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To generate identification data, we simulated this system using the
feedback law

u(t) = r(t)� (�0:95q�2)y(t) = r(t) + 0:95y(t� 2) (43)

which places the closed-loop poles in 0.8618 and 0.6382. In the simula-
tion we used independent, zero-mean, Gaussian white noise reference
and noise signalsfr(t)g andfe(t)gwith variances 1 and 0.01, respec-
tively. N = 200 data samples were used.

In Table I, we have summarized the results of the identification, the
numbers shown are the estimated parameter values together with their
standard deviations. For comparison, we have, apart from the model
structure (24), used a standard output error model model structure and
a second-order ARMAX model structure. As can be seen, the standard
output error model structure gives completely useless estimates, and the
modified output error and the ARMAX model structures give similar
and accurate results.

V. AN ALTERNATIVE BOX–JENKINS MODEL STRUCTURE

The trick to include a modified noise model in the output error model
structure is of course also applicable to the Box–Jenkins model struc-
ture. The alternative form will in this case be

y(t) =
B(q)

F (q)
u(t) +

F �
a
(q)C(q)

Fa(q)D(q)
e(t): (44)

An explicit expression for the gradient filters for this predictor can be
derived similarly as in the output error case, albeit the formulas will be
even messier. We leave the details to the reader.

VI. CONCLUSIONS

In this paper, we have proposed new versions of the well-known
output error and Box–Jenkins model structures that can also be used
for identification of unstable systems. The new model structures are
equivalent to the standard ones, as far as number of parameters and
asymptotical results are concerned, but guarantee stability of the pre-
dictors.
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Control of Nonlinear Chained Systems: From the
Routh–Hurwitz Stability Criterion to Time-Varying

Exponential Stabilizers

P. Morin and C. Samson

Abstract—We show how any linear feedback that stabilizes the origin of a
linear chain of integrators induces a simple, continuous time-varying feed-
back that exponentially stabilizes the origin of a nonlinear chained-form
system. The design method is related to a method developed by M’Closkey
and Murray to transform smooth feedback yielding slow polynomial con-
vergence into continuous homogeneous ones that give exponential conver-
gence.

Index Terms—Asymptotic stability, nonholonomic system, time-varying
feedback.

I. INTRODUCTION

Control systems in the so-calledchained formhave been extensively
studied in recent years. This research interest partly stems from the
fact that the kinematic equations of many nonholonomic mechanical
systems, such as these arising in mobile robotics (unicycle-type carts,
car-like vehicles with trailers, etc.), can be converted into this form
[12], [16], [18]. This paper addresses the problem of asymptotic sta-
bilization of a given equilibrium point (which corresponds to a fixed
configuration for a mechanical system).

Because chained systems do not satisfy Brockett’s necessary condi-
tion [1], they cannot be asymptotically stabilized, with respect to any
equilibrium point, by means of a continuous pure-state feedbacku(x).
In [15], one of the authors proposed and derived smoothtime-varying
feedback lawsu(x; t) for the stabilization of a unicycle-type vehicle.
This proposition showed how the topological obstruction raised by
Brockett could be dodged and was the starting point of other studies
on time-varying feedback. In [3] and [4], Coron established that most
controllable systems can be asymptotically stabilized with this type of
feedback. The literature on the subject has since then mostly focused
on the explicit design of such stabilizing control laws. Smooth feed-
back laws yielding slow (polynomial) asymptotic convergence have
first been designed (see, e.g., [13], [15]–[17], and [19]). More recently,
properties associated with homogeneous systems have been used to ob-
tain feedback laws only continuous but yielding an exponential conver-
gence rate [7], [8], [10], [14].

