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Abstract

It is known that rigid body models with two controls cannot be locally asymptot-

ically stabilized by continuous feedbacks which are functions of the state only. This

impossibility does no longer hold when the feedback is also a function of time, or when

it is discontinuous. A locally stabilizing smooth time-varying feedback is here explic-

itly derived by using Center Manifold Theory combined with averaging and Lyapunov

techniques.
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1 Introduction

The attitude control of a rigid spacecraft operating in degraded mode, i.e. with only one or
two controls, has already been much studied in the literature. This type of system has for
example been used to illustrate several aspects of nonlinear controllability. Let us mention
the results of Bonnard [3] and Crouch [8] proving that the system is globally controllable
except for some exceptional locations of the actuators, and the work by Kerai [11] which
establishes small time local controllability (STLC) in the same situations with two controls.

The present paper focuses on the attitude stabilization problem. Some early results may
be found in [8] where controllability results are used to transform open-loop control strate-
gies into a feedback. The feedback so obtained is discontinuous and a simplified alternative
method is proposed in [12]. We are concerned here with continuous feedback. The related
but simpler problem consisting of stabilizing the angular velocity of the spacecraft with
one or two actuators has been investigated by several authors, see Aeyels [1], Sontag and
Sussmann [22], and more recently Byrnes and Isidori [2]. In the past, it seems that contin-
uous stabilization of the attitude has been implicitly ruled out because this system belongs
to the class of systems, singled out by Brockett [4], which are controllable but cannot be
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stabilized via continuous state feedback. On the other hand, an article by Samson [19] has
recently triggered the discovery that many systems of interest which cannot be stabilized
by continuous state-feedback can in fact be stabilized by smooth “time-varying” feedback.
Research on time-varying control has then expanded quickly. In particular Coron (see e.g
[6], [7]) established that, “most” STLC systems are stabilizable by continuous time-varying
feedback. This result, combined with the aforementioned result by Kerai on STLC [11],
yields the existence of a stabilizing continuous time-varying feedback for a rigid spacecraft
with two pairs of gas jets (i.e. two controls), except in the cases known to be uncontrollable.
Besides the existence issue, methods for the design of time-varying feedbacks have also been
developed for driftless systems which do not satisfy Brockett’s necessary condition (see e.g
[17], [18]). However their extensions to systems with drift, such as the one considered here,
is not straightforward. In [13], Samson and Morin present a first attempt to stabilize the
spacecraft with time-varying controls. Although no stability proof is provided there, the
given control laws display stabilization properties on simulations.

In the present paper, an explicit smooth time-varying feedback with proven stabilizing
properties is derived1. The techniques used for the construction of this control combine
center manifold theory with time-averaging and Lyapunov techniques. The idea of apply-
ing center manifold theory to time-varying stabilization has previously been used in [21],
and subsequently in [23], for the stabilization of some driftless systems. A preliminary
description of the present results was presented at the 33rd IEEE CDC [14].

The paper is organized as follows. Section 2 recalls the equations of a rigid body and
precisely states the control objective. A simplified control problem is treated in Section
3 and our main result is given in Section 4. Throughout the paper, we use the following
notations:

• |X| or |x1, . . . , xn| denotes the Euclidean norm of a vector X or (x1, . . . , xn).

• O(|X|q) is the usual notation (see for instance [16] for more details) for any expression
whose norm is bounded by K|X|q for a certain K in a neighborhood of X = 0. For
time-varying functions, we require that K be independant of time t. For instance,
f(X, t) = O(|X|q) with f a function from IRn × IR to IRm for some n and m means

∃δ > 0, ∃K > 0, ∀t, |X| < δ ⇒ |f(X, t)| ≤ K |X|q ,

and l(O(|x1, x2|
2), 0, x1, x2, t) = O(|x1, x2|

3), for l a function from IR4 × IR to any
IRm and x1 and x2 scalar means that l(η(x1, x2, t), 0, x1, x2, t) = O(|x1, x2|

3) for all
function η such that η(x1, x2, t) = O(|x1, x2|

2).

