The Case for HTAP
Hybrid Transaction Analytical Processing

Patrick Valduriez
Outline

- Motivations
- HTAP
- LeanXcale
- Parallel polystore query processing
- Research directions
Motivations
Transaction vs. Analytical Processing

- **Problems**
 - ETL/ELT development cost up to 75% of analytics
 - Analytical queries on obsolete data
 - Leads to miss business opportunities, e.g., proximity marketing, real-time pricing, risk monitoring, etc.
Case Study: Banking

- **Data lakes to store historical data**
 - Data from mobile devices and the web coming with very high peaks
 - Use of ML to build predictive models over the historic data
 - Data copied from the data lake into GPU-based clusters to perform ML

- **Problems**
 - During data loading, ML processes must be paused to avoid observing inconsistent data and thus hurting the ML models that are being built
 - The ETL process may die without being noticed
 - Yields wrong ML models and a lot of effort to trace back what was the problem
 - Real-time analytics (e.g. real-time marketing) not possible
Case Study: IKEA

• **Objective: proximity marketing**
 • Real-time analysis of customer behavior in stores in order to provide targeted offers

• **Requirements**
 • Ingestion of real-time data on customer itineraries in store (through transactions)
 • Use of beacons (sensors) to identify and locate frequent customers from their smartphone
 • Analysis and segmentation of customers by similar behavior in other stores

• **Problem**
 • OLTP and OLAP at a very large scale in real time
Case Study: Oil & Gas

- **Context**: drilling oil in a given location
- **Objective**: detect ASAP that the drilling prospection will fail
 - Save millions of $ by preventing useless drilling
- **Requirements**
 - Efficient ingestion of real-time data from drillers
 - With *transactions* to guarantee data consistency
 - Real time analytics of all the data produced by the drillers
- **Problem**
 - Transactions and real-time analytics on driller data
HTAP
HTAP*: blending OLTP & OLAP

- **Advantages**
 - Cutting cost of business analytics by up to 75%
 - Simpler architecture: no more ETLs/ELTs
 - Real-time analytical queries on current data

Gartner, 2015
HTAP and Big Data

- **Challenges**
 - Scaling out transactions
 - Millions of transactions per second
 - Mixed OLTP/OLAP workloads on big data
 - Big data ingestion from remote data sources
 - Polystore capabilities
 - To access HDFS, NoSQL and SQL data sources
Related Work

• **Parallel SQL DBMS**
 • Can mix OLTP/OLAP through snapshot isolation and data versioning, e.g., Oracle Exadata
 • But hard to scale OLTP and expensive HW/SW

• **In-memory SQL DBMS**
 • Can support HTAP (e.g., HANA, MonetDB)
 • But hard to deal with big data

• **NoSQL**
 • Scalable key-value storage, data partitioning, fault-tolerance, ...
 • But no ACID transactions
HTAP Top Systems

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeanXcale Inc.</td>
<td>LeanXcale</td>
<td>Ultra-scalable transactions, based on proprietary KV store (KiVi) and proprietary OLAP leveraging the Calcite optimizer</td>
</tr>
<tr>
<td>SAP</td>
<td>HANA</td>
<td>The HTAP pioneer. In-memory, column store</td>
</tr>
<tr>
<td>Google</td>
<td>Spanner</td>
<td>NewSQL service with ACID transactions and synchronous replication across data centers</td>
</tr>
<tr>
<td>MemSQL Inc.</td>
<td>MemSQL</td>
<td>In-memory, column and row store, MySQL compatible</td>
</tr>
<tr>
<td>Esgyn</td>
<td>Esgyn</td>
<td>Apache Trafodion for OLTP, Hadoop for OLAP</td>
</tr>
<tr>
<td>NuoDB</td>
<td>NuoDB</td>
<td>Cloud solution (Amazon)</td>
</tr>
<tr>
<td>Splice Machine</td>
<td>Splice Machine</td>
<td>HBase as storage engine, Derby as OLTP query engine and SparkQL as OLAP query engine. Custom centralized transactional manager</td>
</tr>
<tr>
<td>VoltDB Inc.</td>
<td>VoltDB</td>
<td>Open source and proprietary. In-memory</td>
</tr>
</tbody>
</table>
Real-Time Big Data

Full SQL Full ACID DB

OLAP over Operational Data

Ultra-Scalable OLTP

Polyglot

Queries across SQL, HBase, Neo4J, MongoDB, & Hadoop data lakes Integration with Data Streaming

Elastic & Ultra-Efficient

Non-disruptive data migration, continuous load balancing
• **SQL/JSON DBMS**
 • Access from a JDBC driver

• **Key-value store (KiVi)**
 • Dual SQL/KV interface over relational data with efficiency, elasticity, high availability, indexing, ...
 • Fast, parallel data ingestion
 • Polystore access: HDFS, NoSQL, ...

