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Foreword 
Autonomous driving and navigation is a major research issue which would affect our lives in near future. The 
purpose of this workshop is to discuss topics related to the challenging problems of autonomous navigation and of 
driving assistance in open and dynamic environments. Technologies related to application fields such as 
unmanned outdoor vehicles or intelligent road vehicles will be considered from both the theoretical and 
technological point of views. Several research questions located on the cutting edge of the state of the art will be 
addressed. Among the many application areas that robotics is addressing, transportation of people and goods seem 
to be a domain that will dramatically benefit from intelligent automation. Fully automatic driving is emerging as 
the approach to dramatically improve efficiency while at the same time leading to the goal of zero fatalities. 
Theses new technologies can be applied efficiently for other application field such as unmanned vehicles, mobile 
service robots, or mobile devices for motion assistance to elderly or disable peoples. Technologies related to this 
area, such as autonomous outdoor vehicles, achievements, challenges and open questions would be presented, 
including the following topics: Road scene understanding, Lane detection and lane keeping, Pedestrian and vehicle 
detection, Detection/ tracking and classification, Feature extraction and feature selection, Cooperative techniques, 
Collision prediction and avoidance, Driver assistance systems, Collision prediction and avoidance, Environment 
perception, vehicle localization and autonomous navigation, Real-time perception and sensor fusion, SLAM in 
dynamic environments, Real-time motion planning in dynamic environments, 3D Modelling and reconstruction, 
Human-Robot Interaction, Behavior modeling and learning, Robust sensor-based 3D reconstruction, Modeling and 
Control of mobile robot, Multi-agent based architectures, Cooperative unmanned vehicles (not restricted to ground 
transportation), Multi autonomous vehicles studies, models,techniques and simulations  

Previously, six workshops were organized in the near same field. The 1st edition PPNIV'07 of this workshop was 
held in Roma during ICRA'07 (around 60 attendees), the second SNODE'07 in San Diego during IROS'07 (around 
80 attendees), the third PPNIV'08 in Nice during IROS'08 (more than 90 registered people), the fourth edition 
SNODE'09 in Kobe during ICRA'09 (around 70 attendees), the fifth edition PPNIV'09 during IROS'09 in Saint-
Louis (around 70 attendees) , and the last one RITS'10 was organized in the last ICRA'10 in Anchrorage (around 
35 attendees). A special issue in IEEE Transaction on ITS, mainly focused on Car and ITS applications, has been 
published in September 2009.  
 
This workshop is composed with 4 invited talks and 13 selected papers (8 selected for oral presentation and 5 
selected for interactive session. Five sessions have been organized: 

 Session I: Path Planning & Navigation Systems 
 Session II: Perception & Situation Awareness 
 Session III: Interactive session 
 Session IV: 2D and 3D Mapping & Localization 
 Session V: Mobile robot modeling and control 

 
Intended Audience concerns researchers and PhD students interested in mobile robotics, motion and action 
planning, robust perception, sensor fusion, SLAM, autonomous vehicles, human-robot interaction, and intelligent 
transportation systems. Some peoples from the mobile robot industry and car industry are also welcome.  

This workshop is made in relation with IEEE RAS: RAS Technical Committee on “Autonomous Ground Vehicles 
and Intelligent Transportation Systems” (http://tab.ieee-ras.org/). 
 
Christian Laugier, Philippe Martinet and Urbano Nunes 
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Session I 

 
Keynote speaker: Rafael Toledo-Moreo  

(Technical University of Cartagena, Spain) 
 

 

Why can’t road positioning and integrity be friends? 
 
 

Abstract : Todays positioning systems work quite well in many situations. However, they lack some 
robustness, what hinders its exploitation for safety-critical and liability-critical applications. The warranty of 
the quality of the positioning service would open the way for further services, but for the community of the 
field it is unclear whether or not integrity is achievable for road positioning. There are several good reasons 
for that hesitation: The representation of the integrity of such a complex system by means of projecting all 
its possible errors onto an integrity parameter is difficult; the use of assumptions may cause that a non-
modeled event disrupts the consistency of the error estimates; and also, the different ways in which the 
concept of integrity is approached in the literature lead to confusion and contradictions. This talk focuses on 
road positioning and its integrity, discussing aspects that play a role in this problem such as Global 
Navigation Satellite Systems, aiding sensors, the vehicle environment and its model, data fusion methods 
and map-matching algorithms. 
 
Biography:  

Rafael Toledo-Moreo received the M.S. degree in automation and electronics engineering from the 
Technical University of Cartagena (UPCT), Cartagena, Spain, in 2002 and the Ph.D. degree in computer 
science from the University of Murcia (UMU), Murcia, Spain, in 2006. He is a Professor with the 
Department of Electronics, Computer Technology, and Projects, UPCT. He is also a Research Member of 
the Intelligent Systems and Telematics Group, UMU. His main field of interest is road navigation systems. 
Dr. Toledo-Moreo is a member of the International Federation of Automatic Control Technical Committee 
on Transportation Systems and the IEEE Robotics and Automation Society Technical Committee for 
Intelligent Transportation Systems. He is an Associate Editor and member of the International Program 
Committees of several journals and conferences related to Intelligent Transportation Systems. 
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Related paper for the invited speaker 

 
 Title: Lane-Level Integrity Provision for Navigation and Map Matching With 

GNSS, Dead Reckoning, and Enhanced Maps,  
Authors: Rafael Toledo-Moreo, David Bétaille, François Peyret 

Published in : IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION 

SYSTEMS, VOL.11, NO.1, MARCH2010 

Abstract: Lane-level positioning and map matching are some of the biggest 

challenges for navigation systems. Additionally, in safety applications or in those 

with critical performance requirements (such as satellite-based electronic fee 

collection), integrity becomes a keyword for the navigation community. In this sce-

nario, it is clear that a navigation system that can operate at the lane level while 

providing integrity parameters that are capable of monitoring the quality of the 

solution can bring important benefit to these applications. This paper presents a 

pioneering novel solution to the problem of combined positioning and map match-

ing with integrity provision at the lane level. The system under consideration 

hybridizes measurements from a Global Navigation Satellite System (GNSS) 

receiver, an odometer, and a gyroscope, along with the road information stored in 

enhanced digital maps, by mean so far multiple-hypothesis particle-filter-based 

algorithm. A set of experiments in real environments in France and Germany shows 

the very good results obtained in terms of positioning, map matching, and integrity 

consistency, proving the feasibility of our proposal. 

Website : http://wsdetcp.upct.es/Personal/rToledo/home.htm 
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Autonomous Navigation in Crowded Campus
Environments
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∗ National University of
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Kent Ridge, Singapore
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Research and Technology,
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§ Massachusetts Institute
of Technology,
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¶ DSO National
Laboratories,
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Abstract—This paper considers autonomous navigation in
crowded city environments. An autonomous vehicle testbed is
presented. We address two challenges of pedestrian detection
and GPS-based localization in the presence of high-level build-
ings. First, we augment the localization using local laser maps
and show improved results. A pedestrian detection algorithm
using a complementary vision and laser system is proposed.
We implement this algorithm in our testbed and evaluate its
performance using purely off the shelf components and open
source software packages provided by ROS. We also show
how utilizing existing infrastructural sensors can improve the
performance of the system. Potential applications of this work
include fully automated vehicle systems in urban environments
typical in megacities in Asia.

I. INTRODUCTION

One of the long-standing research activities in robotics has
been towards increasing the level of autonomy in both manned
and unmanned systems. In transportation systems, automation
has been employed, for example, in traffic light management
and congestion avoidance services and has attracted numerous
research interests in the transportation science and logistics
community. Intelligent vehicle/highway systems (IVHS) tech-
nologies have also been developed to enhance operational
safety and efficiency [14].

In this paper, we focus on putting more autonomy into the
transport vehicles to deal with the problem at a more local
level. Interests in autonomous driving, especially in urban en-
vironments, were largely stimulated by the launch of the 2007
DARPA Urban Challenge (DUC). In this competition, the
autonomous vehicles have to navigate, in a fully autonomous
manner, through a partially known urban-like environment
populated with (static and dynamic) obstacles and perform
different tasks such as road and off-road driving, parking
and visiting certain areas while obeying traffic rules. As the
emphasis of the competition is geared more towards military
applications, the vehicles have to be fully self-contained in
every aspect including sensing, perception, computing, power,
and control. Although this leads to an elegant setup, the
situations encountered in DUC do not closely represent those
faced in a real-world crowded city like Singapore, London,
etc. In addition, the cost of hardware components on these
autonomous vehicles is extremely high, making them imprac-

tical to be employed in social or commercial applications. The
majority of the cost comes from expensive, high-performance
sensors (e.g. Velodyne LIDAR) and localization units (e.g.
Applanix Intertial Navigation System) needed so that the ve-
hicles can effectively handle all the possible (even adversarial)
environments they may encounter.

This paper focuses on crowded city situations where au-
tomation can significantly improve the throughput as compared
to on ground human decisions. As opposed to adversarial
environments faced in military applications, city environ-
ments faced in social or commercial applications are typically
equipped with infrastructure including cellular networks, traf-
fic cameras, loop detectors and ERP (Electronic Road Pricing)
gantries. In addition, the detailed road network and many
features of the environment in which the vehicles operate can
be obtained a priori. In fact, autonomy in transport vehicles
has been attained at various levels of interaction with the in-
frastructure. Systems that are driven with heavy infrastructure
dependence such as mono-rails typically require significant
setup and are more suitable for a fully controlled environment
such as warehouses and docks. FROG (Free Ranging on Grid)
Navigation Systems1 is an example of such heavily structure-
dependent systems and has been deployed for container han-
dling operations in factory sites. Their system consists of a
team of autonomous vehicles and a centralized supervisory
system. The autonomous vehicles localize themselves using
magnets on the floor and GPS for point to point navigation
and use laser and sonar for obstacle avoidance. An advantage
of this approach is that the global viewpoint of the environment
can be obtained while the main disadvantages include delayed
information, communication burden and cost of specialized
infrastructure setup.

On the other hand, Google driverless car, for example,
is fully autonomous [9]. Their converted Toyota Prius uses
cameras to detect traffic lights and radars to detect pedestrians.
Their autonomous navigation also relies on laser range finders,
cameras, radars, inertial sensors and high-detail maps. An
advantage of these fully autonomous systems is the ability
to handle dynamic and adversarial scenarios. However, as

1http://www.frog.nl/
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opposed to heavily structure-dependent systems, only limited,
local viewpoint can be obtained as on-board sensors on each
vehicle have the same limitation of limited viewpoint and
occlusion by urban structures and other vehicles. Each vehicle
also bears the burden of sensing and perception. Additionally,
being fully autonomous and self-contained comes with a heavy
price tag.

In this paper, we investigate the integration of the heavily
structure-dependent and the fully autonomous approaches in
order to build an autonomous vehicle system at reasonable cost
as well as keep the high level of autonomy even in a crowded
scenario. As an initial step, we focus on campus environments.
We exploit an abundance of infrastructural sensors available to
the road network that can provide very important information
about the presence of other entities on the road in real time.
This information can help in planning collision-free optimal
trajectories for each vehicle beyond visual range. Exploiting
the infrastructure also helps reduce the sensing burden on
the vehicle and reduce the cost of the vehicle, making such
systems more economical and accessible to normal people.
The main contributions of the paper are the following.

1) Typical localization techniques heavily depend on GPS
(Global Positioning System). These techniques do not
work when dealing with high-level buildings in city
environments. We augment the localization using local
laser maps and show improved results.

2) We implement a more robust pedestrian detection system
using a complementary vision and laser system. We
show that such a set up works well even for a moving
vehicle.

3) Our approach is to incorporate existing infrastructural
sensors whenever possible into the motion planning
of the autonomous vehicle. To demonstrate the setup,
we show a scenario incorporating the infrastructural
sensors that significantly improves the performance of
the vehicle operation.

The remainder of the paper is organized as follows. An
overview of our testbed is provided in Section II. Section
III describes our dynamic obstacle detection component and,
in particular, the pedestrian detection algorithm implemented
in our testbed. Its performance is evaluated, both for single
and multiple pedestrian cases. The localization and navigation
components are described in Section IV. Section V describes
the role of infrastructural sensors in our system. Finally,
Section VI concludes the paper and discusses future work.

II. AUTONOMOUS VEHICLE TESTBED

Our autonomous vehicle testbed is a Yamaha G22E golf car
mounted with various sensors (Fig.1a). It was modified and
equipped with actuators to achieve drive by wire capabilities.
Two servo motors are used to control the steering angle and
amount of brake applied separately. Since it is an electric
vehicle, the throttle control is readily accessible through a
varying PWM voltage signal that can be regulated by a
low level controller. To fulfill the power requirement for a
wide variety of sensors, a 1350W inverter was used. For the

sensors, a wheel encoder is fitted at the left front wheel.
The steering angle and brake are inferred implicitly from the
motors encoder. To receive GPS signal, Ublox EVK-6R is
used. The module comes with Enhanced Kalman Filter to give
an estimate of global location using integrated data input from
wheel encoders tick count and onboard gyroscope. The main
sensors are the laser range finders that consist of two SICK
LMS 291 and Hokuyo UTM 30LX. The SICK lasers have a
range of 80 m with 180◦ field-of-view (FoV). The Hokuyo
sensor, on the other hand, has 270◦ FoV with 30 m range. An
off the shelf webcam is fitted on one of the SICK lasers to
provide visual feedback and to perform vision processing.

Software Architecture: We have developed a modular
software architecture for ease in incorporating additional
functionality without modifying the core system. The system
has been integrated into ROS (Robotic Operating System),
which provides a standard form of communication among
different software modules [11]. The main modules that have
been implemented on the current system include perception,
mapping-and-prediction, localization, planner and controller as
shown in Fig. 1b.

The perception module takes as an input the raw sensed
data from the sensors. Detection and tracking algorithm is then
applied to extracted features (e.g., pedestrian and other moving
and stationary objects) from the raw sensed data. As discussed
in Section V, the sensors we have utilized include not only
onboard cameras and laser range finders but also infrastructure
cameras installed, for example, at an intersection. The data
from these infrastructure cameras are transmitted through a
WiFi network. To reduce the amount of data that needs to
be transmitted, the raw sensed data may be processed so that
only important features (e.g., other vehicles and pedestrians
approaching the intersection) are transmitted.

The mapping-and-prediction module maintains the global
map of the environment in which the system is operating.
In addition, it predicts the motion of moving objects such
as pedestrians. The localization module incorporates the data
received from the GPS (Global Positioning System), IMU
(Inertial Measurement Unit), laser range finder and vehicle’s
odometer to provide an estimate of the current state (position,
velocity and heading) of the vehicle.

The planner module is responsible for computing an
obstacle-free path, satisfying certain traffic rules, to the goal. In
the case where the user is onboard, the goal may be specified
as the destination through the user interface. Alternatively,
the scheduling system that computes the pick-up and drop-off
position for each autonomous vehicle may send the origin and
destination to the system through a cellular network. Finally,
the controller module is responsible for computing the actuator
commands, including the speed, gear and steering angle, to
the physical actuators so that the vehicle closely follows the
planner-generated path.

III. DYNAMIC OBSTACLES DETECTION

For autonomous navigation, we need to pay special attention
to dynamic objects, like pedestrians and other vehicles on the
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(a) System Testbed (b) System Architechture
Fig. 1. Autonomous Vehicle Testbed

(a) (b)
Fig. 2. Pedestrians and other dynamic vehicles need to be detected and
handled. (a) NUS campus road, (b) Golf-cart operating in the presence of
pedestrians

road in addition to static environmental features like kerbs,
drains, traffic lights, etc (Fig.2). Usually the presence of
static objects are known a-priori from a traffic database or
built during and initial phase in an offline manner. However,
dynamic objects on the road can only be handled while the
autonomous vehicle is driving. Pedestrians, as a key factor in a
campus environment, deserve more attention. On-board cam-
eras are one of the most effective ways of identifying objects
in the environment. However, the computation requirement
and dependence of ambient light conditions limit their utility.
Alternatively, laser based approaches can detect the presence
of an object more reliably but have problem disambiguating
different types of objects. In our project, we built an onboard
pedestrian detection system by hierarchical fusing of a single-
layer LIDAR and a simple off the shelf webcam. We combine
the advantages of LIDARs in detecting an object with the
simplicity of disambiguating objects from the camera images.
It proves to be fast, computationally efficient and robust in our
operations.

Significant research has been done on pedestrian detection
and tracking with LIDARs and vision. The LIDARs pro-
vide accurate position information of scanned points in the
surroundings, which will be segmented, clustered, and then
classified into different objects. Pedestrians can be extracted

with certain criteria or features, such as static features of shape
and size founded in [5], [10], or dynamic features of gait
founded in [15], [2], and so on. These algorithms perform
well with multiple LIDARs placed off-board and in relatively
structured environment, but would probably fail in real urban
traffic, due to severe occlusion and complex surroundings. In
the final analysis, limitation of these algorithms comes from
sparsity of information of LIDARs. The idea of multi-sensor
fusion arises to counter this limitation. The most common type
that can be found is a combination of LIDAR and camera.
While some related algorithms have been introduced in [4],
[6], few of them are suitable to autonomous vehicles, with
considerations to the demanding working environment. An
algorithm similar to our approach is proposed in [3]. It depends
on a four-layer LIDAR to track pedestrians and do preliminary
classification, and then use camera to refine the classification
belief. In our project, a similar algorithm is proposed. While
we also rely on a single-layer LIDAR to track objects, we
do not try to classify them in this part, but leave that to the
following part of vision verification. Our algorithm proves
fast, computationally efficient, robust in operation, and easy
to implement.

A. Pedestrian detection algorithm

In our implementation the moving object tracking is realized
with a single-layer LIDAR. While the approach is general
to any dynamic object, like vehicles, pedestrian and other
objects, we take the pedestrians as a representative class to
talk about in details in this paper. Fig.3 shows the flow of
the algorithm while, Fig.4 shows the result of the detection
algorithm for a single data frame. The algorithm runs in
two phases, pedestrian candidate detector and pedestrian
verification.

Pedestrian candidate detector: The LIDAR data is seg-
mented and clustered based on their position and relative
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(a) Camera Input (b) Laser Input (c) laser based image segmentation

(d) HOG classifier output (e) Robust pedestrian detection (f) Track of single pedestrian.
Fig. 4. Pedestrian detection module

Fig. 3. Pedestrian detection module.

velocity (Fig.4b). Potential candidate clusters for pedestrians
are filtered out based on their size and velocity. We use a
simple linear velocity model in our implementation. However
advanced model checks could also be used for higher accuracy.
In fact keeping a more relaxed and conservative filter decreases
the rate of false negatives in the subsequent pedestrian verifi-
cation phase.

Pedestrian verification: In this part, we use a common
webcam to verify whether extracted objects are pedestrians
or not. Extrinsic calibration of webcam and LIDAR is done
beforehand. These candidates are projected onto certain areas

of webcam image correspondingly. The whole image is then
cropped into several smaller sub images (Fig.4c). Since only
a small number of sub-images are processed, we decrease the
computational time in image processing. The vision verifi-
cation algorithm used here is histogram of oriented gradient
object detection (HOG). In this work, a default trained people
detector Support Vector Machines (SVM) from OpenCV was
chosen. To enable fast verification, GPU accelerated HOG
algorithm was used. HOG classifier identifies each sub image
containing pedestrians (Fig.4d) and we label the LIDAR
tracks accordingly. This helps us in avoiding running vision
based pedestrian detectors on the whole image (Fig.4a,e) and
significantly reduces the computational load. The reduced
computation allows us to run such detectors in real time on
the vehicle.

Note that the pedestrian detection allows us to improve the
motion planning for the autonomous vehicles by reasoning
about the motion models of the pedestrian obstacles. In the
case of false negatives due to vision errors and FoV limitations,
the pedestrian clusters are still tracked by the laser, treated as
a generic dynamic object and avoided accordingly.

B. Performance evaluation

Single pedestrian detection: Fig.4 shows how this system
detects and track a single pedestrian. Fig.4(f) shows the track
of this pedestrian. At first, the pedestrian gets tracked by
LIDAR, and labeled as a dynamic object shown in white. After
it enters the FoV of webcam, it gets verified as a pedestrian

4PNAVHE'11 16



and the track turns green. Other potential dynamic objects in
the image are correctly rejected.

Multiple pedestrian detection: Fig.5 shows the result of
our pedestrian detection module during an segment of an
autonomous run. Fig.5a shows a snapshot of a typical scene
with multiple pedestrians. We see that when the pedestrians are
too close to each other the laser signatures get merged and they
are detected as a single cluster. However, in the view of motion
planning it does not matter how many actual pedestrians
are close by, our autonomous vehicle avoids the pedestrians
effectively. In the test, most pedestrians got detected, whether
as an individual, or as a group, making safe autonomous
driving of our vehicle. Frequency of this detection system is
up to 37Hz, limited by scan frequency from LIDAR. Range
of effective detection is about 14 meters, limited by resolution
of webcam. Our system works well within 14 meters with
system precision around 0.8, From Fig.5b, Vision verifica-
tion improves precision of detection system based on laser
extraction. Even when much noise exists, as what happened
at the distance between 4 to 6 meters in our collected data,
while precision of laser part is only about 0.20, vision part
improves it to about 0.80. Note that most of the errors if any
in detection as shown in Fig.5b are corrected at around 4m,
at which distance the autonomous vehicle is able to come to
an emergency stop under the influence of high frequency low
level obstacle avoidance. We will be re-visiting this detection
rate at higher speeds once we implement the system on a faster
vehicle.

IV. LOCALIZATION AND AUTONOMOUS NAVIGATION

Most of the popular approaches in autonomous navigation
outdoors depend heavily on GPS based localization. In fact
the DARPA challenge was based on GPS based waypoints
as input. However GPS is not very reliable in urban areas
due to multi-path, limited satellite view in tall sky-scrapers.
Such a scenario is shown in Fig.6a. A cloudy sky coupled
with tall buildings can attenuate the GPS signals, resulting in
erroneous localization as shown by the GPS track in Fig.6b. As
the vehicle moves, its GPS erroneously estimates the vehicle
location inside buildings and a pure GPS based localization
and control could lead to failed navigation.

Interestingly one of the main reasons of GPS limitation i.e,
the proximity of buildings, itself provides a good opportunity
to utilize range based localization algorithms. In our work we
use the laser based maps to augment in regions where GPS
underperforms.

A. Localization

We compare our approach with the popular approach used
by most of the participants successfully in the DARPA Ur-
ban Challenge of using the integrated GPS + Inertial based
bayesian estimate. While such an approach can help localize in
a-priori unknown environments as was the case in the DARPA
Challenges, the presence of cloudy sky and high rise buildings
give very poor estimates.

(a) (b)
Fig. 6. Bad GPS with integrated gyro based odometry

Recently, [8], showed significant improvements in au-
tonomous vehicle localization using the powerful Velodyne
3-D omnidirectional HD-LIDAR. The cost of building a
precomputed map, is greatly offset by improvements in the
online localization accuracy. We used a 2-D single plane
laser 180 FoV Hokuyo UTM 30 LX mounted at the roof
of the autonomous vehicle for mapping and localization.
To build an occupancy grid based map, we used off-the-
shelf package in ROS, OpenSLAM [1]. We performed the
standard Adaptive Monte Carlo Localization (AMCL) [12]
during the autonomous run. AMCL requires odometry which
we fused from the IMU/LIDAR scan matching data streams.
The purpose of the exercise was to see how our system fared
qualitatively, with such a simple setup.

(a) Laser map used for Localization

(b) Red: GPS, Blue: Odometry Green: AMCL

Fig. 7. Qualitative comparison of various localization schemes

We show the results of an autonomous run in Fig.7. Fig.7a
shows the boundary of occupancy map overlayed on a satellite
map showing sufficient reliability. Fig.7b shows the localiza-
tion results of various algorithms on the same test run. The
red track shows the GPS logs while the blue track shows the
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(a) Sample pedestrian detection (b) Pedestrian precision
Fig. 5. Pedestrian detection from an autonomous run of our testbed.

location of the vehicle using the odometry alone. The green
track is computed by the AMCL algorithm. We see that for the
purposes of our sample test run, our laser based localization
was sufficient. This is also borne out by various runs of our
autonomous vehicle one of which is shown in Fig.7b, in the
presence of temporary occlusions and other dynamic vehicles.

B. Cost based Navigation function

Fig. 8. Navigation module of the autonomous vehicle

Fig.8 shows the structure of our navigation module. During
each run, the vehicle maintains its own map based on rolling
basis, with the vehicle centered on the map. A map of 50m
x 50m with a grid cell size of 0.2m is maintained at all time.
Each cell in the map can have a 1 byte value. Initially, the
cells in the map are marked as unknown with a value of 255.
Whenever an obstacle is observed, the map is updated with
a cost value of 254, with the cells now marked as obstacles,
the cost is propagated radially outward with an exponential
function. At the low level, speed and steering control are
separated. For the speed control, the vehicle considers the
following input before planning for next action: the average
cost function that is present within a defined area in front
of itself and the curvature of the path. To ensure stability, a
conservative approach is utilized. First, an exponential function
is used to calculate the safe speed given the steering angle of
the golf car. Then, from the normalized average cost along the
projection of the golf car within a fix distance, another safe
speed is obtained. Between these 2 values, the minimum one is
chosen as the final set point for the speed. The implementation
of waypoint follower uses pure pursuit control [7]. Since the
golf car’s maximum speed is limited to 2 m/s, the look-ahead
vector is fixed to 3 meters.

V. EXPLOITING INFRASTRUCTURE SENSORS

An important feature that distinguishes urban environments
from those considered in military applications is the tech-
nological advances that we can exploit in order to increase
safety and efficiency of the system without imposing much
additional cost. Consider, as an example, the scenario where
an autonomous vehicle has to traverse an intersection. In many
cases, other vehicles approaching the intersection from other
directions may not be detected properly by the onboard sensors
due to limited sensing coverage and occlusions caused by
structures and other environmental features. In [13], the au-
thors mitigate this problem by using two pointable long-range
sensors and propose a methodology for computing the optimal
angles of the sensors to maximally cover relevant unobserved
regions of interest. A method for detecting occlusions is also
presented. A phantom vehicle is then placed in the occluded
area, leading to a safe but potentially conservative result.

In this work, we consider utilizing infrastructure cameras in-
stalled, for example, at an intersection, rather than completely
relying on the onboard sensors. These infrastructure cameras
can provide information about whether there are pedestrians or
other vehicles approaching the intersection. The information
can then be transmitted through a WiFi or cellular network. An
advantage of this approach is that more accurate information
can be obtained as the infrastructure cameras may be mounted
to avoid occlusions. In addition, as the number of autonomous
vehicles in the system exceed the number of intersections, the
cost can be substantially reduced. In fact, in many modern
cities, cameras are already installed at many intersections to
detect traffic violations. Hence, this approach may incur almost
no additional cost.

A. Avoiding Unobserved Pedestrians

To show the effect of additional information, we simulate
an infrastructural sensor as a wifi-node broadcasting specific
information. The infrastructural camera detects the presence
of pedestrians and gives a binary information to the golf-cart
whether there are pedestrians about to cross the road or if the
region is pedestrian free. Currently we are not building models
of pedestrian intentions to analyze whether the pedestrian is
facing the road or whether s/he is just waiting rather than
trying to cross the road. Any pedestrian detection would
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trigger the autonomous vehicle to slow down in anticipation
for the pedestrian to cross the road. The rate of pedestrian
detection is 5 Hz. However, since the algorithm only depends
on the pedestrian detection alone and not a more detailed
analysis based on the pedestrian position and heading, it would
also work well with modern traffic/security cameras operating
around 1Hz.

Fig.9(a,b) show the view of the scene from onboard as well
as a mock infrastructure sensor. The detection of the pedestrian
in the left of the image in Fig.9a is quite difficult due to the
occlusion from pillars and railings. The autonomous vehicle
has to communicate with an existing sensor (security camera)
to get more information to plan its path. The pedestrian
detection is much easier in Fig.9b. The autonomous vehicle
gets the pedestrian information from the infrastructure pedes-
trian detector sensor and modifies its motion plan, as shown
in Fig.9c. The videos of the operation can be accessed at
http://dl.dropbox.com/u/20792983/pedestrianVisual1.mp4 and
http://dl.dropbox.com/u/20792983/pedestrianVisual2.mp4.

. . .

Ped. Sensor

V2 V1

Ped. sensing region

Ped. crossing

Looped track

Fig. 10. Simulation environment setup.

1) Control comparative experiments: Clearly, we would
expect to see an improvement in the navigation performance
while incorporating the information from an infrastructural
sensor. To test the amount of improvement in a stochastic
pedestrian arrival scenario, we run a control experiment in
simulation as shown in Fig.10. One or more vehicles move in a
loop that has a pedestrian crossing. A pedestrian detection sen-
sor (i.e., a traffic camera) detects the presence of pedestrians
and sends information to the autonomous vehicles V 1, V 2, . . ..
Depending on the presence of pedestrians appearing in a
stochastic poisson process of mean rate λ = 1ped/sec.,
the vehicles slow down or keep moving. The vehicles are
also constrained to maintain a minimum distance between
them to avoid collision. We run the experiment both for
a single vehicle as well as multiple vehicles. We compare
the performance with the baseline case where there is no
infrastructural sensor and the autonomous vehicle has to come
to a stop before detecting pedestrians on road, something
similar to a regular stop and yield traffic sign. We run the
simulation for various vehicle speeds and various number of
vehicles. Let Tbase be the time taken to reach the pedestrian
crossing by the baseline algorithm, while Tinfra. be the same
measure for our algorithm getting additional information from
the infrastructure sensor. We compute the difference in the
time taken to complete each lap, as the time gained by using

the infrastructural sensor, Tgain = Tbase − Tinfra..
Single Vehicle: Fig.11a, shows the plot of Tgain vs the

number of laps the vehicle completes. We see clearly that
the cumulative time gained by using the infrastructural sensor
improves with time. We also note that such a gain is more
significant when the vehicle moves at a higher speed. The
blue plot is the gain for vehicle moving at 2m/s while the red
at 1m/s. This shows that the traffic flow at pedestrian crossings
where the vehicles are able to move at higher speeds can be
significantly improved by using infrastructural sensors.

Multiple Vehicles: Fig.11b, shows the plot of Tgain vs
the number of laps the vehicle completes for multiple vehicles.
We see that as the number of vehicles increases, Tgain also
increases. This is because in the baseline algorithm, each
vehicle has to stop for pedestrians whether or not they are
present. Additionally they have to stop to maintain a minimum
distance to the vehicle in front when the front vehicle stops.
The number of vehicle stops increases significantly when the
number of vehicles increases raising the discrepancy between
the proposed and the baseline algorithm.
Tgain is the difference in cumulative improvement in per-

formance. In a stochastic setting, Tgain varies and so although
we see a clear mean increase in performance, the plot is not
strictly monotonic. Moreover for the multiple vehicle scenario
we assumed that pedestrian take longer duration to complete
the crossing than the car making the stop and go sequence.
Hence over the long run, more often than not the lead car
(Vehicle 1) takes the burden of stopping for the pedestrians
showing a smaller rate of performance improvement.

During the operation and our experimental runs, we noticed
that the infrastructure sensor rarely had any failure in detecting
the appearing pedestrians. As the detection is a boolean i.e,
either there is a pedestrian or not, a very reliable detection
rate is achieved by carefully tuning the parameters of the
static infrastructure sensor to the exact detection region. More-
over, the autonomous vehicle testbed moves relatively slowly
under 3m/s and performs a proximity test with its onboard
range sensors at a very high frequency. These two factors
in conjunction avoids any future collisions of the vehicle
with incoming pedestrians. We are currently investigating the
effects of noisy infrastructure sensor, information delay, and
high speed vehicles for more complex scenarios.

VI. CONCLUSION AND FUTURE DIRECTIONS

We considered three main challenges in autonomous naviga-
tion in crowded city environments: localization, pedestrian de-
tection and limited onboard sensing capability. We showed that
in the proximity of tall buildings, popular GPS-based localiza-
tion can be extremely erroneous. Odometry-based localization
was shown to perform slightly better. In order to achieve
acceptable performance, we augmented the localization using
local laser maps based on Adaptive Monte Carlo Localization
technique and showed significantly improved results. We also
integrated the use of vision and LIDARs to achieve more
robustness in pedestrian detection and tracking. Finally, we
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(a) Onboard camera view (b) Infrastructure camera view (c) Vehicle in operation
Fig. 9. Pedestrian crossing experiment
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Fig. 11. Improvement in traffic flow due to incorporating infrastructural sensing in simulation.

exploited existing infrastructural sensors to improve the on-
board sensors visibility. The performance of the overall system
was evaluated.

Future work targets at augmenting the current system to
a fully automated campus vehicle system. To this end, we
are currently investigating the use of WiFi-based localization
as a complementary approach to GPS-based and laser-based
localization. We also plan to incorporate pedestrian intentions
in motion planning. Implementation of high-level logics to
ensure that the autonomous vehicle obeys traffic rules, properly
handles pedestrian and responds to faults and failures is also
of interest. Finally, the system needs to be verified for safety
both for nominal operations and in the presence of faults and
failures.
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Integration of visual and depth information for vehicle detection

Alexandros Makris, Mathias Perrollaz, Igor E. Paromtchik, Christian Laugier

Abstract— In this work an object class recognition method
is presented. The method uses local image features and follows
the part based detection approach. It fuses intensity and depth
information in a probabilistic framework. The depth of each
local feature is used to weigh the probability of finding the
object at a given scale. To train the system for an object
class only a database of annotated with bounding boxes images
is required, thus automatizing the extension of the system to
different object classes. We apply our method to the problem
of detecting vehicles from a moving platform. The experiments
with a data-set of stereo images in an urban environment show
a significant improvement in performance when using both
information modalities.

I. INTRODUCTION

The state-of-the-art visual object class recognition systems
operate with local descriptors and codebook representation of
the objects. Various local features (e.g. gradient maps, edges)
are used to create the descriptors. Then kernel based classi-
fiers are commonly employed to classify the detected features
in one of several object classes [1][2][3][4]. The recognition
of vehicles or pedestrians from sensors mounted on a moving
platform is achieved by different approaches using various
types of sensors, e.g. stereo camera, laser [5][6][7][8]. The
approaches that perform data fusion from various sensors
have proven to be the more robust in a variety of road
conditions [9][10].

This work focuses on the development of an object class
recognition system which follows the part based detection
approach [2]. The system fuses intensity and depth infor-
mation in a probabilistic framework. To train the system
for a specific object class, a database of annotated with
bounding boxes images of the class objects is required.
Therefore, extending the system to recognize different object
classes is straightforward. We apply our method to the
problem of detecting vehicles by means of on-board sensors.
Initially, depth information is used to find regions of interest.
Additionally, the depth of each local feature is used to weigh
its contribution to the posterior of the object position in the
corresponding scale. In the following we provide a brief
review of the methods related to our approach.

In the object recognition literature there is a large amount
of works that follow the part-based approach. In [2], a
codebook of object part appearance is constructed using
interest point detector-descriptor pairs. The detected features
are grouped into clusters and linked to the center of the
object. A method that builds upon the aforementioned ap-
proach is presented in [11]. An approach to discriminatively

INRIA Grenoble Rĥone-Alpes, 38334 St. Ismier, France
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learn a mapping between image patches and Hough votes is
presented. Random trees are used to learn the above mapping
in a supervised way (instead of clustering). In [12] shape
and appearance information is used to perform object class
recognition based on part detection and Hough transform.
The codebook entries are selected using the boosting algo-
rithm according to their significance, which is related to its
discrimination capacity and the precision of the localization
information for the object’s centroid. In [1], a grouping of
local features into pairs is proposed in order to increase their
discriminative power. Selecting features connected by lines
ensures finding features pairs with high repeatability.

Stereo-vision is widely used in the field of intelligent
vehicles, mainly for generic obstacle detection [13][14]. A
different approach for vehicles recognition is presented in
[15], where the authors detect possible cars using 3D points
provided by stereo-vision, and confirm the recognition of cars
through a symmetry criterion. In [16], the author generates
hypotheses of pedestrian as connected areas of constant
disparity, and uses the aspect ratio of the corresponding
regions as a clue to recognize pedestrians.

Lately, several methods that combine intensity with depth
information have been proposed. In [17], vehicle and pedes-
trian detection is performed following the approach of [2]
but also filtering the search regions by using the ground
plane constraints. In [18], a method for pedestrian detection
from a moving vehicle is presented. Stereo cues and a
clustering algorithm are used to find candidate areas. In the
following several detection windows are constructed around
each area. The detection takes place in these windows using
multiple features applied in manually predetermined sub-
regions. In [9], a pedestrian classification method using depth
and intensity features is developed. In this method the holistic
detection approach is used extracting features from the whole
region and feeding a classifier. The authors demonstrate that
using both depth and intensity information outperforms any
single modality method. Integration of stereo-vision with
visual recognition has been proposed in [19], for estimating
the road surface, reducing the hypotheses for a sliding
window approach. In [20][21][22], video and laser data are
fused to achieve robust vehicle and pedestrian detection.

The novelty of our approach is the fusion of depth and
intensity information to form a probabilistic part-based de-
tector. Firstly, we develop a framework to estimate the proba-
bility of finding an object at a position given all the available
information. The depth of the detected local features is used
to weigh (w.r.t. the corresponding distance) their contribution
for the scale of the object. Using the depth information in
this way takes into account the context in which we expect to
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find the objects (e.g. distant view, close-up). This is beneficial
for the robustness of the approach, by avoiding for example
many noisy detections resulting from false matches between
features of different scales. Additionally, the computational
gain from filtering out regions is very important for the
on-line operation of the system which is required in the
intelligent vehicles application. The method is tested with
stereo video sequences captured in an urban environment.

The paper is structured as follows. Section II provides
the theoretical background for our method. Section III gives
the implementation details, providing a description of the
stereoscopic sensor, the depth calculation algorithm, and the
training and detection algorithms. The experimental evalu-
ation of our method follows in Section IV and finally the
conclusions in Section V.

II. METHOD DESCRIPTION

The proposed method is a probabilistic part-based object
recognition method fusing intensity and depth information.
The aim is to find the occurrences of a specific object
category and viewpoint. Leton denote the object cate-
gory/viewpoint with state vectorx = [ix, iy, is]

T comprised
of the image coordinates of the object’s center and its scale.
The method estimates the probability distributionp(on, x|I)
whereI denotes the image measurements.

The measurements are a set ofN image featuresI =
{fj ,dj}

N

j=1, where fj and dj are the intensity and depth
descriptor of featurej respectively. The features are linked to
the object through a codebook representation denoted byC =
{Cj , xcj}

N

j=1 whereCj is a random variable over the possible
codebook labels of featurej and xcj = [icxj , i

c
yj , i

c
sj ]

T its
position and scale. The possible labels are theM clusters
of the codebook{ci}

M

i=0 where c0 is the possibility that
no cluster is observed. For each codebook clusterci we
calculate during training the associated descriptorfci , and
the conditional probability distributionp(Cj = ci, xcj |on, x).
This distribution enables us to estimate the position and scale
of the cluster knowing the position and scale of the object
x. If the camera parameters are known, the distance between
the camera and observed cluster and thus the object can also
be inferred. The graphical model depicting the conditional
independence assumptions that we make is shown in Fig. 1.

Fig. 1. Graphical Model of the method. (a) Model usingC variable to
denote the cluster labels and positions andI for all the available image
measurements. (b) Analytic form showing the decomposition when multiple
features are present. Each feature has an intensityfj and a depth descriptor
dj and is associated with the possible clusters labels throughCj .

The probability of the objecton at positionx given all the

available measurements is given by:

p(on, x|I) =
∑

C

p(on, x|C)p(C|I) (1)

where the marginalization is over the values ofC.
The first term of (1) is the probability of having the object

at a position given the set of observed clusters:

p(on, x|C) = p(on, x)
N
∏

j=1

p(Cj , xcj |on, x)
p(Cj , xcj)

(2)

where we make the assumption that each cluster is indepen-
dent from the others given the object. The second term of
(1) is given by:

p(C|I) =
N
∏

j=1

p(Cj , xcj |fj ,dj)

∝
N
∏

j=1

p(fj |Cj)p(dj |Cj , xcj)p(Cj , xcj)

(3)

where the probability of observing a feature given the
corresponding cluster is considered independent from the rest
of the features. The terms of (3) are:

• p(fj |Cj) is the intensity likelihood calculated by com-
paring the observed feature descriptorfj with the clus-
ter’s descriptor.

