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Calculs à grande échelle d’invariants de 3-variétés

Résumé

La topologie est l’étude des objets à déformation près, sans couper ni coller : l’illustration
la plus répandue est sans doute la transformation d’une tasse en donut. Parmi tous les sujets
d’études en topologie, les variétés présentent un intérêt particulier : elles sont la généralisation
en toutes dimensions des surfaces et permettent de représenter naturellement de nombreux
objets.
Cette thèse se concentre sur la topologie en basses dimensions, et plus précisément à l’étude des
3-variétés. Celles-ci ont un statut privilégié pour les informaticiens : alors que les problèmes ont
tendance à être simples en dimension 2 et impossibles en dimension 4, à l’instar du problème de
l’homéomorphisme, les problèmes tendent à être difficiles mais possibles avec les 3-variétés.
De plus, les 3-variétés sont triangulables et donc manipulables par des ordinateurs.
Les 3-variétés peuvent également être utilisées pour étudier les nœuds. Les nœuds peuvent être
vus comme des courbes fermées et nouées, ils sont utilisés en modélisation et en physique
quantique. Par le théorème de Gordon-Luecke, le complément d’un nœud est une 3-variété qui
contient toutes les informations à propos de celui-ci. Avec les 3-variétés, l’étude des nœuds a
connu de nombreux avancements incluant notamment le théorème de classification de Thurston
qui les classes en trois familles : les nœuds toriques, satellites et hyperboliques.
Différencier des couples de variétés, ou de nœuds, est un problème difficile et central en topo-
logie. Pour les diagrammes de nœuds, une projection d’un nœud dans le plan, il est possible
d’essayer de le modifier pour le transformer en un autre, mais ces approches sont connues pour
être très difficiles. Une approche plus réaliste est d’utiliser des caractéristiques topologiques :
les invariants. Ce sont des objets mathématiques qui encodent une partie de l’information to-
pologique d’un autre objet, ils ne dépendent donc pas de la représentation de la variété ou du
diagramme du nœud, et ils sont l’objet d’intenses recherches en mathématiques.
Si calculer directement un invariant est, en général, plus simple que de résoudre le problème
de l’homéomorphisme, leur calcul n’est pas toujours simple, d’où des besoins en terme de
logiciels et d’implémentations. C’est d’autant plus vrai aujourd’hui qu’avec l’augmentation
des puissances de calcul, de grands recensements de variétés et de nœuds sont disponibles,
nécessitants analyse et extension. Les besoins de la communauté en matière de logiciels sont
bien illustrés par la popularité des bibliothèques comme SnapPy et Regina.
Cette thèse est dédiée à deux invariants : le volume hyperbolique et les invariants de Turaev-
Viro. Dans les deux cas des contributions sont proposées en terme d’algorithmes, de logiciels
et d’analyses.
Pour le volume hyperbolique, nous proposons une approche basée sur des théorèmes de Casson
et Rivin pour calculer des structures hyperboliques complètes (CHS). Étant donnée une trian-
gulation, nous utilisons de l’optimisation convexe sur son polytope des structures angulaires ;
ce qui mène soit à une CHS, soit à une configuration bloquante que nous simplifions avant de
continuer. En plus de ces résultats nous proposons une hybridation entre notre méthode et celle
de SnapPy qui est plus rapide que l’état de l’art.
Pour les invariants de Turaev-Viro, qui sont indexés par un entier r, nous proposons une mé-
thode pour déterminer, étant donnée une collection de triangulations, sur laquelle les algo-
rithmes de calculs seront le plus efficaces. Nous ajoutons également de l’arithmétique multi-
précision à Regina dans le but de pouvoir calculer l’invariant, même pour de grandes valeurs
de r, ce qui permet de vérifier expérimentalement une conjecture du volume basée sur les in-
variants de Turaev-Viro.

Mots-clés : Nœud, 3-variétés, invariants, structures hyperboliques, topologie algorithmique, im-
plémentation.
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Large scale computations of 3-manifold invariants
Abstract

Topology is the study of shapes modulo deformations, without cutting or gluing: the famous
example of this is the mug that can be morphed into a doughnut. Among all the objects studied
by topologists, manifolds are of particular interest: they are generalizations of surfaces to
higher dimensions that are studied by many mathematicians, and they allow to represent many
shapes in a rather natural way.
This thesis is focused on low dimensional topology, and more precisely on the study of 3-
manifolds. 3-manifolds have a peculiar status for computer scientists: while problems tend to
be polynomial on 2-manifolds and undecidable on 4-manifolds, see for instance the homeo-
morphism problem, problems tend to be doable but difficult on 3-manifolds. Furthermore, all
3-manifolds admit a triangulation and thus can be manipulated by computers.
3-manifolds are also an effective way to study knots. Knots can be seen as knotted closed
curves in the space, they are used as modeling tools and are linked to quantum physics. The
Gordon-Luecke theorem states that the complement of a knot in S3 is a 3-manifold that con-
tains all the information about the knot. Using 3-manifolds, the study of knots leaped forward
with Thurston’s classification theorem: a knot is either torus, if its complement contains a
non-trivial annulus whose boundary lies on the knot, satellite, if its complement contains an
essential torus, and hyperbolic otherwise.
Distinguishing pairs of manifolds, and pairs of knots in particular, is a complex and central
problem in topology. For knot diagrams, a projection of the knot in a plane, one could try
to modify one into another, but these kind of approaches are infamously expensive. A more
realistic approach is to use topological characteristics: the invariants. These invariants are
mathematical objects that encode some of the topological information of the manifold, thus
they do not depend on the representation of an object, such as the triangulation for a manifold
or the diagram for a knot, and they are subject to intensive study.
While computing invariants is, in general, simpler than solving directly the homeomorphism
problem, their computations are often non trivial, which calls for efficient algorithms and im-
plementations. This is particularly true today as, with the increasing computation power, very
large censuses of knots and manifolds are available, requiring extensions and analysis. The
needs of the community in terms of software is demonstrated by the popularity and ubiquity of
libraries like SnapPy and Regina.
This thesis is dedicated to two invariants: the hyperbolic volume and the invariants of Turaev-
Viro. In both cases we propose contributions in term of algorithm, software, and analysis.
For the hyperbolic volume, we propose an approach based on theorems of Casson and Rivin
to compute complete hyperbolic structures (CHS). Given a triangulation, we use convex op-
timization on its polytope of angle structures; this either leads to a CHS, or to a blocking
configuration we resolve in order to proceed further. In addition to this algorithm and the anal-
ysis of its results, we propose an hybridization with SnapPy’s method that outperforms the
state-of-the art.
For the Turaev-Viro invariants, which are indexed by an integer r, we propose a preprocessing
method based on polytope theory to select the triangulation on which existing algorithms will
perform the best. We then introduce multiprecision arithmetics to Regina in order to perform
large r computations of the invariant and verify a volume conjecture based on the Turaev-Viro
invariants.
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CHAPTER 1
Introduction

1.1 Low dimensional topology

Topology is the study of shapes modulo deformations by continuous transformations, that is
deformations without cutting or gluing. The classical example of this is the morphing of a mug
into a doughnut. Another way of grasping this concept is to consider objects and to ignore the
distances within them, i.e. the geometry. For instance, there is only one circle for topologists.

While topology is more general, the scope of this manuscript is restricted to 3-manifolds. A
n-manifold is a space that locally looks like Rn for a given dimension n, and n-manifolds can
be understood as a generalization of surfaces, which are 2-manifolds. The study of 3-manifolds
belongs to low dimensional topology, a subdomain that offers many interesting approaches from
purely mathematical to computational points of views. To put it simply, 2-manifolds are classified
and computational problems in dimension 2 tend to be solvable in polynomial time. In dimension
4, some manifolds do not even admit triangulations and many problems are undecidable, like
the homeomorphism problem. Dimension 3 is of particular interest to computer scientists where
questions may be difficult but are still answerable. Another point to highlight the specificity of
low dimensional topology can be seen with the Poincaré conjecture, which was solved for all
dimensions but the third in 1982, before being finally completed in 2003.

All 3-manifolds admit generalized triangulations [65]. In this context, triangulations are com-
binatorial objects composed of simplices and gluing relations. The gluing relation of a triangula-
tion states, for each face of each simplex, if and to which other face it is identified, an unidentified
face will be part of the boundary of the manifold. These triangulations are used to encode the
topology of the manifolds and differ from other classical instances, like Delaunay triangulation or
simplicial complexes, in that they do not carry geometric information and simplices can be glued
to themselves. The absence of geometric information can be understood with the triangulation of
a disk with one triangle and no gluing: these two objects are the same from a topological point of
view, the triangle can be turned into a disk by rounding its edges. The enabling of self identifica-
tion will come in handy to describe complicated manifolds with few simplices: as an example it is
possible to triangulate a torus with only two triangles.

The existence of triangulations for manifolds makes their study and the computation of topo-
logical properties easier with computers, leading to the success of computational topology. Many
questions can be stated in term of combinatorial problems with detailed complexity analysis and
they can be answered with programs that permit to avoid difficult computations by hand. Compu-
tational topology is crucial to make topology practical for other communities.

1
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1.1.1 About knots

Low dimensional topology is well known for including the study of knots. A knot is an em-
bedding of the circle S1 into S3, it can be seen as the knotting of a piece of string before gluing its
ends together. Two embeddings represent the same knot if one can be turned into the other with an
ambient isotopy, a continuous deformation of the space that preserves the entanglements, but these
ambient isotopies are too difficult to compute in practice. Knots arise in several applied domains
such as DNA study [3] and the building of a topological quantum computer [34]. The latter point
is worth highlighting as quantum computing will play an important part in tomorrow’s computer
science, and that several invariants, like the Turaev-Viro family, are interesting in this domain.

Given two diagrams of knots, i.e. the projections of knots on a plane, verifying whether the
underlying knots are the same is a classical problem. An approach is to try to turn one into
the other. But this task can be very difficult: starting from an arbitrary diagram of the unknot,
an unknotted circle that was “shuffled”, turning it into a circle may require complexifying the
diagram and performing a large number of elementary modifications. In fact, an upper bound on
this number is (236c)11 [52] where c is the number of crossings of the initial diagram.

Another way of working with knots is to use their complements: take a knot in S3 and drill
out a tubular neighborhood of it from S3. The resulting space, the complement of the knot, is a
3-manifold and its topology is unique for every knot [63]. Thus, recognizing a knot boils down to
recognizing a 3-manifold, which opens a whole family of tools such as normal surface theory.

There are three families of knots: torus, satellite and hyperbolic [82]. A torus knot is a knot
that can be drawn on an unknotted torus in R3 and a satellite knot is a non torus knot which can
be drawn inside a knotted torus (while not being contained in a ball inside said torus). Thurston
proved that the complement of any other knot admits a complete hyperbolic metric. This classifi-
cation is a very powerful result and the families can be characterized using normal surface theory.
Normal surface theory studies the surfaces that can be embedded in a triangulated 3-manifold in
a simple way with algebraic tools. Such surfaces can be enumerated: thus, given a knot comple-
ment, it is possible to look for an annulus whose boundary lies on the knot, if such annulus exists,
then the knot can be drawn on a torus (see 2). It is also possible to look for a torus that would
contain a satellite knot.

In the remaining case, the knot is hyperbolic. This last family is the subject of active mathemat-
ical research, which motivates the introduction of efficient algorithmic tools to study their geomet-
ric properties, and most notably their hyperbolic volume. The hyperbolic volume of a hyperbolic
knot is a topological invariant which is powerful at distinguishing between non-equivalent knots.
It is non-trivial to compute, and at the heart of several deep conjectures in topology [69]. Although
a lot of work remains to be done on this topic, a notable result is a method that finds a canonical
triangulation for hyperbolic knot complement, while this methods is not guaranteed to succeed, it
gives a complete invariant for hyperbolic knots [87].

1.2 Properties of manifolds

The construction of a canonical triangulation for a hyperbolic knot complement requires the
computation of a complete hyperbolic metric on this 3-manifold. A metric is a notion of distance,
on top of a topology; it fixes the shape of the objects we consider and allows for the computation
of volumes and geodesics. On knot complements, if hyperbolic metrics exist, they are unique [66,
74]. They are combinatorially represented by complete hyperbolic structures (CHS) and in order
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to compute them, one tries to assign hyperbolic shapes to the tetrahedra. If these shapes verify a
set of non-linear constraints called the gluing equations, they form a CHS and encode the complete
hyperbolic metric of the space. Information on the manifold can then be computed from the CHS,
like its canonical form, for the homeomorphism problem, or the hyperbolic volume, a quantity
central in many theorems and conjectures.

1.2.1 The notion of invariant

Unfortunately, computing a CHS is difficult and not all 3-manifolds are hyperbolic knot com-
plements. Topology relies on a more general concept to compare objects: the invariants. A topo-
logical invariant is a quantity that does not change over all possible representations of an object,
e.g. two triangulations of the same manifold. A straightforward example of invariant is the num-
ber of connected components: let us consider an object constituted of the union of two disjoint
balls and another constituted of one ball, it is not possible to turn the former into the latter without
gluing the two balls or cutting the lone one.

A key to build new invariants is to make sure they are preserved under non-topological modi-
fications of the objects we are considering. Given a triangulated 3-manifold, combinatorial modi-
fications of the triangulation that do not modify the topology of the underlying manifold are well
studied [77] and can be decomposed into a sequence of elementary modifications, called Pachner
moves. Discovering and being able to compute invariants is a way to learn more about the objects
we study or even to build bridges between seemingly unrelated domains of mathematics.

1.2.2 The example of Turaev-Viro

The quantum invariants of Turaev-ViroTuraev-Viro [84] are a family of real-valued quantities
(TVr)r indexed by an integer r. Given a triangulation of a 3-manifold, the invariant is defined as
a sum of a large number of weights which depends on the combinatorics of the triangulation.

These invariants are very efficient at distinguishing different manifolds [58, 61], unfortunately
they are extremely hard to compute in general. Their computation is #P-hard [18, 46], which
corresponds to counting problems. For instance, counting the number of variable assignments that
will satisfy a given general boolean formula is #P-hard, while only finding one is NP-hard and
considered very difficult (in fact, it is the most textbook example of difficult problem in computer
sciences).

They are also studied for their properties. They are linked to the Topological Quantum Field
Theory [4] and are notably at the heart of Chen and Yang’s volume conjecture [19, 26], the 3-
manifold counterpart of the famous volume conjecture for knots [45, 68]. This conjecture links
the simplicial volume of a 3-manifold to the asymptotic behavior of the sequence (TVr)r. We can
note that for hyperbolic manifolds, the hyperbolic volume is proportional to the simplicial volume.

1.3 Importance of experimental work

Beside obvious pedagogical interests, intuition is crucial in mathematics: it allows one to un-
derstand complex phenomena, propose conjectures and prove results. By providing computations,
visualization, large amount of data and corresponding analysis, computer science can be a great
boost to it. This was highlighted by a recent cooperation between data scientists, who detected
an interesting pattern, and mathematicians, who deduced a theorem [24]. Detecting new structure
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among invariants could lead to new theories resembling the one of Thurston–Jørgensen [9] de-
scribing the set of possible hyperbolic volumes over all 3-manifolds. With certified computations
and assisted proofs, computers actively take part in the advancement of mathematics. Low dimen-
sional topology is a domain where the link between mathematics and computers shines due to the
fact that 3-manifold can be efficiently handled by computers and by the fact that the enumeration
of knots has been looked into for more than a century.

Indeed, one of the oldest problem in knot theory is the tabulation of knots, it started with
a series of publications of Tait in 1877. At the time, Lord Kelvin and him believed chemical
properties of elements were due to the entanglement between the atoms, motivating Tait’s and
several others’ work [1]. This tabulation consisted in the enumeration of all the knots, represented
by their diagrams, for each crossing number and similar census were started for manifolds. The
tabulation continues today with the help of computers and the enumeration of all knots that admit
a diagram with up to 19 crossings [16], which sum up to 350 million knots. This task cannot be
realistically done by hand, and low dimensional topology calls for powerful libraries which can
help manipulate manifolds. Two notable examples are SnapPy and Regina.

The computation of such census takes time and there are many problems in low dimensional
topology that have terrible theoretical complexity, or even for which no algorithm is guaranteed to
succeed. For these reasons, heuristics are very important for the domain. As an example, since the
existence of CHS is not guaranteed, there is no algorithm to compute them. Instead, the state-of-
the-art method is the one implemented in SnapPy: given an input knot, construct a triangulation
of the knot complement and simplify it; in most cases, it will admit a CHS. But if the triangulation
does not admit a CHS, the software offers the possibility to randomly modify and simplify the
triangulation before trying again until a CHS is found. While this may not look satisfactory, in the
majority of cases, this works very well, and for other cases, new heuristics may be required.

Reinforcing this idea, data sets can be very large in low dimensional topology: we mentioned
the 350 million knots with up to 19 crossings, but the growth of the number of distinct knots
with given crossing number is at least exponential [31]; and the same is true for the number of
3-manifolds with given size of minimal triangulation (that is the smallest number of tetrahedra
over all the triangulations of the manifold).

With this amount of data, the difficult cases may multiply: Table 1.1, borrowed from Chap-
ter 6, indicates, for knots with crossing numbers ranging from 12 to 17, the success of SnapPy’s
method. In particular it gives the fraction of knots for which a CHS is not found on the first try, and
the largest expected number of re-triangulations in the data set. Both these quantities increase with
the crossing number. Given the fact that computing CHS requires solving a system of non-linear
equations whose size tend to increase with the crossing number, large number of re-triangulations
is to avoid.

1.4 Contributions

The contributions presented in this manuscript concerns the computation of two objects linked
to the hyperbolic volume: the Turaev-Viro invariants and the complete hyperbolic structures.

1.4.1 The computation of Turaev-Viro invariants and volume conjecture

We compute TVr for large values of r on large sets of triangulated 3-manifolds. This com-
putation being extremely challenging, we focus our attention to small triangulations of closed 3-
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Alternating Non-Alternating
#crossings 12 13 14 15 16 17 12 13 14 15 16 17

% Failure on first try 0.9 1.6 2.4 3.3 4.4 5.7 0.8 0.7 1.2 1.7 2.4 3.3
Expected nb of retriang. 2.9 3.9 6.2 7.1 9.5 15.9 2.0 3.1 6.1 11.8 9.7 13.5

Table 1.1 – On all ∼ 9.7 millions prime knots with crossing numbers ranging from 12 to 17,
alternating and non-alternating, we indicate (% Failure on first try) the percentage of knot com-
plements (after triangulation and simplification) on which SnapPy fails to compute a CHS on
first try. We also indicate (Highest expected nb of retriang.) the highest, over all knots, expected
number of random re-triangulations necessary for SnapPy to succeed finding a CHS.

manifolds (n ≤ 9 tetrahedra), and the main dependence in complexity is in r, which contrasts with
the usual computation where r is small. Under this model, we study experimentally the existing
algorithms—backtrack enumeration and fixed parameter tractable algorithm—and conclude that
the backtracking algorithm is more appropriate for large r computations of TVr in practice. We
then resort to optimizing computation with the backtracking method. To do so, we introduce tech-
niques and easily computable parameters to estimate the complexity of the computation of TVr,
for all r, on a triangulation T , using the backtracking algorithm. This in turn permits efficient pre-
processing of the triangulation —cherry-picking the best triangulation for computation—, and the
fine tuning of arithmetic precision for correct multi-precision computation. These optimizations
are validated by various experimental studies. Finally, using these optimizations, we compute
Turaev-Viro invariants on large sets of low complexity 3-manifolds, and for large r values. These
computations on the first manifolds of low complexity allow us to provide further experimental
evidence to the volume conjecture for closed 3-manifolds (graph manifolds and hyperbolic mani-
folds), and study the speed of convergence of the sequence (TVr)r.