Lately, M’Closkey and Murray have presented in [9] a method for
transforming smooth time-varying stabilizers into homogeneous con-
tinuous ones. The method is best suited for driftless systems for which
it applies systematically. The construction relies upon the initial knowl-
edge of an adequate Lyapunov function coupled with a smooth stabi-
lizing feedback law. More precisely, the exponential stabilizer is ob-
tained by “scaling” the size of the smooth control inputs on a level set
of the Lyapunov function. The feedbacks derived in the present paper
have been obtained by adapting and combining the core of this method
to the control design method earlier proposed by Samson in [16] for
the smooth feedback stabilization of chained systems. Although our
approach is specific to chained systems, it carries with it two important
improvements with respect to [9]. The first one is that the knowledge
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of a (definite negative) Lyapunov function coupled with a smooth sta-
bilizing feedback is not needed. This knowledge makes a significant
difference because finding a “good” Lyapunov function for a chained
system of order larger than three is not a simple task. The second
improvement is related to the “scaling factor” used to transform the
smooth feedback into a continuous exponentially stabilizing one. In
[9], this factor is implicitly defined as the solution of an equation in-
volving the considered Lyapunov function. Solving such an equation
will usually have to be done numerically. The first feedback law pro-
posed in the present study is of this type. We also show in a second
result, however, that this scaling factor can be replaced by an adequate
explicit function. The implementation of the resulting control law is
consequently simplified.

This paper is organized as follows. In Section II, some results used
further for the design of the control laws are recalled. The two main
results and proposed control laws are presented in Section III in the
form of two propositions. In the first one, the aforementioned scaling
factor is still implicitly defined. The second proposition is an adaptation
of the first one to get rid of the implicit definition of the scaling factor.
Finally, a sketch of proof of these results is given in Section IV.

II. PRELIMINARY RECALLS

A. Stabilization of a Multi-Order Integrator and the
Routh–Hurwitz Criterion

Consider the following linear (n � 1)-order integrator
(d=dt)(n�1)x2 = u whose equivalent controllable state realiza-
tion is:

_xi = xi+1; (i = 2; � � � ; n� 1)

_xn = u:
(1)

Any linear feedback control

u = �

n

i=2

aixi (2)

asymptotically stabilizes the origin of this system, provided all roots of
the characteristic polynomialp(s) = sn�1+ans

n�2+ � � �+a3s+a2
associated with the closed-loop system have strictly negative real parts.
TheRouth–Hurwitz tableassociated with this polynomial is

1 an�1 an�3 � � � � � �

an an�2 an�4 � � � 0

bn bn�2 � � � � � � 0

cn cn�2 � � � � � � 0

dn dn�2 � � � � � � 0
...

...
...

... 0

� � � 0 0 0 0

with

ak =0 for k < 2

bk =�
1

an
(ak�2 � anak�1)

ck =�
1

anbn
(anbk�2 � bnak�2)

dk =�
1

bncn
(bnck�2 � cnbk�2)

...:

Let k
�
= (k2; � � � ; kn) be defined from the first column of the

Routh–Hurwitz table by

(kn; kn�1; kn�2; � � �) = (an; bn; cn; � � �):

Then, we have the following two lemmas whose proofs can be found
in several control textbooks (see [2], for example).

Lemma 1: Let X2 = (x2; x3; � � � ; xn)
T , and consider the linear

change of coordinates�: X2 7�! Z2 = (z2; z3; � � � ; zn)
T = �kX2

defined by

z2 =x2

z3 =x3

zj+3 = kj+1zj+1 + Lfzj+2 (j = 1; � � � ; n� 3) (3)

with Lf�i = (@�i=@X2)f the Lie derivative of �i along
f(X2) = (x3; x4; � � � ; xn; 0)

T . Then, in the coordinatesZ2,
the controlled system (1), (2) becomes

_z2 = z3;

_zi+1 = �kizi + zi+2
_zn = �kn�1zn�1 � knzn:

(i = 2; � � � ; n� 2) (4)

Using the fact that the time derivative of the quadratic functionVz de-
fined by

Vz(Z2)
�
= ZT

2 DkZ2

Dk
�
= Diag

n�1

i=2

ki;

n�1

i=3

ki; � � � ; kn�1; 1 (5)

along any solution of the system (4) is

_Vz(Z2) = �2knz
2
n (6)

we easily establish the following Lemma.
Lemma 2: The originZ2 = 0 of the linear system (4) is asymptot-

ically stable if and only ifki > 0 for i = 2; � � � ; n.
A corollary of the above two lemmas is the well-known Routh–Hur-

witz stability criterion.
Corollary 1 (Routh–Hurwitz): All roots of the polynomialp(s) =

sn�1 + ans
n�2 + � � � + a3s + a2 have strictly negative real parts if

and only ifki > 0 for i = 2; � � � ; n.

