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Abstract: This paper addresses the stabilization of admissible reference trajectories generated
with constant inputs for driftless systems on Lie groups. The general expression of the linear
approximation of the tracking error system is derived from the system’s constants of structure
and a necessary condition for the controllability of this approximation is specified in terms of
the growth of the filtration of the Lie Algebra generated by the system’s vector fields. This
condition is illustrated with examples of mechanical systems whose control inputs correspond
to velocity variables. By contrast with nonholonomic mobile robots whose kinematic equations
can be transformed into the chained form, the linearized system associated with the rolling
sphere is never controllable. Consequences of this lack of controllability as for stabilization
problems are discussed from a general viewpoint and addressed more specifically for the rolling
sphere. Finally, a practical stabilizer for this system based on the transverse function approach
is proposed.
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1. INTRODUCTION

This paper addresses the control of driftless systems on
Lie groups, i.e.

ġ =
m∑

i=1

Xi(g)vi (1)

with g the system’s state belonging to an n-dimensional
connected Lie group, X1, . . . ,Xm some independent left-
invariant vector fields (v.f.) (i.e. elements of the group’s
Lie algebra), and v = (v1, . . . , vm) the vector of control
inputs. It is further assumed that i) m < n, since otherwise
the control of System (1) is trivial, and ii) the system is
controllable, i.e., it satisfies the Lie algebra rank condition
at the group’s unit element (and thus at any point due
to the invariance of the control v.f.). The assumption
m < n is characteristic of nonholonomic mechanical
systems (wheeled mobile robots, rolling spheres, etc) often
met in robotic applications. As for the invariance of
the v.f. Xi, this property, although restrictive, holds for
many physical systems: unicycle-like mobile robots, cars
and N -trailer systems whose kinematic equations can
be transformed into the chained form (Sørdalen [1993]),
rolling spheres [Jurdjevic, 1997, Ch. 14] also referred to
as ball-plate systems. Moreover, it is known that any
driftless system (not necessarily on a Lie group) which
is locally controllable at some point can be immersed, via
a dynamic extension, into a system which locally admits
a controllable homogeneous approximation, left-invariant
w.r.t. to a group product, of the form (1) (see e.g. [Morin
and Samson, 2003, Sec. VI] for details). The possibility of
approximating many systems by systems on Lie groups
is one of the reasons why these latter systems play a
prominent role in nonlinear system theory (Sussmann
[1987], Jurdjevic [1997]).

The assumption m < n renders the control of the class
of systems (1) particularly challenging because the lin-
earization of System (1) at any fixed point (or state) is
not controllable, and also due to the non-satisfaction of
Brockett’s necessary condition (Brockett [1983]) for the
existence of smooth pure-state feedbacks capable of stabi-
lizing a fixed point asymptotically. These difficulties have
motivated an intense research in the last fifteen years and
a systematic investigation of alternate classes of feedback
laws (continuous time-varying, discontinuous, hybrid,...)
in order to derive fixed-point asymptotic stabilizers. The
reader is referred to Morin and Samson [2006] for more
details on this topic. Some of the results here presented
can be used for the stabilization of fixed points, but the
present paper is primarily devoted to the stabilization of
non-stationary reference trajectories, i.e. solutions gr(.) of
System (1) associated with non-zero control inputs vr(.).
The literature on this subject is relatively meager on the
theoretical side, compared to publications dedicated to
the stabilization of fixed points. In fact, it is commonly
believed that, for these systems, non-stationary reference
trajectories are much easier to stabilize than fixed points.
The reason is that the linearized system along such tra-
jectories may be controllable, whereas the linearization
of the system at a fixed point is never controllable (nor
stabilizable). In particular, it follows from Sontag [1992]
that, for any controllable system (1) and “almost all” ref-
erence control inputs vr(.), the linearized system along any
associated reference trajectory gr(.) is “controllable” 1 .
This is a very interesting result. It is however important
to interpret it correctly and not underestimate the im-
portance of the ”small” set of inputs and trajectories for
which the controllability of the linearized system does not
1 The reader is referred to Sontag [1992] for a precise statement of
this property.