This work resulted in a multi-precision class in Regina which is under review for integration,
along with the data of the experiments which we plan to put online. This data helps visualizing
and quantifying the behavior of Turaev-Viro invariants, future works include the analysis of this
new data, for instance by measuring the impact of various manifold parameter on the invariants or
to detect structures in the sequences or within families of manifolds.

1.4.2 New approach on the computation of CHS

We introduce a new heuristic based algorithm to improve on the essentially random approach
of SnapPy. The method is inspired by Casson and Rivin’s reformulation of the gluing equa-
tions [35, 82]: the gluing equations are split into a linear part and a non-linear part, and the
resolution reduces to a convex optimization problem on a polytope domain. If the triangulation
does not admit a complete structure, the optimization problem will converge on the boundary of
the polytope and we exploit this information to modify combinatorially the triangulation while
reusing the partially computed geometry. We illustrate experimentally the interest of the approach
and propose a hybrid method with SnapPy, that outperforms the state-of-the-art.

This work resulted in the implementation of a method which we plan on submitting for integra-
tion into SnapPy. Our method’s results, whether alone, compared to SnapPy or hybridized with
SnapPy, constitutes interesting data to be analyzed. They rise are many questions, among other
things, on Pachner graphs and on the effect of the optimization on the shapes of the tetrahedra.
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1.5 Composition of the manuscript

This manuscript is dedicated to computational problems in low dimensional topology, and
centered on two contributions. Chapters 2 and 3 are background and context for both contributions
and Chapter 5 is only for the second.

Chapter 2 constitutes a presentation of low dimensional topology, highlighting its link with
computer sciences. We present the manifolds, the triangulations that encode them, and combi-
natorial modifications of triangulations. We also present the classification of 3-manifolds and
of knots. Chapter 3 follows by presenting censuses and libraries to work on 3-manifolds. Then
Chapter 4 consists in the first contribution [56] of this manuscript: the computation of Turaev-Viro
invariants. This includes the presentation of these invariants and methods to compute it, followed
by our contribution.

Chapter 5 gives necessary background on hyperbolic geometry. It is followed by the construc-
tion of Thurston’s gluing equations: the necessary and sufficient conditions to, on the one hand,
have a hyperbolic structure on a 3-manifold, and on the other hand to complete this structure.
Chapter 6 consists in the second contribution [57] of this manuscript: the computation of com-
plete hyperbolic structures. An alternative condition to the gluing equations is presented before
the contribution.
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CHAPTER 2
Topology of 3-manifolds

This manuscript concerns 3-manifolds and this chapter introduces them. Section 2.1 is dedi-
cated to their definition, their handling and their representation by computers with triangulations.
Section 2.2 introduces normal surfaces, a classical tool of the domain, and uses it to present the
classification of 3-manifolds. Section 2.3 constitutes an introduction to knots.

It borrows many results and notions from [39, 61, 72, 75, 77, 82].

2.1 Representation of 3-manifolds

Manifolds are encoded using triangulations. This section gives basic definitions and results
that will be useful in the rest of the manuscript.

2.1.1 The notion of manifolds

Manifolds are a generalization of surfaces to any dimensions, they are present in many domains
of mathematics and a detailed presentation can be found in [27] for the Riemannian case. A major
difference between manifolds and a generic topological space, is that manifolds locally behave
like Rn, for some fixed n, the dimension of the manifold. For instance the sign “+” is not a
manifold as the intersection in the middle is not a one dimensional line like the rest. This notion of
“locally behaves like” can be formalized using maps: a neighborhood of every point of a manifold
admits a map, that is an application between Rn and the neighborhood that parameterizes locally
the manifold. All these parameterizations must be coherent and together they form an atlas. To
sum thing up we have:

Definition 2.1.1 (Manifold). A Ck manifold of dimension n is a set M and a family of injective
mappings φi : Ui ⊂M → Rn of open sets Ui of M into Rn such that:

— ∪iUi = M ;
— for any (i, j) with Ui ∪ Uj = W 6= ∅, the transition map φj ◦ φ−1

i is a Ck mapping from
the open set φi(W ) to the open set φj(W ).

The set (Ui, φi)i is an atlas composed of charts (Ui, φi). This definition allows to define
several families of manifolds depending on characteristics imposed on the transition maps. If
they are just homeomorphisms (C0), then we have the category of topological manifolds TOP, if
they are piecewise linear, then we have the category of piecewise linear manifolds PL, and if they
are differential (C1), we have the category of differential manifolds DIFF. In the literature, many
theorems are stated differently depending on the family of manifolds considered. For 3-manifolds,
we have TOP=PL=Diff.

9
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Figure 2.1 – Example of manifolds. Left: the Möbius strip, a compact non-orientable 2-manifold
consisting of a twisted band with a single boundary. Middle: the one dimensional sphere S1, also
known as the circle, a closed 1-manifold. Right: the punctured torus, an open 2-manifold. This is
a classical torus from which a single point has been removed, creating a cusp.

Examples of manifolds are given in Figure 2.1. Manifolds can have many other characteristics
which are classic notions in topology. For instance, in this manuscript, we restrict ourselves to
orientable and connected manifolds, e.g., we exclude Möbius strips in Figure 2.1 (left). They
can also be open, closed or compact, although for this manuscript, closed is reserved for compact
manifolds with no boundaries, see Figure 2.1, and when it is not precised otherwise.

2.1.2 Generalized triangulations

The definition with maps is not easy to handle for computers. To counter this problem we use
generalized triangulations:

Definition 2.1.2 (Generalized triangulation). A generalized n-triangulation T of an n-manifold
M is a collection of abstract n-simplices together with gluing maps identifying their facets in
pairs, such that the underlying topological space is homeomorphic to M .

From now on, we simply refer to these as triangulations and consider only 2 and 3-dimensional
ones. The gluing maps identify faces of same degree, e.g.vertices and vertices, and edges and
edges. In drawings, these maps will be represented by merging the simplices they identify or by
using arrows to highlight identified simplices, see for instance Figure 2.2. We also define the link
of a vertex v: it is the boundary of a regular neighborhood of v.

The use of triangulations is justified by Theorem 2.1.1, note that not all 4-manifolds admit
triangulations.

Theorem 2.1.1 (Moise [65]). All 3-manifolds admit a triangulation.

Remark 2.1.1 – The triangulations we defined are more general than the simplicial complexes as
they allow self identifications (Figure 2.2). They are very compact ways of representing manifolds,
for instance there are 13,400 topologically distinct, prime, closed oriented 3-manifold that can be
encoded with at most 11 tetrahedra.

However, they are not more expressive as it is possible to turn a generalized triangulation into
a simplicial complex using two barycentric subdivision on each tetrahedra.
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Figure 2.2 – Left: triangulation of a Möbius strip (the boundary is in red). Right: triangulation of
a torus.

Points whose links are spheres are said to be material or compact, however when realizing the
gluing defined by a such triangulations, it is possible to obtain singular points whose links are not
spheres. Using re-triangulations, it is possible to turn these points into vertices. These vertices are
then called ideal, and the underlying space is a pseudo-manifold. In this case we remove these
vertices from the realization of the triangulation to obtain non-compact manifolds.

For instance, identifying an edge to itself in reverse, the neighborhood of the middle point of
the edge is then bounded by a projective plane. However this construction is not allowed as this
would mean the underlying manifold is not orientable.

An important case of ideal vertex is when its link is a torus, this case will be the focus of
Section 2.3.

2.1.3 Modifying triangulations with local moves

There are many different triangulations encoding the same manifold. A natural problem is
the study of the space of triangulations of a given manifold. This space is the Pachner graph of
the manifold, it is a graph whose vertices are linked by an edge if they differ by an elementary
modification called a bistellar move or Pachner move. These moves can be done in triangulations
of any dimension n, exchanging a k-simplex for a n − k simplex, however we restrict ourselves
to dimension 3 to the move that exchange 3 tetrahedra around an edge for 2 tetrahedra around a
triangle et vise versa see Figure 2.3.

The Pachner graph has been extensively studied, for instance, given a fixed number of ver-
tices, the graph of any 3-manifold is connected except for triangulations admitting only one tetra-
hedron [13, 77]. This study was extended to geometric Pachner moves, a variant in which the
triangulation is no longer abstract and the moves are not authorized if the new simplices are not
valid from a geometric point of view, see for instance Figure 2.4 (left). Among the results for
geometric Pachner moves, there is the connectedness of the hypercube of dimension 4 [73] and
the non-connectedness of the complements of the 8-knot [23].



12 CHAPTER 2 — Topology of 3-manifolds

2-3

3-2

Figure 2.3 – Illustration of the Pachner moves 2-3 and 3-2 which exchange an edge for a triangle
(or a triangle for an edge respectively).

Figure 2.4 – Left: 2-dimensional triangulation in which an edge flip (a 2-2 move) is not valid for
geometric reasons: the red dashed edge cannot be constructed. Right: twice punctured disk with
loops going around each holes. For this space π1(X) is the free group on two elements, the red
loop and the light blue one, and H1(X) isomorphic to Z2.
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2.1.4 The notion of invariant

Given two triangulations, figuring out if they represent the same manifold is known as the
homeomorphism problem, while it is known [50, 61, 83], this problem remains very difficult in
practice. A reasonable approach is to consider the following notion:

Definition 2.1.3 (Invariant). Let f be a function, if, for any two objects A and B, if A and B are
similar implies f(A) = f(B), then f is an invariant.

The notion of invariant being quite general, the notions of “objects” and “similar” are pur-
posely vague. For instance, A and B can be any objects encoding manifolds, like triangulations,
with being similar meaning being homeomorphic. They can also be knots from Section 2.3 with
being similar meaning being ambient isotopic.

There exist many different examples of invariants: they are topological features and can take
many forms. Simple examples of this are the number of connected components, or the orientabil-
ity. For knots there is the colorability, and several different polynomials like Jones’ [44] and
Alexander’s [2]. Chapter 4 is dedicated to the Turaev-Viro invariant for closed 3-manifolds.

Two important examples of invariants for a topological space X we use in this manuscript are
represented in Figure 2.4 (right):

— the fundamental group, it is the group of the equivalence classes under homotopy (contin-
uous deformation) of the loops contained in the space. It is denoted by π1(X).

— the first homology group, it is more difficult to define, but it can be seen as the abelianiza-
tion ∗ of π1(X). It is denoted by H1(X).

2.2 Normal surfaces and manifold classification

We now define one of the most classical tools in the study of 3-manifolds: the normal sur-
faces. Introduced by Kneser in 1929 [48], their interest is both theoretical, as they can be used to
categorized and describe manifolds, and practical [37], as it is possible to develop algorithms to
look for and process triangulations based on them.

2.2.1 Normal surfaces: a combinatorial tool

The idea behind normal surfaces is to look at the family of surfaces that can be embedded in a
given manifold, a surface S is said properly embedded in a manifold M if S ∩ ∂M = ∂S and S
is not tangent to ∂M .

Definition 2.2.1 (Normal surface). A normal surface in a triangulation is a properly embedded
surface that meets each tetrahedron in a (possibly empty) disjoint union of normal discs.

A normal disk is a surface properly embedded in a tetrahedron, not intersecting the vertices,
that belongs to one of two categories (see Figure 2.5):

— triangles: they correspond to the link of a vertex.
— quadrilaterals: they are surfaces with connected boundary that separate two opposite

edges.

∗. This is the Hurewicz theorem, not a definition.
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Figure 2.5 – Two kinds of normal disks. Left: the four possible triangles (one of them is doubled)
are not mutually exclusive. Right: two parallel quadrilaterals.

Inside a tetrahedron, there can be any number of triangles and quadrilaterals, but quadrilater-
als separating two different pairs of edges are mutually exclusive because they must intersect.
Then, the restriction of a normal surface to a tetrahedron can be encoded by a vector of Nn
(t1, t2, t3, t4, q1, q2, q3) where each ti encodes the number of triangles of each type, and the qi
then same for the quadrilaterals. Thus, normal surfaces can be encoded by elements of N7n where
n is the number of tetrahedra of the triangulation.

Not all points in this space correspond to normal surfaces, they must verify a linear system
of matching equations. These ensures the surfaces can be glued coherently inside the triangles
joining the tetrahedra of the triangulation. With the mutual exclusivity of quadrilaterals, we have
that the normal surfaces describes integer points of a set of cones.

The structure of these cones can them be studied leading to famous results like the recognition
of the unknot, which is in NP [38], and computing the JSJ decomposition, presented in the next
section, of a manifold [61].

Not all properly embedded surfaces are normal, however, given a properly embedded surface
S, there is a procedure turning it into a normal surface in a finite sequence of elementary transfor-
mations. These transformations include removing an empty sphere and cutting the surface along
a disk D (with ∂D ⊂ S ∪ ∂M ) (and identifying the boundary of the disk in the two components
to points). A detailed presentation can be found in [60].

Not all properly embedded normal surfaces are interesting, and to characterize manifolds
using normal surfaces in the next section, we need to formalize this notion of interesting surface.
As an example, the link of a compact vertex is a normal sphere, but this does not bring any
information about the manifold.
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Surfaces that carry information will be called essential, this notion depends on the nature of
the considered surface on we need a couple of definitions. A properly embedded surface S in M
is:

— boundary parallel if it is isotopic to a surface contained in ∂M , with the isotopy fixing
∂S;

— incompressible if there is no disk D withD∩S = ∂D such that ∂D does not bound a disk
in S;

— boundary incompressible if there is no disk D with ∂D = σ ∪ µ, σ ⊂ S and µ ⊂ ∂M ,
such that there is no disk D′ ⊂ S with ∂D′ = σ ∪ σ′ and σ′ ⊂ ∂S.

Then we have:
— a sphere is essential if it does not bound a 3-ball, a manifold with no essential sphere is

irreducible;
— a disk is essential if it is not boundary parallel, a manifold with no essential disk is bound-

ary irreducible;
— a torus is essential if it is incompressible and not boundary parallel, a manifold with no

essential torus is atoroidal;
— an annulus is essential if it is incompressible, boundary incompressible, and not boundary

parallel, a manifold with no essential annulus is anannular.

Crushing is an operation closely linked to normal surfaces, it was introduced in [42] and a
comprehensive presentation can be found in [15]. It is a procedure that eliminates normal spheres
and disks from a triangulation by identifying said surfaces to points and crushing the components
that bear no topology. This procedure allows to simplify triangulations, which is crucial in a
domain where many algorithms have exponential complexity in the size of the triangulations.

This tool is used throughout this manuscript as a preprocessing: it is possible to assume all
triangulations have only ideal vertices or, for closed manifolds, only one compact vertex.

2.2.2 Manifold classification

Being able to decompose 3-manifolds is very important to understand and classify them. To
do so, we look at essential surfaces and cut the manifold along these.

Cutting along spheres. We define a basic operation to glue two manifolds:

Definition 2.2.2 (Connected sum). Let M1 and M2 be two oriented connected 3-manifolds. Re-
moving a 3-ball from each manifolds and then gluing the two resulting spheres via an orientation-
reversing homeomorphism results in a new 3-manifold denoted M1#M2.

Note that the surface between the two manifolds is an essential sphere if neither of M1 and
M2 is a 3-spheres.

Definition 2.2.3 (Prime 3-manifold). A prime 3-manifold is a manifold that cannot be expressed
as the connected sum of two 3-manifolds differing from the 3-sphere S3.

Irreducible 3-manifolds are prime, the only orientable prime manifold that is not irreducible is
S1 × S2.
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Theorem 2.2.1 ([47][64]). Every compact oriented 3-manifold M with (possibly empty) bound-
ary decomposes uniquely into a list of prime manifolds M = #iMi. This list is unique up to
permutation and insertion of 3-spheres.

Cutting along disks. Similarly [60], we have the following theorem by cutting along essential
disks:

Theorem 2.2.2 (Boundary decomposition). Every compact oriented irreducible 3-manifold M is
obtained by adding 1-handles to a finite list of connected irreducible and boundary irreducible
3-manifolds. This list is unique up to permutation and insertion of balls.

Cutting along tori. This last step of the decomposition is due to Jaco, Shalen and Johannson. It
consists in cutting the remaining of the manifold along essential tori. A cutting of M along essen-
tial tori is a torus decomposition if the pieces obtained are torus (semi-)bundles, Seifert manifolds
of simple manifolds. More details about definitions, theorems and explanations can be found
in [60].

Theorem 2.2.3 (JSJ decomposition [43]). Let M be an orientable irreducible, boundary irre-
ducible, compact 3-manifold with (possibly empty) boundary consisting of tori. A minimal torus
decomposition for M exists and is unique.

The minimality property is with respect to the inclusion. For instance, cutting a manifold along
n parallel tori will result in n− 1 torus bundles, but the decomposition will not be minimal.

2.2.2.1 Geometrization of 3-manifolds

The JSJ decomposition cuts manifolds into elementary pieces. The classification goes on
with Thurston’s conjecture (1982) proved by Perelman (2003), a nice presentation is in [10]. The
decomposition considered by Thurston has a subtle difference with the JSJ: certain tori are not cut
as it would lead to pieces that would not admit finite volume geometry.

Theorem 2.2.4 (Geometrization theorem). Every oriented prime closed 3-manifold can be cut
along tori, so that the interior of each of the resulting manifolds admit one of the eight geometries
of Thurston with finite volume.

Putting a geometry on a manifold is the topic of Chapter 5, but the definition will be slightly
different for reasons exposed there. Here, to admit a geometry means to be diffeomorphic to
the quotient of some Riemannian manifold X by a discrete subgroup of Isom(X), the group of
isometries of X , acting freely on X . While the definition of a geometry is more general, we stick
to the case where X is one of the eight geometries of the conjecture.

