generalization of decision / regression trees 
Online parametric learning with stochastic gradient descent 
Extendable with random forests and deep networks 
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Example: Learning of a 2d function 
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Situation Assessment 
Learning of an evasive maneuver 
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BEHAVIOR PLANNING 
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Symbolic Planning for Behavior Decision 
Requirements 

What would one expect of strategic decision making of cognitive cars 
and how could it be reached? 
 
Anticipatory driving without error-prone manual modeling 
 Planning 

 
Defective and incomplete perception  
 Probabilistic Models 

 
Generalizability 
 Gathering experience from simulated and real drives 
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Symbolic Planning for Behavior Decision 
Look Ahead Planning 

Why anticipatory? 
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Symbolic Planning for Behavior Decision 
Partially Known Environment 

Why bother about incomplete perception? 
Measurements are noisy 
Biggest issue: Objects are often occluded in urban environments 
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Symbolic Planning for Behavior Decision 
Partially Known Environment 

Beobachtungsmodell  POMDP 
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Symbolic Planning for Behavior Decision 
Partially Known Environment 

Why not model decisions manually? 
Continuous spaces:  
 
Task is very  
complex and  
thus error-prone: 
 
 
 
 
Automatic solving 
process necessary 
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Symbolic Planning for Behavior Decision 
Concept 

 
 
 
 
 
 
 
 
Uncertain situation knowledge 
Maximize the expected future reward and  

     minimize the risk 
Planning result is a mapping from every belief to an optimal action 
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Symbolic Planning for Behavior Decision 
Relevance-based space Representation  

Equidistant discretization inefficient  
Too fine and too coarse at the same time 
 Concept: Only consider differences relevant to the problem 
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Symbolic Planning for Behavior Decision 
Overview on planning algorithm 
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guides exploration 

probabilistic simulation of future events 

discrete 
belief pdf  
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Symbolic Planning for Behavior Decision 
MC Backup 
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Symbolic Planning for Behavior Decision 
Adaptive Refinement of Space Discretization 
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Symbolic Planning for Behavior Decision 
Refining the Decision Tree Representation 
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Central discretization unit (e.g., Decision Tree) translates  to 
discrete space        in O(n log(n)) 
 
Quick evaluation of all        by (sparse) dot product  
 
Computational complexity of dual, discrete problem 

va
lu

e 

state 
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Symbolic Planning for Behavior Decision  
Dimension reduction 
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Symbolic Planning for Behavior Decision  
Tree of Predicted Beliefs 

Predicts possible events in the future 
Models (prediction and observation) as arbitrary Dynamic Baysian 
Networks 
Close to reality by learned behavior models of other traffic participants 
MC realization realization by particle inference 
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Symbolic Planning for Behavior Decision  
Convergence 

GENC-POMDP creates policies with better performance in significantly 
less time than previous approaches  
MCVI [Bai; Hsu  11] and C-POMDP [Porta et al. 06] 
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Symbolic Planning for Behavior Decision 
MDP-Results 
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APPLICATIONS 
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Decide which maneuver is the safest, most efficient, etc. 
Support user to perform safe maneuver 

Driver Assistance based on scene understanding 
and anticipation 

Interpretation of Situative Sensor-Data and Continuous Decision Making for 
Cognitive Automobiles  

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

185



44 

Autonomous Driving 

CoCar- The instrumented test vehicle of the FZI Living Lab Automotive 
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Virtual testing of autonomous parking on parking 
sites 

Modelling of virtual testing environment in IPG CarMaker 
Update vehicle position in CarMaker based on GPS/SLAM position 
estimation 
Occupied parking lots and sensor information acquired by virtual 
sensors 
Vehicle position estimation and path planning on virtual sensor data 
Autonomous vehicle control applyed on testing platform 
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Thank you for your 
attention… 
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An Efficient Heuristic Estimate for Non-holonomic Motion Planning

Ji-Wung Choi

Abstract— A new efficient and admissible heuristic estimate
function is proposed for non-holonomic motion planning. The
heuristic calculation begins by partitioning a configuration
space into visible and invisible spaces from the perspective of the
goal configuration. The heuristic values of visible configurations
are assigned by pre-computed heuristics through full state space
assuming empty environment. The heuristics are extended,
through the reduced Euclidean 2D space, into the invisible
configurations by using dynamic programming. The numerical
simulations demonstrate remarkable performance improvement
in motion planning quries by applying the heuristic function,
compared to other existing heuristics [1] and [2].

I. INTRODUCTION

Motion planning is crucial to achieve autonomy of mobile
robots. Heuristic search algorithm, such as A∗, is one of
the most widely used algorithms to find the solution of
motion planning problems for its performance and accuracy.
The algorithm benefits from heuristic knowledge that guides
search into promising directions to the goal configuration.
Clearly, more accurate heuristic to estimate the true path
costs leads to better performance. Conventional heuristic
functions such as Euclidean distance may not be adequate
for non-holonomic path search, because it underestimates
path costs by violating kinematic constraints of robots. These
underestimated heuristics can mislead search and thereby
aggravate the bottleneck situation as the size of the search
space grows. If we assume completely empty environment,
feasible path costs can be pre-computed offline and stored in
a Heuristic Look-Up Table (HLUT) [3]. However, the HLUT
cannot consider obstacles since it is implausible to encode
all possible worlds. So, a computationally efficient heuristic
in large and complex environment has remained challenging.

One of the most effective heuristic functions in the litera-
ture may be the one applied for autonomous ground vehicles
of CMU [1] and Stanford [2] teams in the DARPA Urban
Challenge (DUC). The heuristic is given by the maximum
of two component heuristics: 1) non-holonomic-without-
obstacle (stored in HLUT) and 2) holonomic-with-obstacle.
While the heuristic is well informed in local area around the
goal configuration, it often underestimates the actual path
costs in other area (as more detailed in Section II-B).

This motivated us to propose a novel, hybrid heuristic
estimate function. The first step of computing the heuristic
is to divide the state space into two: 1) visible and 2)
invisible spaces from the goal state’s perspective. Heuristic
values of the visible space are simply copied from HLUT.

This work was supported by the Academy of Finland under GIM project.
J.-W. Choi is with Department of Intelligent Hydraulics and Au-

tomation, Tampere University of Technology, 33101 Tampere, Finland
ji.choi@tut.fi

For the invisible space, though, complexity is inherited
from existence of obstacles. We cope with this complexity
by projecting the visible heuristic values into the reduced
Euclidean 2D space and applying dynamic programming to
extend the values into the invisible space. As the result, the
heuristic becomes admissible and consistent. The simulation
results provided in Section IV demonstrate benefits from the
new heuristic function in motion planning query.

II. PRIOR WORK

A. State Lattice

Many work on search algorithms provide computationally
efficient way in discrete state spaces [4], [5]. However, the
resulting paths by such algorithms do not tend to be smooth
(piecewise linear) and hence, do not satisfy kinematic feasi-
bility of the robot. In order to satisfy motion constraints while
achieving the computational advantages of discretization,
Pivtoraiko and Kelly proposes the state lattice [6]. The state
lattice is a graph representation of a discretized configuration
space, where repeating pairs of nodes (configurations or
states) are connected by a finite set of feasible path segments,
referred to the control set. Each control must be subject to
robotic systems’ dynamics such as non-holonomic nature and
the maximum curvature constraint so that the constrained
motion planning is formulated into query as graph search.

Fig. 1 illustrates an example of 3D state lattice (x,y,θ).
A search graph is constructed by copying the control set at
states in a configuration space, Cspace (Fig. 1(c)). The advan-
tage of the lattice planner comes from kinematic feasibility
requirement of lattice connections. As such, a sequence of
controls in the graph forms a path that guarantees feasibility.

Due to the compactness, we describe our new heuristic
function in the state lattice frame depicted in Fig. 1.

(a) (b) (c)

Fig. 1. A 3D state lattice construction. (a) The lattice is composed of
discretized position (x,y) and headings θ , illustrated as dots and arrows,
respectively. The control set (thick solid curves) is a set of elementary
feasible motions to connect each state and its reachable neighbors. (b) The
reachability tree obtained by proceeding 2 steps with the control set. (c)
The complete reachability tree is constructed by copying the control set at
states in a Cspace.
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(a) Nonholonomic-with-obstacle for h+3D (b) Nonholonomic-without-obstacle for h−3D (c) Holonomic-with-obstacle for h+2D

Fig. 2. Search graphs representation. (a) The nonholonomic-with-obstacle graph is constructed by copying the control set elements that do not hit Cobstacle
to the 3D (full dimension) states in free space. Since each control is generated subject to kinematic constraints, a sequence of controls in the graph forms
a safe path that guarantees feasibility. (b) The nonholonomic-without-obstacle graph is constructed by copying the control set at every state in a Cspace,
without considering obstacles. While paths in the graph guarantee feasibility, they can collide with obstacles. (c) The holonomic-with-obstacl graph consists
of 8-( or 4-)connected 2D states (positions) in free space. Paths in the graph guarantee obstacle avoidance but violate kinematic constraints; Given the
initial and goal state (red and blue rectangle), costs of the optimal solutions (thick solid curves) through the graphs defined in (a), (b), and (c) are denoted
h+3D, h−3D, and h+2D, respectively.

B. Maximum Heuristic

The heuristic search algorithms have been widely used to
achieve autonomy of mobile robots operating in dynamically
changing environment. A heuristic is intended to improve
search performance by guiding the search in promising
directions. The performance significantly depends on the
accuracy of heuristic estimation for actual path cost. The
accuracy comes at a price of computational complexity.
Although, for example, naive 2D Euclidean distance heuristic
is computationally cheap, it often underestimates path costs
by violating non-holonomic nature of the robot. Conversely,
the optimal solution in the 3D (full dimension) state lattice
embedded in a free space, as in Fig. 2(a), may perfectly esti-
mate the costs under the limit of the lattice resolution. (Let us
denote the cost function h+3D.) However, it is computationally
impractical as the search space grows.

So, it still has remained challenging to provide a heuristic
function that balances estimate accuracy and computational
efficiency. This subsection introduces one of the most ef-
fective approaches in the literature. The heuristic has been
applied for unmanned ground vehicles of the CMU [1] and
Stanford [2] teams in the DARPA Urban Challenge. We call
the heuristic the maximum heuristic because it is given by the
maximum of two component heuristics: 1) non-holonomic-
without-obstacle and 2) holonomic-with-obstacle.

The non-holonomic-without-obstacle heuristic, denoted
h−3D, is the cost of an optimal solution in the 3D (full
dimension) state lattice copied at a Cspace without considering
obstacles. Fig. 2(b) shows the search graph in which h−3D is
defined. The heuristic can be pre-computed and stored as a
Heuristic Look-Up Table (HLUT). Then, it is translated and
rotated with respect to the goal state. While the heuristic is
well informed in sparse spaces, it gradually underestimates
the true costs in dense spaces due to the lack of obstacle
information. (Compare the solution in Fig. 2(b) with that in
Fig. 2(a).) The reason why obstacles can not be taken into
account on HLUT is because there are nearly infinite number
of possibilities for obstacle-laden environments.

The holonomic-with-obstacle heuristic, denoted h+2D, copes
with the complexity inherited from existence of obstacles.
The cost is obtained by running Dijkstra’s algorithm on the
reduced 2D Euclidean state space with considering obstacles.
Fig. 2(c) shows the search graph in which h+2D is defined.
While the heuristic can be calculated online by virtue of state
dimension reduction, it may underestimate the true path costs
by ignoring non-holonomic nature. (Compare the solution in
Fig. 2(c) with that in Fig. 2(a).)

The maximum heuristic, denoted hmax, takes the maximum
of the two heuristics:

hmax(x,y,θ) = max(h−3D(x,y,θ),h
+
2D(x,y)),

and thereby gains an order of magnitude performance im-
provement than either of the two component heuristics [1].

(a) h−3D > h+2D⇒ hmax = h−3D (b) h+2D > h−3D⇒ hmax = h+2D

Fig. 3. The maximum heuristic value of a state (x,y,θ) (red rectangle) is
determined by h−3D(x,y,θ) or h+2D(x,y), depending on the location of (x,y)
relative to the goal (blue rectangle). Blue and red curves represent solutions
of h−3D and h+2D, respectively. (a) If (x,y) lies in open local area around the
goal, hmax is likely to be determined by h−3D. (b) If an obstacle lies between
(x,y) and the goal, hmax is likely to be determined by h+2D.

Fig. 3 shows that hmax(x,y,θ) is determined by h−3D(x,y,θ)
or h+2D(x,y) depending on the relative location of (x,y) to the
goal state. Referring to Fig. 3(a), if a state (red rectangle)
lies in open local area around the goal state (blue rectangle),
then hmax is likely to be determined by h−3D (blue curve).
Otherwise, as shown in Fig. 3(b), hmax is likely to be
determined by h+2D (red linear path).

This position dependency of hmax is clearly visualized in
Fig. 4(c). The figure shows the differences between the two
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(a) h+2D(x,y) (b) h−3D(x,y,0
◦)

(c) h+2D(x,y)−h−3D(x,y,0
◦)

Fig. 4. Given the environment in Fig. 3, (a) h+2D(x,y) and (b) h−3D(x,y) with
θ = 0◦ are displayed. (c) The differences h+2D(x,y)−h−3D(x,y,0

◦) represent
position dependency of hmax(x,y,0◦): hmax is determined by h+2D (or h−3D)
at the positive (or negative) valued positions filled with red (or blue).

heuristics, h+2D(x,y)−h−3D(x,y,0
◦), for the Cspace and the goal

state shown in Fig. 3. While negative values (blue), in which
hmax is determined by h−3D, are located in the relatively open
space close to the goal, positive values (red), in which hmax is
determined by h+2D, are located in the space concealed behind
Cobstacle from the perspective of the goal.

The heuristic determined by h−3D in the blue area relatively
well estimates true optimal path costs. Although, on the other
hand, h+2D estimates better than h−3D in the red area, it still
underestimates true path costs. For example, let us compare
the red linear path in Fig. 3(b) with the optimal solution in
Fig. 2(a). While the latter involves the robot making an U-
turn to reach the goal state, the first simply consists of line
segments, and hence informs shorter distance (smaller cost)
than the latter. The underestimated heuristic can mislead the
search into the exploration of wrong regions. This motivated
us to propose a novel, hybrid heuristic estimate function.

III. THE PROPOSED HYBRID HEURISTIC

This section proposes a new heuristic estimate function to
overcome the drawback of the maximum heuristic, described
above. The proposed heuristic has been created based on the
following observations:
• 2D configuration space is relatively well divided into

two separate regions, depending on the comparison
between h−3D and h+2D (as in Fig. 4(c)).

• In the region closer to the goal (so that the goal is
visible), h−3D well estimates optimal costs.

• In the other region (where the goal is invisible), h+2D es-
timates better than h−3D, but underestimates true optimal
costs.