hold. For example, in the case of a car for which v1 denotes
the vehicle’s driving velocity, the difficulty is ”moderately”
acute because the controllability of the linearized system
on any time interval [ti, tf ] (with ti < tf ) is satisfied when-
ever the reference velocity vr,1 is a smooth function not
identically equal to zero on [ti, tf ]. By contrast with this
”favorable” example, a result established further in the
paper indicates that, for controllable driftless systems, the
controllability of the linearized system along a reference
trajectory generated with constant inputs is far from con-
stituting the general rule. In terms of control design, the
importance of this property comes from that it ensures the
existence, and much simplifies the derivation, of smooth
feedback laws capable of stabilizing exponentially such a
reference trajectory generated with constant inputs (i.e.
constant velocities in the case of a mechanical system).
Up to now, concerning driftless systems with less control
inputs than state components, this trajectory stabilization
problem has been essentially addressed for systems which
can be transformed into (or can be locally approximated
by) chained systems (Kanayama et al. [1990], Samson
[1990]). This case constitutes a generalization of the car
example evoked previously in the sense that the controlla-
bility of the linearized system is obtained under the same
conditions upon vr,1 with v1 the control input associated
with the non-constant control vector field. For constant
reference inputs it thus suffices that vr,1 �= 0.

The present work further investigates the controllability
and stabilizability properties of the class of systems (1)
along non-stationary reference trajectories. First, a nec-
essary condition for the controllability of the linearized
error system along reference trajectories associated with
constant inputs vr is provided. From a mathematical
standpoint ”most” systems of the form (1) do not verify
this condition. This is illustrated with the rolling sphere
example (see e.g. Mukherjee et al. [2002] for open-loop
motion issues and the path-planning problem, and Date
et al. [2004], Oriolo and Vendittelli [2005] for fixed-point
stabilization results) which constitutes the simplest con-
trollable physical system whose linear approximation along
admissible trajectories generated with constant inputs is
never controllable. This example, which contrasts with the
case of classical nonholonomic mobile robots, advocates
for a better understanding of the control possibilities for
this class of systems. A first step is to show that despite
the lack of controllability of the linearized error system,
the asymptotic stabilization of reference trajectories asso-
ciated with constant inputs can always be achieved. The
next issue is the design of trajectory stabilizers for these
systems, starting with the rolling sphere. The solution here
considered consists in applying the Transverse Function
approach to derive a practical stabilizer yielding ultimately
bounded and arbitrarily small tracking errors.

Due to space limitations, the proofs of the results here
presented are omitted. They can be obtained upon request
to the authors.

2. NOTATION AND RECALLS

Special vectors and matrices Throughout the paper,
the transpose of a vector x in Rn is denoted as x′. The i-th
vector of the canonical basis of Rn is denoted as bi, i.e. all

components of bi are equal to zero except for the i-th one
which is equal to one. The cross product in R3 is denoted as
× and x̂ is the skew-symmetric matrix associated with this
product, i.e. x̂y = x × y. The identity matrix associated
with Rn is denoted as In.

Systems on Lie groups We recall hereafter standard def-
initions and notation about Lie groups (see e.g. Varadara-
jan [1984] for more details on this topic), and elementary
properties of systems on Lie groups. Let G denote a
connected Lie group of dimension n. The unit element
of G is denoted as e, i.e. ∀g ∈ G : ge = eg = g.
The inverse g−1 of g ∈ G is the (unique) element in
G such that gg−1 = g−1g = e. The left (resp. right)
translation operator on G is denoted as l (resp. r), i.e.
∀(σ, τ) ∈ G2 : lσ(τ) = rτ (σ) = στ . A v.f. X on G is left-
invariant iff ∀(σ, τ) ∈ G2, dlσ(τ)X(τ) = X(στ), with df
denoting the differential of the function f . The Lie algebra
–of left-invariant v.f.– of the group G is denoted as g. If
X ∈ g, exp(tX) is the solution at time t of ġ = X(g) with
the initial condition g(0) = e. The adjoint representation
of G is denoted as Ad, i.e. ∀σ ∈ G, Ad(σ) := dJσ(e),
with Jσ : G → G defined by Jσ(g) := σgσ−1. The
adjoint representation of g is denoted as ad. One has
(ad X)(Y ) = [X,Y ] with [., .] the Lie bracket operator,
and also

d

dt |t=0
Ad(exp(tX))Y (e) = (adX)(Y )(e), ∀X,Y ∈ g

(2)
By extension of the definition of ad, we define by induction
(ad X)k(Y ) = (ad X)((ad X)k−1(Y )) for integers k ≥ 2.