2 Problem Statement

Let us denote:

• ω: the angular velocity vector of the frame F0 attached to the spacecraft (with axes
corresponding to the principal inertia axes of the body) with respect to the frame F1
whose attitude is the desired one for F0. This vector is expressed in the basis of F0.

1While preparing this manuscript, we have been informed of an independent work by R. Montgomery,
S.S. Sastry, and G.C. Walsh in the same direction. No preprint has yet been communicated to us.
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• J = diag(j1, j2, j3): the inertia matrix of the spacecraft.

• S(ω) =




0 ω3 −ω2
−ω3 0 ω1
ω2 −ω1 0


: the matrix representation of the cross product.

If R is the rotation matrix representing the attitude of F1 with respect to F0 (and whose
columns vectors are the basis vectors of F1 expressed in F0) , we get the well known
equations: {

Ṙ = S(ω)R
Jω̇ = S(ω)Jω + (τ1, τ2, 0)

T (1)

where the τi are the torques applied to the rigid body.
This is a control system with two inputs τ1 and τ2 and state space SO(3) × IR3. Our

objective is to find a control (τ1(t, R, ω), τ2(t, R, ω)) periodic with respect to time, which
locally asymptotically stabilizes the point (I3, 0) of SO(3) × IR3, with I3 denoting the
identity matrix. In order to control the body rotations, a preliminary step traditionally
consists in defining a minimal set of local coordinates for the parametrization of SO(3)
around the identity. A common choice is the Euler angles. We make a different choice
that has the advantage of yielding polynomial equations. Let S3 be the three-dimensional
sphere, identified with the multiplicative group of unitary quaternions λ = (λ0, λ1, λ2, λ3)
with λ 20 + λ 21 + λ 22 + λ 23 = 1 and with λ0 the real part of the quaternion. It is established
in [20] that (1) lifts to the following control system on S3 × IR3 :





λ̇ =
1

2

(
0 −ωT

ω S(ω)

)
λ

Jω̇ = S(ω)Jω + (τ1, τ2, 0)
T

(2)

We choose, on the hemisphere λ0 > 0, the following coordinates, sometimes called
Rodrigues parameters:

X = (x1, x2, x3) = (
λ1

λ0
,
λ2

λ0
,
λ3

λ0
)

The mapping λ 7→ X is a diffeomorphism from this hemisphere to IR3, and X is a minimal
parameterization of the rotations of angle different from π. It is simple to write the system
(2) –and hence the original system– in the coordinates (X,ω) . One obtains:





Ẋ =
1

2

(
ω + S(ω)X + (ωT X)X

)

ω̇1 = c1 ω2ω3 + u1
ω̇2 = c2 ω1ω3 + u2
ω̇3 = c3 ω1ω2

(3)

with c1 =
j2 − j3

j1
, c2 =

j3 − j1

j2
, c3 =

j1 − j2

j3
, u1 =

τ1

j1
, and u2 =

τ2

j2
.

It is of course assumed that c3 6= 0, since otherwise the system is neither controllable nor
stabilizable. We may also assume that c3 > 0, due to the fact that the change of variables
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(x1, x2, x3, ω1, ω2, ω3, u1, u2) 7−→ (x2, x1,−x3, ω2, ω1,−ω3, u2, u1) leaves the equation (3)
unchanged, except for the parameters (c1, c2, c3) which are changed into (−c2,−c1,−c3).

The problem addressed in this paper consists of finding a smooth feedback control law
which asymptotically stabilizes the origin (X = 0, ω = 0) of (3). The problem is first

simplified by considering the following reduced order system obtained by taking v1
∆
= ω1

and v2
∆
= ω2 as control variables :



ẋ1
ẋ2
ẋ3


 = 1

2
[



v1
v2
ω3


 +




0 ω3 −v2
−ω3 0 v1
v2 −v1 0






x1
x2
x3


 + (v1x1 + v2x2 + ω3x3)



x1
x2
x3


 ]

ω̇3 = c3 v1 v2 , c3 > 0.

