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Summary.

Exponential stabilization of nonlinear driftless affine control systems
is addressed with the concern of achieving robustness with respect to im-
perfect knowledge of the system’s control vector fields. The present paper
gives an overview of the results developed by the authors in [11], and pro-
vides new results on the robustness with respect to sampling of the control
laws. Control design for a dynamic extension of the original system is also
considered. This study is inspired by [1], where the same robustness issue
was first addressed. It is further motivated by the fact, proven in [7], ac-
cording to which no continuous homogeneous time-periodic state-feedback
can be a robust exponential stabilizer in the sense considered here. Hy-
brid open-loop/feedback controllers, more precisely described as continu-
ous time-periodic feedbacks associated with a specific dynamic extension
of the original system, are considered instead.

12.1 Introduction

We consider an analytic driftless system on Rn

(S0) : ẋ =
m∑

i=1

fi(x)ui , (m < n), (12.1)

locally controllable around the origin, i.e.

Span{f(0) : f ∈ Lie(f1, . . . , fm)} = Rn , (12.2)

and address the problem of constructing explicit feedback laws which (locally)
exponentially stabilize, in some sense specified later, the origin x = 0 of the
controlled system. A further requirement is that these feedbacks should also
be exponential stabilizers for any “perturbed” system in the form
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(Sε) : ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui , (12.3)

with hi analytic in R×Rn and hi(0, x) = 0, when |ε| is small enough. In other
words, given a nominal control system (S0), we would like to find nominal
feedback controls, derived on the basis of this nominal system, that preserve
the property of exponential stability when they are applied to “neighboring”
systems (Sε).

Explicit homogeneous exponential (time-periodic) stabilizers u(x, t) for sys-
tems (S0) have been derived in various previous studies (see [8, 10], for ex-
ample). However, as demonstrated in [7], none of these controls solves the
robustness problem stated above in the sense that there always exists some
hi(ε, .) for which the origin of the associated controlled system is not sta-
ble when ε 6= 0. This negative result strongly suggests that no continuous
feedback u(x, t), not necessarily homogeneous, can be a robust exponential
stabilizer. However, it does not imply that the problem cannot be handled via
an adequate dynamic extension of the original nominal system. As a matter
of fact, and as explained below, the present study may already be seen as a
step in this direction.

An alternative to continuous state feedback control consists in considering
hybrid open-loop/feedback controls such as open-loop controls which are peri-
odically updated from the measurement x(kT ), k ∈ N, of the state at discrete
time-instants. The idea of using this type of control to achieve asymptotic
stabilization of the origin of the class of nonlinear driftless systems consid-
ered here is not new. This possibility has sometimes been presented as an
extension of solutions obtained when addressing the open-loop steering prob-
lem, i.e. the problem of finding an open-loop control which steers the system
from an initial state to another desired one (see [9, 12], for example). Hybrid
continuous/discrete time exponential stabilizers for chained systems, which
do not specifically rely on open-loop steering control, have also been pro-
posed in [14]. However, [1] is to our knowledge the first study where the
robustness problem stated above has been formulated in a similar fashion
and where it has been shown that this problem can be solved by using a hy-
brid open-loop/feedback control. In fact, although this is not specified in the
abovementioned reference, the proposed control does not “strictly” ensure
asymptotic stability, in the usual sense of Lyapunov, of the origin of the per-
turbed systems (Sε). In order to be more specific about this technical point,
and also clarify the meaning of “periodically updated open-loop control ap-
plied to a time-continuous system ẋ = f(x, u)”, it is useful to introduce the
following extended control system:
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ẋ = f(x, u)

ẏ = (
∑
k∈N

δkT )(x − y−α) 0 < α < T ,
(12.4)

with T denoting the updating time-period of the control part which depends
upon y, δkT the classical Dirac impulse at the time-instant kT , and y−α

the delay operator such that y−α(t) = y(t − α). The extra equation in y
just indicates that y(t) is constant and equal to x(kT ) on the time-interval
[kT, (k + 1)T ). Therefore, any control the expression of which, on the time-
interval [kT, (k + 1)T ), is a function of x(kT ) and t, may just be interpreted
as a feedback control u(y, t) for the corresponding extended system. From
now on, we will adopt this point of view whenever referring to this type of
control. As commonly done elsewhere, we will also say that a feedback control
u(x, y, t) is a (uniform) exponential stabilizer for the extended system (12.4)
if there exist an open set U ∈ Rn ×Rn containing the point (0, 0), a positive
real number γ, and a function β of class K such that:

∀t ≥ t0 ≥ 0 , ∀(x(t0), y(t0)) ∈ U ,

|(x(t), y(t))| ≤ β(|(x(t0), y(t0))|)exp(−γ(t − t0))

with (x(t), y(t)) denoting any solution of the controlled system. In our opin-
ion, the importance of the contribution in [1] comes from that it convincingly
demonstrates the possibility of achieving robust (with respect to unmodeled
dynamics, as defined earlier) exponential stabilization (stability being now
taken in the strict sense of Lyapunov) of an extended control system (S̄0),
defined as the “nominal” system within the set of systems

(S̄ε) :




ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui

ẏ = (
∑
k∈N

δkT )(x − y−α) 0 < α < T ,

(12.5)

via the use of a continuous time-periodic feedback u(y, t). The exploration
of this possibility has been carried further on in [11], and a large part of
the present paper is devoted to recalling the main results proven in this
reference. These include i) a theorem stating sufficient conditions under which
a continuous time-periodic feedback u(y, t) is a robust stabilizer (Section
12.2), ii) a general control design algorithm which applies to any controllable
analytic (differentiability up to a certain order is in fact sufficient) driftless
control system affine in the control (Section 12.3.1), and iii) a set of simpler
stabilizers for the subclass of nilpotent chained systems, obtained by further
exploiting the internal structure of these systems (Section 12.3.3). We also
complement the aforementioned study with two new results. First, we prove a
robustness result with respect to sampling of the control law (Section 12.3.1).
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Then, we show how to derive new stabilizing control laws for a dynamic
extension of the system (consisting in adding an integrator at each input
level) (Section 12.4).

