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To generate identification data, we simulated this system using the Control of Nonlinear Chained Systems: From the

feedback law Routh—Hurwitz Stability Criterion to Time-Varying
Exponential Stabilizers
u(t) =r(t) = (=0.95¢*)y(t) = r(t) + 0.95y(t —2)  (43) P. Morin and C. Samson

which places the closed-loop polesin 0.8618 and 0.6382. In the simula- _ - .
tion we used independent’ zero-mean, Gaussian white noise referene@StraCt—\Ne show how anyllnear feedback that stabilizes the origin ofa

: - - - linear chain of integrators induces a simple, continuous time-varying feed-
' [ i
e_md n0|§e signaler ()} and{e(t)} with variances 1 and 0.01, respec back that exponentially stabilizes the origin of a nonlinear chained-form
tively. N = 200 data samples were used.

) ) o system. The design method is related to a method developed by M’Closkey
In Table I, we have summarized the results of the identification, th@d Murray to transform smooth feedback yielding slow polynomial con-

numbers shown are the estimated parameter values together with therigence into continuous homogeneous ones that give exponential conver-
standard deviations. For comparison, we have, apart from the mo@@fce-
structure (24), used a standard output error model model structure anéldex Terms—Asymptotic stability, nonholonomic system, time-varying
a second-order ARMAX model structure. As can be seen, the standaetiback.
output error model structure gives completely useless estimates, and the
modified output error and the ARMAX model structures give similar
|. INTRODUCTION

and accurate results.

Control systems in the so-calletlained formhave been extensively
studied in recent years. This research interest partly stems from the
fact that the kinematic equations of many nonholonomic mechanical

The trick to include a modified noise model in the output error mod&YStEMS, such as these arising in mobile robotics (unicycle-type carts,
structure is of course also applicable to the Box—Jenkins model strﬁé—r'“ke vehicles V‘_”th trailers, etc.), can be converted into thls_form
ture. The alternative form will in this case be [1_2]’ [_16]' [18]. _Th's paper a_tddress_es the_ problem of asymptotl_c sta-

bilization of a given equilibrium point (which corresponds to a fixed
configuration for a mechanical system).
F7(9)C(g) (t) (44) Because chained systems do not satisfy Brockett's necessary condi-
Fa(q)D(q) ' tion [1], they cannot be asymptotically stabilized, with respect to any
o ) o _ _ equilibrium point, by means of a continuous pure-state feedback
An 'expllc.lt expression for the gradient filters for t.hIS predictor can bg) [15], one of the authors proposed and derived sméoth-varying
derived similarly as in the output error case, albeit the formulas will Bgedback laws:(z, #) for the stabilization of a unicycle-type vehicle.
even messier. We leave the details to the reader. This proposition showed how the topological obstruction raised by
Brockett could be dodged and was the starting point of other studies
on time-varying feedback. In [3] and [4], Coron established that most
controllable systems can be asymptotically stabilized with this type of

In this paper, we have proposed new versions of the well-knovi@edback. The literature on the subject has since then mostly focused
output error and Box—Jenkins model structures that can also be uggdhe explicit design of such stabilizing control laws. Smooth feed-
for identification of unstable systems. The new model structures d¥ack laws yielding slow (polynomial) asymptotic convergence have
equivalent to the standard ones, as far as number of parameters figtloeen designed (see, e.g., [13], [15]-[17], and [19]). More recently,
asymptotical results are concerned, but guarantee stability of the greoperties associated with homogeneous systems have been used to ob-
dictors. tain feedback laws only continuous but yielding an exponential conver-

gence rate [7], [8], [10], [14].
Lately, M'Closkey and Murray have presented in [9] a method for

V. AN ALTERNATIVE BOX—JENKINS MODEL STRUCTURE

Bla).