A driftless control system (1) on G is said to be left-
invariant if the control v.f. Xi are left-invariant. Given a
family Y := {Y1, . . . , Yp} of vector fields on G and a vector
v ∈ Rp, we denote by Y v the vector field

∑p
i=1 Yivi, and

by Y (g)v its value at g.

Let X = {X1, . . . , Xn} denote a basis of g. The constants
of structure associated with the basis X are denoted
as cr

p,q (i.e., for any (p, q), [Xp,Xq] =
∑n

r=1 cr
p,qXr. If

(ga(t), va(t)) and (gb(t), vb(t)) (t ≥ 0) are two solutions
to ġ = X(g)v, then (by omitting the time index)

d

dt
(gag−1

b ) = X(gag−1
b )AdX(gb)(va − vb) (3)

with AdX the expression of the Ad operator in the basis X,
i.e. the (invertible) matrix-valued function defined by ∀σ ∈
G, ∀v ∈ Rn, Ad(σ)X(e)v = X(e)AdX(σ)v. According to
this definition, AdX(e) = In. We have also

d

dt
(g−1

a gb) = X(g−1
a gb)(vb − AdX(g−1

b ga)va) (4)

In a way similar to the definition of AdX , we denote by
adX the expression of the ad operator in the basis X,
i.e. ∀v1, v2 ∈ Rn, X(e)adX(v1)v2 = (ad Xv1)(Xv2)(e) =
[Xv1,Xv2](e). Let us remark that for any vector v the
matrix adX(v) can be expressed as a function of the con-
stants of structure cr

p,q associated with the basis X. More
precisely, one verifies that adX(v) can be decomposed in
column vectors as follows:

adX(v) =
(
(cj

k1)jkv | . . . | (cj
kn)jkv

)
(5)



with (cj
kp)jk (p = 1, . . . , n) denoting the matrix with

element cj
kp at row j and column k.

3. CONTROLLABILITY ALONG REFERENCE
TRAJECTORIES

3.1 A necessary condition

Let X = {X1, . . . , Xn} denote a basis of g. To simplify the
notation, we rewrite System (1) as ġ = X(g)Cv, with C =
(Im | 0m×(n−m))′. Let gr denote an admissible reference
trajectory, i.e. a solution to the equation ġr = X(gr)Cvr.
Then it follows from (4) that the “tracking error” g̃ = g−1

r g
satisfies the equation

˙̃g = X(g̃)(Cv − AdX(g̃−1)Cvr)

= X(g̃)(Cṽ − (AdX(g̃−1) − In)Cvr)
(6)

with ṽ = v − vr. In order to linearize this (tracking) error
equation, one needs first to define a system of coordinates
around the unit element e ∈ G. We choose coordinates x̃
of the first kind defined by the equality g̃ = exp(x̃1X1 +
. . . + x̃nXn) = exp(Xx̃).
Lemma 1. The linearization of System (6) at the equilib-
rium (g̃, ṽ) = (e, 0) is given, in the coordinates x̃, by

˙̃x = −adX(Cvr)x̃ + Cṽ (7)

It follows from this lemma that when vr is constant,
the linear system (7) is controllable if and only if the
pair (adX(Cvr), C) is controllable. Note that, from (5)
and (7), the linearized error system and its controllability
properties can be deduced from the sole knowledge of the
constants of structure. It is also important to remark at
this point that these properties are independent of the
choice of local coordinates x̃.