The following notation is used.

The identity function on Rn is denoted id, |.| is the Euclidean norm, and
the transpose of a row-vector (x1, . . . , xn) is denoted as (x1, . . . , xn)′.

For any vector field X and smooth function f on Rn, Xf denotes the
Lie derivative of f along the vector field X . When f = (f1, . . . , fn)′ is a
smooth map from Rn to itself, Xf denotes the map (Xf1, . . . , Xfn)′.

A square matrix A is called discrete-stable if all its eigenvalues are strictly
inside the complex unit circle.

Given a continuous functions g, defined on some neighborhood of the ori-
gin in Rn, we denote o(g) (resp. O(g)) any function or map such that
|o(g)(x)|
|g(x)| −→ 0 as |x| −→ 0 (resp. such that |O(g)(x)|

|g(x)| ≤ K in some neigh-
borhood of the origin). When g = |.|, we write o(x) (resp. O(x)) instead of
o(g)(x) (resp. O(g)(x)).

12.2 Sufficient conditions for exponential and robust
stabilization

Prior to stating the main result of this section, we review some properties of
Chen-Fliess series that will be used in the sequel. The exposition is based on
[4, 17], and limited here to driftless systems.

A m-valued multi-index I is a vector I = (i1, . . . , ik) with k denoting a
strictly positive integer, and i1, . . . , ik, integers taken in the set {1, . . . , m}.
We denote the length of I as |I|, i.e. I = (i1, . . . , ik) =⇒ |I| = k.

Given piecewise continuous functions u1, . . . , um defined on some time-
interval [0, T ], and a m-valued multi-index I = (i1, . . . , ik), we define

∫ t

0

uI =
∫ t

0

∫ tk

0

· · ·
∫ t2

0

uik
(tk)uik−1(tk−1) · · ·ui1(t1) dt1 · · · dtk . (12.6)

Given smooth vector fields f1, . . . , fm on Rn, and a m-valued multi-index I =
(i1, . . . , ik), we define the k-th order differential operator fI : C∞(Rn;R) −→
C∞(Rn;R) by

fI g = fi1fi2 · · · fik
g . (12.7)

The following proposition is a classical result (see e.g. [17] for the proof).
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Proposition 1 [17] Consider the analytic system (S0) and a compact set
K ⊂ Rn. There exists µ > 0 such that for M, T ≥ 0 verifying

MT ≤ µ , (12.8)

and for any control u = (u1, . . . , um) piecewise continuous on [0, T ] and
verifying

|u(t)| ≤ M , ∀t ∈ [0, T ] , (12.9)

the solution x(.) of (S0), with x0
∆= x(0) ∈ K, satisfies

x(t) = x0 +
∑

I

(fI id)(x0)
∫ t

0

uI , ∀t ∈ [0, T ] . (12.10)

Furthermore, the series in the right-hand side of (12.10) is uniformly abso-
lutely convergent w.r.t. t ∈ [0, T ] and x0 ∈ K.

Note that the sum in the right-hand side of equality (12.10) can be developed
as

∞∑
k=1

m∑
i1,... ,ik=1

(fi1 · · · fik
id)(x0)

∫ t

0

∫ tk

0

· · ·
∫ t2

0

uik
(tk)uik−1(tk−1) · · ·

ui1(t1) dt1 · · · dtk .

Let us also remark that the condition (12.8), which relates the integration
time-interval to the control size, is specific to driftless systems. For a system
which contains a drift term, it is a priori not true that decreasing the size of
the control inputs allows to increase the time-interval on which the expansion
(12.10) is valid. The fact that this property holds for driftless systems can be
viewed as a consequence of time-scaling invariance properties.

Our first result points out sufficient conditions under which exponential sta-
bilization robust to unmodeled dynamics is granted.

Theorem 12.2.1. [11] Consider an analytic locally controllable system (S0),
a neighborhood U of the origin in Rn, and a function u : U × R+ −→
Rm, (x, t) 7−→ u(x, t), periodic of period T w.r.t. t, continuous w.r.t. x and
piecewise continuous1 w.r.t. t. Assume that

1. there exist α, K > 0 such that |u(x, t)| ≤ K|x|α for all (x, t) ∈ U × [0, T ],

2. the solution x(.) of
1 In [11], u is assumed continuous w.r.t. t, but the proof is unchanged if u is only

piecewise continuous.
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ẋ =
m∑

i=1

fi(x)ui(x0, t) , x(0) = x0 ∈ U , (12.11)

satisfies x(T ) = Ax0 + o(x0) with A a discrete-stable matrix,

3. for any multi-index I of length |I| ≤ 1/α (this assumption is only needed
when α < 1),

∫ T

0

uI(x) = O(x) . (12.12)

Then, given a family of perturbed systems (Sε), there exists ε0 > 0 such that
the origin of (S̄ε) controlled by u(y, t) is locally exponentially stable for any
ε ∈ (−ε0, ε0) .