y(t) = Flg) u(t) +
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of a (definite negative) Lyapunov function coupled with a smooth staet % 2 (ko, +++, k) be defined from the first column of the
bilizing feedback is not needed. This knowledge makes a significaRbuth—Hurwitz table by
difference because finding a “good” Lyapunov function for a chained
system of order larger than three is not a simple task. The second
improvement is related to the “scaling factor” used to transform the
smooth feedback into a continuous exponentially stabilizing one. In )
[9], this factor is implicitly defined as the solution of an equation in] "€n, we have the following two lemmas whose proofs can be found
volving the considered Lyapunov function. Solving such an equatidi Several control textbooks (see [2], for sxample). _ _
will usually have to be done numerically. The first feedback law pro- Lemma 1: Let X» = (2, 3, ---, 2,)", and con5|d1§r the linear
posed in the present study is of this type. We also show in a secditgnge of coordinates X, — Zu = (22, 23, ==+, 20)" = P X
result, however, that this scaling factor can be replaced by an adeq&!ﬁfé“ed by
explicit function. The implementation of the resulting control law is
consequently simplified.

This paper is organized as follows. In Section Il, some results used Zy =@y
further for the design of the control laws are recalled. The two main L=

(kn7 kn,—1-, kn—Za . ') = ((1'17,7 bna Cn,y * ')~

results and proposed control laws are presented in Section Il in the O .

form of two propositions. In the first one, the aforementioned scaling g3 =kinzp Lz (G=1n=3) @)
factoris stillimplicitly defined. The second propositionis an adaptatiofith 1,4, = (9¢:/0X.)f the Lie derivative of ¢; along
of the first one to get rid of the implicit definition of the scaling factor.¢( x,y = (235, 24, -+, 2,,, 0)”. Then, in the coordinategs,

Finally, a sketch of proof of these results is given in Section IV.  the controlled system (1), (2) becomes

Il. PRELIMINARY RECALLS iy = 23,

A. Stabilization of a Multi-Order Integrator and the Zivn = —hizi zigs (i=2--.n=-2) (4
Routh—Hurwitz Criterion in = —kn_1zn—1 — knzn.

Consider the following linear (n — 1)-order integrator Using the fact that the time derivative of the quadratic funciiorle-
(d/dt)" VY, = u whose equivalent controllable state realizafined by
tion is:

{r7 =Tiq1, (7::2./ e, —1) (1) "fz(ZQ)é ZZID]‘ZQ
rn = U.

Dy

n—1 n—1
Diag (H ki, H Kiy ooy kn_, 1) (5)
1=2 1=3

along any solution of the system (4) is

Any linear feedback control

U = — Z a;x; (2)
i=2 V;(Zz) = =2k, 22 (6)
asymptotically stabilizes the origin of this system, provided all roots gf¢ easily establish the following Lemma.

isti ials) = "1 ;=2 ; I . ,
the ch.aracter_lstlc polynomigls) = " +ans “ttasstaz Lemma 2: The originZ, = 0 of the linear system (4) is asymptot-
associated with the closed-loop system have strictly negative real PaSily stable if and only ift; > 0fori =2, -+, n.

The Routh-Hurwitz tableassociated with this polynomial is A corollary of the above two lemmas is the well-known Routh—Hur-
witz stability criterion.

1 an—1 apn—3 -+ - Corollary 1 (Routh—Hurwitz): All roots of the polynomiap(s) =
4y Gneg Anq -+ 0 s" '+ ans""? 4+ --- 4 aszs + a have strictly negative real parts if
by bu—s e e 0 and only ifk; > Ofori =2, ---, ».
Cn  Cn—z e oo 0
dy dp_s cee oo 0 B. Nonexponential Time-Varying Feedback Stabilization of
: _ _ 0 Chained Systems
0 o 0 o The prime objective of the previous section was to point out the al-
gebraic operations that transform the chain of integrators involved in
with the system (1), (2) into thﬁk_ew—symmetrimpresgntation (4) to which
the simple Lyapunov function (5) can be associated. In [16], the struc-
tural similitude between the lineas-order integrator system (1) and
ar =0 . fork <2 the following nonlinear chained system:
by =—— (ak—2 — anar—
k . (ak—2 — anar—_1)
,7',’1 = U
Ck = — anb, (anbr—2 — bna/\‘—Q) Ti = U1 Tig1, (L =2,---,n— ].). @)
dp =— (bych—2 — cnbi_2) =

has been used, with the aforementioned transformations, to prove the
following result.
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Proposition 1 [16, Prop. 2.2]: Leta; (i = 2, ---, n) be a set of IIl. MAIN RESULTS
parameters for which the origin of the linear systgh), (2) is asymp-