• p(dj |xcj , Cj) is the depth likelihood computed by com-
paring the distance of the feature calculated using the
depth informationδd with the distance calculated using
the scale of the clusterδs.

• p(xcj , Cj) is the prior for observing the clusterCj at a
positionxcj .

By replacing (3), (2), in (1) we get:

p(on, x|I) ∝

p(on, x)
N
∏

j=1

∑

(Cj ,xcj)

p(Cj , xcj |on, x)p(fj |Cj)p(dj |Cj , xcj)

(4)

We consider the priorp(on, x) as uniform. Additionally,
for each possible object position we consider only the
contribution from the clusters observed within the object
region. The possible detections are the local maxima of the
posterior. The clusters observed outside the object region
cannot affect the position of these maxima. In Section III-C,
we describe the algorithm we use to estimate the posterior.

III. VEHICLE DETECTION SYSTEM
IMPLEMENTATION

A. Stereo System

The vision system used in this paper is a stereoscopic
sensor. It is considered as perfectly rectified. Cameras are
supposed identical and classically represented by a pinhole
model, (αu, αv, u0, v0) being the intrinsic parameters. The
length of the stereo baseline isbs.

For further geometrical developments, let us define aVe-
hicle Coordinate System (VCS). For simplicity in notations,
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and without loss of generality, the yaw, pitch and roll angles
of the camera, relative to the VCS, are set to zero. If it is
not the case, homographies can be applied to the images in
order to retrieve an equivalent configuration. In the VCS,
X axis is parallel to the stereo baseline,Y is parallel to
the optical axes andZ is oriented toward increasing height.
(Xo, Yo, Zo) denotes the center of the stereo baseline in the
VCS. Arbitrarily, we use the left camera of the stereo pair
for the recognition task. Thus the coordinates[ix, iy] will
refer to the left image coordinates.

The stereo images are processed in order to retrieve depth
information, following the approach described in [23]. First,
a semi-dense matching algorithm is used in order to estimate
a disparity valueid for each pixel. During this stage, pixels
are classified as road or obstacle by considering vertical and
horizontal objects hypotheses. We use this information to
discard the regions which correspond to the road surface or
to objects that are not of interest (e.g. buildings, sky) using an
arbitrarily chosen threshold for the height of the objects. An
example of the mask resulting from this procedure is shown
in Figure 2. With this step typically about75% of the image
is discarded thus the computational cost of the approach is
reduced by the same ratio. For the obstacle pixels we retain
the depth information. The distance of each pixel into the
VCS is given by:

δd = Yo +
αubs
id

(5)

Fig. 2. Depth mask example. The mask filters out the road surface and
the objects that are over a prespecified height.

B. Detector Training

The training of the visual object recognition system fol-
lows the codebook based approach of [2]. For each object
category/view we want to detect, a database of positive
images is used to train the system. During the training phase
we calculate the local SIFT [24] or SURF [25] features
in a dense grid of image positions and different scales. A
clustering step in the feature space using k-means is then
performed to create a codebook of local appearances for each
object class. For each clusterci we store: a) its appearance
represented by the mean feature vectorfci , b) its relative
position to the center of the object. The latter is used to
estimatep(Cj = ci, xcj |on, x). Figure 3 shows an example
of several clusters for the side-view of vehicles object class.

C. Detector Implementation using Depth-Vision Integration

In this section we describe the detection algorithm we use
to estimate the probabilities defined in Section II. The overall

Fig. 3. Car-Side codebook clusters. Several image patches belonging to four
clusters are shown. The clusters have been created with features extracted
from the UIUC car database.

approach is shown in Figure 4. Algorithm 1 summarizes the
steps of the approach.

In the detected regions of interest features are extracted
from a dense grid and the respective descriptors are com-
puted. The features are then matched to the clusters of the
codebook. The likelihood of an intensity descriptor given
a clusterp(fj |Cj) is calculated by comparing the cluster’s
descriptor to the feature’s descriptor. For the depth likelihood
the scale in which the cluster is observed has to be taken into
account. Letifs be the scale in which a feature is detected and
icins the initial scale of the matched cluster in the codebook.
Then the feature will be assigned with a cluster of scale:

ics =
ifs
icins

(6)

Knowing the scale of the cluster assigned to the feature
we can determine the scale of the object. Using the prede-
termined size of the object class and the camera parameters
we convert this scale into distanceδs. For the same image
patch we calculate the distance information we get from the
stereoδd. As shown in equation 5,δd is obtained from a
disparity valueid. This value is estimated by taking the
median disparity value in the neighborhood associated to
the feature. Using the two distances the depth likelihood is
calculated according to:

p(dj |Cj , xcj) = exp

{

−
(δs − δd)

2

2σ2
d

}

(7)

whereσ2
d is the variance parameter and is a linear function

of δd. As the distance grows the uncertainty of the stereo
distance estimation grows as well so a larger variance is
required in order to have a non-negligible likelihood even
with significant difference betweenδd and δs. The above
technique allows us to group together features of the same
scale, verified by the depth information. This way we filter
out the noise resulting from false positive matches between
different scales.

When the contribution of all features is taken into account,
the mean-shift algorithm is used to find the local maxima in
the x space. The maxima represent the positions and scales
of the possible detections.
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Fig. 4. The steps of the detection procedure are shown. The stereo information is used to define the regions of interest for the subsequent steps. Intensity
and depth features are extracted from a dense grid within these regions. In the following the features are matched with the codebook clusters which are
in turn used to estimate the posterior for the object in each position. The detections are the local maxima of the posterior.

Algorithm 1 Detection Algorithm

Input: Stereo pair:I , pdf: p(Cj = ci, xcj |on, x).
Filter image using stereo.
Extract intensity/depth feature pairs from each of theN
positions of a dense scale-space grid.
for For Featurej = 1 to N do

Calculate Intensity likelihood p(fj |Cj).
Calculate Depth likelihood p(dj |Cj , xcj).
Posterior update with the contribution of the feature
using (4).

end for
Locate local maxima of the posterior using mean-shift.

Output: A set of K detections
{

o
(k)
n , x(k)

}K

k=1
, with

associated probabilities:p(o(k)n , x(k)|I).

IV. EXPERIMENTS

In this section, we describe the experiments we conducted
to evaluate the performance of our method. We apply our
method to car detection and we demonstrate the improvement
in robustness and computational efficiency of the complete
system compared to the system using only intensity infor-
mation.

For testing purposes we created a data-set using our exper-
imental platform. The platform is a Lexus LS600h vehicle
equipped with a TYZX stereo camera placed behind the
windshield (Fig. 5). The stereo camera baseline is22cm, with
a field of view of62◦. Camera resolution is512x320 pixels
with a focal length of410 pixels. The data-set contains150
stereo images taken in an urban environment. We annotated
the cars in these images with bounding boxes. The data-set
includes challenging images, with poor illumination condi-
tions, partial occlusions, and significant scale variations. For
instance, the height of the annotated cars varies from20 to
100 pixels.

For evaluation we compare the full method with the one
using only intensity. To train both methods we used the
UIUC car database. This database contains550 images of

Fig. 5. Our Experimental Platform. Lexus LS600h vehicle equipped with
a TYZX stereo camera placed behind the windshield.

side views of cars. Using this data-set we created a codebook
of 2000 clusters. For the full method we set the variance
parameter of the depth likelihood in (7) toσd = 0.05δd.
We tested the system with both SIFT and SURF descriptor.
The difference in performance was negligible therefore in
the experiments we used the SURF descriptor because it can
be computed much faster. For the fairness of comparison
we used the depth mask to find regions of interest for both
methods.

In Fig. 6 we show some example detections. The proposed
method detects side-views of cars in various scales, in cases
with partial occlusions, and under significant background
clutter. Part-based methods in general are more robust with
partial occlusions. The use of depth information increases
further the robustness as the features of each object are
associated with a scale which in general is different from the
scale of the occluding objects. An example of such situation
can be seen in Fig. 7. We show a detection with and without
depth information along with the features that contributed to
that detection. As can be seen, in the case where no depth
information is used (Fig. 7(c), (d)), many features that belong
to a part of another vehicle in the background interfere with
the detection resulting in inaccurate scale and position. With
the use of depth information most of the features that are
not on the object have been filtered out, thus resulting in a
much better detection.

To perform a quantitative comparison we used a subset
of our data-set, containing60 images, where we detected
the side-views of cars. For evaluation, we followed the
single frame scheme which is adopted by the PASCAL
object detection challenges [26]. For each frame we ran our
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Fig. 6. Car-side detection examples. True and false positive detections are represented with red and yellow bounding boxes respectively. (a) Cars in
different scales with significant background clutter and significant occlusions are detected. (b) Precise detection of the un-occluded vehicle, whereas a
vehicle that is heavily occluded in the left is not detected. (c) Difficult detection of a vehicle which is far and partially occluded and a false detection in
the region between the road surface and the trees. (d) Detection with partial occlusion. (e) Partial detection of a taller than normal vehicle(on the left).
The training dataset does not contain vehicles of this type. (f) Succesfull detection of a partially occluded car and a false positive arising from a bus and
a van. Trainning separate detectors for these type of vehicles as well will help to avoid these false alarms.

Fig. 7. Comparison of a vehicle detection. (a) Detection usingdepth-
intensity. (b) Features that contributed to the detection. The depth informa-
tion filters out the features that belong to background clutter. (c) Detection
with intensity information. (d) Features that contributed to the detection.

multiscale detector resulting in a set of detected bounding
boxesBdt and using the ground-truth bounding boxesBgt

we accept a detection if:

α = A(Bdt ∩Bgt)/A(Bdt ∪Bgt) > 0.5 (8)

whereA() denotes the area of the box. We associate only
one detection with each ground-truth bounding box, if other
detections intersect with it we count them as false positives.
The output of our algorithm is a set of detection with

probabilities. By adjusting the threshold to accept a detection
we obtain the precision-recall curve.

In Fig. 8, the precision-recall curves are shown for our
method with and without using depth information. We can
see that using depth information we have a considerable
increase in the performance. Additionally, this information
enables us to create a mask and discard about75% of the
image thus decreasing the computational cost. As can be seen
from the precision-recall curves, the challenging nature of the
data-set poses difficulties for both methods. In particular, cars
with poor illumination are difficult to detect with features
based on image gradients. Using other type of features (e.g.
based on shape) that perform better under poor illumination
is expected to increase the performance. The variability in the
scales of the objects is another factor that meets the limits
of the used descriptors considering that they were trained
using the UIUC database. This database contains cars from
a single scale. Additionally, the American cars contained in
the UIUC data-set have a different shape from the European
cars that we have in our data-set. Nevertheless, as shown
in [7], most of the state-of-the-art methods experience great
difficulties in data-sets of this type (captured from a moving
platform, urban environment). Under these circumstances
however the increase in performance using depth information
is significant. For instance the proposed method detects about
one third of the vehicles, with60% precision while the
method using only intensity cannot even achieve this recall
rate.
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Fig. 8. Precision-Recall curves for the method using depth-intensity
compared with the method using only intensity.

V. CONCLUSIONS

In this work we presented a method that fuses intensity
with depth information to create a robust part-based detector.
We applied the method to create a system for car detection
from a moving vehicle. We tested it in a real urban environ-
ment using a data-set collected from our experimental plat-
form. The comparison with the system using only intensity
information shows a significant increase in performance.

As a first future work we consider using the stereo
images dataset to train the system with intensity and depth
information. This way we will be able to better estimate
the parameters for the calculation of the depth likelihood.
We will also be able to test the system with new types of
features extracted from the depth images. As another future
extension we consider to use the output probability densities
of several detectors to do higher level reasoning in order to
disambiguate between different object type detections for the
same image region. Depth information, can be beneficial in
such situations because it facilitates the reasoning in cases
of occlusions.
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Abstract—Robust analysis of dynamic scenes in urban traffic
environments is needed to estimate and predict collision risk level
during vehicle driving. The risk estimation relies on monitoring
of the traffic environment of the vehicle by means of on-board
lidars and a stereo camera. The collision risks are considered
as stochastic variables. Hidden Markov Model and Gaussian
process are used to estimate and predict collision risks and
the likely behaviors of multiple dynamic agents in road scenes.
The proposed approach to risk estimation is tested in a virtual
environment with human-driven vehicles and during a highway
driving. The obtained results have proven the feasibility of our
approach to assist the driver in avoiding potentially dangerous
situations.

Index Terms—Collision risk, urban road, driver assistance,
Hidden Markov Model, Gaussian process

I. I NTRODUCTION

A. Problem statement

The urban traffic environment with multiple participants
contains risks of potential collision and damage. The vehi-
cle safety technologies (e.g. seat belts, airbags, safety glass,
energy-absorbing frames) mitigate the effects of accidents.
The advanced technologies will be capable of monitoring the
environment to estimate and predict collision risks during
vehicle driving, in order to help reduce the likelihood of
accidents occuring. The risk management by traffic participants
is an efficient way to improve traffic safety towardzero-
collision driving. The key problem is to correctly interpret the
traffic scene by means of processing information from a variety
of sensors [1].

A collision risk level can be predicted for a few seconds
ahead to warn the driver about unnoticed potential risks.
The estimated risk of collision can also be used to select a
trajectory that minimizes the risks for an autonomous vehicle.
The estimation of collision risk relies on the sensor information
about the surrounding environment and the driver’s behavior.
The obtained risk values must be interpreted by the dedicated
application. The following set of processed sensor inputs is
assumed to be available.

Road geometry.The road width and the road curvature are
obtained by processing raw information from camera images
and lidars or, alternatively, from a Geographic Information
System (GIS) with a pre-built map and a localization device
such as Global Positioning System (GPS).

Object tracking. The detection and tracking of moving ob-
jects is accomplished by the dedicated algorithms, i.e. positions
and velocities of the objects are available.

Auxiliary sensors. Information about the signal light status
of other vehicles is an indicator of the motion intention.
Additional “virtual” sensors are capable of detecting distances
between the vehicles and the lane borders, which might indi-
cate an intention to perform a lane change.

We use a term “ego-vehicle” to distinguish our vehicle from
other vehicles. The ego-vehicle is assumed to be equipped with
the appropriate sensors for obtaining a set of inputs mentioned
above. The estimated risk is a numerical value which expresses
quantitatively the collision risk of the ego-vehicle with another
vehicle during the next few seconds.

Estimating the future collision risk requires the models
which describe the vehicle motion in the sensor visibility
range of the ego-vehicle. This model must be capable of
reasonably predicting the future states of the vehicle in terms
of the probability. We present a fully probabilistic model of
the vehicle’s motion evolution for obtaining and inferring
beliefs on the future states of vehicles in an urban traffic
environment. Consequently, the estimated risk of collision is
obtained from the models in terms of the probability in a
theoretically consistent manner.

B. Related work

Current commercially available crash warning systems aim
at preventing front, rear, or side collisions. Such systemsare
usually equipped with radar based sensors on the front, rear
or sides to measure the velocity and distance to obstacles. The
algorithms for determining the risk of collision are based on
variants of time-to-collision (TTC) [2], giving the time remain-
ing before one vehicle collides with another one, assuming the
both vehicles are maintaining their linear velocities.

Some systems are capable of directly controlling the brakes
and possibly the steering to perform the necessary corrective
actions. Systems based on TTC use the observations made at a
reasonably high frequency in order to adapt to a dynamic en-
vironment. Current commercial systems work reasonably well
on highways or straight sections of the city roads. However,the
linearity assumption does not hold on curved roads, as shown
in figure 1, where the risk level tends to be overestimated.

Several research projects overcome this problem by taking
into account the structure of the environment, especially at
intersections where the rate of accidents is higher. These
projects aim at providing the collision warning systems, which
use wireless communication either between the vehicles or
between the vehicle and a road infrastructure, such as traffic
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Figure 1: An example of triggering a false alarm about
collision because of the invalid linearity assumption on curved
roads in the TTC based systems.

lights [3], [4], [5], [6], [7]. These systems are equipped with
a pair of detectors (radars or laser scanners) at the left and
right front corners of the vehicle in order to detect cross-traffic
vehicles at intersections. The obtained speeds of the objects
and the respective TTC are then evaluated to determine the
collision risk. Although the environmental structures aretaken
into consideration, yet the collision risk calculation assumes
the straight motion. The time horizon of risk prediction is
short, and the crucial environmental information and sensor
data are not fully employed.

C. Outline of the approach

The knowledge about an object being at a certain location at
a specific time does not provide sufficient information to assess
its impact on the safety of the ego-vehicle. In addition, envi-
ronmental constraints should be taken into account, especially
on urban roads. We propose a framework for understanding
behaviors of other vehicles and present our approach in the
next section.

The relevant sensors include stereo vision, lidars, an inertial
measurement unit (IMU) combined with the GPS, and odome-
try. The local environment is represented by a grid. The fusion
of sensor data is accomplished by means of the Bayesian Occu-
pancy Filter (BOF) [8], [9], that provides to assign probabilities
of cell occupancy andcell velocity for each cell in the grid. The
collision risks are considered as stochastic variables. Hidden
Markov Model (HMM) and Gaussian process (GP) are used
to estimate and predict collision risks and the likely behaviors
of multiple dynamic agents in road scenes [10], [11].

Consider vehicle A and ego-vehicle B traveling in the
same direction on the adjacent lanes, as shown in figure 2.
The collision risk must be estimated for vehicle B. From the
driver’s viewpoint, the road structure is implicitly described by
such maneuvers as: move straight, turn right/left, or change a
lane. These maneuvers are referred to as behaviors, and a setof
the possible behaviors is predefined. However, some behaviors
are unavailable at all instances, e.g. it might be impossible to
turn left at an intersection because of the road geometry.

The lane following for a given behavior is represented by
means of a GP, i.e. a probability distribution over the possible
future realizations of the paths with the mean corresponding

Figure 2: Collision risk estimation for vehicle B relies on
predicting the path of vehicle A by sampling from the GP
for two possible behaviors in this example: “moving straight”
or “lane change”. The collision risk is obtained as a weighted
sum of paths leading to collision.

to the exact following of the lane middle. The GP samples
for such behaviors as “lane change” and “moving straight” are
depicted in figure 2, where the dotted lines represent the paths
sampled from the GP. For a lane turning on a curved road, the
GP is adapted to reflect the road geometry. The set of GPs for
each feasible behavior, in combination with the probability of
vehicle A executing a certain behavior, gives a probabilistic
model of the future evolution of vehicle A in the scene.

Similar to the TTC approach, the evaluation of collision
risk is performed for vehicle B against vehicle A. In contrast
to the TTC’s linearity assumption about the future paths forthe
vehicles, we evaluate the collision risk of the intended path of
vehicle B against all possible paths to be taken by vehicle A.
The weights are assigned according to the probabilistic model
of the behaviors’ evolution of vehicle A.

II. COLLISION RISK ESTIMATION

An overall architecture of the risk estimation module is
shown in figure 3. It comprises three sub-modules, such as:
driving behavior recognition, driving behavior realization, and
collision risk estimation [11], [12].

Driving behavior recognition. The behavior recognition
aims at estimating the probability distribution of feasible
behaviors, e.g.P(turn_le f t) represents the probability of turn-
ing left by the vehicle. The behaviors provide an implicit
high-level representation of a road structure, which contains
semantics. The probability distribution over behaviors isob-
tained by HMM. Our current model includes the following four
behaviors: move straight, turn left, turn right, and overtake.

Driving behavior realization. The collision risk evaluation
requires the road geometry. Driving behavior realization takes
the form of GP, i.e. a probabilistic representation of a possible
evolution of the vehicle motion for a given behavior [10].
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Figure 3: Architecture of the risk assessment module.

The adaptation of GP according to the behavior is based
on the geometric transformation known as the Least Squares
Conformal Map (LSCM) [13].

Collision risk estimation. A complete probabilistic model
of the possible future motion is given by the probability
distribution over behaviors from the driving behaviorrecog-
nition and the driving behaviorrealization. The collision risk
is calculated from this model. Intuitively, the result can be
explained as “collision risk for a few seconds ahead”. However,
the precise mathematical definition of risk depends on the
meaning and interpretation of risk [11].

Behavior recognition and modeling

The behavior recognition aims at assigning a label and a
probability measure to sequential data, i.e. observationsfrom
the sensors. Examples of sensor values are: distance to lane
borders, signaling light status, or a proximity to an intersection.
The objective is to obtain the probability values over behaviors,
i.e. the behaviors are hidden variables.

The behavior modeling contains two hierarchical layers.
The upper layer is a single HMM, where its hidden states
represent high-level behaviors, such as: move straight, turn
left, turn right, and overtake. For each hidden state or each
behavior in the upper layer HMM, there is a corresponding
HMM in the lower layer to represent the sequence of the finer
state transitions of a single behavior, as depicted in figure4.

Let us define the following hidden state semantics in the
lower layer HMMs for each of the following behaviors of the
higher layer HMM:

• Move straight (1 hidden state): move forward.
• Turn left or turn right (3 hidden states): Decelerate before

a turn, execute a turn, and resume a cruise speed.
• Overtake (4 hidden states): lane change, accelerate (while

overtaking a vehicle), lane change to return to the original
lane, resume a cruise speed.

In order to infer the behaviors, we maintain a probability
distribution over the behaviors represented by the hidden states
of the upper layer HMM. The observations of vehicles (i.e.

Figure 4: Layered HMM, where each lower layer HMM’s
observation likelihood is the upper layer HMM’s observation.

sensor data) interact with the HMM in the lower layer, and
the information is then propagated to the upper layer.

Driving behavior realization

A behavior is an abstract representation of the vehicle
motion. For a given behavior, a probability distribution over
the physical realization of the vehicle motion is indispensable
for risk estimation. The GP allows us to obtain this probability
distribution by assuming that usual driving is representedby
the GP, i.e. lane following without drifting too far off to the
lane sides. On a straight road, this is acanonical GP with the
mean corresponding to the lane middle.

To deal with the variations of lane curvature or such beha-
viors as “turn left” or “turn right”, we propose an adaptation
procedure, where the canonical GP serves as a basis and it
is deformed according to the road geometry. The deformation
method is based on LSCM. Its advantage is a compact and
flexible representation of the road geometry. The canonicalGP
can be calculated once and, then, can be reused for different
situations, thus, resulting in a better computational efficiency.
An example is shown in figure 5 for a curved road.

Figure 5: Deformed GP model example for a lane turning left.
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Collision risk estimation

The layered HMM approach assigns a probability distribu-
tion over behaviors at each time instance, and a GP gives the
probability distribution over its physical realization for each
behavior. Because the behavioral semantics are propagated
from the layered HMM down to the physical level, it is now
possible to assign semantics to risk values.

One should note that the definition of risk can take a variety
of forms, which is largely dependent on how the risk output is
going to be used. A risk scalar value might be sufficient for a
crash warning system, or an application might require the risk
values against each vehicle in the traffic scene.

The risk calculation is performed by first sampling of
the paths from the GP. The fraction of samples in collision
gives the risk of collision, which corresponds to the behavior
represented by the GP. A general risk value is obtained by
marginalizing over behaviors based on the probability distri-
bution over behaviors obtained from the layered HMM. It is
possible to calculate risk of taking a certain path, a certain
behavior, or a general risk value of a certain vehicle against
another vehicle. A systematic framework for evaluation of
different types of risk can be found in [11].

III. E XPERIMENTS

A. Driving simulation

The simulation of crash situations in a virtual environment
is used instead of dealing with them in real experiments. The
virtual environment is a 3D geometric model of a road network
with vehicles, where each vehicle is driven by a human driver.
The simulator was developed by Toyota Motor Europe (TME).
Each human driver controls his or her virtual vehicle by
means of a steering wheel, the acceleration and brake pedals.
Recording a scenario with multiple vehicles, which are driven
concurrently, requires a large number of human drivers. An
alternative is to generate the scenario iteratively, with one
human-driven vehicle at a time and “adding” human drivers
iteratively, with a replay of the previously recorded human-
driven vehicles. The resulting virtual environment allowsus to
simulate crash situations safely.

The layered HMM evaluates the behavior of every vehicle
in the scene for different time horizons, except the ego-vehicle.
The training data are obtained by collecting sequences for
a series of human-driven cases, where each driver uses the
steering wheel as an interface to the virtual environment ofthe
simulator. The driving sequences are then annotated manually
by means of an annotation tool of ProBayes. Subsequently, the
annotated data are used to train the layered HMM.

The TME simulator provides a 3D road view for the driver
and a 2D view of the road network, as shown in figure 6.
The collision risk is calculated for a yellow vehicle, while
other vehicles are shown by red rectangles. The relevant area
of the scene is inside a large yellow circle. The right-hand
traffic rule is assumed. The trail behind the yellow vehicle
in 2D view indicates the risk levels estimated previously. At
each instant, the probabilities of the possible behaviors of the
nearest neighbor (red vehicle) are estimated by the layered

HMM and are displayed by the vertical white bars. The speed
of the yellow vehicle is shown in 3D view, where the right-
side vertical bar shows the risk encoding by color from “low”
(green) to “high” (red). The left-side vertical bar in 3D view
indicates the current risk value for the yellow vehicle.

Figure 6: Virtual environment of the TME simulator.

The speed warning in the case of a potential danger of
frontal collision is available in most commercial systems.
Additionally to this functionality, our algorithm evaluates
risk at intersections, where the linearity assumption about
the vehicle motion would result in underestimated values of
collision risk. The combination of the behavior estimationby
the layered HMM and the use of semantics (e.g. turn right or
move straight) at the geometric level allows us to obtain the
appropriate risk values.

The training data for the layered HMM were collected with
ten human drivers who were asked to show different driving
behaviors. The collected data is split uniformly distributed into
the training data and the test data (30% of total data examples).
The behavior recognition is trained on the training data andis
evaluated against the test data.

Figure 7 summarizes the recognition performance of the
layered HMM. The results are presented as a confusion matrix,
where the columns correspond to the true class and the rows
correspond to the estimated class. The diagonal values of
the confusion matrix give the correctly predicted class, while
non-diagonal values show the percentage of mislabeling for
each class. The highest recognition rate is for “move straight”
behavior (91.9%) as well as “turn right” or “turn left” ones
(82.5% and 81.1%, respectively). The “overtake” behavior has
a relatively low recognition rate of 61.6%. Intuitively, this
lower rate can be explained by a composite structure of the
overtaking maneuver because it consists of such behaviors as:
accelerating, lane changing, returning to the original lane, and
resuming a cruise speed. Consequently, it also takes longer
than a three-second period (current prediction horizon) to
complete an overtaking maneuver.

The approach to risk assessment is illustrated by figure 8,
where the probability of collision is estimated for a period
of three seconds ahead of each collision for ten different
traffic scenarios. The rapid increase in the probability of
collision and its certainty are observed when the collision
instant approaches.
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straight overtaking turning_left turning_right
straight 91.9% 15.2% 13.9% 13.6%
overtaking 2.2% 61.6% 3.3% 2.0%
turning_left 2.4% 10.9% 81.1% 2.0%
turning_right 3.5% 12.3% 1.7% 82.5%
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Figure 7: Performance summary of the behaviors recognition
with layered HMM.
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Figure 8: Example of collision risk assessment for ten human-
driven scenarios and a three-second prediction horizon.

B. Behavior estimation on a highway sequence

The first phase is to gather experimental data when driving
on a highway to estimate behaviors of other vehicles. The
experiments have been conducted jointly by the TME and
ProBayes. The data acquisition was performed for four scena-
rios on a highway, with each scenario lasting for ten minutes
approximately and the sensor data (stereo camera images,
vehicle odometry, and GPS information) being recorded. The
behaviors to be estimated are: move straight, a lane change to
the left, and a lane change to the right. An example of the
behavior estimation on a highway is shown in figure 9.

The detection of vehicles is performed by clustering of the
disparity points obtained from the stereo camera mounted be-
hind the windshield. The clustering is performed in the image
areas, which are indicated by the image based detection using
support vector machines (SVMs). The positions of vehicles are
tracked on the road plane by means of the BOF [8], [9].

The observation variables for behavior recognition include

Figure 9: Example of a highway scenario where a vehicle on
the middle lane performs a lane change to the right.

the vehicle’s speed, the distances to the lane borders, and
the information about the presence of other vehicles on the
adjacent lanes. In order to obtain the observation variables in
a global reference frame, a particle filter is used for localizing
the vehicle on the highway map obtained from the Geographic
Information System (GIS). The particle filter allows us to
estimate the position and direction of the vehicle at each
time instant and to employ the observations from stereo-
vision (lanes detection), GPS and vehicle odometry. A similar
approach is used for the training phase, when the acquired
data are divided into the training and evaluation sets annotated
manually to indicate the current behavior for each time instance
of the data acquired.

An example of the behavior estimation on a highway
is shown in Fig. 9. The positions of the tracked vehicles
are projected onto the image plane and are represented by
the rectangles. The probability distribution of the estimated
behaviors is shown by the height of the color bars above the
vehicles, e.g. the “lane change to the right” behavior of the
vehicle on the middle lane and the “move straight” behavior of
the two vehicles on the left lane are evaluated correctly. These
results illustrate the validity of the proposed approach for
behavior estimation. The different probability decomposition
of the observation variables, the selection of the observation
variables and the reactivity of the behavior estimation are
topics of our ongoing work to generalize the approach.

The results on behavior estimation are currently preliminary.
The current work involves experimenting with different prob-
ability decomposition of observation variables and observation
variable selection. Furthermore, for purposes of risk evaluation,
we will also be able to evaluate the reactivity of behavior
estimation. The ongoing work will allow us to generalize the
results and evaluate them quantitatively.
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IV. CONCLUSION

Collision risk estimation and prediction will be mandatory
for future vehicles. A fraction of a second of the driver’s
reaction time can help save human lives. Our data process-
ing approach, sensor models and software modules allow us
to monitor the urban traffic environment. The analysis and
interpretation of traffic scenes rely on evaluation of driving
behaviors as stochastic variables to estimate and predict colli-
sion risks for a short period ahead. Our initial experimentson
behavior estimation during vehicle driving allowed us to verify
the validity of the approach. Our future work will deal with its
integration and evaluation on a Lexus vehicle equipped with
sensors and shown in figure 10.

Figure 10: Experimental platform on a Lexus LS600h equipped
with two IBEO Lux lidars, a TYZX stereo camera, and an
Xsens MTi-G inertial sensor/GPS.
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From Structure to Actions:
Semantic Navigation Planning in Office Environments

Klaus Uhl and Arne Roennau and Rüdiger Dillmann

Abstract— The use of meaning in mapping and navigation
is inevitable if a robot has to interact with its environment in
a goal-directed way. Moreover, a semantic environment model
makes navigation planning more efficient and simplifies the
review and communication of the robot’s knowledge. Existing
work in this area decomposes the environment into places,
which can be distinguished using the robot’s sensors. However,
if important features of the environment cannot be detected by
the robot’s sensors a different approach is needed.

This paper introduces the Semantic Region Map, an envi-
ronment model with complex metric, topological and semantic
features. It shows how navigation points, so-called semantic
positions, can be deduced from the map using a semantic
description of the environment. Furthermore, the semantic
positions are connected to a reachability graph, whose edges
are labelled with robot actions, using a semantic description of
the robot’s capabilities. An ontology consisting of a taxonomy
and a set of rules are used to implement the semantic models.

The concept of the Semantic Region Map is applied to a robot
operating in an office environment.

I. INTRODUCTION
If a service robot has to interact with its environment in

a goal-directed way, the use of meaning in mapping and
navigation is inevitable. This is especially true if a service
robot is designed to assist humans in everyday tasks. The
surroundings in which humans live and work are usually di-
vided into discrete spatial regions, such as corridors, offices,
bedrooms etc. A robot which can reason about the meaning
and relations between those regions is able to more easily
and naturally communicate with the people it has to assist as
it can understand commands like “bring this batch of letters
to the secretary of the public relations department” (cf. [1]).
Aside from that, a semantic environment model makes nav-
igation planning more efficient, navigation execution more
robust and simplifies the review and communication of a
robot’s knowledge.

Existing work in this area decomposes the environment
into places which can be distinguished using the robot’s
sensors and uses those places as navigation points for the
robot. However, taking the price, dimensions and weight of
sensors into account, there will always be important features
in an environment which cannot be detected by the robot
because it is not equipped with enough sensors to detect
them.

If a robot is able to detect and classify regions, perceive
relations between the detected regions and determine rela-
tions between its own position and the detected regions,

K. Uhl, A. Roennau and R. Dillmann are with FZI Research Cen-
ter for Information Technology, Intelligent Systems and Production
Engineering (ISPE), 76131 Karlsruhe, Germany {uhl, roennau,
dillmann}@fzi.de

more flexibility is possible. Navigation points can suddenly
be independent of distinguishable places and can be located
in a density only limited by the granularity of distinguishable
relations. Additionally, regions which cannot be detected by
the robot’s sensors can be handled indirectly via inference.
The dense navigation points, in turn, give the planner fine
control over the motion behaviour of the robot on a semantic
level.

This paper introduces the Semantic Region Map as the
basis for abstract, semantic navigation planning for robots
operating in indoor environments. It shows how an envi-
ronment can be modelled using complex region features
consisting of metric, topological and semantic information.
It shows how the Semantic Region Map can be combined
with a generic region algebra and a semantic model of a
concrete environment to deduce abstract navigation points,
so-called semantic positions, from the map. By adding a
semantic model of a concrete robot, the semantic positions
can be connected to a reachability graph whose edges are
labelled with the actions the robot has to perform in order to
move from one semantic position to the next. This gives the
planner fine control over the exact robot behaviour along its
path. Using this semantically enriched environment model,
planning a navigation path is reduced to determining the
current and goal semantic positions of the robot using queries
to the ontology, extracting the reachability graph and finding
the shortest path between the two semantic positions.

This paper is organised as follows. First, we briefly de-
scribe related work and describe the semantic mission control
system to which this work belongs. Then we introduce the
semantic navigation planning concepts, followed by a general
procedure for modelling an environment and a robot for a
specific application. We apply the modelling procedure to a
robot operating in an office environment and show experi-
mental results. Finally, we conclude and give an outlook to
future work.

II. RELATED WORK

Belouaer et. al. [2] describe an ontology-based, seman-
tic representation of spatial entities, spatial relations and
imprecise spatial information. Spatial entities are modelled
as axis-aligned rectangles and an algebra of topological
relations allows to deduce relations between distant entities.
Although the system is designed to support path planning,
path planning is limited to the purely geometric level and the
system cannot handle different driving strategies like wall
following, door traversal and straight driving as navigation
actions.
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Galindo et. al. [3] have developed a semantic map frame-
work in which spatial information is anchored to semantic
labels which are, in turn, connected to a conceptual ontology
of the environment. The system is tailored to deriving the
existence of spatial entities which have not yet been seen and
to refine the classification of spatial entities by deduction. A
semantic-level planning algorithm uses the semantic map and
the conceptual ontology to start planning on the conceptual
level. Motion planning, however, is restricted to moving the
robot from one spatial area to the next without fine control
over the actual motion behaviour.

Guitton and Farges [4] combine a general task planner
with a specialised path planner to a hybrid mission planning
system. Navigation tasks are modelled as preconditions to
other actions. As there can be behavioural as well as geomet-
ric constraints for the path planner, it is possible to enforce
a specific driving behaviour. However, this behaviour cannot
be tied to a single spatial area and cannot be changed in
different areas.

Mozos et. al. [5] propose a multi-hierarchical map which
links a metric map, a topological navigation map, a topo-
logical area map and a conceptual map. The ontology which
backs the conceptual map has similar deduction capabilities
and limitations as the work of Galindo et.al. [3].

Shi et. al. [6] propose an algorithm to create a semantic
grid map from laser range data. Each cell of the grid map
is semantically labelled to be either a room, corridor or
doorway. By using a grid map Shi et. al. are able to classify
subregions of a single laser scan to different semantic classes.
However, they do not currently use their maps for navigation
planning.

III. SYSTEM CONTEXT

The semantic navigation planning system described in this
paper is part of a larger semantic mission control system [7].
The system architecture is shown in Fig. 1. It consists of nine
modules in four layers which are distinguished by the kind
of data processed.

The semantic level consists of the User Interface which
communicates with the system’s user. It also contains the
semantic navigation planning system (Semantic Navigation).

The symbolic-semantic level contains the Semantic Map-
ping which computes and updates the Semantic Region Map
of the environment. It uses a semantic SLAM algorithm with
complex features that capture metric, topological and seman-
tic properties [8]. Also located on this level are the Semantic
Localisation which determines and tracks the robot’s current
semantic position and the Execution Unit which decomposes
plans from the Semantic Navigation into individual symbolic
actions and monitors the plan’s execution.

The subsymbolic-symbolic level contains the Navigation
Data Analysis and the Basic Control. The Navigation Data
Analysis continuously locates and classifies regions in the
robot’s sensor data and determines their parameters and
relations. The Basic Control receives a single symbolic action
from the Execution Unit at a time, passes it as subsymbolic
commands to the sensor and actor interfaces and monitors

Fig. 1. The semantic navigation planning system is integrated into a
semantic mission control system.

its execution. The subsymbolic level contains the sensor and
actor interfaces to the robot.

The implementation of the mobile robot is mostly inde-
pendent of the semantic mission control. In the case of our
mobile research robot Odete (see Fig. 4) and our autonomous
shopping trolley InBot (see Fig. 5), behaviour-based robot
control systems have been implemented. They are capable of
executing a set of complex behaviours which are mapped to
subsymbolic commands in the actor interface. The detection
and tracking of dynamic and semi-dynamic obstacles is
also implemented in the robot control software as it has
to be tightly integrated with the robot’s safety functions.
Several different obstacle avoidance behaviours, which can
be activated independently, use this tracking information to
safely navigate in crowded environments.

IV. SEMANTIC NAVIGATION PLANNING

The semantic navigation planning system consist of two
parts: an ObjectLogic [9] ontology, which contains knowl-
edge about the application domain, the robot and the en-
vironment, as well as a planner, which extracts knowledge
from the ontology and creates navigation plans.

A. Semantic Region Map

The first major concept of the semantic navigation plan-
ning system is the Semantic Region Map. It segments an
environment into a set of regions with metric, topologi-
cal and semantic features. Each region is an instance of
a subclass of the Region concept in the ontology. The
region class represents the semantic meaning of a region.
Regions are topologically connected to their neighbours
via the neighbourOf relation. They can also be fully
contained in other regions, in which case they are connected
via the containedIn relation. Additionally, the relative
orientation of neighbouring regions is specified via one of the
four relations northOf, eastOf, southOf and westOf.

The metric feature of a region depicts its approximate
geometric extent in a global coordinate system. It consists of
a centre rectangle and two connected sub-rectangles, which
can be moved along the left and right edges of the centre
rectangle. Therefore the region geometry can be described
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via the tuple (x, y, w, h, γ, wl, hl, yl, wr, hr, yr). The left and
right sub-rectangle can be omitted if they are not needed to
describe a region’s geometry. In this case the values wl, hl
and yl or the values wr, hr and yr are set to 0. The region
geometry is attached to a region instance in the ontology via
the hasShape relation.

The ObjectLogic specification for the Region concept is
defined as follows:

Region[eastOf{0:*,inverseOf(westOf)} *=> Region,
northOf{0:*,inverseOf(southOf)} *=> Region,
southOf{0:*} *=> Region, westOf{0:*} *=> Region,
hasShape{1:1} *=> Shape, containedIn{0:*} *=> Region,
neighbourOf{0:*,symmetric} *=> Region].

The semantic navigation planning system expects a Se-
mantic Region Map as its input. This map has to specify
the regions in the environment, their shape as well as the
neighbourOf and containedIn relations. For regions
which are connected with a neighbourOf relation, it must
also specify one of the northOf, eastOf, southOf and
westOf relations.

B. Semantic Positions

The second major concept of the semantic navigation
planning system are semantic positions. They are fuzzy
navigation points that are defined by semantic relations to
regions in their surroundings.

Modelling the semantic positions for an application do-
main is a complex task. It can become even more tedious
when different orientations of regions and neighbouring
regions have to be considered because the number of possible
combinations explodes. To counteract this, each region has
a local coordinate system which is rotated against the global
coordinate system of the Semantic Region Map according to
the orientation of the region. Most relations between a region
an its implied semantic positions are specified in this local
coordinate system.