The conditions imposed in the theorem upon the control law can be satisfied
in many ways. For instance, when the system (S0) is known to be differentially
flat [2], adequate control functions can be obtained by considering specifically
tailored flatness-based solutions to the open-loop steering problem, as done
for example in [1] in the case of chained systems. Although the control de-
sign approach and robustness analysis in [1] are very different from the ones
developed in [11], the set of specific conditions derived in this reference im-
ply that the assumptions of Theorem 12.2.1 are verified. This suggests that
these assumptions are not unduly strong and also illustrates the fact that the
domain of application of Theorem 12.2.1 extends to different control design
techniques.

12.3 Control design

This section addresses the problem of constructing explicit controllers that
meet the conditions of Theorem 12.2.1. Such controllers have to be expo-
nential stabilizers for the extended system (S̄0). A general design algorithm
is first proposed. It takes advantage of known techniques based on the use
of oscillatory open-loop controls in order to achieve net motion in any di-
rection of the state space. Unfortunately (and unavoidably), the procedure
also inherits the complexity of the abovementioned techniques, itself directly
related to the process of selecting the “right” frequencies which facilitate
motion monitoring in the state space. Unsurprisingly, the selection of these
frequencies gets all the more involved that controllability of the system relies
on high-order Lie brackets of the control vector fields. The control design can
in fact be carried out from the expression of either the original system (S0) or
any locally controllable homogeneous approximation of (S0). Indeed, working
with an homogeneous approximation preserves the robustness of the feedback
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law provided that an extra condition is satisfied by the control law. This is
stated more precisely further in the paper after recalling basic definitions and
facts about homogeneous systems.

12.3.1 A general algorithm

We present in this section a general algorithm to construct robust and expo-
nential stabilizers for (S0). The algorithm uses previous results by Sussmann
and Liu [16], and Liu [6]. It is also much related to the one developed in
[10] for the construction of continuous time-periodic feedbacks u(x, t) which
exponentially stabilize the origin of a driftless system (S0), but present the
shortcoming of not being endowed with the type of robustness here consid-
ered.

In order to give a complete exposition of the algorithm, it is first useful
to recall some notations from [18]. With the set of control vector fields
{f1, . . . , fm} we associate a set of indeterminates X = {X1, . . . , Xm}. Brack-
ets in L(X), the free Lie algebra in the indeterminates X1, . . . , Xm, will be
denoted with the letter B. To any such bracket, one can associate a length and
a set of indeterminates. For instance, B = [X1, [X2, X1]] has length three, and
his set of indeterminates is {X1, X2, X1} . To each element A in L(X), one
can also associate an element in the control Lie algebra Lie(f) by means of
the evaluation operator Ev. More precisely, Ev(f)(A) is the vector field ob-
tained by plugging in the fj’s for the Xj’s in A. For instance, if B = [X1, X2],
then Ev(f)(B) is the vector field [f1, f2].

Finally, we recall some definitions on subsets of R [16, 6].

Definition 1 Let Ω be a finite subset of R and |Ω| denote the number of
elements of Ω. The set Ω is said to be “Minimally Canceling” (in short, MC)
if and only if :

i)
∑
ω∈Ω

ω = 0

ii)this is the only zero sum with at most |Ω| terms taken in Ω with possible
repetitions:∑

ω∈Ω

λωω = 0

∑
ω∈Ω

|λω| ≤ |Ω|

(λω)ω∈Ω ∈ Z|Ω|




=⇒



(λω)ω∈Ω = (0, . . . , 0)
or (1, . . . , 1)
or (−1, . . . ,−1)

(12.13)

Definition 2 Let (Ωξ)ξ∈E be a finite family of finite subsets Ωξ of R. The
family (Ωξ)ξ∈E is said to be “independent with respect to p” if and only if :
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∑
ξ∈E

∑
ω∈Ωξ

λωω = 0

∑
ξ∈E

∑
ω∈Ωξ

|λω | ≤ p

(λω)ω∈Ωξ,ξ∈E ∈ ZΣ|Ωξ|




=⇒
∑

ω∈Ωξ

λωω = 0 ∀ξ ∈ E (12.14)

Algorithm

Step 1. Determine n vector fields f̃j (j = 1, . . . , n), obtained as Lie brackets
of length `(j) of the control vector fields fi, and such that the matrix

F̃ (x) ∆=
(
f̃1(x), . . . , f̃n(x)

)
(12.15)

is nonsingular at x = 0.

Step 2. Determine a matrix G such that the matrix (In + F̃ (0)G) is discrete-
stable (with In denoting the n-dimensional identity matrix), and define the
linear feedback

a(x) =
1
T

Gx . (12.16)

Step 3. By Step 1, there exists, for each j = 1, . . . , n, a bracket Bj such that
f̃j = Ev(f)(Bj). Partition the set {B1, . . . ,Bn} in homogeneous components
P1, . . . , PK , i.e.

i) all brackets in a homogeneous component Pk have the same length l(k),
and the same set of indeterminates {Xτk

1
, . . . , Xτk

l(k)
}.

ii)given two homogeneous components Pk and Pk′ (with k 6= k′), either l(k) 6=
l(k′), or {Xτk

1
, . . . , Xτk

l(k)
} 6= {Xτk′

1
, . . . , Xτk′

l(k′)
}.