B. Nonexponential Time-Varying Feedback Stabilization of
Chained Systems

The prime objective of the previous section was to point out the al-
gebraic operations that transform the chain of integrators involved in
the system (1), (2) into theskew-symmetricrepresentation (4) to which
the simple Lyapunov function (5) can be associated. In [16], the struc-
tural similitude between the linearn-order integrator system (1) and
the following nonlinear chained system:

_x1 = u1
_xi = u1xi+1;

_xn = u2;

(i = 2; � � � ; n� 1); (7)

has been used, with the aforementioned transformations, to prove the
following result.
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Proposition 1 [16, Prop. 2.2]: Let ai (i = 2; � � � ; n) be a set of
parameters for which the origin of the linear system(1), (2) is asymp-
totically stable. Then, the continuous time-varying feedback control

u1(x; t) = �k1x1 + g(X2) sin t

u2(x; t) = �u1(x; t)

n

i=2

sign(u1)
n+1�i aixi

(8)

with k1 > 0 andg(X2) a continuous function that vanishes atX2 = 0
(i.e.,g(0) = 0) and is strictly positive elsewhere, applied to the chained
system (7):

1) makes the positive function

Vx(X2) � XT
2 �T

kDk�kX2 (= Vz(Z2)) (9)

nonincreasing along any solution of this system;
2) globally asymptotically stabilizes the originx = 0 of this

system.

This result clearly indicates how any linear stabilizing feedback for the
linear(n�1)-order integrator system (1) induces a simple, continuous
time-varying feedback law that asymptotically stabilizes the origin of
the corresponding chained system (7). As pointed out in [16], however,
a shortcoming of the feedback law (8) is that it yields slow (polynomial)
asymptotic convergence to zero. The main contribution of this paper is
to show how this time-varying control may itself be simply modified
to make the controlled, chained system exponentially stable.

C. Homogeneity and Exponential Stabilization

The set of nonlinear systems homogeneous of degree zero with re-
spect to some dilation constitutes a fairly natural extension of the set
of linear systems. Some properties of these systems are briefly recalled
hereafter. For more details, see, e.g., [5].

For any� > 0 and any set of real parametersri > 0 (i = 1; � � � ; n),
a “dilation” operator is a map�(�; :): n �! n defined by
�(�; x1; � � � ; xn) = (�r x1; � � � ; �

r xn).
A function f 2 C0( n � ; ) is homogeneous of de-

gree � � 0 with respect to the (family of) dilation�(�; : if:
8� > 0; f(�(�; x); t) = �� f(x; t).

A homogeneous norm� associated with this dilation operator is aC0

function from n to , homogeneous of degree one with respect to the
dilation, positive (�(x) � 0, 8x), and proper. A consequence of this
definition is that�(x) = 0 iff x = 0. An example of homogeneous
norm is

�p(x) =

n

j=1

jxj j
p=r

1=p

; with p > 0: (10)

A differential system_x = f(x; t) (or a vector fieldf ), with f 2
C0( n � ; n), is homogeneous of degree� � 0 with respect to
the dilation�(�; :) if for any i = 1; � � � ; n, theith componentfi of
the vector fieldf is homogeneous of degree� + ri.