The ObjectLogic specification for the SemanticPosi-
tion concept is defined as follows:

SemanticPosition[
impliedBy{0:*,inverseOf(implies)} *=> Region,
inRegion{0:*} *=> Region,
spAtStartOf{0:*} *=> Region,
spAtCentreOf{0:*} *=> Region,
spAtEndOf{0:*} *=> Region,
near{0:*} *=> Region, visAVis{0:*} *=> Region,
localEastOf{0:*} *=> Region,
localNorthOf{0:*} *=> Region,
localSouthOf{0:*} *=> Region,
localWestOf{0:*} *=> Region,
local(East|North|South|West)SideOf{0:*} *=> Region,
local(East|North|South|West)mostIn{0:*} *=> Region,
local(East|North|South|West)mostAlong{0:*} *=> Region,
neighbourOf{0:*,symmetric} *=> SemanticPosition].

Region[implies{0:*} *=> SemanticPosition].

These relations specify the relative orientation (north, east,
south or west of a region) and location (at the start, centre
or end of a region) of semantic positions. They also define if
semantic positions are in a region, outside but near a region
or vis-à-vis. And they form local neighbourhood graphs
between the semantic positions that are implied by the same
region.

C. Semantic Navigation Algebra

The semantic navigation system contains an algebra, i. e.
a set of rules in the ontology which performs calculations
that reduce the complexity of the application domain model
and the number of facts that have to be explicitly asserted
in the Semantic Region Map.

Although the region geometry contains a rotation angle,
most of the time we only deal with a discrete set of
semantic orientations. The ontology, therefore, introduces the
Orientation concept and the four orientation instances
East, North, South and West. The semantic navigation
algebra derives the semantic orientation of each region from
its rotation angle by assigning a 90◦ segment to each
orientation instance.

As the relations between semantic positions and the
regions by which they are implied are specified in the
regions’ local coordinate system, the semantic navigation
algebra converts them into the global coordinate system.
If semantic positions have relations to other regions, the
algebra converts from the global coordinate system back into
the local coordinate systems of those regions. In order to
make the modelling of robot actions easier, the semantic
navigation algebra also contains rules which connect the
semantic positions to a global neighbourhood graph.

D. Robot Actions

The final component is the model of robot actions. It
is built around two concepts in the ontology. The actions
which the robot in a specific application domain can perform
are modelled as instances of the Action concept. The
Reachability concept is used to connect pairs of neigh-
bouring semantic positions with actions using the ternary
ReachableByAction function symbol, thus generating a
directed reachability graph labelled with robot actions:
Action[].
Reachability[].
ReachableByAction(?StartSP, ?EndSP, ?Action):Reachability

E. Navigation Planning

The Semantic Region Map, the model of semantic posi-
tions, the semantic navigation algebra and the model of robot
actions yield a reachability graph by deduction through the
ontology system. This graph is extracted from the ontology
by retrieving all semantic position instances and all instances
of the Reachability concept. The semantic positions
form the nodes of the graph while the reachability instances
form the edges, labelled with the action to be performed. A
weight is assigned to each edge by calculating the Euclidean
distance between the approximate coordinates of the start
and end semantic positions.

Navigation goals are specified as a set of relations between
the desired target semantic position and regions in its sur-
roundings. Using the reachability graph, navigation planning
consists of the following steps:

1) Determine the current semantic position of the robot
by querying the ontology with the set of relations to
regions the robot has currently detected.
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2) Determine the target semantic position by querying the
ontology with the set of goal relations.

3) Plan the shortest path between the current and target
semantic position in the reachability graph.

Navigation goals may be ambiguous and yield multiple
semantic positions when querying the ontology. In this case
it is assumed that reaching any of the resulting semantic
positions achieves the goal, so the nearest of them is taken.

V. MODELLING METHODOLOGY

When designing the domain ontology for a specific ap-
plication (i.e. environment and robot) a number of steps
have to be performed. First of all, the navigation actions
which the robot can perform have to be added to the
ontology as instances of the Action concept. Secondly, the
relevant region classes that occur in the environment have
to be identified. They have to be added to the ontology as
subclasses of the Region concept. If applicable, e. g. if
regions of a specific class are always longer than wide, a
preferred orientation of the local coordinate system has to
be defined for some region classes.

Then the interesting navigation points and the conditions
in which they are relevant have to be determined. This is
done following a three-step procedure:

1) Identify interesting navigation points for each region
class.

2) For each pair of region classes and each possible
topological relation of the two, identify additional
navigation points that are of interest in this special
combination.

3) Determine which navigation points generated by the
same region should be considered neighbours.

For each identified interesting navigation point a rule
which derives a semantic position has to be added to the
ontology. The body of this rule has to contain the condition
under which the semantic position should be derived. The
head of the rule has to assert a semantic position with a
unique name. A unique name can be created by choosing a
unique function symbol and adding the region from which
the semantic position is implied as a function argument. The
head of the rule also adds relations to regions and other
semantic positions (see Sec. VI for an example).

Finally, the robot actions have to be considered in order to
connect the semantic positions to form a reachability graph.
This follows a procedure similar to identifying the interesting
navigation points:

1) For each region class look at the implied semantic
positions and check if the robot can move between
two adjacent semantic positions with a specific action.

2) For each pair of region classes look at the implied
semantic positions and check if the robot can move
between two adjacent semantic positions with a spe-
cific action.

3) For each action check if there are generic conditions in
which the robot can use this action to reach an adjacent
semantic position.

Each identified reachability rule has to be added to the on-
tology. The rules have to assert a Reachability individ-
ual in their head, using the ternary ReachableByAction
function symbol.

VI. MODELLING AN OFFICE ROBOT
APPLICATION

To validate the semantic navigation system and the mod-
elling methodology, an office robot application has been
chosen. The target platform is our mobile research robot
Odete, but the model can be easily transferred to any robot
that can execute the same abstract actions. Odete’s task
is to navigate through an office environment conducting
transports. To make the robot’s behaviour more predictable
for people in the office, the robot should always stick to the
right wall in the direction of travel when driving in corridors.

Following the methodology of Sec. V we first list the
actions which the robot can perform:
DriveStraight:Action. TurnFromDoor:Action.
FollowWall:Action. TurnToDoor:Action.
TransitDoor:Action.

We assume that the FollowWall action is able to follow
walls around corners, although we could easily factor this be-
haviour out into a separate action if the robot implementation
would require it.

Now, we identify the relevant region classes that occur in
the office environment:
Corridor::Region. Door::Region. Room::Region.

We define that the longer sides of doors and corridors have
to face north in their local coordinate systems.

The next step is to identify interesting navigation points.
For rooms we want to have a single navigation point inside
the room, which means “the robot is somewhere in the
room”. For doors, the robot has to be able to traverse the
door. Therefore we need a navigation point at the centre of
each side of the door. We also want to be able to stop the
robot at the beginning and end of a doorway. Corridors need
no additional navigation points as the navigation points that
are derived from doors are located in the adjacent regions.

Next, we look at each pair of region classes. The only
combination that is of interest here is a door at the side of
a corridor. As the robot should always drive along the right
wall in corridors it must be able to turn to a door from the
opposite side. Therefore, if a door is at the side of a corridor
we place two additional navigation points at the start and
end of the doorway vis-à-vis the door.

Now, we can add rules to the ontology, which assert
the identified navigation points as semantic positions with
appropriate relations in their head. The condition for deriving
the navigation points goes into the body of these rules. The
following rule derives the three semantic positions east of a
door. Similar rules have to be written for the other interesting
navigation points.
SP1(?Door):SemanticPosition[impliedBy->?Door,

localEastOf->?Door, near->?Door, atStartOf->?Door,
inRegion->?Other, neighbourOf->SP2(?Door)] AND

SP2(?Door):SemanticPosition[impliedBy->?Door,
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localEastOf->?Door, near->?Door, atCentreOf->?Door,
inRegion->?Other, neighbourOf->?SP3(?Door)] AND

SP3(?Door):SemanticPosition[impliedBy->?Door,
localEastOf->?Door, near->?Door, atEndOf->?Door,
inRegion->?Other]

:- ?Door:Door[neighbourLocalEast->?Other:Region].

Having identified the relevant semantic positions, the next
step of the modelling methodology is to look at the robot
actions. First, we look at each region class and their implied
semantic positions. We find that doors have to be traversed
using the TransitDoor action. Therefore the semantic
positions at the centre of each side of the door have to be
connected in both directions. We further have defined that
the FollowWall action should always be used when the
robot drives along the right side of a corridor. If a door is at
the end of a corridor the semantic positions at its side also
have to be connected to the last semantic positions at the
corresponding sides of the corridor using FollowWall.

In the second step we have to look at each pair of region
classes and their implied semantic positions:

• If the robot is in a room and needs to pass through a
door, we define that it has to drive to the door using the
TurnToDoor action, first.

• If the robot has entered a room through a door, it should
drive further into the room using the DriveStraight
action.

• If the robot turns left after having traversed a door into
a corridor, it has to cross the corridor and proceed along
the opposite wall. This is accomplished by performing
the TurnFromDoor action.

• If the robot drives in a corridor and has to traverse a
door on the opposite side of the corridor, it has to cross
the corridor using the TurnToDoor action.

All identified reachability rules have to be added to the
ontology. The following rule connects semantic positions
along the east side (in the corridor’s local coordinate system)
of a corridor with the FollowWall action:
ReachableByAction(?StartSP,?EndSP,FollowWall):Reachability
:- ?Corridor:Corridor AND

?StartSP:SemanticPosition[inRegion->?Corridor,
localEastSideOf->?Corridor] AND

?EndSP:SemanticPosition[inRegion->?Corridor,
localEastSideOf->?Corridor, neighbourOf->?StartSP] AND

LocalNorthAlongRegion(?EndSP, ?StartSP, ?Corridor).

VII. EXPERIMENTS

To test the validity of our models we conducted several ex-
periments with two different maps. The first map represents
a very simple, artificial office environment (see Fig. 2(a)).
This simple map has been used to validate and visualise the
individual conceptual steps the semantic navigation system
performs.

Fig. 2(b) shows the deduced semantic positions. Remark
that the semantic positions are not characterised by their
geometric position, although the visualisation might suggest
otherwise. Fig. 2(c) shows how the model of the robot’s
actions connected the semantic positions to a reachability
graph. Notice that the arrows along the right side of the
corridor point upwards while the arrows along the left side

(a) (b)

(c) (d)

Fig. 2. Experiments with a Semantic Region Map of a simple office
environment. (a) The Semantic Region Map models the environment in an
abstract way. (b) Semantic positions have been implied. (c) The semantic
positions have been connected with actions to a reachability graph. (d) A
path has been planned from the bottom right room to the top left room. Its
edges are labelled with the actions the robot has to perform.

(a)

(b)

Fig. 3. Experiments with a Semantic Region Map of a more complex office
environment.
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of the corridor point downwards. Therefore, the robot always
drives along the right side of the corridor.

Finally, Fig. 2(d) shows a path that has been planned by
the semantic navigation system from the bottom right room
to the top left room. The robot starts by turning to the door
and passing through it. Then the robot follows the eastern
wall of the corridor until the south end of the target room’s
door. It turns to the door thereby crossing the corridor, passes
through the door, and lastly drives straight into the room.

We also conducted experiments with the Semantic Region
Map of a larger office environment. Fig. 3(a) and 3(b) show
two paths that have been planned by the semantic navigation
system, along with the reachability graph. A remarkable
result of our model can be seen in Fig. 3(a) in the small
corridor on the bottom left side of the map: The robot
strictly adheres to the “always drive right” policy, although
one might argue that it would be more efficient to drive
straight between the two doors in this situation. This could
be achieved by introducing a NarrowCorridor region
class and modelling semantic positions and robot actions
accordingly.

VIII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper introduced the Semantic Region Map, an
environment model with complex metric, topological and
semantic features. It presented how navigation points, so-
called semantic positions, could be deduced from the map
using a semantic description of the environment. Further-
more, it showed how a semantic description of the robot’s
actions can be used to connect the semantic positions to a
reachability graph, whose edges were labelled with robot
actions. An ontology consisting of a taxonomy and a set of
rules was used to implement the semantic models. The paper
introduced a methodology to model concrete environments as
well as robot actions. It applied this methodology to a service
robot operating in an office environment. Experiments with
the map of a small office showed that the reachability graph
was deduced as expected and that paths could be planned by
determining the current and goal semantic positions using
abstract queries to the ontology, extracting the reachability
graph and finding the shortest path between the two semantic
positions. Further experiments with a more complex map
showed that the approach scales well.

B. Future Works

In future work we will extend the model of the office robot
application with additional region classes and actions in order
to make it more capable and flexible. It will also be possible
to mark regions as “not passable” so that temporarily blocked
regions (e. g. closed doors) can be handled. Additionally,
we will integrate the semantic navigation planning system
with the semantic SLAM algorithm from [8] and a semantic
localisation system. This will enable us to test the entire
loop from mapping to path planning to path execution on
our mobile research robot Odete (see Fig. 4).

Fig. 4. The mobile research
robot Odete carrying letters
and soda.

Fig. 5. The autonomous
shopping trolley InBot.

We are also planning to port the semantic navigation
system to InBot, our autonomous shopping trolley (see Fig.
5), and an automatic guided vehicle (AGV), which transports
goods in hospitals.

Moreover, we will add dynamic obstacles to the Semantic
Region Map by introducing a DynamicObject concept
into the ontology. This information will be used in the plan-
ner to adjust the driving behaviour of the robot depending on
the types, quantity and motion of dynamic obstacles within
a region.
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[7] M. Ziegenmeyer, K. Uhl, J. M. Zöllner, and R. Dillmann, “Autonomous
Inspection Of Complex Environments by Means of Semantic Tech-
niques,” in Proceedings of the Workshops of the 5th IFIP Conference
on Artificial Intelligence Applications & Innovations (AIAI-2009), Thes-
saloniki, Greece, 2009, pp. 303–310.

[8] J. Oberländer, K. Uhl, J. M. Zöllner, and R. Dillmann, “A region-
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Situation Assessment and Trajectory Planning for AnnieWAY

Christoph Stiller and Julius Ziegler

Abstract— This contribution addresses machine perception
of a priori unknown environment, situation recognition, and
automated trajectory planning in urban traffic. We discuss
how to represent and acquire metric, symbolic and conceptual
knowledge from video and lidar data of a vehicle. A hardware
and software architecture tailored to this knowledge structure
for an autonomous vehicle is proposed. Emphasis is laid on
methods for situation recognition employing geometrical and
topological reasoning and Markov Logic Networks. Trajec-
tory planning is conducted in spatiotemporal state lattices.
The computational effort of the planning method is almost
independent of the number of moving objects as these simply
disable spatiotemporal nodes. The planning optimizes a quality
measure that considers safety, efficiency, and comfort. Results
are shown from the autonomous vehicle AnnieWAY that is able
to autonomously travel in urban and platooning scenarios.

I. INTRODUCTION

Autonomous Vehicles that perceive their environment,
communicate with each other, understand the current traf-
fic situation and may by themselves or cooperatively with
others plan and conduct appropriate driving trajectories are
an intense field of international research. This contribution
outlines the concept and architecture of the ’Cognitive Au-
tomobile AnnieWAY’ that has successfully participated in
international competitions such as the 2005 Grand and the
2007 Urban Challenge, and recently won the 2011 Grand
Cooperative Driving Challenge [1], [2], [3]. The vehicle
constitutes an experimental basis for automated machine
behaviour [4], [5]. Within a few years, large improvements
in traffic safety is expected from such technologies [6].

A major goal of the scientific research is to advance
knowledge acquisition and representation as a basis for auto-
mated decisions. As illustrated in Figure 1, driving - whether
by a human or by a cognitive machine - involves knowledge
representation in various forms. Metric knowledge, such as
the lane geometry and the position or velocity of other
traffic participants is required to keep the vehicle on the
lane at a safe distance to others. Symbolic knowledge, e.g.
classifying lanes as either ’vehicle lane forward’, ’vehicle
lane rearward’, ’bicyle lane’, ’walkway’, etc. is needed to
conform with basic rules. Finally, conceptual knowlegde, e.g.
specifying a relationship between other traffic participants
allows to anticipate the expected evolution of the scene to
drive foresightedly.

C. Stiller and J. Ziegler are with Institut für Mess- und Regelungstechnik,
KIT - Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany
stiller, ziegler@kit.edu
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P1  
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P3 

vehicle lane forward 

bicycle 
         lane 

Fig. 1: Metric (yellow), symbolic (orange), and conceptual
(red) knowledge for cognitive automobiles

II. ANNIEWAY SYSTEM OVERVIEW

A. AnnieWAY Hardware Architecture

Embodiment is widely considered a crucial element in
cognitive systems research. To assess and validate theoretical
findings we have adopted the unified hardware and software
framework of the Karlsruhe-Munich collaborate research
center ’cognitive automobiles’ [7], [8]. Based on the architec-
ture depicted in Figure 2, meanwhile some ten experimental
cognitive automobiles were set up [9], [5], [10]. To ensure

GPS-Antennas 

3D-LIDAR 

2D-LIDAR 

Stereo Vision 

Control 
Computer IMU 

   Power  
Supply 

Main 
Computer Radar 

E-Throttle 
E-Brakes 
E-Steering 

V2V 
Communication 

Fig. 2: Hardware setup for the cooperative cognitive auto-
mobile AnnieWAY.

real-time capabilities, vehicle control is performed on a
dedicated dSpace AutoBox which directly communicates
with the actuators over the vehicle CAN. All other perception
and planning modules as well as sensor data acquisition are
performed by a single multicore multiprocessor computer
system which delivers sufficient computing power to host
all processes providing low latencies and high bandwidth
for inter-process communication.
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B. AnnieWAY Software Architecture

The hardware is complemented with a real-time capable
software architecture as depicted in Figure 3. The frame-
work has been proposed, implemented, and made publicly
available by [7], [11]. Its central element is a real-time
database for information exchange. The various driving and
perception tasks run in separate processes that communicate
via the database and share a centralized view on all available
information at every time. The framework supports parallel
operation of processes at variable update rates and ascertains
hard real-time performance where needed.

Velodyne Lidar   8 Mb/s 

Sensor Interface 

Global Services 
ServicDienste 

real time 
knowledge basis 

GPS/INS 

Sick 1D Lidar 

Perception 
static 3D map     

dynamic objects 

transparent access 

system watchdog 

read/write  < 10 !s 

time referenced 

low delay 

hard real time 

behaviour generation 

Decision & Planning 
situation assessment 

throttle/brakes 

Control 
steering 

gear shift, turn indicators, etc. 

Stereo Vision 18 Mb/s 

coop. behaviour 

Communication 
coop. perception   

lane geometry 

on-road trajectory planning     

off-road trajectory planning     

Fig. 3: Software setup for the cooperative cognitive automo-
bile AnnieWAY.

III. SITUATION RECOGNITION

A. Simple geometric and topological reasoning

In this section, we will assume that a representation of
the road network is available. This representation has to
contain the geometry of single lanes as well as a topology,
i.e. their interconnectedness within the network. Formally,
this representation is a special geometric graph, i.e. a graph
whose edges describe a distinctive road geometry, expressed
by a planar curve. Such a representation was available during
the Urban Challenge in form of a so called road network
definition file (RNDF). As has been shown in [12], such a

A

B

C

Fig. 4: Geometric graph for road representation and situation
recognition.

representation can also be derived from vision cues using
formal logic reasoning. Figure 4 shows an example for such
a graph. The depicted situation is that of a one-way road
forming a T-type-junction towards a road which allows two-
way traffic.

Other road users are embedded into the graph using purely
geometric reasoning. They are assigned to that edge in the
graph which best explains their position and heading. A
simple, orientation-aware point-to-curve distance function
can be used for this task. Figure 4, depicts three vehicles
and their association to edges in the graph.

The graph provides a rich description that readily allows
to determine roles of and relations among other road users.
From Figure 4, e.g., the relations “A follows B” and “B must
yield to C” can be derived ad-hoc.

B. Markov Logic Networks

Markov Logik Networks (MLNs) refer to a class of proba-
bilistic logical models combining first-order predicate logics
with Markov random fields [13]. An MLN is defined through
a set of formulas {F1, . . . , Fn} in first-order predicate logics
on a random field with random variables X = (X1, . . . , Xq)
and a set of scalar weights {w1, . . . , wn} such that one
weight is attributed to each formula.

The joint distribution of the random field is then defined
by a Gibbs distribution

P (X = x) =
1

Z
exp

(
n∑

k=1

wkFk(x)

)
, (1)

where x = (x1, . . . , xq) denotes a realization of the random
field X, and Z is a normalizing constant. The logical
formulas Fk are instantiated by the realizations x rendering
each formula either true or false. Typically, each formula will
depend on a small subset of variables in x only that forms
a clique of the Gibbs distribution.

Table I shows a simple example for an MLN with two
generic formulas. The first formula is applied to each vehicle
Oi while the second formula is applied to each pair of vehicle
and lane (Oi ,Rj ) detected in the scene. For a specific scene

wi Fi

1 1.4 ∀o hasDirection(o,Same) ⇒ car(o)
2 0.6 ∀o∀r on(o,r)∧road(r)∧hasSpeed(o,Low) ⇒ car(o)

TABLE I: Formulas and weights specifying an MLN

with, e.g. two vehicles {O1 ,O2} and one lane {R1}, one
is left with the Markov random field shown in the graph of
Fig. 5. This simple example supports the classification of
cars through context information [14]. The formulas of an
MLN can thus be considered as probabilistic rules with the
weights quantifying our degree of belief in these rules. The
Gibbs distribution (1) models world configurations as most
probable the more they conform with rules that posses large
weights.
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Fig. 6: AnnieWAY’s hierarchical state automaton.

hasDirection(O1,Same) hasDirection(O2,Same)

on(O1,R1) on(O2,R1)

car(O1) car(O2)

road(R1)

hasSpeed(O1,Low) hasSpeed(O1,Low)

Fig. 5: Graphical representation of the Markov Logic Net-
work defined through the generic formulas and weights from
Table I and a scene with two vehicles {O1 ,O2} and one
lane {R1}.

IV. BEHAVIOUR GENERATION

Building on the information provided by the situation
recognition module, the behavioural layer makes decisions
on actions which need to be carried out in the current situa-
tion. Actions are communicated downstream to the trajectory
generation stage in the form of center and boundary lines
for the driving corridor, or as hard constraints which are
imposed onto the generated trajectories (like forcing a stop
at a stop line, or obeying a speed limit). Some simplistic
tasks, like flashing an indicator, are passed on to the vehicle
hardware directly. All these actions are generated using a
state automaton which is organised in a hierarchical fashion.
The possibility to describe state automata hierarchically has
first been described by David Harel in [15] (Harel state
charts). Figure 6 shows the state automaton which has been
used on board ANNIEWAY during the Urban Challenge.
Descriptors of states and events are prefixed by St...and
Ev..., respectively. Substates are, for the most part, displayed
in short form, e.g. the state StDrive contains sub states
StOnLane, StFollow, StChangeLane etc. The principle of
hierarchal organisation is illustrated by an exemplary “zoom”

Fig. 7: A spatiotemporal state lattice over a one dimensional
workspace. The lower left shaded area depicts a control set
for paths in C0 while the upper right one depicts one designed
for higher order continuity, consisting of quintic polynomials.

into the state StIntersection, which shows the detailed
structure of the relation of StIntersection’s sub states. For a
detailed treatment of state charts and their graphical notation
cf. [15]. For a more detailed discussion of the specific use
on board ANNIEWAY we refer interested readers to [16].

V. TRAJECTORY PLANNING

After the situation has been recognized and an appropriate
behaviour has been identified a specific trajectory is planned.
The planning concept described in the sequel belongs to the
class of state lattice planers which has been adapted for on
road driving in the presence of moving obstacles. A more
complete description of the methodology can be found in
[17].
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A. Spatiotemporal state lattices

Static state lattices result from appropriate sampling of
the continuous configuration space and are known as efficient
representations for path planning in static environments [18],
[19]. Spatiotemporal augment the configuration space of
a standard state lattice with time into a single manifold,
followed by discretization. To illustrate this concept, we will
first consider the simplistic case of a one dimensional spatial
configuration space.

Consider a vehicle traveling with varying velocity in R.
Its state is described by its distance from the origin, l and
time t. In the spirit of the state lattice approach, we constrain
the state space to an equidistantly sampled subset of R2 with
sampling interval ∆l,∆t.

Figure 7 depicts a spatiotemporal state lattice over the
described workspace. The figure sketches state transitions
for piecewise constant, positive velocities and C2 continuous
paths achieved by quintic polynomials, respectively. Quintic
polynomials are attractive for planning dynamic driving ma-
noeuvres, because they minimize squared jerk [20] and allow
for fast computation of their coefficients for given boundary
conditions. Closed form expressions exist to describe the
integral of squared jerk and for maximum speed, acceleration
and speed along the trajectory [21]. Quintic splines have been
used for automotive motion planning before [22], albeit only
to describe kinematic paths without time parametrization.

B. Motion planning using spatiotemporal state lattices

In order to account for moving obstacles their future posi-
tions are predicted. Obstacles can then readily be transferred
to the space-time manifold, as shown in Figure 8. The shaded
area is occupied by a small object that moves with velocity
1
2

∆l
∆t . A trajectory is found within the spatiotemporal lattice

that does not collide with the obstacle.
To deal with obstacles efficiently, we create a mapping

between a discrete space-time obstacle map and the set of
all edges in the graph. This can be done in the offline
graph generation phase. Then, edges blocked by obstacles
can be invalidated quickly by a single run over the obstacle
map. This method scales well with the number of obstacles
maintaining an almost constant overall processing time.

Edge costs consider the integral of the squared jerk of their
geometric representations, as opposed to simply considering
arc length. This improves safety, controllability and driving
comfort.

Graph-based motion planning algorithms usually employ
shortest path algorithms that maintain vertices visited in a
partially ordered data structure. Algorithms belonging to this
class include A* search, as well as Stentz’ D* [23] and
focused D* [24]. Spatiotemporal lattices belong to the class
of directed acyclic graphs (DAG). Hence, sorting vertices by
time yields a topological ordering in advance, and vertices
can be just processed in this order. The resulting algorithm is
linear in the number of vertices n, as opposed to Dijkstra’s
general scheme which is in O(n log n).

Fig. 8: Planning with a moving obstacle in the space-time
manifold. The shaded area is covered by a moving object.
A trajectory is shown that is composed of elements of the
control set. Shortest paths can be found by relaxing vertices
from left to right.

Fig. 9: Reparametrisation of the Cartesian plane. The dotted
line indicates the original run of the road, (X,Y ). The grey
structure illustrates the discrete reparametrization in l and r.

C. Lane-adapted reparametrization

The principle of spatiotemporal state lattices developed in
the preceding sections generalizes naturally to two dimen-
sions. Doing this naı̈vely, however, produces dimensionality
problems due to the required dense sampling of the state
space. Note that, in comparison with [19] the dimensionality
of the sampling space for the state lattice rises from 3
(2D position and orientation, in [18], curvature is consider
additionally) to 7 (2D position, 2D velocity, 2D acceleration
and time), due to moving from a kinematic to a higher order
dynamic model and the incorporation of time. With dimen-
sionality rising, coverage of the configuration space requires
an exponentially growing number of samples. Hence, an
efficient way of sampling the configuration space is needed
that is adapted to the special case of navigating on a road
whose run is known a prioi, e.g. from digital map data.

Given a continuous, piecewise twice differentiable, arc
length s parametrized representation (X(s), Y (s)) of the
course of the road, we define the following reparametrization
(l, r) of the 2D workspace, where (x, y) denote Cartesian
coordinates, l(t) is the distance travelled along the road, and
r(t) is the lateral offset towards the road centre:

x(t) = X(l)− rY ′(l) (2)
y(t) = Y (l) + rX ′(l). (3)

This is a base change towards a local orthogonal coordinate
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Fig. 10: State transitions on the transformed grid. The
successors of one vertex are shown in black.

system that has its abcissa aligned with the road for any l. It
defines a two dimensional manifold as depicted in Figure 9.
As described earlier, differential boundary conditions of up to
second order are required for edge generation. We therefore
need to transform them through equations (2) and (3): Given
l̇, ṙ, l̈ and r̈, by application of the chain rule we obtain

ẋ = l̇X ′(l)− ṙY (l)− rl̇Y ′(l) (4)
ẏ = l̇Y ′(l) + ṙX(l) + rl̇X ′(l) (5)

and

ẍ = l̈X ′ + l̈2X ′′ − r̈Y − (2ṙl̇ + rl̈)Y ′ − ṙl̇2Y ′′ (6)
ÿ = l̈Y ′ + l̈2Y ′′ − r̈X − (2ṙl̇ + rl̈)X ′ − ṙl̇2X ′′. (7)

We now restrict parameters l, r, l̇, ṙ, l̈ and r̈ to a discrete,
grid like set (the vertices of the search graph) and transform
them through equations (2) - (7). The resulting x, y, ẋ, ẏ, ẍ
and ÿ, together with discrete values for time t, are used as
boundary values to calculate quintic polynomial trajectories
as described in section V-A. To assert dynamic and kinematic
feasibility, a respective edge is only added to the graph, if
velocity, acceleration and jerk stay within bounds defined
in advance. In the effort to further reduce the number of
vertices, some ad hoc reductions can be applied to the sets
of discrete parameters: r is constrained to an interval so as
to restrict all vertices of the lattice to be within the bounds
of the road. We set ṙ = 0 and constrain l̇ to be positive,
since we wish the vehicle to make progress along the road,
while crosswise motion is to be avoided. Second derivatives
l̈ and r̈ of the untransformed coordinates are set to zero at
the grid points.

Figure 10 gives an impression of the graph we used for
our experiments by displaying successor edges of a single
vertex. The outdegree of vertices is approximately 200.

VI. EXPERIMENTAL RESULTS

Figure 11 shows an exemplary result of the proposed
trajectory planning method. The scenario selected for this
example is that of merging into running traffic at a T-junction.
As can be seen, the proposed method yields a trajectory that
is smooth in the sense of minimum mean squared jerk and

t = 4s

t = 6s

t = 8s

t = 10s

t = 12s

Fig. 11: Merging into traffic. The planner selects a com-
fortable and safe trajectory into a convoy of five vehicles
traveling towards a T-junction.

safe in the sense of entering the gap at a safe distance to all
other vehicles with a velocity of the gap itself. The proposed
method inherently selects the optimum gap to cut in. The
planner is also able to find trajectories under more complex
traffic conditions.

Figure 12 shows AnnieWAY performing in the Urban
Challenge of 2007. The graph based representation of the
road network can be seen. In the top right of each frame, the
sequence of states the hierarchical state automaton traverses
is displayed. More recently, the vehicle has won the Grand
Cooperative Driving Challenge in May 2011.
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Fig. 12: AnnieWAY in the Urban Challenge of 2007

VII. CONCLUSIONS

AnnieWAY is an experimental autonomous vehicle that
perceives a priori unknown environments, recognizes situa-
tions, plans appropriate trajectories, and controls its actuators
to follow these. It acquires metric, symbolic and conceptual
knowledge from video and lidar data and employs prior
knowledge from maps. The current driving situation is rec-
ognized employing geometrical and topological reasoning.
Furthermore, we experiment with Markov Logic Networks
for automated inference of pair relations among objects.
Spatiotemporal state lattices have been shown to allow for
efficient trajectory planning without severe restrictions on
optimality and generality. Moving vehicles are accounted for
by disabling spatiotemporal nodes along their paths. Thus the
method maintains its computational load irrespective of scene
complexity. The quality criterion optimized during planning
can be chosen with large freedom. Currently, we minimize
mean squared jerk, but extended measures could account
for safety, energy efficiency, or phsycokinetic comfort in
the future. Results are shown from the autonomous vehicle
AnnieWAY that is able to autonomously and cooperatively
travel in urban and platooning scenarios.
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Abstract—Autonomous navigation among humans is, however
simple it might seems, a difficult subject which draws a lot
a attention in our days of increasingly autonomous systems.
From a typical scene from a human environment, diverse shapes,
behaviours, speeds or colours can be gathered by a lot of sensors
; and a generic mean to perceive space and dynamics is all the
more needed, if not easy. We propose an incremental evolution
over the well-known occupancy grid paradigm, introducing grid
cell propagation over time and a limited neighbourhood, handled
by probabilistic calculus. Our algorithm runs in real-time from
a GPU implementation, and considers completely generically
space-cells propagation, without any a priori requirements. It
produces a set of belief maps of our environment, handling
occupancy, but also items dynamics, relative rigidity links, and
an initial object classification. Observations from free-space
sensors are thus turned into information needed for autonomous
navigation.

I. OCCUPANCY GRIDS - EXTENDED

A. General considerations

1) Perception of non-structured moving objects: Amid a
vast set of localisation and perception algorithms currently
developed, among which various SLAM variants have taken
the greater share for the last years, some challenges are
still not addressed in the perception field. Detection and
tracking of moving objects, without pre-requisites on rigidity,
structured environment or immobility remains a tough
question, and is not yet addressed by many approaches.
Different SLAM-based approaches have been used for the
last years, some of them being very successful in building a
map of the environment from a non-associative sensor, while
dealing with the identification of some moving objects amid
the map. FastSLAM, using particle filtering and initially
presented by Thrun et. al ([1]) or other iterative optimisation
techniques (ICP, [2] [3]) are very powerful algorithms which
can deal with some level of movement amid tracked points,
as long as fixed points of the map are enough to estimate
robot pose and environment mapping. This proved effective,
for example by Wang et. al ([4]), which showed that moving
points could be separated from a still structure with a good
accuracy, and tracked accordingly. Overall scene requisites
are however still strong in this setup, and would probably
not be enough for reliable moving object perception and
tracking in a highly unstructured environment, without a
majority of solid points to observe, which can easily happen
outdoor in densely populated areas. Another possibility is

exploitation of detection before tracking, using information
from visual or speed measures sensor, in order to remove
moving objects from the traditional SLAM calculus. This
has notably been demonstrated by Agrawal ([5]), which
proved effective to detect individuals while still needing fixed
points as a reference. Contrary to SLAM, our aim is thus
not primarily to localise oneself in the environment along
with building a map of its static features, but instead to be
able to reliably detect and monitor position and dynamics of
surrounding moving objects, possibly outdoor and without
much visible solid infrastructure. Those observations will
drive the following developments, and while the proposed
algorithm is nowhere near best SLAMs in terms of accuracy,
we believe it could be useful in typical human environments.

2) Interests and limits of the simple grid-based approach:
Occupancy grids are very common in robotics, since their
first introduction by Moravec and Elfes ([6]), initially related
to sonar based mapping. Principles are simple and effective,
relying on the information storage and information source
spatial localisation similarities, thus allowing to keep any
spatial relations between cells at a minimal cost. This is
still used nowadays, although not being any more the only
processing step of the algorithm, and can still be viewed as
a very-capable mean of storing spatially related information
or sharing information between several subjects. It is also
specially well-suited to deal with promising new massively-
parallel computing capabilities. Occupancy grids were indeed
present in most of the latest SLAM propositions (based on
filtering or optimisation), and in many of broadly speaking
perception systems (Badino et al [7] showed for example a
free-space perception system based on vision and occupancy
grids in 2007, as did more recently by Yguel et al. [8]).
In those examples, grids are however only used for information
representation and storage, most of the processing being due
to external algorithms. Sensor filtering over time is indeed
rarely considered within the grid formalism (grid update
rule often relies on mere accumulation). Links between cells
are also rarely considered while updating grids, spatial and
temporal independence between measures being at the heart
of the initial simplicity of the method. Obviously a big step
from accurate world description, this is basically of little
consequences provided the aim is, as it was in the original
Moravec article [6], the cartography of still environment. In
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case we chose the occupancy grid formalism to track moving
objects, this is however a major limitation, as one could
expect the displacement of physically related points to be
correlated.

3) Optimal update to occupancy grids: Considering a
hypothetical occupancy grid propagation, one could wonder
why an optimal Bayesian propagation would not be possible.
The probability of any possible cell displacement could be
computed, thus computing the most-probable map prediction
from a given set of measure, allowing both temporal filtering
and a link between new measures and known information.
Trouble is, computing the formal probability (provided all the
needed information is known) is extremely demanding, if one
is to consider every possible move. A complete probability
calculus, considering a set of S possible state in any cell of a
N ∗M grid, would imply the consideration of each and every
possible map, which is SN∗M . Taking the smallest possible
state sampling (2 states), and a ridiculously small map of
10*10 cells, and the amount of maps to compute to get to the
full solution is already beyond any reasonable range (2100).
The key to this “absurd” complexity when keeping every
probability on track, which could seem somewhat odd
from a human perception (we don’t usually need much
time to get a good grasp on a typical scene involving
moving objects), surely relies in a lot of useless probabilities
being taken into account, even possibly beyond the causality
principle. Anything at a given place have little to no chance of
influencing the very next future of a very remote location, and
this is the idea behind dealing with neighbourhood-restricted
probabilities.
Another possible approach, demonstrated by Coue et. al
in [9], would be the use of a Bayesian network coupled
with a motion model for dynamic objects mapping. In this
case, no actual association needs to be done, this being
handled by the Bayesian framework computing transition
probabilities between states. The main difference with our
approach is that they do not attempt to compute the most
probable next place for a given occupancy, but rely on a
given motion model (constant velocity in this example). This
is very fine in most cases, and definitely is an improvement
over static occupancy maps, but we believe that this can lead
to the wrong prediction in some cases, among which heavy
occlusion or colliding courses. We however certainly share a
lot of the abstraction presented in this article, although a few
more notions are present in our algorithm.

B. Tackling inter-dependence within computing boundaries

We propose the use of propagated occupancy grids, able
to deal with some of the interactions between cells, in a
common prediction/measure Bayesian cycle. Our algorithm
aims at taking into account both temporal and spatial
relations between measures, while keeping computing costs
low enough to conceive a real-time use and concurrent use to
other more specialised algorithms.

Firstly, we introduce the probability for every cell to move
to its neighbourhood, given previous knowledge of the scene
(occupation, speed, classification) and specific heuristics
(separate cells cannot converge, nor can cells from the same
object diverge). Secondly, we compare this prediction to a
new measure, and compute the most probable estimate given
prediction and latest measure. Thirdly, we update associated
knowledge used in the prediction step, namely occupancy
of every cell of the grid, speed, relation between cells (in
a neighbourhood) or object classification used for different
sensor models. Those principles were presented by Gate in
[10], initially on a standard CPU implementation, and showed
very promising results despite a high computing cost making
it prohibitive for any real-time application.

1) Initial definitions : : The probability mass functions
(pmf ) modelled in the following algorithm concern a set of
notions that we’d like to define :
- Mapping (occupancy) probability Mk(xi) ∈ [0, 1] of the cell
xi in the spatial environment E at the time k, provided the
measures Z0:k = {z0, ..zk} :

P (Mk(xi) = 1|Z0:k) ∀xi ∈ E (1)

- Vehicle localisation (including position and speed in E×V ),
at the iteration k. This is not yet addressed by the algorithm,
and in the examples below every speed and position is relative
to the vehicle.

P (Lk = lj |Z0:k) ∀lj ∈ (E × V ) (2)

- Association, ie the probability for a given cell from the
iteration k-1 to be associated with another given cell at the
iteration k. In our case, only associations coming from a
restricted neighbourhood are taken into account, which cuts
the number of evaluated map candidates from an exponential
dependence on the number of cells to a more reasonable
dependence on neighbourhood scale.

P (Xnext
k−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) ∀(xi, xj) ∈ E2

(3)

- Velocity probability of a cell, given its occupancy and
previous measures :

P (Vk(xi) = v|Mk(xi) = 1, Z0:k) ∀(xi, v) ∈ E × V (4)

- Detection probability, to handle the probability that two given
cells xi and xj are part of the same object. The neighbourhood
constraint limiting interactions to a finite part of the map is
used once more, to limit the intricateness and heavy computing
cost. Affiliation to a given object can however be “propagated”
further than one cell’s neighbourhood, although our span is
limited and this could prove to be a problem. Detection
probability, Dk(xi, xj) ∈ [0, 1] is 1 if xi xj are from the
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same object.