From the observations above, we introduce the concept of
the visibility (from the perspective of the goal position) to
divide 2D configuration space into two: visible and invisible

spaces (detailed in Section III-A). Since h−3D performs well in
the visible space, its heuristic is simply copied from HLUT
into the region. Then, 2D version costs are extended from the
visible to invisible space by using dynamic programming. As
the result, the heuristic of the invisible space is a combination
of non-holonomic and holonomic path costs and hence
estimates better than pure h+2D (detailed in Section III-B).

A. Visible Space

The visible space V ⊂ R2 is the set of the positions from
which the goal (x f ,y f ) is visible. More specifically, if the
line connecting (x,y) and (x f ,y f ) intersects no obstacle, then
(x,y) is defined to be visible, otherwise invisible.

Algorithm 1 Visible Space Construction
1: procedure BUILDVSPACE(x f ,y f ,Cspace)
2: Mark all (x,y) ∈ Cspace as visible.
3: [xmin,xmax,ymin,ymax]⇐ size(Cspace)
4: Lmax⇐max(xmax−x f ,x f −xmin,ymax−y f ,y f −ymin)
5: for i = 1→ Lmax do
6: for all (x,y) s.t. L∞([x,y]− [x f ,y f ]) = i do
7: if (x,y) ∈ Cobstacle then
8: [x′,y′]⇐ InvisibleStates(x,y,x f ,y f )
9: Mark all (x′,y′) invisible.

10: end if
11: end for
12: if all (x,y) are marked as invisible then
13: break
14: end if
15: end for
16: return V ⇐ {(x,y)|(x,y) is marked as visible}
17: end procedure

(a) Invisible states by a cell (b) Overall invisible states

Fig. 5. (a) Given the goal state (blue rectangle) and a state in Cobstacle (black
cell), invisible states (red crosses) concealed behind the cell lies inside of
two tangential rays (red lines) from the goal to the cell. (b) The invisible
space (filled with red crosses) is the set of all invisible states by Cobstacle.
The visible space (white cells) is the difference set of the invisible space.

Algorithm 1 is the pseudo code for constructing the visible
space V . Initially, all 2D states in a Cspace are marked as
visible (Line 2). Then, it iterates exploring (x,y) on the
square boundary around (x f ,y f ) as its maximum norm1 L∞

grows from 1 until it reaches the boundary of Cspace (Line 6
-11). If (x,y) is in Cobstacle (Line 7), then all the states

1L∞([x,y]) = max(|x|, |y|)
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concealed behind (x,y) from the perspective of (x f ,y f ) are
calculated (Line 8) and marked as invisible (Line 9). Fig. 5(a)
visualizes the invisible states (red crosses) by an obscured
cell (black). The invisible states lie inside of two tangential
rays from (x f ,y f ) to the cell. They can be pre-computed and
stored in a look-up table to speed up the construction. The
procedure terminates as all the (x,y) on the square boundary
(green lines) is invisible as shown in Fig. 5(b) (Line 12).

B. The Hybrid Heuristic Construction

The hybrid heuristic is calculated based on the visible
space, as presented in Algorithm 2. In the pseudo-code,
Θ is the canonical set of discrete headings, and ρ is the
threshold distance to compensate underestimate effect by
holonomic-with-obstacle path costs (more detailed in next
subsection). The algorithm is mainly divided into two loops:
one cycles through the visible space (Line 5-16) and the
other through the invisible space (Line 17-20). The first
loop copies h−3D(x,y,θ) to all visible states (Line 7). As
stated in Section II-B, the heuristic values are pre-computed
offline and stored in HLUT so that the copy performs in
constant time complexity. The copied heuristics are extended
to heuristics of invisible states. Since invisible heuristics
are defined in 2D, we project the visible heuristic values
h−3D(x,y,θ) onto 2D version, H2D(x,y) with the minimum
for all θ ∈ Θ (Line 9). If a visible 2D state (x,y) has an
invisible successor (x′,y′), then the heuristic of the successor
is updated with the minimum of sum of H2D(x,y), ‖(x,y)−
(x′,y′)‖, and ρ (Line 12-13). Once all visible states has been
copied, H2D will have contained heuristics for all the visible
states and the invisible states adjacent to the visible space.
Finally, we run dynamic programming in 2D space to solve
the shortest distance from each invisible state to the goal
with incorporating the existing H2D (Line 18).

Fig. 6. The hybrid heuristic graph is constructed by copying h−3D graph at
visible space (yellow cells) and h+2D graph at invisible space (white cells).
Thus, the optimal solutions through the hybrid graph combines h−3D (blue)
and h+2D paths (red).

Fig. 6 shows the hybrid heuristic graph and a solution
through the graph. In the visible space filled with yellow,
hhyb is determined by non-holonmic-without-obstacle path
cost as hmax is. The difference between hhyb and hmax is that
hhyb combines it with holonomic-with-obstacle path cost in
the invisible space. In other words, the reference path for hhyb
is the combination of a holonomic path (the red linear path)

Algorithm 2 Hybrid Heuristic Estimate
1: procedure HYBRIDHEURISTIC(V,Cspace,Θ,ρ)
2: for all (x,y) ∈ Cspace do
3: H2D(x,y)⇐ ∞

4: end for
5: for all (x,y) ∈ V do
6: for all θ ∈Θ do
7: hhyb(x,y,θ)⇐ h−3D(x,y,θ)
8: end for
9: H2D(x,y)⇐minθ∈Θ h−3D(x,y,θ)

10: for all (x′,y′) ∈ Succ(x,y) do
11: if (x′,y′) /∈ V then
12: Ht ⇐ H2D(x,y)+‖(x,y)− (x′,y′)‖+ρ

13: H2D(x′,y′)⇐min(H2D(x′,y′),Ht)
14: end if
15: end for
16: end for
17: for all (x,y) /∈ V do
18: H2D(x,y)⇐ DynamicProgramming(x,y,H2D)
19: hhyb(x,y)⇐ H2D(x,y)
20: end for
21: end procedure

in the invisible space and a non-holonomic path (the blue
curve) in the visible space as shown in Fig. 6. This hybrid
path cost alleviates the underestimate of a pure holonomic
path of hmax for invisible states. Note that while the reference
path in Fig. 2(c) simply consists of line segments, the path
in Fig. 6 involves making the robot U-turn to reach the goal
as that in Fig. 2(a) does, As the result, hhyb matches closer
to the optimal cost than hmax does.

Properties of the hybrid heuristic can be summarized as
follows:
• Since both h−3D and h+2D are admissible and consistent,

the combined heuristic hhyb is also admissible and
consistent.

• hhyb is constructed in same time complexity as hmax
is. Note that hmax runs dynamic programming from
the goal to all 2D states. Similarly, hhyb runs dynamic
programming for 2D states, among of which costs of
visible states are copied from HLUT in constant time.

• hhyb can be beneficial by saving memory for HLUT.
Unlike hmax using HLUT for whole configuration space,
hhyb uses HLUT only for the visible space.

C. Threshold Distance

The threshold distance ρ controls the gap of heuristic
values between visible and invisible spaces (Line 12 of Al-
gorithm 2), and thereby compensates underestimating effect
by holonomic paths in invisible space.

Fig. 7 shows the accuracies of hmax and hhyb (with different
ρ) to estimate h+3D, for the Cspace and the goal depicted
in Fig. 6. Recall that h+3D are the costs of the shortest
paths through the non-holonomic-with-obstacle graph as in
Fig. 2(a), and thereby perfectly estimate true optimal costs
under the limit of the lattice resolution. While the graph in
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(a) {hmax−h+3D}(x,y,0◦) (b) {hhyb−h+3D}(x,y,0◦) with ρ = 0 (c) {hhyb−h+3D}(x,y,0◦) with ρ = 1 (d) {hhyb−h+3D}(x,y,0◦) with ρ = 3

Fig. 7. Accuracies of hmax and hhyb, to estimate optimal costs h+3D. Blueness (or redness) indicates underestimation (or overestimation).

(a) hmax (b) hhyb, ρ = 0 (c) hhyb, ρ = 1 (d) hhyb, ρ = 3

Fig. 8. The A∗ resulting paths (black curves) depending on applied heuristics. The green curves represent expanded controls.

(a) hmax (b) hhyb, ρ = 0 (c) hhyb, ρ = 1 (d) hhyb, ρ = 3

Fig. 9. The resulting paths with the use of a higher resolution control set.

Fig. 7(a) represents hmax(x,y,0◦)− h+3D(x,y,0
◦), the graphs

in Fig. 7(b)-7(d) represent hhyb(x,y,0◦)−h+3D(x,y,0
◦) with ρ

varying from 0 to 3. So, while negative values (blue) indicate
underestimation, positive values (red) indicate overestima-
tion. Zero values (white) indicate perfect estimation.

Referring to Fig. 7(a), while hmax nearly matches h+3D
around the goal (blue cone), it underestimates in the area
concealed behind the wall obstacle. This underestimated
heuristics can lead to wasteful exploration of dead-ends.
Applying hhyb alleviates the underestimate as shown in
Fig. 7(b). In addition, we can see that the underestimated
heuristic grows to match h+3D as ρ grows, shown in Fig. 7(c)-
7(d). At the same time, it causes overestimate in the lower
left area. This may keep search from rolling backward at the
area so as to speed up the search but to produce less optimal
paths.

Fig. 8 shows the resulting paths by applying A∗ with hmax
and hhyb with ρ = 0,1, and 3. As expected, the hmax path
undergoes wasteful exploration at the upper left area. On the
other hand, hhyb generates paths with less nodes expanded
by virtue of better accuracies shown in Fig. 7. Fig. 9 shows
the results with a higher resolution control set. We can see
that the resulting path is generated with less expanded nodes

but provides less optimality as ρ grows (Fig. 9(d)).

IV. SIMULATION

In this section we demonstrate search performance im-
provement by applying our new heuristic function compared
to the maximum heuristic function. Simulations provided in
this section were implemented in MATLAB on Intel Core i5
CPU 2.5 GHz and 4 GB RAM. The motion planner uses the
control set with 16 discrete headings (as shown in Fig. 10)
to generate a path.

Fig. 10. The control sets allowed for the states with 0, 26.6◦ = arctan(1/2),
and 45◦. Reflecting the sets around X− and Y−axes comprises overall
control set with 16 total discrete headings.

Fig . 11 depicts several paths planned by applying A∗ with
hmax in the top row and with hhyb in bottom for identical
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Fig. 11. Resulting paths by applying A∗ with hmax (top) and hhyb (bottom).

(a) (b) (c)

Fig. 12. Simulation performance depending on manhattan distance between the initial and goal states.

situations at each column. The map encodes Tampere Uni-
versity’s Mobile Machine Lab area into a 50m×50m binary
matrix with 0.5m resolution. The initial and goal states are
randomly selected such that the initial state is invisible from
the goal, since hhyb is equivalent to hmax when the initial
state is visible. Here, the threshold cost ρ was set to 5.

Fig. 12 shows the comparison of planning performance
with hhyb versus that with hmax for 15000 test cases. It
highlights the benefits of applying the hybrid heuristic func-
tion. Runtime presented in Fig. 12(a) is slower than that of
[2]. This is because the simulation in this paper has been
implemented in Matlab which is higher-level than C++ used
in [2]. However, hhyb (blue circles) clearly outperforms hmax
(red crosses) in terms of runtime (Fig. 12(a)) and expanded
nodes (Fig. 12(b)). The data shows that planning with hhyb
is about five times faster than planning with hmax. The
improvement in states expanded is greater than a factor of
1.5. On the other hand, planning with hhyb provides slightly
worse path costs than planning with hmax, but with less than
a factor of 1.02, as shown in Fig. 12(c).

V. CONCLUSION

This paper proposes a new efficient heuristic estimate
function to speed up non-holonomic motion planning. The
heuristic is computed in three steps: 1) dividing cartesian

space into visible and invisible spaces, 2) copying pre-
computed non-holonomic-without-obstacle heuristics to the
visible states, and 3) running dynamic programming on the
invisible states by accumulating the visible heuristics with
holonomi-with-obstacle costs. The numerical simulations
demonstrate that the hybrid heuristic leads to an order of
magnitude performance improvement, compared to existing
heuristics [1] and [2].
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Short term path planning using a multiple hypothesis evaluation

approach for an autonomous driving competition

Miguel Oliveira1 Vitor Santos1 and Angel D. Sappa2

Abstract— This paper describes a practical implementation
of short term path planning in autonomous navigation in
unmapped or unstructured environments. Path planning is
performed by generating multiple hypothesis of paths for the
robot and then evaluating the quality of each path. In very
dynamic environments, long term path planning is generally
not very useful, so this paper embraces the approach of short
term path planning and continuously revises the path plan
and motion parameters after the perception from its onboard
sensors. The solution has been applied to small scale robots that
compete in an autonomous driving competition. These robots
have won the last six editions of this competition.

I. INTRODUCTION

One of the core problems in autonomous naviga-

tion is to calculate the correct steering of the robot.

This is generally based on primary directives, such

as to move to a GPS waypoint inside a corri-

dor as in the case of the DARPA Grand Challenge

http://www.darpa.mil/grandchallenge05/, or to follow the

road to a certain objective, which was the case in the DARPA

Urban Challenge http://archive.darpa.mil/grandchallenge/,

just to mention two of the most remarkable full scale

autonomous navigation challenges in recent years. Given

these, or other, high-level directives, a path planner must

first analyze the data from the sensors (or higher level repre-

sentations of those created by perception modules) and then

generate the appropriate path according to the restrictions

streaming from the sensorial information.

In this paper, we present a path planning which was tested

in an autonomous driving robotic competition that takes

place every year in Portugal, within the National Robotics

Open (http://robotica2011.ist.utl.pt/).

The Autonomous Driving Competition takes place in a

road like scenario. The road has an 8-shape configuration

delimited with two white lines which simulates a two-way

road. For path planning algorithms, this competition is a

challenge since that robots must not only navigate on the

road but also, at the same time, avoid obstacles placed

arbitrarily on unknown positions, handle tunnels where

lack of light may disrupt vision based road detection, and

cope with road maintenance areas that bring the detour

from the road. Robots must cope with these obstacles and

navigate the scenario as fast as possible. The complete rules

1M. Oliveira and V. Santos are with the Departement of Me-
chanical Engineering, University of Aveiro,Portugal mriem@ua.pt
vitor@ua.pt

2A. Sappa is with the Computer Vision Center, Barcelona, Spain,
asappa@cvc.uab.es

and specifications of the competition may be found in

http://robotica2011.ist.utl.pt/docs/2011 Conducao Autonoma-

regras-en.pdf. Figure 1 shows some images of this

competition.

