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MODEL

A slow moving large vehicle, e.g., a bus or truck,
reduces the road capacity and thus generates a mov-
ing bottleneck for the surrounding traffic flow. From
the macroscopic point of view this can be modeled
by a PDE-ODE coupled system introduced in [3]


∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ αR, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.
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MAIN DEFINITIONS

Definition 1 (Riemann Solver) The constrained Riemann solverRα for the Cauchy problem is defined as follows:

1. If f(R(ρL, ρR)(Vb)) > Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR)(x) =

{
R(ρL, ρ̂α) if x < Vbt,
R(ρ̌α, ρR) if x ≥ Vbt,

and y(t) = Vbt.

2. If VbR(ρL, ρR)(Vb) ≤ f(R(ρL, ρR)(Vb)) ≤ Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = Vbt.

3. If f(R(ρL, ρR)(Vb)) < VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

Note: When the constraint is enforced, a nonclassical shock arises, which satisfies the Rankine-Hugoniot
condition but violates the Lax entropy condition.

Definition 2 (Weak solution) A couple (ρ, y) ∈ C0
(
R+;L1 ∩ BV(R)

)
×W1,1(R+) is a solution to the Cauchy

Problem if

1. ρ is a weak solution of the conservation law, i.e. for all ϕ ∈ C1c (R2)∫
R+

∫
R

(ρ∂tϕ+ f(ρ)∂xϕ) dx dt+

∫
R
ρ0(x)ϕ(0, x) dx = 0 ;

2. y is a Carathéodory solution of the ODE, i.e. for a.e. t ∈ R+

y(t) = y0 +

∫ t

0

ω(ρ(s, y(s)+)) ds ;

3. the constraint is satisfied, in the sense that for a.e. t ∈ R+

lim
x→y(t)±

(f(ρ)− ω(ρ)ρ) (t, x) ≤ Fα.
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EXISTENCE THEOREM

Theorem 1 (Existence of solutions) For every initial data ρ0 ∈ BV (R) such that TV(ρ0) ≤ C is bounded, the
Cauchy problem admits a weak solution in the sense of Definition 2.

Sketch of the proof:
Lemma 2 (Bound on the total variation) Define the Glimm type functional

Υ(t) = Υ(ρn(t, ·)) = TV(ρn) + γ =
∑
j

∣∣ρnj+1 − ρnj
∣∣+ γ,

with γ = γ(t) =

{
0 if ρn(t, yn(t)−) = ρ̂α, ρn(t, yn(t)+) = ρ̌α

2|ρ̂α − ρ̌α| otherwise.
Then, for any n ∈ N, t 7→ Υ(t) = Υ(ρn(t, ·)) at any interaction either decreases by at least 2−n, or remains constant
and the number of waves does not increase.

Lemma 3 (Convergence of approximate solutions) Let ρn and yn, n ∈ N, be the wave front tracking approxima-
tions of the Cauchy Problem, and assume TV(ρ0) ≤ C be bounded, 0 ≤ ρ0 ≤ 1. Then, up to a subsequence, we have the
following convergences

ρn → ρ in L1
loc(R+ × R);

yn(·)→ y(·) in L∞([0, T ]), for all T > 0;
ẏn(·)→ ẏ(·) in L1([0, T ]), for all T > 0;

for some ρ ∈ C0
(
R+;L1 ∩ BV(R)

)
and y ∈W1,1(R+). Note: For the full proof see [2].

PRELIMINARY NUMERICAL RESULTS

Numerical simulations were carried out using a
front capturing scheme [1] with moving space grid
as in [4]. In particular, the space discretization fol-
lows the bus trajectory.

For the numerical simulations we used the fol-
lowing flux function f(ρ) = ρ(1− ρ) and the follow-
ing parameters Vb = 0.3, α = 0.6. The (reference)
space step is ∆x = 0.005, CFL = 1

2 and the time
step is computed accordingly. In the following fig-
ure, we show the evolution in time of the density,
corresponding to the following Riemann type initial
data

ρ(0, x) =

{
0.8 if x < 0.5,
0.53 if x > 0.5,

and y0 = 0.2.
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