The second main result of this section follows. It estab-
lishes a necessary condition for controllability, in terms
of the growth of the filtration of g associated with the
system’s control vector fields.
Proposition 2. Let uk (k = 1, . . . ,K) denote the subspaces
of g defined recursively by u1 = span{X1, . . . , Xm} and
uk = uk−1+[u, uk−1] for k = 2, . . . ,K, with K the smallest
integer such that uK = g. Also, let dk (k = 1, . . . ,K)
denote the dimension of uk. Then, when vr is constant, a
necessary condition for the controllability of System (7) is
that

∀k = 1, . . . ,K − 1, dk+1 − dk ≤ dk − dk−1 (8)
with d0 = 0. In particular, if m = 2, a necessary condition
for the controllability of System (7) is that

∀k = 2, . . . ,K, dk = k + 1 (9)

Note that the necessary conditions (8) and (9) for con-
trollability can be checked out without computing the
expression of the matrix adX(Cvr). These conditions are
clearly restrictive and one can thus infer that “most”
controllable driftless systems do not satisfy them. For
example, Condition (8) is never satisfied by free systems
(see e.g. Kawski [1992] for a definition) unless m ∈ {2, 3}
and n = m + 1. Of course, the non-controllability of the
linearized system (7) does not imply that the nonlinear
error system (6) is not controllable. As a matter of fact,

it follows from the controllability of System (1) and from
e.g. [Sussmann, 1987, Prop. 7.4] that for any constant vr,
System (6) is Small Time Locally Controllable at g̃ = e.

3.2 Examples

Chained systems: The control v.f. of the classical n-
dimensional chained system with two control inputs are
defined by X1(x) = (1, 0, x2, . . . , xn)′ and X2(x) =
(0, 1, 0, . . . , 0)′. This is a system on a Lie group, with the
group operation defined by

xy =

⎧⎪⎨
⎪⎩

xi + yi if i = 1, 2

xi + yi +
i−1∑
j=2

yi−j
1

(i − j)!
xj otherwise

A basis X = {X1, . . . , Xn} of the associated Lie algebra is
obtained by setting

∀i = 3, . . . , n, Xi = (adX1)i−2(X2) = (−1)ibi

with bi the i-th canonical vector in Rn. It follows that
Condition (9) of Proposition 2 is satisfied so that the
controllability of the linearized error system cannot be
ruled out. Proceeding thus further, one verifies that the
constants of structure cr

p,q (p, q, r = 1, . . . , n) associated
with this basis are

cr
p,q =

⎧⎨
⎩

1 if p = 1, q �= 1, r = q + 1
−1 if q = 1, p �= 1, r = p + 1
0 otherwise

From these expressions and (5)

adX(Cvr) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · 0
0 0 0 · · · · · · 0

−vr,2 vr,1 0 0 · · · 0
0 0 vr,1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 0 vr,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

One deduces from this expression that, when vr is con-
stant, the linearized system (7) is controllable if and only
if vr �= 0 when n = 3, and vr,1 �= 0 when n > 3.

Rolling sphere: This case physically corresponds to a
sphere rolling on a horizontal plane (without slipping or
twisting) under the action of dry-friction forces produced
by an actuated moving plate placed on top of it (see Fig.
1). The (idealized) kinematic equations of this system are
given by (see e.g. [Jurdjevic, 1997, Ch. 14]){

ẋ = v

Ṙ = R(v2b̂1 − v1b̂2)
(10)

with x ∈ R2 the first two coordinates of the sphere’s
center C in the inertial frame {0, i0, j0,k0}, v = (v1, v2)′
the vector of control inputs, and R ∈ SO(3) the matrix
representing the orientation of the sphere (the column
vectors of which correspond to the components of the
inertial frame vectors i0, j0,k0 expressed in the body
frame {C, i, j,k}).
System (10) is a system on the Lie group R2×SO(3) with
the group operation defined by (x,R)(x̄, R̄) = (x+ x̄, RR̄).
The system’s control v.f. are

X1(x,R) =

⎛
⎝ 1

0
−Rb̂2

⎞
⎠ , X2(x,R) =

⎛
⎝ 0

1
Rb̂1

⎞
⎠ (11)
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Fig. 1. The rolling sphere actuated by a moving plate

A direct calculation of X3 = [X1,X2], X4 = [X3,X1], and
X5 = [X3,X2] yields

X3(R) =

⎛
⎝ 0

0
Rb̂3

⎞
⎠ , X4(R) =

⎛
⎝ 0

0
Rb̂1

⎞
⎠ , X5(R) =

⎛
⎝ 0

0
Rb̂2

⎞
⎠

(12)
It follows from the above equalities that d1 = 2, d2 = 3,
and d3 = 5, so that d3 − d2 > d2 − d1. By Proposition 2,
the associated linearized system (7) is never controllable
when vr is constant.