In general, path planning has been thoroughly studied by

the robotics community. In [1] and [2], extensive reviews

on this topic are provided. However, while the state of

the art in path planning in general has reached a high

level of maturity, its adjustment to the problem at hand

is cumbersome. In fact several details make most of the

classic path planning methods unfit to tackle the Autonomous

Driving Competition, namely: (i) The fact that the robot

travels at high speed (in relation to the scale of the scenario)

demands that the path planning is fast to process; (ii) The

reduced field of view of the robot (2 to 3 meters to the front)

discards the usage of complex paths based on splines [2] [3],

clothoids [4], or others; (iii) The fact that classic obstacle

avoidance techniques such as Vector Field Histograms or

dynamic window approach [5] do not account for the non-

holonomic nature of a car-like robot; (iv) The inexistence of

a global map (or of a large enough local one) in addition to

the fact that the information present in it is sparse discards

techniques based on occupation grids and similar techniques

(most of the cells would have an unknown state).

Because of these specifications, we have decided to devise

and develop an algorithm that chooses the best steering di-

rection for the robot. In this sense, this is not a path planning

algorithm but more a local, short term evaluator of the best

steering angle for a robot. The algorithm starts by generating

a set of possible paths using a non-holonomic vehicle model

for the robot. Each path represents a possible heading of the

robot. To account for simplicity and fast processing, these

paths are first order curves, i.e., circumference arcs. Second,

the algorithm builds up a snapshot of the current view of the

world appropriated for subsequent processing. It does this by

creating a desired path on the desired lane of the road in the

form of a list of position and heading values, the attractor

points. These points are not connected using splines or other

methods. They can be viewed as beacons sparsely positioned

on the lane, indicating the preferred position and heading of

the robot. At the same time, laser obstacles are represented

as a list of repelling points.

The rest of the paper is organized as follows: section II

describes the perception algorithms; section III shows how

several hypothetic paths can be generated using a few number

of control parameters; section IV explains the generation

of navigation markers; section V describes how paths are

evaluated and the best path is selected; finally, sections VI
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(a) (b)

Fig. 1. The Autonomous Driving Competition environment is a 8-shaped road like scenario. a) obstacle avoidance b) navigation on a road maintenance
area.

and VII present results and conclusions.

II. PERCEPTION

The path planning is performed in a two dimensional

space, coincident with the road plane. In order to obtain

sensorial information mapped onto this reference frame, the

Inverse Perspective Mapping (IPM) technique is employed.

The IPM technique consists of transforming the images

taken into a new reference frame where the perspective

effect is corrected. This reference frame is usually defined

on the road plane, so that the resulting images become a

top view of the road. One of the advantages of IPM is

that the subsequent perception algorithms can be computed

in a 2D synthesized world, which significantly eases the

tuning of convolution filters size [6], the stability of neural

network’s inputs [7], or the detection of features of interest

[8]. The technique requires some a priori knowledge, namely,

the geometric transformation relating the cameras’ and road

reference frames. This is equivalent to state that the camera’s

position, orientation and intrinsic parameters must be known

before hand. Commonly, the IPM technique also assumes

that the road ahead is flat, that is, all pixels from the input

image are views of points in the real world from the XoY

plane of the road’s reference frame. This assumption is a

core issue of IPM. If undertaken by mistake, due to the

presence of other vehicles, pedestrians, obstacles, or steep

slopes in the road, the IPM produces wrong representations

in the undistorted image. This problem is addressed by

several researchers on this field [9][10][11]. The authors own

implementation of an extension to IPM using a laser range

finder (LRF) is presented in [12]. Using this setup we also

have the LRF data corrected to the IPM reference frame, as

shown in Fig. 2.

The LRF unit’s scan plane is parallel to the road’s surface.

Therefore, the laser scan points are also defined in the same

coordinate system as the IPM image. Using the method

proposed [12], the raw laser data is compressed into a list

of obstacles, each containing a portion of the laser raw data

points.

Lane marker detection is based on previous work, de-

scribed in detail in [13]. The core idea is to derive a

set of candidate lane markers through the analysis of the

inverse perspective mapped image’s brightness profile. These

candidates are then characterized by a set of meaningful

statistical descriptors. In the perspective effect free image,

parameters like lane marker width and ratio of curvature

change are well defined. These assumptions are employed

to provide the actual lane marker detection. Figure 2 shows

an example of lane marker detection on an IPM image.

In sum, the path planning algorithm will receive the

position of the lane markers and of laser obstacles from the

perception modules. Lane markers and laser obstacles are all

registered in the instantaneous vehicle reference frame.

Fig. 2. (top) The images taken by the two camera onboard the robots;
(middle) the image obtained using inverse perspective mapping, marked
with referenced laser scan points (red dots); (bottom) lane marking detection
example. Lane markers are highlighted in green.
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III. PATH GENERATION

This paper uses two kind of descriptors for computing

the optimum trajectory. These descriptors are in one case

defined as a unitary vector and in the other as a 2D point. All

descriptors are defined in the instantaneous vehicle reference

system. Bold symbols will represent unitary vectors, i.e.,

X = [x y θ ], while 2D points, will be represented as

X= [x y]. Throughout the paper we will use the sub-indices

notation to refer to the components of the vector or point.

For example, Xθ refers to the angle θ of vector X, while Xy

refers to the y component of point X. Left super indexes will

notate the trajectory to which the variable belongs to. Right

super indexes notate the index of the variable.

This section introduces the non-holonomic vehicle model

used to generate a set of possible trajectories for the robot. It

discusses how paths are generated and represented by nodes,

using several high level criteria. From the observation of Fig.

3 it is clear that:

R =
D

tan(α)
. (1)

Hence, based on the steering direction α , it is possible to

calculate the path that will be executed by the vehicle. Let ζ
represent a path. The radius R of the instant center of rotation

ICR. Given the arc length A, it is possible to calculate the

angle β by:

β =
A

R
. (2)

Let a unitary vector Π represent the Cartesian coordinates

that lie on path ζ . The coordinates are given by:

Π =

[
Πx

Πy

]
=

[
R·sin(β )

R−R·cos(β )

]
, (3)

combining equations (1), (2) and (3) results in:

[
Πx

Πy

]
=




D

tan(α) ·sin
(A·tan(α)

D

)

D
tan(α) ·

(
1− cos

(A·tan(α)
D

))


 . (4)

For paths steering to the right, i.e., when α < 0, the

value of Πy becomes symmetric of what is given in (4).

The expression is only valid for α ∈ [−90,+90], which is

perfectly adequate for most of the vehicles. Equation (4)

is used to generate all paths and path nodes. The planner

generates a set of paths, each is referred to as jζ . For

computation simplification purposes, each path is segmented

into linear pieces and represented by a set of m nodes, notated

as jΠ ∈ { jΠ0, j Π1, ..., j Πm}. The discrete array of paths and

their nodes are defined by setting values for the number of

paths, the wheel angle of the first path α0 and the angular

spacing between paths (∆α). Hence, the steering angle of a

path jζ will be defined by:

jα = 0α + j·∆α. (5)

The number of nodes for each path is defined by specifying

the number of nodes and the arc length (A) between con-

secutive nodes. The ith node jΠi will have an associated arc

length segment given by:

Fig. 3. The non-holonomic model of the vehicle is used to define the paths
the robot will execute as a function of the angle imposed on the steering
wheels.

jAi = i·A. (6)

Applying jα and jAi into equation (4) provides the (x,y)
coordinates of all path nodes. To determine the orientation

of the node we compute the angle formed between the line

segment defined by the current and the next node, and the

vertical direction. Hence, the orientation of node i, jΠi
θ is

given by:

jΠi
θ = atan

(
jΠi+1

y − jΠi
y

jΠi+1
x − jΠi

x

)
. (7)

Figure 4 shows an example of a set of paths and their

nodes. Although the trajectories, the number of nodes in

each trajectory, the ∆α and A may change in runtime,

they are considered equal for all paths, that is, all paths

are equally spaced in wheel angle and will have the same

number of nodes, which are in turn equally spaced by a

constant arc length. Paths and their nodes are uniformly

distributed across the provided limits. The methodology here

proposed allows the user (or other higher level processes)

to easily generate a large set of trajectories, using these

small number of parameters. Different road scenarios have

distinct requirements in terms of possible paths. For example

a highway scenario, where a vehicle is traveling at high speed

surely requires long trajectories to be tested, but the angular

span of the vehicle’s steering wheel is limited: in this case, a

large value for A and number of nodes would generate long

trajectories, while a small number of trajectories with the

proper value for ∆α would create a small angular span. In

urban scenarios, small speed and hard turns are required: a

small value of A will create short paths, while a large number

of trajectories would provide trajectories with hard turns.

IV. NAVIGATION MARKERS

As seen in section II, there are several perception modules

running in parallel. When a perception module identifies

a laser obstacle or the position of a lane marker, this

information is is sent to the path planner module. However,
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Fig. 4. An example of a set of paths defined using equally spaced wheel
angle and arc length between nodes.

the position of obstacles or lane markers must be represented

in a way that is useful for the path planning module.

This section describes this process of converting perception

data into descriptions that are suited to be processed by

our path planning algorithm, which are called Navigation

Markers. Navigation Markers are computed from a given

description of the scenario around the robot, i.e. from the

information provided by the perception modules, and from

a set of driving directives, which define what should be the

navigation behavior. They are then used to compute several

scores that will describe how good is a path for the current

scenario. This process is an intermediate layer between the

perception of the environment and the subsequent evaluation

of all paths and selection of the optimum path.

There are two types of Navigation Markers: repelling and

attractor points. Repelling points are computed after the laser

obstacles positions generated using the data reduction algo-

rithm (see section II). They have no information regarding

orientation. For a given iteration of the path planner, there

will be a list of U repelling points, defined as:

U
k = [Uk

x,U
k
y]. ,∀k = 0, ...,N, (8)

where N is the number of repelling points.

Attractor points are, on the other hand, generated after

the feature detectors that produce information regarding the

road’s positioning. The lane marker detection algorithms

output a description of the road. This description consists

of representing each of the three lane markings (left, central

and right) as a list of points in the robot’s reference frame.

Let Lk = [Lk
x,L

k
y], C

k = [Ck
x,C

k
y] and Rk = [Rk

x,R
k
y] represent

the lane marking descriptions. While the repelling point’s

Fig. 5. The several navigation markers for a common road scenario.
The road is described by the left, central and right points, Lk , Ck and
Rk , represented by the triangles in the figure. The attractor points (Ak ,
represented as circles in the figure) are generated using the central lane
marker points combined with the road width (Λ) and the desired lane
positioning behavior directive (Γ). Laser obstacles generate repelling points
(Uk) and are represented by circles with a cross.

position is obtained directly from the obstacles present in the

laser scans, the location of the attractor points is dependent

on the driving directive. The path planner module is informed

constantly by another higher level process of the desired lane

positioning behavior (Γ). This directive is defined as: Γ=−1,

to drive on the left lane, Γ = 0, to drive on the center of the

road and Γ = 1, to drive on the right lane. Since all the lane

marker detection modules produce a standardized description

of the road, the information of the left central and right lane

markers is for now redundant. Currently, we use the central

lane marker’s description C to generate the attractor points.

Let the unitary vector A notate the attractor points. Using

the directive Γ combined width the road width Λ (assumed

to be known a priori) the attractor points are defined as:

Ak =




Ak

x

Ak
y

Ak
θ



=





C
k
x +

Γ·Λ

4
·cos(Ak

θ )

C
k
y +

Γ·Λ

4
·sin(Ak

θ )

atan

(
Ck

y −Ck−1
y

Ck
x −Ck−1

x

)




. (9)

Figure 5 depicts the Navigation Markers in a typical right

turn scenario.

V. PATH EVALUATION

Once Navigation Markers are generated after the percep-

tion and several possible paths have been computed, the goal

now is to find which of those paths is the more adequate for

the current scenario. To perform this task, several evaluation

functions Ω are employed. Each evaluation function returns

normalized score Ω̂ that ascertains how well the path suits

the criteria evaluated by the function. There are four eval-

uation functions, which will be described bellow. In many

of the following evaluations it will be necessary to compute,

for a given trajectory node Πi, the closest navigation marker:

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

200



for example, what is the closest attractor point to a certain

trajectory node. Let function map(i) be the function that

retrieves the index k of the closest navigation marker to node

i. It is defined as:

map(i) = argmink

(√
( jΠi

x −Ak
x)

2
+( jΠi

y −Ak
y)

2

)
. (10)

A. Ω 1: Average distance to attractor points

This criteria measures a path’s average distance to the

attractor points and evaluates how close a path is to the

attractor points. A perfect score means that the path is

coincident with all the attractor points. For each path
jζ , the

criterion is calculated as a function of the average distance

between all path nodes and the closest attractor point to each

node:

Ω 1( jζ ) =

N

∑
i=0

(√
( jΠi

x −A
map(i)
x )

2
+( jΠi

y −A
map(i)
y )

2

)

N
,

(11)

where N is the number of trajectory nodes. The normalized

evaluation score Ω̂ 1 is obtained using the maximum admis-

sible value as a normalizing factor. In our implementation,

this value is set as the road’s width Λ.

Ω̂ 1( jζ ) = 1−
max

(
Ω 1( jζ ),Λ

)

Λ
. (12)

Figure 6 shows an example of the Ω 1 calculation.

B. Ω 2: Average angular difference to attractor points

This criterion measures the path average angular difference

to the attractor points (Ω 2) and evaluates how compliant

the path is to the attractor points heading. A perfect score

means that the path drives the robot along the direction

defined by the attractor points. For each path
jζ , the criterion

Fig. 6. An example of the calculation of Ω 1 for nodes 2Πi−1 and 2Πi.
For each node, the minimum distance to all attractor points is selected
(represented with a solid line). Then the average of these minima is
calculated. In this figure the Ω 1 criteria will have the following score
arrangement: Ω̂ 1( jζ ) > Ω̂ 1(...ζ ) > Ω̂ 1(2ζ ) > Ω̂ 1(1ζ ).

is calculated as follows by measuring the average angular

difference between each node’s orientation and the closest

attractor point’s orientation:

Ω 2( jζ ) =

N

∑
i=0

|( jΠi
θ −A

u(i)
θ )|

N
, (13)

where N is the number of nodes of the path. To obtain the

final score for this evaluation a normalization is computed

using the maximum admissible angular difference. In our

case, we set this value to 180 degrees.

Ω̂ 2( jζ ) = 1−
max

(
Ω 2( jζ ),π

)

π
. (14)

Figure 7 depicts how Ω 2( jζ ) values are computed.

C. Ω 3: Average laser obstacle clearance

This criterion measures a path’s average distance to the

laser obstacles repelling points (Ω 3). It evaluates how close

path
jζ is to the laser obstacles repelling points Uk.