Finally, letf 2 C0( n � ; n), with f(x; :) T periodic, define
an homogeneous vector field of degree zero with respect to the dilation
�(�; :). Then, the two following properties are equivalent:

1) the originx = 0 of the system_x = f(x; t) is asymptotically
stable;

2) x = 0 is globally exponentially stable in the sense that there exist
 > 0 and, for any homogeneous norm�, a valueK such that
along any trajectoryx(t) (t � t0) of the system_x = f(x; t),

�(x(t)) � K�(x(t0)) e
�(t�t ):

III. M AIN RESULTS

Let us consider the chained system(7) and define a dilation
�q(�; X2) = (�r x2; � � � ; �

r xn) indexed by the integerq 2 via
thedilation weightsri chosen as follows:

ri = n� i+ q for i = 2; � � � ; n: (11)

Let us also consider a set of parametersai (i = 2; � � � ; n) chosen so
the linear control (2) asymptotically stabilizes the origin of the linear
system (1). The corresponding positive Routh–Hurwitz parameters are
denoted as before aski (i = 2; � � � ; n), and the matrix associated with
the change of coordinates defined in Lemma 1 is again denoted as�k.
The first result involves a specific homogeneous norm�q implicitly
defined by

Vx(�q(�q(X2)
�1; X2)) = C; 8X2 6= 0 (12)

whereC is a positive real number andVx is the quadratic positive func-
tion introduced in Proposition 1. The next lemma asserts�q is uniquely
defined by the polynomial equation (12), providedq is chosen large
enough.

Lemma 3: q0 > 1 exists such that, for anyq � q0 (q 2 ),

1) 8X2 6= 0; 8� > 0, (@=@�)Vx(�q(�; X2)) > 0, so the
equationVx(�q(�; X2)) = C admits a unique positive solution
�(X2);

2) the function�q , from n�1 to +, defined by�q(X2) =
�(X2)

�1 when X2 6= 0 and �q(0) = 0, is smooth on
n�1 � f0g and homogeneous of degree one with respect to

the dilation�q(�; :).
We are now ready to state the first main result in the following propo-
sition.

Proposition 2: The continuous time-varying feedback

u1(x; t) = �k1x1 + �q(X2) sin t; k1 > 0; q � q0 > 1

u2(x; t) = �u1(x; t)

n

i=2

sign(u1)

�q(X2)

n+1�i

aixi (13)

applied to the chained system (7)

1) makes�q(X2(t)) nonincreasing along any solution of the con-
trolled system;

2) globally exponentially stabilizes the originx = 0 of this system.
Remark 1:

1) By imposingq to be larger than one, although the inverse of
�q(X2) is not defined forX2 = 0, each termxi=�q(X2)

n+1�i

involved in the controlu2(x; t) is homogeneous of positive
degree and tends to zero whenjX2j tends to zero. Therefore,
u2(x; t) is, by continuity, well defined on n � .

2) The condition imposed on the size ofq0 is directly related to the
satisfaction of thetransversality conditiondescribed in [9, Th.
4]. The connection appears explicitly in the proof of Proposition
2.

A practical difficulty with the control (13) is that the calculation of
�q(X2) requires solving the polynomial equationVx(�q(��1q ; X2)) =
C. In general, this will have to be done numerically. This difficulty,
however, can be avoided by considering a homogeneous norm of the
type (10), with theri ’s defined by (11), and using this function in the
control expression, instead of�q(X2). This statement is made precise
in the following proposition, which is the second result of this paper.

Proposition 3: Let �p; q be the function on n�1 defined by

�p; q(X2) =

n

j=2

jxj j
p=r

1=p

(rj = n� j + q):
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Then,q0 > 1 exists such that, ifq � q0 andp > n � 2 + q, the
continuous time-varying feedback control

u1(x; t) = �k1x1(sin
2 t+ sign(x1) sin t)

�kn+1�p; q(X2) sin t; k1 > 0; kn+1 > 0

u2(x; t) = �u1(x; t)

n

i=2

sign(u1)

�p; q(X2)

n+1�i

aixi

(14)

applied to the chained system (7)

i) ensures along any solution of the controlled system,

Vx(Y2((k+ 1)�)) � �(q)Vx(Y2(k�)) 8 k 2 (15)

with �(q) < 1, and

Y2 =
x2

�p; q(X2)n�2
;

x3
�p; q(X2)n�3

; � � � ;
xn�1

�p; q(X2)
; xn

T

;

ii) globally exponentially stabilizes the originx = 0 of this system.