4. STABILIZATION OF REFERENCE
TRAJECTORIES

Proposition 2, illustrated by the rolling sphere example,
shows that for many systems of the form (1), the lin-
earized system along reference trajectories with constant
velocities is not controllable. This raises a certain number
of issues about the possibility and means of stabilizing
such trajectories. First question: can these trajectories
be asymptotically stabilized by continuous feedback? The
next result, which essentially follows from the results of
Coron [1995], provides a positive answer to this question.
Proposition 3. For any constant vector vr, the equilibrium
point g̃ = e of System (6) is locally asymptotically stabi-
lizable by continuous time-varying (periodic) feedback.

Second question: can these trajectories be asymptotically
stabilized (at least in some cases) by continuous or even
smooth pure state feedback? By analogy with the case
vr = 0, it is tempting to give a negative answer to this
question (by application of Brockett’s theorem). However,
due to the presence of the drift term in (6), a general
proof of this assertion does not seem straightforward, so
that the issue remains open. Third question: can these
trajectories be exponentially stabilized by smooth, possibly
time-varying, feedback? Again, one would guess a negative
answer to this question but this remains to be shown (or
invalidated).

Although general answers to these last two questions are
not yet available, answers in the specific case of the rolling
sphere example are stated in the following proposition.
Proposition 4. Consider the tracking error system (6) as-
sociated with the rolling sphere kinematic model (10), with
vr a constant vector. Then, the equilibrium (g̃, ṽ) = (e, 0)

(1) cannot be asymptotically stabilized by continuous
pure state feedback,

(2) cannot be exponentially stabilized by lipschitz time-
varying (periodic) feedback.

Coming back to the general error system (6), since asymp-
totic stabilization of admissible trajectories generated with
constant inputs is possible (by Proposition 3) the next
issue is the design of stabilizing control laws. When the
reference trajectory is a fixed point, (6) is a driftless
system and there exist general methods and/or algorithms
to synthesize local asymptotic stabilizers (see e.g. Morin
et al. [1999]). Ad hoc solutions have also been proposed by
Date et al. [2004] and Oriolo and Vendittelli [2005]. In the
case of non-stationary trajectories, System (6) has a drift
term, and no general method for the design of asymptotic
stabilizers is known. As a matter of fact, to our knowl-
edge, no such stabilizer has even been proposed for the
rolling sphere example, i.e. the simplest of the controllable
driftless systems whose linear approximation along admis-
sible non-stationary trajectories generated with constant
inputs is never controllable. On the other hand, a general
method to design practical stabilizers for systems in the
form (6), yielding ultimately bounded and arbitrarily small
(but non-zero) tracking errors, is proposed in Morin and
Samson [2003]. This method is based on the use of so-
called Transverse Functions and one of its most noticeable
feature is that it also applies to non-admissible reference
trajectories (i.e. such that ġr does not always belong to
span{X1(gr), . . . , Xm(gr)}) with the same results. By a
proper extension, the control solutions derived with this
method may also be asymptotic stabilizers of admissible
trajectories (see e.g. Morin and Samson [2004]).

The remainder of this section is devoted to the particular-
ization of the Transverse Function approach to the rolling
sphere example. This is a preliminary work and the possi-
bility of obtaining asymptotic stabilizers of non-stationary
trajectories with this approach will be addressed in subse-
quent studies. A brief recall of the approach is now given
before detailing its application to the rolling sphere. Let

• Tk denote the k-dimensional torus, with T = R/2πZ,
• X = {X1, . . . , Xn} denote a basis of g,
• f denote a smooth function from Tn−m to a neigh-

borhood U ⊂ G of e.