Ω 3( jζ ) =

N

∑
i=0

f(i)

N
, (15)

where N corresponds to the number of nodes and f(i) is a

function that avoids local minima that typically occurs in the

middle of two obstacles, the minimum distance from each

path node to all repelling points is compared to a predefined

variable that defines the saturation threshold for the obstacle

clearance Φ.

f(i) =

{
d(i), i f d(i)> Φ

0, otherwise
, (16)

where d(i) is a function that retrieves the value of the

distance from the path node i to the closest repelling point:

Fig. 7. Calculation of Ω 2 scores. For each node, the minimum angular
difference to the closest attractor points is selected. Then the average of
these minima is calculated. In this figure, because higher index trajectories
suit better the attractor points heading, the following occurs: Ω̂ 2( jζ ) >

Ω̂ 2(...ζ ) > Ω̂ 2(2ζ ) > Ω̂ 2(1ζ ).
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d(i) =

√(
jΠi

x −U
map(i)
x

)2

+
(

jΠi
y −U

map(i)
y

)2

. (17)

The normalized score is obtained as usual:

Ω̂ 3( jζ ) = 1−
max

(
Ω 3( jζ ),Φ

)

Φ
. (18)

Figure 8 shows an example of the calculation of this evalu-

ation criteria.

D. Ω 4: Free space

The final evaluation criteria is used to guarantee that the

selected path is collision free. This is done by measuring

the possible collisions of a path with the laser obstacles.

In order to do so, a poly line representation of the robot

for each path node is created using the width of the robot

as a reference. As described, laser obstacles are defined by

a set of points. These points were obtained using the data

reduction scheme introduced in section II. Figure 9 shows

a laser obstacle composed of three points, U1, U2 and U3.

A set of line segments for each path node jΠi is defined

as jϒi. In Figure 9, set 2ϒ1 is composed of the lines: P1P2,

P2P3, P3P4, P4P1 and also of the line 2Π12Π2. The free space

analysis consists of searching for intersections between the

lines defined by consecutive laser obstacle points with the

lines in the set jϒi:

Ω 4( jζ ) = jAu
, (19)

where jAu is the arc length of node index u (see eq. (6)),

and u is the index of the node with maximum arc length that

does not collide with an obstacle:

u =

{
argmaxi

(
{ jΠi}

)
, i f ¬ intr(Li−1Li,ϒ

i)
0, otherwise

, (20)

Fig. 8. Calculation of Ω 3 scores. For each node, the minimum distance
to the closest repelling points is selected. Then the average of these minima
is calculated. In this figure the Ω̂ 3( jζ ) score will be the highest of all
trajectories, since path jζ is the one with best laser obstacle clearance.

where intr is a function that tests for the intersection of the

two groups of line segments and returns true if an intersection

occurs. The evaluations returns maximum arc length distance

that each path may accomplish before it collides with an

obstacle. If the trajectory is collision free, the arc length of

the most distant node is returned. Since we employ only first

order paths, sometimes a path that will lead to a collision

very far away from the robot may still be interesting to

follow, up to a certain moment. In these cases, the path

should not be discarded immediately. To handle this, the

free space evaluation employs the notion of minimum safety

distance Ψ which can be ascertained as the minimum arc

length distance for a path where no collisions occur, in order

to validate this path. The normalized value of this criteria is

given as:

Ω̂ 4( jζ ) =

{
1, i f Ω 4( jζ )> Ψ

0, otherwise
(21)

E. Overall score

The final score of a path is defined using a weighted

average of the three first evaluations. In the case of the free

space analysis, it is used to discard a path that will lead to a

collision. We propose the following expression for obtaining

a path overall score (
j
ζ̂ ).

j
ζ̂ = Ω̂ 4( jζ )·




w1

w2

w3



 ·




Ω̂ 1( jζ )

Ω̂ 2( jζ )

Ω̂ 3( jζ )



 , (22)

where wi is the weight corresponding to each criteria. In

order to have a normalized overall score, the weights must

add up to 1. The ratio between w1 and w2 defines the

reactivity of the path, i.e., when w1 >> w2 the paths that

rapidly bring the robot close to the attractor points will have

better scores. The trade off is that the robot may be close

to the desired position but without the desired orientation.

On the other hand, if w1 << w2 then the best scored paths

Fig. 9. Poly line representation of the robot using the robot width as
an estimate for defining several line segments. They are then tested for
intersection with the lines defined by consecutive laser obstacles repulsor
points U. In this case, path 2ζ intersects with the laser obstacle (marked by

stars), which leads to a score Ω̂ 4( jζ ) = 0.
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Fig. 10. The ATLAS robots have won the Autonomous Driving Compe-
tition of the National Robotics Open from 2006 to 2011.

will have an orientation similar to that of the attractor

points, and the algorithm will bring the robot smoothly to

the attractor points but with more guarantees of having the

desired orientation. The selection of the path to impose on

the robot is obtained by finding the highest score amongst all

paths. These weights where empirically tuned as presented

in next section.

VI. RESULTS

The path planning algorithm described in the previous

sections was successfully applied to the small scale robots

of the Atlas project http://atlas.web.ua.pt/ depicted in Fig.

10. These robots are equipped with several cameras and a

LRF. The parameters of the motion planning algorithm were

tuned empirically. The values are of course setup specific.

They are dependent on the scale of the robots as well as

other characteristics such as velocity or maximum wheel turn

angle. However, we found that tuning these parameters is not

a very difficult task. They have meaningful functionalities

and clear influence on the robot’s navigation behavior. This

helps an user to quickly find a good compromise for the

values of these parameters. In fact, the same path planning

algorithm was used for the two distinct robots in Fig. 10

without requiring much effort in tunning the parameters. For

reference, Table I shows the values of the parameters that

are used in one of the robots.

Figure 11 shows some examples of the path planner in

obstacle free environments. Figure 12 shows the performance

of the path planner in a scenario populated by obstacles. In

both cases the algorithm is able to select the most adequate

path.

The algorithm has been thoroughly tested in the ATLAS

robots during the Autonomous Driving Competition of the

National Robotics Open. The Atlas robots have won the last

six editions of the competition, i.e., from 2006 to 2011. This

shows that these robots are very capable of navigating in

complex scenarios. The presented path planing algorithm is

a cornerstone of these capabilities.

The path planning algorithm is computed in less than

5 miliseconds (on a Dual Core 2.5GHz HP 8510p) which

enables real time execution.

Several videos of the robots in different

competitions and laboratory tests can be found at

http://lars.mec.ua.pt/public/Media/path planning/. From

these it is possible to evaluate the navigation capabilities of

the Atlas robots. Several situations are shown:

TABLE I

PATH PLANNING PARAMETERS VALUES USED ON THE ATLASMV.

Parameter Equation Value on AtlasMv

Φ (18) 110% of half the robot’s width
Ψ (21) 1.5 meters
w1 (21) 0.25
w2 (21) 0.25
w3 (21) 0.5

• Navigation on the road, tunnel and road maintenance

area, during the 2010 competition;

• Fast speed navigation with obstacle avoidance, during

the 2011 competition;

• Very fast speed navigation with no obstacles, during the

2009 competition.

• One robot pursuing another. The front robot is being

remote controlled while the second follows it using laser

data. Demo at the 2009 competition;

• Obstacle avoidance with reverse maneuver. During the

2006 competition;

• Tunnel navigation, tests at the 2011 competition;

• A view of several paths being tested in real time;

• Inverse perspective mapping using two cameras

mounted on a pan and tilt system;

• Lane marker detection and navigation: robot’s view;

• Driving directive: driving on the left lane;

• Driving directive: driving on the right lane;

• Fast speed driving on the right lane.

VII. CONCLUSIONS

This paper presents an integrated solution for the steering

calculation of an autonomous robot. The architecture is

entirely modular: first, sensors including laser and cam-

eras are registered into a common reference frame using

multi-camera inverse perspective mapping [14]; then several

detector modules process the fused sensorial information

looking for patterns of interest for the navigation or for laser

obstacles; finally, representations of the detected patterns are

passed to the algorithm which decides the most adequate

path. The path planning module starts by generating a

discrete set of possible paths using a non-holonomic vehicle

model. This model reduces the search space of the possi-

ble paths, therefore improving computational performance.

Then, using the proposed criteria, paths are evaluated against

attractor and repelling points. These criteria are then fused

and the highest scoring path is used to decide the adequate

steering. The presented algorithm has been incorporated

in the Atlas robots and has played an important role in

the winning of the last six editions of the autonomous

driving competition. The path planner algorithm has worked

flawlessly during many hours of autonomous driving. The

next step will be to test the algorithm in real world scenarios

to assess performance.
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Fig. 11. Some examples of path evaluation. In this case, the road is detected using the technique described in III.B. The paths are represented by the
green arcs. The highest scoring path is highlighted in yellow.

Fig. 12. Some examples of path evaluation in obstacle populated scenarios. The paths are represented by the green arcs. The highest scoring path is
highlighted in orange, and the laser obstacles are represented by the thick magenta lines.
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Lifelong Localization and Dynamic Map Estimation
in Changing Environments

Gian Diego Tipaldi1 Daniel Meyer-Delius2 Maximilian Beinhofer1 Wolfram Burgard1

Abstract—Robot localization systems typically assume that the
environment is static, ignoring the dynamics inherent in most
real world scenarios like parking lots, warehouses and even
offices and households. In such environments the configuration
of certain objects such as cars, goods, or furniture can change
with time leading to inconsistent observations with respect to
previously learned maps and thus decreasing the localization
accuracy. In this paper we present a novel probabilistic approach
to lifelong localization in changing environments, where the robot
pose and the environment state are jointly estimated using a
Rao-Blackwellized particle filter. To describe the environment, we
utilize a hidden Markov model formulation. Exploiting several
characteristics of this model, we can considerably speed up
the estimation procedure. This makes it feasible to run our
algorithm online. Experimental results obtained with a real robot
in a dynamically changing environment demonstrate that our
approach can reliably adapt to changes in the environment and
that it significantly outperforms standard localization techniques.

I. INTRODUCTION

Long term operation of mobile robots in changing envi-
ronments has become a major focus of interest in robotics
research in recent years, as this ability is required for robots
navigating in the real world. One of the most challenging tasks
in this context is that of dealing with the dynamic aspects of
the environment. Many existing approaches to robot navigation
assume that the world is static and apply models which treat
dynamic objects as outliers [1, 2, 3]. For highly dynamic
objects like moving people or cars, these methods typically
work quite well, but they are less effective for semi-static
objects. By semi-static objects we mean objects which change
their state slowly or seldom, like parked cars, doors, pallets in
warehouses or furniture which can be moved. In many realistic
scenarios (see Figure 1), in which robots operate for extended
periods of time, semi-static objects are ubiquitous and ignoring
them can substantially deteriorate the navigation performance.

In this paper, we present a novel approach to lifelong
localization in changing environments, which explicitly takes
into account the dynamics of the environment. The approach
is able to distinguish among objects that presents fast dy-
namic behaviors, e.g., cars and people, objects that can be
moved around and change configuration, e.g., boxes, shelfs,
doors, and objects that are static and do not move around,

1 G. D. Tipaldi, M. Beinhofer, and W. Burgard are with the University of
Freiburg, Dept. of Computer Science, D-79110 Freiburg, Germany.

2 D. Meyer-Delius is with the KUKA Laboratories GmbH, D-86165
Augsburg, Germany.

This work has been partially supported by the European Commission under
contract numbers FP7-248258-FirstMM and FP7-260026-TAPAS. Also by the
German Research Foundation (DFG) with in the Research Training Group
1103.

Fig. 1. A robot navigating in a parking lot at noon (left) and at 6 pm (right).
Note that despite being at the same spot in both cases, the observations will
be substantially different due to the changed number of parked cars.

e.g., walls. To represent the environment, we use a dynamic
occupancy grid [4], which employs hidden Markov models
on a two-dimensional grid to represent the occupancy and the
corresponding transition probabilities for each cell of this grid.
We first learn the parameters of this model using a variant of
the expectation maximization (EM) algorithm and then use
this information to jointly estimate the pose of the robot and
the state of the environment during global localization. We
employ a Rao-Blackwellized particle filter (RBPF), in which
the robot pose is represented by the sampled part of the filter,
and the occupancy probability of a cell is represented in the
analytical part of the factorization. We further propose a map
management method, which uses a local map representation
that is able to forget changes in a sound probabilistic way, by
considering the mixing times of the associated Markov chain,
and to minimize memory requirements.

Compared to previous approaches, our algorithm has several
desirable advantages. First, it improves the robustness and
accuracy of the pose estimate of the robot. Second, our method
is able to provide an up-to-date map of the environment.
Finally, our map management method considerably reduces
the runtime of the process whilst minimizing the memory
requirements. As a result, our approach allows a robot to
simultaneously perform the estimation of its pose and the
potentially changing state of the environment in an online fash-
ion. To the best of our knowledge, this is the first approach to
address this problem in a general and systematic way. Previous
attempts either focused on how to filter spurious observations
due to dynamic objects, focused only on limited areas or
individual elements of the map or specifically addressed the
problem of pose tracking.

II. RELATED WORK

Most mobile robot navigation systems rely on a map of the
environment built beforehand in an offline phase. A popular
approach to deal with subsequent changes in the environment
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is to filter out sensor measurements caused by dynamic ob-
jects. Several approaches rely on probabilistic sensor models
that identify the measurements that are inconsistent with the
map. For example, Fox et al. [1] use an entropy gain filter
and a distance filter based on the expected distance of a
measurement, while Schultz et al. [2] uses minima of the laser
scan together with an already available map. Orthogonal to the
work on localization in dynamic environments, many authors
have addressed the problem of modeling such environments.

Other approaches specifically focus on building two maps,
one for the static part of the environment and one that accounts
for dynamic objects. Wolf and Sukhatme [5] propose a model
that maintains two separate occupancy grids, one for the static
parts of the environment and the other for the dynamic parts.
Wang et al. [6] formulate a general framework for mapping
and dynamic object detection and developed a system to detect
if a measurement is caused by a dynamic object. Montesano et
al. [7] extends the approach by jointly considering the problem
of dynamic object detection with the one of mapping, by
including the error estimation of the robot in the classifier.

Biber and Duckett [8] propose a model that represents the
environment on multiple timescales simultaneously. For each
timescale a separate sample-based representation is maintained
and updated using the observations of the robot according to
an associated timescale parameter. Our extends it by providing
a sound model of the change and the possibility of inferring
the optimal timescale parameter for each grid cell. Those
approaches, however, assumes that the position of the robot is
known with a certain accuracy to compute and update the maps
and therefore are not suited for global localization problems.