There are the spherical S3, Euclidean E3 and hyperbolic H3 geometries, the three Riemannian
geometries of constant curvatures; there are the product geometries S2 × E1 and H2 × E1; the
twisted product geometries Nil and ˜SL(2,R); and Sol. In all cases except for H3 and Sol, the
underlying manifold is Seifert fibered, manifolds admitting a Sol geometry, are well understood
too. This leaves the hyperbolic geometry which is actively worked on today.
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Figure 2.6 – Examples of knot diagrams. From left to right: an unknot with a twist, a trefoil knot
and an 8 knot.

Figure 2.7 – List of Reidemeister moves.

2.3 A special case: knot and link complements

In this section we investigate specific family of 3-manifolds: the knot complements. A knot
is an embedding of S1 into S3, e.g., see Figure 2.6, they are useful modeling tools and have been
studied for more than a century [1].

Two knots are considered identical if they are linked by an ambient isotopy, that is a continuous
deformation of the space turning one into the other. These isotopy are difficult to represent and
compute and we use other methods to compare knots.

A way of representing knots is to project them on a plane, creating knot diagrams. This
projection must send the knot in general position, i.e., strands of the knot only overlap at a finite
number of distinct points, and only two strands per point, then its crossing number is the number
of overlap points. This method is the most popular as it is visual (in fact, the vast majority of
representations of knot on paper is with diagrams) and creates bridges with graph theory and
combinatorics. For diagrams, equivalence is defined with Reidemeister moves, elementary moves
presented in Figure 2.7.
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Figure 2.8 – Box representing the complement of the 8 knot in S3.

Figure 2.9 – Ideal triangulation of the 8 knot, the red surface is the link of the ideal vertex, i.e., a
torus.

Despite their popularity, solving the isotopy problem with diagrams is infamously difficult. For
instance, given two diagrams of a knot and n the sum of their crossing numbers, an upper bound
on the number of Reidemeister moves to go from one to the other is expcn(n), where c = 10106

and expa(b) is the ath iteration of the function exp [21].

Another approach is to use the complements of the knots in S3, for a knot K this is noted
S3rK, see Figure 2.8. This a a topological space that contains all the information about the knot:

Theorem 2.3.1 (Gordon–Luecke [63]). If two knots have homeomorphic complements by an
orientation-preserving homeomorphism, then the knots are equivalent.

Starting from a knot diagram, computing a triangulation of such a space is polynomial in
the crossing number of the diagram. Very briefly, an example of strategy is to insert tetrahedra
at each crossings, plus one polyhedron above and one bellow the diagram, in order to have the
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Figure 2.10 – Satellite knot in red, whose companion is the trefoil knot (in black).

knot represented on the edges of the triangulation. Then it is possible to “drill out” a tubular
neighborhood of the knot from the triangulation. In details, explanations can be found in [75].

A triangulation of a knot complement can have two forms: either it is compact with a torus
boundary, the boundary of the neighborhood of the knot, either it is an ideal triangulation, with
one vertex whose neighborhood is a torus. The latter is obtained from the former by identifying
the boundary of the triangulation to a single point, and the former from the latter by removing
from the manifold an open neighborhood of the ideal vertex. An example of knot triangulation is
presented in Figure 2.9, it is an ideal triangulation of the complement of the 8-knot, the vertices
of the tetrahedra have been removed and the red area correspond to a tubular neighborhood of the
knot.

Thurston proved that knot are grouped in three mutually exclusive families: the satellite knots,
the torus knots and the hyperbolic knots.

Definition 2.3.1 (Satellite knot). A knot is satellite if its complement contains an essential torus.

The essential torus is itself a knotted torus, it is called the companion of the knot, see Fig-
ure 2.10 for a knot whose companion is the trefoil knot. This family includes composite knots,
that is knots that can be obtained by taking two non-trivial knots, cutting them at a point, and
merging the ends obtained into making a single knot. Knots that are not composite are said prime.

Definition 2.3.2 (Torus knot). A knot is torus if it is the unknot or if it is not satellite and its
complement contains an essential annulus.

These knots can be drawn on a torus, cutting the torus along the drawing of the knot produces
the essential annulus. This family includes the unknot and the trefoil knot, see Figure 2.11.

Definition 2.3.3 (Hyperbolic knot). A knot is hyperbolic if its complement is anannulus and
atoroidal.
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Figure 2.11 – Drawing of the trefoil knot (in red) on a torus, the annulus in the light blue surface.
The knot is also known as the (2,3)-torus knot, as the knot goes two times around the torus while
doing three turns around its cavity. On the Left is the draing of the torus and on the right the torus
is cut open. On the right drawing, one boundary of the annulus is in red an the other is in yellow.

This family is the focus of Chapter 6. The complement of these knots admits a complete
hyperbolic metric.



CHAPTER 3
Low dimensional

topology and software
From representation to censuses, computers greatly help the study of 3-manifolds. As stated

in Chapter 2, all 3-manifolds admit a triangulation greatly helping in their representation. The
theory of normal surfaces constitutes a fundamental tool for their study, and once again, these can
be handled efficiently by computers and thus the decomposition of a 3-manifold can be computed.
Even the homeomorphism problem is (at least in theory) computable.

However, algorithms working on 3-manifolds tend to be complex and slow, at least in theory.
This calls for global efforts to produce and maintain libraries to assist topologists in their tasks.
Heuristics and alternative methods are also very important in this domain, as some families of
triangulations can be more difficult to handle than others for some algorithms, and if such a family
is the one important in a given problem, rooting for super exponential algorithm may not be a
viable solution. This need for well developed libraries is further highlighted by the success of
proof assistants like Lean [67] and Coq [6], which could become an asset in a close future.

This brief chapter presents some of the available resources, libraries and data sets, that we use
and refer to in this manuscript.

3.1 Two major libraries

There exists a large quantity of code available online, a sample can be found on Dunfield’s
webpage ∗. The code on this page ranges from archives not designed to be read (see for instance
Cusp and Geo by Casson †) to very popular standards known by a lot a people, and even outside
the community. In this section, we present two major libraries: SnapPy and Regina.

3.1.1 SnapPy

SnapPy [22] is a Python library dedicated to the study of hyperbolic 3-manifolds mainly
developed by Marc Culler, Nathan Dunfield, and Matthias Goerner, with outside contributions.

SnapPy is based on SnapPea, a C kernel created by Weeks during his PhD in the 80s. This
kernel was known for its capability to compute complete hyperbolic structures and canonical trian-
gulations of hyperbolic manifolds [87], even if both of those algorithms do not output a solution all
the time. A particularity of SnapPea is that the sources contains comments that are mathematical
proofs concerning the functions.

∗. https://nmd.web.illinois.edu//computop/
†. https://nmd.web.illinois.edu//computop/software/casson.tar.gz
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On top of this kernel, a graphical interface and many modules where added, including certi-
fication with sage for instance. Its popularity can be explained by the fact it is simple to use and
efficient at what is does. It is most likely the most well known library in low dimensional topology.

In Chapter 5, we dive into the computation of complete hyperbolic structures and use SnapPy
as a baseline.

3.1.2 Regina

Regina [17] is a C++ library, with python and graphical interfaces, dedicated to the study
of normal surfaces and 3-manifolds and mainly developed by Benjamin A. Burton, Ryan Budney,
William Pettersson.

Regina is very efficient and well documented, among its most notable features are the enu-
meration of normal surfaces, the crushing, and the computation of angle structures. A nice sum-
mary can be found in [14].

In Chapter 4, we use Regina’s implementations of the computation of Turaev-Viro invariants.

3.2 Data sets

In addition to libraries, it can be useful to have data sets to perform experiments, and make
and test hypothesis. A recent example is a collaboration where a conjecture was made using
AI before being proven mathematically [24]. There exist several data sets available, either only
containing manifolds, like the one by Hodgson and Weeks [40], or with invariants computed, like
KnotAtlas [5]. SnapPy and Regina are shipped with data sets to run experiments on, and a
good source for censuses is the website of Regina ‡. In this manuscript, all our data come from
this website.

Building these censuses is not a trivial matter, as it requires to check data for doubles, and
this check is essentially the homeomorphism problem. Furthermore the quantity of data to check
is very large: the number of different prime knots increases at least exponentially with the cross-
ing number [31]. The same goes for manifolds, with the difference that, instead of the crossing
numbers, we look at the number of tetrahedra in the smallest triangulation.

Knots have been attracting the curiosity of mathematicians since Gauss, the history of their
tabulation goes on today.

3.2.1 About knot censuses

The origin of knot theory dates back to the mid XIXth century, when ether was still a thing.
With his theory of vortex atoms [81], Lord Kelvin believed that atoms were knotted vortices in
ether whose chemical properties depended on the topological properties of these vortices. This
lead to a collaboration between Kirkman, Tait [78, 79, 80], and Little [53, 54, 55] which led to an
enumeration of non-alternating knots with at most 10 crossings and alternating knots with at most
11 crossings. The next landmark occurs in 1970, many years after the collapse of the vortex atoms
theory with Conway’s enumeration of alternating knots with eleven crossings [20]. At the time,
he stated that the use of computers was redundant to compute his census, but they would be useful
to compute algebraic knot invariants.

‡. https://regina-normal.github.io/data.html
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Year 1890 1970 1983 1998 2020
#crossings 10 11 13 16 19
Total knots 249 801 12965 1.7× 106 3.5× 108

Total alternating 196 563 6729 4.9× 105 5.2× 107

Total non-alternating 53 238 6236 1.2× 106 3.0× 108

Table 3.1 – Evolution of the size of knot censuses through time.

Until this point censuses were built by hand, consisting of daunting work with several errors. In
1983, Dowker and Thistlethwaite [28] gave an algorithm and extended the census to 13 crossings;
and to 16 crossings in 1998 with Hoste [41] with the software KnotScape. The last addition
to this census was done recently by Burton [16] with the help of Regina. This last addition
brings the census to knots with at most 19 crossings, for a total of about 350 million knots (see
Table 3.1). For these last contributions, the method was based on diagram enumeration: list all
planar graphs (which is reasonably easy) and then rid of diagrams representing identical knots
(which is difficult).

Remark 3.2.1 – On the census from [16], out of more than 350 million knots only less than 400
are not hyperbolic. This would lead to the idea that most of the knot are hyperbolic, but this would
go against several well established conjectures [85].





CHAPTER 4
Computation of Large

Asymptotics of
3-Manifold Quantum

Invariants
A main objective of low-dimensional topology is to study and classify 3-manifolds up to

homeomorphisms. To do so, topologists have designed a variety of topological invariants, i.e.,
properties allowing to distinguish between non-homeomorphic manifolds.

A remarkable family of topological invariants are the quantum invariants of Turaev-Viro [84].
They consist of an infinite family of real-valued quantities (TVr)r, indexed by an integer r ≥ 3,
defined on a triangulation of a manifold. Each invariant TVr is made of an exponentially large
sum of weights associated to combinatorial data attached to the triangulation.

These invariants have played a key role in computational topology. On the one hand, their
combinatorial nature has allowed for the design of algorithms and the study of their computational
complexity. Defined as a sum over combinatorial states, they can be computed with a simple
backtracking algorithm of exponential complexity. They also admit a fixed parameter tractable
algorithm, relying on dynamic programming and parameterized by the tree-width of the dual graph
of the triangulation [18]. Algorithms can be further improved by pruning the search space for
enumeration [58]. These algorithms are implemented in Regina and Manifold Recogniser [61,
62], and permit efficient computation of invariants TVr for small values of r in practice. These
invariants remain however extremely hard to compute in general: their computation belongs to the
complexity class #P-hard [18, 46], which includes any algorithm that rely on the enumeration of
exponentially large sets. Most notably, computing TVr for large values of r, is a theoretical and
practical challenge, even on small input triangulations.

On the other hand, these topological invariants are remarkably efficient to distinguish between
non-equivalent manifolds in practice [58, 61]. As a consequence, their efficient implementations
have played a fundamental role in the composition of census databases of 3-manifolds (by work of
Burton, Matveev, Martelli, Petronio), which are analogous to the well-known dictionaries of knots
[12, 61].

Turaev-Viro invariants are also central in mathematics. They are notably at the heart of Chen
and Yang’s volume conjecture [19, 26], the 3-manifold counterpart of the famous volume conjec-
ture for knots [45, 68]. Chen and Yang’s conjecture states that the asymptotic behavior of the
sequence (TVr)r≥3 for a fixed manifold M is connected to the simplicial volume of M , a quan-
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tity of distinctively different nature. The volume conjectures in low dimensional topology have
attracted a lot of effort from the topology community. They have been partially proved on re-
stricted families of manifolds and knots [19, 25], and verified experimentally on few spaces with
very specific structures [19]; they remain some of the major open conjectures in low dimensional
topology.

Contributions. In this chapter, we take a different turn on the computation of Turaev-Viro in-
variants, and compute large r values of TVr on large sets of triangulated 3-manifolds. This com-
putation being extremely challenging, we focus our attention to small triangulations of closed
3-manifolds (n ≤ 9 tetrahedra), and the main dependence in complexity is in r, which contrasts
with the usual computation where r is small. Under this model, we study experimentally the ex-
isting algorithms—backtrack enumeration and fixed parameter tractable algorithm—and conclude
that the backtracking algorithm is more appropriate for large r computations of TVr in practice
(Section 4.2). We then resort to optimizing computation with the backtracking method. To do so,
we introduce techniques and easily computable parameters to estimate the complexity of the com-
putation of TVr, for all r, on a triangulation T , using the backtracking algorithm (Section 4.3).
This in turn permits efficient preprocessing of the triangulation—cherry-picking the best trian-
gulation for computation (Section 4.4 and 4.5)—, and the fine tuning of arithmetic precision for
correct multi-precision computation (Section 4.6). These optimizations are validated by various
experimental studies.

Finally, using these optimizations, we compute Turaev-Viro invariants on large sets of low
complexity 3-manifolds, and for large r values. These computations on the first manifolds of low
complexity allow us to provide further experimental evidences to the volume conjecture for closed
3-manifolds (graph manifolds and hyperbolic manifolds), and study the speed of convergence of
the sequence (TVr)r (Section 4.7).

4.1 Background

Manifolds and triangulations. Unless mentioned otherwise, we consider in this chapter closed
oriented 3-manifolds, i.e., compact oriented manifolds locally homeomorphic to R3, represented
by generalized triangulations.

We denote by v, e, f , and n the number of vertices, edges, triangles, and tetrahedra of a
triangulation T , after gluings of the tetrahedra. The number of tetrahedra n of T is the size of
the triangulation. By standard topological arguments, involving Euler characteristic and Poincaré
duality, a triangulation of a closed 3-manifold satisfies:

e = n+ v (4.1)

We refer the reader to Chapter 2 for more details.

Turaev-Viro invariants. Turaev-Viro type invariants [84] of a triangulation T are defined as
exponentially large sums of weights associated to admissible colorings of the edges of T .

Let T be a generalized triangulation of a closed 3-manifold M , let r ≥ 3 be an integer, and let
I = {0, 1/2, 1, 3/2, . . . , (r − 2)/2} be the set of the first r − 1 positive half-integers.
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#tetra. 1 2 3 4 5 6 7 8
#Mani. 3 7 7 14 31 74 175 436
#H1 = 0 2 3 3 8 15 33 78 193

Table 4.1 – Number of topologically distinct, prime, closed, orientable 3-manifolds (“#Mani.”)
with a minimal triangulation of size n, 1 ≤ n ≤ 8, (“#tetra.”) and those among them with trivial
first homology group H1(M,Z/2Z) = 0 (“#H1 = 0”).

Let E be the set of edges of T . A coloring of T is defined to be a map θ : E → I from the
edges of T to I . A coloring θ is admissible if, for each triangle of T , the three edges e1, e2, and
e3 bounding the triangle satisfy the following constraints:

parity condition: θ(e1) + θ(e2) + θ(e3) ∈ Z; (4.2)

triangle inequalities: θ(e1) ≤ θ(e2) + θ(e3),
θ(e2) ≤ θ(e1) + θ(e3), and θ(e3) ≤ θ(e1) + θ(e2); (4.3)

upper bound: θ(e1) + θ(e2) + θ(e3) ≤ r − 2. (4.4)

The set of admissible colorings of T is denoted by Adm(T, r).
Note that in generalized triangulations, a triangle may be defined by less than three different

edges, in which case the constraints need to be slightly adapted. This is a simple technicality we
do not mention in the following.

Given an admissible coloring θ of T , a weight |x|θ of a face (vertex, edge, triangle, or tetra-
hedron) of T is a complex number that depends exclusively on the colorings θ(e) of the edges e
incident to x.

Given an integer r and a weight system, the Turaev-Viro invariant TVr(T ) associated to a
triangulation is defined by:∑

θ∈Adm(T,r)

∏
x face of T

|x|θ. (4.5)

In the definition of their invariant, Turaev and Viro describe sufficient conditions for the weight
system to construct a topological invariant with the above formula, i.e., TV (T ) = TV (T ′) for any
two triangulations T and T ′ of the same manifold M . They also describe a specific weight system
associated to the Lie algebra sl2(C), and depending of an extra parameter q ∈ {1, 2}, leading to
interesting topological invariants. We refer to [84] for exact definitions of these ; we use them in
our computations for q = 2, which corresponds to the Chen-Yang volume conjecture verified in
Section 4.7.

Note that this chapter focuses on the efficient enumeration of the set of admissible colorings
Adm(T, r) of a triangulation, and is consequently mostly generalizable to any weight system.
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Computation, data, and their representation. The computation of Turaev-Viro invariants be-
longs to the complexity class #P-hard, which makes them extremely challenging to compute for
large triangulations or large values r. The state-of-the-art algorithms working for any r ≥ 3 all
have worst case complexity of the form rΘ(n), for n tetrahedra triangulations (more details in
Section 4.2).

In this chapter, we study the computation and values of invariants TVr for large values of r (up
to 100). This bonds our computations to small triangulations (mostly less than 6 tetrahedra, and
up to 9 tetrahedra for the most challenging experiments) in order to be feasible. Note however that
generalized triangulations can represent a vast variety of distinct topologies with very few tetrahe-
dra. Table 4.1 summarizes the number of distinct, prime, oriented, closed 3-manifolds admitting
a triangulation of minimal size n, for n ≤ 8. In consequence, the experiments in this chapter
concern tens of topologically distinct topologies, with no topological restriction other than admit-
ting a small triangulation. In comparison, the volume conjecture for closed manifolds, verified
experimentally in Section 4.7 as application of our work, has only been verified experimentally
on a few triangulations of closed 3-manifolds [19] that admit the very specific topological prop-
erty of being constructible by surgeries along two simple knots (K41 and K52), which allows for
faster computation. The methods in this chapter improve computation of TVr for any triangulated
3-manifold.

In order to present statistics over censuses of triangulations, box and whisker plots are used.
For all of them, the line inside the box represents the median of the sample and the box the first
and last quartile. The whiskers cover the rest of the sample until 1.5 times the size of the box,
every point outside this reach is added to the graph.

All programs are in C++, compiled with gcc 9.3.1, and run on a Linux machine with
2.40GHz processors and 128GB RAM.