P (Dk(xi, xj) = 1|Mk(xi) = 1,Mk(xj) = 1, Z0:k)

∀(xi, xj) ∈ E2 (5)

Several criteria could be used to determine this probability
from measures, among which a constant relative configuration,
fit with a given shape, or a set of distinct characteristics
(speed, shape, colour,..). In this first implementation, a simple
geometrical criteria is used : Dk(xi, xj) = 1 if the distance
between xi and xj is conserved over iterations, with a Gaus-
sian decrease elsewhere (detailed below).
- Classification designs the probability of this set of cells to be
part of a given class of objects (car, pedestrian, still object,..).
We attempt to model this by matching extended characteristics
of a set of cells (beyond geometrical characteristics for exam-
ple) to a model. This conditions the update rule of association
calculus, envisaged future positions of a cell being for example
adapted from its class motion model. Classification probability
are simultaneously kept from a different set of classes, a
cell being capable of a partial fit with different classes. This
ensures a more robust classification, initially prone to errors.

P (Ck(xi) = cj |Mk(xi) = 1, Z0:k) ∀(C × E) (6)

2) Update rules - proposed algorithm : : Having set these
definitions, the proposed update rules, implemented as such in
the parallel execution we present as a last-part example, are
as follows :
- Associations are updated in a several pass mechanism,
making an extra initial assumption of independence between
cells behaviour, which we attempt to correct in a second part.
This behaviour was already present in the [10] proposition, and
is a key to the possible use of massively parallel computing.
Approximations are obviously primordial in our attempt to
make the calculus feasible in real-time, but we believe most
of the interactions between cells are still modelled with this
proposition.

Plocal(X
next
k−1 (xj)|Mk−1(xj) = 1, Z0:k) =

η · Plocal(zk|Xnext
k−1 (xj),Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸

Correction

· Plocal(Xnext
k−1 (xj)|Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸

Prediction

(7)

η is here a normalisation constraint, to ensure that possible
moves sum up to one for any given cell.

First we then compute the local associations prediction,
which is to say that macroscopic interactions are not yet taken
into account : cell previous speed and class are used to predict
the asserted new positions. This could be seen, similarly
to SLAM particle filters ([1]), as a new set of particles
generated for every cell of the grid iteratively, representing this
cell’s occupancy possible next moves, depending on previous

knowledge and motion model. In our case, initial predictions
are weighted by a Gaussian, whose standard deviation is
function of the identified class of the object (thus representing
the possible uncertainty in an object next move, this being
different for a pedestrian or an identified bus). The centre of
the Gaussian weight is relative to the object previous speed
estimation.

Plocal(X
next
k−1 (xi) = xj |Mk−1(xj) = 1, Z0:k−1) =

Ψ(xj , xi, Vk−1(xj), Ck−1(xj)) (8)

which could be rewritten as, with g the standard Gaussian
expression and σ its standard deviation dependent on the
identified class :

Ψ(xj , xi, Vk−1(xj), Ck−1(xj)) =

g(xj + Vk−1(xj) · dT − xi, σCk−1(xj)) (9)

Last measure is then taken into account to produce an esti-
mated local association, still without macroscopic constraints
to alter these predicted associations. Predictions are weighted
according to the sensor model occupancy new measure, while
keeping the normalized sum of all possible displacements :

Plocal,weighted(X
next
k−1 (xi) = xj |Mk−1(xj) = 1, Z0:k) =

γPlocal(X
next
k−1 (xi) = xj |Mk−1(xj) = 1, Z0:k−1)

· P (Mk(xj) = 1|Zk) (10)

with γ such as
∑
ak∈A Plocal,weighted(ak) = 1 (A being

the set of investigated associations).

Associations initially local estimation are then altered ac-
cording to additional constraints : unlikely moves are penalised
according to different heuristics (different cells cannot con-
verge to the same place, cells from the same rigid object
cannot diverge). Rigidity and non inter-penetration constraints
are modelled by the potential function Φassociation, which is
currently based on two Gaussian-window weight functions.

P (Xnext
k−1 (xj) = x̂|Mk−1(xj) = 1, Z0:k−1)

'
∑
ak∈A ∏

1≤j≤N

Plocal(X
n
k−1ext(xj)|Mk−1(xi) = 0, Z0:k)


· Φassociation(ak, E, Z0:k) (11)

were A is again the set of all possible associations. The
process here described can be differently factorised, but was
split into several summations in an attempt to increase its
readability.

- Mapping is computed taking into account the two cases :
in the cell is a newly observed presence, or the displacement
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(possibly null) of a previously seen cell. In the first case,
the sensor model is the only input taken into account, in the
second case contributions from all the possible associations
are summed up to compute the predicted occupancy. Cell
interactions have in this case already been taken into account
in the association computation. The two cases are dissociated
by a random variable Sk, which can take two values : 0 if
the cell has never been seen, 1 if the cell has already been
seen. Its probability is computed with association computation
results : to sum up, if the considered cell corresponds to a local
association maximum, P (Sk(xi) = 1|Z0:k) takes the value
γ ∈ [0, 1], else it takes the value 1 − γ. The value of γ is
chosen depending on the “renewal“ rate of the map, that is
to say ”how often do we think a new object can appear from
nowhere“ ? A value around 0.5 has proven to work well in
practice.

P (Mk(xi)|Z0:k) =

Pseen(Mk(xi)|Skxi = 1, Z0:k) · P (Sk(xi) = 1|Z0:k)

+ Punseen(Mk(xi)|Skxi = 0, Z0:k)

· P (Sk(xi) = 0|Z0:k) (12)

with the corresponding calculus (A being the cell neigh-
bourhood) :

Pseen(Mk(xi)|Z0:k) =∑
j∈A
{P (Xnext

k−1 (xj) = xi|Mk−1(xj) = 1, Z0:k−1)

· P (Mk−1(xj) = 1|Z0:k−1)} (13)

Punseen is in this case typically related to the sensor
occupancy model.

- Velocities are computed taking into account the same two
possibilities, depending if the observed cell is considered a
new one, or the association of an already-observed cell to a
new position :
- considering the velocity of already-observed cells, velocity
is simply computed from the associations, summing up speed
values steming from all the possible contributors.
- considering appearing cells, the probability distribution of
velocities had been proposed by Gate in [10] as follows, and
kept in this proposition :

P (Vk(xi)|Sk(xi) = 0, Z0:k) =
1

card(V )
(14)

Merging of the two possibilities is done similarly to eq. 12.
In current implementation, we only retain the most probable a
posteriori value, and a confidence value, instead of retaining
the whole probability distribution.

- Detection update needs a broader view from previous
information, in order to be able to detect structures and links
between updated cells. In this paper we propose a simple (and
fast) mechanism to handle this detection, but we expect to

adopt a maybe more ”large scale” approach in the future.
The mechanism proposed in this initial algorithm consists in
measuring the auto-correlation between consecutive cells asso-
ciations after filtering, in the vicinity of their neighbourhood.
We then measure the compatibility of their predicted moves
with the ”rigid body” hypothesis. With the approach used in
eq. 12, we dissociate in this calculus cells which are believed
to have been seen before from ”new” ones, for which no
rigidity information can be guessed.

P (Dk(xi, xj) = 1|Mk(xi) = 1,Mk(xj) = 1, Z0:k) =∑
ak,a′k∈Ak×A′k

{P (Xnext(xi) = ak|Z0:k) · P (Xnext(xj) = a′k|Z0:k)} (15)

with ak, a
′
k being in fact the same associations in each cell

respective referential (we go through every possible associa-
tion for the (xi, xj) cells. Although not very illustrative, eq.
15 calculus is fast to compute, but relationships further than a
cell neighbourhood are not taken into account (typically a few
meters radius). This could prove insufficient for the tracking
of big objects, and other methods could be investigated in
the future. A simple k-means clustering could for example
be used outside of the prediction/update cycle to emphasize
object detection for an external navigation task.

- Classification updates can similarly be done using every
gathered information (mapping, velocity, rigidity links,..)
correspondence to a given sensor model, which would on
the other hand improve prediction steps of the algorithm.
This is not yet present in our implemented algorithm, and
presented results can thus be seen as perfectible. There is
however no theoretical constraints on this calculus, which
should be in place in our implementation algorithm in a
short time for several classes of objects (pedestrian, cars,..).
The performance impact is to be investigated, but should not
theoretically prevent the algorithm to run in real-time, every
added class acting in this organisation as another ”layer” of
probabilities to be computed. Worst impact could thus be a
linear cost in terms of the number of identified classes, which
should not be increased inconsiderately.

II. PRACTICAL IMPLEMENTATION AND RESULTS

A. Performance considerations

As stated in eq. I-A3, complexity constraints on calculus
are not to be neglected in occupancy grid update rules, many
thinkable algorithms being simply not realistic in terms of
computing needs. The complexity of the mechanism we
propose can be summarised as follows :
- for the sake of simplicity, we state a N ∗N grid, every cell
being able to move in a M ∗M neighbourhood.
- considering the propagation of one cell, every possible move
of every of its neighbours (O(M4)) are to be investigated
for each individual envisaged propagation (O(M2)), which
translates in O(M6) complexity.
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- cells updates being independent except for conformation
rules already taken into account in the previous step, overall
cell considerations is finally of O(N2 ∗M6) complexity for
the full update step.

Heavy approximations are of course still present when
compared to an full propagation calculus, namely that each
and every cell moves are initially computed individually,
although being later filtered to take some interactions into
account. Computation is thus still not intricate, which keeps
the complexity “low”, although O(N2 ∗M6) remains a heavy
burden for any realistic dimensions. Several points can be
emphasised from this simple complexity calculus : Firstly,
although the computation remains slow by all means, the
relative independence of most calculus make it a plausible
candidate for a parallel implementation, which is nowadays
common and lifts some of the computing time constraints.
Secondly, digging into specific complexity aspects, our
algorithm is also linear in complexity as regards the number
of cells for a given neighbourhood (which translates into a
squared dependence as regards the size of the grid, naturally).
This seems quite a burden, but one must remember the usual
exponential complexity of algorithms meaning to explore any
possible point move onto a map. This relative lightness in the
grid size complexity is a key benefit for sharing applications
: extending the size of the grid translates into linear increase
in complexity instead of an exponential increase in case of a
propagation calculus on the whole map. Extending the domain
of tracked speed is however more complicated : tracked speed
depends on the span of possible moves taken into account
at every iteration, literally Vmax = M/2∗∆

τiteration
with ∆ the

spatial extension relative to one grid cell. Considering a given
iteration maximum computing time (limited for example by
the Lidar frequency for real-time operations), the maximum
tracked speed is rapidly capped by the computing power at
disposal relatively to the maximum computing time. We’ll
see with our preliminary results that this translates to very
acceptable maximum speeds for our initial implementation
on current hardware.

B. Some results

As usual when dealing with grid-based algorithms, sensor
occupancy models are a key factor in our proposition.
A standard Lidar occupancy model is used in this initial
implementation, computed on GPU. Occupancy of areas in
the shadow of laser impacts are chosen to 0.5 out of 1, neutral
in our occupancy ratio. Laser impacts are otherwise set to
an occupancy probability of 1, while empty spaces between
the vehicle and impacts are set to 0, as it is common using
Lidars. Real data gathered in an urban environment are used.
Logging and replay framework is RTMaps software from
Intempora.
Exhaustiveness and generic nature of the algorithm is
important : every mapped cell of the environment is
considered equal, and no a priori is ever made on geometrical

bounding, preferred positions, structures, stationary or moving
parts. Although still quite demanding on computing resources,
the algorithm works in real-time on current state-of-the-art
hardware. The first scene computed below needs 120ms to
compute on a GF100 GPU from nVidia counting 448 cores,
which translates without additional work to below 100 ms
on higher-end offerings currently available. As regards raw
performance, this algorithm is also an initial draw, and pure
implementation could certainly be greatly improved as it is
often the case with hardware-sensitive programming.

1) Algorithm memory: In this example, we emphasise a
temporary occlusion situation, where a pedestrian shadow
hides another previously seen pedestrian (figure eq. 1). Only
the Lidar sensor is used in this case, camera captures being
presented for illustrative purpose, along with bounding boxes.
On the pmf representations (figures eq. 2 and eq. 3), the
point of view is from above, in a common “bird-view”
perspective. All the boxes are drawn for illustrative purpose,
we don’t present here the output of a detection algorithm. The
resolution of grid mapping is 15cm, speeds up to 4.5m/s being
theoretically tracked. This last value can be improved without
any computing cost by simultaneously degrading the spatial
resolution and increasing the range of the measures, which
could be a dynamic trade-off depending on the vehicle speed.

(a) (b)

Fig. 1. Successive camera views

Fig. 2. Lidar output when occluded

The shadowed pedestrian is still clearly visible on the
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Fig. 3. Occupancy evaluation from our algorithm

occupancy map, although the Lidar cannot get through
the first occluding person. Its position spreads over time,
which shows that our knowledge decreases with the age
of the data. Extensive propagation of cells once perceived
occupied naturally leads to this result : occupied cells have
not disappeared, although not being visible on the sensor.
We thus stress the importance of sensor filtering, taking
into account possible spatial and temporal correlation. In
this case, consequences of the pedestrian not being visible
without filtering has no practical consequences, but this is not
always the case and we believe that such filtering would be
compulsory for autonomous vehicle navigation in an urban
area.

2) Dynamics estimation: This example plans to emphasise
dynamics estimation capabilities of the algorithm, along with
segmentation of the scene. Although this is already possible
via bounding boxes in the case of clearly separated persons,
those matchings often miss when persons are too close to each
other, or when groups change in size due to some people
joining and leaving. The exhaustive approach that we carry
on a per-cell basis provides an estimation of the probable
speeds. All boxes presented on figures eq. 4 eq. 5 eq. 6 are
here on illustrative purpose, and do not come from a detection
algorithm.

Fig. 4. Camera capture

Fig. 5. Lidar sensor output

Fig. 6. Output of the algorithm - speed map

Figure eq. 6 shows the speed map maintained by the
algorithm, speed orientation being coded by colour, while
speed value (in the car referential) is represented by the
brightness. Three boxes have been overlaid by hand on the
figure, to emphasise specific cases. In green are the crossing
pedestrians, which may have been difficult to track on sensor
data alone (cf figure eq. 5), due to the pushchair and their
proximity. In blue is the road sign, which is obviously
standing still, but which shows the residual speed of the
vehicle (end of the braking sequence) and noise on Lidar
data. It is barely visible on the speed map, due to the very
low residual speed of the car. Segmentation of the scene after
the algorithm process between moving and still parts proves
effective. In red is the car coming on the other way, which
is also going slow due to the crossing pedestrians, and have
very few Lidar impacts (laser beam was oriented upwards,
maybe too much). Tracking on geometrical grounds on Lidar
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data alone may have been difficult in this case.

C. Future works

Alternative source of occupancy, velocity or classification
are planned, mainly based on vision processing. Stereo-vision
is for example a proven source of free-space measure, as
shown by Moravec once again in [11], or more recently Badino
et al. using dense disparity calculus and occupancy grids ([7]
and articles following). Motion detection and evaluation have
also be proven to be a valuable output from stereo-vision
capture, Argrawal et al. demonstrating in [5] that platform
ego-motion could also be removed from the initial optical
flux in order to track moving objects. Initial theoretical work
on this use would be from Adiv et. al ([12]), although this
field has received a lot of attention in the past years, notably
since dense stereo-vision processing is now possible in real-
time. To finish with, the state of the art as regards vision-
based SLAM (notably Davison [13] [14])) leads us to believe
that laser-based sensors could possibly be replaced in the near
future for most perception tasks, this being a strong incentive
for us to develop visual inputs. Another source of possible
improvements would be an evolution to handle collaborative
perception, by means of merging grid-based beliefs in our
algorithm.

III. CONCLUSION

Perception of moving objects, such as pedestrians, with
minimal requirements on their size, moves or behaviour is a
difficult task ; which will nevertheless be a key to enable au-
tonomous navigation in urban environments, or even compre-
hensive assistance on current automotive devices. We proposed
a novel technique based on an extension of the traditional
occupancy grids registration, using probabilist propagation and
extensive consideration of displacements and interactions over
a restricted neighbourhood.
An evolution from an initial ambitious proposition, our work
shows promising results while being capable of real-time exe-
cution, although still being a work-in-progress. An interesting
evolution would be its extension towards collaborative percep-
tion, which should be easier than for some other approaches
due to the grid-based principle being kept. Many challenges
would still need to be resolved in order for separated vehicles
to take part into one another perception of the environment,
among which localisation or synchronisation inaccuracies, but
we believe that autonomous transportation and road safety
would benefit a lot from such developments.
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Probabilistic Road Geometry Estimation using a Millimetre-Wave
Radar

Andres Hernandez-Gutierrez, Juan I. Nieto, Tim Bailey and Eduardo M. Nebot

Abstract— This paper presents a probabilistic framework for
road geometry estimation using a millimetre wave radar. It
aims at estimating the geometry of unpaved and unmarked
roads, and also provides the vehicle location with respect to
the edges of the road. This road tracking system employs
a radar sensor due to its robustness to weather conditions
such as fog, dust, rain and snow. The proposed approach is
robust to noisy measurements because the radar target locations
are modelled as Gaussian distributions. These observations
are integrated into a Kalman Particle filter to estimate the
posterior distribution of the parameters that best describe the
geometry of the road. Experimental results using data acquired
on a highway road are presented. The effectiveness of the
proposed approach is demonstrated by a qualitative analysis
of the results.

I. INTRODUCTION
Road detection and tracking refers to the process of

locating the road surface and its boundaries. Depending
on the type of road and environment, this process can be
accomplished by gathering information from sensors such
as video cameras, laser rangefinders, GPS receivers together
with digital maps, and more recently using radar sensors.
Road tracking systems are of significant importance in both
autonomous systems and in advance driving assistance sys-
tems. In these applications, the automobile has to localise
itself with respect to the edges of the road in order to
perform its next task. The first lane recognition system
dates back 25 years when a vision-based approach using the
Kalman filter was proposed in [1]. Subsequent versions of
this work, which analysed spatio-temporal information and
extended the curve estimation to 3D space, were presented in
[2] and [3]. These implementations were then followed by
the ARCADE algorithm (Automated Road Curvature And
Direction Estimation) in [4]. It estimates the curvature and
orientation of the road based on features extracted from
monochromatic images in combination with a model of
the road, providing appropriate results for marked roads. A
vision-based system for lane recognition, using a particle
filter approach, was developed in [5]. A method based on
multiple features such as edges, texture and colour extracted
from images was presented in [7].

Although the first implementations for road detection were
vision-based systems, the detection and tracking of roads has
also been attempted by the employment of laser rangefinders.
Implementations of these systems are proposed in [8] and

Andres Hernandez-Gutierrez, Juan I. Nieto, Tim Bailey and Eduardo
M. Nebot are with the Australian Centre for Field Robotics. School
of Aerospace, Mechanical and Mechatronic Engineering. The Univer-
sity of Sydney NSW 2006, Australia. {a.hernandez, j.nieto,
t.bailey, nebot}@acfr.usyd.edu.au

[9]. Techniques that fuse information from multiple sensors
are given in [10] and [11], and more recently in [12]. All
these implementations provide reliable results in moderate
weather conditions; nevertheless, their main disadvantages
are the lack of robustness against environmental conditions
such as dust, fog, snow and rain in which their performance
could be degraded. Therefore, it is necessary to utilise a
sensor that is capable of providing reliable information even
if adverse environmental factors are present.

Radar sensors are less susceptible to these environmental
conditions [13], [14]; hence, automobile manufactures have
recently equipped vehicles with radar sensors to perform
tasks such as collision avoidance, traffic scene interpretation
and dynamic object detection. Unlike a laser rangefinder,
which emits a coherent light beam, a radar sensor radiates
a wide directive beam that illuminates part of a surface. In
general, a measurement at a given bearing angle consists of
various returns from targets detected in the radar footprint
area; however, due to the sidelobes found in the radiation
pattern, highly reflective objects located near the radar foot-
print area could generate an erroneous range measurement
at that bearing angle. This is because all measurements are
assumed to be detected at the centre line of the radar beam.
Another concern when using a radar sensor refers to clutter
signals. In a road tracking system, these signals correspond
to targets located far from the edges of the road, radar returns
corresponding to dynamic objects or multipath echoes due
to multiple reflections. Therefore, a challenging task when
using a radar sensor is being able to surmount this extra
complexity while taking advantage of its immunity to most
of the weather conditions.

The work presented in this paper aims at developing a
probabilistic approach for detection and tracking of both
unpaved and unmarked roads, with robustness to normal
and harsh environmental conditions such as those found
in mining roads. The posterior probability density function
(pdf) of the parameters that best describe the geometry of
the road and the vehicle location with respect to the edges
of the road are the output of a Kalman particle filter.

This paper is organised as follows. An overview of the
proposed algorithm is given in section II. A description of
the model used to represent the road is detailed in section
III. Section IV explains how the radar observations are
modelled as Gaussian distributions, which are subsequently
used in section V to estimate the road geometry parameters.
Experimental results in section VI are followed by the
conclusions in section VII.
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II. ALGORITHM OVERVIEW

Fig. 1. Block diagram of the road geometry estimation process.

Fig. 1 shows a block diagram of the probabilistic road
tracking system proposed in this work. It estimates the
relative vehicle location, Y0, with respect to the left edge of
the road as well as other road geometry parameters, such as
the orientation angle of the road, φ , with respect to the radar
coordinate frame, the curvature, C0, the rate of curvature, C1,
and the width of the road, W .

A radar measurement comprises a 180-degree scan that
may contain radar information belonging to objects detected
on the road, edges of the road or reflective targets located
near the borders. This information is first segmented in order
to extract useful radar data corresponding to the boundaries.
By analysing the intensity level of the radar returns and sig-
nal noise along the complete trajectory, it has been observed
that valuable information can be extracted by thresholding,
setting the threshold value at 65dB. Subsequently, a conver-
sion from polar to Cartesian coordinates is applied to this
data. This stage is followed by the uncertainty propagation
from polar to Cartesian coordinates, which takes into account
the uncertainty in range and bearing of the radar sensor.

The road edges are modelled as a pair of clothoid curves
parametrised by the elements of x = [Y0, φ , C0, C1, W ]T .
A Kalman particle filter is used to estimate these parameters
by generating N hypotheses at each time step k. First, for
each hypotesis x̂i

k−1, i = 1, . . . ,N, the Mahalanobis distance
is used to associate the radar observations, zk, to the left
or right clothoid curve, then after the prediction stage in
the Kalman filter, each hypothesis is updated and its mean,
x̂i

k, and covariance matrix, P̂i
k, are used to build a proposal

distribution. This proposal distribution is used to sample
new particles. Subsequently, using the transitional density
function, the sensor likelihood function and the proposal
distribution, the weight for every hypothesis is obtained.
Particles having the highest weights are selected in the
resampling stage and are used to represent the geometry of
the road.

III. CLOTHOID CURVE FOR ROAD GEOMETRY
ESTIMATION

Fig. 2. Road model represented by a cubic approximation of a Clothoid
function.

Clothoid curves have been used in civil engineering [15]
for road design in order to geometrically join a straight
road to a curve road. The main characteristic of a Clothoid
function is that its curvature is proportional to the length of
the curve measured from its origin [1].

C(l) =C0 +C1 ∗ l (1)

where C0 and C1 =
dC
dl are the curvature and rate of curvature

of the road respectively. Fig. 2 shows a plane curve that is
parametrised by the first integral of curvature given by the
heading direction φ(l), and the second integrals represented
by x(l) and y(l) listed below. Substituting l by τ for
integration purposes, it yields

φ(l) = φ0 +
∫ l

0
C(τ) dτ (2)

x(l) = x0 +
∫ l

0
cos φ(τ)dτ (3)

y(l) = y0 +
∫ l

0
sin φ(τ)dτ (4)

substituting (1) in (2) and solving in terms of τ yields

φ(τ) = φ0(τ)+C0τ +
1
2

C1τ
2 (5)

If φ(τ) is substituted in (3) and (4), it would require
to solve Fresnel’s Integrals. Instead, provided the vehicle
heading changes are less than 10o, that is, |φ | < 10o, the
approximation of cosφ ≈ 1 and sinφ ≈ φ remains valid.
Assuming this constraint, and solving (3), the parametric
function x(l) can be rewritten as

x(l) = x0(l)+ l (6)

setting x0(l)= 0 leads to x(l)= l, and the parametric function
y(l) is then given by

y(l)≈ Y0 +φ l +
1
2

C0l2 +
1
6

C1l3 (7)
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The road model used to represent the left curve in terms of
the longitudinal distance x is obtained by substituting x(l)= l
in (7) which yields

y(x)≈ Y0 +φx+
1
2

C0x2 +
1
6

C1x3 (8)

We assume that both the left and right curve are parallel;
therefore, the left curve is offset to the right by the width of
the road in order to obtain the Clothoid curve that represents
the right boundary. The state vector x to be estimated by the
Kalman particle filter is given by

x =
[

Y0 φ C0 C1 W
]T (9)

where these parameters represent the lateral offset with
respect to the left border, the orientation of the road with
respect to the vehicle coordinate frame, the curvature, rate
of curvature, and the width of the road respectively.

IV. PREPROCESSING RADAR INFORMATION

A single radar return is â = (r,θ), where r is range and θ

is bearing, and is modelled as a ∼N (â,Pa), with mean â
and covariance matrix Pa. For the road estimation process,
every radar observation is converted from polar to Cartesian
coordinates using the nonlinear transformation g(·).

ẑ =
[

x̂
ŷ

]
= g(a) =

[
r ·cos θ

r ·sin θ

]
(10)

The covariance matrix associated with every radar return in
polar coordinates is

P =

[
σ2

r 0
0 σ2

θ

]
(11)

where σr and σθ is the standard deviation of the uncertainty
in range and bearing. Through a linearisation approach, the
density of z is modelled by a Gaussian distribution with mean
ẑ and covariance matrix R.

R = ∇g(z) P ∇gT (z) (12)

where g(z) is the Jacobian of g(·) given by

∇g(z) =
∂g(z)

∂a
=

[
cos θ sin θ

−r·sin θ r·cos θ

]
(13)

V. ROAD EXTRACTION USING RADAR DATA

The Kalman particle filter is a recursive Bayesian estima-
tor based on Monte Carlo sampling methods [16]. Particle
filter based estimation methods have the advantage of not be-
ing subject to any linearity or Gaussianity constraint on both
the prediction and observation models [5]. In the Sequential
Importance Resampling filter SIR, the posterior probability
distribution is represented by weights wi

k associated to a set
of particles xi

k. The importance weights up to a normalising
constant are evaluated as

w̃i
k = wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1,zk)
(14)

A common proposal distribution is given by the prediction
model p(xi

k|xi
k−1), which gives importance weights as (15).

However, this proposal distribution does not explore the
sample space efficiently. It has been demonstrated in [17]
that the importance density distribution that minimises the
variance of the importance weights, provided xi

k−1 and zk, is
given by (16).

w̃i
k = wi

k−1 p(zk|xi
k) (15)

q(xi
k|xi

k−1,zk) =
p(zk|xi

k,x
i
k−1)p(xi

k|xi
k−1)

p(zk|xi
k−1)

(16)

substituting (16) back into (14) yields:

w̃i
k = wi

k−1
p(zk|xi

k−1)p(zk|xi
k)p(xi

k|xi
k−1)

p(zk|xi
k,x

i
k−1)p(xi

k|xi
k−1)

(17)

w̃i
k = wi

k−1
p(zk|xi

k−1)p(zk|xi
k)

p(zk|xi
k,x

i
k−1)

(18)

because zk is conditional independent of xi
k−1, we obtain

w̃i
k = wi

k−1
p(zk|xi

k−1)p(zk|xi
k)

p(zk|xi
k)

(19)

w̃i
k = wi

k−1 p(zk|xi
k−1) (20)

which expresses that importance weights at time k can be
computed before the particles are propagated to time k. This
is an important aspect when the vehicle is approaching a road
that has a small radius of curvature. In contrast, when using
(15), the weights are computed using the propagated particles
that were based on the previous estimation. Hence if the
road has a small radius of curvature, the propagated particles
(Clothoid curves) could probably diverge from where the
actual radar observations are being detected. As a result,
the filter would not provide an appropriate estimation of the
paramaters.

An option to estimate the optimal proposal distribution
in (16) is applying the Kalman filter which encourages the
particles to move into a region of high likelihood. That is,
it corrects the particles and compute the covariance matrix
for each hypothesis and a new particle is sampled from a
Gaussian proposal distribution with mean and covariance
given by the updated parameters in the Kalman filter. Al-
though the computational cost when applying the KF to each
particle increases, it is compensated by a reduction of the
number of samples required to achieve a certain level of
performance since the particles have been corrected. For this
reason, we have adopted the Kalman Particle filter approach
in this work.

The pseudo-code of the Kalman particle filter implemented
here is listed in Algorithm 1. The resampling approach used
in this algorithm is the stratified sampling. The number of
particles N was set to 1000.
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Algorithm 1 Kalman Particle Filter

1: [{x j
k,w

j
k,P

i
k}N

j=1] = KPF[{xi
k−1,w

i
k,P

i
k−1}N

i=1,zk]
2: for i = 1 to N do
3: [x̂i

k, P̂
i
k] = KF[xi

k−1,P
i
k−1,zk]

4: xi
k ∼N (xi

k; x̂i
k, P̂

i
k)

5: w̃i
k = wi

k−1
p(zk|xi

k) p(xi
k|x

i
k−1)

q(xi
k|x

i
k−1,zk)

6: where q(xi
k|xi

k−1,zk) = N (xi
k; x̂i

k, P̂
i
k)

7: end for
8: t = SUM[{w̃i

k}N
i=1]

9: for i = 1 to N do
10: wi

k = t−1w̃i
k

11: end for
12: Ñe f f =

1
∑

N
i=1(w

i
k)

2

13: if Ñe f f <
N
2 then

14: [{xi
k,w

i
k}N

i=1] = RESAMPLE[{xi
k,w

i
k}N

i=1]
15: end if

Fig. 3. Road model represented by a Clothoid curve along with vehicle
motion representation.

A. Prediction Model

The vehicle model is approximated by the Ackerman
bicycle model [

ẋk
ẏk

]
=

[
∆xk cos θk
∆yk sin θk

]
(21)

Fig. 3 shows the egomotion of the vehicle from the local
coordinate frame (x{k},y{k}) to the frame (x{k+1},y{k+1}).
Considering the longitudinal vehicle motion, ∆x, and the
Clothoid curve presented in (8), the prediction model can
be obtained as follows

xk = fk−1(∆xk,xk−1)+uk−1(ψk−1)+vk (22)

fk−1(∆xk,xk−1) =


1 ∆xk

∆xk
2

2
∆xk

3

6 0

0 1 ∆xk
∆xk

2

2 0
0 0 1 ∆xk 0
0 0 0 1 0
0 0 0 0 1

xk−1 (23)

uk−1 =
[

0 −ψk−1 0 0 0
]T (24)

The additive noise v is a zero mean Gaussian noise with
covariance Q. The vehicle location as well as the yaw rate
ψ are obtained from the vehicle navigation system.

(a) (b)

Fig. 4. (a) Raw radar image superimposed on a colour image of the
environment. Brigther pixels represent returns from highly reflective targets.
(b) Radar observations modelled as Gaussian distributions. Sigma ellipses
error are represented by the blue ellipses around each radar target in red.

B. Observation model used in the Kalman Filter

Fig. 4(a) shows a raw radar image as well as a colour
image of the environment acquired on a highway road. The
radar sensor position is represented by the white circle at
the coordinate (0,0). Fig. 4(b) illustrates how the radar
observations are modelled as Gaussian distributions after
segmenting the raw radar data. Red points represent the radar
measurements and the uncertainty of each radar return is
represented by the sigma ellipses error in blue.

As can be seen in Fig. 4(a), there are some radar ob-
servations detected not only on the road, but also far from
the borders. In order to remove these outlier measurements,
we can perform gating and data association, which involves
identifying the origin of measurements and associating them
to a specific particle or Clothoid curve from which they
could have been generated. As stated in [18], the ellipsoidal
validation gate is optimal for a linear observation model with
additive noise

yk = Hkxk +wk (25)

where the additive noise w is zero-mean Gaussian. The
validity of the measurement zk is determined from its Maha-
lanobis distance from the predicted observation yk in the y-
direction, and so outlier observations are removed and are not
considered in the weighting process for that specific particle.

Because several radar returns detected within a region
on the edge of the road are correlated, the assumption of
treating them as independent measurements is not valid.
Rather, each return detects a point on the surface of the
roadside bump, and we must devise a model to map this
to the clothoid line. Hence, the radar measurements are first
clustered into regions of 5m long along each side of the
road then those Gaussian distributions found within these
regions are fused into single Gaussian distribution or pseudo-
observation. Clusters represent a simple surface model that
maps the shape of the bump onto the clothoid that runs
along the centre line of the bump. It is illustrated by the
blue ellipses error on each side of the road in Fig. 5(a) for
the clothoid curve represented by the blue lines in Fig. 5(b).

The predicted observations in the Kalman filter are rep-
resented by a 1-dimensional vector yk. This vectors is con-
structed by the y-coordinates of the Clothoid curve which are
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Fig. 5. (a) Fusion of multiple Gaussian distribution into a single Gaussian
functions in blue. (b) Centroids of the combined Gaussian distributions
represented by the black dots along with a Clothoid curve in blue.

aligned with the y-coordinate of the centroid of the pseudo-
observations belonging to the left and right edges of the road.
These centroids are represented by black points in Fig. 5(b).
Their locations are defined by its x-and-y coordinates on
the road plane, that is, [(xL j,yL j), . . . ,(xLML,yLML)]

T , j =
1 . . .ML and [(xR j,yR j), . . . ,(xRMR,yRMR)]

T , j = 1 . . .MR.
Where ML and MR are the number of pseudo-observations
on each edge of the road respectively. The error considered
here corresponds to the discrepancy in the y-coordinates. The
complete predicted measurement vector yk is represented by

yk = [yL1 . . .yLML,yR1 . . .yRMR]
T (26)

The matrix H that associates the propagated particle with
the predicted observations in (25) is given by

Hk =



1 xL1
xL2

1
2

xL3
1

6 0
· · · · · · · · · · · · · · ·

1 xLMl

xL2
Ml
2

xL3
Ml
6 0

1 xR1
xR2

1
2

xR3
1

6 −1
· · · · · · · · · · · ·
1 xRMr

xR2
Mr
2

xR3
Mr
6 −1


(27)

The elements in the last column in Hk, whose value is
−1, enable us to obtain the predicted observation on the
right edge of the road.

VI. RESULTS

A. Experiment setup and radar specifications

The experiments presented in this work were conducted
on a highway road. The driven trajectory comprises about
5km. Besides the radar scanner and a GPS sensor, a stereo
camera was used for display purposes. These sensors were
mounted on the test vehicle shown in Fig. 6(a). The radar
sensor frame rate was 2Hz. The vehicle navigation system
provided GPS position per second. 1

1See available videos at
www-personal.acfr.usyd.edu.au/ahernandez/roadEstimation.avi

(a) (b)

Fig. 6. (a) Test vehicle used in the experiments. (b) Radar sensor and GPS
mounted on the vehicle.

Fig. 7. Radar setup on the test-vehicle.

The specifications for the radar sensor are listed in Table
I. Some of these parameters can be associated to the infor-
mation presented in Fig. 7 which shows the configuration of
the radar sensor mounted on the test-vehicle.

TABLE I
RADAR SENSOR SPECIFICATIONS

Field of view 360o

Maximum detection range Rmax 60m
Operation frequency 94 GHz

Uncertainty in range σr 0.25 cm
Uncertainty in orientation angle σθ 1o

Horizontal beam width γh 2o

Vertical beam width γv 8o

Height of the radar on top of the vehicle H 2.4 m

B. Raw radar image interpretation

The brightness of features in a radar image depends on the
fraction of the radiated energy that is returned back to the
radar sensor from targets detected in the environment. The
intensity of this backscattered energy is basically dependent
on the following aspects:

1) Surface roughness of the target.
2) Radar viewing and surface geometry relationship.
3) Moisture content and electrical properties of the target.

The surface of the road is considered as a smooth area
if the height fluctuations are much smaller than the radar
wavelength, which is about 3mm for the MMW radar used in
the experiment. A smooth surface causes specular reflections
of the incident energy, usually away from the sensor; hence,
only a small amount of energy is returned to the radar.
Therefore, the surface of the road in Fig. 4(a) appears as
darker toned areas. In contrast, when the surface height
variations approach the radar wavelength, the surface will
appear ’rough’, then some reflections will be sent back to the
radar receiver. Berms located on the sides of the road will
strongly reflect the radar signal intensity back to the radar
receiver. In this case, the borders will appear as a brighter
tone as shown on the right side of the road in Fig. 4(a).
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(a) Lateral offset to the left edge of the road along the driven trajectory.
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(b) Orientation angle of the road with respect to the radar.
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(c) Curvature of the road.
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(d) Rate of curvature of the road
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(e) Width of the road

Fig. 8. Estimated parameters that best describe the geometry of the road
ahead of the vehicle. The ±2σ confidence interval is represented by the red
lines in each Figure.

The results presented in Fig. 8 depict the estimated pa-
rameters that describe the geometry of the road ahead of the
vehicle. Each figure shows the estimated mean as well as the
±2σ uncertainty area. Fig. 8(a) shows the lateral offset that
is measured from the radar sensor to the left edge of the road.

Variations in the lateral offset are smoother in sections of the
road where there is either a berm, a rock wall or a guard rail
located on the left edge of the road. The uncertainty in the
estimation of this parameter decreases in these sections of
the road because the radar targets locations are concentrated
within a narrower spatial area as it can be seen from the
scans number 10 to 50 in Fig. 8(a). The estimation of the
lateral offset for this section of the road correspond to the
environment illustrated in Fig. 9(a).

Fig. 8(b) illustrates the orientation of the road with respect
to the radar coordinate frame. In this case the confidence
interval increases when the vehicle is turning. An example
of this issue can be seen from the scans number 100 to
150. Fig. 8(c) and Fig. 8(d) show the curvature and rate
of curvature of the road. The values for these estimated
parameters are very close to zero because the curves along
this particular road are not highly curved. From Fig. 8(c), it
is also observed that the confidence interval starts to increase
when the vehicle is approaching a curve. An example of this
aspect can be also seen from the scans number 100 to 150.
Fig. 8(e) shows the width of the road. The actual width of the
lane is approximately 8m. The width of each road shoulder
on each side of the road is about 2m. However, the mean
of the estimated parameters fluctuates from 12.5m to 16.5m
because the road estimation was based on targets such as
berms, guard rails, rock walls, and trees located on the sides
of the road, rather than detecting the marking lanes.

Fig. 9(a) shows some multipath echoes on the left side
of the road due to multiple signal reflections from the wall
rock to the vehicle. By applying vaildation gate, the proposed
algorithm discriminates these multiple signal reflections as
they could affect the road estimation process if these returns
are detected close to valid targets, such as those belonging
to the wall rock.

Fig. 10 illustrates a sequence of four consecutive frames.
As can be seen in Fig. 10(h), most of the radar returns on
the left side of the road belong to the berm located about 8m
on the left and trees detected beyond the road boundaries.
This as can be seen in the colour image in Fig. 10(g). At this
step, the algorithm provides a suitable representation of the
road. However, in Fig. 10(f), the estimation of the road is
slightly affected by the lack of radar measurements near the
left edge of the road. In this case, the algorithm estimates
the edges of the road based on observations detected on the
right road boundary. As soon as radar targets are detected on

(a) (b)

Fig. 9. (a) Radar measurements obtained when a rock wall is located on
the side of the road. (b) Radar measurements that correspond to targets such
as trees or vegetation near the edges of the road.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Consecutive radar scans than show when the road estimation is
slightly affected by the absence of a berm or a wall near on either edge of
the road. However, the estimation of the road is corrected as soon as radar
returns are detected on the left side again as shown in Fig. (d).

the left side of the road the estimation is corrected as shown
in Fig. 10(d) and Fig. 10(b). When the radar sensor does not
receive any return from either side of the road, the estimation
of the road is based on the prediction model unless no radar
information is detected for more than a number of scans. In
such a case, the curvature, C0, and the rate of curvate, C1, are
set to zero and the other parameters are initialised to their
previous estimated values.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presented a probabilistic approach for road
estimation using a radar sensor. The radar measurements
were modelled as Gaussian distributions and integrated to
a Kalman particle filter, and it estimated the parameters that
best described the geometry of the road using a Clothoid
function to model the shape of road boundaries.