Murphy et al. [9] showed how a Rao-Blackwellized particle
filter solution to the SLAM problem can deal with dynamic
maps in a theoretical way. Their approach, however, is com-
putationally too complex to handle real world scenarios and
computes a map in the robot frame. This limits its applicability
in real world scenarios and in a global localization settings,
where the transformation between the world reference frame
and the robot frame is not available. Avots et al. [10], for
example, use a Rao-Blackwellized particle filter to estimate
the pose of the robot and the state of doors in the environment.
They represent the environment using a reference occupancy
grid where the location of the doors is known, but not
their state (i.e., opened or closed). Petrovskaya and Ng [11]
propose a similar approach where instead of a binary model, a
parametrized model (i.e., opening angle) of the doors is used.
Similar to these approaches, we also use a Rao-Blackwellized
particle filter to estimate the pose of the robot and the state of
the environment. Stachniss and Burgard [12] estimate typical
configurations of dynamic areas in the environment of a mobile
robot. Their approach clusters local grid maps to identify the
possible configurations and uses these clusters to localize a
mobile robot in a non-static environment. Similarly, Meyer-
Delius et al. [13] keep track of the observations caused by
unexpected objects in the environment using temporary local
maps. The robot pose is then estimated using a particle filter
that relies both on these temporary local maps and on a

reference map of the environment. Lately, an interesting ap-
proach to lifelong mapping in dynamic environments has been
presented [14]. The approach focuses mainly on visual maps,
and presents a framework where local maps (views) can be
updated over time and new local maps are added/deleted when
the configuration of the environment changed. In contrast to
their methods, however, we estimate the state of the complete
environment, and not only of a small, specific area or element.
Additionally, we also learn the model parameters from data
and we are able to generalize over unforeseen environment
configurations.

III. DYNAMIC OCCUPANCY GRID

Occupancy grids [15] are one of the most popular repre-
sentations of a mobile robot’s environment. They partition
the space into rectangular cells and store, for each cell, a
probability value indicating whether the underlying area of
the environment is occupied by an obstacle or not.

One of the main disadvantages of occupancy grids is that
they assume the environment to be static. To be able to
deal with changes in the environment we utilize a dynamic
occupancy grid [4], a generalization of an occupancy grid that
overcomes the static-world assumption by explicitly account-
ing for changes in the environment. A dynamic occupancy grid
relies on an HMM (see Rabiner [16]) to explicitly represent
both the belief about the occupancy state and state transition
probabilities of each grid cell.

We assume that the map consists of a collection of indi-
vidual cells, mt = {c(i)t }, following the standard occupancy
grid assumptions, and each cell is modeled using an Hidden
Markov Model (HMM). The state transition probabilities
p(ct | ct−1) of each HMM describe how the occupancy state
of cell c changes between consecutive time steps. Since a cell
c can be either free (f) or occupied (o), the state transition
model is specified using only two transition probabilities,
namely p(ct = f | ct−1 = f) and p(ct = o | ct−1 = o). Note
that assuming a stationary process for the changes in the
environment, these probabilities do not depend on the absolute
value of t. Standard occupancy grids are a special case of
dynamic occupancy grids where the transition probabilities
p(ct = f | ct−1 = f) and p(ct = o | ct−1 = o) are 1 for all cells
c.

The estimation of the occupancy state of a cell follows a
Bayesian approach according to

p(ct | z1:t) =

η p(zt | ct)
∑

ct−1∈{f,o}

p(ct | ct−1) p(ct−1 | z1:t−1) , (1)

where p(zt | ct) and p(ct | ct−1) correspond respectively
to the observation and transition models of the cell and η
is a normalization constant. The observation model specifies
the likelihood of measuring a cell as occupied or free and is
assumed to depend only on the sensor used and not on the
location, therefore it is specified beforehand and is the same
for each HMM. As explained in [4], the transition model and
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the observation model for each cell is estimated from observed
data using an instance of the expectation-maximization (EM)
algorithm.

IV. SIMULTANEOUS LOCALIZATION AND DYNAMIC STATE
ESTIMATION

In this section we describe our approach to simultaneously
estimate the robot pose and the dynamic state of the envi-
ronment. Although on first sight one can see the addressed
problem as an instance of the better known simultaneous local-
ization and mapping (SLAM), there are two main differences
between them.

The first difference is the absence of a global reference
frame in the SLAM problem. No global pose is required and
the initial pose of the robot can typically be set freely. On
the contrary, we explicitly address global localization as part
of the estimation aspect. We have a global reference frame
and the initial pose of the robot is unknown and assumed
to be uniformly distributed over the whole environment. The
second difference regards the dimensionality of the map. In
the SLAM problem, the size of the map is not known in
advance and can grow unbounded with time. In our problem
the size of the map is known and we only focus on estimating
the actual configuration of the dynamic objects present in the
environments. Despite the differences, the two problems do
share the same state space, i.e., the robot pose and the state
of the map, and one can exploit the same factorization that
made Rao-Blackwellized particle filters a feasible solution to
the SLAM problem [9, 17].

In the following we show how this factorization can be
exploited and we derive the RBPF that will be used to estimate
the posterior p(xt,mt | z1:t, u0:t−1,mt−1) about the robot
pose xt and the configuration of the environment mt, given the
observations z1:t, the odometry measurements u0:t−1 and the
prior over the map m0, which is computed using the limiting
distribution of the HMM. The key idea is to separate the
estimation of the robot pose from the map estimation process,

p(xt,mt | z1:t, u1:t−1,mt−1) =

p(mt | xt, z1:t,mt−1)p(xt | z1:t, u1:t−1,mt−1). (2)

This can be done efficiently, since the posterior over maps
p(mt | xt, z1:t,mt−1) can be computed analytically given
the knowledge of xt, z1:t and mt−1 and using the for-
ward algorithm for the HMM. The remaining posterior,
p(xt | z1:t, u1:t−1,mt−1), is estimated using a particle fil-
ter which incrementally processes the observations and the
odometry readings. Following Doucet et al. [18], we can
use the motion model x(i)t ∼ p(xt|x(i)t−1, ut−1) as proposal
distribution π(xt) to obtain a sample of the robot pose. This
recursive sampling schema allows us to recursively compute
the importance weights using the following equation

w
(i)
t = w

(i)
t−1

p(zt | x(i)t , z1:t−1,mt−1)p(x
(i)
t | x

(i)
t−1, ut−1)

p(x
(i)
t | x

(i)
t−1, ut−1)

= w
(i)
t−1p(zt | x

(i)
t , z1:t−1,mt−1). (3)

The observation likelihood is then computed by marginaliza-
tion over the predicted state of the map leading to

p(zt | x(i)t , z1:t−1,mt−1)

=

∫
p(zt | x(i)t ,mt)p(mt | m(i)

t−1)dmt

=
∏
j

N (zjt ; ẑjt ,Σ), (4)

were zj is an observation of an occupied point and ẑjt is the
its closest cell in the map with an occupancy probability above
a certain threshold. The map motion model p(mt | m(i)

t−1) is
computed using the HMM and described in section III. Note
that the disappearance of the integral is not an approxima-
tion but a direct consequence of using the likelihood field
model [19].

A. Map Management

As we already mentioned above, the initial pose of the
robot is unknown and assumed to be uniformly distributed
over the environment. This forces us to use a high number of
particles, generally above thousands, to accurately represent
the initial distribution. Since every particle needs to have its
own estimate of the map, memory management is a key aspect
of the whole algorithm. It is worth to notice that even if
memory is becoming cheap and available in large quantity,
the amount needed is still beyond what is currently available.
As an example, in an environment of 200x200 m2, stored at a
resolution of 0.1 m, and using 10000 particles we need about
50 GB of memory. In order to save memory, we want to only
store the cells in the map that have been considerably changed
from the a priori map m0, which is shared among the diverse
particles. This is done by exploiting two important aspects
of the Markov chain associated to the HMM: the stationary
distribution and the mixing time.

As the number of time steps for that no observation is avail-
able tends to infinity, the occupancy value of a cell converges
to a unique stationary distribution π [20]. This stationary
distribution represents the case where the environment has not
been observed for a long time and represents our a priori map
m0. In the case of a binary HMM as the one used in this paper,
this distribution is computed using the transition probabilities[

πf

πo

]
=

1

p+ q

[
q
p

]
, (5)

where for notation simplicity we have

p = p(ct = o | ct−1 = f),

q = p(ct = f | ct−1 = o).

Every time an individual particle observes the state of a
cell for the first time, the state distribution of that particular
cell changes from the stationary one and the particle needs
to store the new state of the cell. In order to reduce memory
requirements, only a limited number of cells should be stored
and a forgetting mechanism should be implemented. This can
be done in a sound probabilistic way, by exploiting the mixing
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Fig. 2. Comparison between the proposed approach (top) and MCL (bottom) in a global localization setting. The MCL converges too fast and to a wrong
position (frame 8), while the proposed approach needs more time to better estimate the current configuration (frame 12). The last frame shows the updated
map with the current configuration.

time of the associated Markov chain. The mixing time is
defined as the time needed to converge from a particular state
to the stationary distribution. The concrete definition depends
on the measure used to compute the difference between
distributions. In this paper we use the total variation distance
as defined by Levin et al. [20]. Since our HMMs have only two
states, the total variation distance ∆t between the stationary
distribution π and the occupancy distribution pt at time t can
be specified as

∆t = |1− p− q|t∆0, (6)

where ∆0 = |p(ct = f) − πf| = |p(ct = o) − πo| is
the difference between the current state p(ct) and stationary
distribution π. Based on the total variation distance, we can
define the mixing time tm as the smallest t such that the
distance ∆tm is less than a given confidence value ε. This
leads to

tm =

⌈
ln(ε/∆0)

ln(|1− p− q|)

⌉
. (7)

In other words, the mixing time tells us how many steps
are needed for a particular cell to return to its stationary
distribution, given an approximation error of ε, i.e., how many
steps a particle needs to store an unobserved cell before
removing it from its local map and rely on the a priori map
m0.

It is worth to notice that the map management reduces the
computational complexity as well, since in the naive approach
every cell has to be updated in the prediction step, while in
our case we need to update only the cells belonging to the
local maps.

V. EXPERIMENTS

We tested our proposed approach using a data set collected
with a MobileRobots Powerbot equipped with a SICK LMS
laser range finder. In the data set, the robot has been steered
through a general parking lot, performing a run every hour

from 7am until 6pm during one day. The range data obtained
from the twelve runs (data sets d1 through d12) corresponds
to twelve different configurations of the parked cars, including
an almost empty parking lot (data set d1) and a relatively
occupied one (data set d8). A standard SLAM approach for
static environments [17] has been used to correct the odometry
of the robot in each data set and thereby obtain a good estimate
of its pose to use as ground truth. The underlying assumption
here is that the parking lot did not change considerably during
a run.

In order to assess the performances of the localization
approach, we compared it to standard Monte Carlo localization
both in a global localization and pose tracking setting. Fur-
thermore, we compared our approach with the one of Meyer-
Delius et al. [13] but only in the pose tracking case, since it
employs standard MCL before the filter reaches convergence.
Comparison with other approaches is not possible since they
assume either a fixed number of configurations [12] or focused
on a limited set of dynamic objects (e.g., doors) [10, 11]. For
each data set, we compared our approach (RBPF), MCL using
the standard occupancy grid (MCL-S), MCL using the ground-
truth map for that specific data set (MCL-GT), and MCL using
the temporary maps (MCL-TM). We performed 100 runs for
each data set, where we randomly sampled the initial pose of
the robot. In order to obtain a fair comparison, the same seed
has been used to generate the initial pose, as well as to perform
all the random sampling processes for each approach. All the
approaches have been initialized with 10, 000 particles for
global localization and 500 particles for pose tracking. They
also used the same set of parameters, an occupancy threshold
of 0.6 and a maximum distance of 1m for the likelihood field
model.

For MCL-GT we computed a separate map for each dataset
and use it to localize the robot. Since the parking lot did not
change during this time, this respect the assumptions of MCL.
For MCL-S we stacked all the dataset together and computed
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TABLE I
GLOBAL LOCALIZATION EXPERIMENT

Data set MCL-GT RBPF MCL-S
Success Error2 σ2 Success Error2 σ2 Success Error2 σ2

01 100% 0.21 0.36 50% 0.26 0.36 50% 0.26 0.18
02 100% 0.19 0.29 40% 0.10 0.08 33% 0.13 0.09
03 100% 0.13 0.19 80% 0.10 0.29 52% 0.19 0.17
04 100% 0.04 0.03 60% 0.08 0.14 53% 0.15 0.19
05 100% 0.07 0.18 54% 0.07 0.09 35% 0.15 0.18
06 100% 0.02 0.01 87% 0.02 0.02 45% 0.06 0.02
07 100% 0.06 0.08 59% 0.12 0.22 43% 0.14 0.20
08 100% 0.05 0.10 71% 0.03 0.02 28% 0.03 0.01
09 100% 0.02 0.01 53% 0.12 0.22 31% 0.06 0.02
10 100% 0.14 0.28 62% 0.13 0.31 34% 0.30 1.01
11 100% 0.11 0.11 38% 0.15 0.21 26% 0.24 0.29
12 100% 0.19 0.32 20% 0.16 0.14 22% 0.27 0.38

Total 100% 0.11 0.19 52% 0.11 0.18 36% 0.17 0.22

a map as if the robot run for the whole day. For the RBPF,
we learned the parameters of the HMM using n-fold cross
validation and used the limiting distribution as prior map m0.

The results of the global localization experiment are shown
in Table I. The table shows the success rate of the global
localization, as the percentage of time the filter converged to
the true pose, and the residual squared error, with respective
variance, after convergence. The success rate is reported
relative to the result of MCL on the ground-truth map, in
order to have a measure independent of the complexity of the
environment. The results show that our approach outperforms
the standard MCL on static maps both in terms of convergence
rate and accuracy in localization.

Table II shows the results for the pose tracking experiment,
where the filter is initialized around the true pose and keeps
tracking the robot. The table shows the failure rate, i.e., the
percentage of time the robot got lost during tracking, as well
as the residual squared error in the case the tracking was
succesful. The results of this experiment show that the perfor-
mance of our approach in pose tracking is almost equivalent to
MCL with the ground-truth maps, with a failure rate of only
2%. It is worth to notice the comparison with the temporary
map approach [13] in this experiments. Looking at the tables,
we get two important messages. The first message is that the
proposed approach is always more precise in terms of residual
error. This come with no surprise, since the estimation of the
local surrounding is in some sense constraint with the map
geometry and static objects can only appear in places where
they have been seen during learning. On the contrary, the
dynamic maps get initialized with the current pose estimate of
the robot and introduce a bias in the estimation which is almost
impossible to remove. The second message is that the proposed
approach is more robust to the changes and initialization. This
is evident from the failure rate, where the temporary maps
approach is almost always on par with the RBPF but in three
cases, and in one case is even worse than standard MCL. The
problem is that if the temporary map is created from a wrong
position, there is no possibility to recover, the worst case being
when the observations matching the prior map are considered

as outliers.
In terms of runtime and size of the local map, we expe-

rienced and average mixing time of k = 10 and an average
size of the local map of about 250 cells. The original map
size is 369x456 pixels with a resolution of 0.1 m, resulting in
a memory saving of about three orders of magnitude with
respect to the naive RBPF. A frame to frame comparison
between the proposed approach and standard MCL is shown
in Figure 2.