4.2 Backtracking vs Parameterized Algorithms

Existing algorithms for Turaev-Viro invariants. In this section, we compare the performance
of existing methods to compute TVr for large r. We start by reviewing algorithms for Turaev-Viro
invariants.

#tetra. 1 2 3 4 5 6 7 8
#Mani. 3 7 7 14 31 74 175 436
%faster 100 100 100 79 52 34 19 9

Table 4.2 – For fix number of tetrahedra n ≤ 8 (“#tetra.”), % of triangulations in the census for
which the backtracking algorithm is faster than the FPT algorithm, when computing TVr at r = 11
with single precision arithmetic.

Let T be a triangulation of a 3-manifold, and r ≥ 3 be an integer. There is a straightforward
backtracking algorithm to enumerate all admissible colorings Adm(T, r) of order r, and compute
TVr(T ). Let v be the number of vertices and n the number of tetrahedra in T . Consequently, T
admits n+v edges (Eq.( 4.1)). Order the edges e1, . . . , en+v of T . There are (r−1) possible colors
for an edge, consequently the backtracking algorithm consists of traversing a regular (r − 1)-tree
of depth n + v + 1, where nodes at depth i, 1 ≤ i ≤ n + v, correspond to the edge ei, and
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any of the r − 1 downward facing arcs at such node corresponds to the assignment of a color
{0, 1/2, . . . , (r − 2)/2} to ei in some coloring. In consequence, leaves of the tree are in bijection
with colorings. The algorithm consists of traversing this tree in a depth-first fashion, stopping
when any of the admissibility constraint (4.2), (4.3), or (4.4) is violated. If a leaf is reached, it
corresponds to an admissible coloring θ, and we keep track of the sum

∑
θ∈Adm(T,r) |T |θ. Ordering

the edges appropriately [18], this algorithm runs in worst caseO((r−1)n+v) operations (machine
and arithmetic), storing a constant amount of data (pointers and weights ∗). However, in practice,
only a small portion of the tree is explored, as admissibility constraints are violated early on ; see
Section 4.4 for an experimental analysis.

The fixed-parameter tractable (FPT) algorithm introduced in [18] uses a standard dynamic
approach to compile the sum (4.5) defining TVr(T ), run on a combinatorial decomposition of
the triangulation T . When k is a parameter measuring the sparsity of the triangulation †, with
1 ≤ k ≤ n − 1, it runs in O(n · (r − 1)6(k+1)k2 log(r)) operations (machine and arithmetic)
when 6(k+ 1) ≤ n+ v, or O(n · (r− 1)n+v(n+ v)2 log(r)) operations otherwise. However, this
algorithm has worst case exponential memory, and requires to store O((r − 1)6(k+1)) arithmetic
values.

As predicted by the complexity analysis of these algorithms, the FPT algorithm shows better
performance than the backtracking algorithm on most input triangulations with n ≤ 20 tetrahedra,
for very small values of r (r ≤ 7) [18]. We study in the following the case of interest for this
chapter, i.e., smaller triangulations n ≤ 9 and larger values of r, and draw different conclusions.

Performance of algorithms for large r. Figure 4.1 presents the performance of the backtrack-
ing and parameterized algorithms on a 5-tetrahedra, treewidth 4 triangulation of a 3-manifold,
with different arithmetic precision. In this analysis, we focus on the single precision backtrack-
ing (“Backtracking”) and parameterized (“Parameterized”) algorithms. The computation are run
with the C++ library Regina [17]. The backtracking algorithm clearly performs orders of mag-
nitude better than the parameterized algorithm, and the difference of performance to compute TVr
increases with larger values of r.

In fact, even if the parameterized algorithm performs better than the backtracking algorithm
in larger triangulations, as observed in [18], it is not the case for small triangulation. Table 4.2
pictures the fraction of triangulations of the census for which the backtracking algorithm performs
better for the computation of TVr, with r = 11. For triangulations with at most 5 tetrahedra, the
backtracking algorithm performs better in the majority of cases, and still remains a better option
in a substantial fraction of triangulations with up to 8 tetrahedra.

This interpretation is twofold. First, the exponent 6(k + 1) in the complexity of the param-
eterized algorithm, k ≥ 1, is likely to be larger than the exponent (n + v) in the complexity of
the backtracking algorithm, when n is small. Second, the backtracking algorithm explores a very
small portion of the search tree when enumerating colorings.

Additionally, a main difficulty of the parameterized algorithm is its memory consumption.
Indeed, Figure 4.1 stops at r = 73 because it is the last order r before which the parameterized
algorithm requires more than the 128GB of memory available in the machine, with single precision
numbers (i.e., not taking into account the substantial space required by high precision arithmetic,
which is necessary to get a correct result, due to the nature of the computation). Recall that the

∗. Note that depending on the arithmetic precision required, weights may be stored on large numbers of bits.
†. More precisely, k is the treewidth of the dual graph of T [18].
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Figure 4.1 – Time performance for computing TVr, 3 ≤ r ≤ 73, on a 5-tetrahedra, treewidth 4
minimal triangulation of the manifold SFS[S2 : (2, 1)(3, 1)(5,−4)], using the backtracking algo-
rithm with single precision arithmetics (“Backtracking”), with multi-precision arithmetics (“Mul-
tiprecision”), and with exact arithmetic in a cyclotomic field (“Exact”), and the FPT algorithm
with single precision arithmetic (“Parameterized”).

FPT algorithm has exponential memory complexity, which makes it rapidly intractable for larger
triangulations and larger values of r. In comparison, the backtrack search uses a space linear in
the size of the input times the size of the numbers used in the computations.

In conclusion, the backtracking algorithm is a better choice for computing large r asymp-
totics of the Turaev-Viro invariants on small triangulations. In the following sections, we describe
optimizations to and implementation of the backtracking algorithm.

4.3 Ehrhart theory for counting admissible colorings

In this section, we introduce Ehrhart theory and use it to estimate the number of valid colorings
for a subset of the manifold census.

4.3.1 Ehrhart theory and counting lattice points in polytopes

We introduce Ehrhart theory [29] on counting lattice points in polytopes.

Definition 4.3.1. A polytope P is a bounded subset of Rd defined as the set of solutions of a
system of linear inequalities:

P = {x|Ax ≤ b},with A ∈ Rm×d, b ∈ Rm.
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The polytope P is rational if A ∈ Qm×d and b ∈ Qm.
The dilatation of a polytope P by a factor k ∈ N, denoted by kP , is the polytope obtained by

multiplying b by k:

kP = {x|Ax ≤ kb}.

It is equivalent to multiplying the coordinates of the vertices of P by k.

Ehrhart theorem states that the number of lattice points, i.e., points with integer coordinates,
in the dilatation kP of a rational polytope P , admits a closed form as a quasi-polynomial. Specif-
ically,

Theorem 4.3.1 (Ehrhart [29]). Let P be a rational polytope of dimension d. There exists a finite
family of periodic functions (ei : N→ R)i=0...deg such that for all k ∈ N:

#(kP ∩ Zd) =
deg∑
i=0

ki · ei(k).

Where deg ∈ N.
Let us denoteL(P, k) =

∑
i=0...deg k

i ·ei(k). We refer to this function as Ehrhart’s polynomial.
It admits several remarkable properties:

— the period of the coefficients ei(·) is the smallest integer k such that kP is a polytope with
integer coordinates vertices;

— the degree deg of L(P, ·) is equal to the dimension d of the polytope P ;
— the leading coefficient ed(·) of L(P, ·) is a constant function, whose value is equal to the

d-dimensional volume of the polytope P .

The quasi-polynomial L(P, ·) of a rational polytope P can be computed in time exponential
in the embedding dimension:

Theorem 4.3.2 (Barvinok [7, 8]). Let ∆ be a d-dimensional simplex with integer coordinates
vertices. Then L(∆, ·) can be computed in time (d · |∆|O(d)) where |∆| is the number of bits
needed to encode ∆. This result can be extended to rational polytopes.

4.3.2 Application to Turaev-Viro invariants

In this section, we adapt the definition of admissible colorings for Turaev-Viro invariants to
Ehrhart theory’s settings, and describe criteria for triangulations of a manifold M to admit a min-
imal number of colorings.

It was observed [58] that for a 3-manifold M with trivial homology group H1(M,Z/2Z), all
admissible colorings Adm(T, r) of any 1-vertex triangulation T of M and of any order r ≥ 3 can
only admit integer colors in {0, 1, 2, . . . , b r−2

2 c}. As a consequence, for such triangulations, the
backtracking algorithm needs only explore a tree of much smaller size O(b r2c

n+v). Additionally,
the parity constraints (4.2) for admissibility, which is the only non-linear constraint, is always
satisfied with integer colors and can be omitted. In the following analysis, we exploit this fact to
estimate the number of colorings in a triangulation, without enumerating them all, using Ehrhart
theory.

As a consequence, we focus our attention to 3-manifolds M with trivial homology group
H1(M,Z/2Z) for the following theoretical analysis. Note that among the first smallest minimal
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triangulations of prime closed 3-manifolds, nearly half have trivial Z/2Z homology; see Table 4.1.
We also assume triangulations to be 1-vertex ; this is not a strong assumption as triangulations can
be preprocessed efficiently to reduce the number of vertices to 1 (see Section 4.4).

Analysis and experiments. The following theoretical analysis follows the case H1 = 0 and
1-vertex triangulation, to compute an accurate estimator of the number of admissible colorings. In
the more general cases (manifolds with non-trivial homology, more than 1 vertex), the following
analysis still provides a lower bound on the number of admissible colorings of a triangulation, and
is still of interest. In consequence, in all following experiments—except Figure 4.4 that concerns
the exact approximation of the number of admissible colorings and Figure 4.5 that concerns per-
formances of the backtracking algorithm under this hypothesis—the full census of manifolds is
used, regardless of their homology.

Consider now the admissibility constraints (4.3) and (4.4), i.e., the constraints defining the ad-
missible colorings minus the parity constraint. They are linear and consequently define a polytope.
More specifically, let us consider the following:

Definition 4.3.2. Let T be a triangulation, with v vertices, f triangles, n tetrahedra, and n + v
edges. Consider the following 2(n+ v) + 4f inequalities:

— for every edge, −θ(e) ≤ 0, and θ(e) ≤ 1/2,
— for every triangle with edges e1, e2, e3, θ(e1)−θ(e2)−θ(e3) ≤ 0, θ(e2)−θ(e1)−θ(e3) ≤

0, θ(e3)− θ(e1)− θ(e2) ≤ 0, and θ(e1) + θ(e2) + θ(e3) ≤ 1.
LetA be the (2(n+v)+4f, n+v)-matrix with {−1, 0, 1} coefficients, and b the (n+v)-vector

with {0, 1/2, 1} coefficients, defining the rational polytope PT = {x|Ax ≤ b} corresponding to
this set of equations. We call PT the admissibility polytope associated to T .

Lemma 4.3.3. Let r ≥ 3 be an integer, T a 1-vertex triangulation, with n+1 edges, of a manifold
M with trivial H1(M,Z/2Z), and PT the associated admissibility polytope. Then the admissible
colorings of Adm(T, r) are in bijection with the lattice points ((r − 2)PT ∩ Zn+v).

proof.
Let x be an integer coordinate vector such that x ∈ (r − 2)PT , i.e., Ax ≤ b as defined in
Definition 4.3.2. Interpreting the ith coordinate xi of x as an integer color θ(ei) for the ith edge
ei of T , we note that, by definition of (r − 2)PT , all colors θ(ei) are positive integers smaller
than (r − 2)/2, and the coloration θ satisfies admissibility constraints (4.2), (4.3), and (4.4). It
consequently defines an admissible coloring. BecauseH1(M,Z/2Z) is trivial and T is 1-vertex,
all admissibility colorings appear as such integral vector (see discussion in Section 4.3.2).

�

Consequently, by Theorem 4.3.1, the number of admissible colorings in Adm(T, r) is equal to
L(PT , r − 2). We call the quasi-polynomial L(PT , ·) the Ehrhart polynomial of the triangulation
T .

4.4 Triangulations with fewer colorings and estimation of running
times

Choosing the triangulation that admits the smallest number of colorings among a given set of
triangulations boils down to computing the Ehrhart polynomials of the triangulations and choos-
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ing the one with the minimal value at the desired dilatation. Computing these polynomials is
however expensive, and we only consider their asymptotic values, i.e., their degrees and leading
coefficients.

4.4.1 Degree of Ehrhart polynomial.

For a triangulation T , the degree of L(PT , ·) is equal to the dimension of the polytope PT
(Theorem 4.3.1).

Lemma 4.4.1. Let T be a triangulation and PT the associated polytope. Then the dimension of
PT equals the number of edges in T .

proof.

Vector (1
4 ,

1
4 , . . . ,

1
4) does not saturate any of the constraint defining PT , and consequently lies

in the interior of PT . Hence PT is full dimensional. The dimension of the embedding space
being the number of edges, this is also the dimension of PT .

�

As a consequence of Lemma 4.4.1, finding a triangulation with smallest asymptotic number of
admissible colorings starts with finding a triangulation with smallest number of edges. In a closed
triangulation, the number of edges is equal to n+ v, the number of tetrahedra plus the number of
vertices (Equation 4.1), which can be controlled:

Theorem 4.4.2 (Jaco and Rubinstein [42]). Aside from a small set of exceptions, a triangulation
T of a prime, closed, orientable 3-manifold M , with n tetrahedra and v vertices, can be turned in
polynomial time into a 1-vertex triangulation T ′ of M , with n′ ≤ n tetrahedra.

Notably, if M can be triangulated with a minimal number n0 of tetrahedra, M admit such
minimal triangulation with 1-vertex.

As a consequence, for a fixed prime, closed, orientable 3-manifold M , the number of admis-
sible colorings Adm(T, r) for any triangulation T of M grows at least as fast as r 7→ (

(
r
c

)n0+1),
where n0 is the size of a minimal triangulation for M and c is a constant. This is asymptotically
optimal. We study the constant c, in connection with Ehrhart theory, in the next section.

4.4.2 Leading coefficient of Ehrhart polynomial.

The leading coefficient of L(PT , ·) is constant and equal to the volume of the polytope PT
(Theorem 4.3.1). Computing the volume of a polytope is #P-hard. However, there exist approx-
imation schemes that are polynomial in the dimension of the polytope. For instance, [30] gives
an ε-approximation of the volume of a d-dimensional polytope defined by m hyperplanes in time
O(ε−2md3 log(d)) (other terms depending on the geometry of the polytope are hidden).

We study experimentally the values of the volumes of polytopes associated to minimal trian-
gulations of closed, prime, oriented 3-manifolds from the census.
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Figure 4.2 – Distribution of the ratio of the largest volume over the smaller volume (Equation 4.6)
of polytopes associated to minimal triangulations, for all prime closed oriented 3-manifold admit-
ting minimal triangulations of size 4 to 10.

Volumes of minimal triangulations of a same manifold. Figure 4.2 presents the distribution,
over all prime closed orientable 3-manifoldsM admitting minimal triangulations of up to 10 tetra-
hedra, of the ratio of the largest volume over the smallest volume of any polytope PT associated
to a minimal triangulation of M , i.e.,

max{volPT |T minimal triangulation of M}
min{volPT |T minimal triangulation of M}

(4.6)

Volumes for triangulations of up to 8 tetrahedra are exact, computed with Normaliz [11], and vol-
umes for 9- and 10-tetrahedra triangulations are approximated within 5% with the approximation
library VolEsti [30, 32].

The ratio of a majority of manifolds is close to 1. However, more outliers appear with larger
triangulations, which is explained by the fact that manifolds tend to have an increasing number
of distinct minimal triangulations for a growing number of tetrahedra. Consequently, on certain
manifolds of up to 10 tetrahedra, choosing the appropriate minimal triangulation leads to a gain
of a factor close to 3 when minimizing the asymptotic number of admissible colorings. Note
that manifolds with less than 4 tetrahedra are omitted because they are few with several minimal
triangulations.

In the following, we call a minimal 1-vertex triangulation T , with smallest volume volPT
over all such triangulations of a manifold M , the optimal triangulation for M . In the following
experiments, we use optimal triangulations of manifolds.
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Figure 4.3 – Distribution of the volumes of optimal triangulations for all manifolds of the census,
up to 10 tetrahedra. Medians are interpolated (r-value = −0.9999) by a straight line of slope
−0.598 in log scale.

Polytope volumes of increasingly large minimal triangulations. Figure 4.3 presents the dis-
tribution of the volumes of polytopes PT for optimal triangulations of manifolds in the census,
ranging from 1 to 10 tetrahedra. We observe a clear exponential decay of the volumes of the
polytopes for optimal triangulations of larger sizes.

By interpolating the medians, and using Ehrhart theory, we deduce that in average, an op-

timal triangulation T , with n + 1 edges, admits experimentally Θ(
[
r−2
3.97

]n+1
) admissible color-

ings in Adm(T, r). This is a (practical) improvement by an exponential factor over the expected
O(
[
r
2
]n+1) admissible colorings predicted by the theory for 3-manifolds with trivial homology,

and O([r − 1]n+1) in the general case.

4.4.3 Accuracy of the parameter

For an optimal triangulation PT with n + 1 edges, we study the accuracy of the parameter
volPT ·(r−2)n+1 (i.e., the leading term of the Ehrhart polynomial counting Adm(T, r)) to estimate
the number of admissible colorings of T , and the running time of the backtracking algorithm.

Estimating the number of admissible colorings. Figure 4.4 presents the ratio:

max
{

volPT · (r − 2)n+1

#Adm(T, r) ,
#Adm(T, r)

volPT · (r − 2)n+1

}
≥ 1, (4.7)

for optimal triangulations with n tetrahedra, 1 ≤ n ≤ 6, of the manifolds in the census with
trivial homology H1. Curves give the worst values of the ratio (4.7) over optimal triangulations of
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Figure 4.4 – Maximal value of ratio (Equation (4.7) between the estimator and number of admis-
sible colorings for optimal triangulations with trivial H1 of the census, from 1 to 6 tetrahedra, for
increasing r.

the same size. As we are considering a first order approximation of the Ehrhart polynomials, we
observe an expected error of order O(r−1), and the quantity volPT · (r − 2)n+1 appears to be an
accurate estimator of the size of Adm(T, r) for moderate values of r and above.

Estimating the combinatorial complexity of the backtracking algorithm. Figure 4.5 presents
the ratio between the size of the search tree traversed by the backtracking algorithm, and the
number of admissible colorings:

size backtracking search
#Adm(T, r) ≥ 1, (4.8)

for optimal triangulations T of the census of 5-tetrahedra triangulations with trivial homology H1.
The size of the backtracking search is an estimate of the number of combinatorial operations the
backtracking algorithm for TVr(T ) performs. For moderate values of r and above, we observe that
the backtracking search is output-sensitive in the size of Adm(T, r), and there is no triangulation
of size 5 that traverses a search tree larger that 4 ·Adm(T, r) for r ≥ 39.