Experimental results with data acquired on a highway
road validated the proposed approach. The obtained results
are encouraging considering that no special work (such as
adding infrastructure) was performed on the berms limiting

the road. This implies that results could be improved by
proper maintenance of the road.

Although the assumption of considering both edges or the
road as parallel curves provided encouraging results, in future
work, we will propose to estimate the geometry of the road
modelling each road boundary independently.
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Safety robotic lawnmower with precise and
low-cost L1-only RTK-GPS positioning
Jean-Marie CODOL1,2,3, Michèle PONCELET1, André MONIN2,3, Michel DEVY2,3

Abstract— In this paper, we will introduce an autonomous
robotic lawnmower, equipped by a safety and low-cost RTK-
DGPS centimetric positioning system available also in semi-urban
environment. The GPS-RTK sensors are a pair of L1-only GPS
receivers (L1-only GPS receivers are cheaper than dual-frequency
ones because of the existence of patents on the usage of the
second frequency). This work is an extension of a collaboration
between NAV ON TIME and BELROBOTICS, consisting on
evaluate GPS replacement for the current mower area limit (a
buried wire). The objective of the latest work is to ensure the
GPS mission realization, keeping the same safety as the buried
wire one. In this context, this paper will present a complete
statistical approach to L1-only RTK-positioning system in urban
environment. The result of this approach have been embedded
into the mower machine, by using a Linux operating system
equipped with an ARM-9 processor running at 400MHz, and
an UHF radio-communication to the reference station, this one
having the role of realize path planning, geographical database
managing, remote and IHM communication.

I. INTRODUCTION

Navigation system is a critical work in autonomous robotic
systems. Robotic critical applications need guarantees in terms
of precision, integrity, safety and availability. To reach this
goal, we propose here to take into account these aspects
in a statistical approach for the design of a low-cost RTK
navigation system. This work was supported by NAV ON
TIME and the LAAS-CNRS. In a first part we will present
the original machine and the available solutions for GNSS
navigation. Then the positioning design who guarantees the
previous concepts, in particular the integrity one. Before to
conclude presenting a 24 hour experiment.

II. MOBILE ROBOT DESIGN

A. BIGMOW machine

BIGMOW lawnmower robot was designed by BEL-
ROBOTICS. The guenuine robot evolves on area limited by
a buried wire: the area limit is detected by a wire sensor
embedded into the mower. This sensor allows the machine
to perform a turn around when the area limit is reached,
and automatic return to charging operation (by following the
wire). This robot is widely used by professional gardeners.
Additionally, this robot is safe, so it can evolve in human
environment, the safety is guarantee by ultrasound and contact
sensors, placed in the front of the machine. The hardware and
primary software architecture are presented in figure 2. Our
experiments were done on an semi-urban terrain in Toulouse,

1NAV ON TIME, 42 Av. du Général Decroutte, 31100 Toulouse, France
2CNRS;LAAS; 7 Av. du colonel Roche, F-31077 Toulouse Cedex 4, France
3Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ;

F-31077 Toulouse, Cedex 4, France

France, presented in photos of figure 1. This terrain is ideal
(because of it is a little more difficult to real final application)
when we know that these final applications will be to mow
golf courses, or sports terrains.

Fig. 1. The tests were performed on an urban terrain near Toulouse, France.
The main difficulties was to navigate near the buildings.

Fig. 2. The machine guidance internal states are presented on the left
side of the figure. Transition between these states depends on the sensors
measurements, by an algorithm (the state machine transition process).

III. DGPS FOR MOBILE ROBOTS

Standard GPS positioning precision in urban environment
is incompatible with mobile robot operation, therefore we
propose to use DGPS-RTK technique. DGPS consists on a
couple of receiver, one static and the other embedded on
the machine, the DGPS positioning process needs both GPS
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measurements to perform measurements differentiation. RTK
technique consists in solving integer ambiguities on each
carrier phase measurement tracking loop. In this context, one
access to centimetric positioning. This positioning is relative,
Figure 3 presents the differential pseudorange measurement
∆ρit model with respect to geometrical constraints such as

∆ρit = pt.u
i
t + ∆bt + εiρ,t

∆ϕit = pt.u
i
t + λai + ∆bt + εiϕ,t

where ∆ρ and ∆ϕ stands for the differential pseudorange and
carrier phase measurements (between mobile and reference),
p stands for the position, u the unit vector supporting the line
of sight, ∆b the differential receiver clock bias, a the integer
carrier phase tracking loop ambiguity, λ is the carrier phase
wavelength, t and i the time and satellite indexes.

Fig. 3. Differential GPS positioning eliminates the atmospheric delays.
By differencing the pseudorange measurements between the mobile and the
reference receivers, we estimate the relative antenna positioning in an accuracy
way. Here p is the relative positioning and u is the unit vector from the
baseline to the satellite direction. The differential pseudorange measurement
contains term p.u added to the clock bias, but not atmospheric delays.

For a short baseline (less than 10km), the pseudorange mea-
surements give us access to metric positioning precision, and
tens of meters integrity (the same precision is reached using
EGNOS SBAS). The usage of carrier phase dual-frequency
receiver in a DGPS way permit to reach centimeter accu-
racy and integrity[1][2][3] . Thus mono-frequency receivers
can be used to perform the same precision performances
as dual-frequency one, despite an initialization time (some
minutes)[4]. During this initialization period, one have access
to positioning with real typed ambiguity estimate (by evaluat-
ing integer ambiguities as real typed values, table I resume the
GPS and DGPS precision and integrity capabilities. Finally
Precise Point Positioning technique (PPP)[5], allows integer
ambiguity resolution by using precise satellites monitoring,
but this method need a worldwide expensive infrastructure.

TABLE I
EXPECTED POSITIONING PRECISION AND INTEGRITY

Method Precision (m.) Prot. level (m.) delay (y/n)
urban open urban open

GPS 50 5 100 10 n
DGPS 20 2 50 5 n

RTK L1/L2 0.02 0.02 0.05 0.05 n
RTK L1 0.02 0.02 0.05 0.05 y

PPP 0.02 0.02 0.05 0.05 y

Here protection level stands for a probability of being out-
side the given area being 1e−5/hour. The solution presented
here use low-cost mono-frequency DGPS RTK, in urban
environment.The improvement relies here in RTK integrity
monitoring.

IV. INTEGRATE THE NAVIGATION SYSTEM INTO THE
EXISTING PLATFORM

To integrate the DGPS RTK navigation helper into the BIG-
MOW machine, we plugged on board an ARM-9 card running
at 400MHz with an embedded Linux operating system. This
navigation element contains also one mono-frequency GPS
receiver, an interface to machine guidance system, and also
a radio communication (to communicate with the reference
station). Figure 4 presents the hardware and communication
architecture. This architecture have been patented by NAV ON
TIME.

Fig. 4. Our navigation system architecture consist on performing the global
navigation processes on the reference station. Measurement grabbing and
transmission is done on the robot. This allow also a short time autonomy
in the case of short connection lost time.

We have chosen to perform the navigation process (in-
cluding path planning, positioning and monitoring) on the
reference station for two reasons: first this allows to mon-
itor multiple machines, then because the navigation process
needs a lot of resources (processing power for carrier phase
ambiguity resolution, for path planning, and memory for the
geographical database ...). These elements does not need to be
embedded on each machines. The reference station perform
path planning, positioning, monitoring ... and send back to
the embedded system, periodically, the navigation information.
The navigation information contains the real-time guidance
orders. Thus, on BIGMOW machine, the guidance orders are
compliant with existing ’follow the wire’ orders.

V. RTK-GPS AND INTEGRITY

By using integer carrier phase ambiguity resolution, we
perform centimetric RTK positioning. The advantage of using
mono-frequency receiver instead of a multi-frequency one is
the price (we consider a factor 100 between them). Thanks
to this advantage, mono-RTK (mono-frequency RTK) is a
challenge in robot navigation. Here we perform a complete
statistical approach of this method, allowing robustness capa-
bility of the navigation system. We will see, in a first part,
how to construct an integer carrier phase ambiguity search
space, and then how to perform the elimination test on each
of these hypothesis. The contribution in this paper is the usage
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of explicit simple statistical tests to perform the RTK process
in presence of multipath.

A. Floating ambiguity for RTK

Construct integer carrier phase ambiguity search space
construction is divided in two ones : first estimating the
ambiguities as real typed values( in a Gaussian least square
context), then the integer hypotheses set construction. The
search space is the set of integer values in an interval. We
will study this method. Let us consider the state vector X
containing robot pose R and real types ambiguities A, as
Gaussian random variables and let P the X corresponding
to variance-covariance matrixes.

X = [R,A]T

X̂ ∼ (X̄, P )

So we can define here our linear system

Xt = FXt−1 + wt

yt = HXt + vt

with F the dynamic system matrix, H the observation ma-
trix, y the measurement vector, w and v Gaussian noises
respecting E

[
wwT

]
= Q and E

[
vvT

]
= R. In [6], authors

propose to estimate ambiguities by a least square minimisation
procedure on pseudorange and carrier phase measurements
p(At|ϕ0:t, ρ0:t). In urban environment, due to multipath effect
on pseudorange, it is more robust to use only carrier phase
measurements. Given real typed ambiguities estimates At, one
access to integer values by choosing, for each ambiguity term
ai, an interval I where

∫
I
p(ai)da = Pi. We construct, in this

interval I , the list of integer hypothesis {âi}. Knowing ai ∈ Z,
one have

∑
i p(ai ∈ {âi}) =

∫
I
p(ai)da = Pi. So the integer

ambiguity search space is a N -combination of integers. The
probability of containing the true ambiguities in our search
space is P = Π(Pi). Note that considering Ni hypothesis on
ambiguity term i, the search space contains N = Πi<NNi
hypothesis.

In figure 5, we can see 2D case of the integer extraction.
If the real typed estimated ambiguities are correlated, we can
perform a smart ambiguity search (eliminating the ambiguity
when the Mahalanobis distance exceed a rejection thresholds),
we can see a 2D example in figure 5. If the test fails, we do
not expand the sub-tree for this hypothesis.

This method is not the one used in our positioning pro-
cess. Instead, we construct triple difference carrier phase
measurement[7][8]. These measurement are ambiguities free.
So the ambiguity search space is constructed by a different
process.

B. Triple difference for RTK

Recently, some improved triple difference positioning
filters[8][9]. These filters reach real-time performances, allow-
ing embedded positioning process directly into robots. Triple
difference filter does not deal with real typed ambiguity terms.
Thus construct the integer search space is done by a variable
change

Fig. 5. The search space for a couple of ambiguities is, on each ambiguity 1D
space, the integers values into an interval where the probability is controlled.
If the real types estimates values of ambiguities are correlated, so a naive
search is not the optimal one.

∆ϕit = pt.u
i
t + ai + ∆bt + εiϕ,t

ai = ∆ϕit − pt.uit −∆bt − εiϕ,t
We can deduce for each satellite double difference carrier

phase measurement (difference between measurement i and
a pivot p), a Gaussian estimate of the ambiguity term ai.
We construct the same search space as presented in previous
title, about floating ambiguity. By this way, the probability of
not containing the right ambiguity set in the search space is
controlled statistically.

C. Integer ambiguity resolution : Gaussian noise case

The integer ambiguity resolution latency is a known prob-
lem, called the Time To Fix (TTF). Clearly, TTF is the time
needed to eliminate all the wrong hypothesis in the search
space (including removing of all the hypotheses if the true
one is not in our search space). We chose to applied a
simple hypothesis test (primary test) at each period T . The
null hypothesis (H0 is the right ambiguity set) is tested. We
consider the primary tests independent, and so we construct a
N-binomial test.
If the tested hypothesis contains the true ambiguities set,
the residual norm statistical distribution is a centralized Khi-
2 distribution. Given a PFA (Probability of False Alarm
or ’first kind’), one can determine a threshold for primary
test. We perform this test multiple times and we eliminate
the hypothesis of the search space if this primary test fails
more than F times on N tests. So, if the primary tests are
independent, the probability of eliminating Ho follows being
in the search space is p(elim(H0)) and probability of keep a
wrong hypothesis Hi, p(keep(Hi)) are

p(elim(H0)) =
∑

F<k<N

CkNPFAk(1− PFA)N−k

p(keep(Hi)) = 1−
∑

F<k<N

CkNPNDk
i (1− PNDi)

N−k
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where PND is the probability of non-detection (or error of
second kind). PNDi depends on PFA and the distribution
of Hi residual norm (see figure 6(a)).

(a) Our khi-2 test consist on partitioning the residual
norm space in two parts, one of them having a
probability PFA. The test return ’true’ if the residual
is out of this PFA interval.

(b) In presence of multipath effect, the previous work
can be reused, by modifying the threshold separating
the partitions. We set it to ’PFA in worst case’, allowing
a controlled integrity test.

Fig. 6. Summary of Khi-2 test. Here Khi-2(n) represent a n degree
centered khi-2 distribution, and Khi-2(d,n) represent a n degree, d center,
non-centralized khi-2 distribution

D. Integer ambiguity resolution with Multipath

In the case of multipath, each carrier phase measurements
residual norm distribution became a non-centralized khi-2 dis-
tribution, and the noises are time-correlated. The first problem
is eliminated by taking a different threshold on the primary
test (we fix PFA and deals with the worst-case distribution to
keep an upper bound of the test power). The second problem
is solved by modifying primary tests period, taking account
time to prevent correlation in multipath effect (some seconds
is sufficient in dynamic case). The figure 6(b) show the new
primary test modelization.

To conclude, the key of our work is to define the PFA
value and to use the worst case model for carrier phase noise
spectrum. So the probability to not solve the true integer
ambiguity (the risk) is controlled.

VI. RESULTS

The validation of the new robotic lawn-mower navigation
system was done on some lands in France. A successful
demonstration was done in October 2010, near the stadium
of Toulouse, including a ’slalom path’ around plots.

The terrain presented in figure 1 is entirely mowed by the
new robot since many months. In figure 7 we can see a 24
hour squared trajectory (the not aligned lines are trajectory to
return to charging operation).

Although the ground truth is not available, the ’return to
charging’ operation need the robot to reach an electrical plug
in a range of ± 5cm. This operation is realized with success
during many weeks, at a frequency of one return to charging
of two hours every two hours.

Fig. 7. The mowed terrain coverage during 24 hours, including the automatic
return to station procedure.

VII. CONCLUSION

To conclude, we presented here a robotic lawn-mower
system guided by a low-cost RTK-GPS navigation system.
The positioning system have been seen as a stochastical
process, this way permitting to control the integrity. Finally the
main result was presented : a 24 hours autonomous mowing,
including the ’return to charging’ processes. This navigation
system should be reused in many kind of robot, including area
security or mobile transport systems.
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Odometry from Planar Landmarks

Keerthi Narayana and Bruno Steux

Abstract— This paper presents a new perception odometry
approach using extracted stationary planar features to resolve
5 degrees of freedom of the robot motion. The approach
exploits the geometrical properties of the extracted features
to determine the transformation of the moving robot, which
has perceived these landmarks. This way of localizing can help
several applications in indoors and outdoors such as urban
canyons, with plenty of planar features. The paper presents the
concept and the algorithm, and validates them using a simulated
scenario.

I. INTRODUCTION

Several approaches are proposed in the recent years to
provide assistance and solutions to the 3D localization (pose
estimation) problem. Most solutions use Global Navigation
Satellite Systems (GNSS) and Inertial Measurement Units
(IMU). However, pose computed from GNSS receivers de-
grade especially in urban and indoor environments, where
satellite signal reception is perturbed by manmade structures.
Consequently, Inertial Measurement Units (IMU) are a good
alternative to fill the short gaps in GNSS-based pose. How-
ever, the pose computed from these sensors subjected to drift
errors, and a good quality IMU costs a lot.

In the indoor robotic navigation, the technique of Simulta-
neous Localization and Mapping (SLAM) is used for local-
ization. It uses perception sensors to create the map of the
environment, and this information is used either to correct the
estimated pose or compute the robot transformation. The first
implementation is a Bayesian filter approach ([1], [2], [3]),
where the predicted pose from the additional sensors such
as odometers are corrected using the constructed maps,
containing mainly a set of selected features (landmarks)
from the scene. Alternatively, robot transformation can also
be computed by comparing two overlapping scans taken at
two different instants of time. A featureless scan correlation
([4], [5]) is performed to resolve transformation using an
optimization formulation.

However, the Bayesian approach already incorporates the
errors of the additional sensors. All the accumulated uncer-
tainties over a period time, causes erroneous associations
between landmarks in the constructed map and the new ob-
servations, resulting in the failures of the approach ([2]). On
the other hand, featureless approaches are computationally
heavy and the optimization formulation is nondeterministic.
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Therefore, we propose odometry (dead reckoning) ap-
proach, where certain landmarks are extracted from the
scene, and from the geometrical properties of these stationary
landmarks observed at two instants of time, the relative pose
of the robot is computed. A similar approach is presented
in [7], where a 2D transformation is estimated from the
circular landmarks. These landmarks are extracted from the
tree trunks in a parking area. We choose planar features as the
landmarks, since they are one of the most recurring features
of the manmade environments. Moreover, their time invariant
geometrical properties can be used for both identifying the
correspondence between two observation sets (Data Associa-
tion), and to compute the undergone robot 3D transformation.

II. 3D TRANSFORMATION

Most SLAM problems are tackled only in the 2D space.
This is mainly due to the associated complex 6 Degrees
of Freedom (6DoF) in the 3D space, and the unknown
associations between the landmarks. Moreover, there is a lack
of 3D pose sensors, apart from GNSS receivers and Inertial
Measurement Units (IMU). Our approach addresses the 3D
pose resolution using the geometrically invariant properties
of the extracted features, i.e. planar landmarks.

We tackle the localization problem in a 3D space with
abundant stationary planar features. These features are ob-
served by the moving observation platform such as a robot. A
way to extract such planar features from the mobile platform
is published in our previous work [6].

A. 3D Rotation

In order to compute a 3D rotation of a observing plat-
form, a 3D reference frame is needed which can depict the
undergone rotation. Planar features, such as building facades
can be characterized by their normal vectors pointing in
the direction perpendicular to their surface. By using two
non parallel planes, the desired 3D reference frame can be
constructed, as shown in figure 1.

Once the 3D rotation frame is determined at a given
observation epoch k, and the same can be constructed in
another epoch k+ δ, from the same pair of planes P1 and
P2, the undergone rotation Rk of the observing moving
platform can be determined, as shown in equation 1. The
assumption is that the planes are stationary with respect to
the moving mapping platform between the two observation
epochs.

Uk+δ = R−1k Uk

where

U =
[

# »n1
# »n2

# »n3
]
 (1)
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Fig. 1. Construction of 3D rotational frame from two non parallel planes,
P1 and P2 using their respective normal vectors n1 and n2. Third normal
n3 is computed by the vector cross product between the two normals.

Uk+δ and Uk given in equation 1, are constructed from
the observed and associated pair of planes of the two
observation epochs, as shown by U.

Manmade environments often have two or more non paral-
lel planes in the observable scene. In such scenarios, the 3D
rotation of the observing sensor platform can be computed
from a pair of non parallel planes identified across the
two observation epochs. The advantage of the this rotation
computation is, it remains independent to the translation of
the platform. Therefore, it can be resolved independently.

B. 3D Translation

3D translation computation demands a stationary 3D
reference point in a fixed reference frame. However, for
the moving observing platform, this point appears to have
undergone a translation same in magnitude but reverse in
direction.

Planar landmarks are uniform surfaces and not necessarily
comes with a reference 3D point. At many instants even the
observed patches of these landmarks vary in their border
length and surface areas, depending on the pose of the
platform. A way to determine the reference point is to use
the intersection points of the planar features. As shown in
figure 2, a 3D reference point can be constructed only from
limited combinations of the planar intersections.

Moreover, observing non parallel planes to the ground
is feasible only in some rare scenarios. Most manmade
environments have erect walls, and the horizontal roofs are
not visible for a ground vehicle. However, an alternative way
to determine the 3D reference point is to use a sensor such
as a digital camera.

In our present approach which depends only on a 2D laser
scanner setup, as presented in [6], we decided to opt to
resolve the translation in 2D space. The 2D reference point
$ is determined by projecting the intersecting line on to
the horizontal plane as shown in the last sub figure in the

Fig. 2. Construction of 3D rotational frame from two non parallel planes,
P1 and P2 using their respective normal vectors n1 and n2. Third normal
n3 is computed by the vector cross product between the two normals.

figure 2. The translation vector Tk of the platform, can be
expressed using equation 2.

$k+δ = $k −Tk (2)

Again, to determine the 2D translation, we need two
non parallel planes, and such scenarios are often present in
manmade environments. The critical issue is to determine
the corresponding pair of non parallel planes across the two
observation epochs.

III. DATA ASSOCIATION

As explained, to compute 5DoF transformation (3DoF
rotation and 2DoF translation) in 3D space, a pair of non
parallel planes needs to be identified across the two obser-
vation sets. The identification of the corresponding element
across two sets is widely known as Data Association (DA).

Uniform planar features do not come with any uniquely
identifiable tags. Moreover, planar features appear and disap-
pear from the observable scene, as the robot moves, making
the identification problem non trivial. Additionally, we opted
to compute the robot pose independent of other sensors;
therefore, restricting the association to be based only on the
geometrical properties of the observed landmarks.

A. Relative Constraints

The dihedral angles between a pair of observed planes is
conserved regardless the observing position of the robot. This
property is computed for each pair of the observed planes in
an epoch. The first level of association is done by comparing
this property of the pair of planes for the two observation
sets. All parallel plane pairs are discarded. However, results
often contain several associations including some ambiguous
ones, as it is likely to have the same angular relationships
for more than one pair of planes in the scene.
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B. Absolute Constraints

To minimize these erroneous associations, a constraint
based on the knowledge that a land vehicle on a manmade
roads do not move abruptly, can be applied. This implies,
for the two observation sets done within a short time, the
corresponding planes appear closer to each other. Moreover,
if they are projected on one another, they have some over-
lapping regions. This conditions are tested using a distance
criteria (spatial neighborhood) and a spatial alignment test
for overlapping regions.

C. Lenient and Strict Data Associations

The planar features help separate the rotation computation
from translation resolution. Once rotation is resolved the
associations can be done relatively easier compared to the
state, where the entire undergone transformation is unknown.
Therefore, even the DA can be performed in two stages.

The absolute constraints are applied on observations across
the two sets, therefore, the margin for the criteria varies
depending upon the motion of the robot. If no information is
available about the undergone motion of the robot, a higher
magnitude threshold needs to be applied to provide margins
for all the unknowns. In such case we call the DA, Lenient
Data Association (LDA).

If the rotation is resolved prior computing translation,
at this stage, a more stringent condition can be applied to
reduce ambiguities in associations. This step we call it as
Strict Data Association (SDA). It also employs algorithms to
ensure injective associations, meaning, an associated plane is
retained only with the most suitable match in the other set.

IV. HANDLING OUTLIER ASSOCIATIONS

As mentioned before, the proposed approach, simplifies
the 6DoF pose problem by not only separating the rotation
from translation, but also by splitting the Data Association in
two, LDA and SDA. We term this as a Divide and Conquer
(D&C) approach.

However, the lenient constraints can lead into several
ambiguous associations. Additionally, different associated
planar landmark pairs can compute results with varying
precision, mainly due to the distance of these planes and their
orientation to the observing platform. Therefore, a strategy
to handle multiple associations is essential. In the presence
of multiple associated planar pairs, several transformation
solutions can be computed. However, in the presence of
ambiguous or outlier associations the common choice of
mean-based approach often fails. Therefore, we devised a
new algorithm, to choose an associated pair of planes which
optimally describes the undergone transformation of the
robot.

The algorithms, Optimal Candidate Selection by Consen-
sus (OCSC) and its weighted variant (WOCSC) are inspired
from the RANSAC algorithm [8]. The algorithm OCSC like
RANSAC tries to choose the best candidate solution by a
maximizing function. However, RANSAC is nondeterminis-
tic, as it tries to select the best fitting model parameters to a
given large population by randomly sampling a minimal set,

till a satisfactory solution can be computed using this random
set. However, in the deterministic OCSC each candidate
minimal set generates a solution, and if the solution is the
one best fits all the members of the associated set then the
solution is retained. The OCSC algorithm has two steps,
an expectation step and a consensus step. The expectation
step generates a candidate transformation from a pair of
associated planes, and the consensus step, applies this result
on all the associated planes, from the set of planes of one
of the epoch. The optimal transformation is the one which
produces the best fit (minimum error) for all the associated
planes across two epochs.

The problem is formulated using equation 3.

Sk+δ = Kk 5 Sk ⇒ ∀i ∈ {1 . . . p},xi
k+δ = Kk 5 xi

k (3)

where, S is a varying population observed at two epochs
k and k+ δ. In our case, it corresponds to the set of planar
landmarks. The variation can be described using an operand
Kk and operator 5. Each member of the population x un-
dergoes the same transformation. For the rotation, Kk is the
rotation matrix R−1k and 5 is matrix vector multiplication.
For the translation, Kk is the translation vector −Tk and 5
is vector addition.

Expectation step generates the candidate Kj
k from a min-

imal subset, in our case, an associated pair of non parallel
planes j. In the consensus step, the optimal candidate K∗k is
selected, as shown in equation 4.

K?
k = argmin

j7→Kj
k

∑
i

((Kj
k 5 xi

k)− xi
k+δ)

2(wi
k ·wi

k+δ) (4)

The improvement of WOCSC with respect to OCSC
is the term (wi

k · wi
k+δ), which takes for each element,

the confidence w into account. Each planar landmarks are
considered to have an associated confidence (refer CPEF
on [6]). It shall be noted that only the associated pairs i
of observations (xi

k, xi
k+δ) are used in the consensus, and

not all the observed planes from epochs k and k+ δ.
The algorithm, handles outliers and reduces noise by

choosing the optimal solution. In its general form, it can
be applied to solve any overdetermined system.

V. DIVIDE AND CONQUER APPROACH
The overall approach used is summarized in figure 3.

VI. EXPERIMENTAL RESULTS
A. Test Scenario

The concept and the algorithms are validated using a
simulation platform. The platform helps to know the true
trajectory traversed by the robot, and it provides the laser
scanner range measurements(refer [6]) from each known
pose of the robot, which is the input for our algorithms.
Another advantage is that these inputs can be altered by
adding configured noises. These algorithms are at present
implemented in MATLAB. The used trajectory and the scene
are shown in figure 4.
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Fig. 3. This provides the overall view of Divide and Conquer (D&C)
approach, where rotation is separated from translation. First a Lenient Data
Association (LDA) is performed to tackle all unknowns of the undergone
transformation. Therefore, rotation is resolved using Weighted Optimal
Candidate Selection by Consensus (WOCSC) algorithm. Translation can
be resolved using two ways, either using a mean based approach or again
by applying WOCSC. If mean based approach is applied, it is a must to
ensure that there is no outlier associations, and this is done by using Strict
Data Association (SDA). SDA is optional if we apply WOCSC algorithm.

Fig. 4. Top view of the scene generated from the measured laser scans,
shown in red dots. Infinity measures are the laser scan measurements for
far distance, we discard in our algorithm. Straight red lines shows the walls,
corresponding to planar features. Green dots, traversing a loop, is the true
trajectory.

We generated test data with four different noise levels,
which is added to each laser range measurement. First, a
no noise case σ = 0. Second σ = 6mm, corresponding
to the precision of the SICK LMS 221 laser scanners, we
tested inside our laboratory. Third, σ = 2cm, corresponding
to the precision of a low quality laser scanners, and the fourth
σ = 10cm, a worst case scenario.

B. Test Results

Figure 5 shows the four trajectory results obtained for
the four different input data generated using the same scene
described in figure 4 with explanation in its caption.

Fig. 5. Four trajectories generated using four data sets with different noise
levels are shown in the four sub figures. All the trajectories follow the basic
shape but as expected, higher the noise higher the trajectory error. In a fixed
reference frame (trajectory) the accumulated error appears as a drift. Each
of the four cases depicts the truth in blue cross, trajectory generated from
the algorithm sequences (LDA,WOCSC Rotation,SDA,Mean Translation) in
green, and (LDA,WOCSC Rotation,WOCSC Translation) in magenta. As
discussed before, WOCSC approach (second sequence) performs better as
the noise level increases, as shown by the plots in magenta. The error in the
mean based approach in the last sub figure originates from the erroneous
data association, result of the higher noisy data. Higher noises alters the
estimated planar properties, which then contributes to the robot pose error.
While computing the trajectory, these errors (non systematic if originates
from DA ambiguities) gets accumulated resulting in drift errors.

The error characteristics obtained for the 5DOF relative
pose estimation using our approach is summarized in fig-
ures 6 and 7. In the table the standard deviation (σ) is
the important information providing the precision of the
computed relative pose. σ for the pitch rate increases rapidly
with the noise level, compared to the other two rotation
rates. This is because, the planar landmarks in direction
perpendicular to the vehicle motion (incidence angle 0◦

for the laser range measurements in our setup [6]), gets
the full magnitude of the laser measurement noise. σ for
the cog method gets higher compared to WOCSC approach
showing its sensitive to the outlier associations. A noise with
σ = 10cm, added to each laser range measurement, alters
the estimated planar landmark properties. This change in the
planar properties leads to a higher σ for the computed pose,
especially in the cluttered environments.
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Fig. 6. Angular Rate Precision - 3DoF

Fig. 7. Translation Precision - 2DoF

At present, we have applied no noise reduction filters, nei-
ther for the laser range measurements nor for the trajectory
estimation, except the estimation of the plane is done by
a least squares sense (refer [6]). Additional noise reduction
filters, higher precision and higher rate perception sensors
can help in a better estimation of the trajectory.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The concept of odometry approach using planar landmarks
is promising to address the current short comings of the
localization techniques. It can address the 5DoF 3D pose
problem without using any other additional sensor informa-
tion. To determine the 5DoF pose, it is sufficient to have a
pair of non parallel planes, observed in both epochs between
which transformation is estimated. We also presented a new
algorithm called Optimal Candidate Selection by Consensus
(OCSC) and its weighted variant (WOCSC). They can be
applied to resolve ambiguities in associations by handling
outliers and noisy associations, while doing so chooses
the optimal transformation undergone by the robot. The
algorithms in its general form can be applied to solve any
overdetermined system. We validated the concept using a
simulated data with different levels of additive noise.

B. Future Works

Additional validations of the algorithm can be done in-
cluding real data scenarios. The computation of the pose,
solely from the perception sensor information means a higher
trust on them. Therefore, a better quality perception sensors
can help. There are higher quality 3D laser scanners such as
Velodyne High Definition Lidar (HDL), which can facilitate
better landmark feature extractions, thus reducing the pose
errors. Acceleration and vibration of the robot can be the
other major sources of laser measurements errors. Higher
perception rate or lowering the speed of the robot or a ’stop
and go’ motion, can help to minimize such errors.

For resolving the remaining vertical translation (6th DoF),
an additional digital camera can be used. The typical drift
error observed in the scenarios with noisy inputs can be
addressed by using a higher value for δ > 1. That means, the
Data Association is performed not between the immediate
two sets of data (i.e. δ = 1) but with the data observed
with a certain delay. This increased delay ensures a higher
signal to noise ratio, which when averaged by the used
time delay, acts as a filter, helping to reduce the noise,
and therefore, the drift. To use a higher δ value, landmarks
need to remain observable for a longer period. The two
isoclinal pairs of laser scanner setup, pointing forward and
backward direction of the vehicle achieves this (refer [6]).
The other major obstacle for this approach is the absence
of non parallel planar landmarks in the observing scene.
The additional camera or a 3D laser scanner with ability to
process landmarks other than the planes can be very useful.
Even the empty spaces (where there is no detectable objects
present) can be used as landmark patterns.
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Abstract— Autonomous transportation in human environ-
ments must follow social conventions. An autonomous
wheelchair, for example, must respect proximity constraints but
also respect people interacting, it should not break interaction
between people talking, unless the user want to interact with
them. In this case, the robot (i.e. the wheelchair) should find
the best way to join the group. In this paper, we propose a
risk-based navigation method which include risk of collision but
also risk of disturbance. Results exhibit new emerging behavior
showing how the robot takes into account social conventions in
its navigation strategy.

Index Terms— Proxemics, Human aware navigation, risk
assessment.

I. I NTRODUCTION

Robots enter more and more into human environments.
As areas of mobile service robotics and robotic assistance
of humans are becoming more common in everyday life,
humans need to share the physical space with robots and
robots need to take into account the presence of humans.
To be accepted, robots must behave in a socially acceptable
way. Their trajectories must be safe but also predictable.
Their behavior should follow social conventions, respecting
proximity constraints, avoiding people interacting or joining
a group engaged in conversation without disturbing.

People maintain a set of social conventions related to space
when they are interacting for example in a conversation
[1]. The sociology literature often refer to the concept of
personal space proposed by Hall [2] which characterizes the
space around a human being in terms of comfort to social
activity. Concerning interactions between people, an o-space
is described in the sociology literature. This space models
casual conversations between people interacting [1]. The
perception of the territorial boundaries established by group
of humans and the respect of these bounds is an evidence of
social behavior. Moreover transporting a human restrict us to
respect social conventions when navigating, then if we want
to develop social robots or wheelchair like robots, the notion
of human-human interaction must be explicitly addressed.
The ideas presented in this paper will be implemented in a
wheelchair to transport people with reduce mobility (PRM)
in airports (fig. 1). Assistance to mobility in airports is a
big challenge, in [3] many scenarios of application could be
found mainly to restore to the users autonomy and privacy,

This work has been partially supported by CONACYT 250140/308006.

for example, some PRMs reported that they felt abandoned
in PRM areas in the departure lounge, and were worried
that they might miss their flights. The interaction between
the wheelchair and the user poses also many challenges
due to the fact that passengers present varying disabilities
(including visually impaired and deaf and hard of hearing),
but a solution for this problem is not discussed in this paper.

Fig. 1. Autonomous transport of people with reduced mobility inairports
is a clear application of our strategy which takes in account human-human
interaction. In this figure we can see a representation of the depart lounge
of an airport, some social conventions could be observed, face to face
interaction and staying in the queue. The wheelchair must navigate in the
environment while respecting the cited conventions.

In this article, we propose a simple way to estimate the
o-space in the case of two agents interacting based on their
positions and orientations and propose an approach to take
advantage of it in autonomous navigation of a wheelchair.

Section II proposes a state of the art of human aware nav-
igation. Section III defines the concepts of spatial behavior
and describes proxemics models used to take decisions in
our navigation system. Section IV describes the algorithm
of navigation called Risk-RTT and explains the extensions
done. In section V the simulation of the navigation of an
autonomous wheelchair in presence of humans interacting is
presented. Section VI presents conclusions about the work
and perspectives.

II. STATE OF ART

Considering the literature, we can observe the growing
interest of the robotics community in research that includes
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the behavior of humans and its impact in the development of
tasks by the robot. In [4] it is argued that moving in easily
understood and predictable ways will both improve people’s
trusting and comfort with the robot as well as will help to
insure the safety of people moving near the robot.
In [5] the authors propose a method for a robot to join a
group of people engaged in conversation. The results of the
implementation and the experiments conducted with their
platform show a human-like behavior as judged by humans.
Some approaches [6]–[11] have been conducted to establish
the rules that probably will govern the physical behavior of
robots regarding interaction with humans. Closer to human
aware navigation and management of physical space, we
could mention [12] where a motion planner is presented
which takes explicitly into account its human partners. They
introduce criteria based both on the control of the distance
between the robot and the human, and on the control of the
position of the robot in the human’s field of view.
In [13] an adaptive system for detecting whether a person
seeks to interact with the robot based on the person’s
pose and position is introduced. In [14] a framework for
representing social conventions as components of a constraint
optimization problem is presented. A* path planner is imple-
mented with constraints like shortest distance, personal space
and pass on the right.
Work presented in [15] propose Spatial Behavior Cognition
Model (SBCM), a framework to describe the spatial effects
existing between people and people, and people and envi-
ronment, SBCM is used to learn and predict behaviors of
pedestrians and for helping a service robot to take navigation
decisions.
In almost all the cited works the concept of personal space
is present but the concept of o-space and f-formations have
not been included explicitly. We think these last concepts
can give us a clue to consider the interactions between the
dynamic obstacles in the environment and to improve the
autonomous navigation by a better understanding of humans
management of space.

III. C ONCEPTS OF SOCIAL BEHAVIOR

To understand the perceived behaviors in human-human
interaction and the resulting management of space, we can
support us on the works developed in the area of sociology
to define some concepts as personal space, o-space and F-
formations.

A. Personal Space

The term Proxemics was proposed for Hall [2] to describe
the use of space between humans, he observed the existence
of some rules not written that conducted the people to keep
distances from others, and others respect this space, he
proposed that space around a person in social interaction
is classified as follows:

• the public zone> 3.6m,
• the social zone> 1.2m
• the personal zone> 0.45m
• the intimate zone< 0.45m

That definition is important because it represents a useful
tool for a robot to understand the intentions of the humans.
It is well known that these measures are not strict and
that they change depending on age, culture and type of
relationship but the categories proposed explain very well
reactions like the uncomfortable sense of a stranger invading
your intimate zone or the perception of somebody looking
social interaction because he is entering to your social zone.
In general people are more strict regarding their frontal space.
In the rest of the article we use personal space as synonymous
of personal zone plus intimate zone.
The model that we have implemented to represent personal
space is defined in [16], it consist in blending two Gaussian
functions both of them centered in the position of the person.
The first one represents the personal space situated in front
of human and for this reason it is wider than the last one
representing the back space. The figure 2 shows an example
of personal space for two people walking, the measures are
projected in the plane of floor, the values obtained from the
gaussian are higher in the center than in the borders.

Fig. 2. Estimated personal space for two people that walk projected in the
floor.

B. F-formations

(a) (b) (c) (d)

Fig. 3. Examples of F-formations: (a) Vis-a-vis, (b) L-Shape, (c) C-Shape,
(d) V-Shape.

In [17] Kendon proposed that people interacting in groups
follow some spatial patterns of arrangement. When people
are executing some activity they claim an amount of space
related to that activity, this space is respected by other people
and Kendon referred it as individual’stransactional segment.
This transactional segment can vary depending on body
size, posture, position and orientation during the activity.
Moreover the groups can establish a joint or shared trans-
actional segment and only the participants have permitted
access to it, they protect it and others tend to respect it.
Theo-space is that shared transactional segment reserved for
the main activity. This space is surrounded by a narrower
one, called thep-space, which provides for the placement

PNAVHE'11 80



of the participant’s bodies and also personal things. AnF-
formation system is the spatial-orientation arrangement that
people create, share and maintain around their o-space. To
become a member of a formation of this sort, you have to
be in the p-space.

C. Model of o-space in F-formations

As there is not an exact physical definition of o-space we
will describe in this section how we can estimate its location.
When more than two people are in conversation they exhibit
an F-formation with circular shape then the o-space could
be taken as a circle whose center coincides with that of the
inner space. In the case of two people some F-formations
have been identified as the most frequents [1]. In our
model, the o-space will be dependent from the particular F-
formation identified: Vis-a-vis, L-Shape, C-Shape or V-Shape
(fig. 3). The definition found in the reference mentioned
before permits to get a geometric representation for each F-
formation, based in the position and orientation of the body
of participants.
Given the positions of pedestriansH1 = (x1, y1) and
H2 = (x2, y2) in the plane of the floor and their respective
orientationsφ1 andφ2 around the normal to that plane, we
calculateDH as the euclidean distance betweenH1 andH2.
We calculate also a pointVi as the intersection of the vectors
beginning inH1 and H2 in the direction ofφ1 and φ2,
respectively. LetH12 be the mean point betweenH1 andH2.
Let C be the mean point betweenVi andH12. CalculateDi

as the distance betweenVi andH12.
The o-space could be represented by a two-dimensional
Gaussian functionΓc of covariance matrixS and centered
in C, then for each pointQ around the center we have:

ΓC,S(Q) = e−
1

2
(Q−C)tS−1(Q−C) (1)

whereS is a diagonal covariance matrix defined as:

S =

(

σ2
x 0
0 σ2

y

)

. (2)

To get the shape of the o-space in function of the F-
formations, the values chosen for the parameters areσx =
DH/4 andσy = Di/2. In the particular case of the Vis-a-
Vis formationσy = 0.6. The orientation of the Gaussian is
in the direction of the segment

−−−→
H12C, this coincides with

the location of the point of interest of humans as exhibited
by the orientation of their bodies.