. ) . i Let us consider the chained systeff) and define a dilation
totically stable. Then, the continuous time-varying feedback control ystefr)

6q(N, X2) = (\"%a2, -+, A" x,, ) indexed by the integer € N via
wi(a, ) = =k + g(Xo) sin ¢ thedilation weightsr; chosen as follows:
i . 8 P = — 1 ':2‘...7 .
usl, t) = —u; (2, t) Zsign(tn)"'“" . 8 ri=n—1i-+gq fori , n (11)
=2 Let us also consider a set of parameters: = 2, - -, n) chosen so
with &1 > 0 andg(X>) a continuous function that vanishes¥ = 0 the linear control (2) asymptotically stabilizes the origin of the linear

(i.e.,g(0) = 0) and s strictly positive elsewhere, applied to the chainegyStem (1)- The Corresponding positive ROUth—HL!I‘WitZ pa.ramete.rs are
system (7): enoted as before &s (i = 2, -- -, n), and the matrix associated with

. . the change of coordinates defined in Lemma 1 is again denotég.as
1) makes the positive function The first result involves a specific homogeneous negrimplicitly
) P defined by
Ve(X2) = X5 3. D03 X0 (=V.(Z2)) 9)
Va(u(pa(X2)™ X2)) =C, VX2 #0 (12)
nonincreasing along any solution of this system;
2) globally asymptotically stabilizes the origin = 0 of this whereC is a positive real number and. is the quadratic positive func-
system. tion introduced in Proposition 1. The nextlemma asseris uniquely
This result clearly indicates how any linear stabilizing feedback for tt#€fined by the polynomial equation (12), provideds chosen large
linear(n — 1)-order integrator system (1) induces a simple, continuo@ough.
time-varying feedback law that asymptotically stabilizes the origin of Lemma 3: ¢o > 1 exists such that, for any > ¢o (¢ € N),
the corresponding chained system (7). As pointed out in [16], however,1) VX, # 0, VA > 0, (9/0\)Vi(64(A, X2)) > 0, so the
a shortcoming of the feedback law (8) is that it yields slow (polynomial) equationV (6, (), X2)) = C admits a unique positive solution
asymptotic convergence to zero. The main contribution of this paperis  A\(X5);
to show how this time-varying control may itself be simply modified 2) the functionp,, from R"~! to R", defined byp,(X:) =

to make the controlled, chained system exponentially stable. MX2)™! when X, # 0 andp,(0) = 0, is smooth on
R" ' — {0} and homogeneous of degree one with respect to
C. Homogeneity and Exponential Stabilization the dilations, (A, .).

The set of nonlinear systems homogeneous of degree zero with\{\_é‘_a'- are now ready to state the first main result in the following propo-

spect to some dilation constitutes a fairly natural extension of the son. 2 Th . . ing feedback
of linear systems. Some properties of these systems are briefly recalleﬁrc’pos't'on - The continuous time-varying feedbac

hereafter. For more details, see, e.g., [5]. u(a, t) = —k1a1 + pg(X2) sin £, F1>0,0>q0> 1
Forany)\ > 0 and any set of real parameters> 0 (i = 1, -- -, n), N ) b l—i

a “dilation” operator is a mag(}, .): R" — R" defined by Y 4, (s, t) = —u (2, f>Z <Slgn(’f‘1)) @i (13)

5()‘5 Ly vty l'n) = (’Arll'la ) A"n‘T”). / / =2 ﬂq(/“?)