Then, there exists a matrix-valued function A(α) such
that, along any differentiable path α(t) on Tn−m, one has

ḟ(α) = X(f(α))A(α)α̇
= X1(f(α))A1(α)α̇ + X2(f(α))A2(α)α̇

(13)

with X1 = {X1, . . . , Xm} and X2 = {Xm+1, . . . , Xn}. The
function f is said to be transversal to the v.f. X1, . . . , Xm

if (and only if) A2(α) is invertible ∀α ∈ Tn−m. One can
verify that this condition is equivalent to the invertibility,
∀α ∈ Tn−m, of the n × n matrix

C̄(α) = (C | − A(α)) (14)
The transverse function theorem given in Morin and
Samson [2003] asserts the existence of such functions,
whatever the size of U , provided that the Lie algebra
generated by the family X1 is equal to g. It also provides
a general expression for a family of such functions. Given
a function f transverse to the control v.f. of System
(1), it follows from (4), (6), and (14), that the variable
z = g̃f(α)−1 satisfies the equality

ż = X(z)AdX(f(α))(C̄(α)v̄ − AdX(g̃−1)Cvr) (15)
with v̄ = (v1, . . . , vm, α̇m+1, . . . , α̇n)′ and αm+1, . . . , αn

the n − m components of α. In view of the invertibility



of the matrix C̄(α), it is not difficult to find feedback laws
that make z = e locally asymptotically stable. Set e.g.

v̄ = C̄(α)−1(AdX(g̃−1)Cvr + AdX(f(α)−1)K(z)) (16)
with K(z) any feedback which asymptotically stabilizes
z = e for the fully actuated (thus much more easily
controlled) system ż = X(z)u. The convergence of z to
e implies the convergence of g̃ to the (bounded) image
set f(Tn−m) ⊂ U . Note that vr can take any value and
does not need to be constant. An important step in the
application of this control design method is the calculation
of the transverse functions intervening in the control ex-
pression. This can be done in several ways with significant
variations of the closed-loop system performance. As for
now, we will just indicate a possible choice for the rolling
sphere, following [Morin and Samson, 2003, Sec. IV].

Transverse functions f for the rolling sphere can be defined
as the group product of three elementary functions of one
variable, i.e.

f(α) = f5(α5)f4(α4)f3(α3) (17)
with the functions f3, f4, f5 defined as follows:

f3(α3) = exp(ε3 sin α3X1 + ε3 cos α3X2)
f4(α4) = exp(ε2

4 sin α4X3 + ε4 cos α4X1)
f5(α5) = exp(ε2

5 sin α5X3 + ε5 cos α5X2)
(18)

for some strictly positive numbers ε3, ε4, ε5, where exp
denotes the exponential function on R2 × SO(3), and
X1, . . . , X5 denote the basis vectors defined by (11)–
(12). It follows from (10) that the exp function can be
decomposed as

exp(v,Rω̂) =
(

v
Exp(ŵ)

)
with Exp the matrix exponential (i.e. Exp(ŵ) is the
rotation of angle |w| about the axis w). Therefore, from
(18) and (11)–(12)

f3(α3) =

⎛
⎝ ε3 sin α3

ε3 cos α3

Exp(ε3 cos α3b̂1 − ε3 sin α3b̂2)

⎞
⎠

f4(α4) =

⎛
⎝ ε4 cos α4

0
Exp(ε2

4 sinα4b̂3 − ε4 cos α4b̂2)

⎞
⎠

f5(α5) =

⎛
⎝ 0

ε5 cos α5

Exp(ε2
5 sinα5b̂3 + ε5 cos α5b̂1)

⎞
⎠

(19)

The analytical expressions of the matrices Exp(.) in the
above expressions are then obtained by application of
Rodrigue’s formula (see e.g. [Marsden and Ratiu, 1999,
Sec. 9.2]). This yields analytical expressions of both the
function f (from (17)) and the matrix A(α) in (13)-(14).
There remains to address the choice of the parameters ε3,
ε4, and ε5, knowing that the property of transversality
(i.e. the inversibility, for any α, of the 3 × 3 matrix
A2(α) defined by (13)) does not hold for all values of
these parameters. The proof of the main theorem in
Morin and Samson [2003] suggests choosing ε5 “small
enough”, then ε4 “small enough” w.r.t. ε5 and, finally, ε3

“small enough” w.r.t. ε4. The determination of sufficient
conditions on these parameters in order to ensure the
property of transversality of f will be addressed in a

subsequent study. This control strategy is now illustrated
by simulation results.