Step 4. The last four steps can be conducted either in the control Lie algebra
(c.l.a.) framework or in the framework of free Lie algebras (f.l.a.)2.
c.l.a.: For every k = 1, . . . , K, find permutations σ1, . . . , σC(k) in S(l(k))
such that the vector fields

[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]] (σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of Lie(f) spanned by the vector
fields
2 Respective advantages and drawbacks will be pointed out later.
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[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]] (σ ∈ S(l(k))) .

f.l.a.: For every k = 1, . . . , K, find permutations σ1, . . . , σC(k) in S(l(k))
such that the brackets

[Xτk
σ(1)

, [Xτk
σ(2)

, [. . . , Xτk
σ(l(k))

] . . . ]] (σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of L(X) spanned by the brackets

[Xτk
σ(1)

, [Xτk
σ(2)

, [. . . , Xτk
σ(l(k))

] . . . ]] (σ ∈ S(l(k))) .

Step 5.
c.l.a.: For every k ∈ {1, . . . , K} such that l(k) ≥ 2, determine C(k) ∆= C(k)
MC sets Ωk,c = {ωk,c

1 , . . . , ωk,c
l(k)}, with c = 1, . . . , C(k), such that

i) the family of sets (Ωk,c)k=1,... ,K
c=1,... ,C(k) is independent w.r.t. maxk∈{1,... ,K} l(k)

ii) all elements in these sets have a common divisor ω̄ (= 2π/T ), i.e.

ωk,c
i /ω̄ ∈ Z, ∀(k, c, i),

iii) the C(k) elements gk,c (c = 1, . . . , C(k)) of Lie(f) defined by

gk,c =
∑

σ ∈ S(l(k))

[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]]

ωk,c
σ(1)(ω

k,c
σ(1) + ωk,c

σ(2)) · · · (ωk,c
σ(1) + . . . + ωk,c

σ(l(k)−1))

are independent (over R).

For every k ∈ {1, . . . , K} such that l(k) = 1, just set ωk,1
1 = 0.

Each family of sets {Ωk,c}c=1,... ,C(k) is used to associate the following sine
and cosine functions with Pk

αk,c

τk
i

(t) =
{

cosωk,c
i t (i = 1)

sinωk,c
i t (i = 2, . . . , l(k)) .

(12.17)

f.l.a.: Same as above, with C(k) ∆= C(k) instead of C(k), each fi replaced by
Xi, and Lie(f) replaced by L(X).

Step 6.
c.l.a.: For each k ∈ {1, . . . , K} and j such that Bj ∈ Pk, determine coeffi-
cients µk,c

j (c = 1, . . . , C(k)) such that
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f̃j =
(−1)l(k)−1

l(k)2l(k)−1

C(k)∑
c=1

µk,c
j gk,c . (12.18)

f.l.a.: Same as above, with f̃j replaced by Bj .

Step 7.
c.l.a. and f.l.a.: For each k ∈ {1, . . . , K}, determine l(k)C(k) state depen-
dent functions vk,c

τk
i

which are O(|x| 1
l(k) ), and such that

l(k)∏
i=1

vk,c

τk
i

(x) =
∑

j:Bj∈Pk

µk,c
j aj(x) (12.19)

(aj is the j-th component of a defined by (12.16)).

The following result concludes the description of the algorithm and points out
the robustness properties associated with the resulting control in connection
with Theorem 12.2.1.

Theorem 12.3.1. Let

ui(x, t) =




K∑
k=1

C(k)∑
c=1

∑
p:τk

p =i

αk,c
τk

p
(t)vk,c

τk
p

(x) if ∃(k, p) : τk
p = i

0 otherwise .

(12.20)

with C(k) equal to C(k) in the c.l.a. case, and to C(k) in the f.l.a. case.
Then,

i) in both cases, u defined by (12.20) belongs to C0(Rn × R+;Rm), is T -
periodic w.r.t. t, and satisfies the three assumptions of Theorem 12.2.1.

ii)in the f.l.a. case, local asymptotic stability of the origin of the perturbed
system (S̄ε) is guaranteed for any ε such that In + F̃ε(0)G is discrete-
stable, where F̃ε denotes the matrix-valued function obtained from (12.15)
by replacing each f̃j = Ev(f)(Bj) by f̃j,ε = Ev(f + h(ε, .))(Bj).

Property ii) above summarizes the main advantage of working in the f.l.a.
framework. In this case, asymptotic stability of the origin of the controlled per-
turbed system is just equivalent to discrete-stability of the matrix In+F̃ε(0)G.
This result is conceptually interesting because it is reminiscent of a well
known robustness result associated with linear systems. On the other hand,
the fact that the number C(k) is usually smaller than C(k) characterizes the
main advantage of the c.l.a. framework over the f.l.a. one in terms of com-
plexity of the control expression (12.20), as measured by the number of terms
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and time-periodic functions involved in this expression. Further explanations
and comments about the algorithm are given in [11].

Now we show that robustness of the hybrid law (12.20) is conserved when
sampling the control function at a large enough frequency.

Proposition 2 Let u be defined by (12.20), and denote uN (with N ∈ N)
the sampled function defined by

∀k ∈ N , ∀n = 0, . . . , N − 1 , ∀t ∈
[
kT + nT

N , kT + (n+1)T
N

)
,

uN(x, t) = u(x, kT + nT/N) .
(12.21)

Then, there exists N0 ∈ N such that, for N ≥ N0, uN is also a robust
exponential stabilizer for (S0).