(4)

3 Stabilization of the reduced system with velocity controls

A possible control law and the corresponding stabilization result are stated next:

Theorem 1 The smooth time-varying control:




v1(X,ω3, t) = 2g1ḣ1 + h1
∂g1

∂x3
ω3 − 2k1(x1 − g1h1)

v2(X,ω3, t) = 2g2ḣ2 − x3v1 + x1ω3 + h2
∂g2

∂x3
ω3 − 2k2(x2 − g2h2)

(5)

with {
g1(x3, ω3) = αx3 + βω3, g2(x3, ω3) = x23 + ω23
h1(t) = a1 sin t, h2(t) = a2 sin t+ a3 cos t

(6)

and parameters k1, k2, a1, a2, a3, α and β such that:

k1 > 0, k2 > 0, a1 > 0, a2 < 0, a3 > 0, α = −
a23

8a1a2
, β =

a3

4a1
(7)

locally asymptotically stabilizes the origin of (4).

The proof developed in the sequel of the section consists in a step by step construction
of the control law (5)-(7).

From the first two equations of system (4), it is clearly possible to create for the closed
loop system, via an adequate choice of v1 and v2, a two-dimensional attractive center
manifold. We choose a center manifold which is time varying (in order to circumvent
Brockett’s necessary condition) and arbitrarily assign an approximation given by x1 =
g1(x3, ω3)h1(t) and x2 = g2(x3, ω3)h2(t) where h1 and h2 are periodic functions of time. In
order to simplify the exposition, we make the following change of variables:

{
z1 = x1 − g1(x3, ω3)h1(t)
z2 = x2 − g2(x3, ω3)h2(t)

(8)

The control (5) can then be rewritten in the new coordinates (z1, z2, x3, ω3) as:
{

v1(z1, x3, ω3, t) = 2g1ḣ1 + h1
∂g1
∂x3

ω3 − 2k1z1, k1 > 0

v2(z1, z2, x3, ω3, t) = 2g2ḣ2 − x3v1 + (z1 + g1h1)ω3 + h2
∂g2
∂x3

ω3 − 2k2z2, k2 > 0
(9)

4



Lemma 1 With the controls v1 and v2 given by (9), where g1 and g2 are homogeneous
polynomials in x3 and ω3 of degree 1 and 2 respectively, and h1 and h2 smooth T-periodic
functions of time, the closed-loop system may be written, in coordinates (z1, z2, x3, ω3), as:





ż1 = − k1 z1 + l1(z1, z2, x3, ω3, t)
ż2 = − k2 z2 + l2(z1, z2, x3, ω3, t)(
ẋ3
ω̇3

)
=

(
0 1

2

0 0

)(
x3
ω3

)
+ f(z1, z2, x3, ω3, t)

(10)

where f = (f1, f2)
T and l = (l1, l2)

T are smooth functions, T-periodic with respect to time,
which vanish at (0, 0, 0, 0, t) and whose first order derivatives also vanish at these points,
and are such that:





f1(z1, z2, x3, ω3, t) = −
1
2
(z2 + h2(t)g2)v1 + 1

2
(z1 + h1(t)g1)v2

+ 1
2
[ (z1 + h1(t)g1)v1 + (z2 + h2(t)g2)v2 + x3ω3 ]x3

f2(z1, z2, x3, ω3, t) = c3v1 v2
l1(0, 0, x3, ω3, t) = O(|x3, ω3|

3)
l2(O(|x3, ω3|

3), 0, x3, ω3, t) = O(|x3, ω3|
4)

(11)

The proof of this lemma involves a tedious but straightforward verification which is not
reproduced here due to the lack of space. The reader is thus referred to [15] for the details.

The closed-loop system (10) is now in the right form for the application of center
manifold results. We will specifically use the following lemma, which is not completely
standard in that it deals with time-varying periodic vector fields and also involves various
orders of approximation of the center manifold.

Lemma 2 Consider the system
{

ż = Bz + l(z, x, t)
ẋ = Ax+ f(z, x, t)

(12)

with z ∈ IRn, x ∈ IRm, B an upper triangular stable matrix (bij = 0 if i > j, bii < 0
for i = 1, . . . , n), A a matrix with eigenvalues having zero real parts, l and f T-periodic
functions of class C 2 vanishing at (0, 0, t) and whose first order derivatives also vanish at
this point.