The p-space is considered as the area between the border
of the o-space and the same border enlarged by the average
size of the humans in conversation. For effects of implemen-
tation o-space is discretized using a grid and taking the result
of evaluating the center of each cell as the value for the cell.
All the elements defined can be seen in fig. 4 for the case
of an L-Shape F-formation.

IV. T HE ALGORITHM RISK-RRT

As starting point for navigation we chose the strategy
proposed in [18]. This algorithm was thought to operate in

Fig. 4. Elements of the model o-space for L-Shape F-formation.

dynamic, uncertain environment, it supposes that the mov-
ing pedestrians detected in the environment follow typical
motion patterns that are represented by Gaussian processes
which have been learned by an off-board platform before
navigation and to be known by the robot. The planning
algorithm is based on an extension of the Rapidly-exploring
Random Tree algorithm [19], where the likelihood of the
obstacles future trajectory and the probability of collision is
explicitly taken into account. The tree is grown in a random
fashion but a bias is included to direct the search to the
goal. Best trajectory (path in the tree) is chosen using as
heuristic the “probability of success” and distance to the goal
of its nodes. We extended the Risk-RRT by including the
knowledge of personal space of pedestrians and the possible
interactions between them. The interaction we are focusing
on is the conversation between two pedestrians. We penalize
paths that passes in the personal space of pedestrians and in
the o-space of interactions taking place in the environment
by calculating a cost for each one, see eq. 13 and eq. 11. In
this section, we present the partial motion planning algorithm
Risk-RRT and the collision risk assessment modified in order
to include our new constraints.

A. Environment model

At a given instant, the robot knowledge about the state
of the world, as proposed by [18], is represented by: an
estimation of the state of the robot, a set of Gaussian
Processes which represent the typical patterns of the dy-
namic obstacles, a goal position, an occupancy grid which
represents the structure of the static environment and a list
of moving objects their estimated position, velocity and
previous observations. To take in account the new constraints
we include to the list:

1) A model of personal spacePS(om) attached to each
dynamic obstacleom, according to section III-A

2) A list LI = {Zi}i=1..r of interactions detected in the
environment, each interactionZi has a model of o-
space attached to it.

B. Probabilistic Risk of Collision [20] [21]

When searching for a safe path, the algorithm must
determine how much is the risk of collision of taking an
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actionu ∈ U when in configurationq(t1). This risk can be
written asP (coll(q(t1), u) = 1), the probability of collision
will be referred asPc in the rest of the paper. The risk is
computed on the basis of the probability of occupation of the
surfaceA which is swept by the robot moving fromq(t1)
under controlu in the interval to[t1, t2]:

q(t2) = f(q(t1), u, τ) (3)

A =

t2
∫∫

t1

q(t)dt (4)

wheref(.) is the motion model of the robot andτ = t2− t1
is the time step. The risk of collision must incorporate both
the static and the moving obstacles. Even when two humans
in conversation don’t exhibit a significant motion they must
be treated as dynamic ones because they represent more
risk than static obstacles. The space occupied by personal
space and o-space can’t be detected by sensors and for this
reason this spaces are linked to the dynamic obstacles and the
computation of their costs is reflected on the probability of
collision of the robot with them. We make also the hypothesis
that moving obstacles and static obstacles cannot overlap,
and consequently that collision with a static obstacle and
collision with each one of the moving obstacles are mutually
exclusive events, which yields:

Pc = Pcs + (1− Pcs) · Pcd (5)

Pcd = 1−
M
∏

m=1

[1− Pcd(om)] (6)

wherePcs is the probability of collision due to the static
obstacles,Pcd(om) is the probability of collision due to the
dynamic obstacleom andPcd is the probability of collision
due to all the dynamic obstacles.

The static obstacles are represented in the occupancy grid
which is assumed to be stationary. GivenM(t0) with t0 ≤ t1
the most recent estimation of the static map andς ⊂ M(t0)
the subset of cells which is the minimal approximation of
surfaceA, the risk of collision with a static obstacle is given
by the max probability over the subsetς:

Pcs = max
ς

(P (Occ(Cellx,y) = 1)) (7)

whereCellx,y is the cell of the occupancy grid in the(x, y)
position. The risk of collision with a moving obstacleom
is approximated by the probability that the area swept by
the robot intercepts the one swept by the obstacle in the
considered interval:

Pcd(om) = P (om(t) ∩A 6= ∅, ∀t ∈ [t1, t2]) (8)

The predictionom(t) is given by a weighted sum (mixture) of
Gaussian Processes. A Gaussian Process is a generalization
of the Gaussian probability distribution in function space,
see [21] for a more detailed explanation and equations for
Gaussian Processes. First, each Gaussian componentk is
considered separately, then all the Gaussian components are

summed:

Pcd(om, k) =

∫

A

G(om(t), µk,Σk) (9)

Pcd(om) =

K
∑

k=1

wmkPcd(om, k) (10)

where Pcd(om, k) is the probability of collision with the
obstaclem moving along patternk; G(om(t), µk,Σk) is the
Gaussian Process representing patternk, given the observa-
tion history of objectom. The probability is marginalized
over the set of possible patterns to yieldPcd(om), where
wmk is the weight of thek component for objectm.
In order to choose an appropriate path, the Risk-RRT uses
the risk of collision of a particular action to calculate
the“probability of success” of each partial path [18].

1) Adding social constraints: In this section we explain
how we include the social constraints to the model before
presented, being this the main contribution of the paper.
First we definePZi as the probability of disturbing by
passing inside the o-space (sec. III-B) of interactioni, and
we calculate it as:

PZi = max
ς

(ΓCi,Si
(Cellx,y)) (11)

To reflect the fact of disturbing an interaction we think
of it as a collision with a dynamic obstacle and modify the
equation 6 to get:

Pcd = 1−
M
∏

m=1

[1− Pcd(om)]

r
∏

i=1

[1− PZi] (12)

In the case of the personal space we definePps as the
probability of disturbing by passing in the personal space of
the humanom. We can approximatePps as the probability
that A, the area swept by the robot, intercepts the one
represented by the personal space:

Pps(om, k) =

∫

A

PS(om(t)) (13)

WherePS(om(t) is the model of personal space centered in
om(t) as described in III-A. Again, to take in account this
last constraint we need to modify the original equation 10
to get:

Pcd(om) =

K
∑

k=1

wmkPcd(om, k)Psp(om, k) (14)

After these extensions the “probability of success” calcu-
lated for every partial path is given by the probability of not
encountering a collision along the path and not entering in
a personal space or an o-space.

C. The goal-oriented navigation algorithm

The goal oriented navigation proposed is described in
Algorithm 1. It combines three tasks: one dedicated to
perception (of static and moving obstacles), a task for
planning partial but safe trajectories and a task for navigating
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(a) (b)

Fig. 5. Example of execution of Risk-RRT algorithm. In a) the robot navigation system has created a tree of possible paths to follow, robot is the green
rectangle, the chosen path is in red. In (b) we can observe how the robot has adapted its trajectory trying to avoid a possible collision with pedestrian (in
red) by considering the predictions of typical pedestrian trajectories.

safely along planned trajectories. The prediction done for
forecasting the position of moving obstacles in the near
future is based on learned Gaussian Processes [18].

Algorithm 1 Risk-RRT
1: procedure RISK-RRT
2: trajectory= empty
3: Tree= empty
4: Goal= read()
5: t= clock()
6: while Goal not reacheddo
7: if trajectory is emptythen
8: brake
9: else

10: move along trajectory for one step
11: end if
12: observe(X);
13: delete unreachable trajectories(T,X)
14: observe(Map,movingobstacles)
15: t= clock()
16: predict moving obstacles at timet, ..., t+Nτ
17: if environment differentthen
18: update trajectories(T,Map,moving obstacles)
19: end if
20: while clock()< t+ τ do
21: grow trajectories with depth<= N in T
22: end while
23: trajectory = Choose best trajectory in T
24: t = clock()
25: end while
26: brake
27: end procedure

Risk-RRT takes explicitly into account the real-time con-
straint and limits the time available for planning to a fixed
interval. After each planning cycle, the planned trajectory
is generally just a partial trajectory. Execution and planning
are done in parallel: while the robot moves a step along the
planned partial path, the tree is updated (line 18 of Algorithm
1) with the information coming from the perception algo-
rithm, the tree is grown and the new partial path is passed
for execution when the time step is over. In the fig. 5 we

can observe an example of navigation employing Risk-RRT
in the case of one pedestrian entering in the environment
and robot going to its goal. At the beginning the robot has
explored the environment and then decides to follow one
trajectory, some steps ahead when it detects the presence
of pedestrian, a prediction is realized based in the Gaussian
processes and it must adjust its previous choice to avoid a
collision with the human.

V. SIMULATION RESULTS

To test our models of interaction we have chosen a
scenario that shows one conversation between two humans
standing in a spacious area, this is because we want to
decrease the effect of the structure of the environment in the
management of space done by people. The simulation loads
a map previously constructed by a SLAM function using
a laser mounted on a wheelchair and creates an occupancy
grid based on it. The pedestrians are placed in a Vis-a-Vis F-
formation, that is, facing each other in theirs social zone (sec.
III-A). The space between them is big enough to let the robot
passing. Detecting conversation interactions is done, first by
finding pedestrians that are closer than a maximum distance,
then by check if their velocities are under a maximum
velocity and finally taking in account the orientation of their
bodies to match one of the F-formations defined in section
III-B. The robot simulated is an autonomous wheelchair with
two wheels, the model used is that of a differential robot
system.

a) (b)

Fig. 6. Change in the behavior of the wheelchair (green). In (a) the
navigation doesn’t take in account the personal spaces nor the Vis-a-vis
formation and chooses a path that interrupts the interaction of two humans
(circles), the goal is the red cross, (b) the robot has more information and
respects the social conventions of space.
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The concepts exposed in section III have been imple-
mented in a navigation algorithm taking as base our pre-
viously designed Risk-RRT approach [20], [18].
The first task was reaching the goal defined by the user,
we choose an initial position for the robot and a goal
location in such a way that the short distance between them
passes in the middle of human positions. First, we run the
algorithm original and we note that the chosen path has a
tendence to interrupt the interaction, one example in fig. 6
(a), then we run the algorithm modified and we can see (fig.
6 (b)) that the tendence in the behavior of the wheelchair
(in green) can be changed if we detect the interaction and
reduce the probability of disturbing the conversation and the
probability of disturbing by passing into the personal space
of pedestrians.
As a second task, using the same scenario we let the
wheelchair to explore the environment (fig. 7) and find a
group in conversation to join it, this was done by choosing
a random initial location for the wheelchair and random
goals to reach, once that the wheelchair detect the first
conversation, the new goal becomes the center of the o-space
for the interaction detected. In this case we detect interactions
only in a semicircular region centered in the wheelchair and
oriented to the front of it. The wheelchair approaches to the
group and because of the effect of interaction model it stops
at p-space distance (sec. III-B), a behavior that coincides
with that of a person approaching to a group and waiting for
the reaction (acceptance) of the group.

a) (b)

Fig. 7. The wheelchair (green) explores its environment (a), it detects
a conversation, approach to humans and stops at p-space distance (b), a
behavior that can be judged social

VI. CONCLUSIONS AND FUTURE WORK

The approach presented in this paper shows a way to
take in account social conventions in navigation strategies
providing the robot with the ability to respect the personal
space and the o-space of people in its environment when
moving safely towards a given goal. In the same way these
models were useful to guide the robot for a “joining a
group” task. The previous concepts have been implemented
by extending a previously designed navigation algorithm,
the Risk-RRT approach. We have shown in simulation that
the behavior of a robot can be changed if we detect an
interaction. Our current work aims of implementing our
approach on a real autonomous system like a wheelchair and
perform some experiments with real humans.
In a dynamic environment it is not enough detecting interac-
tions because it could be too late to take a decision, we need

to predict when and where an interaction will take place. Our
future work will be focused in adding a technique for better
predicting the creation of an o-space in the path of the robot.
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Abstract—This paper presents a Visual EKF-SLAM process
using an original and very efficient strategy for initializing
landmarks. Usually, with Cartesian coordinates, new points are
created along the line-of-sight with a large variance. However,
this type of initialization is subject to significant linearization
issues making landmarks diverge from their real position. The
immediate consequence is a failure of the Visual SLAM process.
We propose here a new strategy that avoids or drastically limits
the linearization errors. The first part of this strategy takes place
during the tracking process where a coherent window is needed
in order to successfully follow a point and make it converge. The
second part concerns the update step. Due to linearization errors,
a landmark in front of the observer can be updated behind it.
We compute a corrective of the Kalman gain in order to preserve
the integrity. We applied this strategy to real data illustrating its
efficiency.

I. INTRODUCTION

The Simultaneous Localization And Mapping (SLAM) has
received a lot of attention over the last two decades [10].
Though solutions to the main problems have been found [9],
they mostly rely on the use of range and bearing sensors
[2]. However, sensors like LRFs (Laser Range Finders) are
expensive and usually only allow 2D perception. Conversely,
monocular SLAM is cheap and allows to estimate the 6 DoF
of a camera pose (3D position and the 3 associated angles).
Nevertheless, cameras are bearing-only sensors. Estimating
the accurate depth of a landmark requires many observations
with a sufficient parallax. When dealing with Visual SLAM,
it is thus a difficult problem to correctly initialize and track
landmarks until they converge to their real position.

There exist various ways to perform SLAM. Among them,
the most popular are Extended Kalman Filters (EKFs) [20],
particle filters [11][22], bundle adjustment based methods [14]
and Unscented Kalman Filters (UKFs) [5]. All these ap-
proaches can be expensive in terms of memory and processing
time. Nevertheless, we chose the EKF as submapping methods
[4][12] can be utilized in order to limit this load.

When dealing with bearing-only SLAM, two types of
initialization can be found in the literature: delayed and
undelayed ones. Delayed initialization, like in [1] and [8],
has the advantage to only use accurately defined landmarks.
However, it means that a large amount of information is lost.
For example, when the vehicle is turning, landmarks will pass
out of the field-of-view without being initialized leading to
a large error on the localization of the robot. Concerning
undelayed initializations, the easiest way to perform it would

be to create a point on the line-of-sight of its first observation
with a large variance. However, this leads to significant lin-
earization issues when tracking and updating landmarks [3].
To avoid this problem, the Inverse Depth (ID) parametrization
is usually chosen to represent landmarks [7][16]. Yet, this
solution is an over-parametrization of the problem where 6
parameters are required to estimate a 3D pose. Consequently,
this representation is computationally expensive (size of the
state vector duplicated) and so not suitable for long distance
SLAM. In practice, a strategy allowing to switch from ID
parametrization to Cartesian coordinates is used to prevent
the computational load from becoming too significant [6]. In
[15] and [21], multiple hypothesis are utilized for a single
point. They are integrated into the state vector and discarded
when considered wrong. This solution is also computationally
expensive and needs a special strategy when performing the
update step of the Kalman filter due to the wrong hypothesis
inserted in the state vector.

In this paper, we propose a solution to the problems induced
by the linearization steps when using a simple Cartesian
representation for landmarks in the EKF framework. The
problem we address here is twofold:
• Getting a coherent tracking window (uncertainty projec-

tion into the image plane) from a landmark when the real
point is far from the fictitious one

• Updating correctly the state vector when the landmark is
initialized far from its real position

The next section will show why tracking and update fail
when using the classical Jacobian computation. Section III
will present a solution to the first problem stated (tracking
window). Then, in Section IV, a correction of the Kalman
gain is proposed so as to avoid the loss of the integrity.
Next, Section V will present the experiments conducted and
the results obtained illustrating that our approach is efficient.
Finally, Section VI will conclude and give some insights about
what we are planning to do next.

II. PROBLEM STATEMENT

Considering an observation in the image plane zi =(
u v

)T
, we search the 3D point corresponding in the camera

frame zc =
(
x y z

)T
. A representation of the frames used

in this paper is given in Figure 1 (the mobile camera evolves
along the ~x axis).
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Fig. 1. Camera and image frames used in this paper.

The pinhole model provides the following relation:susv
s

 = F.zc (1)

with

F =

cu fu 0
cv 0 fv
1 0 0


where fu and fv are the focal distances in pixels and cu

and cv represent the coordinates of the optical center in the
image frame. We initialize the landmark with a fictive depth
(x coordinate) corresponding to half the maximum distance
possible for a point. This distance has to be chosen depending
on the environment the camera is moving in. Thanks to this
fictive depth, we can infer the pose of the fictitious 3D point:

y =
ux− cux

fu

z =
vx− cvx

fv

(2)

The covariance associated to this point also needs to be
initialized. Let g(zc,F) be the non-linear function linking the
3D point to the 2D one. Let G be the Jacobian associated to
g. This gives the following relation:

Pi = GPcG
T (3)

where Pi and Pc are respectively the covariance of the
point newly initialized in the image and the camera frame:

Pi =

(
σ2
u σuv

σuv σ2
v

)
Pc =

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z


and G is defined as follows:

G =


∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z


with

∂u

∂x
= −fuy

x2
∂u

∂y
=
fu
x

∂u

∂z
= 0

∂v

∂x
= −fvz

x2
∂v

∂y
= 0

∂v

∂z
=
fv
x

The error made on a new point cannot be greater than the
observation noise (defined as a diagonal matrix) as no updates
(or other observations) have been made yet. To initialize
properly the covariance of the 3D point, we rotate it on the ~x
axis of the camera frame. This leads to the following 3D point:(
ρ 0 0

)T
where ρ =

√
x2 + y2 + z2 and consequently the

following diagonal covariance:

P
′

c =


(ρ− dmin)

2 0 0

0
σ2
uρ

2

f2u
0

0 0
σ2
vρ

2

f2v

 (4)

where dmin is the minimal distance from which the camera
can see. P

′

c is then put on the line-of-sight of the observation
thanks to the appropriate rotation. Finally, the estimated pose
of the camera allows to put the point and its covariance in the
world frame. The uncertainty associated to the position of the
camera is taken into account during this step.

The point fully initialized is then tracked in order to make
it converge towards its real position. Let x̂ be the state vector
(including the camera and landmark poses). Let h(x̂k|k−1)
be the non-linear function (observation function) utilized to
predict the measurement from the predicted state x̂k|k−1 at
time k and Hk be the Jacobian associated to h. Let Hc,k

be the Jacobian associated to the covariance of the mobile
sensor Pc,k|k−1 and Hlw,k be the Jacobian associated to
the covariance of the landmark l in the world frame. The
prediction of the covariance of a landmark l in the image
frame can be computed as follows:

Pli,k|k−1 = Hc,kPc,k|k−1H
T
c,k + Hlw,kPlw,k|k−1H

T
lw,k (5)

However, in (5), we linearize around the fictitious point
which can be far from the real pose causing the projection
of the ellipsoid corresponding to the covariance matrix to be
wrong. The tracking issues resulting from this are illustrated
in Figure 2 where no updates are performed (prediction only).

Section III will present a method to compute a bounding
box that properly fits the projection of the ellipsoid into the
image.

Another problem arises when performing the update step of
the EKF. The equations of the update are as follows:

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1)) (6)

Pk|k = Pk|k−1 −KkHkPk|k−1 (7)

where zk is the observation at time k and Kk is the Kalman
gain whose equation is:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (8)

where Rk is the observation noise. The problem is similar
to the one exposed previously. Indeed, we linearize around the
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(a) First frame: tracking successful (b) Second frame: tracking successful (c) Third frame: tracking failure (d) Seventh frame: tracking failure

Fig. 2. Tracking failure due to significant linearization errors. The green rectangle is the predicted window where the landmark is supposed to be. The red
cross is the estimate of the landmark position. The green circle is the observation (patch matched with ZNCC).

fictitious point leading to a wrong estimate. As a consequence,
a landmark can be updated at a position behind the vehicle
which is impossible. This problem is illustrated in Figure 3.

(a) Initialization of the point at 100 meters on the line-of-sight

(b) First update: integrity is preserved

(c) Second update: landmark updated behind the observer

Fig. 3. Top view of a point updated behind the observer. The blue circle is
the position of the vehicle. The red square is the landmark. The black ellipse
is the uncertainty associated to the landmark.

This problem has also been stated and treated for ID
parametrization in [17] but the proposed solution cannot be
applied with Cartesian landmarks. In Section IV, we will
present a solution working with a simple Cartesian pose that
will correct the update step and prevent the landmarks from
being updated at a wrong position.

III. BOUNDING BOX FOR TRACKING

We propose here a method to find the bounding box
corresponding to the projection of the ellipsoid associated to a
landmark uncertainty in the image frame thanks to its tangent
planes. Other methods exist to find a proper projection. In

[18], Laplace’s method is used to correctly fit a Gaussian at
the global maximum of the observation function. However, a
minimization step is required to find a correct solution. The
approach proposed here does not rely on a minimization step.
The idea is to find the planes tangent to the ellipsoid that give
the maximum size of the corresponding ellipse in the image.
Four tangent planes are needed in order to have a correct
bounding box. Let Pc be the covariance matrix of a landmark
in the camera frame:

Pc =

a b c
b d e
c e f


and

P−1c =
1

detPc

df − e2 ce− bf be− cd
ce− bf af − c2 cb− ae
be− cd cb− ae ad− b2



=

A B C
B D E
C E F


Then, a relationship verified by the points on the surface of

the ellipsoid E generated by Pc is the Mahalanobis distance:x− x0y − y0
z − z0

T

P−1c

x− x0y − y0
z − z0

 = 1 (9)

where
(
x0 y0 z0

)T
is the center of E . The planes tangent

to E are also orthogonal to the surface normal. Moreover, the
normal at a point on the surface is given by the gradient:

~n = ∇E (x, y, z) =

(
∂E

∂x

∂E

∂y

∂E

∂z

)T

=

2(x− x0)A+ 2(y − y0)B + 2(z − z0)C
2(x− x0)B + 2(y − y0)D + 2(z − z0)E
2(x− x0)C + 2(y − y0)E + 2(z − z0)F


(10)

To be part of a plane p, orthogonal to the normal, a point
must verify the following relation:
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xpyp
zp

 ∈ p⇔
xp − xyp − y
zp − z

T

· ~n = 0 (11)

As we are looking for the points located on the planes
passing by the origin (camera), we can simplify equation (11):(

x y z
)
· ~n = 0 (12)

The other constraint we can add is that the tangent planes
intersect the image plane to form vertical or horizontal lines.
This means that vertical planes will contain the ~z axis and
horizontal ones will contain the ~y axis. Consequently, for the
points belonging to the vertical planes:

~z · ~n = 0⇔ (x− x0)C + (y − y0)E + (z − z0)F = 0 (13)

and for those belonging to the horizontal planes:

~y · ~n = 0⇔ (x− x0)B + (y − y0)D + (z − z0)E = 0 (14)

These constraints give us the following system to solve for
the vertical planes:

x− x0y − y0
z − z0

T

P−1c

x− x0y − y0
z − z0

 = 1

(
x y z

)
· ~n = 0

(x− x0)C + (y − y0)E + (z − z0)F = 0

(15)

and the following for the horizontal planes:

x− x0y − y0
z − z0

T

P−1c

x− x0y − y0
z − z0

 = 1

(
x y z

)
· ~n = 0

(x− x0)B + (y − y0)D + (z − z0)E = 0

(16)

By solving the system (15), we find two points on the
ellipsoid matching the different constraints. We then project
them into the image thanks to the intrinsic parameters. This
gives us the left and right limits of the bounding box. We
also find two points by resolving (16) which gives us the
top and bottom limits of the bounding box. Thanks to this
information, we can successfully track the landmarks in the
image plane. Figure 4 gives, with the same set of images used
in Figure 2, the tracking results with the bounding box method
presented here. The landmark is tracked successfully with no
update steps (prediction only) illustrating the effectiveness of
our approach.

IV. UPDATE CORRECTION

When dealing with a point newly initialized, the Jacobian
associated to the observation function h can be erroneous as
it is linearized around a fictitious point which can be far from
the real landmark pose (cf. Fig. 3).

In order to avoid this problem, we introduce here a correc-
tive of the Kalman gain [13] whose goal is to limit the impact
of the state update on the point when it is needed. Indeed,
as long as the update does not put the landmark before the
observation, the Kalman gain is used without any correction.
Otherwise, the idea is to have the following relation verified
after the update:

zk = h(x̂k|k) (17)

Indeed, as the transformation from one space (image) to
another of higher dimension (camera) is not well-conditioned,
it is necessary to find a factor that makes (17) true. Let Ωk be
the Kalman gain once the corrective factor r has been applied.
It is thus defined as follows:

Ωk = r ×Kk (18)

In the case of our Visual SLAM, for a landmark xl =(
xl yl zl

)T
defined in the world frame, the observation

function can be written:
uest =

F1R
T
cw(xl − tcw)

F3RT
cw(xl − tcw)

vest =
F2R

T
cw(xl − tcw)

F3RT
cw(xl − tcw)

(19)

where uest and vest correspond to the estimated position of
the landmark in the image, Fi is the ith line of the intrinsic
parameters matrix, Rcw is the rotation matrix passing points
from the camera frame to the world frame and tcw is the trans-
lation associated to the rotation. With zk =

(
uobs vobs

)T
and

by taking into account (17) and (18), we can write:
uobs =

F1R
T
cw(xl + Ω∆− tcw)

F3RT
cw(xl + Ω∆− tcw)

vobs =
F2R

T
cw(xl + Ω∆− tcw)

F3RT
cw(xl + Ω∆− tcw)

(20)

with the innovation ∆ = zk − h(x̂k|k−1) and Ω the
corrected Kalman gain associated to xl. This leads to the two
following corrections:

ru =
(uobs − uest)De

(F1 − uobsF3)RT
cwK∆

(21)

rv =
(vobs − vest)De

(F2 − vobsF3)RT
cwK∆

(22)

where De = F3R
T
cw(xl − tcw). As these scalars are

correctors they cannot exceed 1. Keeping a corrective factor
above 1 will cause the EKF to be overconfident leading to a
wrong estimate. We will keep the lowest value from (21) and
(22) to avoid this problem. If the chosen corrector is greater
than 1, then no correction is applied.

This corrective factor will prevent the landmarks from being
updated behind the observer. Linearization errors are drasti-
cally reduced and the integrity is maintained. More details
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(a) First frame: tracking successful (b) Third frame: tracking successful (c) Seventh frame: tracking successful (d) Tracking after 18 frames

Fig. 4. Tracking with the bounding box method presented here. The green rectangle is the predicted window where the landmark is supposed to be. The
red cross is the estimate of the landmark position. The green circle is the observation (patch matched with ZNCC).

about this correction can be found in [13]. Figure 5 shows the
same update case as Figure 3 with the corrective factor applied
to the Kalman gain. The updated position of the landmark is
coherent and converging towards its real one.

(a) Initialization of the point at 100 meters on the line-of-sight

(b) First update: integrity is preserved

(c) Second update: integrity still preserved

(d) After 10 updates, the landmark has converged

Fig. 5. Top view of a properly updated point thanks to the Kalman gain
correction. The blue circle is the position of the vehicle. The red square is
the landmark. The black ellipse is the uncertainty associated to the landmark.

V. EXPERIMENTS

In order to evaluate the efficiency of our monocular SLAM,
a 30-meter trajectory has been performed. It was accomplished
with an electrical vehicle (Cycab) in an small realistic urban
experimental platform called PAVIN. This platform recreates
a human environment with paved roads, crosswalks, traffic
lights, building façades... Our vehicle was equipped with a
single camera and proprioceptive sensors giving odometric
information and the steering angle. A Differential GPS was
also available but was only used as the ground truth for
comparison purposes. The camera was mounted on top of the
vehicle (2 meters) and acquired 15 images per second. The
vehicle was traveling at approximately 1 meter per second.
Landmarks were initialized by extracting areas of 15 × 15
pixels around Shi-Tomasi features [19]. Data association was
performed using Normalized Cross Correlation between the
previously extracted patch and the computed bounding box.

The trajectory was used to compare two algorithms: a
naive implementation of a Visual EKF-SLAM with a simple
initialization and a similar version with the strategy presented
in this paper. This trajectory is composed of a long straight
line to show that landmarks are tracked and updated correctly
over a long distance and of a bend to demonstrate that the
localization remains consistent with landmarks passing out of
view quickly. Figure 6 shows the results of the two algorithms
with at least 10 landmarks available per image.

Fig. 6. Localization of the vehicle. Black: ground truth (DGPS). Green:
prediction only (based on proprioceptive sensors). Red: naive EKF-SLAM.
Blue: our strategy applied to the EKF-SLAM.
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As expected, the naive implementation diverges completely
whereas our approach remains consistent during the whole
trajectory. Nevertheless, the restrictions on the size of the
bounding box and the slow velocity of the vehicle have
allowed the naive SLAM to be correct during the beginning
of the trajectory. Thanks to our strategy, the bend has been
followed quite closely even though the proprioceptive infor-
mation was not accurate. These results can be improved with a
smarter data association and more trusted landmarks especially
when proprioceptive sensors are not reliable. The number of
landmarks initialized is a good indicator of the quality of a
monocular SLAM as new landmarks are only created when old
ones cannot be matched (mostly due to linearization errors).
Table I indicates the number of landmarks that have been
initialized and that have converged during the whole trajectory.

Naive SLAM Our SLAM
Number of landmarks initialized 650 182
Number of landmarks conserved 79 61

TABLE I
NUMBER OF INITIALIZATIONS.

We can see that far less landmarks are initialized with our
method. Indeed, tracking is possible as long as a landmark is
visible and the update step is controlled by the corrective factor
applied to the Kalman gain. As a consequence, landmarks
converge within a few frames and are still being predicted
correctly. However, an important number of landmarks are
eliminated during the process. For most of them, they have
disappeared of the field-of-view before convergence. For the
others, a better data association could avoid this problem.

VI. CONCLUSION

We have presented a Visual EKF-SLAM that is able to use
landmarks defined in Cartesian coordinates. The significant
linearization errors occurring during the tracking and update
steps are avoided or reduced thanks to the strategy exposed in
this paper.

Our approach consists of a way to easily compute a
bounding box that allows to track a landmark and make it
converge towards its real position. This method, based on the
computation of tangent planes, permits to find a bounding box
which is coherent with the 3D uncertainty of a landmark.

The second part of this strategy permits to drastically reduce
linearization errors during the update step. It is done thanks
to the computation of a corrective factor able to reduce the
impact of the update on a landmark. It allows to preserve the
integrity when updating a landmark position.

We have evaluated our system with real data showing
that our approach is efficient. We have compared our results
with a naive implementation of a monocular EKF-SLAM
and demonstrated that our strategy allows a more accurate
localization while requiring less landmark initializations.

For future work, we plan to decentralize our monocular
EKF-SLAM over several vehicles in order to have a better
localization accuracy.
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Abstract— Building facade detection is an important problem
in computer vision, with applications in mobile robotics and
semantic scene understanding. In particular, mobile platform
localization and guidance in urban environments can be enabled
with an accurate segmentation of the various building facades
in a scene. Toward that end, we present a system for segmenting
and labeling an input image that for each pixel, seeks to answer
the question “Is this pixel part of a building facade, and if
so, which one?” The proposed method determines a set of
candidate planes by sampling and clustering points from the
image with RANSAC, using local normal estimates derived
from PCA to inform the planar model. The corresponding
disparity map and a discriminative classification provide prior
information for a two-layer Markov Random Field model. This
MRF problem is solved via Graph Cuts to obtain a labeling
of building facade pixels at the mid-level, and a segmentation
of those pixels into particular planes at the high-level. The
results indicate a strong improvement in the accuracy of
the binary building detection problem over the discriminative
classifier alone, and the planar surface estimates provide a good
approximation to the ground truth planes.

I. INTRODUCTION

Accurate scene labeling can enable applications that rely
on the semantic information in an image to make high level
decisions. Our goal of labeling building facades is motivated
by the problem of global localization of mobile robots in
GPS-denied areas. This problem arises in urban locations,
so the approach currently being developed by our group
depends on detection of buildings within the field of view
of the cameras on a mobile platform. In particular, with
known facade orientations and an overhead view of the
region from which building footprints can be extracted, we
are working toward accurate global localization (as normally
provided by GPS) from only semantic information. Within
this problem, accurate detection and labeling is critical for
the high level localization and guidance tasks. We restrict
our approach to identifying only planar building facades,
and require image input from a stereo source. Since most
buildings have planar facades, and many mobile robotic
platforms are equipped with stereo cameras, neither of these
assumptions is particularly restrictive. The application of this
work to localization of mobile platforms is forthcoming, but
our methods are intended for extension to that problem.

In this paper, we propose a method for building facade
detection (binary labeling) in stereo images that further
segments the individual facades and estimates the parameters
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Fig. 1. Workflow of the proposed method. We use our BMA+D classifier
to compute a probability map for binary classification, generate a set of
candidate planes with parameter estimates using a RANSAC model which
incorporates local PCA normal approximations, and then we use a two-layer
MRF to compute labelings for the binary classification at the mid-level and
for facade segmentation at the high-level.

of their 3D models. Our approach proceeds in three main
steps: discriminative modeling, candidate plane detection
through PCA and RANSAC, and energy minimization of
MRF potentials. A diagram of the workflow for candidate
plane detection and high-level labeling is provided in Fig. 1.
Each step of this process is explained in Section II.

Our work leverages stereo information from the beginning.
Our discriminative model is generated from an extension
of the Boosting on Multilevel Aggregates (BMA) method
[1] that includes stereo features [2] on the disparity map,
which we call BMA+D. Boosting on Multilevel Aggregates
uses hierarchical aggregate regions coarsened from the image
based on pixel affinities, as well as a variety of high-level
features that can be computed from them, to learn a model
within an AdaBoost [3] two- or multi-class discriminative
modeling framework. The multilevel aggregates exploit the
propensity of these coarsened regions to adhere to object
boundaries, which in addition to the expanded feature set,
offer less polluted statistics than patch-based features, which
may violate those boundaries. Since many mobile robot
platforms are equipped with stereo cameras, and can thus
compute a disparity map for their field of view, our approach
of using statistical features of the disparity map is a natural
extension of the BMA approach given our intended plat-
form. Since buildings tend to have planar surfaces on their
exteriors, we use the stereo features to exploit the property
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that planes can be represented as linear functions in disparity
space and thus have constant spatial gradients [4]. We use
the discriminative classification probability as a prior for
inference of facade labeling.

In order to associate each building pixel with a particular
facade, we must have a set of candidate planes from which to
infer the best fit. We generate these planes by sampling the
image and performing Principal Component Analysis (PCA)
on each local neighborhood to approximate the local surface
normal at the sampled points. We then cluster those points
by iteratively using Random Sample Consensus (RANSAC)
[5] to find subsets which fit the same plane model and
have similar local normal orientations. From these clusters of
points, we are able to estimate the parameters of the primary
planes in the image.

We then incorporate both of these sources of information
into a Bayesian inference framework using a two-layer
Markov Random Field (MRF). We represent the mid-level
MRF as an Ising model, a layer of binary hidden variables
representing the answer to the question “Is this pixel part
of a building facade?” This layer uses the discriminative
classification probability as a prior, and effectively smooths
the discriminative classification into coherent regions. The
high-level representation is a Potts model, where each hidden
variable represents the labeling of the associated pixel with
one of the candidate planes, or with no plane if it is not
part of a building. For each pixel, we consider its image
coordinates and disparity value, and evaluate the fitness of
each candidate plane to that pixel, and incorporate it into
the energy of labeling that pixel as a part of that plane. A
more in-depth discussion of these methods can be found in
Section II-B.1.

We use the Graph Cuts energy minimization method [6]
to compute minimum energy labelings for both levels of our
MRF model.

A. Related Work

Building facade detection and segmentation have been and
continue to be well-studied problems. Many recent papers
in the literature have focused on segmentation of building
facades for use in 3D model reconstruction, especially in
the context architectural modeling or geo-spatial mapping
applications such as Google Earth. Korah and Rasmussen
use texture and other a priori knowledge to segment building
facades, among other facade-related tasks [7]. Wendel et al.
use intensity profiles to find repetitive structures in coherent
regions of the image in order to segment and separate
different facades [8]. Hernández and Marcotegui employ
horizontal and vertical color gradients, again leveraging
repetitive structures, to segment individual facades from
blocks of contiguous buildings in an urban environment [9].

Several other methods utilize vanishing points for planar
surface detection. David identifies vanishing points in a
monocular image by grouping line segments with RANSAC
and then determining plane support points by the intersection
of the segments which point toward orthogonal vanishing
point ultimately clustering them to extract the planes of the

facade [10]. Bauer et al. implement a system for building fa-
cade detection using vanishing point analysis in conjunction
with 3D point clouds obtained by corresponding a sweep
of images with known orientations [11]. Lee et al. use
a line clustering-based approach, which incorporates aerial
imagery, vanishing points, and other projective geometry
cues to extract building facade textures from ground-level
images, again toward 3D architectural model reconstruction
[12].

Our work draws on the contributions of Wang et al.,
whose facade detection method using PCA and RANSAC
with LiDAR data inspired our approach with stereo images
[13]. Perhaps the approach most similar in spirit to ours is
that of Gallup et al. [14], who also use an iterative method for
generating candidate plane models using RANSAC, and also
solve the labeling problem using graph cuts [6]. However,
their approach relies on multiview stereo data and leverages
photoconsistency constraints in their MRF model, whereas
we perform segmentation with only single stereo images.
In addition, on a fundamental level their method involves
finding many planes that fit locally, and stitching them
together, whereas we aim to extract our planar models from
the global data set, without an explicit restriction on locality.
We present quantitative results on the accuracy of our planar
modeling as well.

Although many of these results are directed toward 3D
model reconstruction, some other work has been focused
toward our intended application of vision-based navigation,
namely [10], [15], [16]. Additionally, our work is focused on
retrieval of the estimated plane parameters, as implemented
in the planar surface model of [4], and not on 3D model
reconstruction.

II. METHODS

Please refer to Fig. 1 for a diagramatic representation of
how the following methods interface.

A. BMA+D Classifier

We implement the standard Boosting on Multilevel Ag-
gregates algorithm described in [1], but with extensions for
working with disparity maps and their associated features.
These additions include accommodations for working with
invalid data in the disparity map: areas of the scene outside
the useful range of the stereo camera, and dropouts where
the disparity can not be computed within the camera’s range
due to occlusion or insufficient similarity between the images
for a match at that point. Although in principle any classifier
could be used for this step, so long as it could produce
a probability map for binary classification in identifying
building pixels, we developed the BMA+Disparity Classifier
as a way to incorporate problem-specific knowledge into the
boosting framework.

B. MRF Model and Facade Parameter Estimation

1) Plane Parameters: Throughout this discussion, we
assume that we have stereo images which may or may not
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be calibrated. Since we do not aim for full 3D reconstruc-
tion, the camera’s calibration parameters can be unknown
but constant. Thus, we can determine the surface normal
parameters up to a constant that describes the camera pa-
rameters; and since that constant will be the same across all
candidate planes, we can use the computed surface normals
to differentiate between planes.

A plane in 3D space can be represented by the equation
ax + by + cz = d and for non-zero depth, z, this can be
rewritten as:

a
x

z
+ b

y

z
+ c =

d

z
(1)

We can map this expression to image coordinates by the
identities u = f · xz and v = f · yz , where f is the focal length
of the camera. We can also incorporate the relationship of
the stereo disparity value at camera coordinate (u, v) to the
depth, z, using the identity D(u, v) = fB

z , where D is the
disparity and B is the baseline of the stereo camera. Our
plane equation reduces to:
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Although n = (a, b, c)T is the surface normal in world
coordinates, for our purposes we can seek to determine the
following uncalibrated plane parameters n′ = (a′, b′, c′),
where:

a′ =
aB

d
, b′ =

bB

d
, c′ =

cfB

d
(4)

n′ ·

 u
v
1

 = a′u+ b′v + c′ = D(u, v) (5)

This new set of plane parameters relates the image coordi-
nates and their corresponding disparity values by incorporat-
ing the constant but unknown camera parameters.