A function f € C°R" x R;R) is homogeneous of de- ) )
greer > 0 with respect to the (family of) dilatiors(), . if: ~@Pplied to the chained system (7)
YA >0, f(6(X\ ), t) = A7 f(z, t). 1) makesp, (X2 (%)) nonincreasing along any solution of the con-
A homogeneous normassociated with this dilation operator i€% trolled system,;
function fromR™ to R, homogeneous of degree one with respect to the 2) globally exponentially stabilizes the origin= 0 of this system.
dilation, positive p(z) > 0,V z), and proper. A consequence of this Remark 1:
definition is thatp(x) = 0 iff = = 0. An example of homogeneous 1) By imposingg to be larger than one, although the inverse of
norm is pq(X2) is not defined forY, = 0, each terme; /p ( Xo)" 11
. p involved in the controluz(z, t) is homogeneous of positive
- o/ . degree and tends to zero whgki;| tends to zero. Therefore,
pol@) = <Z1 ) |P/ j) ’ with p > 0. (10) us (x, 1) is, by continuity, well (?efir|1ed o™ x R.
’ 2) The condition imposed on the sizegfis directly related to the
satisfaction of théransversality conditiordescribed in [9, Th.

A differential system: = f(«, t) (or a vector fieldf), with f € ' -0 -
4]. The connection appears explicitly in the proof of Proposition

C°(R™ x R; R™), is homogeneous of degree> ( with respect to
the dilations(2, .) if forany: = 1, - -+, n, theith componentf; of :
the vector fieldf is homogeneous of degreet ;. A practical difficulty with the control (13) is that the calculation of
Finally, letf € C°(R" x R; R"), with f(«, .) T periodic, define 4 (X2) requires solving the polynomial equativm_(éq(pgl, X2)) =
an homogeneous vector field of degree zero with respect to the dilatfen In general, this will have to be done numerically. This difficulty,
(X, .). Then, the two following properties are equivalent: however, can be avoided by considering a homogeneous norm of the
1) the origine = 0 of the systemi: = f(x. ¢) is asymptotically type (10), with ther;’s defined by (11), and using this function in the
stable: ’ control expression, instead pf(X>). This statement is made precise
2) « = 0is globally exponentially stable in the sense that there exi&t the following proposition, which is the second result of this paper.
~ > 0 and, for any homogeneous noyma valuek’ such that Proposition 3: Let p,,, , be the function orit defined by
along any trajectory:(t) (t > o) of the systemi: = f (=, t),

n 1/p
Pr.a(X2) = <Z I%I"/"> (rj=n—j+aq).
=2

p(x(t)) < Kp(a(te)) e 70100,
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Then,qo > 1 exists such that, if > ¢o andp > n — 2 + ¢, the for both values +1 andl of sign(u1 ). Then, (19) and20)imply

continuous time-varying feedback control .

N =2k, |ua | (%V,(éq(x Xo))|  (2pWe)i.  (21)

uy(z, t) = —kyiaq(sin? t 4 sign(z1) sin t)

—hn1pp.q(X2) sin £, ki >0, kugr >0 Because, from Lemma 89/9\)V..(6,(\, X)) > 0 foranyXs # 0,
n sign(u1) ntl—i the above equality implies( X2 (.)) is nondecreasing—the ir?equality
uz(w, t) = —ui(z, t) Z /’4(’(2) a;; (0/OX)Vx(64(A, X2)) > 0 corresponds to the transversality condi-
1:2 P\~

tion in [9]; this is the only place where this condition is used. There
(14)  remains to prove (20). From Lemma®; is the matrix of the linear
) ) change of coordinates which transforms (1), (2) into (4). Therefore, we
applied to the chained system (7) deduce from (6) and (9)
i) ensures along any solution of the controlled system, 61 V