• **OLAP parallel processing**
 • Based on the Apache Calcite optimizer
 • Extensive push down of operators to KiVi

• **Ultra-scalable transaction processing**
LeanXcale Distributed Architecture
KiVi – Efficiency

- **Multi-Workload**
 - Efficient for both range queries and large data ingestion (updates/inserts)
 - Combines benefits of B+ and LSM trees thanks to a novel proprietary data structure

- **NUMA aware architecture**
 - Avoids cost of context switches, thread synchronization and remote NUMA accesses in multicore processors

- **Vectorial**
 - Uses vectorial registers and SIMD instructions, yielding 10-50x acceleration

- **Columnar storage**
 - Yields 10-100x acceleration for tables with large number of columns
KiVi – Elasticity

- **Dynamic data migration**
 - Able to move data partitions across servers without affecting the QoS of the applications updating those

- **Dynamic load balancing**
 - Balances the load across servers based on the current load using dynamic data migration
 - Takes into account all resource utilization: CPU, memory, IO, and network

- **Fully elastic**
 - Adds and removes nodes as needed to minimize resource usage
KiVi - Online Aggregation

• **Commutative concurrency control**
 • Enables to aggregate data (additions/subtractions) with high levels of concurrency without conflicts

• **Online aggregation**
 • Have an aggregate table
 • WebServer (server, size, nb_users, ...)
 • A transaction can insert records and compute aggregations (SUM, COUNT, ... but not AVG) without experiencing conflicts

• **Aggregation analytical queries become costless single row queries**
 • Computing an aggregate simply requires reading the row from the aggregate table, thus removing the overhead of traditional aggregation analytical queries
KiVi – High Availability

- Contention free, active-active replication
 - Takes advantage of transactional scalability
 - Fail-over: when a storage server fails, the other replicas take over and are already up-to-date, yielding zero-downtime
 - Novel replication algorithm that avoids expensive synchronization (2PC, Paxos) during commit across replicas
Transactional Scalability

- Without data manager/logging to see how much TP throughput can be attained
- Based on a micro-benchmark to stress the TM

2.35 Million TPS
Highly Scalable Transaction Processing*

Single-node bottleneck

Processes & commits transactions in parallel

Provides a consistent view

Traditional approach

Traditional Approach

Centralized Transaction Manager

Atomicity
Isolation
Consistency
Durability

Single-node bottleneck
Traditional Approach

Centralized Transaction Manager

Atomicity
Isolation
Isolation
Reads
Writes
Durability

Single-node bottleneck
Scaling ACID Properties

- Atomicity
- Isolation
- Isolation
- Read
- Write
- Durability
Scaling ACID Properties

Atomicity
- Local TMs

Isolation
- Reads
- Commit sequencer
- Snapshot server

Isolation
- Writes
- Conflict managers

Durability
- Loggers
Transaction Management Principles

• Separation of commit from the visibility of committed data
• Proactive pre-assignment of commit timestamps to committing transactions
• Detection and resolution of conflicts before commit

• Transactions can commit in parallel because:
 • They do not conflict
 • They have their commit timestamp already assigned that will determine their serialization order
 • Visibility is regulated separately to guarantee the reading of fully consistent states
Transactional Life Cycle: start

The local txn mng gets the “start TS” from the snapshot server.
The transaction will read the state as of “start TS”.

Write-write conflicts are detected by conflict managers on the fly.
Transaction Life Cycle: commit

The local transaction manager orchestrates the commit.
Transaction Life Cycle: commit

1. **Get Commit TS**
 - Local Txn Manager
 - Commit TS

2. **Log**
 - Logger
 - Writeset

3. **Public Updates**
 - Data Store
 - Writeset

4. **Report Snaps Serv**
 - Snapshot Server
 - Commit TS

- **Commit Sequencer**
- **12:30**

Transaction Life Cycle: commit

Sequence of commit timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server (staring at 10)
Parallel Polystore Query Processing with LeanXcale*

Polyglot Query Example

- A query in CloudMdsQL* that integrates data from
 - DB1 – relational (RDB)
 - DB2 – document (MongoDB)

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
 (SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 =
 {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
 *}

Polyglot Query Example

- **CloudMdSQL = SQL + subqueries**
 - Expressed as named tables on ad-hoc schema
 - Compiled to query sub-plans

```sql
/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
  ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
  ( SELECT x, y FROM A )

/* Native sub-query */
T2(x int, z string)@DB2 =
  {*
    db.B.find( {lt: {x, 10}}, {x:1, z:1, _id:0} )
  *}
```
Parallel Polystore Query Processing

- **Objectives**
 - Intra-operator parallelism
 - Apply parallel algorithms
 - Exploit data sharding in data stores
 - Access data shards (partitions) in parallel
 - Polyglot capabilities
 - Optimization
 - Select pushdown, bindjoin, etc.

- **Solution**
 - The LeanXcale Distributed Query Engine (DQE)
 - ... with CloudMdsQL polyglot extensions
LeanXcale Polystore Architecture

- Workers access directly data shards through wrappers
- DataLake API: get list of shards; assign shard to worker
Query on LeanXcale and MongoDB

```
LineItem( L_ORDERKEY int, ... )@mongo = {*
    return db.lineitem.findSharded(
        {l_quantity: {$lt: 5}} );
    *
}SELECT count(*) FROM LineItem L, Orders O
WHERE L_ORDERKEY = O_ORDERKEY
```
Performance Evaluation

- Clicks: 1TB, 6 billion rows
- Orders_Items: 600GB, 3 billion items, 770 million docs
- 3 selectivity factors on the Clicks table*

* Experiments performed with the previous version of LeanXcale based on HBase
Research Directions in HTAP
Many Research Opportunities

- **Polyglot SQL**
 - SQL++ compatibility
 - JSON indexing within columns
- **Polystore**
 - Cost model, including histograms
 - Materialized views
- **Streaming and CEP**
 - Query language combining streaming and access to the database, e.g., through SQL or KiVi API
- **Scientific applications**
 - HTAP + scientific workflows
- **Analytics and ML**
 - Spark ML using updatable RDDs, instead of redoing RDDs periodically,
 - Incremental ML algorithms based on online aggregation, scalable updates and OLAP queries (as supported by LeanXcale)
- **Benchmarking**
 - Defining HTAP benchmarks and compare HTAP systems
 - Profiling HTAP (e.g., LeanXcale and KiVi) to find new optimizations
References