The quaternion parameterization of SO(3) is particularly
well suited to the present framework because the set Q1

of unitary quaternions is also a Lie group. More precisely,
System (10) can be written as{

ẋ = v

q̇ =
1
2
q.(v2,−v1, 0)T (20)

with q = (q0, q
′
p) = (q0, q1, q2, q3) ∈ Q1 the quaternion

associated with the rotation matrix R. Recall that when
R = Exp(θb̂) with b a unitary vector, then q0 = cos θ/2 and
qp = (q1, q2, q3)′ = b sin θ/2. The product q.(v2,−v1, 0)T

in the above equation is defined via the more general
expression

q.ω =
(

q′pω
q0ω + q̂pω

)
System (20) defines a system on the Lie group R2 × Q1

with the group product (x, q).(x̄, q̄) = (x+ x̄, qq̄) where qq̄
denotes the product of q and q̄ in Q1. Therefore, all calcula-
tions involved in the determination of the control law (16)
can be directly carried out in this Lie group. Finally, given
a function f = (fx, fR) ∈ R2 × SO(3) transversal to the
control v.f. of System (10), f̄ = (fx, fq) = (fx, quat(fR)) ∈
R2 × Q1 is a function transversal to the control v.f. of
System (20), with quat(R) = (q0, q

′
p) the quaternion asso-

ciated with the matrix R, defined by

q0 =
1
2

√
1 + tr(R) , q̂p =

1
2
√

1 + tr(R)
(R − RT )

with tr(R) the trace of R.

The simulation results presented now have been obtained
by applying the control law (16) to System (20), with the
transverse function f̄ deduced from the function f defined
by (17) as described above. The parameters εi (i = 3, 4, 5)
have been chosen as ε3 = 0.15, ε4 = 0.3, ε5 = 0.5. Numer-
ous simulations suggest that the property of transversality
of f is satisfied with this choice of parameters. The feed-
back law K(z) has been chosen as
K(z) = −0.05(z(1), z(2), 2z(4) − z(2), 2z(5) + z(1), z(6))′

Note that z = (x̃ − fx(α), q̃fq(α)−1) with x̃ = x − xr the
position tracking error, and q̃ the quaternion associated
with the orientation error w.r.t. the reference trajectory.
The velocity vr associated with the reference motion has
been chosen as follows:

vr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0)′ for t ∈ [0, 80)
(0.1, 0)′ for t ∈ [80, 120)
(0,−0.1)′ for t ∈ [120, 160)
(−0.1, 0.1)′ for t ∈ [160, 190)
(0, 0)′ for t ∈ [190, 200]

The initial conditions have been set as x(0) = (0.3, 0.5)′,
xr(0) = (0, 0)′, q̃p(0) = (0.3,−0.15, 0)′, and αi(0) = 0 (i =
3, 4, 5). The position error x̃ is represented on Fig. 2, and
the three components of q̃p, characterizing the orientation
error are represented on Fig. 3. Finally, the motion in the
plane of both the sphere’s center (solid lines) and reference
point (dashed lines) are represented on Fig. 4. As predicted
by the theory, the tracking errors remain bounded during
all motion phases, by values commensurable with the pa-
rameters εi of the transverse function. This is an important
asset of the transverse function approach.
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5. CONCLUSION

This paper has established that many controllable driftless
systems have linearized equations along reference trajec-
tories generated with constant inputs which are never
controllable. The simplest physical system of this kind is
the rolling sphere, the study of which is thus of partic-
ular interest. For these systems, most of the difficulties
associated with the asymptotic stabilization of fixed points
continue to hold when considering the stabilization of non-
stationary admissible trajectories. As a matter of fact,
they may even be amplified due to the drift term in the
error system equations. Several related open questions
have been formulated and a practical stabilizer, based on
the Transverse Function approach, has been proposed for
the rolling sphere.
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