2) Candidate Plane Detection: We perform the second
phase of our approach by iteratively using RANSAC to
extract a set of points which fit a plane model in addition
to having a local normal estimate which is consistent with
the model. The extracted plane models become the set of
candidate planes for our high-level MRF labeling. Each pixel
in the image will be labeled by the MRF as belonging to one
of these candidate planes or else assigned a null label.

a) Local Normal Estimation: Based on our assumption
of rectilinear building facades, we can use Principal Com-
ponent Analysis to determine a local normal to a point in
disparity space as in [17]. We first construct the covariance
matrix of the neighborhood around the point in question. To
do this, we consider all points pi = (ui, vi,−D(ui, vi)) with
valid disparity in a 5 × 5 window centered on this point.
Note that stereo cameras that compute the disparity map
with onboard processing in real-time often do not produce
dense disparity maps, so the neighborhood may be sparse.
Other neighborhood sizes could be used, but we found that
a 5 × 5 window provided good estimates while remaining

local. We compute the centroid, p̄ = 1
N

∑N
i=1 pi, of the

points {pi}i=1...N in the neighborhood, and calculate the
3× 3 covariance matrix with:

W =
1

N

N∑
i=1

(pi − p̄)⊗ (pi − p̄) (6)

where ⊗ is the outer product. We then compute the eigen-
values of W , and the eigenvectors corresponding to the
largest two eigenvalues indicate the directions of the primary
directions on the local planar estimate. The eigenvector
corresponding to the smallest eigenvalue thus indicates the
direction of the local surface normal, n(u,v).

b) RANSAC Plane Fitting: We take a sample, S, of im-
age points with valid disparity, and compute the local planar
surface normal estimates by the aforementioned method. We
then seek to fit a model to some subset of S of the form:

αv + βu+ ε(−D(u, v)) + θ = 0 (7)

where ñ = 1
ε (α, β, θ) is the surface normal from Eq. (5).

Since RANSAC finds the largest inlier set, Pin, that it
can among S, we will fit the most well-supported plane
first [5]. We then remove the inliers, S′ = S \ Pin, and
repeat this process iteratively, finding progressively less well-
supported planes, until a fixed percentage of the original
S has been clustered into one of the extracted planes. In
our experiments, we used a sample of 2000 points from
the image, and concluded the plane extraction once 80%
of the points had been clustered, or when RANSAC failed
to find a consensus set among the remaining points. We
assume Gaussian noise on the inlier set for our RANSAC
plane model, and throughout we use a standard deviation of
ση = 5.

Although we use RANSAC to fit a standard plane model,
we use a modified error term in order to incorporate the
information in the local normal estimates. Here, since our
local normal estimate required the use of a three dimen-
sional coordinate system (u, v,−D(u, v)), and produces a
normal of that form, we must use a slightly different normal
formulation of nm = (α, β, ε). The standard measure of
error for a plane model is the distance of a point from
the plane: Em =| αv + βu + ε(−D(u, v)) + θ |, assuming
nm = (α, β, ε) is a unit vector. We compute another measure
of error, Enorm, the dot product of the model plane normal
nm and the local normal estimate n(u,v), which is the cosine
of the dihedral angle between the two planes defined by those
normals. If we take its magnitude, this metric varies from 0
to 1, with 1 representing normals which are perfectly aligned,
and 0 representing a dihedral angle of 90◦. Since the range
of E depends on the properties of the image (resolution,
disparity range), we combine these two metrics as follows:

E = (2− Enorm)Em = (2− | 〈nm,n(u,v)〉 |)Em (8)

such that the dihedral angle scales the error term from Em to
2Em, depending on the consistency of the model and local
normals.
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3) MRF Model: We model our problem in an energy min-
imization framework as a pair of coupled Markov Random
Fields. Our mid-level representation seeks to infer the correct
configuration of labels for the question “Is this pixel part of a
building facade?” Based on this labeling, the high-level rep-
resentation seeks to associate those pixels which have been
positively assigned as building facade pixels to a particular
candidate plane. Our motivation for this design stems from
the fact that these are related but distinct questions, and they
are informed by different approaches to modeling buildings.
The mid-level MRF represents an appearance-based model,
while the high-level MRF represents a generative model for
the planar facades.

a) Mid-level Representation: We want our energy func-
tion for the mid-level model to capture the confidence
(probability) of our discriminative classification, and we want
there to be a penalty whenever a pixel with a high confidence
is mislabeled, but a smaller penalty for pixels with lower
confidence in their a priori classification. We will use an Ising
model to represent our mid-level MRF, where our labels xs
for s ∈ λ, our image lattice, come from the set {−1, 1}.
We define a new variable bs to represent a mapping of the
Xs ∈ {−1, 1} label to the set {0, 1} by the transformation
bs = Xs+1

2 . For a particular configuration of labels l, we
define our mid-level energy function as:

E(l) =
∑
s∈λ

[(1− bs)p(s) + bs(1− p(s))]− γ
∑
s∼t

xsxt (9)

where p(s) is the discriminative classification probability at s
and γ is a constant weighting the unary and binary terms. The
bs quantity in the unary term essentially switches between a
penalty of p(s) if the label at s is set to −1, and a penalty
of 1 − p(s) if the label at s is set to 1. Thus for p(s) = 1,
labeling xs = −1 will incur an energy penalty of 1, but
labeling xs = 1 will incur no penalty. Similarly for p(s) = 0,
labeling xs = −1 will incur no penalty, but labeling it 1 will
incur a penalty of 1. A probability of 0.5 will incur an equal
penalty with either labeling. Our smoothness term is from
the standard Ising model. In our experiments, we used a γ
value of 10.

b) High-level Representation: In designing our energy
function for the high-level MRF, we want to penalize points
which are labeled as being on a plane, but which do not
fit the corresponding plane equation well. Our label set for
labels ys, s ∈ λ, is {0, . . . ,m}, with m equal to the number
of candidate planes identified in the plane detection step.
It corresponds to the set of candidate planes indexed from
1 to m, as well as the label 0, which corresponds to “not
on a plane”. We define a set of equations Ep(s) for p ∈
{0, . . . ,m} such that

Ep(s) =| a′pu+ b′pv + c′p −D(s) | (10)

where the surface normal n′p = (a′p, b
′
p, c
′
p) corresponds to

the plane with label p, and D(s) is the disparity value at
s. We normalize this energy function by dividing by the
maximum disparity value, in order to scale the maximum
energy penalty down to be on the order of 1. For consistency

in our notation, we define E0(s) to be the energy penalty
for a label of 0 at s, corresponding to the “not on a plane”
classification. We set E0(s) = bs, such that a labeling of −1
in the mid-level representation results in bs = 0, so there
is no penalty for labeling s as “not on a plane”. Similarly,
when xs = 1, bs = 1, so there is a penalty of 1 to label any
of the non-planar pixels as a plane.

To construct our overall energy function for the high-level
MRF, we incorporate the exponential of the set of planar
energy functions Ep with a delta function, so the energy
cost is only for the plane corresponding to the label ys. Since
we cannot compute Ep without a valid disparity value, we
use an indicator variable χD ∈ {0, 1} to switch to a constant
energy penalty for all planes and the no-plane option, in order
to rely strictly on the smoothness term for that pixel’s label.
For the smoothness term, we use a Potts model, weighted
like the mid-level representation with a constant γ. In our
experiments, though, this value of γ was 1. Thus the high-
level energy function we are seeking to minimize is:

E(l) =
∑
s∈λ

m∑
p=0

δys=p · exp (χDEp(s)) + γ
∑
s∼t

δys=yt (11)

III. EXPERIMENTAL RESULTS

We have performed quantitative experiments using our
method on a new dataset that consists of 141 grayscale
images from the left camera of a stereo imager1 each
with a corresponding 16-bit disparity map. All images have
500× 312 resolution and human-annotated ground truth for
both binary classification and facade segmentation. There are
a total of 251 facades represented in the dataset, and for
each one, we have computed a gold-standard plane model
from its ground truth facade segmentation. We are not aware
of another publicly available, human-annotated, quantitative
stereo building facade dataset, and we believe this can be-
come a benchmark for the community. We performed 6-fold
cross-validation with our BMA+D classifier and computed
the facade segmentations and plane estimates based on the
corresponding trained models.

A. Facade Detection

The mid-level MRF results exhibit improvement in accu-
racy over BMA+D alone; Table I shows a quantitative com-
parison of these two methods. With the Bayesian inference
of the MRF, we achieve a classification accuracy of almost
80% for each class, and an improvement in overall accuracy
of 3% over BMA+D.

B. Facade Segmentation and Parameter Estimation

We computed the facade segmentations and the plane
parameters for each of the labeled planes in all of the images
from the dataset; some examples are shown in Figure 2.
For each of the manually labeled ground truth planes in the
dataset, we computed ground truth parameters by sampling
the labeled region and using RANSAC to determine the

1Tyzx DeepSea V2 camera with 14 cm baseline and 62◦ horizontal field
of view.
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Fig. 2. Segmentations and planar facade estimates on multi-facade images.
For each example, they are (L to R) the original image, ground truth
segmentation, high-level MRF labeling, and 3D plane projection. In the
plane projection plots, the perspective of the original image is looking down
on the 3D volume from the positive D-axis. The ground-truth planes are in
blue, and the estimated planes are in green (view in color).

plane parameters. Out of 251 total facades in the set, 40
of them were misclassified as background by the mid-level
labeling. The other 211 facades were labeled with at least
one candidate plane in the high-level labeling for a detection
rate of 84%.

As noted above, some of the ground truth facades are
not detected by the mid-level MRF, but multiple segmented
planes per ground truth facade are also common. In order
to assess the accuracy of our plane parameter estimation,
we compute a weighted error measure as the mean pixel-
wise angular error between the labeled plane and the ground
truth facade, averaged over all pixel in the dataset where
the ground truth and high-level labeling are both non-null.
Our angular error metric is the dihedral angle between the
estimated plane and the ground truth plane (with normal
vectors ne and ng , respectively): φ = arccos(ne · ng). The
average angular error for any such pixel over the entire
dataset is 24.07◦.

A histogram showing the number of pixels labeled with
a plane model having angular error in each bin (see Fig. 3)
indicates that the peak of the distribution of errors is the
range of 0− 10◦. Similarly, the examples shown in Figure 2
indicate that some facades are modeled very accurately, while
others have high angular error. This discrepancy motivates
our further analysis, which we discuss in the next section.

0 10 20 30 40 50 60 70 80 90

Angular Error (deg)

Fig. 3. Histogram representing the number of pixels labeled with a plane
model having corresponding angular error.

C. Analysis

Our method often segments a detected facade into multiple
plane labels, which makes 1-to-1 comparison difficult. In
order to overcome this challenge, and to examine the error
distribution of Fig. 3 further, we consider two methods for
comparing the segmentations to the ground truth. First, for
each ground truth facade, we compare to it the plane whose
label occupies the largest portion of that facade’s area in
our segmentation. We have noticed that there is often one
(or more) accurate plane estimate on each ground truth
facade, but it may only cover a minority of the ground truth
facade. For example, in the second row of Figure 2, the
facade on the left in the ground truth is best modeled by
the plane corresponding to the while label in the estimate,
but the majority of that facade is labeled with less accurate
planes. In order to measure the accuracy of our method in
estimating at least some portion of each ground truth facade,
our second method of comparison chooses the most accurate
plane estimate out of the set of labels that cover each facade’s
region. In both cases, we compute the average angular error
between the chosen segmented plane (largest or best) and the
ground truth facade, weighted by the size of the segment, as
well as the average percentage of the ground truth facade
covered by the chosen label. These results are collected in
Table II. Analysis of the error per segment for both methods
indicates that most of the high-error segmentations occur
with small areas: the vast majority of facades larger than
10 % of the frame have less than 10 degree error. This
implies that the errors are generally small (< 10◦) for
the major facades in the image, and it may be possible to
restrict or post-process the labeling to eliminate the minor
and erroneous plane labels, although that is beyond the scope
of this paper.

The quality of the disparity map is likely to be at least
somewhat responsible for this phenomenon, as the usable
range of most stereo cameras is limited. For example, the
camera used to capture our dataset can only resolve features
up to 45 cm at a distance of 15m. Thus, even moderately
distant facades are likely to be significantly more prone to
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TABLE I
ACCURACY AND MISCLASSIFICATION RATES FOR THE MID-LEVEL MRF

LABELING AND THE BMA+D CLASSIFIER.

BG Building

BMA+D
BG

75.33 24.67
MRF 79.98 20.01

BMA+D
Building

23.51 76.49
MRF 21.15 78.85

BMA+D
F-scores

0.7421
MRF 0.7773

TABLE II
ACCURACY FOR OUR TWO METHODS OF COMPARISON TO GROUND

TRUTH: LARGEST SEGMENT AND MOST ACCURATE SEGMENT

Method Avg. Err. Avg. Size (% of GT area)

Largest 21.973 66.57
Best 13.765 53.00

large errors in their estimates; they will be both small in
the frame and less likely to find an accurate consensus set
in RANSAC due to the uncertainty in their disparity values.
Similarly, for a facade with many invalid disparity values, it
may not be sampled adequately, and the points it does have
may erroneously be included as part of an inlier set that does
not actually lie on the facade. Perhaps on account of this
phenomenon, we have observed that many of the high-error
segmentations are rotated primarily about a horizontal axis,
but are much more accurate in their rotation about a vertical
axis. Under the assumption that facades tend to be vertical
planes, in the future we intend to explore the possibility of
incorporating a verticality constraint into the RANSAC plane
model to restrict the candidate plane set to only vertical plane
models.

Without the context of the ground truth facade segmenta-
tion, it would not be possible to choose the largest or best
label as we do in this analysis, but it is encouraging that on
average we’re able to achieve < 15◦ error over a majority
of each facade. This result will motivate some of our future
work in developing ways to better disambiguate the labels in
order to decrease those average errors and increase the area
of the most accurate labels.

IV. CONCLUSIONS

We have presented a system for automatic facade detec-
tion, segmentation, and parameter estimation in the domain
of stereo-equipped mobile platforms. We use a discriminative
model that leverages both appearance and disparity features
for improved classification accuracy. From the disparity map,
we generate a set of candidate planes using RANSAC with
a planar model that also incorporates local PCA estimates
of plane normals. We combine these in a two-layer Markov
Random Field model which allows for inference on the bi-
nary (building/background) labeling at the mid-level, and for
segmentation of the identified building pixels into individual
planar surfaces corresponding to the candidate plane models
determined by RANSAC.

The combination of the BMA+D discriminative model and
the mid-level MRF are able to achieve a classification accu-
racy of approximately 80%. We were able to identify 84% of
the building facades in our dataset, with an average angular
error of 24◦ from the ground truth. However, the distribution
of errors peaks in frequency below 10◦, indicating that a
large percentage of the labels provide very accurate estimates
for the ground truth, although some of the labels produced
by our method have very high error. Further analysis shows
that these high-error labelings most often occur on small
segmented regions. Thus our method produces accurate plane
estimates for at least the major facades in the image.
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building façade images,” in Image Processing (ICIP), 2009 16th IEEE
International Conference on. IEEE, 2010, pp. 4029–4032.

[10] P. David, “Detecting Planar Surfaces in Outdoor Urban Environments,”
ARMY Research Lab, Adelphi, MD. Computational and Information
Sciences Directorate, Tech. Rep., 2008.

[11] J. Bauer, K. Karner, K. Schindler, A. Klaus, and C. Zach, “Seg-
mentation of building models from dense 3D point-clouds,” in Proc.
27th Workshop of the Austrian Association for Pattern Recognition.
Citeseer, 2003, pp. 253–258.

[12] S. Lee, S. Jung, and R. Nevatia, “Automatic integration of facade
textures into 3D building models with a projective geometry based
line clustering,” in Computer Graphics Forum, vol. 21, no. 3. Wiley
Online Library, 2002, pp. 511–519.

[13] R. Wang, J. Bach, and F. Ferrie, “Window detection from mobile
LiDAR data,” in Applications of Computer Vision (WACV), 2011 IEEE
Workshop on. IEEE, 2011, pp. 58–65.

[14] D. Gallup, J. Frahm, and M. Pollefeys, “Piecewise planar and non-
planar stereo for urban scene reconstruction,” in Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010,
pp. 1418–1425.

[15] J. Kosecka and W. Zhang, “Extraction, matching, and pose recovery
based on dominant rectangular structures,” Computer Vision and Image
Understanding, vol. 100, no. 3, pp. 274–293, 2005.

[16] W. Zhang and J. Kosecka, “Image Based Localization in Urban
Environments,” in Proceedings of the Third International Symposium
on 3D Data Processing, Visualization, and Transmission. IEEE
Computer Society, 2006, pp. 33–40.

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points.” Computer Graph-
ics(ACM), vol. 26, no. 2, pp. 71–78, 1992.

PNAVHE'11 126



 
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 

San Francisco, California, USA, September 30th, 2011 

 

 

 

 

Session V 

 

Mobile robot modeling and control  

 
 Keynote speaker: R. Lenain (Cemagref, France) 

Title: Generic algorithm for high accurate trajectory control in different conditions 

Co-authors: B. Thuilot, C. Cariou, P. Martinet 
 
 Title: A control strategy taking advantage of inter-vehicle communication for 

platooning navigation in urban environment 

Authors: P. Avanzini, B. Thuilot, P. Martinet 

  Title: Semiautonomous Longitudinal Collision Avoidance Using a Probabilistic 

Decision Threshold  

Authors: J. Johnson, Y. Zhang, K. Hauser  

PNAVHE'11 127



 
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 

San Francisco, California, USA, September 30th, 2011 

PNAVHE'11 128



 
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 

San Francisco, California, USA, September 30th, 2011 

Session V 
 

Keynote speaker: R. Lenain (Cemagref, France) 

 

Generic algorithm for high accurate trajectory control in different conditions  
Co-authors: B. Thuilot, C. Cariou, P. Martinet 

 

Abstract: From public transportation to agriculture, many fields of application may benefit from automation in the 

area of mobile robotics. As a result, research in that topic is subject of more and more investigation in order to 

propose new systems, from driver assistance (e.g automatic parking...) up to fully autonomous vehicles (such as 

autonomous robots acting in hazardous environment). In order to be fully effective, these innovations have to be 

accurate, safe, and able to act in various conditions. Many open problems then need to be addressed in order to 

propose such innovations in several part. If perception and navigation issues constitute important key points, the 

problem of motion control remains an important point since the control law to be embedded have to face a 

variability of conditions impacting directly their behaviour. These conditions rely on constant parameter, pending 

on the considered robot or vehicle (mechanical properties, actuators, specifications, …), but also depends on the 

variable interaction with the environment (grip conditions, terrain geometry, reachable velocity, ...). As a result in 

order to propose an efficient and accurate motion whatever the conditions variability, control laws have to account 

of the different dynamics encountered. This talk investigates the motion control of mobile robot in different 

conditions through the example of path tracking. It proposes several strategies to preserve the motion accuracy and 

safety whatever the encountered conditions. A correlation between the reachable velocity and the terrain 

complexity is proposed to extract the different effects which have to be accounted and related control objective. 

Based on this classification several modelling and control strategies are illustrated to face the considered 

phenomena. Starting from classical kinematic controller for simple path tracking task at low speed on flat terrain 

with good grip conditions, the talk investigates a rising complexity of situation. Adaptive control based on 

advanced kinematic model is proposed to face low grip conditions. This adaptive control is then associated with 

predictive control in order to preserve accuracy when increasing the velocity. Limitation of this controller with 

respect to the increasing speed and safety is pointed out and a new observer mixing kinematic and dynamic 

representation is proposed. This model permits also to account for 3D motion and permit to investigate the risk of 

instability rising at high speed. A control law acting on velocity in order to limit the rollover risk is then derived. 

This notion is then extended in a predictive way to adress the topic of obstacle avoidance and traversability for 

mobile robots. Finally, the notion of predictive control on velocity is extended to preserve the integrity of mobile 

robot, i.e, to preserve the stability, the controlability, and the accuracy of motion control. The capabilities of the 

different algorithm are investigated on actual experiments, using different kind of robots and vehicle, moving on 

different kind of ground. 

 

Biography: Roland LENAIN is a research fellow in Cemagref on the topic of off-road robotics. His research 

interests include the modeling and the control of mobile robots, submitted to uncertain effects. This covers the 

motion control as well as safety aspects (rollover, instability). These works are applied in various areas: agriculture 

and environment, driver assistance or military aspects. 

Currently in Cemagref since 2006, Roland Lenain is in Charge of several National Project in the topic of mobile 

robot and vehicle control in hazardous context (FAST, ActiSurTT, ...). He achieved a Post Doctoral Position in 

Lund University (dpt Automatic Control). He received is Ph.D. degree in Robotics from the Blaise Pascal 

University in 2005. He was graduated from IFMA (French Institute for Advanced Mechanics) in 2002. He 

received is Ph.D. degree in Robotics from the Blaise Pascal University in 2005. 
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Introduction

Growing interest for autonomous vehicles for various application

● Transportation system

● Exploration

● Military application

● Work in different kind of environment

Forestry

Agriculture

Civil engineering

Different contexts requiring different behaviors and configurations

● Sensor – perception system

● Navigation strategy

● Control law
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Introduction

A variety of environment impacting robot dynamics

● Environments and terrain properties

● Robot design and capabilities

Structured/unstructured environment

Nature of soil – grip conditions

Terrain geometry (regularity, slope, ...)

Velocity

Design parameters (length, mass, inertia, CoG position, ...)

Actuator properties and capabilities

General robot design (0/2/4WS, 2/4WD, ...)

● Phenomena to be accounted?

Sliding influence

Dynamic stability

Robot controllability

Inertial effects

Traversability and obstacles
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Introduction

Robot dynamics to be accounted with respect to the context

Velocity
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Introduction

Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects
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Introduction

Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation
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Classical path tracking control

Classical kinematic model

● Based on rolling without sliding assumption

O

θ~

y

δ

0s

sO

θ~

y

δ

0s

s

● Can be turned into linear form

Control law design
● Built in linear state space

● Objective is to ensure convergence of lateral and angular error to 0

● Reverse transformation leads to non linear control expression

● Under the assumption that velocity is a known variable

● Result theoretically independent from velocity

● Control gains tune a settling distance
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Classical path tracking control

Satisfactory when assumptions are valid
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Classical path tracking control

Satisfactory when assumptions are valid

Unsuitable when running on natural ground [depends on speed!]
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Sliding integration at low speed

Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation
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Grip conditions viewed as part of model

Representative of sliding effect on vehicle motion

Preserve the “non-holonomic” notion

Extended kinematical approach

• Introduction of sideslip angles in kinematics [Iros04]

Front sideslip angles

Rear sideslip angles

Tire-Based Kinematic Model (TBKM)


F


R


F

R

y



F

R

L

R

M

A

1/c  s

F

v

R

F

Provided sideslip angles control is similar

Sliding integration at low speed
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Validation on straight-line following on slope
• Validation on tractor (5km/H)
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Validation on straight-line following on slope
• Validation on tractor (5km/H)

• Validation on Arroco (5km/H)
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• Satisfactory in steady state (constant curve)

• Tracking at 5km/H

Constant slope

Constant curve

• Non negligieble overshoots during transition

Low level delay

Inertial effects

Sliding integration at low speed
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Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation

Anticipation of delays (actuator/inertial)
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Anticipation of transition in ref path curvature [AutonRobots2006, Icra2008]

• Decomposition of control law expression

Terms attached to deviations sliding compensation

Has to be reactive (no prediction available)

Terms attached path curvature following

Can be predicted (knowledge of the reference path)

Traj Deviationδ δ δ= +
  

2arctan
1Deviation

v

uv u
δ  =   + +

3
2

2

cos

cos
tanR

RLv A θ
β α

β= +

 

RefR
VehR

  

RefR
VehR( )arctanTraj uδ = 2cos

cos
( )R

Lu c s θ
αβ= 

• Predictive and adaptive control algorithm

Control without 
prediction

Deviation 
correction term

Trajectory 
properties 

Null when null 
deviation

Non null when 
null deviation Prediction on 

path curvature
Application of 

prediction algorithm

Control with 
prediction

Anticipation of delays (actuator/inertial)
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• Predictive term calculation:

Extraction of future set point attached to path 
curvature

Definition of desire shape to reached the set point 

Evolution 
désirée

FuturPassé Présent

Consigne future

n n+ H

Sortie réelle actual
Fδ

Obj
Fδ

Horizon of pred.

Com m ande Traj
Fδ

Ref
Fδ

ˆactual
Fδ

Based on low level model

• Adaptive and predictive control law

Computation of minimizing control sequence 

Pred
Traj Deviationδ δ δ= +

n n+ H

Objδ
ˆRδRefδ

Optim isation 
critère

Anticipation of delays (actuator/inertial)
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• Satisfactory whatever the variation

• Tracking at 5km/H

Anticipation of delays (actuator/inertial)
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Reactivity of sliding estimation based on extended kinematic is limited

● 2m/s : 0.1m ● 3m/s: 0.5m ● 4m/s : 1m

Anticipation of delays (actuator/inertial)
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Dynamic observer based motion control

Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation
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● Dynamic model based observer

More reactive

Not accurate (grip conditions to be known in real time)

Set point
Control

Observer law(extended model)

New observer design

● Extended kinematic observer

Accurate

Slow reactive (dynamic neglected)

F



Ground properties

Vertical load

● Tire/soil model depends on 14 param.

Tire properties

Not Tractable for control purpose

Variable Linear Description

Cornering stiffnesses

Dynamic observer based motion control
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Set point
Control

Observer law(extended model)

Principle

● Extended kineamtic observer

Accurate

Slow reactive (dynamic neglected)

● Dynamic model based observer

More reactive

Not accurate (grip conditions to be known in real time)

F



Ground properties

Vertical load

● Tire/soil model depends on 14 param.

Tire properties

Not Tractable for control purpose

Variable Linear Description

Cornering stiffnesses

Dynamic observer based motion control
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Set point
Control

Observer law(extended model)

Principle

● Extended kineamtic observer

Accurate

Slow reactive (dynamic neglected)

● Dynamic model based observer

More reactive

Not accurate (grip conditions to be known in real time)

F



Ground properties

Vertical load

● Tire/soil model depends on 14 param.

Tire properties

Not Tractable for control purpose

Variable Linear Description

Cornering stiffnesses

Varying slowly
Take part of extended kinematic observer 

to estimate on-line grip conditions
Dynamic model can be 
used for sideslip angles 

observation

Tire contact behavior

Dynamic observer based motion control
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Proposed algorithm: Mixed-model observers

● Decomposed in several steps

Sideslip angles calculation to ensure:

 y , y ,

outputs:
F

R


S1: Preliminary sideslip angles observer. 

 ̇ , ̇ , 

outputs: CF ,CR


Cornering stiffnesses estim.

To ensure: 

S2: Cornering stiffnesses adaptation

Cornering 
stiffnesses obs.

Dyn sideslip angles
Observer

Preliminary 
estimation of 

sideslip angles

Global sideslip angle

Sideslip angles
Adapted 
cornering 
stiffnesses

Dyn. Estimation of 
sideslip angles

Measured positions and angular velocities

Sideslip angles estimation to ensure:

outputs: Dyn
F ,Dyn

R 

 ̇2,
2 ̇ ,

S3: Sideslip angles observation based on dynamic model

Dynamic observer based motion control
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Path tracking results

● Experimental background

grass terrain

Velocity of 6m/s
Half-turn path tracking

Control with proposed 
observer

Dynamic observer based motion control
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Velocity of 6m/s

Max dev: 0.9m 
(max st angle)

Dynamic observer based motion control
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• Motion control without considering stability/achievability

Good accuracy, but stability is at the limit

Fn1

Fn2

Reaches high values (2 wheels lift-off)

Lateral load transfer considered and computed

Dynamic observer based motion control
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Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation

Dynamic observer based motion control
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• Predictive control is applied to compute maximal velocity

Fn1

Fn2

TC l= f EtatRobot 

Objective : ∣TC l∣TCmax

Lois 
commande

 , v Robot
Mesures

Vitesse
cible

Observation

Min

Adhérence

TCCalcul V

Applied control :

v=minvmax , vconsigne

Dynamic stability preservation

Moderation of robot speed is investigated

Velocity leading to this LLT threshold is computed

An limit for Lateral Load Transfer is chosen 
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Asphalt Dry grass

Curve 1 Curve 2

• Robot slow down when a risk is anticipated

Maximal velocity considered to limit LLT

Minimum between maximal and desired is applied

Velocity reaching to LLT limit computes

Dynamic stability preservation
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Extension to traversability – obstacle avoidance

Considering that a MNT reconstruction is available

Stereo-vision Velodyne

Stability is considering in front of the robot

● Generation of a fixed 
number of lateral off-set 
along trajectory

● Definition of trajectories 
to reach these offset
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Extension to traversability – obstacle avoidance

Stability is considering in front of the robot

● Evaluation of maximal speed along generated paths

● Selection of « optimal path »

Deviation with respect to the desired speed

Deviation with respect to the reference path

Results 
● Simulation (MNT at high speed) ● Experimentation (limited speed)
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Dynamic stability preservation

Rollover risk is not the unique sense of stability
● Motion control does not check

Reference path achievability (computed or manually recorded at low speed)

Robot controlability pending on environment (e.g grip conditions/speed)

Transient deviation possibly above desired max error

● Example of controlability loss

Achiveable at 6m/s 
[1m because St 
angle]

Stab loss at 7m/s
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Controllability preservation...

Robot dynamics to be accounted with respect to the context

Velocity

Dynamic stability

Robot controllabilitySliding influence

Traversability and obstacles

Inertial effects

Class. control

Through path tracking example

Kin. Observer 
based control

Predictive 
control

Dyn. observer 
based control

Traversability

Stability 
control

Controllability 
preservation
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Controllability preservation...

Desired path even recorded is no more achievable at high speed
● Required high steering angle

Mobile robot inertia

The fastest, the lowest grip conditions

● Maximal achievable steering angle reached

Steering angle limit viewed as an achievability criterion
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Controllability preservation...

Objective of the controllability preservation 
● Derive the maximal velocity

● Leading to a steering angle limit

Computation of the relationship between steering angle and velocity

standard linear
bicycle model

(SISO)
transfer function

̈=0

steady state
relation

s0

constant
curvature

predictive
control 
via PFC

future target 
velocity

v=−c m C f L f−C r Lr  
−1
−c m C f C r L fL r C f L f −C r Lr  [c L fLr − f ] 

1 /2

v=−c m C f L f−C r Lr  
−1
−c m C f C r L fL r C f L f −C r Lr  [c L fLr − f ] 

1 /2

● Future desired path curvatures ● Current grip conditions

Computation of velocity profile
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Controllability preservation...

● Without speed limitation

● Applying speed limitation

Saturation set to 17°
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Off-road path tracking algorithm

● Generic approach to meet different kind of robots 

● Preserving a high level of accuracy

● Preserving its integrity

Terrain geometry

Delay and dynamical effects

Grip conditions 

Robot speed

Traversability Dynamic stability
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• Adaptive and predictive control

• High accuracy despite grip conditions

Summary

Several control law for advanced path tracking

• On several and widely different robot

Limited number of measures

• Only position and orientation is needed

Adaptive and predictive control

4WS and trailer control

• Yaw rate may be required

Half turn (has speed cross 0)

High speed (to feed dynamic equations)

Current developments

R
T
K-

G
P
S

Mti-Xsens IMU

• Perception system (avoid RTK-GPS)

• Account for robot limitations

• Ensure the robot performances

Arroco (RobucarTT) Automated farm tractor

● 4 electrical WD

● 4 WS

● 700kg

● 2/4 WD

● 2 WS

● 7000kg

RobuFAST

● Up to 3.7m/s 
(13km/H)

● Up to 11 m/s 
(40km/H)

● 4 electrical WD

● 4 WS

● 400kg

● Up to 8m/s (30km/H)
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A control strategy taking advantage of inter-vehicle communication for
platooning navigation in urban environment

P. Avanzini1,3, B. Thuilot1,3 and P. Martinet2,3

1 Clermont Université, Université Blaise Pascal, LASMEA, BP 10448, 63000 Clermont-Ferrand, France
2 Clermont Université, IFMA, LASMEA, BP 10448, 63000 Clermont-Ferrand, France

3 CNRS, UMR 6602, LASMEA, 63177 Aubière, France

Pierre.AVANZINI@lasmea.univ-bpclermont.fr

Abstract— This paper deals with platooning navigation in
the context of innovative solutions for urban transportation
systems. More precisely, a sustainable approach centered on au-
tomated electric vehicles in free-access is considered. To tackle
the major problem of congestions in dense areas, cooperative
navigation according to a platoon formation is investigated.
With the aim to ensure the formation stability, i.e. longitudinal
disturbances within the platoon do not grow when progressing
down the chain, a global decentralized platoon control strategy
is here proposed. It is supported by inter-vehicle communica-
tions and relies on nonlinear control techniques. A wide range
of experiments, carried out with up to four urban vehicles,
demonstrates the capabilities of the proposed approach: two
localization devices have been tested (RTK-GPS and monocular
vision) along with two guidance modes (the path to be followed
is either predefined or inferred on-line from the motion of the
manually driven first vehicle).

Index Terms— mobile robots, automatic guided vehicles,
platooning, nonlinear control, path following.

I. INTRODUCTION

Urban mobility is currently being developed under a
new conceptual framework induced by the significant traf-
fic increase in metropolitan areas and growing sustainable
considerations. Reducing congestion appears to be a critical
goal which can be achieved by adopting a balanced and
diversified mobility approach. As a consequence, the use of
autonomous electric vehicles in free-access is a promising
and environment-friendly alternative, especially when the
public demand is properly structured, e.g. commutations
within inner-cities or large industrial estates. The large
flexibility that can be obtained with such a transport system
(commutation at any time and along any route) is definitely
its main attractive feature and should meet user expectations.

One functionality of special interest that can enhance
this transport system is automated platooning, i.e. several
autonomous vehicles following the trajectory of a first one,
with pre-specified inter-distances. Such a functionality, on
the one hand allows to easily adapt the transport offer to
the actual need (via platoon length), and on the other hand
eases maintenance operations, since only one person (driving
the first vehicle) can then move several vehicles at a time
(e.g. to bring vehicles back to some station). Moreover, since
cooperative navigation can ensure more coherent motions, an
increase in traffic as well as an enhancement in safety can
be expected. Platooning is therefore considered in this paper.

Since a main objective is to manage the traffic flow, the
performances of the whole formation must be guaranteed
and therefore the concept of string stability [21] has to be
considered when designing the control strategy. Namely, the
stability of a platoon formation requires that the effects of
disturbances are reducing when propagating from the leading
vehicle to the follower ones, thus ensuring that unacceptable
oscillations within the platoon can not be induced by sensor
noises and/or actuator delay.

Fig. 1. Experimental vehicles: a Cycab leading three Cycab/RobuCab

The paper is organized as follows: the control architecture
for vehicle platooning is first discussed in Section II. A
global decentralized control strategy is then sketched in
Section III and the integration of navigation functionalites
is presented in Section IV. Finally, in Section V, experi-
ments involving up to four electric vehicles demonstrate the
capabilities of the proposed approach with different set-up
and guidance modes.

II. CONTROL ARCHITECTURE DISCUSSION

As introduced in [20], string stability mainly depends
on the information used for vehicle control. The different
approaches proposed in the literature can then be classified
into two categories: local and global strategies. The most
common approaches rely onlocal strategies, i.e. each ve-
hicle is controlled exclusively from the information it can
acquire, relative only to the neighboring vehicles. The well-
known leader-follower approachbelongs to this category
and considers only the preceding vehicle. Unfortunately,
it has been proven [17] that an infinite string can not be
stabilized by a linear controller even when the vehicle model
is simplified as a double integrator. String stability can be
achieved by considering either a non-identical approach [11]
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or a variable spacing policy [8], [12]. In the first case,
a communication is required between adjacent vehicles to
adapt the control gains. However the gains are increasing
with the vehicle index, so that from a practical point of view
platoon length is limited. In the second case, the spacing
policy depends on vehicle velocity and consequently affects
the platoon tightness at the expense of the traffic flow. A
related alternative, relying on a cyclic topology, ensures
string stability by controlling the lead vehicle with respect
to the last one [14]. Nevertheless, such a scheme lacks of
flexibility and demands for the platoon to be supervised. As
a result, more complex topologies have been investigated,
using information from several nearby vehicles to achieve
string stability. For instance, since spring-damper systems
present intrinsic robustness to model error and measurement
signal noise, such an analogy has been introduced, regarding
vehicles as a serial chain of mass particles [23], [24], [7].
A control law is then derived from the combined front
and rear information relying on the analogy with virtual
mechanical forces. Unfortunately, in that case, string stability
is only satisfied in realistic conditions for finite strings of
autonomous vehicles (see [23]).

Such a problem can be overcome by consideringglobal
strategies, i.e. each vehicle is now controlled from data
shared between all the vehicles. This category requires a
communication network and a balanced management of
information flows is essential. For instance, if a centralized
architecture is adopted, all interactions between subsystems
can be taken into account. Platooning can then be formulated
as an optimization problem [13] and/or can use the formal-
ism of generalized coordinates [6], where the formation is
characterized by its geometry and its position with respect
to some reference point. In both cases, the string stability is
ensured, since the control input for each vehicle depends
on the spacing errors of the entire formation. However,
this poses a burdensome data handling problem, especially
when the vehicle string is long. To circumvent this tech-
nological limitation, our research is focused on distributed
control approaches. The emphasis is put on ensuring a
stable formation while minimizing the communication cost
between agents. From this point of view, a stable guidance
approach is proposed in [19], [18], where the velocity and
accelerations information of the lead vehicle are transmitted
to all the following vehicles. Nevertheless, in practical situ-
ations, collision risks between adjacent vehicles can occur
when using such a minimal communication scheme. The
control of more general formations is considered in [9], [10],
relying on virtual rigid structures whose dynamics is dictated
with respect to some reference vehicle. Nevertheless, these
techniques aim at imposing some pre-specified geometric
pattern, and not that each vehicle accurately reproduces the
trajectory of the first one. Instead, in this paper, a trajectory-
based strategy is proposed, as illustrated in Fig. 2. The
strategy relies on nonlinear control techniques: lateral and
longitudinal controls are decoupled, so that lateral guidance
of each vehicle with respect to the same reference path can be
achieved independently from longitudinal control, designed
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Fig. 2. Platoon architecture

to maintain a pre-specified curvilinear vehicle inter-distance.
In order to ensure string stability as well as passengers
security and comfort, the platoon behavior is imposed using
data from the immediate front vehicle and from the leader
one.

III. G LOBAL DECENTRALIZED CONTROL STRATEGY

A. Modeling assumptions

The scope of this study concerns small-sized vehicles
acting in urban areas. As a result, several simplifying as-
sumptions can be made. It is assumed that vehicles are
rigid bodies, symmetrical with respect to their main axis and
moving at quite low speed. It is thus possible to neglect the
dynamic components (suspension. . . ) and the tire deflection.
In addition, dedicated navigation areas are asphalt roads
and the contact between the wheels and the ground can
be assumed without slipping. Given these assumptions, the
control laws can be designed from a kinematic model and
the most suitable one is the bicycle model (also called
Ackermann model): the vehicle is then schematized by a
rear driving wheel and a front steering wheel. To represent
the system, the following notation, illustrated in Fig. 3 and
4, are introduced:

Notation:

• Γ is the common reference path for any vehicle (speci-
fied in advance or to be inferred from the trajectory of
the first one), defined in an absolute frame[A, XA, YA).

• Oi is the center of theith vehicle rear axle.

• Mi is the closest point toOi on Γ.
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ΓZA

A

XA

Oi
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δi

θΓ(si)

YA

si

yi
θi

θ̃i = θi − θΓ(si)
l

Fig. 3. Vehicle model

• si is the arc-length coordinate ofMi alongΓ andk(si)
is the curvature of pathΓ at this point.

• θΓ(si) is the orientation of the tangent toΓ at Mi with
respect to[A, XA, YA).

• θi is the heading ofith vehicle with respect to
[A, XA, YA).

• θ̃i = θi − θΓ(si) is the angular deviation of theith

vehicle with respect toΓ.

• yi is the lateral deviation of theith vehicle with respect
to Γ.

• δi is the ith vehicle front wheel steering angle.

• l is the vehicle wheelbase.

• vi is the ith vehicle linear velocity at pointOi.

Finally, Fig. 4 introduces the quantitydi,j = si − sj that
denotes the longitudinal distance between vehiclesi and j

in the platoon, evaluated as an arc-length distance along path
Γ.