Assume that there exists an ordered set of integers qi:

2 ≤ q1 ≤ q2 ≤ ... ≤ qn (13)

such that: 



l1(0, x, t) = O(|x|q1)
...

li(O(|x|q1), ..., O(|x|qi−1), 0, ..., 0, x, t) = O(|x|qi)
...

ln(O(|x|q1), ..., O(|x|qn−1), 0, x, t) = O(|x|qn)

(14)

Assume further that the origin of the time-varying system:

ẋ = Ax+ f(π1(x, t), ..., πn(x, t), x, t) (15)

5



is locally asymptotically stable when πi(x, t) = O(|x|qi), (i = 1, . . . n). Then, the origin of
(12) is locally asymptotically stable.

(Proof in the Appendix)

In order to prove Theorem 1, one only has to show that this lemma applies, with q1 = 3
and q2 = 4, to the system (10) of lemma 1 for which:

n = 2, A =

(
0 1

2

0 0

)
, B =

(
−k1 0
0 −k2

)
.

To this purpose, it is sufficient to show that the origin of the following system:
(

ẋ3
ω̇3

)
=

(
0 1

2

0 0

)(
x3
ω3

)
+ f(π1(x3, ω3, t), π2(x3, ω3, t), x3, ω3, t) (16)

is locally asymptotically stable for any π1(x3, ω3, t) = O(|x3, ω3|
3) and π2(x3, ω3, t) =

O(|x3, ω3|
4). Let us hereafter concentrate on system (16). Using the fact that, from(9),
{

v1(O(|x3, ω3|
3), x3, ω3, t)− ṽ1(x3, ω3, t) = O(|x3, ω3|

3)
v2(O(|x3, ω3|

3), O(|x3, ω3|
4), x3, ω3, t)− ṽ2(x3, ω3, t) = O(|x3, ω3|

4)
(17)

with {
ṽ1(x3, ω3, t) = 2g1ḣ1 + h1

∂g1
∂x3

ω3

ṽ2(x3, ω3, t) = 2g2ḣ2 − x3ṽ1 + g1h1ω3 + h2
∂g2
∂x3

ω3 ,
(18)

we may, from (11), rewrite (16) as :




ẋ3 =
1

2
(ω3 − g2h2ṽ1 + g1h1ṽ2 + x23ω3 + x3g1h1ṽ1) +O(|x3, ω3|

5)

ω̇3 = c3ṽ1ṽ2 +O(|x3, ω3|
5) .

(19)

In order to facilitate the study of this time-varying system, it is possible to introduce
a time-varying change of coordinates, the effect of which is to render all terms, up to
the fourth order, time-invariant. This is precisely stated in the following lemma which is
reminiscent of classical results, reported for example in [9], and similar results used in [23].

Lemma 3 (Averaging lemma) Let A be a n × n strictly upper triangular matrix (j ≤
i ⇒ aij = 0), D(t) a n × p matrix whose components dij(t) are T -periodic functions of
class C r (r ≥ 0 ), and σ(x) a vector-valued function whose components σi(x1, . . . , xn) are
monomials of degree k ≥ 2.
Then there exists a neighborhood Ω of 0 in IRn and a C r+1 local change of coordinates
(x, t) 7→ (y, t) defined on Ω× IR which maps (0, t) into itself and transforms a system:

ẋ = Ax+D(t)σ(x) +O(|x|2k−1) (20)

into a system:
ẏ = Ay +Dσ(y) +O(|y|2k−1) (21)

where D is the time average of D(t), i.e.. D =
1

T

∫ T

0

D(t) dt.
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(Proof in the Appendix)

This lemma is here applied, with k = 3, to the system (19) for which n = 2 and
x = (x3, ω3). When writing the system (19) in the form (20), the right hand side of
(19) contains linear terms associated with the matrix A, terms of order at least equal to
five regrouped in the vector O(|x|2k−1), and terms of order 3 with time-periodic coefficients
forming the term D(t)σ(x). One may take σ(x3, ω3) = (x33, x