Vo) K &, Wo

Ve(Yo((B+1)m)) < Ve(Ya(k VkEeN 15 .
(Ya((k+ 1)m)) < a(@)Ve(Ya (k) 1) R o2

ith o 1, and
with ag) < 1, an with K the matrix associated with the right-hand side of (4). This

2 z3 o T proves (20) forsign(u,) = 1. If sign(u;) = —1, we consider the
Y = < . ) : change of coordinates: R"~' — R"~' defined byy;(Ws) =
(—1)"w; (remark that) = ¢~ "). Itis simple to verify

—, e s Tn
Pp, ¢(X2)" 727 pp g (Xp)n ™3 Pp, q(X2)

i) globally exponentially stabilizes the origin= 0 of this system.

Remark 2: The proof of this proposition uses the fact that
lui(x, )] > Eny1pp, o(X2)|sin t], with the sign of ui(x, t)  Moreover, using the definition of the matrik, of change of coordi-
changing periodically as the sign ein ¢. Although the slightly more nates introduced in Lemma 1, we can also verify

d} (A,, 1 Wa ) = ‘4+1 Y (”/72 ) . (2 3)

simple controlu; (z, t) = —ki@1 — kut1pp, (X2) sin ¢ does not

satisfy this inequality, we conjecture this control, combined with the D0 (W) = (P Wa). (24)
controlus (x, t) of (14), also ensures the origin of the control system ) N
is g.a.s. Usmg (22)-(24), and because, for any¥; and W,

! (Wh) Dy (We) = Wit D, W, becauseD,, is diagonal, we have

IV. PROOFS OF THEMAIN RESULTS oVz

o (W2)A Wy =2WS @ De®pA W,

We report in this section the proofs of Propositions 2 and 3. For the o . , .
sake of conciseness, the proofs of a few intermediary technical lemmas - 27*"T ( (I)"’W?;DW@’CA” W2)
are omitted (they can be found in [11]). =2¢" (W2)®; D ®ptp (A1 W2)

=207 (W)®L D@ Ay (Wy)

A. Proof of Proposition 2 v,
, . : - (P (W) A (Wa)
We first prove i). Let us assume > ¢o, SO, according to T ox
Lemma 3, the equatiol’;(5,(\, X2)) = C has a unique pos- = =2k, (Brt)(W))r
itive solution A(X.) for any X, # 0. Differentiating with = =2k, (V(Pp W2))?

respect to time both members of the above equality, and denoting
A = ; = =2 (D Wa)2. (25)
Wy = (w2, -+, wy) = 6q(AMX2), X2), we obtain
. This proves (20) and completes the proof of i).
i=— |2y (84N, Xa) AL (W2)8,(\, X»). (16)  Parti) and (13) implyr, is bounded along the trajectories of the
X Oz system, and becaugg is proper, all trajectories exist of), +oc)
and are bounded. To show the asymptotic stability, we apply LaSalle’s
invariance principle [6] for time-periodic systems. First, remark, for
v>n—2+gq,plisof clas' onR" ' because each partial deriva-
Asign(uy) W2 AN e (0p%/0x:) (i = 2, -+ -, n) is homogeneous of degree-r; > 0,
and therefore tends to zero|d; | tends to zero. From what precedes,
all solutions converge to the largest invariant &ettontained inE =
{a: (d/dt) p;(X2) = 0}. Let us show

) r M = {(z1, 0): 1 € R}. (26)
Ya;w;

In view of (7), (11), and (13),

By(\ X2) =

With Agign(u,) ONe of the two matriced ;, andA_, defined by

"4sign(u1 ) W,

n
= sign(u) <’IU37 e Wy, — Zsign(u] )"'H_
i—2

From (16) and (17), we deduce

. (18)
Consider any solutior(.) of the system contained ifi, and assume
X (.) is not identically zero. Becausge (X-(t)) is constant and dif-
ferent from zero, this implieX';(¢) # 0 for all ¢. In view of (21) and
Lemma 3, we deduce