YA

vi

si

sj

A
XA

ZA di,j

θΓ(sj)

Oi

Mi δi

θΓ(si)

Oj

Mj

vj

δj

Fig. 4. Longitudinal distancedi,j

State Space Model Derivation:The state of theith

vehicle can be described in the Frenet frame along the
reference trajectoryΓ by the triplet

[

si, yi, θ̃i

]

and the state
space equation of the bicycle model can be written as follows
(see [5]):



























ṡi =
vi. cos θ̃i

1 − yi.k(si)

ẏi = vi. sin θ̃i

˙̃
θi =

vi. tan δi

l
−

vi.k(si). cos θ̃i

1 − yi.k(si)

(1)

The model (1) is clearly singular ifyi =
1

k(si)
, i.e. if Oi is

superposed with the pathΓ curvature center at abscissasi.
However, this singularity is never encountered in practical
situations, firstly because the curvature along the reference
trajectoryΓ is generally quite small, and secondly because
the vehicle is expected to remain close toΓ.

B. Chained form of the state space model

Vehicle model (1) is nonlinear. However, it has been
established in [16] that kinematic models of non-holonomic
mobile robots can be converted via invertible state and con-
trol transformations into so-calledchained forms, more con-
venient to address vehicle control. In the case of model (1),
the state and control transformations are respectively given
by (2) and (3):

Φ(
[

si yi θ̃i

]

) =
[

a1i a2i a3i

]

∆
=

[

si yi (1 − yi.k(si)). tan θ̃i

]

(2)

(m1i, m2i) = Ξ(vi, δi) (3)

with:

m1i
∆
= vi

cos θ̃i

1 − yi.k(si)
(4)

m2i
∆
=

d

dt
((1 − yi.k(si)). tan θ̃i) (5)

TransformationsΦ andΞ are invertible under the conditions
y 6=

1

k(si)
(model singularity discussed above),vi 6= 0 and

also θ̃i 6=
π
2 [π], unexpected configurations if the platoon has

been properly initialized. Substituting (2), (4) and (5) into
(1), the nonlinear bicycle model can be rewritten without
approximation as the following chained form:







ȧ1i = m1i

ȧ2i = a3i m1i

ȧ3i = m2i

(6)

Model (6) depends on two control variables:m1i is con-
sistent with the vehicle curvilinear velocitẏsi along Γ
and m2i is related to its angular velocityωi = vi. tan δi

l
.

Control laws are now designed, relying on model (6). It is
shown that vehicle guidance along a path can be achieved
with performances independent of the longitudinal velocity,
so that lateral and longitudinal control can be decoupled
(described respectively in Sections III-C and III-D).
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C. Lateral control

To this aim, chained system (6) is rewritten by differenti-
ating with respect to the curvilinear abscissa rather than to
the time. Denotinga′

ji =
daji

da1i
=

daji

dsi
, the chained form (6)

is then:






a′

1i = 1
a′

2i = a3i

a′

3i = m2i

m1i
= m3i

(7)

Path following consists in regulating to zero lateral and
angular deviations. According to (2), it is equivalent to
impose the convergence of variablesa2i and a3i to zero.
Given the structure of system (7) (a double integrator), a
proportional derivative controller for variablem3i is then
chosen:

m3i = −Kda3i − Kpa2i, (Kp, Kd) ∈ R+∗ ×R+∗ (8)

whereKd andKp are positive scalars specifying the conver-
gence rate. By reporting (8) into (7), this controller indeed
leads to the following differential equation:

a′′

2i + Kda
′

2i + Kpa2i = 0. (9)

As equation (9) is differentiated with respect to the variable
a1i = si, a settling distance is specified by gainsKp and
Kd instead of a settling time. Therefore, for a given initial
positioning error of theith vehicle, its lateral behavior is
imposed regardless of the vehicle linear velocityvi, assumed
non-zero, even if that velocity is time-varying [22]. By in-
verting chained transformations (2-4-5), the nonlinear control
law is expressed as follows:

δi(yi, θ̃i) = arctan
(

l
[

cos3 θ̃i

(1−k(si).yi)2

(

dk(si)
dsi

.yi. tan θ̃i

−Kd(1 − k(si).yi) tan θ̃i − Kpyi+

k(si)(1 − k(si).yi) tan2 θ̃i

)

+ k(si). cos θ̃i

1−k(si).yi

])

(10)
It is well defined under the three conditions above mentioned
(vi 6= 0, yi 6=

1
k(si)

and θ̃i 6=
π
2 [π]).

D. Longitudinal Control

A local longitudinal error and a global one are here
considered. First, the local error between theith and the
i + 1th vehicles is defined as:

ei
i+1 = di,i+1 − d⋆ = si − si+1 − d⋆ (11)

Regulatingei
i+1 to zero would impose a constant curvilinear

distanced⋆ between any pair of vehicles. Collision risks
would then be explicitly addressed. However, as discussed
in Section II, the main disadvantage of this local strategy is
that the string stability can not be ensured. To overcome this
problem, a global errore1

i+1 is also considered:

e1
i+1 = d1,i+1 − i.d⋆ = s1 − si+1 − i.d⋆ (12)

Regulatinge1
i+1 to zero would impose a constant curvilinear

distance with respect to a common absolute reference, chosen
here as the abscissa of the platoon leader. Nevertheless, for
obvious safety reasons, longitudinal control law cannot com-
pletely ignore the local errorei

i+1 because of the collision

risk: for instance, if theith vehicle stops or slows down,
it will abnormally be approached by thei + 1th one since
this latter continues to maintain a constant gap with the lead
vehicle.

In view of these remarks, a new hybrid error variableci+1

is built from (11) and (12):

ci+1 = σi+1(zi+1).e
1
i+1 + (1 − σi+1(zi+1)).e

i
i+1 (13)

with zi+1 = ei
i+1 +

d⋆ − ds

2
, (14)

and ds denotes a security distance, defined as the minimal
curvilinear distance that always must be observed between
two vehicles. The functionσi+1, defined in the interval[0, 1],
is defined as:

σi+1(zi+1) = 0.5

(

1 − e−azi+1

1 + e−azi+1
+ 1

)

=
1

1 + e−azi+1
, a > 0

(15)
The behavior of functionσi+1 is illustrated in Fig. 5 with
a = 2.5, d⋆ = 5m andds = 2, 3 and4m. As evidenced by
the “S” shape of the curve, functionσi+1 is used to give the
predominance to either the global error or to the local one:
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ds − d⋆ ds − d⋆ds − d⋆

ei
i+1 ≤ ds − d⋆

critical error :

Curvilinear error e
i
i+1 (m)

Fig. 5. Functionσi+1

• when there is no imminent collision risk, i.e.ei
i+1 ≫ ds,

the global approach relying on a common reference can
be safely used (σi+1 = 1 and thereforeci+1 = e1

i+1).

• on the contrary, when the collision risk is important,
i.e. ei

i+1 becomes less thands − d⋆, the local approach
must prevail over the global one (σi+1 = 0 and therefore
ci+1 = ei

i+1).

The scheme of the longitudinal control is depicted in Fig. 6.

leader

vehicle

ith vehicle e
i
i+1

e1
i+1

i.d⋆

d⋆

si+1

si+1

si

s1

distance

desired ci+1 control

law ṡi+1 = vi+1 cos θ̃i+1

1−yi+1.k(si+1)

vi+1 i + 1th vehicle

variable

hybrid control

Longitudinal Control

Fig. 6. Longitudinal control with a global strategy

Control law design: Differentiating the hybrid control
variableci+1 leads to:

ċi+1 = σi+1ė
1
i+1 + (1 − σi+1)ė

i
i+1 + σ̇i+1e

1
i+1 − σ̇i+1e

i
i+1

(16)
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In order to simplify the equations, let us denote:

A(zi+1) =
ae−azi+1

(1 + e−azi+1)2
(17)

Thereforeσ̇i+1 can be written as:

σ̇i+1 = A(zi+1)ė
i
i+1 (18)

Just as in lateral control design, exact linearization techniques
can also be used: nonlinear equation (16) can be converted
without approximation into the linear one:

ċi+1 = m4(i+1) (19)

by introducing the virtual control variablem4(i+1) related to
vi+1 according to (just inject the expressions ofė1

i+1, ėi
i+1

and σ̇i+1 in (16):

vi+1 = 1−yi+1.k(si+1)

cos θ̃i+1[1+A(zi+1)e1
i ]

(

σi
v1 cos θ̃1

1−y1.k(s1)+
[

1 − σi+1 + A(zi+1)e
1
i

]

vi cos θ̃i

1−yi.k(si)
− m4(i+1)

) (20)

Convergence ofci+1 to zero can then be ensured by choosing
a proportional controller for the variablem4(i+1):

m4(i+1) = −K.ci+1, avecK ∈ R+∗ (21)

The actual nonlinear longitudinal control law is finally ob-
tained by reporting (21) into (20). It presents one singularity,
namely1 + A(zi+1)e

1
i = 0. However, this corresponds to

a very special configuration of the first, theiith and the
(i+1)th vehicles, which is not expected to be encountered in
practical situations. Moreover, if this configuration was met,
vi+1 would increase to reach very large values, that would
then be corrected by monitoring (not presented here).

IV. NAVIGATION FUNCTIONALITIES

The potentialities of this control strategy have first been
demonstrated with the experimental vehicles shown in Fig.1,
when their absolute localization is supplied by accurate
RTK GPS receivers: completely automated platooning, with
respect to some given reference trajectory specified before-
hand, has been investigated in [4]. In order to increase
the flexibility of this transportation system and enable the
guidance in realistic urban conditions, new functionalities
have been developed in a second step.

Manual guidance mode

A manual convoying functionality has been proposed
in [1]. The lead vehicle is no longer in an autonomous mode,
but manually driven and defining on-line the trajectory to be
followed by the other vehicles. The architecture of the lead
vehicle is then modified as shown in Fig. 7. Such a manual
guidance mode is very attractive, for public transportation
as well as for maintenance operations, since vehicles can
then instantaneously be driven along any route, without
requiring a previously recorded reference trajectory. The
challenge consists in creating on-line aC2 reference path
(as required in control laws) as close as possible to the
trajectory of the leader, although its raw localization data are
noisy. Uniform B-Spline curves, extended on-line according

to an iterative optimization process, have been proposed
to represent the reference path. A sliding window, only
containing the latest localization data of the lead vehicle,
enables to bound the computation time and adjust only the
extremity of the reference trajectory, without impacting the
part of this trajectory that the other vehicles are already
tracking. Optimization parameters, namely the size of the
sliding window, the number of control points to be adjusted
and the degree of the B-Spline curves, are specified according
to the vehicle velocity (see [1]).
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control points
- updated

- O1, θ1, v1, δ1

Extension of the

& odometry

on-line processing

- O1, θ1

- v1, δ1

Trajectory creation

Local perception

Fig. 7. Architecture of the lead vehicle

Localization by monocular vision

RTK GPS receivers are not realistic sensors in the context
of urban transportation systems: they are not reliable since
the satellite signals can be masked by tall buildings. Cameras
appear more appropriate, since the buildings offer a rich
environment from an image processing point of view (and
in addition, they are definitely cheaper).

Vehicle localization relying on monocular vision has
been investigated in [15]. The difficulty lies in the fact
that absolute localization is expressed in a virtual vision
world, slightly distorted with respect to the actual metric
one. Such deformations, that mainly occur in the curved
parts (i.e. when the points of interest used to localize the
vehicle are changing), alter noticeably the estimation of inter-
vehicle distances, and therefore impair longitudinal control
performances. When completely automated platooning is
addressed, two strategies have been proposed to estimate on-
line local scale factors between the two worlds, along the
specified reference trajectory (see Fig. 10). These local scale
factors can then be used to correct raw localization data,
enabling accurate distance evaluation.

Two vehicles are involved in the first approach [3], whose
architecture is depicted in Fig. 8 for the second vehicle: its
laser rangefinder is used to evaluate the direct distance to
the leading vehicle, and an iterative optimization relying on
these telemetric data is run to obtain the local scale factors.
The second approach [2] is easier to implement since it relies
only on the odometric data of the leading vehicle, as shown
in Fig. 9: the local scale factors are then derived according
to a nonlinear observer.
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The relevance of these two strategies is illustrated in
Fig. 10: it can be noticed that both scale factors sets com-
puted on-line are very close to the actual ones evaluated off-
line from RTK-GPS measurements. The scale factor peak,
visible around52m, is due to the sudden appearance and
disappearance of a tree in the field of perception of the
camera.

V. EXPERIMENTAL RESULTS

In order to investigate the capabilities of the proposed
control laws, several experiments have been carried out
in Clermont-Ferrand on “PAVIN Site”, an open platform
devoted to urban transportation system evaluation.

A. Experimental set-up

The experimental vehicles are shown in Fig. 1. They are
electric vehicles, powered by lead-acid batteries providing
2 hours autonomy. Two(resp. four) passengers can travel
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Fig. 10. On-line scale factor estimation

aboard the Cycab(resp. the RobuCab). Their small dimen-
sions (length 1.90m, width 1.20m) and their maximum speed
(5m.s−1) are appropriate to urban environments. Vision-
based localization and platoon control laws are implemented
in C++ language on Pentium based computers using RTAI-
Linux OS. Laser rangefinders provide telemetric data at a
60Hz sampling frequency, with a standard deviation within
2cm. The cameras supply visual data at a sampling frequency
between 8 and 15Hz, according to the luminosity. Each
vehicle is also equipped with an RTK-GPS receiver, running
at a 10Hz sampling frequency, either used for vehicle control
(manual guidance mode) or exclusively devoted to perfor-
mance analysis (vision-based localization). Finally, inter-
vehicle communication is ensured via WiFi technology. Since
the data of each vehicle are transmitted as soon as the
localization step is completed, the communication frequency
is similar to the frequency of the localization device.

B. Experimental results

The experiments reported below consist in platoon control
with a constant leader velocityv1 = 1m.s−1. Several
scenarios have been investigated.

1) Manual guidance mode:Three vehicles follow the
path generated on-line by a manually driven one along
a 240m-long path. The lateral deviation of of the three
followers remains mainly within±10cm from the leader
trajectory and does not exceed 14cm, see Fig. 11. Lateral
guidance is therefore as satisfactory as in previous work,
when vehicles were guided with respect to a pre-specified
reference trajectory (see [4]).
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Fig. 11. Vehicle lateral deviations: manual guidance mode
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The accuracy of the longitudinal control law is investigated
in Fig. 12. Once the platoon is in nominal mode (i.e. all
vehicles have reached their desired inter-distances), the be-
havior is identical to what was observed in previous work [4],
namely a 10cm accuracy: the on-line reference trajectory
generation does not disturb the longitudinal performances.
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Fig. 12. Vehicle inter-distance errors: manual guidance mode

2) Localization by monocular vision:Three vehicles nav-
igate in an autonomous mode along a 230m-long predefined
reference trajectory. Local scale factors are computed on-
line either from the odometric data of the leading vehicle or
from the telemetric data of the first follower (as discussed
in section IV) and then retransmitted to the other vehicles in
the platoon.

Platoon control performances are evaluated in Fig. 13
(longitudinal error of the second and third vehicles are
shown respectively in the top and bottom graphs). When
inter-distance error is directly deduced from raw localization
vision data, longitudinal control is largely erroneous, see the
black curve in Fig. 13. These large errors, namely 40cm for
the second vehicle and 70cm for the third one, show clearly
the necessity for local corrections. The relevance of the two
proposed strategies is demonstrated in Fig. 13: whatever the
vehicle, the longitudinal errors satisfactorily remain within
10cm without exeeding 16cm and 21cm, respectively with
odometric and telemetric-based corrections.
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Fig. 13. Vehicle inter-distance errors: localization by vision

VI. CONCLUSION

In this paper, vehicle platooning in urban environment has
been investigated. First, a global decentralized control strat-
egy, taking advantage of inter-vehicle communications, has
been proposed, in order to ensure the stability of the entire
formation and therefore avoid error accumulation inherent
to local control approaches. Moreover, nonlinear control
techniques have been considered, in order to take explicitly
into account the nonlinearities in vehicle models, so that the
same high accuracy can be expected in any situation (for
instance, whatever the reference trajectory curvature).

Flexibility and adaptation to urban areas have been in-
creased by introducing two functionalities: first it is possible
to manually drive the platoon, for instance to ease mainte-
nance operations. Secondly, instead of using GPS receivers
for vehicle localization, more realistic vision sensors are con-
sidered: vehicle localization can be inferred from monocular
vision, complemented with local scale factors estimated on-
line either from telemetric or odometric data.

Full scale experiments, carried out with up to four vehi-
cles, have finally demonstrated the efficiency of the proposed
approach. Reported control performances are satisfactory
wathever the navigation mode and localization device.
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Abstract— Automated emergency maneuvering systems can
avoid or reduce the severity of collisions by taking control of a
vehicle away from the driver during high-risk situations. The
choice of when to switch to emergency control is challenging
in the presence of uncertain information (imperfect sensors,
road conditions, uncertain object behavior, etc.) and many
dynamic obstacles. This paper considers longitudinal collision
avoidance problems for a vehicle traveling along a known path.
A probabilistic decision threshold framework is presented in
which the user’s control is overridden if the probability that
it would lead the system into an unsafe state exceeds some
threshold. We apply the technique to collision imminent braking
for obstacles traveling along the vehicle’s path, and present
preliminary results extending the technique to the scenario of
obstacles crossing the vehicle’s path.

I. INTRODUCTION

Over 6.3 million automobile crashes occurred in the U.S.
in 2007, including 1.8 million injury crashes and 37,435
fatalities at a cost of hundreds of billions of dollars [9]. Al-
though the numbers of injuries and fatalities per traveled mile
have decreased significantly due to advances in passive safety
equipment (seat belts, air bags, stability control, etc) over the
last four decades, these numbers have leveled off over the last
two decades. Semiautonomous active safety systems, which
override driver control of the vehicle in emergency situations,
are one promising approach to achieving significant further
improvements in safety.

These systems must distinguish between emergency sce-
narios, assess collateral impact of collision-mitigating or
collision-avoidance strategies, and understand the behavior of
drivers, including the drivers of other cars, in response to the
car’s actions. Also, they must carefully balance keeping the
driver feeling “in control” and taking necessary deviations
from the driver’s actions (or inaction) for increased safety. It
is also likely that too much automation could increase the risk
of inattentive or careless driving and also increase liability for
auto manufacturers; hence a minimal necessary interference
principle should be applied to the design of semiautonomous
safety systems at least for the forseeable future.

This paper applies this principle to the prevention of
longitudinal collision, specifically, rear end collisions during
single-lane driving and transverse collisions during inter-
section crossing. Given a known path of the vehicle but
unknown speed and driver input, the problem is applying
longitudinal controls (accelerating and braking) only when
necessary to avoid collision with moving or static objects

in the environment. Uncertainty is a major challenge in the
driving environment due to noisy distance readings; unknown
behavior of the object; errors in speedometer readings due to
tire wear and environmental factors; and unknown stopping
time due to brake wear and road surface characteristics.
In the context of rear-end collision avoidance we apply a
probabilistic decision thresholding technique that activates
control when the risk of collision exceeds some threshold.

Assuming that the vehicle tracks a state distribution
using an Extended Kalman Filter, we used Monte-Carlo
simulations to evaluate the technique’s performance on a
suite of scenarios including dry and wet pavement, static
and braking obstacles, and false positives and negatives in
object detection. We aggregated four performance metrics
— collision velocity, completion time relative to an ideal
driver, stop distance relative to the obstacle, and jerkiness
— across 10 scenarios into a risk index, which quantifies
the overall severity of collisions, and an interference index,
which quantifies the overall disturbance to the human driver.
Plotting these indices demonstrates a clear tradeoff between
increased interference and increased safety as the activation
threshold is varied.

We also describe first steps toward solving the intersection
crossing problem in which the car accelerates or decelerates
in order to avoid collision with cars in opposing lanes. We
introduce a conservative reachable set computation in the
vehicle’s position/velocity/time space for an arbitrary number
of lanes of traffic in a fully observable environment. Using
this computation we intend to address both accelerating and
braking under uncertainty in a tractable manner using the
same probabilistic decision threshold technique.

II. RELATED WORK

Collision-imminent braking systems in some existing
Volvo and Mercedes-Benz models use a variety of sensors
to detect collision-imminent scenarios and apply brakes to
reduce the severity of a crash. We are interested in extrapo-
lating collision-imminent braking to its inevitable conclusion:
collision-prevention braking.

Autonomous driving has recently become a tremendously
active field of research, inspired by major successes such as
the DARPA Grand Challenge [12]. A Google system that
has logged over 140,000 autonomous miles, including 1000
miles without intervention from the human driver [10]. De-
spite these major advances, there is still a major gap between
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these systems and human drivers. Although human drivers
occasionally err, they are extremely reliable in general: a
fatality crash occurs approximately once in 100 million miles
driven [9]. Even if an autonomous vehicle relies on the
human driver input once every 10,000 miles, the driver must
be attentive 99.99% of the time for the system to perform as
well as a human alone!

By contrast, active safety systems take control of the
vehicle only when emergency happens or potential acci-
dent is foreseen to mitigate or avoid the consequences
of an accident. There are several strategies for choosing
when to override driver control. A longitudinal collision-
mitigation braking strategy was described by Hillenbrand
et al (2006) that gradually applies stronger braking as
the collision boundary is approached, which smoothes the
control output and copes some uncertainty [5]. Anderson
et al (2009) present a 2D hazard avoidance scheme based
on model predictive control which allows varying levels of
autonomy based on risk assessed by control magnitudes [2].
Our approach introduces the additional considerations of
uncertainty which provides a more natural definition of risk.
Karlsson et al (2004) introduced a statistical decision rule
that applies the brake if the probability of impact is greater
than some threshold α [7]. This approach is advantageous in
the presence of uncertainty. Similar thresholding techniques
were applied to autonomous driving in environments mapped
using 2D range finders [1]. We generalize this approach
in this research to both acceleration and braking using a
probabilistic minimum necessary interference criterion that
treats safety as a hard probabilistic constraint and driver
interference as a soft constraint. Furthermore, we consider
unknown road surface characteristics and obstacle behaviors
in our uncertainty model. By incorporating this uncertainty
into decision-making, fewer collisions result on wet pave-
ment, but the vehicle behaves more conservatively on dry
pavement.

The path-time decomposition was introduced by Kant
and Zucker (1986) who examined the problem of dy-
namic obstacle avoidance along a given path under velocity
constraints[6]. Liu and Arimoto (1992) introduced an algo-
rithm for the more general problem of shortest path planning
among polygonal and curved obstacles[8]. We extend this
approach to include path velocity and acceleration bounds
in order to compute reachable sets in unprotected lefthand
turns. A straightforward method for integrating uncertainty
in obstacle velocity and behavior is considered as well.

III. SAFETY-CONSTRAINED MINIMAL INTERFERENCE
PRINCIPLE

The vehicle’s policy π is given the user’s desired control
udt and sensor input zt. Using zt it infers a distribution P (xt)
over hypothetical car-obstacle system states. Although our
model can be generalized to two-dimensional motion with
steering and velocity control, here we will only consider
the longitudinal control problem in which the vehicle travels
along a one dimensional space of a known single-lane road,
which may be curved or straight. The output of the system

is a continuous control u ∈ [−1, 1], where u = 0 indicates
no control, u = −1 indicates maximum braking, and u = 1
indicates maximum acceleration.

We define the safety-constrained minimum interference
control u?t at probability α as the result of the following
optimization:

u?t = arg min
u∈[−1,1]

|u− udt |

s.t. P (safe|ut = u) ≥ α
(1)

where we define P (safe|ut = u) as the probability that the
system remains safe given the choice of u at the current time
step and the safest sequence of controls thereafter. If no such
u meets the α threshold, we set

u?t = arg maxP (safe|ut = u). (2)

This framework has several advantages in that the user’s
control will be replicated exactly if it is sufficiently safe,
and safety and driver interference can be tuned using a
single parameter α. The major challenge in this framework is
evaluating the P (safe|ut = u) because it essentially requires
solving a stochastic optimal control problem with nonlinear
noise terms and constraints. To address this we make the
approximation that the probability can be approximated by
integrating over the optimal hypotheses evaluated under
P (xt) assuming that the underlying state hypothesis is true.
In other words,

P (safe|ut = u) ≈
∫
x

S(x, u)P (xt = x)dx (3)

where S(x, u) evaluates whether the system can remain safe
under known state x and initial control u. Below we will
present two concrete implementations whereby S(x, u) can
be analytically evaluated, which makes the evaluation of (3)
tractable.

IV. COLLISION IMMINENT BRAKING

A. Assumptions and System Structure

First we assume the vehicle is moving in the same direc-
tion as the obstacle and the obstacle does not move in reverse.
We assume that the vehicle is equipped with a speedometer
and a range finder (e.g., radar or lidar). The behavior of
an obstacle is considered as a black box, and the vehicle
needs to infer whether an obstacle is still, accelerating, or
braking through the information received through its sensors.
In order to synthesize this information, we suppose the car
runs an Extended Kalman Filter (EKF) to track a probability
distribution over the system state [4]. It then incorporates
this distribution into a probabilistic decision rule.

B. Stochastic Dynamics Model

The state of the car can be described using car’s position
pc, velocity vc and the maximum deceleration acmax

that
the car currently can apply. Additionally, when an obstacle is
present, the obstacle position po, velocity vo, and acceleration
ao are modeled as part of the system state. The vehicle re-
ceives a noisy speedometer vs and range reading d. Decisions
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Fig. 1: The vehicle starts with an estimate of -5m/s2 maxi-
mum deceleration. As it starts braking on a wet pavement at
t = 1.5 s, the Kalman filter adjusts the estimate toward the
correct value of -3m/s2.

TABLE I: Dynamics and Observation Models

Road Surface Maximum applicable acceleration is a random walk
ȧc ȧc ∼ N (0,∆t)

Actuation Errors Proportional to control and maximum deceleration,
v̇c v̇c = uac(1 + eu), with εu ∼ N (0, 0.012)

Object Behavior Random noise with 99.99% within
ȧo [−5.0m/s2, 5.0m/s2],

ȧo ∼ N (0, 1.252)
Speedometer Multiplicative noise on actual velocity,

vs vs = vc(1 + εs), εs ∼ N (0, 0.0252)
(99.99% within 10% of current velocity)

Range Reading Combined linear and multiplicative noise
d d = ndL + (po − pc)(1 + ndM ),

with ndL, ndM ∼ N (0, 0.01252)
(99.99% within by 5 cm + 5% of true distance)

are made at a time step of ∆t (0.1 s in our implementation).
The stochastic dynamics and sensor noise models are listed
in Table I.

C. Extended Kalman Filter

The vehicle is assumed to employ an extended Kalman
filter (EKF) in order to estimate the state from the stochastic
dynamics and observations. An EKF is a version of the
Kalman filter that addresses nonlinear systems by linearizing
about the estimated mean and covariance [13]. The dynamics
at time step t can be written in the following form:

xt+1 = f(xt, ut) + wt (4)
zt = h(xt) + vt (5)
wt ∼ N (0, Qt) (6)
vt ∼ N (0, Rt) (7)

Here, xt denotes the state (pc, vc, acmax
, po, vo, ao), ut

denotes the braking control input, zt is the observation (d, vs)
at time step k. wt is the process error term with Qt as its
covariance matrix. vt is the measurement noise term with Rt

as its covariance matrix.
At each step, the EKF maintains a state estimate x̂t and

covariance matrix Pt. Upon reading the observation zt from
the vehicle’s sensors, the EKF performs a Kalman update
using the system linearized about x̂t to obtain a new state
estimate x̂t+1 and covariance Pt+1. (Figure 1)

Because obstacles may appear and disappear from the
range sensor reading, the obstacle state and distance mea-
surements are included in the EKF update only when an

obstacle is detected. When an obstacle appears for the first
time, its position estimate is initialized to the raw range
sensor estimate N (d, (0.0125d)2). Its velocity is initialized
to a broad distribution N (v̂c/2, (v̂c/2)2), and its acceleration
is initialized to N (0, (2.5m/s2)2).

Although the EKF is known to suffer from problems in
highly nonlinear systems, in our case the system is close to
linear and the EKF seems to provide sufficiently accurate
performance. Nevertheless our decision-making algorithms
still apply to more general state estimators, like particle
filters.

V. BRAKING POLICIES AND EVALUATION

A braking policy π(x̂, P ) produces a braking output u
given the state estimate x̂ from the Kalman filter and its
covariance matrix P . Given perfect state information, the
optimal policy is essentially trivial (known-state policy).
But in the presence of uncertainty, optimality is not easy
to define. We design a probabilistic approach to deal with
uncertainty and produce human-like braking behavior.

A. Known-State Policy

The basic optimal braking policy πD(x) in the presence
of complete state certainty is a bang-bang control given as
follows.

Algorithm 1 Bang-Bang Policy

pc
′ ← pc + vc

2/(−2acmax
) + C

t′ ← vc/(−acmax
)

if vo + aot
′ ≥ 0 then

po
′ ← po + vot

′ + 1/2aot
′2

else
po
′ ← po + vo

2/(−2ao)
end if
if p′c > p′o then

return u = −1
else

return u = 0
end if

Here, C is a constant that is used for indicating some
safety margin, which we set to 1 m. p′c is the estimated
stopping position of the car if it initiates maximum braking.
p′o defines the estimate position of the obstacle when the
car stops, and it will either stop after the car does (first
conditional branch) or before (second branch). If p′c > p′o,
there will be a collision between car and obstacle, otherwise,
no collision.

Using this policy we can implement (1) in a straight-
forward manner. First note that stronger braking is always
guaranteed to be safer, which helps with the minimization.
Then the process boils down to finding the weakest braking
control that keeps the system safe with probability α. To
approximate the integral in (3), we sample N candidate states
x(i) ∼ N (x̂, P̂ ), (i ∈ [1, N ]) and compute the weakest
(highest value) control u(i) = πD(x(i)). We let π(x̂, P̂ ) take
on the value of the control output at the 100(1−α) percentile.
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B. Smoothing in Post-Processing

The control policies discussed above are Markovian in that
they produce the control output merely based on the state and
covariance estimate at the current time step. Jerkiness might
occur if control outputs are quite different in consecutive time
steps. Therefore, We implement a discounting method that
produces a weighted sum of (1−D) of the smoothed control
in its previous time step and D of the current π output. The
constant D is known as the discount factor, and when D
is low the output is highly smoothed, and when D = 1
the output is identical to the unsmoothed signal. Through
experiments we found that the setting D = 0.5 strikes a
good balance control smoothness and responsiveness.

C. Policy Evaluation

A good braking policy should be able to achieve high
safety and low unnecessary control interference. In order
to evaluate the policy we define the a risk index (RI) and
interference index (II) which are functions of the following
metrics:

1) Collision velocity (CV): the relative velocity if the car
hits the obstacle, 0.0 otherwise.

2) Discontinuity Time (DT): measures the amount of jerk
experienced by passengers. We integrate the time over
which the acceleration at two time subsequent time
steps is greater than some threshold, which we set to
4 m/s2.

3) Excess Time (ET): measures the amount of time con-
sumed by excessive braking in a scenario. A scenario
is considered completed if the car stops, collides with
an obstacle, or passes some marker. ET is computed by
measuring the policy completion time and subtracting
the completion time for an optimal collision-free policy
with perfect state information.

4) Stopping Distance (SD): measures the distance to the
obstacle after the vehicle stops, or 0.0 if the scenario
is completed in any other manner.

RI and II are computed as follows:

RI = (CVavg/CVsafe)
2

II = c1DT + c2ET + c3SD

CVsafe is a constant that denotes a relatively safe velocity
at which a collision is unlikely to lead to serious injury (set
to 5 m/s in our implementation). RI is made proportional to
the kinetic energy of the collision. Policies with RI < 1 are
relatively safe. c1, c2, and c3 are proportionality constants
that are set to 2 s−1, 1 s−1, and 1/2m−1 respectively based
on some amount of tuning. The goal of a braking policy
is achieving low RI and II . It is important to distinguish
between the interference objective used in (1), which is an
instantaneous criterion used in the vehicle’s internal decision
mechanism, and II, which is a global measure of emergent
system performance.

We designed five test scenarios S1, . . . , S5 simulating
actual environments that a collision imminent braking system
would face in practice. These scenarios are illustrated in

Fig. 2: Fixed Obstacle scenario. The car moves toward a
fixed obstacle 100 m ahead with initial velocity 20m/s.

Fig. 3: Emergency Braking Obstacle Scenario. The car
moves toward the other car at position 50 m ahead which is
decelerating with 5m/s2. The initial velocity for both cars
is 20m/s.

Figures 2–6. We also investigated two variants of all five
scenarios, in which the maximum deceleration acmax

is held
constant at two different values.

1) Dry Pavement (DP ): acmax
= −5m/s2.

2) Wet Pavement (WP ): acmax
= −3m/s2.

Note that the behavior of the obstacle and simulation con-
stants are not known in advance by the car, and it must rather
infer them through sensor readings.

We tested the α-thresholding policies with α ∈ [10, 100]
with 10 as interval and 95 to 99 with 1 as interval. Both
smoothed and unsmoothed variants are tested. Each policy
is tested 10 times in each of the 10 scenarios in the set
S = {S1, S2, S3, S4, S5} × {DP,WP} described above
using a Monte-Carlo simulation. Figure 7 depicts the results
along with the ideal control at the origin. The smoothed 100-
threshold is closest to ideal.

VI. INTERSECTION CROSSING

Intersection crossing requires consideration of both brak-
ing as well as acceleration in order to avoid crossing too
slowly. It also requires considering the behavior of multiple
obstacles which makes optimal decision boundaries more
complex even in the known-state case. Here we present
an analytical conservative computation of the safety of a
given state S(x) in the presence of multiple-lane intersection
crossings. We are currently performing experiments applying
this technique under uncertainty using the construction of (1).

A. Constraints in the Path-Time Space

The state is defined as the time t, arc-length parameterized
position p, and tangential velocity v along a known path,
which can be straight as in street crossings or curved as in
unprotected lefthand turns. Acceleration and deceleration is
assumed bounded. The car begins at state (pt, vt) and ends
a maneuver at final position pT with a range of admissible
final velocities [vT , vT ].

The planning problem is to find a trajectory between
(pt, vt) and the goal region that respects acceleration and
deceleration bounds and also avoids obstacles. The obstacle
avoidance constraint for obstacle Oi, i = 1, . . . , n can be
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Fig. 4: Transient Object scenario. At first the car is at position
0 and moving with no obstacles detected. After 1.5 seconds,
the car will detect an obstacle ahead at position 70. The
obstacle will appear in the radar for 4 seconds and then
disappear.

Fig. 5: False Positive scenario. The car starts at 20m/s with
no obstacles detected. After 1.5 seconds, the car will wrongly
detect an obstacle at position 60. This false positive period
lasts for 0.5 seconds.

geometrically constructed as a forbidden region PO in the
path-time space (p, t) by examining the set of (p, t) points
that would cause the vehicle to overlap Oi [3]. This requires
that the length and width of Oi are known and that future
behavior of Oi is known. We currently assume that each
Oi travels along a given path with confidence intervals of
velocity and acceleration, which is assumed constant.

For each obstacle O we construct conservative rectangular
forbidden regions [pO, pO]× [tO, tO] in the (p, t) plane. The
forbidden interval [tO, tO] is constructed by examining the
minimum and maximum extents of the vehicle along O’s
path, and examining the time that O occupies these extents
plus a minimum time-to-collision margin [11]. The interval
[pO, pO] is based upon the vehicle dimensions plus certain
comfort margins on either side.

B. Analytical Planning with Piecewise Constant Accelera-
tions

Given this construction of forbidden regions, we extend the
path-time planning approach of [6] to consider acceleration
constraints. This requires planning in the path-velocity-time
space, and it is useful to note that any optimal trajectory will
either connect directly to the goal state, or pass tangentially
along either the upper-left or lower-right corner of one or
more obstacles [8]. Based on this observation we consider
searching among the set of piecewise constant acceleration
controls with discontinuities at lower-right and upper-left
obstacle corners.

The search explores a graph G where each node is asso-
ciated with set in the (p, v, t) space. Typically these sets are
specified as an interval of reachable velocities R at a point
in the (p, t) plane, except the initial node is specified as a
point (pt, vt, t), while the goal region has specified position,
unspecified time, and a range of admissible velocities. Each

Fig. 6: False Negative scenario. The car starts at 20m/s, and
a fixed obstacle is 100 m away. After 3.5 s, the car loses track
of the obstacle for 0.5 s seconds and then finds the obstacle
again.

Fig. 7: Performance of smoothed and unsmoothed variant
of α-thresholding policies with α ∈ [10, 100] with 10 as
interval. Risk index and interference index exhibit an inverse
relationship as α increases. The triangle dot (origin) represent
the ideal control.

expansion step checks whether the node can be connected
with a dynamically feasible, obstacle free trajectory to a
vertex (p′, t′) of an obstacle region (either the upper left or
lower right vertex) or to the goal region. If so, each connected
component of the set of reachable velocities is instantiated
as a new node.

The planner makes heavy use of the NextReachableSet
subroutine to propagate the set of reachable velocities, ex-
cluding obstacle avoidance constraints, from one node to
another. A variant is used to connect nodes to the goal region.

Algorithm 2 Compute the dynamically reachable set of
velocities Ri+1 after a change in position ∆p,∆t from an
initial point with velocities in interval Ri.
NextReachableSet(∆p,∆t, Ri)
A = [∆p−(1/2)amax∆t2

∆t , ∆p−(1/2)amin∆t2

∆t ] ∩Ri

B = [2∆p
∆t − upper(A), 2∆p

∆t − lower(A)]
return Ri+1 = A ∩ [0, inf)

The recursive depth first search is given in Algorithm 3.
The algorithm first checks for a connection to the goal region.
If successful, the range of reachable velocities at the goal is
returned. The recursion can then be terminated, or continued
to collect all trajectories that reach the goal. Next, it examines
all subsequent trajectories from the node through obstacle
vertices.

Of the dynamically feasible trajectories computed by Nex-
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Fig. 8: Above: A lefthand turn scenario. The red line is the
car’s path with reference point at the middle of its rear axis.
The orange line is considered a reference line. The distances
of obstacles to the line are 13 m, 28 m, 44 m, 37 m, 52 m. All
obstacles are moving at 10 m/s. Below: Feasible trajectories
that arrive within 10 s. Rectangles are path-time obstacles.

tReachableSet, it calls the CollisionCheckRegion subroutine
to partition the range of reachable velocities into a set of
disjoint intervals R. (It is possible for small (p, t) obstacles
to partition the trajectories into multiple components). This
test is performed by examining where the (p, t) trajectories
overlap each obstacle as the acceleration is swept between
amin and amax.

Algorithm 3 Perform a recursive depth first search for a
feasible path from any state (p, t, v) where v ∈ Ri.
ExpandNode(p, t, Ri)

If ∃v ∈ Ri s.t. (p, t, v) can be connected to the goal, output
the path leading to the goal.
for all (p′, t′) corners of O1, . . . , On do
R̂← NextReachableSet(p′ − p, t′ − t, Ri)
R← CollisionCheckRegion(p, t′, Ri, R̂)
for all R ∈ R do
V ← V ∪N , with N = (p′, t′, R)
ExpandNode(p′, t′, R)

end for
end for

Since p′ > p and t′ > t, the recursion necessarily
terminates in at most n steps. Further, it can be shown that
the graph contains no more than 2n+2 vertices, and hence a
naive implementation of the search runs in O(n3) time and
O(n2) space. The assumption that discontinuities in control
only occur at corner points simplifies the problem, but may

lead the algorithm to failure in a cluttered space that requires
carefully chosen acceleration and braking. We believe that
these situations rarely arise in practice, and plan to address
them in future work. We are currently working to integrate
our probabilistic decision thresholds with this algorithm.

VII. CONCLUSION

We present a generic framework for conducting semi-
autonomous collision avoidance and two concrete imple-
mentations that can be used under that framework. First, a
probabilistic based collision-avoidance braking strategy in
terms of their behavior in the presence of uncertainty in
vehicle dynamics, sensor noise, and unpredictable obstacle
behavior. A number of Monte-Carlo simulations demonstrate
that this probabilistic braking strategy can achieve good pe-
formance in different testing scenarios. Second, a technique
for determining safe trajectories for unprotected lefthand
turns, which was shown to be time-optimal under the given
constraints.
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