Both experiments show two important aspects of the prob-
lem and of the solution adopted. The first aspect is that the
problem is much more complex than global localization since
the search space is bigger and deciding if a measurement is
an outlier or is caused by a change of the configuration is not
a trivial task. Furthermore, analyzing the performance results
in pose tracking, we see that if the filter is initialized close to
the correct solution, i.e., the search is reduced to the correct
subspace, it is able to estimate the correct configuration.
The second aspect is how the algorithm scales with different
amounts of change in the environment configuration. In the
first four data sets, the parking lot is almost empty and it
becomes quite full in the last ones. This is evident, when
analyzing the results of MCL on the static maps, since the
performance gets worse with an increasing amount of change.
On the other hand, the performance of our approach is less
sensible to the amount of change in case of global localization
and is even independent from that in case of position tracking,
as can be seen from the two tables.

VI. CONCLUSIONS

In this paper, we presented a probabilistic localization
framework which recursively estimates not only the pose of
the robot, but also the state of the environment. Our algorithm
uses a hidden Markov model to represent the dynamics of the
environment and employs a Rao-Blackwellized particle filter
to efficiently estimate the joint state. It explicitly exploits the
properties of Markov chains to reduce the memory require-
ments so that it can be run online on a real robot. Our approach
has the main advantages that it provides robust localization
even in changing environments and that it additionally supplies
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TABLE II
POSITION TRACKING EXPERIMENT

Data set MCL-GT RBPF MCL-S MCL-TM
Failure Error2 σ2 Failure Error2 σ2 Failure Error2 σ2 Failure Error2 σ2

01 0% 0.04 0.01 3% 0.09 0.03 5% 0.18 0.07 0% 0.25 0.16
02 0% 0.03 0.01 4% 0.08 0.05 24% 0.18 0.10 0% 0.16 0.04
03 0% 0.04 0.01 2% 0.05 0.04 10% 0.09 0.04 12% 0.63 0.45
04 0% 0.02 0.01 0% 0.04 0.01 10% 0.08 0.02 29% 0.63 0.51
05 0% 0.02 0.01 3% 0.03 0.04 13% 0.06 0.02 1% 0.51 0.31
06 0% 0.02 0.01 2% 0.02 0.01 26% 0.09 0.12 0% 0.21 0.05
07 0% 0.02 0.01 0% 0.03 0.01 34% 0.07 0.01 1% 0.44 0.24
08 0% 0.02 0.01 2% 0.02 0.01 35% 0.09 0.15 35% 0.59 0.56
09 0% 0.02 0.01 4% 0.03 0.01 37% 0.07 0.16 4% 0.49 0.31
10 0% 0.02 0.01 0% 0.03 0.01 36% 0.09 0.10 0% 0.32 0.12
11 0% 0.03 0.01 1% 0.05 0.02 42% 0.10 0.05 1% 0.47 0.28
12 0% 0.03 0.01 5% 0.06 0.01 44% 0.15 0.20 0% 0.23 0.04

Total 0% 0.03 0.01 2% 0.04 0.02 27% 0.10 0.08 7% 0.41 0.25

up-to-date maps of the environment. We evaluated it using
real-world data. The results demonstrate that our model sig-
nificantly outperforms standard Monte-Carlo localization on
static maps. This makes our method more suitable for long-
term operation of mobile robots in changing environments.

In future, we would like to extend our model to reason about
objects and not only about individual cells and experimenting
with different models to encode the change (e.g. Dynamic
Bayesian Networks and second order Hidden Markov Models).
This will bring a novel perspective on how to reason about
correlations in a grid map, as well as interestins issues such
as moving object detection and motion segmentation.
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Autonomous Navigation 

 Robot must: 

 Know its position in the world and where to go 

 Have a common reference frame with the user 

 Avoid obstacles on the way 

 

 In “robotic” words: 

 Map building 

 Global localization 

 Obstacle avoidance 
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Typical Assumption 

 The environment does not change over time 

 

 Typical approach 

 Drive the robot around to collect data 

 Use the data to build a map of the environment 

 Localize the robot using that map 

 

 Problem: environments DO change 

 Robot get confused: localization fails 

 Map is out of date: path planning fails 
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Difficulties of real environments 

 Environments change over time 

 Different kind of change: 

 Fast changes: people, cars, bikes 

 Mid-Term changes: parked cars, blockages 

 Long-Term changes: new buildings 

 

 Properties of changes 

 Fast: happens very often, similar to outliers 

 Mid-Term: happens often, stay for a while 

 Long-Term: happens rarely, structural change 
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Naïve 1 - Filter Dynamic Objects 
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Naïve 1 – Analysis  

 

Advantages 

 Efficient 

 Global reference 

 Fast changes 

 

Disadvantages 

 Mid-Term changes 

 No map update 
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Naïve 2 – Infinite SLAM 
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Naïve 2 – Analysis 

 

Advantages 

 Map update (slow) 

 Mid-Term changes 

 

Disadvantages 

 Fast changes 

 Complex 

 Local reference 
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Naïve Solutions - Comparison 

Dynamic Filtering 

 

Advantages 

 Efficient 

 Global reference 

 Fast changes 

 

Disadvantages 

 Mid-Term changes 

 No map update 

Infinite SLAM 

 

Advantages 

 Map update (slow) 

 Mid-Term changes 

 

 

Disadvantages 

 Fast changes 

 Complexity 

 Local reference 
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Localization and Map Estimation 

 Idea: 

 Simultaneous Localization and Mapping 

 Reuse the general map structure 

 Model the rate of change of the world 

 

 

Global localization 
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Localization and Map Estimation 

 Idea: 

 Simultaneous Localization and Mapping 

 Reuse the general map structure 

 Model the rate of change of the world 

 

 

Global localization Our approach 
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Dynamic Occupancy Grid 

 HMM represents (for each cell in the grid) 

 Belief about occupancy state, and 

 state transition probabilities 

 

 Specified by 

 Initial state distribution 

 

 Observation model 

 

 Transition model 
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Localization and Map Estimation 

 Exploit the same factorization of SLAM 

 

 

 

 

 

 

 Use Rao Blackwellized Particle filters 

 Multimodal distribution 

 Uniform prior over pose belief space 
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Rao Blackwellized Particle Filter 

  Each particle stores 

 Robot trajectory 

 Map of the environment 

 

 In global localization 

 High number of particles 

 Multimodal distribution 
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Rao Blackwellized Particle Filter 

  Each particle stores 

 Robot trajectory 

 Map of the environment 

 

 In global localization 

 High number of particles 

 Multimodal distribution 

 

 Problem 

 Memory consumption 
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Rao Blackwellized Particle Filter 

  Each particle stores 

 Robot trajectory 

 Map of the environment 

 

 In global localization 

 High number of particles 

 Multimodal distribution 

 

 Problem 

 Memory consumption 

 

 Solution 

 HMMs help us! 
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Stable Distribution & Mixing Time 

Stable distribution 

 Fixed point solution 
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 Total variation distance 
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Efficient Map Management  

 If not observed, a cell converges to its 
stable distribution  

 The speed of convergences is given by the 
mixing time 

 

 IDEA: Only store cells if they differ from 
the stable distribution 

 Share the stable map 

 Store new cell if observed  

 Forget cell if mixing time is less than 1 
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Experiments – How to evaluate 

 

 What is the evaluation 
metric? 

 

 

 What is the baseline? 

 

 

 How to set up the 
evaluation? 
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Experiments – How to evaluate 

 

 What is the evaluation 
metric? 

 

 

 What is the baseline? 

 

 

 How to set up the 
evaluation? 

 

Localization accuracy and 
reliability 

 

 

Localization in static 
environments 

 

 

Static time-slices of 
dynamic worlds 

4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, IROS'12, Vilamoura, October 7th

237



Experiments – Set up 

 Parking lot of university 
of Freiburg 

 Data collected every 
hour (12 logfiles) 

 Procedure 

 Compute the “static” 
map using SLAM 

 Groundtruth using MCL 
on the “static” map 

 

 Compare with MCL on 
the overall occupancy 
grid 
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Experiment – Global Localization 

 Monte Carlo localization  Our approach 
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Experiment – Global Localization 
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Experiment – Global Localization 
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Experiment – Global Localization 
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Experiment – Global Localization 
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Experiment – Global Localization 
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Experiment – Global Localization 
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Experiment – Pose Tracking 

 Monte Carlo localization  Our approach 
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Experiments – Position Tracking 
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Experiments – Position Tracking 
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Experiments – Position Tracking 
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Experiments – Position Tracking 
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Experiments – Position Tracking 
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Conclusions 

 Work with KUKA for the EU Project TAPAS  

 Novel localization solution in dynamic 
environments 

 Directly model the dynamics  

 Efficient solution using HMMs 

 Stable distribution 

 Mixing times 

 

 Experiments with real robot shows 
improved stability and accuracy 
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Real-time Scan-Matching Using L0-norm Minimization
Under Dynamic Crowded Environments

Yusuke Hieida1, Tsuyoshi Suenaga1, Kentaro Takemura1, Jun Takamatsu1 and Tsukasa Ogasawara1

Abstract— We propose real-time scan-matching based on L0-
norm minimization under dynamic crowded environment. The
prior scan-matching methods are based on L2-norm minimiza-
tion, because the measurement noise follows the normal distri-
bution in static environments. This assumption is unfortunately
broken in dynamic crowded environments.

We propose to use the idea of Locality Sensitive Hashing
(LSH) to accelerate the L0-norm minimization, which usually
is a time-consuming process. The LSH customized for our issue
reduces the calculation time even in the worst cases. The exper-
imental results demonstrate the effectiveness of the proposed
method compared with standard L2-norm minimization and its
robust version with M-estimator.

I. INTRODUCTION

It is very demanded for an autonomous robot to move
under unknown environments [1]. Scan-matching estimates
robot’s displacement by aligning time-series measurements.
Concatenation of displacement and the aligned measurement
generate robot’s trajectory and the map respectively, while
may suffer from accumulation of alignment errors. Iterative
Closest Point (ICP) method [2] and particle filter [3], [4]
improve the performance under static environments [5].

However, the assumption valid for static environments is
broken in real-world environments. Under dynamic crowded
environments, the accuracy of the alignment deteriorates
because both static (referred to as inliers) and moving objects
(referred to as outliers) are rigidly aligned, resulting in poor
performance of the prior methods (Fig. 1). To robustify
outliers in the alignment is inevitable under dynamic envi-
ronments.

A. Related work
There are two types of approaches for dynamic environ-

ments. One approach explicitly detects inliers/outliers by
feature extraction, tracking and so on. The other approach
gradually or simultaneously estimates the likelihood of out-
liers and decreases their effect during the alignment.

In the first approaches, Wolf and Sukhatme [6] proposed
to use only landmarks, which tend to be static, as in-
liers. Examples of landmarks are wall planes and corners.
Wang et al. [7] propose to interleave object tracking based
on motion detection. Hähnel et al. [8] also propose to use
object tracking based on the sample joint probabilistic data
association filter. Rodriguez-Losada and Minguez [9] prove
that the possible displacement to satisfy correspondence of
one point between two frames is helix and detect the outliers

1They are with Graduate School of Information Science, Nara In-
stitute of Science and Technology, Japan {yusuke-h, tsuyo-s,
kenta-ta, j-taka, ogasawar} at is.naist.jp

by using the distance to the helix. The performance of these
methods deeply depends on the detection of inliers/outliers.

In the second approaches, Hähnel et al. propose to use
the expectation-maximization (EM) algorithm [10]. The E-
step evaluates likelihood of outliers and the M-step aligns
measurements with weighting according to the likelihood.
Ramos et al. [11] propose to use the conditional random
field (CRF) to stochastically estimate data association and
outliers. Further, Ven et al. [12] estimate moving object and
motion as well as data association. Since these methods need
to optimize the function with large number of parameters, it
is difficult to achieve real-time operation.

Viewing from the outlier detection, use of robust statistics,
such as M-estimator [13], is one of the solutions. There are
several methods that use M-estimator for scan matching-
based alignment [14], [15]. Although the optimization of
the M-estimator is simpler and thus faster than the second
approaches, it may also lack of inappropriate convergence.

B. Proposed method

We propose real-time scan-matching that suits adapted to
dynamic environments. We use a common real-time LIDAR
sensor, which measures depths only on the cross-sectional
plane. Thus, we assume that the ground is flat and the
measuring cross-section is parallel to the ground. We believe
that the proposed method can be extended to its 3-D version.

The novelty of the proposed system is to use L0-norm
being that the prior systems use L2-norm. Although opti-
mization of the L0-norm tends to be time-consuming, we
propose to use the Locality Sensitive Hashing (LSH) [16] to
make the proposed method suitable for real-time.

The Contributions of this paper are twofold:

• We experimentally prove that the effectiveness of the
L0-norm for scan-matching under dynamic environ-
ments. Note that such norm is often employed in
other applications, such as face recognition [17], image
inpainting [18], and denoising [19].

• We propose to accelerate the L0-norm calculation with
approximation using the LSH [16]. Unlike the L2-
norm calculation, we only need to decide if the other
points exist inside the pre-defined radius and it is not
necessary to consider their point ID. These aspects
stabilize the calculation time even in the worst cases
and reduce memory consumption by removing the point
ID information.
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Static Object

Matching

Moving Object Matching error

t t-1

Fig. 1. Erroneous estimation of displacement due to dynamic environment.
The circular object moves rightward from time t−1 (middle) to time t (left),
while the L-shape object is fixed. Alignment only using the L-shape object
outputs the correct displacement. But the prior scan-matching methods
diffuse matching errors uniformly in the space, resulting in erroneously
estimating the displacement.

II. PRELIMINARY

Consider two point sets, {pi} and {qj}, which are mea-
surements of the same environment, but they have differ-
ent coordinates, i.e., measurements from different positions.
Robot’s displacement is estimated by aligning these two sets.

In scan-matching scenario, displacement is estimated by
minimizing the evaluation function E(R, t) in Eq. (1) [1].

E(R, t) =
n∑

i=1

f(Rpi + t, {qj}) =
n∑

i=1

f(p′
i, {qj}), (1)

where n is the number of the points {pi}, p′
i

def= Rpi + t, a
2×2 matrix R represents the orientation and a 2-D vector t
represents the translation in robot’s planer displacement. The
function f defines the distance between the point p′

i and the
measurement {qj}. In prior methods [2], the function f is
Euclidean distance between p′

i and the closest point qc of
the measurement, as f(p′

i, {qj}) = ||p′
i − qc||2.