2
3ω3, x3ω

2
3, ω

3
3)

T and determine
the time-varying matrix D(t) accordingly. In view of this lemma, it is equivalent to study
the stability of the system (19) and the stability of the corresponding “averaged” system
which, after some calculations using the particular choice (6) for the 2π-periodic (T = 2π)
functions gi and hi (i = 1, 2) , can be written (see [15] for the details):





ẋ3 =
1

2
ω3 − 2αLx33 + ω3O(|x3, ω3|

2) +O(|x3, ω3|
5)

ω̇3 = c3[ω
3
3(−2αL− 4βM +Nαβ)

+ω23x3(−6αM + 4βL− 4Nβ2)

+ω3x
2
3(2αL− 4βM − 8Nαβ)

+x33(−4αM − 4Nα2)] +O(|x3, ω3|
5)

(22)

with

L =
a1a3

2
, M = −

a1a2

2
, N =

a21
2

(23)

Note that for any given triplet(L,M,N) with N > 0, there exists a corresponding triplet
(a1, a2, a3) of real numbers such that (23) is verified. Consequently, the numbers L, M and
N may in turn be interpreted as independent design parameters.

From there, there only remains to show that, for some values of α, β, L, M and N , the
origin of the system (22) is asymptotically stable.

Lemma 4 Consider the function V (x3, ω3) = 2Nc3(α
2 + 2β2)x43 +

1
2
ω23 . If

L > 0, M > 0, N > 0, β =
L

4N
and α =

2Nβ2

M
, (24)

then, there exists K > 0 such that, in a neighborhood of (x3 = 0, ω3 = 0), we have along
any solution of (22):

dV

dt
≤ −K V 2 (25)

The proof of this lemma is a straightforward verification of the inequality (25). It is
not reproduced here due to the lack of space (see [15] for the details).

From this lemma, one deduces, by application of “Lyapunov second method”, that the
origin of (22) is locally asymptotically stable when the conditions (24) are met. Since it is
so when choosing the control parameters according to (7), this proves Theorem 1.

4 Stabilization with torque controls

We now return to the problem of stabilizing the origin of the initial system (3) with u1
and u2, instead of ω1 and ω2, as control inputs. Note that since u1 + c1ω2ω3 = ω̇1, and
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u2+ c2ω1ω3 = ω̇2, the problem is basically equivalent to the one associated with the use of
ω̇1 and ω̇2 as control inputs. This corresponds to the classical situation where integrators
are added at the input level. The result, which is deduced from Theorem 1, is the following.

Theorem 2 The smooth time-varying control law:

{
u1(X,ω, t) = −c1ω2ω3 + s1(X,ω, t)− k3(ω1 − v1(X,ω3, t)) k3 > 0
u2(X,ω, t) = −c2ω1ω3 + s2(X,ω, t)− k4(ω2 − v2(X,ω3, t)) k4 > 0

(26)

with v1 and v2 given by (5), (6) and (7) and, s1 and s2 their time derivatives along the
trajectories of (3):

si =
1

2

∂vi

∂X
(ω + S(ω)X + (ωT X)X ) +

∂vi

∂ω3
c3ω1ω2 +

∂vi

∂t
i = 1, 2.

locally asymptotically stabilizes the origin of (3).

The techniques used here are standard in the time-invariant case. This theorem can
be proved by using the following lemma, which may be viewed as a particular case of the
small-gain theorem for nonlinear systems (see [24, Fact 4.1, Lemma 4.1]).

Lemma 5 Consider the T -periodic system

{
ẋ = f(x, y, t) , x ∈ IRn

ẏ = g(y, t) , y ∈ IRm (27)

where f and g are functions of class C 1 . Assume that the origins of the two independent
systems ẋ = f(x, 0, t) and ẏ = g(y, t) are locally asymptotically stable. Then the origin
(x = 0, y = 0) of the cascaded system (27) is locally asymptotically stable.