-1 .
oV
—Auy| { Vi (84(N, )&2)):| = (W2) Asign(up) Wa. (19)
9 ' lur(2(t), )|(@xW2)7 (1) = 0. @7
Assume From (13),u1(x(t), t) cannot be identically zero becausgis con-
81’ stant and different from zero. Lét,, ¢) denote a nonempty time-

— (W2) Asign(un) Wa = —2kn (®x W), (20) " interval on whichu (x(#), ) # 0. Without loss of generality, we
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can assume (x(t), t) is positive on(¢1, t2). Then, it comes that zero. Exponential stability then results because the controlled system
(B4 W2),(t) = 0fort € (t1, t2). BecauséV, = 6,(A(X2), X») is homogeneous of degree zero with respect to the dilatioh, =) =
and\(X>(t)) is constant, we deduce from (I}, = Aui A41Wa, 50 (Az1, 8,(A, X2)).
. Step 1: If X2(t) # 0, the derivative oft>(X5) at timet is well
Op W2 = Au1 @p Ay Ws defined and such that
= Bp Ay 7 B W = Auy K &, Wo. (28)

o (3 o _ " P n4l—z

Because both andu; do not vanish orit,, ), and in view of the Yo = o q (‘7“" P gﬂgn(ul) ('”'1/‘)

structure of the matri¥< [recall I is the matrix associated with the Lup B

right-hand side of (4)], we easily show from (28} 17>),, is identi- + qu BY, (31)
P q

cally zero on(t1, t2) only if all components of> 1, are identically
zero, that s, ifX2(.) is identically zero. This proves (26). From thewith ¢, , = (;.1/p},'~") denoting theth component of the vector

expression ofi; («, ¢) and the system’s equatidn = u1, #1(t) 8IS0y, andB = —diag(n — 2, n — 3, ---, 1, 0). In view of (18) and
converges to zero. Lemma 5, we can rewrite (31) as

Finally, we easily show the closed-loop system (7)-(13) |
is homogeneous of degree zero with respect to the dilation y, — 1" Ao o el Y2)B)Y: 32
5,0, 2) = (Az1, 6,(\, X2)). In view of the results of Sec- ’ Pp,q(XZ)( snton) + (e () B2 (32)

ion 11-C, this implies the exponential ility of thi m = . .
tion 11-C, this implies the exponential stability of this syste Let us assumeX:(t) # 0 on some intervalty, ¢1). The function

u1/pp, 4 is well defined on this interval. Moreover, in view of the ex-

. pression of the contral; (z, t)
The proof uses the following Lemmas (see [11] for the proofs of

these results).
Lemma 4: The mapY> defined by

B. Proof of Proposition 3

A Jui(x(t), )] A, .
- m > 0(t) = kpa] sin t], (33)

Y < 9 3 Tp_1 )T with the sign ofu; being the opposite of the sign g1 ¢. The sign of
2 . In
%

y(t)

Poa(X2)" =2 py o(X2)" =3 oo a(Xo w1 thus changes periodically.
Because bothd; and A_, are Hurwitz-stable—from (23), the
withp > n—2+¢andg > 0,is anhomeomorphism d&' ~*,andaC"  change of coordinates, — ¢'Y; transformsA_; into A4, —, s.p.d
diffeomorphism orfit"~' — {0} providedy is large enough. Moreover, Matrices Prign(u,) and Quien(a;) €Xist such that, for each value of

YTZ(‘YZ) = Oifand Only if X2 =0, andlinl‘XZ“”L” |Y—Z(XVZ)| = Sign(ul)v Psig‘n(ul)ASi?;n(ul) + Aslign(ul)PSiF;n(ul) = _QSign(ul)'
too. . . . This readily implies the functior’y(Y2) = Yy Py.1Ys (resp.,
Lemma 5: Consider the function defined by V_1(Y2) = Y4 P_1Y5) is nonincreasing along the trajectories of