III. SCAN-MATCHING BASED ON L0-NORM

A. Definition of L0-norm
Given two sets of points, {pi} and {qj}, the evaluation

function E(R, t) based on L0-norm is similarly defined as
Eq. (1), but the definition of the function f is different, such
as

f(p′
i, {qj}) =

{
0 (∃j, ||p′

i − qj || ≤ ε)
1 (otherwise)

. (2)

The distance threshold ε is a constant real number, which
is decided based on the accuracy of the measurement. The
evaluation function counts the points which do not have any
points near the distance less than ε. Note that calculation
of the L0-norm does not require the explicit point corre-
spondences, just to decide if the other points exist inside
the radius ε. We refer to these points as r-near neighbors
following the terminology in [16].

B. Acceleration by Locality Sensitive Hashing
We employ the Locality Sensitive Hashing (LSH) [16],

whose calculation time is O(1). The LSH limits the search
space using the hash function, whose values of two proximity

(1)

1 0

(2)
Fig. 2. Several boolean-array tables are generated by the LSH. Each bin
represents the existence of r-near neighbors and thus the existence is decided
by accessing the corresponding bin in O(1) time.

points tend to be the same. In the LSH, only the points
with similar hash values are considered. Using multiple
hash functions reduces the tendency to failure in the search.
Concretely, the hash function is defined as

h(x) =
⌊
a · x + b

w

⌋
, (3)

where the symbol % & means floor operation, x is the data
point, w is the width of the hash bin and the parameters a
and b are randomly chosen by p-degree stable distribution
and uniform distribution from 0 to w, respectively. We only
consider the projection of x- and y-axes as the vector a, e.g.,
(ax, 0) and (0, ay), and use them by concatenating x- and
y-axis projection LSH as shown in Fig. 2. The existence of
r-near neighbor is searched by accessing the bin of the table
several times (at most, number of tables).

Although the LSH is usually used for nearest neighbor
search, the LSH in r-near neighbor search has two more
advantages. In the nearest neighbor search, when all the
searched points {qj} have different hash values, it is neces-
sary to continue searching the points whose values are near
to the target value. However in r-near neighbor search, the
calculation is just terminated and we conclude that no r-near
neighbor exists. L0-norm does not consider the position or
ID of the r-near neighbor, and depends only on the existence.

IV. MINIMIZATION BY IMPORTANCE SAMPLING

The approximate robot’s displacement is obtained from
odometry or control inputs. Thus, we use the sampling-based
optimization method considering importance of searched
region. In strict sense, minimization of L0 norm is equivalent
to combinatorial optimization. In this sense, using the method
in [20] is alternative and future work.

We minimize the evaluation function using importance
sampling and coarse-to-fine search as shown in Fig. 3:

1) randomly generate n1 locations (referred to as sample-
A) based on odometry or control inputs

2) calculate the importance of each sample by Eq. (4).

exp
(

m − E(R, t)
k

)
. (4)

The parameter k controls the degree of the importance
with respect to the evaluation function.

3) select n2 locations (referred to as sample-B) from
sample-A following their weights.
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High likelihood Position

→

Extraction

→

Resampling

→

Estimated Position

Fig. 3. Minimization by importance sampling and coarse-to-fine search. By gradually changing the distribution σ of sampling range, the samples converge
on the minimum in the L0-norm.

(a) LIDAR: SICK LMS100 (b) Mobile robot: EMC-230
Fig. 4. Equipments used in this experiment

TABLE I
SPECIFICATION OF SICK LMS100

Viewing angle 270 [deg]
Angular resolution 0.5 [deg]

# of points in each frame 540
Accuracy in depth 1.2 [cm]
Maximum depth 20 [m]

Frequency 30 [Hz]

4) randomly generate n3 locations by normal distribu-
tion with variance (σx, σy, σθ) around from sample-B.
n2 × n3 locations are sampled in total.

5) repeat 2) to 4) in several times, while reducing vari-
ances.

V. EXPERIMENTS

A. Experimental setup

We used the LIDAR, SICK LMS100 (Fig. 4 (a)), and a
wheelchair, EMC-230 made by Imasen Engineering Corpo-
ration as the mobile robot (Fig. 4 (b)). This LIDAR measures
uniformly along the angle direction and thus the measured
points become sparser as the depth increases. Considering the
calculation time and the estimation accuracy, the measured
points {pi} are segmented and thinned out so that the points
are distributed uniformly in the space. On the other hand, in
the measured points {qj}, additional points are inserted as
all the intervals of neighbors are less than the threshold ε
in Eq. (2). We set ε to 1 [cm] based on the accuracy of the
LIDAR used in this experiment (see Table I).

We conducted three types of experiments. The first exper-
iment verifies the effectiveness of the L0-norm in outliers
compared with simple ICP, ICP with thresholding, and ICP
with M-estimator, which are most related to the proposed
method. Note that first approaches described in Section I-
A use such methods after detecting outliers. The second
experiment verifies the effectiveness of the LSH with respect
to the calculation time and accuracy. The third experiment
verifies the applicability of the proposed method through

(a) appearance (b) experimental environment

(c) floor plan
Fig. 5. Experimental environment. (a) appearance of the inside of the
building. (b) actual experimental environment crowded by people. (c) floor
plan of the environment.

actual use. The experimental environment is mainly the
inside of a building of our campus.

B. Verification of effectiveness of L0-norm

Figure 5 shows the experimental environment which is
about 5 [m] in width and 20 [m] in depth. About 25
people are moving toward the robot within the environment.
The robot measures the environment while fixed. Thus, the
estimated robot displacement (x, y, θ) should be always zero,
where x, y, and θ are the translation along the x- and y-axes
and the orientation, respectively.

To verify the effectiveness without considering the initial
guess, we optimize all of the functions by brute-force search,
where the ranges of x, y, and θ are [−5 [cm], 5 [cm]),
[−5 [cm], 5 [cm]), and [−0.3 [rad], 0.3 [rad]) and sam-
pled uniformly at 0.5 [cm], 0.5 [cm], and 0.01 [rad] (!
0.57 [deg]), respectively. There are 24000 samples in total.

In ICP with thresholding, we ignore some ratio of the fur-
ther corresponding data as outliers. We employ the Cauchy
and the Biweight function as M-estimator ρ(d) and use
ρ(f(Rpi+t, {qj})) in place of f(Rpi+t, {qj}) in Eq. (1).
The Cauchy function is defined as Eq. (5) and is often used
(e.g. [14], [15]):

ρ(d) =
C2

2
log

(
1 +

(
d

C

)2
)

, (5)
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TABLE II
MSE OF THE ESTIMATED LOCALIZATION: L2-NORM (SIMILE ICP),

THRESHOLD (IGNORE SOME RATIO OF THE FURTHER CORRESPONDING

DATA AS OUTLIERS), M-ESTIMATOR (CAUCHY AND BIWEIGHT

FUNCTIONS) AND L0-NORM

Method MSE (x [cm], y [cm], φ [rad])
L2-norm (3.37, 2.08, 0.016)

Threshold (30 percents) (1.17, 0.033, 0)
Threshold (50 percents) (0.19, 0.004, 0)

Cauchy (1.33, 0.013, 0)
Biweight (0.13, 0.002, 0)
L0-norm (0.42, 0.015, 0)

TABLE III
COMPARISON AMONG THREE KINDS OF r-NEAR NEIGHBOR SEARCH:

SIMPLE METHOD, KD-TREE METHOD, AND LSH. THE LSH OPERATES AT

HIGH SPEED, BUT SACRIFICES THE ACCURACY.

method time # of localizations RMSE of
[s] per second the L0-norm

simple 126 190 -
kd-tree 24 1000 -
LSH 5.4 4436 14.4

where C is a positive real value. The Biweight function is
defined as Eq. (6) and completely removes the effect of the
outliers (shape of the function is flat in the region |e| ≥ 0.01)
similar to the proposed L0-norm.

ρ(d) =






B2

2 (d ≥ B)
B2

2

(
1 −

(
1 −

(
d
B

)2
)3

)
(d < B)

, (6)

where B is a positive real value. Both values, B and C, are
set to 1 [cm] considering the sensor’s accuracy.

Since the estimated displacement should be zero as de-
scribed before, we quantitatively compare them using the
mean square error (MSE) of the displacement. Table II shows
the results. The estimation by the L0-norm, L2-norm with
higher threshold, and the Biweight function are similar and
better than the others, because sensor accuracy is 1.2 [cm].
This result demonstrates the effectiveness of the L0-norm,
which regards the point outside of the pre-defined radius
as outliers. The Biweight function and ICP with higher
threshold have a similar characteristic and thus achieves a
better performance. But this means that these three methods
have the same disadvantages with respect to the convergence.
Note that distance used as threshold in ICP with thresholding
is decided in each brute-force step.

Figures 6 to 9 show the maps estimated by these methods,
respectively. Each map is constructed by overlaying all
the measurements according to the estimated displacement.
The red line shows robot’s displacement, which should not
appear. The outer boundary shows the static walls of the
building (See Fig. 5 (c)), while the inner points indicate
moving people. If the map is appropriately estimated, the
outer boundary should be aligned without blurring. These
figures also demonstrate the effectiveness of the L0-norm.

Fig. 6. The map estimated by the L2-norm minimization with 30 percent
threshold. The red line indicates robot’s displacement and the blue points
indicate measured points on the global coordinates. Since the robot is fixed,
the red line should not appear. Since the blue points on the outer boundary
corresponds to the wall of the building (Fig. 5 (c)), they should not be
blurred.

Fig. 7. The map estimated by the Cauchy function

C. Verification of effectiveness of LSH
We compare the proposed LSH acceleration with the

simple method and the kd-tree method [22]. The computer
to employ is composed of Intel Core2Duo T7500 (Clock
speed: 2.2 [GHz]) and 2 [GB] memory. We conducted this
experiment with the same configuration of the previous
experiment, but the robot moved.

Table III shows the average calculation time for the brute-
force search (24000 times of calculation), number of L0-
norm calculations per second and the root mean square error
(RMSE) of the calculated L0-norm; the simple and kd-tree
methods always output correct answers, but the LSH method
does not. In calculation time, the LSH method is about
five times faster than the kd-tree method, but sacrifices the
accuracy; RMSE of the L0-norm is 14.4, while the average
of the norms is 280.03.

To evaluate the degeneration caused by the approximation
of the L0 norm calculation, we actually construct the map
using the LSH method. Figure 10 shows the map which
the RBPF-SLAM method [21] estimates from measurement
of the static environment and we regard it as ground truth.
Figure 11 shows the map which the LSH method estimates
from measurement of the same but dynamic environment.
Despite the approximation, the estimated map is acceptable
in visual inspection.

D. Verification in Actual Use
We actually estimate the map using the proposed method,

which includes the LSH method and minimization by the
importance sampling. The localization at each frame is
performed at about 5 [fps] on the same computer as that
of Section V-C. The parameters are: n1 = 300, n2 = 20,
n3 = 15, k = 20.0. Steps 2) to 4) are repeated twice,
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Fig. 8. The map estimated by the Biweight function

Fig. 9. The map estimated by the L0-norm minimization

and (σx,σy,σθ) = (0.03, 0.03, 0.025) at the first time and
(σx,σy,σθ) = (0.01, 0.01, 0.01) at the second time.

In the first experiment, the size of the experimental en-
vironment is about 50 [m] × 30 [m]. About 25 people are
moving around the robot as outliers as shown in Fig. 12.
300 frames of measurements are used. Figure 13 shows the
estimated map. Figure 14 shows the occupancy grid map
obtained from the estimation results using the open SLAM
software MRPT 1. We overlay the floor plan of this building
to evaluate the accuracy.

Figure 15 shows the estimated map in the second exper-
iment, which includes both indoor and outdoor measure-
ments. The size of the experimental environment is about
100 [m] × 60 [m]. 700 frames of measurements are used.
To evaluate the accuracy of the map, we overlay the aerial
photograph downloaded from the Google maps2.

E. Discussion

Both the L0-norm, ICP with higher threshold, and the
Biweight function have similar advantages and disadvan-
tages. Unlike the other two methods, by ignoring the dis-
tance and ID of the r-near neighbor in the LSH, the L0-
norm calculation is accelerated. Despite ignoring them, the
localization accuracy is surprisingly maintained as shown in
the experiments. Note that better results obtained by these
three methods strongly support the plausibility of using the
L0-norm.

VI. CONCLUSION

In this paper, we proposed real-time scan-matching for
dynamic environments, which works at about 5 [fps] on Intel
Core2Duo T7500 (Clock speed: 2.2 [GHz]) with 2 [GB]
memory. The proposed method uses L0-norm, not L2-norm,

1http://www.mrpt.org
2http://maps.google.com

Fig. 10. The map estimated by the RBPF-SLAM method [21] under the
environment without moving objects.

Fig. 11. The map estimated by L0-norm under the same environment as
Fig. 10, but including moving objects.

for alignment. First, we proved the robustness of the L0-norm
to outliers through actual use.

Next, we proposed to accelerate r-near neighbor search by
the LSH technique. Unlike the nearest neighbor search, we
only need to determine if r-near neighbors exist and it is not
necessary to consider the IDs of the neighbors. These aspects
do not affect the calculation time even in the worst cases
and reduce memory consumption by removing the point ID
information.

The proposed method estimates the displacement only
from two subsequent measurements. Generally, scan-
matching suffers from accumulation of the estimation errors.
Loop-closing technique [23] is one of the solutions.
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Abstract—In this paper we present a fast motion detection
technique based on laser data and odometry/imu information.
This technique instead of performing a complete SLAM (Si-
multaneous Localization and Mapping) solution, is based on
transferring occupancy information between two consecutive data
grids. We plan to use the output of this work for Bayesian
Occupancy Filter (BOF) framework to reduce processing time
and improve the results of subsequent clustering and tracking
algorithm, based on BOF. Experimental results obtained from a
real demonstrator vehicle show the effectiveness of our technique.

I. INTRODUCTION

In the field of Advanced Driver Assistance Systems
(ADAS), many current approaches rely on the perception of
the road scene. Particularly, the detection and tracking of the
objects in the scene is essential for prediction of risky driving
situations. Among the recent approaches for risk estimation,
the authors in [1] propose to model and recognize the behavior
of road scene participants. This approach is very promising
for long term prediction of the risk, but not applicable for
short term evaluation of the scene where we need to separate
environment into static and dynamic parts.

A huge amount of work has been done to detect moving
objects, especially by vision community [2]–[5]. These tech-
niques have primarily been based on background subtraction
or motion cues. Similar to background subtraction techniques
have also been used in occupancy grids to detect moving
objects [6]–[8]. These techniques are based on inconsistencies
observed for new data by comparing them with maps con-
structed by SLAM. [9] and [10] have also proposed model
based techniques to detect moving objects on the roads in the
context of autonomous vehicle driving. Recently Dempster-
Shafer theory based grids (evidential grids) have been used to
detect moving objects using conflict analysis techniques [11],
[12].