Setting ω̃ = ω−η with η = (v1, v2, 0), the system (3) subjected to the controls (26) can
be rewritten in the new coordinates (X, ω̃):





Ẋ = 1
2

[
ω̃ + η + S(ω̃ + η)X + ((ω̃ + η)T X)X

]

˙̃ω3 = c3 (ω̃1 + η1)(ω̃2 + η2)
˙̃ω1 = −k3ω̃1
˙̃ω2 = −k4ω̃2

(28)

By applying lemma 5 to the closed-loop system (28), with x = (X, ω̃3) and y = (ω̃1, ω̃2),
the asymptotic stability of the origin of this system stems from the asymptotic stability,
previously established in Theorem 1, of the reduced system obtained by setting y = 0.

Appendix : Proof of Lemmas 2 and 3

Proof of Lemma 2

The proof of this lemma involves an extension of classical results of center manifold theory
to the case time-periodic systems.
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Proposition 1 (Existence of a center manifold) Consider the system:

{
ż = Bz + l(z, x, t)
ẋ = Ax+ f(z, x, t)

(29)

with z ∈ IRn, x ∈ IRm, B a matrix with eigenvalues having negative real parts, A a matrix
with eigenvalues having zero real parts, l and f T-periodic functions of class C 2 vanishing
at (0, 0, t) and whose first partial derivatives also vanish at these points. Then, there exists
δ > 0 and π(x, t) : IRm × IR −→ IRn, a T-periodic function of class C 2 , such that the set
{ (π(x, t), x) |x| < δ, t ∈ IR } defines a local center manifold for (29), i.e.

i) π vanishes at (0, t) and its first partial derivatives also vanish at these points,

ii) solutions of (29) starting in the set { (π(x, t), x) |x| < δ, t ∈ IR } remain in this set
as long as |x(t)| < δ, i.e.

∂π

∂t
+

∂π

∂x
(x, t) (Ax+ f(π(x, t), x, t)) = Bπ(x, t) + l(π(x, t), x, t) for |x| < δ.

(30)

This result is a particular case of [10, Th 1 and section 5].

Proposition 2 (Reduction principle) Let π be a function satisfying the conditions i)
and ii) of Proposition 1. If the origin of the corresponding “reduced system” :

ẋ = Ax+ f(π(x, t), x, t) (31)

is locally asymptotically stable, then so is the origin of (29). Moreover, in this case, if
(z0, x0) is small enough, and (z(t), x(t)) is the solution of (29) with initial values (z0, x0)
at t = t0, then there exists a solution u(t) of (31) such that:

{
x(t)− u(t) = O(e−γt)
z(t)− π(u(t), t) = O(e−γt)

(32)

where γ depends only on the eigenvalue of B with largest real part.

Proposition 3 (Approximation) Let π be a function satisfying the conditions i) and ii)
of Proposition 1, and Φ : IRm × IR −→ IRn be a T-periodic function of class C 1 such that:

i) Φ vanishes at (0, t) and its first partial derivatives also vanish at these points,

ii) ∂Φ
∂x

(x, t) [Ax+ f(Φ(x, t), x, t)]−BΦ− l(Φ(x, t), x, t) + ∂Φ
∂t

= O(|x|q) .

Then, π(x, t)− Φ(x, t) = O(|x|q) .

For the proof of these two propositions, we refer to [5]. The main reason why the proofs
still hold in the time-periodic case is that the relations (2.3.5) and (2.4.10) in [5] are not
modified by the introduction of the time variable when l and f are time-periodic.

9



We now proceed with the proof of Lemma 2. From Proposition 1, there exists for
system (12) a center manifold defined by z1 = π1(x, t), . . . , zn = πn(x, t) . If we prove that
πi(x, t) = O(|x|qi) for i = 1, . . . , n, then, Lemma 2 directly follows from Proposition 2. Let
us proceed by induction.