Proof: The proof consists in showing that uN satisfies the three assumptions
of Theorem 12.2.1. It is clear from (12.21) that Assumption 1 is satisfied for
uN since, from Theorem 12.3.1, u satisfies Assumption 1. Let us now consider
Assumption 2. Using the Chen-Fliess series, the solution x(.) of (12.11) with
uN as control satisfies

x(T ) = x0 +
∑

|I|≤1/α

(fI id)(x0)
∫ T

0

uN,I(x0) + o(x0)

= x0 +
∑

|I|≤1/α

(fI id)(x0)
∫ T

0

uI(x0) + o(x0)

+
∑

|I|≤1/α

(fI id)(x0)

(∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

)

= Ax0 + o(x0)

+
∑

|I|≤1/α

(fI id)(x0)

(∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

)
,

(12.22)

where we have used the fact that u and uN satisfy Assumption 1 with the
same value of α, and the fact that u satisfies Assumption 2. Let us now
consider each term∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

in (12.22). Using (12.20), we can rewrite this term as

∫ T

0

uN,I(x0) −
∫ T

0

uI(x0) =
∑

q

vq
I (x0)

(∫ T

0

αq
N,I −

∫ T

0

αq
I

)
. (12.23)



226 12. Robust point-stabilization of nonlinear affine control systems

This expression reads as follows. Each q denotes a family (q1, . . . , q|I|) with
qi = (ki, ci), and

vq
I (x0) = vq1

i1
(x0) · · · vq|I|

i|I| (x0) ,

∫ T

0

αq
N,I =

∫ T

0

α
q|I|
N,iI

(t|I|)
∫ t|I|

0

. . .

∫ t2

0

αq1
N,i1

(t1)dt1 . . . dt|I| ,

and∫ T

0

αq
I =

∫ T

0

α
q|I|
iI

(t|I|)
∫ t|I|

0

. . .

∫ t2

0

αq1
i1

(t1)dt1 . . . dt|I| .

Specifying further the (finite) set on which the sum in (12.23) is taken is
not important. Note that the integrals in the right-hand side of (12.23) are
iterated integrals of sine or cosine functions, and sampled sine or cosine func-
tions, which are independent of x0. To proceed with the proof, we need the
following lemma.

Lemma 1 Each term

vq
I (x0)

(∫ T

0

αq
N,I −

∫ T

0

αq
I

)
(12.24)

in (12.23), viewed as a function of x0, satisfies one of the following properties

a)it is a o(x0),

b) it is a linear function of x0,

c) it is identically zero for N large enough.

(Proof given farther)

Since each term∫ T

0

αq
N,I −

∫ T

0

αq
I

obviously tends to zero as N tends to infinity, we deduce from Lemma 1,
that the term (12.24) is either a o(x0), or a term AN (I, q)x0 with AN (I, q) a
matrix which tends to zero as N tends to infinity, or zero for N large enough.
Therefore, from (12.22), (12.23), and using the facts that the fi’s are smooth,
and that the number of multi-indices I such that |I| ≤ 1/α is finite, there
exists a matrix B(N) which tends to zero as N tends to infinity, and such
that

x(T ) = Ax0 + B(N)x0 + o(x0) .
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This clearly implies that Assumption 2 is satisfied for N large enough. Finally
the satisfaction Assumption 3 is a direct consequence of (12.23), Lemma 1,
and the fact that u satisfies this assumption. There remains to prove Lemma
1.

Proof of Lemma 1: Assuming that neither a) nor b) hold, we show that
c) must be satisfied. The proof consists in expanding each sampled sine or
cosine function as a Fourier series, in order to evaluate each term∫ T

0

αq
N,I . (12.25)

First, we establish the following

Claim 1 Let {ω1, . . . , ω|I|} denote the set of frequencies associated with the
functions α1, . . . , α|I| in∫ T

0

αq
I .

Then, for each M.C. set Ωk,c, {ω1, . . . , ω|I|} contains at most l(k) elements
which belong to Ωk,c, and does not contain Ωk,c itself.

We prove the claim by contradiction, and first assume that {ω1, . . . , ω|I|}
contains more than l(k) elements of some Ωk,c. Then, in view of Step 7 of
the design algorithm, we deduce that vq

I (x0) = o(x0). This contradicts our
initial assumption according to which Property a) in Lemma 1 is not satisfied.
On the other hand, if the set {ω1, . . . , ω|I|} contains some set Ωk,c then,
either these two sets are equal and, from (12.16) and (12.19), vq

I is a linear
function (in contradiction with the assumption that Property b) of Lemma
1 is not satisfied), or {ω1, . . . , ω|I|} contains Ωk,c plus extra terms, in which
case vq

I (x0) = o(x0) (again in contradiction with our initial assumption).

Having proved Claim 1, we return to the proof of the lemma. In order to
simplify the notation, we assume from now on that T = 2π. For different
values of T , the proof follows by a simple change of time variable. Let αN,i

denote any sampled sine or cosine function. Away from points of discontinuity,

αN,i(t) =
+∞∑

n=−∞
cnejnt , (12.26)

with

cn =
1
2π

∫ 2π

0

αN,i(t)e−jnt dt .

First, consider the case when αi(t) = cosωit. Then, denoting ∆
∆= T/N =

2π/N ,
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cn =
1
2π

N−1∑
k=0

∫ (k+1)∆

k∆

ejωik∆ + e−jωik∆

2
e−jnt dt

= − 1
4jnπ

N−1∑
k=0

(
ejωik∆ + e−jωik∆

) (
e−jn(k+1)∆ − e−jnk∆

)

= − 1
4jnπ

(
e−jn∆ − 1

)N−1∑
k=0

ej(ωi−n)k∆ + e−j(ωi+n)k∆ .