In conclusion to this section, given a (1-vertex) triangulation T of a closed 3-manifold, we can
compute efficiently the leading term volPT · (r − 2)n+1 of the Ehrhart polynomial, and estimate
accurately both the number of admissible colorings in Adm(T, r) and the expected running time
of the backtracking algorithm to compute Turaev-Viro invariants on T . We deduce a preprocessing
strategy.

It is worthwhile, when computing large r asymptotics of Turaev-Viro invariants of a mani-
fold M , to find an optimal (or close-to-optimal) triangulation of M minimizing the leading of the
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Figure 4.5 – Distribution, against r, of the number of tree nodes explored by the backtracking
divided by the number of valid colorings for all manifolds with trivial homology H1 and smallest
triangulation of size 5.

corresponding Ehrhart polynomial. When preprocessing an input triangulation, we consequently
reduce it (in polynomial time) into a 1-vertex triangulation (Theorem 4.4.2), and search for a
minimal such one. The later step is a theoretically hard procedure, however proceeding to ran-
dom combinatorial modifications of the triangulation, preserving its underlying topology, such as
Pachner moves, is efficient in practice for reducing the size of triangulations [14]. Additionally,
keeping track of the minimal triangulations encountered, we record the volume of their associated
polytopes PT , and keep the minimal triangulation of smallest polytope volume.

In the following, we use census triangulations that are already minimal, and we select the
optimal such triangulation.

4.5 Admissible colorings of manifolds with non-trivial first homology
group

In this section, we propose a result similar to Lemma 4.3.3 for manifolds with non-trivial
H1(T,Z/2Z).

Let M be a prime, closed, oriented 3-manifold. Let T be a 1-vertex triangulation of M . Let E
be the set of edges of T . Let Ẽ be the vector space generated by E over the field Z/2Z.

Definition 4.5.1 (Parity function, associated cycle). Given a coloring θ of the edges of T , the
associated parity function is a linear form ` over Ẽ such that for any e ∈ E, `(e) = 1 if and only
if θ(e) ≡ 1/2 mod 1. A parity function is admissible if it is associated to an admissible coloring.
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There can be several colorings associated to a parity function, by default we pick the one with
values in {0, 0.5}.

Given a parity function `, let its associated cycle be the cycle

c` :=
∑

e∈E,`(e)=1
e,

with Z/2Z coefficients.

The following lemma is very similar to a result that can be found in [58]. Its proof is included
as it is more straight forward, since it boils down to one argument.

Lemma 4.5.1. Given a 1-vertex triangulation T of a prime, closed, oriented 3-manifold,
H1(T,Z/2Z) and the set of admissible parity functions of T equipped with a structure of Z2
vector space are isomorphic.

Furthermore, for each element [c] ∈ H1(T,Z/2Z) there exists a unique parity function such
that its associated cycle belongs to the homology [c].

proof.

Let ` be a parity function over E, the edges of T . In order to exist, the only constraint it should
verify is its admissibility.
The number of admissible parity functions is the number of linear forms ` over Ẽ such that for
all (x, y, z) colors corresponding to edges of a triangle in T , l(x + y + z) = 0. This statement
means that the kernel of ` must contain the subspace of Ẽ generated by the sums of edges that
define triangles in T . Let K be this subspace, the set of admissible parity functions is the space
(E/K)∗ dual of (E/K).
H1(T,Z/2Z) is defined as Z1(T,Z/2Z)/B1(T,Z/2Z), the quotient of the space of 1-cycles by
the space of boundaries of collection of triangles. On the one hand, as T has only one vertex, any
collection of edges is a cycle and Z1(T,Z/2Z) is equal to Ẽ. On the other hand, B1(T,Z/2Z)
is the space generated by the sums of edges that define triangles in T , thus B1(T,Z/2Z) = K.
Since the spaces considered are of finite dimension, (E/K)∗ and H1(T,Z/2Z) are isomorphic.

�

Lemma 4.5.1 gives the set of all possible parities given a triangulation. In order to characterize
all possible colorings, ignoring the upper-bound constraint for now, we use the following lemma:

Lemma 4.5.2. Let T be a triangulation and r ≥ 3, we consider the admissible colorings of T .
For all θ integer colorings and θ′ coloring associated to an admissible parity functions of T

(hence with values in {0, 0.5}).
— If θ is admissible, then θ + θ′ is also admissible up to the bounding conditions.
— If θ+ θ′ is admissible, then θ is admissible up to the bounding conditions except for O(rn)

values of θ + θ′.

proof.

Let x, y and z be the edges of some triangle t.
The first point is straightforward:
— since the parity function is admissible, the parity condition is satisfied;
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— since θ is admissible, the triangle inequalities remain valid as either they are not modified
or θ′ adds to the greater side at least 0.5 and adds at most 0.5 to the two shorter sides of the
inequalities.

For the second point let us assume θ + θ′ is admissible. Since θ′ is admissible, θ satisfies the
parity condition. If the triangle inequalities are strict for θ+ θ′, then, with a similar argument as
for the first point, by removing θ′ the inequalities are still satisfied.
Let us assume at least one of the inequalities is not strict, that is, without loss of generality,
θ(x) = θ(y) + θ(z) + 1 and θ′ adds 0.5 to θ(y) and θ(z). Then, at least for this triangle and it
is the only way to have this, θ + θ′ is admissible while θ is not.
This is only possible if θ′ adds 0.5 to θ(y) and θ(z), and all these “problematic” points are on
the hyperplane θ(x) = θ(y) + θ(z) + 1. Since there is a constant number of triangles (the
triangulation is fixed) on which θ′ can do this pattern and a constant number of parity functions,
there are at most O(rn) such colorings. The result follows.

�

We can now have an estimation of the number of admissible colorings for triangulations of
manifolds with non-trivial first homology group:

Lemma 4.5.3. Let T be a 1-vertex triangulation with n+ 1 edges of a manifold M :

#(Adm(T, r)) = Θr→∞(|H1(T,Z/2Z)|#(rPT ∩ Zn+1)).

proof.

Since by Lemma 4.5.2, the number of non integer admissible colorings that is not the sum of an
integer admissible coloring and a admissible parity function (O(rn)) is negligible compared to
the number of integer colorings (O(rn+1)), they are ignored in this proof.
Let r ≥ 7 be an odd integer. It was shown in the proof of Lemma 4.3.3 how each coloring with
integer values of #(Adm(T, r)) corresponds to a point in #((r − 2)PT ∩ Zn+1). This can be
extended to any element of #(Adm(T, r)) corresponding to a point in #((r − 2)PT ∩ (1/2×
Z)n+1).
From Lemma 4.5.1, for each admissible parity function, there exists a unique associated cycle,
and for each such cycle interpreted as a collection of edges, there exists a unique corresponding
vector v′ ∈ {0, 1/2}n+1 such that for v ∈ Zn+1, the admissibility of the coloring associated to
v + v′ depends only on the linear constraints. Thus, #(Adm(T, r)) is bounded from above by
#(|H1(T,Z/2Z)|(r − 2)PT ∩ ×Zn+1).
Let P ′ be the polytope defined by the inequalities θ(ei)−θ(ej)−θ(ek) ≤ −1 and θ(ei)+θ(ej)+
θ(ek) ≤ (r− 3) for all ei, ej and ek defining a triangle in T and θ(ei) ∈ [1, (r− 4)/2]. Clearly,
#(Adm(T, r)) is bounded from bellow by #(|H1(T,Z/2Z)|P ′ ∩ ×Zn+1). Furthermore, after
translating P ′ along the vector (−1)n+1, it becomes defined by the inequalities θ(ei)− θ(ej)−
θ(ek) ≤ 0 and θ(ei) + θ(ej) + θ(ek) ≤ (r− 6) for all ei, ej and ek defining a triangle in T and
θ(ei) ∈ [0, (r−6)/2]. The polytope is equal to (r−6)PT . As the translation is done by an integer
vector, #(Adm(T, r)) is bounded from bellow by #(|H1(T,Z/2Z)|(r − 6)PT ∩ ×Zn+1).
By Ehrhart’s theory, for large r and by setting k the volume of PT times |H1(T,Z/2Z)|,

#(Adm(T, r)) ∈ [k(r − 6)n+1 +Or→∞(r)n, k(r − 2)n+1 +Or→∞(r)n].

Finally (r−2)n+1− (r−6)n+1 = Or→∞(r)n means the actual value of #(Adm(T, r)) cannot
be too far away fro the estimate.
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�

In conclusion to this section, using PT provides a good estimate for the number of admissible
colorings, no matter the first homology group of the manifold. This work can be extended with
a more complete analysis of the second case of Lemma 4.5.2 to provide a better backtracking
algorithm. For instance by being able to list all non-integer colorings around a given integer
coloring.

4.6 Multi-precision arithmetics

The enumeration of the colorings and the complexity of the computation of their weights imply
a large number of arithmetic operations during the computation of Turaev-Viro invariants. In this
section we discuss this aspect of the computation.

Figure 4.6 – Maximal value of the order r for different triangulation sizes such that the error on
the multi-precision computation of TVr is smaller than 5% on at least half of the census, for 32,
64 and 128 bits.

The weights for Turaev-Viro invariants [84] are complex numbers, and the Turaev-Viro in-
variant TVr(T ) of an n-tetrahedra triangulation is made of an exponential large (rO(n)) sum of
products of O(n) weights. As a consequence, arithmetic errors may accumulate. We imple-
ment multi-precision arithmetic using the MPFR library [33], within the backtracking algorithm of
Regina [17].

Figure 4.6 illustrates the importance of high-precision arithmetics for computing Turaev-Viro
invariants. For a given arithmetic precision, the curve in Figure 4.6 illustrates the maximal value
of r for which the output of the backtrack algorithm is correct on more than half of the census.
We define correctness by a relative error of less than 5%. We note that for single precision 64-
bits arithmetic, the computation is already incorrect for values of r ≥ 33 on more than half the
triangulations larger than 3 tetrahedra.
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Note that the estimator of the number of admissible colorings from Section 4.3 can be used to
estimate the number of arithmetic operations to be performed by the backtracking algorithm, and
in turn set the necessary precision of arithmetic numbers to compute a provably correct approxi-
mation of TVr. However, bounds are pessimistic, and we use the following practical approach.

For each order r, we compute each invariant at least twice: with a given number of bits and
with twice that number. If the relative difference between the two quantities is larger than a given
threshold, we start again with twice the number of bits for the two values until the gap is small
enough. For the following order, keep the numbers of bits that were sufficient at the previous order
r. We begin the computation of the invariants of order r = 3 using 128 and 256 bits.

Note that the Turaev-Viro invariant can be equal to zero, in that case the relative difference
between our two computations may be large. We used a threshold bellow which the invariant is
considered equal to zero.

We validated this approach by testing it for some small triangulations and for small orders on
larger triangulations and comparing the results to the same computation with a a larger number
of bits. The use of multi-precision has a large impact on computation times. Figure 4.1 shows
the difference between the backtracking algorithm with single precision arithmetic (leading to er-
roneous values of TVr already for small r), the backtracking algorithm using exact encoding of
polynomials, and the multi-precision arithmetic we implemented. Both exact and multi-precision
arithmetic lead to correct computation of TVr. We however observe that the multi-precision ap-
proach is about 4 orders of magnitude faster in practice.

Remark 4.6.1 – The multi-precision curve of Figure 4.1 presents two jumps, one for r = 39 and
one for r = 71. They correspond to the doubling of arithmetic precision following the strategy
described above.

Integration to Regina. Our use of MPFR resulted in an interface for Regina that is currently
under review for integration. The methods available in Regina to compute the Turaev-Viro
invariants are templated and all of them will be able to use multi-precision arithmetic, which is
non negligible as all of them tend to lose precision, even with small r.

4.7 Asymptotics of the sequence of Turaev-Viro invariants

In this section, we verify experimentally and extend, based on our observations, Chen and
Yang’s volume conjecture [19], and its extension by Detcherry, Kalfagianni, and Yang [26], for
closed 3-manifolds. The conjecture asserts that the growth rate of the Turaev-Viro invariants of a
manifold M is governed by the simplicial volume of M . Note that there are several other volume
conjectures for manifolds (non-compact, with boundary, etc), but we state only the case of closed
manifolds.

4.7.1 Volume conjecture for 3-manifolds

The simplicial volume of a (compact oriented) manifold M , denoted by ||M ||, is a topological
invariant introduced by Gromov [36] as a norm on singular homology. Two very important families
of manifolds appear in our experiments, graph manifolds and hyperbolic manifolds.

All closed orientable irreducible 3-manifolds that admit triangulations with at most 8 tetrahe-
dra are graph manifolds [61], and they all have simplicial volume 0.
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There exist closed hyperbolic 3-manifolds, i.e., manifolds admitting a (unique) complete hy-
perbolic geometry, that can be triangulated with 9 tetrahedra. For an hyperbolic 3-manifolds M ,
the simplicial volume ||M || is strictly positive, and is equal to the hyperbolic volume ofM times a
universal constant 1/v3. In that sense, the simplicial volume is a generalization of the hyperbolic
volume to all compact 3-manifolds.

By work of Jaco-Shalen-Johannson, and the Thurston-Hamilton-Perelman geometrization the-
orem (see [61, Section 2.4]), graph manifolds and hyperbolic manifolds form the building blocks
of any 3-manifold.

A motivation of this work is the following extension of the following conjecture by Chen,
Yang [19] (for hyperbolic manifolds), and Detcherry, Kalfagianni, Yang [26] (for general mani-
folds):

Conjecture 4.9 (C-Y [19], D-K-Y [26]). For a closed oriented hyperbolic 3-manifold M , let
TVr(M), r ≥ 3, be its Turaev-Viro invariants (at sl2(C) with q = 2) and let ||M || be its simplicial
volume. Then, for r running over all odd integers,

lim
r→+∞

2π
r

log(TVr(M)) = v3||M ||. (4.10)

Additionally, for any closed oriented (not necessarily hyperbolic) 3-manifold M , and r run-
ning over all odd integers,

lim sup
r→+∞

2π
r

log(TVr(M)) = v3||M ||. (4.11)

This volume conjecture has attracted attention from the topology community. Notably, Equa-
tion (4.10) has been proved for closed hyperbolic manifolds obtained by integral Dehn surgery
along the figure eight knot [71]. Additionally, any closed 3-manifold M with ||M || = 0 satisfies
Equation (4.11) [25]. Further, a convergence estimate has been proved for Seifert fibered spaces
(a subclass of graph manifolds), where 2π

r log(TVr(M)) ∈ O(log r/r).
In the following, we apply the optimized computation of Turaev-Viro invariants de-

scribed in earlier sections in order to verify experimentally the behavior of the sequences
(2π
r log(TVr(M)))r on the census of closed 3-manifolds for large r. Our experimental study

below allows us to refine the volume conjecture:

Conjecture 4.12. LetM be any closed oriented (not necessarily hyperbolic) 3-manifold, TVr(M)
and ||M || as above. Then, the set of odd integers r such that TVr(M) 6= 0 (denotedR∗M ) is infinite.
Additionally, when r runs over R∗M , we have,

lim inf
r→+∞

2π
r

log(TVr(M)) = v3||M ||.

This last conjecture completes the above volume conjectures, and both of them fully character-
ize the asymptotics behavior of the Turaev-Viro sequence of invariants, for any closed 3-manifolds.

Additionally, for a fixed 3-manifold M , we observe, on all manifolds studied, a rate of conver-
gence of the sequence 2π

r log(TVr(M)) towards its limit v3||M ||, of order Õ(1
r ), where Õ hides a

poly-log factor in r.
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Figure 4.7 – Distribution of (Sr(M))r for all manifolds with minimal triangulation of size 5 in the
census. The maxima and medians of the distributions are interpolated with fitting Model 1.

Measuring the speed of convergence. LetM be a manifold for which all Turaev-Viro invariants
have been computed until some index rmax. Consider the quantity:

Sr(M) = max
r≤k≤rmax

(∣∣∣∣ 2π
k

log(TVk(M))− v3||M ||
∣∣∣∣) .

This quantity decreases when r grows, and allows us to study the convergence of the sequence
2π
r log(TVr(M)). We study two sets of manifolds.

4.7.2 Graph manifolds with up to 7 tetrahedra

In this section we are considering all manifolds with minimal triangulations with at most 6
tetrahedra, and some triangulations with 7 tetrahedra. As per the discussion above, they all have
simplicial volume 0. Several manifolds from the census have recurring values of r for which their
Turaev-Viro invariant equals 0 (and the term log TVr is undefined). For all manifolds M , we only
consider orders r ∈ R∗M for which TVr(M) 6= 0 in the experiments. No sequence appear to
become uniformly trivial.

Figure 4.7 presents, for every closed 3-manifolds whose minimal triangulation admits 5
tetrahedra, the distribution of the quantity Sr(M) for an rmax = 77. Appendix A (Fig-
ures A.1a, A.1b, A.1c, A.1d, A.1f) introduces similar plots for the other minimal triangulations
with≤ 6 tetrahedra. All sequences appear to converge towards 0. We interpolate the maximal and
median values of Sr over the census with a fitting model:

x 7→ a log(x+ b)
x+ b

. (1)
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Figure 4.8 – Graph of (Sr(M))r for non-Seifert fibered graph manifolds with 7-tetrahedra trian-
gulations. They are obtained by gluing two Seifert fibered spaces along their boundaries. The
maxima and medians of the distributions are interpolated with fitting Model 1.

All manifolds in the census with less than 6 tetrahedra are Seifert fibered spaces, and the
O(log r/r) behavior is proved for the lim sup of the sequence [25] for such spaces. Figure 4.7
emphasizes that the lim inf of the sequence, for all values for which TVr 6= 0, also converges
towards the quantity v3||M || = 0, with experimental convergence O(log r/r).

We draw similar conclusions when extending our analysis to the first seven 7-tetrahedra trian-
gulations of graph manifolds (volume simplicial 0), that are not Seifert fibered ; see Figure 4.8.

These experiments motivate the new conjecture 4.12, describing fully the convergence of the
sequence of Turaev-Viro invariants for all graph manifolds.

Additionally, when comparing similar plots for minimal triangulations of ≤ 6 tetrahedra (see
Appendix A), we notice that the fitting curves, describing the convergence of the sequence, are
almost independent of the number of tetrahedra of the triangulations. This suggests the existence
of a slowly growing function f , in the minimal number of tetrahedra, such that for any graph
manifold M that can be triangulated with n tetrahedra, if TVr(M) 6= 0 then:∣∣∣∣2πr log(TVr(M))

∣∣∣∣ ≤ f(n) · log r
r

4.7.3 Hyperbolic manifolds with 9 tetrahedra

We verify experimentally Conjecture 4.9 for the four 9-tetrahedra closed hyperbolic 3-
manifolds. For 9-tetrahedra triangulations, the computation are much more challenging, and
we compute the Turaev-Viro invariants up to rmax = 39. Figure 4.9 presents the sequence
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Figure 4.9 – Graph of the sequence of Conjecture 4.9 for the Weeks manifold. The expected limit
of the sequence is shown in green. The regression with Model 2 is shown in red.