Remark 2: The proof of this proposition uses the fact that
ju1(x; t)j � kn+1�p; q(X2)j sin tj, with the sign of u1(x; t)
changing periodically as the sign ofsin t. Although the slightly more
simple controlu1(x; t) = �k1x1 � kn+1�p; q(X2) sin t does not
satisfy this inequality, we conjecture this control, combined with the
controlu2(x; t) of (14), also ensures the origin of the control system
is g.a.s.

IV. PROOFS OF THEMAIN RESULTS

We report in this section the proofs of Propositions 2 and 3. For the
sake of conciseness, the proofs of a few intermediary technical lemmas
are omitted (they can be found in [11]).

A. Proof of Proposition 2

We first prove i). Let us assumeq > q0, so, according to
Lemma 3, the equationVx(�q(�; X2)) = C has a unique pos-
itive solution �(X2) for any X2 6= 0. Differentiating with
respect to time both members of the above equality, and denoting
W2 = (w2; � � � ; wn)

�
= �q(�(X2); X2), we obtain

_� = �
@

@�
Vx(�q(�; X2))

�1
@Vx
@x

(W2)�q(�; _X2): (16)

In view of (7), (11), and (13),

�q(�; _X2) = �ju1(x; t)jAsign(u )W2 (17)

with Asign(u ) one of the two matricesA+1 andA
�1 defined by

Asign(u )W2

= sign(u1) w3; � � � ; wn; �

n

i=2

sign(u1)
n+1�iaiwi

T

: (18)

From (16) and (17), we deduce

_� = ��ju1j
@

@�
Vx(�q(�; X2))

�1
@Vx
@x

(W2)Asign(u )W2: (19)

Assume

@Vx
@x

(W2)Asign(u )W2 = �2kn(�kW2)
2
n; (20)

for both values +1 and−1 of sign(u1). Then, (19) and(20) imply

_� = 2�knju1j
@

@�
Vx(�q(�; X2))

�1

(�kW2)
2
n: (21)

Because, from Lemma 3,(@=@�)Vx(�q(�; X2)) > 0 for anyX2 6= 0,
the above equality implies�(X2(:)) is nondecreasing—the inequality
(@=@�)Vx(�q(�; X2)) > 0 corresponds to the transversality condi-
tion in [9]; this is the only place where this condition is used. There
remains to prove (20). From Lemma 1,�k is the matrix of the linear
change of coordinates which transforms (1), (2) into (4). Therefore, we
deduce from (6) and (9)

@Vx
@x

(W2)A+1W2 =
@Vz
@z

(�kW2)K �kW2

=�2kn(�kW2)
2
n (22)

with K the matrix associated with the right-hand side of (4). This
proves (20) forsign(u1) = 1. If sign(u1) = �1, we consider the
change of coordinates : n�1 �! n�1 defined by i(W2) =
(�1)iwi (remark that =  �1). It is simple to verify

 (A
�1W2) = A+1 (W2): (23)

Moreover, using the definition of the matrix�k of change of coordi-
nates introduced in Lemma 1, we can also verify

�k (W2) =  (�kW2): (24)

Using (22)–(24), and because, for anyW1 and W2,
 T (W1)Dk (W2) =WT

1 DkW2 becauseDk is diagonal, we have

@Vx
@x

(W2)A�1W2 =2WT
2 �T

kDk�kA�1W2

=2 T (�kW2)Dk (�kA�1W2)

= 2 T (W2)�
T
kDk�k (A�1W2)

= 2 T (W2)�
T
kDk�kA+1 (W2)

=
@Vx
@x

( (W2))A+1 (W2)

=�2kn(�k (W2))
2
n

=�2kn( (�kW2))
2
n

=�2kn(�kW2)
2
n: (25)