If n − ωi 6∈ NZ, then
N−1∑
k=0

ej(ωi−n)k∆ =
1 − ej(ωi−n)N∆

1 − ej(ωi−n)∆
=

1 − ej(ωi−n)2π

1 − ej(ωi−n)∆
= 0 ,

where the last equality comes from the fact that, from Step 5, ωi ∈ Z. Simi-
larly, if n + ωi 6∈ NZ

N−1∑
k=0

e−j(ωi+n)k∆ = 0 .

Therefore, cn is possibly different from zero only if n = ±ωi(modN), so that
(12.26) may be rewritten as

cosN ωit =
+∞∑

k=−∞
η1

i,kej(ωi+kN)t +
+∞∑

k=−∞
η−1

i,k e−j(ωi+kN)t

=
+∞∑

k=−∞

∑
s∈{−1,1}

ηs
i,kesj(ωi+kN)t ,

(12.27)

where the ηs
i,k are complex coefficients which depend on ωi, N, k, and s. Sim-

ilarly,

sinN ωit =
+∞∑

k=−∞

∑
s∈{−1,1}

ηs
i,kesj(ωi+kN)t , (12.28)

where the ηs
i,k are other complex coefficients. In view of (12.27) and (12.28),

we can rewrite (12.25) as∫ T

0

αq
N,I =

∑
(k1,... ,k|I|)∈Z|I|

JN,I(k1, . . . , k|I|) ,

with

JN,I(k1, . . . , k|I|)
∆=
∫ 2π

0

∑
s|I|∈{−1,1}

η
s|I|
i|I| ,k|I|e

s|I|j(ωi|I|+k|I|N)τ|I|

∫ τ|I|

0

. . .

∫ τ2

0

∑
s1∈{−1,1}

ηs1
i1,k1

es1j(ωi1+k1N)τ1 dτ1 . . . dτ|I| .
(12.29)
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The above expression is to be compared with the following one, derived when
the sine and cosine functions are not sampled:

∫ T

0

αq
I =

∫ 2π

0

∑
s|I|∈{−1,1}

η
s|I|
i|I| e

s|I|jωi|I|τ|I|
∫ τ|I|

0

. . .

∫ τ2

0

∑
s1∈{−1,1}

ηs1
i1

es1jωi1τ1 dτ1 . . . dτ|I| ,
(12.30)

with η1
i = η−1

i = 1/2 if αi is a cosine function, and η1
i = −η−1

i = −i/2 if αi is
a sine function. We have proved in [11, Lemma 2] that, when the condition of
Claim1 is satisfied, the integral (12.30) is zero. We claim that each iterated
integral (12.29) is also equal to zero provided that

N >

|I|∑
i=1

|ωi| . (12.31)

This condition is needed in order to ensure the following property:

|I|∑
p=1

λp(ωip + kpN) = 0

λp ∈ {−1, 0, 1}


 =⇒

|I|∑
p=1

λpωip = 0 .

We leave to the reader the task of verifying that this property allows a direct
transposition of the proof given in [11, Lemma 2] for the integral (12.30).
Therefore, both integrals involved in (12.24) are equal to zero when (12.31)
holds, and Property c) of Lemma 1 is verified. Note that imposing

N > max
k

l(k)max
i,k,c

|ωk,c
i |

automatically ensures (12.31) since, from (12.22) and Step 7, |I| ≤ 1/α =
maxk l(k).

12.3.2 Control design from a homogeneous approximation

It is often convenient and simpler to work with approximations of control
systems. For instance, linear approximations are commonly used for feedback
control design when they are controllable (or at least stabilizable). When the
linear approximation of the system, evaluated at the equilibrium which feed-
back control is in charge of stabilizing, is not stabilizable, the extension of
the notion of linear approximation yields to homogeneous controllable ap-
proximations. Using such an approximation is particularly well adapted to
the design of continuous homogeneous feedbacks which render the closed-loop
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system homogeneous of degree zero. The reason is that asymptotic stabiliza-
tion of the origin of the homogeneous approximation automatically ensures
that the origin of the initial control system is also asymptotically (locally)
stabilized by the same feedback control law. It is however important to real-
ize that this property does not necessarily hold when using hybrid controllers
such as those which we are considering here, and it is not difficult to work
out simple examples which illustrate this fact. Nevertheless, it is proved in
[11] that a robust controller for the system (S0) can be derived from the
knowledge of a homogeneous approximation of this system, provided that
some extra condition is satisfied by the control law. This condition will be
stated in a theorem, after recalling a few definitions and properties about
homogeneous systems. A complementary proposition will indicate how the
control design algorithm previously described can be completed in order to
cope with the use of homogeneous approximations.

Given λ > 0 and a weight vector r = (r1, . . . , rn) (ri > 0 ∀i), a dilation δr
λ is

a map from Rn to Rn defined by

δr
λ(z1, . . . , zn) = (λr1z1, . . . , λrnzn) .

A function f ∈ C0(Rn;R) is homogeneous of degree l with respect to the
family of dilations δr

λ (λ > 0), or, more concisely, δr-homogeneous of degree l,
if

∀λ > 0, f(δr
λ(z)) = λlf(z) .