2π/r log TVr(M) of Conjecture 4.9 for the Weeks manifold, and we observe its convergence to-
wards v3||M || = 0.9427 . . . (the hyperbolic volume of the manifold). The sequence is interpolated
with the following fitting model:

x 7→ a

x+ b
+ c. (2)

We observe a similar converging behavior for the other three hyperbolic manifolds with a nine
tetrahedra triangulation (see Figures A.2b, A.2c and A.2d in Appendix A).

We assume that we could not observe the potential log x factors, as in Model 1, due to lack
of data points. However, the 9-tetrahedra closed hyperbolic 3-manifold show the convergence be-
havior predicted by the volume conjecture, and the convergence of the sequence is experimentally
in Õ

(
1
r

)
, where Õ hide poly-log factors in r.

Conclusion

The Turaev-Viro invariants constitute an important family of topological invariants for three
manifolds. Their combinatorial nature led to several algorithms for their computations and they
are efficient to distinguish different manifolds. The recent volume conjecture of Chen and Yang
stressed the importance of studying (TVr)r≥3 for large r, which is hard in practice.

In this chapter, we aimed at computing (TVr) for large r. To that extend, we looked at two
algorithms: a FPT algorithm, theoretically faster but memory consuming, and a backtracking one,
with negligible memory cost and good performances on small triangulations.
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The contributions of this chapter are twofold. First, we establish a easily computable estimator
of the complexity of a triangulation with respect to the backtracking algorithm. This is based on the
estimation of the number of integer points inside a polytope and done using Ehrhart polynomial.
It leads to a preprocessing that minimize the size of the search tree for the backtracking algorithm.
Enriched with the use of multi-precision arithmetics, this approach has allowed the computation
of sequences of Turaev-Viro invariants for manifolds with small triangulations. In turn, these
experiments have made possible the elaboration of new conjectures extending the seminal one of
Chen and Yang.

While we pursue our computations with increasingly large triangulations, the asymptotic be-
haviors becomes harder to observe. Future work in this direction will require a finer understand-
ing of the complexity of computing Turaev-Viro invariants, in particular in relation of topological
properties of the manifold studied ; see for example [59].



CHAPTER 5
Building hyperbolic

manifolds
This manuscript is centered on topological questions. A priori geometrical tools are no use

to build topological invariants, e.g., the size of the triangles of a triangulation is not a topological
invariant. This can be seen on the 2-dimensional torus: if a flat torus is cut into a triangulation,
scaling all the pieces by some constant will yield a new torus, scaled from the previous one,
with different area for instance. However, Theorem 5.0.1 states that this is not the case for the
hyperbolic geometry.

Theorem 5.0.1 (Mostow–Prasad Rigidity [66, 74]). Let M and N be complete finite-volume hy-
perbolic manifolds of dimension larger than 3, then any isomorphism f : π1(M) → π1(N) is
realized by a unique isometry.

Applying Theorem 5.0.1 to twice the same 3-manifold M gives that the hyperbolic metric is
unique up to isometry. The hyperbolic geometry, under the hypothesis of the theorem, is said rigid:
it is entirely determined by the topology. Hence any quantity related to this geometry, such as the
hyperbolic volume, is a topological invariant.

The results of this chapter concern hyperbolic manifolds with torus boundaries, which includes
hyperbolic knots complements. These complements fall within the scope of Theorem 5.0.1 and
in combination with Theorem 2.3.1, we have that the hyperbolic geometry is able to distinguish
between any two knots.

This chapter provides an introduction to hyperbolic geometry, along with the construction of
a hyperbolic geometry from a triangulation. It is inspired from, and more details can be found in,
[9, 75, 82].

Section 5.1 gives a summary of the minimal takeaway of this section. Section 5.2 gives ways
of representing the hyperbolic space and Section 5.3 defines some basic geometry we need. Sec-
tion 5.4 defines hyperbolic structures and gives conditions on what is required to have one. Finally
Section 5.5 characterizes the complete hyperbolic structures and gives equations to solve to con-
struct one.

Sections 5.1, 5.2 and 5.3 provide the necessary prerequisites for Chapter 6.
Sections 5.4 and 5.5 are more mathematical and constitute an explanation on the gluings equa-

tions. The important message is summed up in Section 5.1. They can be skipped during a first
reading, they are included for completeness.

47
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5.1 Main ideas

From this section, it is important to grasp the notion of hyperbolic ideal tetrahedra (Defini-
tion 5.3.3): they are the convex hull of vertices on the boundary of the hyperbolic space and the
problem will be to assign them a shape (a complex number z called edge parameter, see Def-
inition 5.3.5) so our manifold defined by a topology will have a geometry. Then we construct
2-dimensional triangulations on surfaces around the cusps (Remark 5.3.3 and Figure 5.2 (right))
described by the shapes of the tetrahedra. The main result of this section (Theorems 5.5.1 and
5.5.3) is a set of conditions on the shape parameters stated in terms of normal curves (Defini-
tion 5.5.4) leading to a hyperbolic manifold, and then to a complete hyperbolic manifold:

Theorem 5.1.1 ([82]). A hyperbolic 3-manifold M admitting an ideal triangulation T admits a
hyperbolic structure if and only if for any closed normal curve σ going around an edge e of T , the
edge equation is verified: ∑

zi∈σ
log(zi) = 2iπ.

Furthermore, M admits a complete hyperbolic structure if and only if for any cusp C of M
and any normal curve σ ∈ π1(C), the completeness equation is verified:∑

zi∈σ
εi log(zi) = 0.

where εi ∈ {−1,+1} depends on the position of the tetrahedra with respect to σ.

The edge equation can be illustrated by Figure 5.4: we want the tetrahedra to glue up coher-
ently around edges. The completeness equation can be illustrated by Figure 5.5: the tori on the
cusps must be Euclidean.

5.2 Hyperbolic models

A hyperbolic space Hn does not behave like the usual Euclidean space Rn. In particular the
parallel postulate does not hold: given a line L and a point P not on L, there are at least two
different lines passing by P and contained in the same plane as L that do not intersect L. Thus,
representing Hn is not trivial and various models can be used to that extent. Models require com-
promises, like having to represent straight lines with arc of circles instead, but can have qualities
we can use at our advantage. In particular we define a conformal model; a property that will be
used later in this thesis.

Definition 5.2.1 (Conformal model). A conformal model of the hyperbolic space is a model for
which the measure of the angles is the same as their actual values in the hyperbolic space.

This section defines two models: the Poincaré disk model, for completeness and clarity as it is
one the most common model, and the Poincaré halfspace model. We detail the latter in dimensions
2 (the halfpane model) and 3. All these models are conformal and a more detailed presentation
can be found in [9].



5.2 – Hyperbolic models 49

Figure 5.1 – Two models of H2, the boundary ∂H2 is in black, in red are geodesics and in light blue
are horocircles. Left: Poincaré disk model. The boundary of this model is a circle, the geodesics
define two triangles with vertices at infinity sharing a common edge. Right: Poincaré halfplane
model. The boundary is a line plus one point at infinity, the geodesics define a triangle, with two
vertices on the line and one at∞. The line parallel to the boundary is a horocircle around∞.

0

∞

1z

α

αγ
β

γ

β

0

∞

1z
Figure 5.2 – Left: ideal tetrahedra in the Poincaré halfspace model. Its vertices are in position 0, 1,
∞ and some complex number z in ∂H3 identified with the complex plane C. Dihedral angles are
displayed. Right: representation of the intersection between the previous tetrahedra and a horo-
sphere around∞, it is a Euclidean triangle. Later in this manuscript, gluings of ideal tetrahedra
will be considered, this can be represented by looking at it from the point ∞ (or a cusp when
talking about manifolds), in consequence such gluings of tetrahedra become gluings of Euclidean
triangles.
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The Poincaré Disk. This model represents H2, the hyperbolic space of dimension 2, as the
interior of a disc D2. The straight lines are arc of circle orthogonal to the boundary of D2 and this
is represented in Figure 5.1.

The Poincaré halfplane. This model represents H2 as the upper-halfplane R × R∗+ where
straight lines are either arcs of circles orthogonal to the line {(x, 0)|x ∈ R} or lines of the form
{(x, y)|y > 0}. Its boundary ∂H2 is {(x, 0)|x ∈ R} ∪ ∞, where (+∞, 0), (−∞, 0) and (x,∞)
are identified with∞. It can be obtained from the disk by sending one point of the boundary circle
at the infinity while the rest is sent to the line {(x, 0)|x ∈ R}.

Poincaré halfspace. This model represents H3, the 3-dimensional real hyperbolic space, as the
upper-halfplane C × R∗+. It is a natural extension of the halfplane and we will use mainly this
model for our computations and representations. The boundary is composed of a complex plane
and a point at infinity∞ and when talking about points on the closure H3, a complex number or∞
refers to points on the boundary. In this model, hyperplanes are either half spheres centered on the
complex plane or Euclidean planes orthogonal to the complex plane. A tetrahedron is represented
in Figure 5.2.

Note that we can extend this model by taking Hn+1 ∼ Rn × R∗+.
In this model, the derivative of the metric at a point (u+ iv, w) is:

ds2 = du2 + dv2 + dw2

w2 .

This form allows us to compute the length of curves via integration.

5.3 Elements of geometry

This section describes elementary geometrical concepts that will be used throughout the
manuscript.

To describe the models above, we used “straight lines”, the mathematical concept behind this
is the geodesic. They are curves that locally minimize the distance everywhere. They define the
distances between points and allow to define hyperplanes for instance. The next notion is crucial
in geometry as there are often more than a single way to represent a given situation, they are
transformations that allow to switch between them.

Definition 5.3.1 (Isometry). An isometry is a transformation of the space that preserves the dis-
tances.

The set of orientation preserving isometries of a space forms a group. For H2, this group is
PSL(2,R), and for H3 it is PSL(2,C), they are generated by reflections on hyperplanes. These
isometries can be characterized by their restrictions to ∂Hn:

Definition 5.3.2 (Ideal point). An ideal point is a point on the boundary of the space, in our case
∂H3.

Theorem 5.3.1. Orientation preserving isometries of H3 are uniquely determined by the image of
three ideal points.
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To represent triangulations in the hyperbolic space, we use hyperbolic tetrahedra, and for our
needs we consider ideal tetrahedra. In general we have:

Definition 5.3.3 ((Ideal) polytopes). A hyperbolic polytope is the convex hull of a collection of
distinct points in hyperbolic space, its vertices. It is said ideal if all its vertices are ideal.

The tetrahedra of Figure 5.2 are ideal. If its vertices are aligned, then a tetrahedron can be
degenerated, we forbid this case for the chapter.

Remark 5.3.1 – Since an ideal triangle is defined by its three vertices on H3, by Theorem 5.3.1,
all ideal triangles are isometric.

Definition 5.3.4 (Horosphere). Given a point p ∈ ∂Hn, a closed hypersurface orthogonal to all
geodesics ending at p is called a horosphere centered at p.

Remark 5.3.2 – Horospheres in Hn+1 are n-dimensional Euclidean planes. Combinatorially, they
constitute the link of their center.

This can be seen in the halfspace model: let p ∈ ∂Hn+1, using an isometry we can assume p =
∞. All geodesic ending at∞ are straight vertical lines orthogonal to the base plane Rn ⊂ ∂Hn+1.
Thus in this model, all horospheres centered at ∞ are planes on which the metric is Euclidean
(scaled by the height of the plane). This remains true for all p as isometries preserve the metric.

Due to the fact that ideal vertices are at infinity, they are not part of the tetrahedron. To be able
to do geometry, we now focus on the representations of ideal tetrahedra.

Definition 5.3.5 (Edge parameter). Given an ideal tetrahedron, setting a first vertex at 0, a second
at 1 and a third at ∞, with 0 and 1 points of ∂H3 seen as C, the position of the fourth vertex
in the complex plane, z ∈ C, is the parameter associated to the edge 0∞. It characterizes the
shape of the tetrahedron. When the orientation of the tetrahedra is not fixed, z can be picked with
non-negative imaginary part.

There is an edge parameter for each edge of an ideal tetrahedron. Edge parameters of opposite
edges are equal and they can be deduced one from another: if the first one is z, then the others are
z′ = 1

1−z and z′′ = z−1
z . As they can be deduced from each other, any one of them characterize

the shape of the tetrahedron. Thus any one of them is called the shape parameter.

Remark 5.3.3 – Due to the nature of the ideal tetrahedra, the shape parameters are rich in infor-
mation:

— We have the identity zz′z′′ = −1.
— The argument of z is the measure of the dihedral angle between the plane defined by the

vertices in (0, 1,∞) and (0, z,∞) and arg(z) + arg(z′) + arg(z′′) = π.
— The intersection between an ideal tetrahedron and a “sufficiently small” horosphere cen-

tered at one of its vertices is a Euclidean triangle with angles arg(z), arg(z′), and arg(z′′).
In Figure 5.2, α = arg(z), β = arg(z′) and γ = arg(z′′). Thus, gluings of ideal tetrahe-
dra define 2-dimensional triangulations on horospheres centered at one of their vertices.

— Given a tetrahedron with edge parameter z, in the Euclidean triangle described at the pre-
vious item, the module of z is the ratio of the Euclidean lengths of the sides of the triangle
(see Figure 5.2 and Equation 5.1). For instance, in Figure 5.4, this ration is equal to
|2i| = 2.
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By the previous remark, another way of encoding the shape of a hyperbolic ideal tetrahedron
is to use its dihedral angles. As the edge parameters of opposite edges are equal, so are opposite
dihedral angles. Furthermore, with the notations of Remark 5.3.3 and Figure 5.2, we have:

z = sin(β)
sin(γ) expiα . (5.1)

5.4 From topology to geometry

The aim of this section is to assign a geometry to a cusped 3-manifold M represented by an
ideal triangulation:

Definition 5.4.1 (Geometric manifold). A manifold is geometric if it admits a complete metric.

The manifolds we consider in this section have cusps, i.e. singularities. These manifolds can
be pictured as topological spaces with some points whose link are tori, since these points prevent
the space from being a manifold, they are removed creating these cusps. If an open neighborhood
of these points is removed, this leads to a compact manifold whose boundary consists of tori.

We begin by defining a way of putting a metric on a manifold using (G,X)-structures, the
problem being that these may lead to non-complete metrics.

5.4.1 (G,X)-structures

Defining geometries over manifolds uses group actions, we start by giving some reminders:

Definition 5.4.2 (Group action). Let G be a group with identity element e and X a set (in this
manuscript we assume X non-empty). G is said to act on X if there is a binary operation · :
(G×X)→ X , called the group action, such that for any x ∈ X:

— e · x = x;
— for any (g, h) ∈ G2, g(h · x) = (gh) · x.

Note that in our case G will be a group of morphisms of X , and we can write h(x) instead of
h · x. Group actions can have several other properties, let x and y be any elements of X and g and
h be any elements of G. The action is said transitive if there exists g′ ∈ G such that x = g′ · y.
The group acts freely if g · x = h · x implies g = h. The group acts properly discontinuously if
there exists a neighborhood U of x such that for g 6= e, g(U) ∩ U = ∅, the action can also be
called discrete.

In Section 2.2.2.1, we defined a hyperbolic 3-manifold as the quotient of H3 by a subgroup
of its isometries acting freely and properly discontinuously on H3. This section uses (G,X)-
structures.

Definition 5.4.3 ((G,X)-structures). Let X be a connected, simply connected, oriented, real ana-
lytic manifold and let G be a group of real analytic diffeomorphisms acting transitively on X . We
say a manifold M has a (G,X)-structure if there exists an open covering {Ui} of M and a set of
diffeomorphisms {φi : Ui → φ(Ui) ⊂ X} such that if Ui ∩Uj 6= ∅ then φi ◦ φ−1

j is an element of
G on each connected component of φj(Ui ∩ Uj).
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{Ui, φi}i is called an atlas, and an element (Ui, φi) is a chart. Maps of the form φi ◦ φ−1
j are

called transition maps. The analytic property will be used in Section 5.5 and can be ignored for
now.

(G,X)-structures are more general than the quotient based definition: this is illustrated in
Examples 5.4.1 and 5.4.2, they allow for the representation of non-complete manifolds. In the case
where the manifold is not complete, the action of G will not necessarily be properly discontinuous
and defining such manifold by quotienting could lead to degeneracy.

We now give two examples of (G,X)-structures on the torus.

Example 5.4.1 – The most famous structure is the one of the flat (meaning Euclidean) 2-
dimensional torus T 2.

This torus can be constructed by gluing together opposite sides of a parallelogram as in Fig-
ure 5.3. Now, this initial parallelogram can be used to tile R2. For simplicity, let us assume this
parallelogram is the unit square ([0, 1]2).

Each point p ∈ T 2 is lifted to a collection of points in R2, one for each copy of the square. Let
Up be the neighborhood of p constructed by taking the preimage of the disk of radius 1/4 around
each lift of p. Let φp be the map that sends Up to one of its representative.

Defining {Up, φp} for all p ∈ T 2, gives an atlas, now we just need to verify that we have a
structure. Let us fix p and take another point q ∈ Up on the torus. The transition map φp ◦ φ−1

q

sends part of φq(Uq) to another square around φp(p). For any point x ∈ φq(Up), the map sends
a representative x0 from a square to another representative x1 in another square; for all x this is
the same translation from φq(Up) to φp(Uq). Translation being isometries of R2, T 2 admits an
(Isom(R2),R2)-structure.

In this case the Euclidean metric of R2 can be pulled back on each representative of T 2 and
ultimately on T 2.

Example 5.4.2 – Another example of structures arises when, instead of tiling R2 with parallelo-
grams, we use another polygon as fundamental domain for T 2.

Keeping in mind that T 2 bears, a priori, no notion of metric, the length of its edges when
cut along its meridian and longitude does not need to be pairwise equal. For instance, let us
assume that cutting T 2 produces a trapezoid. Just like in the previous example, starting with a
representative of the trapezoid, we “tile” R2 by gluing a scaled and rotated copy of the trapezoid
to each of its edges and repeating the process (see Figure 5.3).

The situation is very different from the previous case. This time we have described a
(Aff(R2),R2)-structure, Aff being the group of affine transformations of the plane (composition
of scalings, translations and rotations).

This time, it will not be possible to put the metric of R2 on the torus as it would not be properly
defined.