This proves (20) and completes the proof of i).
Part i) and (13) implyx1 is bounded along the trajectories of the

system, and because�q is proper, all trajectories exist on[0; +1)
and are bounded. To show the asymptotic stability, we apply LaSalle’s
invariance principle [6] for time-periodic systems. First, remark, for
� > n� 2+ q, ��q is of classC1 on n�1 because each partial deriva-
tive (@��q=@xi) (i = 2; � � � ; n) is homogeneous of degree��ri > 0,
and therefore tends to zero asjX2j tends to zero. From what precedes,
all solutions converge to the largest invariant setM contained inE =
fx: (d=dt)��q (X2) = 0g. Let us show

M = f(x1; 0): x1 2 g: (26)

Consider any solutionx(:) of the system contained inE, and assume
X2(:) is not identically zero. Because�q(X2(t)) is constant and dif-
ferent from zero, this impliesX2(t) 6= 0 for all t. In view of (21) and
Lemma 3, we deduce

ju1(x(t); t)j(�kW2)
2
n(t) � 0: (27)

From (13),u1(x(t); t) cannot be identically zero because�q is con-
stant and different from zero. Let(t1; t2) denote a nonempty time-
interval on whichu1(x(t); t) 6= 0. Without loss of generality, we
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can assumeu1(x(t); t) is positive on(t1; t2). Then, it comes that
(�kW2)n(t) = 0 for t 2 (t1; t2). BecauseW2 = �q(�(X2); X2)
and�(X2(t)) is constant, we deduce from (17)_W2 = �u1A+1W2, so

�k
_W2 =�u1�kA+1W2

=�u1�kA+1�
�1
k �kW2 = �u1K �kW2: (28)

Because both� andu1 do not vanish on(t1; t2), and in view of the
structure of the matrixK [recallK is the matrix associated with the
right-hand side of (4)], we easily show from (28)(�kW2)n is identi-
cally zero on(t1; t2) only if all components of�kW2 are identically
zero, that is, ifX2(:) is identically zero. This proves (26). From the
expression ofu1(x; t) and the system’s equation_x1 = u1, x1(t) also
converges to zero.

Finally, we easily show the closed-loop system (7)–(13)
is homogeneous of degree zero with respect to the dilation
�q(�; x) = (�x1; �q(�; X2)). In view of the results of Sec-
tion II-C, this implies the exponential stability of this system.

B. Proof of Proposition 3

The proof uses the following Lemmas (see [11] for the proofs of
these results).

Lemma 4: The mapY2 defined by

X2 7!
x2

�p; q(X2)n�2
;

x3
�p; q(X2)n�3

; � � � ;
xn�1

�p; q(X2)
; xn

T

with p > n�2+q andq > 0, is an homeomorphism onn�1, and aC1

diffeomorphism on n�1�f0g providedq is large enough. Moreover,
Y2(X2) = 0 if and only if X2 = 0, andlimjX j!+1 jY2(X2)j =
+1.

Lemma 5: Consider the functionh defined by

h(u1; X2) = (u1x3; u1x4; � � � ; u1xn; u2(u1; X2))
T :

Two functions�q;+1 and�q;�1 in C0( n�1 � f0g; ) exist such that

1) 8X2 6= 0, Lh(u ;X )�p; q(X2) = ju1j�q; sign(u )(X2);
2) limq!+1 supX 6=0 j�q; i(X2)j = 0, (i = +1; �1).
Lemma 6: Consider the system

_y = (t)(A+ �(y)B)y (29)

with y 2 n�1, (:) 2 C0( ; +), A a Hurwitz-stable matrix,� 2
C0( n�1�f0g; ) bounded. LetP denote a symmetric positive-def-
inite (s.p.d.) matrix such thatPA + ATP � 0 (such a matrix exists
becauseA is stable), andy(t) denote a maximal solution of(29).