A δr-homogeneous norm can be defined as a positive definite function on Rn,
δr-homogeneous of degree one. Although this is not a “true” norm when the
weight coefficients are not all equal, it still provides a means of “measuring”
the size of the state.
A continuous vector field X on Rn is δr-homogeneous of degree d if, for all
i = 1, . . . , n, the function z 7−→ Xi(z) is δr-homogeneous of degree ri + d.
According to these definitions, homogeneity is coordinate dependent, how-
ever it is possible to define the above concepts in a coordinate independent
framework [5, 13].
Finally, we say that the system

ż =
m∑

i=1

bi(z)ui (12.32)

is a δr-homogeneous approximation of (S0) if:

1. the change of coordinates φ : x 7−→ z transforms (S0) into

ż =
m∑

i=1

(bi(z) + gi(z))ui , (12.33)
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where bi is δr-homogeneous of some degree di < 0, and gi denotes higher-
order terms, i.e. such that gi,j (the j-th component of gi) satisfies

gi,j = o(ρrj+di) , (j = 1, . . . , n) . (12.34)

where ρ is a δr-homogeneous norm;

2. the system (12.32) is controllable.

Hermes [3] and Stefani [15] have shown that any driftless system (S0) sat-
isfying the LARC (Lie Algebra Rank Condition) at the origin (12.2) has a
homogeneous approximation (which is not unique in general).

Theorem 12.3.2. Consider a δr-homogeneous approximation (12.32) of
(S0), with di

∆= deg(bi) (i = 1, . . . , m), and a control function

u ∈ C0(U × [0, T ];Rm)

such that the three assumptions in Theorem 12.2.1 are verified for this approx-
imating system. Assume furthermore that the following assumption, which is
a stronger version of the third assumption in Theorem 12.2.1, is also verified
for the approximating system:

3-bis. for any multi-index I = (i1, . . . , i|I|) of length |I| ≤ 1/α,

∫ T

0

uI(z) =
∑

k:rk≥‖I‖
aI,kzk + o(z) , (12.35)

where ‖I‖ ∆= −
|I|∑

j=1

dij , and the aI,k’s are some scalars.

Then, the three assumptions of Theorem 12.2.1 are verified for the system
(12.33).

When applying the algorithm of Section 12.3.1 to the approximation (12.32),
the control law u given by (12.20) may not satisfy the extra condition 3-bis
of Theorem 12.3.2. However, it is possible to impose extra requirements on
the matrix G defined in Step 2 so as to guarantee the satisfaction of this
condition. For instance, the following result is proved in [11].

Proposition 3 Consider a δr-homogeneous approximation (12.32) of (S0),
with every control vector field of this system being δr-homogeneous of degree
−1. Without loss of generality, we assume that the variables zi are ordered
by increasing weight, i.e.
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r1 ≤ r2 ≤ . . . ≤ rn ,

and decompose z as z = (z1, . . . , zP ), where each zp (1 ≤ p ≤ P ) is the
sub-vector of z whose components have same weight rp (r1 ≤ rp ≤ rn) with

r1 = r1 < r2 < . . . < rP = rn .

Consider the control design algorithm described in Section 12.3.1 and applied
to (12.32). Let b̃j (j ∈ {1, . . . , n}) denote the vector fields defined according
to Step 1 of the algorithm, and

B̃(z) ∆= (b̃1(z), . . . , b̃n(z)) .

Due to the ordering of the variables zi, the matrix B̃(z) is block lower trian-
gular, and block diagonal at z = 0, i.e.

B̃(0) =




B̃11 0 · · · 0

0 B̃22
...

...
...

. . . 0
0 · · · · · · B̃PP


 .

Assume that the control gain matrix G involved in Step 2 of the algorithm is
chosen as follows

G = B̃(0)−1(H − In)

with the matrix H being block upper triangular, i.e.

A =




H11 ? · · · ?

0 H22 . . .
...

...
. . . . . . ?

0 · · · 0 HPP


 ,

and discrete-stable (⇔ Hii is discrete-stable for i ∈ {1, . . . , P}).
Then, the three assumptions of Theorem 12.2.1 are verified for the system
(S0).

12.3.3 Stabilizers for chained systems

In some cases, it is possible to take advantage of specific structural properties
associated with the control system under consideration, in order to derive
robust control laws that are simpler than those obtained by application of
the general algorithm presented in Section 12.3.1. We illustrate this possibility
in the case of the following n-dimensional chained system
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(S0)




ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

...
ẋn = u1xn−1 .

(12.36)

The next result points out a set of robust exponential stabilizers for this
system.

Theorem 12.3.3. With the control function u ∈ C0(Rn× [0, T ];R2) defined
by 


u1(x, t) =

1
T

[(g1 − 1)x1 + 2πρq(x) sin(ω̄t)]

u2(x, t) =
1
T

[(g2 − 1)x2

+
∑n

i=3 2i−2(i − 2)!(gi − 1) xi

ρi−2
q (x)

cos((i − 2)ω̄t)] ,

(12.37)

with

T = 2π/ω̄ (ω̄ 6= 0) ,

ρq(x) =
n∑

j=3

αj |xj | 1
q+j−2 , (q ≥ n − 2 , αj > 0) ,

|gi| < 1 , ∀i = 1, . . . , n ,

(12.38)

the three assumptions in Theorem 12.2.1, and the extra assumption in The-
orem 12.3.2, are verified for the system (12.36).

Corollary 1 (of Theorems 12.3.2 and 12.3.3) With the control function
(12.37), the three assumptions in Theorem 12.2.1 are verified for any analytic
driftless system for which the chained system (12.36) is a δr-homogeneous ap-
proximation, with r = (1, q, . . . , q + n − 2) and q ≥ n − 2.