5.4.2 Hyperbolic structures

Carefully selecting a way of putting a structure on T 2 allowed us to pull back the metric of R2

in the first example and not in the second. The reason for this is the particular case of having the
isometries as acting group:

Definition 5.4.4 (Hyperbolic structure). An n-manifold is said to admit a hyperbolic structure if
it admits a (Isom(Hn),Hn)-structure. It is a called a hyperbolic manifold.
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Figure 5.3 – Two developments of T 2 from two different fundamental domains obtained by repli-
cating the torus along the edges of the fundamental domains. Right: the fundamental domain is a
parallelogram and developing the torus tiles R2. Left: the fundamental domain is a generic paral-
lelogram, in this case, the lift of a point of the torus is dense in R2. Note that developing the torus
does not yield a covering of the plane, a single vertex will be omitted.
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Remark 5.4.1 – For a manifold, being hyperbolic is a topological feature independent of whether
a hyperbolic structure is computed.

Euclidean and spherical structures are defined in the same way, with respectively Rn and Sn
for the space. The manifold is said hyperbolic because it actually admits a hyperbolic metric:

Theorem 5.4.1 ([75]). If X is a metric space, G a group of isometries acting transitively on
X , and M a manifold admitting a (G,X)-structure, then M inherits a metric, i.e., a notion of
distance, from X .

By Theorem 5.4.1, to build a geometric manifold, we need to start by a hyperbolic structure.
However, using an atlas is not always the most direct and simple way to do it. In this manuscript,
we are working with triangulated 3-manifolds, thus it is possible to put a structure on each tetrahe-
dra before identifying the faces isometrically, i.e. with a gluing. We remind that by Remark 5.3.1,
it is always possible to glue two tetrahedra isometrically along a common face.

Remark 5.4.2 – Putting a structure on a tetrahedron is just assigning a shape to it.

Theorem 5.4.2 ([75]). A gluing of n-dimensional hyperbolic polyhedra yields a hyperbolic n-
manifold, with hyperbolic structure agreeing with that in the interior of the polyhedra, if and only
if each point has a neighborhood (in the quotient topology) isometric to a ball in Hn with the
isometry the identity in the interior of the polyhedra.

Theorem 5.4.2 requires each point x of the manifold to lift to a (set of) point(s) in the gluing
that has a neighborhood isometric to a ball in H3.

— When x lifts to a point x̂ inside a tetrahedron, then it is always possible to restrict a neigh-
borhood around x̂ to a ball contained in the polyhedron.

— When x lifts inside a triangular face of two tetrahedra, then it lifts to two points with
two half neighborhoods. These can be restricted to two half balls which are then glued
isometrically, leading to a neighborhood of x isometric to a ball.

— When x lifts inside an edge shared by several tetrahedra, then the situation is similar to the
previous case except that instead of two half balls, there are several pieces of balls glued
together. To ensure the gluing of these pieces is a ball, the sum of the inner angles of these
pieces must be equal to 2π, the case where this is not verified is illustrated in Figure 5.4.
However, this condition alone is not enough as illustrated in Example 5.4.3. This problem
will be formalized in Section 5.5.

— Since we are working with ideal triangulationS, x cannot be lifted to a vertex as they do
not belong to the manifold.

Example 5.4.3 – Let us consider the case where four identical ideal tetrahedra are joined along an
edge as illustrated in Figure 5.4. Let the shape parameter be 2i between a face a and b, and for
each tetrahedron let us glue a face a to a face b.

These gluings can be made isometrically as all ideal triangles are similar and the sum of the
angles around the central edge is 2π. However a point lifted on the central edge will not have a
neighborhood isometric to a ball: it will not be well defined on the central edge.
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d(v)

Figure 5.4 – Two types of singularities around an edge seen from the cusp. Left: the sum of the
dihedral angles is smaller than π. Right: gluing of four identical tetrahedra with shape parameter
2i. When taking a path around the edge, the gluing appears no longer coherent even if the faces
are isometrically identified. In blue is the distance d(v) between the first and last points.

5.5 The developing map

The beginning of this section is technical and dedicated to the construction of the developing
map, which is a way of extending the atlas defining (G,X)-structures. Unfamiliar reader can see
this as a way of projecting the set of paths of M onto X , giving them a notion of metric.

The singularity of Example 5.4.3 can be formulated as follows: if a gluing is coherent between
pairs of tetrahedra, it may not remain coherent when considering more the whole triangulation. To
formalize this, we will use paths over the gluing of tetrahedra and look at what happens to the
tetrahedra when following the path: this is based on the developing map and the universal covers.

Definition 5.5.1 (Universal cover). The universal cover M̃ of a space M is a simply connected
covering space of M .

Remark 5.5.1 – The universal cover M̃ of M can be interpreted as the space of the paths over M
that start at a given base point.

Since we defined X as a real analytic manifold and G as a group of real analytic diffeomor-
phisms of X , then any element of G is determined by its restriction to any open set of X . Let M
be a manifold admitting a (G,X)-structure and {(Ui, φi)}i be the associated atlas.

We want to look at the image in X of the paths over M . Let x ∈ Ui be a point of M and
σ : [0, 1]→M a path starting at σ(0) = x. If σ remains in Ui, then its image is well defined in X
through φi. Otherwise we want to extend φi using a function h : M → G that picks a transition
map when leaving Ui. Let us assume the path ends at some point σ(1) ∈ Uj such that

σ([0, 0.5]) ∈ Ui, σ([0.5, 1]) ∈ Uj . (5.2)

Let α(0.5) = y ∈ Ui ∩Uj and let h(y) ∈ G be a transition map between Ui and Uj defined at
φi(y). Then

Φ(σ(t)) =
{
φi(σ(t)) if t ≤ 0.5
h(y)(φj(σ(t))) if t > 0.5
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extends φi for σ. However, this definition depends on the choice of h(y). h(y) is defined on
a open neighborhood of φi(y), and since G is a group a real analytic diffeomorphisms, h(y) is
uniquely determined in this neighborhood. Thus the function h that selects the transition map
is locally constant. Hence, for all paths going from Ui to Uj , h would have picked the same
transition map and φ is well defined for any σ verifying the constraints 5.2, which is general up to
re-parametrization.

The construction of Φ can be extended using the function h for every path in M , that is on M̃ ,
this constitutes the analytic continuation of φi.

Definition 5.5.2 (Developing map). Let M be a (G,X)-manifold and M̃ its universal cover, the
map

D : M̃ → X

as defined above is called the developing map of M .

The developing map is unique up to composition with elements of G, this changes the ini-
tial map φi in the definition above. D is well defined, and is independent of the charts and the
decomposition of the path used to compute it.

5.5.1 Holonomy

Let σ be a closed loop on M starting at some point x and (Ux, φx) a chart for x. φx can be
analytically continued along σ into φ′x, giving a new chart in a neighborhood of x, thus there is an
element of G such that φ′x = gσ ◦φx. Let Tσ be the transformation of M̃ associated to σ, we have:

D ◦ Tσ = gσ ◦D.

Furthermore, since for β another closed loop of M

D ◦ Tσ ◦ Tβ = gσ ◦D ◦ Tβ = gσ ◦ gβ ◦D,

the map
H : σ → gσ

is a group homeomorphism.

Definition 5.5.3 (Holonomy). The homeomorphism H is the holonomy of M and its image is the
holonomy group of M .

Remark 5.5.2 – In Examples 5.4.1 and 5.4.2, R2 is the universal cover of the torus. The developing
map “develops” the torus over R2. The holonomy corresponds to the transformations applied to a
fundamental domain of a manifold when following a given path. For instance the holonomy group
obtained in Example 5.4.1 is a translation group as all parallelograms are identical, and the one
obtained in Example 5.4.2 is generated by the two similarities turning one edge of the trapezoid
into the opposed one.
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Holonomy and shape parameter WhenM is defined by a gluing of tetrahedra, given a (G,X)-
structure, that is a shape assignment to the tetrahedra per Remark 5.4.2, the holonomy can be
expressed in terms of these shape parameters. In all generality, given two triangular faces of an
ideal tetrahedron, per Remark 5.3.1 there is an isometry of H3, depending only on the parameter
of the edge between the two, turning one into the other. Thus given a closed normal curve in
the triangulation, it is possible to compute its holonomy: it is the composition of each isometry
turning each successive triangle encountered into the next one.

Remark 5.5.3 – The holonomy is well defined for surfaces: in the case of 2-triangulation, instead
of turning triangles into triangles, edges are turned into edges. For instance, the computation of
the holonomy can be done in the surface defined by the intersection of the 3-triangulation and a
horosphere just like in Figure 5.5.

Definition 5.5.4 (Normal curve). A normal curve in an n-triangulation is a curve contained only
in the n-simplices (minus the (n − 1)-skeleton of the triangulation) except for a finite number
of points contained in the (n − 1)-simplices (minus the (n − 2)-skeleton of the triangulation),
such that two successive intersections with the (n − 1)-simplices are not contained in the same
(n− 1)-simplex.

The restriction of a curve to a n-simplex is called an arc.

In the following we will mainly consider the holonomy for normal curves included in a horo-
sphere around a cusp.

When an ideal tetrahedron has its vertices in 0, 1 and ∞, the third one is in some position
z1. Just as some transformations of the complex plane can be expressed by a multiplication by
a complex number, z1 is the image of 1 after a multiplication by z1. If another tetrahedron has
its vertices in 0, z1 and∞, calling z2 the parameter associated to its edge 0∞, its last vertex will
be in position z1z2 (Figure 5.5). Generalizing this procedure, it is possible to compute a complex
number for any normal curve inside the triangulation: the product of the parameters of the edges
around which the curve turns. Doing so, one has to be careful with the orientation of the edges, and
with the fact that we do not stay around a single edge (this gives a holonomy modulo translations).
We have the formula:

H(σ) =
∏
i

zεi
i

where i is the index of each edge encountered by σ, zi the corresponding shape parameter and
εi is 1 or −1, depending on the orientation of the edge. Figure 5.5 illustrates this formula.

Remark 5.5.4 – The value of the holonomy is informative about its effects:
— the module of the holonomy is the scaling of the distances;
— the argument of the holonomy is the rotation operated.

In the future, we may use the logarithm of the holonomy as it separates imaginary and real parts.

Example 5.5.1 – In Example 5.4.3 the complex number associated to the normal curve that goes
around the central edge is (2i)4 = 16. In terms of developing maps, starting at a point in a
tetrahedron and turning around the central edge before measuring a distance will give a distance
16 times longer than if it were measured without doing the transformation.

We can now express the condition on the shape parameters to have a geometric structure:
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Figure 5.5 – Examples of normal curves on 2-dimensional triangulations, the edge parameters
are in red. Left: two triangles with edge parameters z1 and z2, the holonomy of the red curve
is z1z2. Note that this curve is not closed, thus z1z2 is actually the contribution of this piece of
curve. Right: the gluing of two triangles triangulating a torus, the normal curve corresponds to a
meridian of the torus. Since both edges are not on the same side of the curve, the holonomy is z2

z1
.

This complex number is a similarity that turns the left edge of the torus into the right one.

Theorem 5.5.1 (Thurston [82]). An ideal triangulation of a hyperbolic manifold admits a hyper-
bolic structure if and only if for any closed path σ around an edge of the triangulation:

log(H(σ)) = i2π.

Remark 5.5.5 – In Theorem 5.5.1 and the other results of this section, we also want the imaginary
part of all the tetrahedra to be positive, as negative imaginary parts would mean tetrahedra that
are not oriented in the same way as the others, and null imaginary parts define degenerated (flat)
tetrahedra.

5.5.2 The shape of the cusp: the completeness problem

If the previous section gave a criterion to obtain a hyperbolic manifold, it is not guaranteed to
be complete. Incompleteness happens when Cauchy sequences may not converge, for hyperbolic
manifolds this cannot happen on the inside of the manifold, the problem will come from the ideal
points.

The main result of this section lies in Theorem 5.5.3, providing a condition similar to The-
orem 5.5.1 to have a complete hyperbolic metric on a 3-manifold. This section constitutes a
summary of the ideas leading to this result.

5.5.2.1 2-dimensional case

Let S be a 2-manifold defined by the gluing of ideal triangles, let v be a vertex of the trian-
gulation. Note that since it is triangulated by ideal triangles, all the vertices are ideal and, from a
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Figure 5.6 – Part of the developing image of an incomplete 2-manifold triangulated by two ideal
triangles A and B glued along their edges. This is obtained by choosing the distance d(v) for v
the vertex at infinity and copying the triangles using this holonomy. In green is the limit of the se-
quence of edges of the triangles, it is a geodesic outside the manifold. In light blue is a horosphere,
its image in the manifold intersects infinitely many times both triangles, each intersection being at
distance d(v) of each other. The two red points are identified in the 2-manifold, the dashed blue
lines are identified with the horosphere in the manifold.

geometrical point of view, in a cusp. Let us consider a horocircle centered at v, and let us draw
this horocircle on the triangulation of S as a sequence of arcs of circles orthogonal to the edges
of the triangles in a counter clockwise order (Figure 5.4 illustrates this, but this time it should not
be interpreted as a section of a 3-dimensional triangulation but as a 2-dimensional triangulation
with a cusp in the center). It is possible that this procedure does not produce a closed loop around
v: assuming we started at an edge e, the initial point and the one after the procedure can be at a
signed distance d(v) from each other.

This quantity d(v) depends only on the vertex v and on the manifold. It is an invariant that
exactly corresponds to the holonomy of a normal path going around the vertex.

Remark 5.5.6 – Since we are working with manifolds admitting hyperbolic structures, the ele-
ments of the holonomy group are actually isometries and going around the cusp does not change
the triangles: the distances and the developing map are changed because we go closer to the cusp.
This is illustrated in Figure 5.6. This is identical to the 3-dimensional case, in Figure 5.3 (right)
the size of the fundamental domain of the torus seems to change, this is because the horosphere in
the developing space intersects tetrahedra that are identified in the manifold at different heights.

Theorem 5.5.2 (Thurston [82]). S is complete if and only if d(v) = 0 for all vertices v of S.

The idea behind the theorem is the following:
— if d(v) = 0 for all vertices v, then it is possible to cut § along arbitrary horocircles hv

centered at v for each v. Let {xn}n be a Cauchy sequence and k a number such that for
all n, |xn − x0| < k. Without loss of generality let us assume x0 is not contained in any
horodisks defined by the hv, then for each v let h′v be the horocircle centered at v which
is at distance k from hv in the direction of v. Cutting S along the h′v is well defined as
d(v) = 0, resulting in a compact manifold in which the sequence {xn}n converges.
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Figure 5.7 – Representations of incomplete cusps in 2 (left) and 3 (right) dimensions. In red are
examples of edges of the simplices going to the cusp, in blue are horocircles, and in green are the
missing geodesics making the manifold incomplete.

— if d(v) = k < 0 for some vertex v, let p be the normal path following an horocircle around
v starting at the edge of some triangle. When doing one turn around v, the length of the arc
of circle of p are reduced by a factor ek (this is a consequence of the triangles being ideal
and hyperbolic), thus the length of p is bounded as a geometric series. Let xn be the nth

intersection between p and the edge of a triangle, this is a Cauchy sequence whose limit,
v, is not in S, hence S not complete. The case k > 0 is identical.

It is possible to represent these incomplete vertices as the surface admits a hyperbolic struc-
ture: each horocircle around v reaches it in finite time, crossing increasingly fast the edges of the
triangle. d(v) is the distance, in each triangle, between two arcs of the same horocircle. All this is
represented in Figure 5.7: the vertex v is turned into some geodesic of length d(v), the horocircles
are orthogonal to this geodesic and the triangles wrap around the geodesic.

Remark 5.5.7 – These incomplete cusps can be completed by adding the geodesic of length d(v)
to S.

5.5.2.2 3-dimensional case

The approach for the 3-dimensional case is similar to the previous one: given a cusp of a 3-
manifold M , we will take a horosphere around the cusp and geometrize its intersection with the
manifold.

Since the cusp is a point whose neighborhood is a torus that was removed, this intersection
should be a 2-dimensional torus. Developing M in H3, and sending the cusp we study in∞ in the
halfspace model, a developing of the torus is obtained when taking the intersection of M̃ with a
horosphere centered at∞, i.e., a Euclidean plane parallel to the complex plane.

We have two cases that correspond to Examples 5.4.1 and 5.4.2:
— If the torus admits a Euclidean structure, i.e., the holonomy group of the torus is trivial,

then it means the surface defined in M̃ by the horosphere is well defined and closed in M .
This is because the intersections between the horosphere and each fundamental domain in
M̃ is identical.

— If the torus does not admit a Euclidean structure, i.e., the holonomy group of the torus is
not trivial, then the surface induced on M is not closed. This is because the non-triviality
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of the holonomy means that when following a closed curve of the fundamental group of
the torus, its shape changes.

In the second case, the structure the torus inherits is called a similarity structure in the liter-
ature: a (Sim(R2),R2)-structures where Sim(R2) is the group of similarities of R2. In this case
there is always a point of R2 not covered by the developing of the torus. The developing of the
torus does not depend on the chosen horosphere, thus there will be such a point and by shifting
the initial horosphere, we see that these points correspond to a geodesic in H3 that is not covered
by M̃ .

Just like for Theorem 5.5.2, there will not be non converging Cauchy sequences if and only if
it is possible to cut M along a horosphere.

Theorem 5.5.3 ([82]). Let M be a hyperbolic manifold with cusps, M is complete if and only if
the holonomy of the fundamental groups of the tori in its cusps is trivial. Equivalently, if we take
M as a compact manifold with torus boundaries T1, . . . , Tk:

∀i ∈ [1, k], ∀σ ∈ π1(Ti), log(H(σ)) = 0.

Completing 3-manifolds Let C be a cusp of M and let α and β be the generators of its holon-
omy group. α and β are isometries that act on the missing geodesic. Let x be a point of the missing
geodesic g.

— If the orbit of the action of α and β on x is dense in g, then M can be completed by a
1-point compactification. However this does not produce a manifold as the neighborhood
of the point we added is a torus.

— If the orbit of the action of α and β on x is discrete in g, then M can be completed by
adding a closed geodesic in the cusp.



CHAPTER 6
Localized geometric

moves to compute
hyperbolic structures on

3-manifolds
A main problem of knot theory is to tell whether two knots are equivalent or distinct. Equiva-

lence between knots is defined by the existence of an isotopy of the ambient space that would turn
one knot into the other, i.e., a continuous deformation of the space that preserves the entanglement.

Isotopies are too difficult to compute in practice, and practitioners use invariants to tackle the
knot equivalence problem. A topological invariant is a quantity assigned to a presentation of a
knot, that is invariant by isotopy.

Hyperbolic knots are an important family of knots are the, they are the knots whose comple-
ments admit a complete hyperbolic metric. They are the subjects of active mathematical research,
which motivates the introduction of efficient algorithmic tools to study their geometric properties,
and most notably their hyperbolic volume. The hyperbolic volume of a hyperbolic knot is a topo-
logical invariant which is powerful at distinguishing between non-equivalent knots, is non-trivial
to compute, and is at the heart of several deep conjectures in topology [69]. It is important to note
that the hyperbolic volume being a real number, equality can be difficult to assert, and a better
invariant to distinguish hyperbolic manifold is their canonical triangulation. However, the only
known method to compute it does not always work and is from Weeks [87], the algorithm requires
information on the geometry from which the volume can be computed easily.