Then,� > 0 exists such that the following property holds: for any
function 0(:) 2 C0( ; +) strictly positive on some nonempty in-
terval(t1; t2), and any� 2 (0; t2 � t1], � 2 (0; 1) exists such that

(t) � 0(t); 8 t 2 (t1; t2)

k�k � �
)

y(t)TPy(t) �

(1� �)y(t1)
TPy(t1)

8 t 2 [t1 + �; t2]

(30)

with k�k
�
= Supfj�(x)j: x 2 n�1 � f0gg.

The proof of Proposition 3 involves two steps. First, we show, ifq is
large enough, any solution that crosses at some time the setX2 = 0 (the
same as the setY2 = 0, in view of Lemma 4) remains in this set ever
after. For such a solution, the first state variable satisfies, after a finite
time, the equation_x1 = �k1x1(sin

2 t + sign(x1) sin t), and this
impliesx1(t) asymptotically converges to zero (see [10], for example).
Therefore, the only solutions that may not converge to zero are those
that never cross the setX2 = 0. The second step of the proof thus
consists in showing any of these solutions asymptotically converges to

zero. Exponential stability then results because the controlled system
is homogeneous of degree zero with respect to the dilation�q(�; x) =
(�x1; �q(�; X2)).

Step 1: If X2(t) 6= 0, the derivative ofY2(X2) at timet is well
defined and such that

_Y2 =
u1
�p; q

y3; � � � ; yn; �

n

i=2

sign(u1)
n+1�iaiyi

+
Lh�p; q
�p; q

BY2 (31)

with yi+1 = (xi+1=�
n�i�1
p; q ) denoting theith component of the vector

Y2, andB = �diag(n � 2; n � 3; � � � ; 1; 0). In view of (18) and
Lemma 5, we can rewrite (31) as

_Y2 =
ju1j

�p; q(X2)
(Asign(u ) + �q; sign(u )(Y2)B)Y2: (32)

Let us assumeX2(t) 6= 0 on some interval[t0; t1). The function
u1=�p; q is well defined on this interval. Moreover, in view of the ex-
pression of the controlu1(x; t)

(t)
�
=
ju1(x(t); t)j

�p; q(X2(t))
� 0(t)

�
= kn+1j sin tj; (33)

with the sign ofu1 being the opposite of the sign ofsin t. The sign of
u1 thus changes periodically.

Because bothA+1 andA�1 are Hurwitz-stable—from (23), the
change of coordinatesY2 7�!  Y2 transformsA�1 intoA+1—, s.p.d
matricesPsign(u ) andQsign(u ) exist such that, for each value of
sign(u1), Psign(u )Asign(u ) + AT

sign(u )Psign(u ) = �Qsign(u ).
This readily implies the functionV+1(Y2) = Y T

2 P+1Y2 (resp.,
V�1(Y2) = Y T

2 P�1Y2) is nonincreasing along the trajectories of
system(32) for sign(u1) = 1 and�q;+1 bounded by a small enough
value (resp. forsign(u1) = �1 and�q;�1 bounded by a small enough
value). Let us now show, ifx(:) is a trajectory that crosses the set
X2 = 0 at some timet0, X2(t) = 0 for any t � t0. Suppose on
the contraryjX2(t2)j > 0 for somet2 > t0. For example, assume
X2(t2) > 0. By continuity ofX2(:), t1 with t0 � t1 < t2 exists such
that

0 = X2(t1) < X2(t); for t 2 (t1; t2]: (34)

By possibly decreasing the value oft2, we can assumeu1 is of con-
stant sign on(t1; t2]. We deduce from (34)0 = Vsign(u )(Y2(t1)) <
Vsign(u )(Y2(t2)). This is clearly in contradiction with the fact that the
functionV+1(Y2) (resp.V�1(Y2)) is nonincreasing on any setY2 6= 0
andsign(u1) = 1 (resp.,sign(u1) = �1).