First, it follows from (13) and (14) that l(0, x, t) = O(|x|q1) and, by application of
Proposition 3 with Φ = 0, we deduce that πi(x, t) = O(|x|q1), for i = 1, . . . , n. In particular,
π1(x, t) = O(|x|q1). Let us now assume that π1(x, t) = O(|x|q1), . . . , πk(x, t) = O(|x|qk) and
prove that πk+1(x, t) = O(|x|qk+1). To this purpose, we consider the following reduced-order
system:

żk+1 = bk+1,k+1 zk+1 + . . .+ bk+1,n zn + lk+1(π1(x, t), . . . , πk(x, t), zk+1, . . . , zn, x, t)
...

. . .

żn = bn,n zn + ln(π1(x, t), . . . , πk(x, t), zk+1, . . . , zn, x, t)
ẋ = Ax+ f(π1(x, t), . . . , πk(x, t), zk+1, . . . , zn, x, t)

(33)
where the bi,j ’s are the entries of B (recall that it is upper-triangular and bi,i < 0).
Since (x, t) 7→ (πk+1(x, t), . . . , πn(x, t)) satisfies the conditions i) and ii) of Proposition 1,
and since Φ = 0 satisfies the conditions i) and ii) of Proposition 3 (from (13), (14) and the
induction hypothesis), Proposition 3 applies with z replaced by (zk+1, . . . , zn), π replaced
by (πk+1, . . . , πn), Φ = 0 and q = qk+1. Hence, πj(x, t) = O(|x|qk+1), for j = k + 1, . . . , n,
and in particular πk+1(x, t) = O(|x|qk+1). 2

Proof of Lemma 3

The proof is given for n = 2 and k = 3 (the spacecraft’s case). The general case is a simple
extension.
We assume, without loss of generality, that the components of the vector σ(x) in (20) form a
basis for the homogeneous polynomials of degree three. We take σ(x) = (x31, x

2
1x2, x1x

2
2, x

3
2).

The change of coordinates evoked in the lemma is of the same type as the one used in [23],
or originally in [9, pp 168], and is of the form x = y +H(t)σ(y), with H a 2× 4 matrix of
T-periodic functions which are specified further in the proof. This change of coordinates
transforms (20) into:

ẏ = [I2 +H(t)σ′(y)]−1[Ay +AH(t)σ(y) +D(t)σ(y +H(t)σ(y))

−Ḣ(t)σ(y) +O(|y|5)] .
(34)

(where σ′(y) is the Jacobian matrix of σ(y) and I2 is the identity matrix). Note that
[I2 +H(t)σ′(y)]−1 is defined in a neighborhood of y = 0 for all t.
Using a classical formula on matrix inverses, and the fact that σ(y) = O(|y|3), we easily
obtain from (34):

ẏ = [I2 −H(t)σ′(y) +O(|y|4)][Ay +AH(t)σ(y) +D(t)σ(y)− Ḣ(t)σ(y)

+O(|y|5)]

= Ay +Dσ(y) + Z(t, y) +O(|y|5)
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with
Z(t, y) = D̃(t)σ(y) +AH(t)σ(y)− Ḣ(t)σ(y)−H(t)σ′(y)Ay,

D = (
1

T

∫ T

0

D(t) dt),

D̃(t) = D(t)−D .

(35)

In order to prove the lemma, it is sufficient to find a uniformly bounded matrix H(t) for
which Z(t, y) ≡ 0. Since the entries of σ′(y)Ay are homogeneous polynomials of degree 3,
there exists a (unique) 4×4 matrix C such that σ′(y)Ay = Cσ(y). Since A is strictly upper
triangular, one easily verifies that C is strictly upper triangular too. Therefore, Z(t, y) is
identically zero if and only if H(t) is a solution of

Ḣ = D̃(t) +AH −HC . (36)

Using the triangular structure of A and C and the periodicity of D̃(t), one may consider

a recursive construction which starts with h21(t) =

∫ t

0

d̃21(s) ds −
1

T

∫ T

0

(

∫ u

0

d̃21(s) ds) du

and continues with h22(t), . . . , h24(t), h11(t), . . . , h14(t) respectively. One easily verifies that
the solution so obtained is T -periodic and uniformly bounded. 2
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