There exist various approaches for such classification of the
environment. Having a very precise map of the environment,
coupled with a very accurate localization algorithm, can be
costly. Thus to perform a SLAM-based localization would
be more realistic for commercial vehicles. The computed
occupancy grid provides a description of the static environment
[13]. More elaborated techniques like [8] or [9] improve this
approach by performing detection and classification simulta-
neously, in a model-based-tracking framework.

In this paper, we propose a fast and efficient method
for static/dynamic environment classification, which can be
plugged in Bayesian Occupancy Filter [14], [15], to provide
a more accurate representation of cell velocities. This will
result in an improved results of Fast Clustering and Tracking
Algorithm (FCTA) [16]. Our approach is different from other
grid based methods in the sense that usually a complete
SLAM solution is implemented to separate the moving
parts from the static parts (as in [10]). However in current
work we have developed a technique that deals with only
two consecutive frames to detect moving parts rapidly. Our
claim is that, by removing all static objects from the grid, the
performance of the FCTA algorithm would increase effectively.

The paper is organized as follow: In next section we
describe our demonstrator vehicle used to get data sets for
this work with sensors installed on it. Section III describes the
Bayesian occupancy filter framework for which we plan to use
the results of current work. Next in section IV we detail our
technique to detect moving objects from the sensor data. We
present some results in section V and conclude this work with
future perspectives in section VI.

II. DEMONSTRATOR

Our experimental platform is a Lexus LS600h car shown in
Fig. 1. The car is equipped with such sensors as: two IBEO Lux
lidars placed in the front bumper, one on left and other on the
right of the vehicle, a TYZX stereo camera situated behind the
windshield, and an Xsens IMU with GPS. Extrinsic calibration
of the sensors is done manually for this work. Note that, thanks
to the grid-based approach and considering the resolution of
the grid, a slight calibration error has very little impact on the
final results.

The hardware specification are the following: IBEO Lux
LIDAR laser scanner provides four layers of up to 200 beams
with a sampling period of 20 ms. The angular range is 100◦,
and the angular resolution is 0.5◦. The on-board computer is
equipped with 8GB of RAM, an Intel Xeon 3.4GHz processor
and a NVIDIA GeForce GTX 480 for GPU. The observed
region is 60 m long by 20 m wide, with a maximum height
of 2 m (due to different verticle angle of the 4 layers of each
laser scanner). Cell size for the occupancy grids is 0.2x0.2 m.
The car is equipped with an IMU sensor: MTi-G XSens which
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is responsible for collecting the innertial data, it is deployed
in the middle of the rear wheel axis, In this work we do not
use the stereo vision cameras.

Different sensors installed on the demonstrator vehicle and
other hardware setup are shown in figures 1 , 2 and 3.

Fig. 1. Lexus LS600h car equipped with two IBEO Lux lidars and a TYZX
stereo camera

Fig. 2. MTi-G XSens IMU unit

Fig. 3. Intel Xeon 3.4GHz linux box

III. BAYESIAN OCCUPANCY FILTER (BOF)

In this section we briefly introduce the BOF framework with
FCTA module to detect and track the moving objects. In BOF

framework the idea is to perform sensor fusion and environ-
ment monitoring at low level, hence the fast and efficient grid
based representation during all the processing. Objects are only
retrieved at the end of the processing through clustering of the
dynamic parts of the grid. So the complete processing BOF
framework is divided into three stages: i) Multi sensor fusion
using occupancy grid representation ii) filtering and estimation
of dynamic grid and finally iii) Clustering of the objects and
tracking. These three parts are elaborated below.

A. Sensor fusion from the multiple lidar layers

Each of the two lidar sensors installed on the vehicle
provides 4 layers of scanning points. Each layer is used to com-
pute an occupancy grid using the classical approach described
in [17]. In order to retrieve a single grid for representation
of the environment, the data from all these layers are merged
using the approach described in [18]. This approach fuses the
sensory information by using Linear Opinion Pools [19]. It
has the advantage of reducing the errors due to conflicting
information from the multiple layers.
The principle is to generate a posterior distribution over the
occupancy of a cell C of the grid given the opinion of m
sensors {Y1 . . . Ym}. Each sensor gives two quantities: its
estimation for the occupancy of the cell P (C|Yi) and wi(C), a
measure of the confidence for such estimations. The idea is to
shut-down those sensors that do not give relevant information
to the process by assigning a low weight to them. The fusion
of all sensory information will be as follows:

P (C|Y1 . . . Ym) = α
m∑
i=1

wi(C)P (C|Yi) (1)

where α =

[
m∑
i=1

wi(C)

]−1

is a normalization factor for the

weights. Equation (1) is used to generate 2D-occupancy grids.
For each sensor Yi we must define P (C|Yi), the probability
of a cell being occupied given the sensor information; and
wi(C), the confidence on the opinion. Note that we assume
independence among cells. This assumption, though it is very
strong, is necessary to be efficient in computing equation (1),
for each cell in parallel.

B. Filtering the grid using the Bayesian Occupancy Filter

The Bayesian Occupancy Filter (BOF) framework provides
filtering capability, as well as the ability to estimate a
velocity distribution for each cell of the grid. The BOF [14],
[15] provides an adaptation of the Bayesian filtering
methodology to the occupancy grid framework. It is based
on a prediction-estimation paradigm. As an input, it uses
an observed occupancy grid. On its output, it provides an
estimated occupancy grid and a velocity grid, representing
the probability distribution over possible velocities for each
cell. An efficient formulation of this filter can be found in [20].

The BOF operates with a four-dimensional grid representing
the environment. Each cell of the grid contains a probability
distribution of the cell occupancy and a probability distribution
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of the cell velocity. Given a set of observations, the BOF
algorithm updates the estimates of the occupancy and velocity
for each cell in the grid. The inference leads to a Bayesian
filtering process, as shown in Fig. 4.

In this context, the prediction step propagates cell occu-
pancy and antecedent (velocity) distributions of each cell in
the grid and obtains the prediction P (Ot

c A
t
c) where P (Ot

c)
denotes the occupancy distribution and P (At

c) denotes the
antecedent (velocity) distribution of a cell c at time t. In the
estimation step, P (Ot

c A
t
c) is updated by taking into account

the observations yielded by the sensors
∏S

i=1 P (Z
t
i | At

cO
t
c)

to obtain the a posteriori state estimate P (Ot
c A

t
c | [Zt

1 · · ·Zt
S ])

where Zt
i denotes the observation of sensor i at t. This allows

us to compute by marginalization P (Ot
c | [Zt

1 · · ·Zt
S ]) and

P (At
c | [Zt

1 · · ·Zt
S ]), which will be used for prediction in the

next iteration.

Fig. 4. Bayesian filtering in the estimation of occupancy and velocity
distributions in the BOF grid

C. Detecting objects with the Fast Clustering and Tracking
Algorithm

Obstacle detection requires to retrieve an object level rep-
resentation of the scene. This can not be directly reached from
the occupancy grid, and therefore a clustering algorithm is
necessary. An algorithm adapted to the BOF framework is the
“Fast Clustering Tracking Algorithm” described in [16]. It has
the major interest to create clusters considering not only the
connectivity in the occupancy grid, but also the Mahalanobis
distance between cells in the estimated velocity grids. Thus
two connected cells with different velocities are not merged
during the clustering process.
FCTA includes a Kalman filter for target tracking and a ROI
prediction approach that allows computation to be performed
in real time. The output of the algorithm is a set of tracked
objects, with position, velocity and associated uncertainties.

IV. MOTION DETECTION

In this section we detail the technique that we have de-
veloped to find moving parts of the evironment. The input to
this motion detection module consists of an occupancy grid
generated by the fusion module described in previous section
and that fuses data from eight layers of two laser scanners
installed on the demonstrator vehicle. Let us represent this
occupancy grid at time t as OGt[i] where 0 ≤ i < N with N

being the total cells of this occupancy grid. The value of each
cell of this grid is between 0 and 1 i.e. 0 ≤ OGt[i] ≤ 1
and represents internal belief of the ego vehicle about the
occupancy state of each cell with 0 means empty and 1 means
occupied.

The output of the XSens MTi-G motion sensor installed
on the demonstrator, at time instant t, consists of (along
with other information) two components of velocity vt =
(vx, vy) and values of quaternion components for orientation
Qt = (q0, q1, q2, q3). From these information we calculate
the translational and rotational velocities ut = (νt, ωt) of the
demonstrator vehicle as follows.

νt =
√
v2x + v2y (2)

To calculate rotational velocity of the vehicle we calculate yaw
angle of the vehicle from the quaternion as follows

Y = atan2(2∗(q0∗q3+q1∗q2), 1−2∗(q2∗q2+q3∗q3)) (3)

And if dt is the time difference between two successive data
frames at time t and t− 1 then rotational speed ω at time t is
equal to the yaw rate given as:

ωt =
Yt − Yt−1

dt
(4)

At each time instant t these OGt and ut are input to the
algorithm that consists of following steps.

I) Free and occupied counts arrays: for each new input
occupancy grid OGt we create two count arrays, the first one
called FreeCountt and the other called OccupiedCountt to
keep count of the number of times a cell has been observed
free and number of times it has been observed occupied
respectively. These arrays are initialized from OGt as follows:

OccupiedCountt[i] =

{
1, if OGt[i] > 0.5

0, otherwise
(5)

and

FreeCountt[i] =

{
1, if OGt[i] < 0.5

0, otherwise
(6)

II) Counts update from previous step: Suppose
FreeCountt−1 and OccupiedCountt−1 are the updated
counts arrays at time t− 1 and we want to update new counts
FreeCountt and OccupiedCountt from these old counts.
Since vehicle has undergone a position change determined by
ut = (νt, ωt), so there is no direct correspondence between
cells of two occupancy grids OGt and OGt−1. We must
find transformations that map a cell in OGt−1 to a cell in
OGt using ut. This situation is shown in figure 5, OGt−1

has origin at Ot−1 and OGt has origin at Ot. To find this
transformation suppose Ot−1 = (xt−1, yt−1, θt−1) = (0, 0, 0)
is the pose (position and orientation) of the occupancy grid
at time instant t − 1 (i.e of OGt−1) and we want to find
Ot = (xt, yt, θt), the pose of OGt under ut. Considering a
circular motion trajectory, the pose of Ot w.r.t Ot−1 is given
as:
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 xt
yt
θt

 =

 νt/ωt ∗ sin(ωt ∗ dt)
νt/ωt − νt/ωt ∗ cos(ωt ∗ dt)

ωt ∗ dt

 (7)

Fig. 5. Positon of the grid at time instants t − 1 and t. Vehicle undergoes
a motion of ut = (νt, ωt) to move from Ot−1 to Ot. We need to find the
position of point P of grid OGt−1 in grid OGt.

An important thing to note here is that we are concerned
with the localization of two consecutive frames only. We do not
solve the complete SLAM problem, making the technique very
fast and avoiding the error accumulation over time. Moreover
empirically observed odometry error between two consective
frames is less than 10 cm whereas the cell size is 20cm x
20cm enabling us to assume that cell mappping (explained
next) from grid at t− 1 to grid at t is exact.

To map a cell of grid OGt−1 to grid OGt we proceed as
follows. Suppose point P (shown in figure 5) is the center of
a cell in grid OGt−1 and we want to find its corresponding
cell in grid OGt. We define following two pose manipulation
operations:

If Pij is the pose of origin j w.r.t origin i and Pjk =
[xjk, yjk, θjk]

T is the pose of origin k w.r.t j then the pose of
k w.r.t i denoted as Pik = [xik, yik, θik]

T is given as:

Pik ≡ ⊕(Pij , Pjk) =

 xjk cos(θij)− yjk sin(θij) + xij
xjk sin(θij) + yjk cos(θij) + yij

θij + θjk


(8)

For the pose Pij the reverse pose relationship Pji =
[xji, yji, θji]

T (pose of i w.r.t j) is defined as:

Pji ≡ 	(Pij) =

 −xij cos(θij)− yij sin(θij)xij sin(θij)− yij cos(θij)
−θij

 (9)

Since the pose of Ot w.r.t Ot−1 is POt−1Ot = [xt, yt, θt]
T

and point P has pose POt−1P = [x, y, 0]T w.r.t Ot−1. The
pose of this point P w.r.t Ot is calculated as.

POtP = ⊕(POtOt−1
, POt−1P ) (10)

or
POtP = ⊕(	(POt−1Ot

), POt−1P ) (11)

First two components of POtP give x and y positon of point
P w.r.t origin Ot. From these x and y values we can easily
calculate the index of the cell where point P lies in grid OGt.
These transformations will map a cell having index i in OGt−1

to a cell having index j in grid OGt. If this cell j is visible
in OGt i.e 0 ≤ j < N then we can update new count values
for this cell as follows:

FreeCountt[j] = FreeCountt[j] + FreeCountt−1[i] (12)

and

OccupiedCountt[j] = OccupiedCountt[j]+OccupiedCountt−1[i]
(13)

We repeat this process for all cells of grid OGt−1 to update
counts values in grid OGt.

III) Motion detection: After the counts arrays have been
updated as explained above the motion grid can be calculated
from the new data using following heuristic:

MotionGridt[i] =


1, OGt[i] > 0.5 and

FreeCountt[i] > 2 ∗OccupiedCountt[i]
0, otherwise

(14)
After this processing MotionGridt has 1s in the cells which
are detected as belonging to moving objects.

V. RESULTS

Some qualitative results are shown in figures 6, 7, 8 and 9
(rectangles around the objects are drawn manually to highlight
them). Figure 6 shows the motion detection scenario of two
cars. A car moving around a round point has been successfully
detected in figure 7. Detection of two moving cars on a
highway is shown in figure 8. We see some false positives
as well but we believe that this noise can be easilyl removed
by the later steps. Finally figure 9 shows the case when there is
no moving object in the view, we see that no significant object
is detected as moving. A video showing some more results of
this work can be found here1.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a fast technique to find mov-
ing objects from laser data. The presented technique does not
require to perform complete SLAM to detected moving objects
but uses laser data along with odometry/IMU information to
transfer occupancy information between two consecutive grids.

We plan to use this fast motion detection technique for the
BOF framework to provide a priori motion information for the

1https://sites.google.com/site/qadeerbaig/motion-detection
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Fig. 6. Motion detection results of two cars. Top, scenario, bottom right
input fused grid, bottom left resulting motion grid.

calculation of cell velocities. Currently BOF, in the absence
of a motion sensor, uses a bayesian inference to calculate a
probability distribution on a range of velocities for each cell
requiring to perform calculations for cells which belong to
actually static parts of the environment. With current work we
will be able to reduce this processing time by limiting to those
cells which have been detected as belonging to moving objects
only. This will, in turn, result into an improved performance
of FCTA algorithm which is based on BOF output.
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