Step 2: We now consider a solution such thatX2(t) 6= 0, 8 t �
0. From (20),PAsign(u ) + AT

sign(u )P � 0, with P = �T
kDk�k

the matrix associated with the functionVx. From Lemma 5, the upper
bounds on the functions�q; sign(u ) in (32) can be made arbitrary small
by increasingq. By applying Lemma 5 to system (32) and because,
from (33),(t) > 0 on any interval(k�; (k+1)�), we deduce (using
Lemma 5) the existence ofqsign(u ) > 0 and�q 2 (0; 1) such
that, forq � qsign(u ),

Vx(Y2(ksign(u )�))

� (1� �q )Vx(Y2((ksign(u ) � 1)�)) (35)

with k+1 any even integer, andk�1 any odd integer. Property i) of
Proposition 3 follows from(35)with � = max(1��q ; 1��q )
(2(0; 1)), providedq � max(q+1; q�1). This property, plus the proof
of Step 1, clearly implyY2(t) asymptotically converges to zero. The
convergence ofx1(t) to zero then easily follows from the first system’s



146 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 1, JANUARY 2000

equation_x1 = u1 and the expression of the controlu1(x; t) (see [10],
for example).
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Fixed Zeros of Decentralized Control Systems

Konur A. Ünyeliǒglu, Ümit Özgüner, and A. Bülent Özgüler

Abstract—This paper considers the notion ofdecentralized fixed zerosfor
linear, time-invariant, finite-dimensional systems. For an -channel plant
that is free of unstable decentralized fixed modes, an unstable decentral-
ized fixed zero of Channel (1 ) is defined as an element of the
closed right half-plane, which remains as a blocking zero of that channel
under the application of every set of 1 controllers around the other
channels, which make the resulting single-channel system stabilizable and
detectable. This paper gives a complete characterization of unstable decen-
tralized fixed zeros in terms of system-invariant zeros.

Index Terms—Decentralized control, fixed zeros, linear systems, stabi-
lization.

I. INTRODUCTION

The main objective of this paper is to give a definition and a char-
acterization of unstable decentralized fixed zeros of a linear, time-in-
variant, finite-dimensional plant.

Consider theN -channel decentralized plantZ in Fig. 1, which is
assumed to be free of unstable decentralized fixed modes [13]. Let
i 2 f1; � � � ; Ng be fixed. Assume, without loss of generality,i = 1.
Let the closed-loop transfer matrix betweenu1 andy1 be denoted by
Ẑ11, where the dependence ofẐ11 on the controllersZc2; � � � ; ZcN is
suppressed for simplicity.

An unstable decentralized fixed zero of Channel 1 is defined as an
element of the closed right half-plane, which remains as a blocking zero
[2], [3] of Ẑ11 for the application of every collection ofN � 1 local
controllersZc2; � � � ; ZcN , which yield that the partially closed-loop
system is stabilizable and detectable around Channel 1.

Decentralized fixed zeros deserve attention because of the perfor-
mance limitations they impose on various sensitivity minimization
problems, which can be explained by referring to Figs. 2 and 3,
whereZc1; � � � ; ZcN are local controllers to achieve two objectives:
1) closed-loop stability and 2) minimization of theH1 norm of the
transfer matrix betweenw andz in Fig. 2.

In Fig. 2, the signalw is a noise affecting the first channel observa-
tion. In Fig. 3, the signalr is a reference signal to be tracked by the first
channel outputy1. The transfer matrix betweenr and the error signale
is identical to the one betweenw andz in Fig. 2. It is easy to compute
the transfer matrix betweenw andz (or thesensitivity function around
Channel 1) equalsS := (I + Ẑ11Zc1)

�1. Let Zc1; Zc2; � � � ; ZcN
be any collection of local controllers satisfying the closed-loop sta-
bility. From [8, Remark and Theorem 3.2] (see also Lemma 2 in the
next section), the controllersZc2; � � � ; ZcN yield that the closed-loop
system is stabilizable and detectable around Channel 1 in the partially
closed-loop configuration of Fig. 1. Then, observe, at each unstable de-
centralized fixed zeros0 of Channel 1,kS(s0)k = 1, regardless of the
controllers chosen. In other words, 1) the sensitivity of the closed-loop
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