12.4 Control laws for a dynamic extension

In mechanics, systems with non-holonomic constraints (wheeled mobile-
robots, systems with rolling parts,...) give rise to driftless systems like (S0). In
this case, x represents the configuration vector, and the control,u, is a vector
of admissible velocities. In practice, it is however more realistic to consider
torque control inputs rather than velocity control inputs. Since torques are
homogeneous to accelerations, it is then natural to consider the following
system (compare with (S0))
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(D0) :




ẋ =
m∑

i=1

fi(x)ui

u̇ = w ,

where u = (u1, . . . , um), (x, u) is the state vector, and w = (w1, . . . , wm) is
now taken as the control variable. If ū denotes an exponential robust stabilizer
for (S0) (as derived in the previous section for instance), we would like to
deduce an exponential stabilizer w for (D0), which conserves the robustness
properties of ū. More precisely, we look for a feedback w(y, v, t) such that the
origin of the controlled system

(D̄ε) :




ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui

u̇ = w(y, v, t)
ẏ = (

∑
k∈N δkT )(x − y−α)

v̇ = (
∑

k∈N δkT )(u − v−α) 0 < α < T

is exponentially stable when |ε| is small enough. We say that such a con-
troller is an exponential robust stabilizer for (D0). Let us remark that this is
a somewhat simplified problem since we do not consider perturbations on the
dynamic part. More precisely, having in mind the dynamic equations of me-
chanical systems, it would be justified to complement the perturbed system
(Sε) with an equation such as

u̇ = (Im + g1(ε, x, u))w + g0(ε, x, u) ,

with g1(0, ., .) = g0(0., ., ) ≡ 0, and g0(., 0, 0) ≡ 0 (so that (x, u) = (0, 0) re-
mains an equilibrium point). Beside the possibility that there may not exist
controllers which ensure robustness with respect to such general perturba-
tions, the analysis appears much more difficulty in this case. For this reason,
the present analysis is limited to perturbations on the kinematic part only.
Nonetheless, it is not very difficult to show that the control laws proposed
below are also robust with respect to less general perturbations (such as these
modeled by a function g1 which depends on ε only).

The following proposition provides exponential robust stabilizers for (D0).

Proposition 4 Let ū ∈ C0(U×R+;Rm) denote a function Hlder-continuous
with respect to x, differentiable and periodic of period T with respect to t.
Assume further that ū is an (hybrid) exponential robust stabilizer for (S0).
Denote α the function

t 7−→ α(t) = t − T

2π
sin

2πt

T
. (12.39)

Then,
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1. the function ūc ∈ C0(U × R+;Rm) defined by

ūc(y, t) = α̇(t)ū(y, α(t)) (12.40)

is also an exponential robust stabilizer for (S0), with the function t 7−→
ūc(y(t), t) being continuous along the trajectories of the closed-loop sys-
tem (S̄0),

2. the function w ∈ C0(U × Rm × R+;Rm) defined by

w(y, v, t) =
∂

∂t
ūc(y, t) − v

T
(12.41)

is an exponential robust stabilizer for (D0) .

Proof: First, we show that Property 1 is satisfied. From (12.39), α defines a
time-scaling on R+ which leaves each t = kT invariant (i.e. α(kT ) = kT for
all k ∈ N). One readily verifies that this time-scaling maps the solutions of
(S0) controlled by ū to the solutions of (S0) controlled by ūc, i.e.

ẋ(t) =
m∑

i=1

fi(x(t))ū(x0, t) =⇒ d

dt
x(α(t)) =

m∑
i=1

fi(x(t))α̇(t)ū(x0, α(t))

=
m∑

i=1

fi(x(t))ūc(x0, α(t)) .

Since this time-scaling also “preserves” the solutions of the perturbed systems
(Sε), we conclude that ūc is a robust exponential stabilizer for (S0). Finally,
ūc is continuous along the trajectories of (S̄0) because α̇(kT ) = 0 for all k,
so that

ūc(y(kT ), kT ) = 0 = lim
t→kT

ūc(y(t), t) .

Now we show that Property 2 is verified. We only prove exponential conver-
gence to the origin of the closed-loop systems’ solutions. Existence of these
solutions and uniform stability of the origin can be proved via a simple adap-
tation of the proof of [11, Theorem 1], in the case of driftless systems. Let
(xε, uε, yε, vε)(., t0, x0, u0, y0, v0) denote the solution of the controlled system
(D̄ε) with initial conditions (t0, x0, u0, y0, v0), t0 ∈ [k0T, (k0 + 1)T ), k0 ∈ N.
Then, for any k ∈ N such that k0 < k, and any t ∈ [kT, (k + 1)T ), this
solution satisfies



ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui(t)

u̇ = w(x(kT ), u(kT ), t)
ẏ = 0 , y(t) = x(kT )
v̇ = 0 , v(t) = u(kT )

(12.42)
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From (12.42) and (12.41),

u(t) = u(kT ) + ūc(x(kT ), t) − ūc(x(kT ), kT )− u(kT )
T

(t − kT ) . (12.43)

Using the fact that ūc(., kT ) ≡ 0 for all k, we deduce that

u((k + 1)T ) = 0 . (12.44)

As a consequence, for t ∈ [kT, (k + 1)T ) and k ≥ k0 + 2, we deduce from
(12.43) and (12.44) that

u(t) = ūc(x(kT ), t) . (12.45)

Thus, for t ≥ (k0 + 2)T , the x component of the solution of (12.42) coin-
cides with the solution of the system (S̄ε) controlled by ūc(y, t). Since, from
Property 1, ūc is an exponential stabilizer for (S̄0), we deduce that |x(t)| con-
verges exponentially to zero. Then, using the fact that ū (and therefore ūc) is
Hlder-continuous w.r.t. x, we deduce from (12.45) that |u(t)| also converges
exponentially to zero.
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