system(32) for sign(u1) = 1 ande,, +1 bounded by a small enough
value (resp. fosign(u;) = —1 ande,, —, bounded by a small enough
Two functionse,, 1 ande,, 1 in C°(R"~! — {0}: R) exist such that \galue).OLet us now show,):i((.)) is aot][ajectory that crgsses the set
' i 0 ] -y X2 = 0 at some timeto, X2(¢) = 0 for anyt > t,. Suppose on
g zrfz >0 SLL:L(M"\2)|Zp’?((j§2>)| _ le(': q';i'l(uli(l); 2); the contrary| X, (t2)| > 0 for somet, > to. For example, assume
a—Foo SUPX,50 €, 102 ’ ’ ‘ Xa(t2) > 0. By continuity of X»(.), t; with ¢, < t, < t, exists such
Lemma 6: Consider the system that

h(ur, Xo) = (uiws, w124, <+, U1y, u2(U1, Xz))T.

§ = (t)(A+e(y)B)y (29) 0= Xa(t) < Xo(t),  fort € (i1, ta]. (34)

with y € R* %, +(.) € C°(R; RY), A a Hurwitz-stable matrixe €
C°(R*~' = {0}; R) bounded. LeP denote a symmetric positive-def-
inite (s.p.d.) matrix such tha4 + A* P < 0 (such a matrix exists
becaused is stable), ang(¢) denote a maximal solution ¢29).
Then,3 > 0 exists such that the following property holds: for an
functiono(.) € C°(R; R™) strictly positive on some nonempty in-
terval(#;, t2), and any € (0, ¥z — #1], « € (0, 1) exists such that

By possibly decreasing the value ©f, we can assume; is of con-
stant sign or(t1, t2]. We deduce from (34) = Viign(u,)(Ya(t1)) <
Viign(up) (Ya(t2)). This is clearly in contradiction with the fact that the
JunctionV’;l(YZ) (resp.V_1(Y3)) is nonincreasing on any skt # 0
andsign(ui) = 1 (resp.,sign(u;) = —1).

Step 2: We now consider a solution such th&t(¢) # 0,V >
0. From (20),PAsign(uy) + Aligniup P < 0, With P = &f D P

y(H)T Py(t) < the matrix associated with the “fu(nclztid)ﬁ!. From Lemma 5, the upper
Y(t) 2 y0(t), Vi € (t. t2) ‘ o gp) Doundson the functions «iu.,) in (32) can be made arbitrary small
lell < 3 = § (L= @y(t)" Py(ts) (30) by increasing;. By applying Lemma 5 to system (32) and because,
Vi€ [t + 6, ta] from (33),~v(¢) > 0 on any interval k=, (k+ 1)m), we deduce (using
R Lemma 5) the existence @fizu(.,) > 0 anday, ., , € (0, 1) such
with [|e[| = Sup{le(=)|: = € R"™" — {0}}. that, forg > guign(uy),
The proof of Proposition 3 involves two steps. First, we show,i$f
large enough, any solution that crosses at some time tH&set 0 (the Ve (Yo (ksign(uy ™))
same as the séb = 0, in view of Lemma 4) remains in this set ever <(1- aqﬁ_gn(ul))Vr(y_)((]i,wn(m —1)m) (35)
after. For such a solution, the first state variable satisfies, after a finite
time, the equatiort; = —k;x; (sin® ¢ + sign(x) sin ¢), and this with k1, any even integer, andl_, any odd integer. Property i) of

impliesz: (t) asymptotically converges to zero (see [10], for exampleroposition 3 follows fron{35) with o = max(1 — g, 1 —ag_,)
Therefore, the only solutions that may not converge to zero are th@s€0, 1)), providedg > max(g+1, g—1). This property, plus the proof
that never cross the séf, = 0. The second step of the proof thusof Step 1, clearly imply¥»(¢) asymptotically converges to zero. The
consists in showing any of these solutions asymptotically convergestmvergence of; () to zero then easily follows from the first system’s
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equationi; = u; and the expression of the conteal(z, t) (see [10], Fixed Zeros of Decentralized Control Systems
for example). [ ]
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