If it exists, the complete hyperbolic metric on a 3-manifold is unique [66], and may be com-
binatorially represented by a complete hyperbolic structure (CHS). In order to compute geometric
properties (such as the volume) of a hyperbolic knot, one triangulates the knot complement, and
tries to assign hyperbolic shapes to its tetrahedra. If these shapes verify a set of non-linear con-
straints called the gluing equations, they form a CHS and encode the complete hyperbolic metric
of the space.

A major issue with this approach is that a solution to the constraints may not exist on all
triangulations of a manifold, even if, as topological object, the manifold can carry a complete hy-
perbolic metric. Worst, it is not known whether every hyperbolic 3-manifold admits a triangulation
on which a solution as CHS exists.

In practice, given an input knot, software can construct a triangulation of the knot complement,
and simplify it to have a CHS. But if this fails, the only implemented practical solution, proposed

63
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Alternating Non-Alternating
#crossings 12 13 14 15 16 17 12 13 14 15 16 17

% Failure on first try 0.9 1.6 2.4 3.3 4.4 5.7 0.8 0.7 1.2 1.7 2.4 3.3
Expected nb of retriang. 2.9 3.9 6.2 7.1 9.5 15.9 2.0 3.1 6.1 11.8 9.7 13.5

Table 6.1 – On all ∼ 9.7 millions prime knots with crossing numbers ranging from 12 to 17,
alternating and non-alternating, we indicate (% Failure on first try) the percentage of knot com-
plements (after triangulation and simplification) on which SnapPy fails to compute a CHS on
first try. We also indicate (Highest expected nb of retriang.) the highest, over all knots, expected
number of random re-triangulations necessary for SnapPy to succeed finding a CHS.

by SnapPy[22], is to randomly modify and simplify the triangulation before trying again until a
CHS is found.

Table 6.1 provides data on the search for a CHS with SnapPy, on the ∼ 9.7 millions prime
knots with crossing numbers up to 17. As observed, SnapPy has a high rate of success in finding
a CHS after a standard triangulation and simplification of the knot complement. However, this
standard construction of a triangulation fails to admit a CHS on more than 350 thousand knots
in the census, and the percentage of problematic triangulations needing re-triangulations tends to
increase with the crossing numbers. Additionally, we observe that some knot complements may
require in expectation a high number of random re-triangulations (up to 15.9), and the number of
re-triangulations may itself suffer a high variance, as illustrated in Figure 6.1.

Checking for the existence of a CHS is a costly procedure, that requires the resolution of
the non-linear system of gluing equations (with e.g. Newton optimization method). Reducing
the number of re-triangulations is consequently critical for performance of computations in knot
theory, most notably for knots on which the state-of-the-art methods implemented in SnapPy
require large numbers of re-triangulations, and even more so when proceeding to very large scale
experiments such as the computation of the knot censuses [16], where “difficult” knots are many.

Contribution: This chapter a new heuristic based algorithm to improve on the essentially random
approach of SnapPy. The method is inspired by Casson and Rivin’s reformulation of the gluing
equations [82, 35]: the gluing equations are split into a linear part and a non-linear part, and the
resolution reduces to a convex optimization problem on a polytope domain. If the triangulation
does not admit a complete structure, the optimization problem will converge on the boundary of
the polytope and we exploit this information to modify combinatorially the triangulation while
reusing the partially computed geometry. We illustrate experimentally the interest of the approach
in Section 6.5 and propose a hybrid method with SnapPy in Section 6.5.3, that outperforms the
state-of-the-art.

We introduce necessary background on triangulations and geometry in Section 6.1, and the
computation of hyperbolic structures with optimization in Section 6.2. We analyze precisely the
behavior of the optimization phase on triangulations not admitting a CHS in Section 6.3, and
introduce a re-triangulation algorithm in Section 6.4 guided by the partially computed geometry
of the optimization phase. Section 6.5is dedicated to the implementation and the results of the
methods,along with the hybrid method in Section 6.5.3.

Note that, in this chapter we focus on complements of hyperbolic knots. However, the tech-
niques introduced extend to more general hyperbolic 3-manifolds with torus boundaries [35].
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Figure 6.1 – Distribution of the number of randomizations required to find a CHS for the comple-
ment of the knot “17nh_2654001” of the census, for 10000 tries. The mean is 10.3 randomizations,
and the standard deviation is 8.8. The minimum number of re-triangulations is 1, and the maxi-
mum 92
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6.1 Background

The background for this chapter is detailed in Chapters 2 and 5.

In this chapter, we consider compact manifolds with torus boundaries, and in particular knot
complements. Removing their boundary, they can be triangulated with 1-vertex ideal generalized
triangulations.

Any two ideal triangulations of the same 3-manifold can be connected by a sequence of 2-3
and 3-2 Pachner moves [72].

We focus on hyperbolic knot complements, meaning their complements admit hyperbolic
structures which we want to compute. Computations and representations are done with the con-
formal model of Poincaré’s halfspace, where H3 ∼ C× R∗+}.

We remind that the shape of an ideal hyperbolic tetrahedron can be encoded with a complex
number z called a shape parameter, or with the values of its three dihedral angles.

The aim of this section is to compute complete hyperbolic structures. Necessary and sufficient
conditions are stated in terms of normal curves by Thurston [82]. The result can be summarized
by Theorem 5.1.1 which we remind:

Theorem 5.1.1. [82] A hyperbolic 3-manifold M admitting an ideal triangulation T admits a
hyperbolic structure if and only if for any closed normal curve σ going around an edge e of T , the
edge equation is verified: ∑

zi∈σ
log(zi) = 2iπ.

Furthermore, M admits a complete hyperbolic structure if and only if for any cusp C of M
and any normal curve σ ∈ π1(C), the completeness equation is verified:∑

zi∈σ
εi log(zi) = 0.

where εi ∈ {−1,+1} depends on the position of the tetrahedra with respect to σ.

These are non-linear equations in terms of the shape parameters. While computing a solution,
when it exists is a numerical problems with existing solution, finding a triangulation of the mani-
fold on which these equations admit a solution is a difficult problem with no known solutions.

6.2 Angle structures and hyperbolic volume

In this section, we introduce another method to compute complete hyperbolic structures on
triangulations, via optimization methods. We refer the reader to [35, 82] for more details.

6.2.1 Linear equations and angle structures

Let T be a 1-vertex ideal triangulation of a knot complement M with n tetrahedra. Since op-
posite edges have the same dihedral angles, all possible shapes of the tetrahedra can be represented
by a point in R3n. We define an angle structure:
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Figure 6.2 – Leading (+) and trailing (−) corners associated to a closed normal curve on a torus.

Definition 6.2.1 (Angle structures). Given an ideal triangulation T , an angle structure is a value
assignment to the dihedral angles of the tetrahedra of T such that opposed dihedral angles are
equal (we then talk about the three dihedral angles of a tetrahedron). Furthermore, the following
constraints must be verified:

1. all the angles are strictly positive;

2. the three dihedral angles (α, β, γ) of a tetrahedron sum to π;

3. the dihedral angles around each edge of T sum to 2π.

The set of angle structures on T is denoted A(T ).

Conditions 1 and 2 ensure the angles are in (0, π) and that the tetrahedra have the same orienta-
tion. Condition 3 is necessary for points on the interior of edges to have a neighborhood isometric
to a hyperbolic ball.

Constraints 1, 2, 3 are linear, hence the set A(T ) of angle structures of a triangulation is the
relative interior of a polytope in R3n. It is of dimension n + |∂M | where |∂M | is the number of
cusps of M ; in the case of knot complements, there is a single cusp. This polytope satisfies:

Theorem 6.2.1. (Casson; see [51]) Let T be an ideal triangulation of M , an orientable 3–mani-
fold with toric cusps. If A(T ) 6= ∅, then M admits a complete hyperbolic metric.

Furthermore, a generating family for the tangent space of A(T ) can be computed in polyno-
mial time [35], using leading-trailing deformations, which are based on closed normal curves.

Definition 6.2.2 (Leading-trailing deformations). Let T ′ be a triangulation of a 2-dimensional
torus and σ an oriented closed normal curve on T ′. Let n be the number of triangles of T ′ and R3n

be a vector space of the values of the angles of the triangles. Given a directed arc in a triangle, the
leading corner is the one opposite to the entering side of the segment, and the trailing is the one
opposite to the exiting side.

Starting from 0 ∈ R3n, and for each segment of σ, add 1 to the coordinate corresponding to
the leading corner and subtract 1 to the coordinate corresponding to the trailing one. The resulting
vector of R3n is the leading-trailing deformation associated to σ.
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Figure 6.2 illustrates the leading (marked +) and trailing (marked −) corners associated to
normal curves. In practice, in a 1-vertex ideal triangulation of a knot complement, T ′ will be
the triangulated torus made of the intersection between T and the link of the ideal vertex. Let us
consider the set B of vectors corresponding to the leading-trailing deformations of:

— one closed normal curve around each vertex of T ′;
— two normal curves generating the fundamental group of T ′, see Figure 6.2.
Then we have:

Theorem 6.2.2 ([35]). B spans the tangent space of A(T ).

6.2.2 Maximizing the hyperbolic volume

The hyperbolic volume of an ideal hyperbolic tetrahedron with dihedral angles (α, β, γ) ∈
(0, π)3 is given by the function vol:

vol(α, β, γ) = L(α) + L(β) + L(γ)

where L is the Lobachevsky function L(x) = −
∫ x

0 log |2 sin t| dt. The volume functional can be
extended to the whole polytope A(T ) by summing the volumes of the hyperbolic tetrahedra. The
following result is due independently to Casson and Rivin.

Theorem 6.2.3 (Casson, Rivin[76]). Let T be an ideal triangulation with n tetrahedra of M ,
an orientable 3–manifold with boundary consisting of tori. Then a point p ∈ A(T ) ⊂ R3n

corresponds to a complete hyperbolic metric on the interior ofM if and only if p is a critical point
of the function vol.

Additionally, the volume functional is concave on A(T ) and the maximum can be computed
via convex optimization methods.

The proof of this result is obtained by looking at the derivatives of the hyperbolic volume for
points in A along leading-trailing deformations. These derivatives are equal to the real part of
the holonomy along the leading-trailing deformations we look at [35]. Since the angle structures
constrain the imaginary part of the gluing equations, we have the theorem.

Remark 6.2.1 – In the literature, the Casson program ∗ is a reference to this maximization problem.
It includes a simplification phase of the triangulation with the heuristic that fewer tetrahedra meant
thicker ones, avoiding singularities in the maximization.

6.3 Behavior of the optimization

Exploiting the formalism of the previous section, one can design an algorithm [35] to find
and compute a CHS by first finding a point in the polytope A(T ), then computing a basis of the
tangent space of A(T ), and then maximizing the (concave) hyperbolic volume functional on this
subspace. If A(T ) 6= ∅ and the procedure finds the point maximizing the volume in the inside
of the polytope, then the triangulation admits a complete hyperbolic structure represented by this
point. Finally, if A(T ) 6= ∅ but the maximum of the volume functional is on the boundary, then
one needs to re-triangulate the manifold in order to search for a triangulation admitting a CHS.

∗. https://nmd.web.illinois.edu//computop/software/casson.tar.gz
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In this section, we study the outcome of the hyperbolic volume maximization on the space of
angle structures. The result is given by the following lemma, which also appeared independently
in [70]:

Lemma 6.3.1. Let T be an ideal triangulation of M , a non-compact orientable 3–manifold with
toric cusps. Let p be the point maximizing vol over A(T ) (the topological closure of A(T )), then
at p, if a tetrahedron has an angle equal to 0, then all other angles of the tetrahedron are in {0, π}.

In other words, either the maximization succeeds in A(T ), or there is at least one tetrahedron
with angles (0, 0, π) in p. Such tetrahedron is called flat. It is not possible to have a tetrahedron
with angles (0, a, b), (a, b) ∈ (0, π) in p.
proof.

Let ~p ∈ A(T ) be an angle structure over T . Let ~w ∈ R3n be a vector tangent to A(T ), then:

∂vol(~p)
∂ ~w

=
3n∑
i=1
−wi log sin(pi).

Note that because ~w is tangent to A(T ), its restriction to a single tetrahedron is three elements
whose sum is equal to zero. Let us assume the maximum of the volume is reached on some point
p̂. Let us assume a tetrahedron t has angles (0, a, b) at p̂, 0 < a ≤ b, let ŵ be a vector tangent
to A(T ) pointing towards the interior of the polytope with respect to p̂ (and thus w1 > 0) and
ŵt = (w1, w2, w3) be its restriction to t. Then:

lim
ε→0+

∂vol(t+ εŵt)
∂ŵt

= −w2 log sin(a)−w3 log sin(b) + lim
ε→0+

−w1 log sin(εw1) = +∞.

Now, with the same notations, let us assume t has angles (0, 0, π) at p̂, then using log(sin(x)) =
log(x) +Ox→0(x2):

lim
ε→0+

∂vol(t+ εŵt)
∂ŵt

= −w1 log sin(εw1)− w2 log sin(εw2) + (w1 + w2) log sin(π − ε(w1 + w2))
= −w1 log(εw1)− w2 log(εw2) + (w1 + w2) log(ε(w1 + w2)) +Oε→0(ε2)
= −w1 log(w1)− w2 log(w2) + (w1 + w2) log(w1 + w2) +Oε→0(ε2)
> −∞

Since for all tetrahedra with non zero angles or angles of the form (0, 0, π), the derivative of the
volume is bounded, the existence of a tetrahedra with exactly one angle set to zero contradicts
the maximality of the volume at that point. Indeed, when getting away from this point, there
exists a small neighborhood where the derivative of the volume can be arbitrarily high.

�

We introduce in the next section an algorithm that performs localized combinatorial modifica-
tions on a triangulation equipped with an angle structure, in order to get rid of flat tetrahedra.
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Figure 6.3 – Pachner moves 2-3 and 3-2 with vertices corresponding to the notations of the lemmas
of this section.

6.4 Localized combinatorial modifications of triangulations

According to Lemma 6.3.1, the volume maximization either leads to a solution to the gluing
equations, or to flat tetrahedra. In this section, we discuss a method to get rid of flat tetrahedra
by combinatorial modifications of the triangulation, while attempting to maintain the value of the
volume functional. This would lead to a triangulation admitting an angle structure with larger
volume than the previous one, allowing to resume the maximization. In order to maintain the
value of the volume functional, we introduce geometric Pachner moves.

6.4.1 Geometric Pachner moves

We perform Pachner moves on the triangulation that preserves the partial geometric data com-
puted. More precisely, we define:

Definition 6.4.1 (Geometric Pachner move). A geometric Pachner move in a triangulation T with
angle structure is a Pachner move in T such that the resulting triangulation admits an angle struc-
ture with identical dihedral angles for the tetrahedra not involved in the move.

To check if a geometric Pachner move can be done, it must be valid combinatorially, and it
should be possible to assign dihedral angles to the new tetrahedra without altering the rest of the
angle structure. The combinatorial conditions are simple [72]: for the 2-3 moves (resp. 3-2 move)
in Figure 6.3, the tetrahedra sharing the common triangle BDC (resp. common edge AE) must
be distinct. The conditions on the angle structures are given by the following lemma:

Lemma 6.4.1. Given a triangulation with angle structure T , if the combinatorial conditions given
above are satisfied:

— a 3-2 move is always geometric;
— a 2-3 move is geometric if and only if the sum of the two dihedral angles around each edge

of the common face is smaller than π.
Furthermore the new angles can be computed using formulas.

The idea to prove the lemma is to study the system of equations given by the assumption
that the angle structure is not altered outside the move, and we break the lemma into three:
Lemma 6.4.2 concerns the 3-2 move, Lemma 6.4.3 concerns the 2-3, and Lemma 6.4.5 concerns
the values of the angles.
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With the notations of Figure 6.3, let t1 = ABCD and t2 = BCDE be two distinct tetrahedra
glued along their common face, and t3 = ABCE, t4 = ACDE and t5 = ADBE three distinct
tetrahedra glued around their common edge. Assuming there is an underlying angle structure, let
us denote t(e) the value of the dihedral angle around the edge e in the tetrahedron t. Passing from
(t1, t2) to (t3, t4, t5), i.e. doing a 3-2 move, or the opposite without altering the rest of the angle
structure leads to the following equations:

t1(BC)+t2(BC) = t3(BC), t1(CD)+t2(CD) = t4(CD), t1(DB)+t2(DB) = t5(DB) (6.1)

t1(AB) = t3(AB)+t5(AB), t1(AC) = t3(AC)+t4(AC), t1(AD) = t4(AD)+t5(AD) (6.2)

t2(EB) = t3(EB)+t5(EB), t2(EC) = t3(EC)+t4(EC), t2(ED) = t4(ED)+t5(ED) (6.3)

The constants, the angles that are fixed in the angle structure, and the unknowns, the angles
we want to compute, depends on which move is studied. By equality of the dihedral angles,
t(UV ) = t(XY ) for UV XY vertices of t. This equality is enforced by the framework of the
angle structures: for the constraints system, t(UV ) and t(XY ) both represent the same variables.

6.4.1.1 The 3-2 move

Lemma 6.4.2. Let T be a triangulation with angle structure, let t3 = ABCE, t4 = ACDE and
t5 = ADBE be three distinct tetrahedra glued around an edge. A 3-2 geometric Pachner move
can always be performed at AE.

proof.

The 3-2 move is combinatorially valid as the resulting tetrahedra and their gluings are well
defined. Let us have t1 = ABCD and t2 = BCDE.
The system composed of Equations 6.1, 6.2 and 6.3 is linear with 6 unknowns: the dihedral
angles of t1 and t2. We need to check if this system admits a solution where the angles are in
(0, π). Note that as t3(AE), t4(AE), and t5(AE) are the angles around the edge AE, their sum
is 2π.
t1(AB) = t3(AB) + t5(AB)

= 2π − (t3(AE) + t3(AC) + t5(AE) + t5(AD))
< 2π − (t3(AE) + t5(AE)) (= t4(AE))
< π

t1(AB) = t3(AB) + t5(AB) > 0
Thus, if the system admits a solution, the dihedral angles of t1 and t2 are in (0, π) by symmetry.
Now let us check if all the equations can be satisfied. From Equation 6.2 and 6.3:

t1(AC)+t2(EC) = t3(AC)+t4(AC)+t3(EC)+t4(EC) = 2π−(t3(AE)+t4(AE)) = t5(AE)

Thus the equations of Equation 6.1 are consequences of the other two. The system is linear with
6 independent equations and 6 unknowns, it admits a solution.
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Finally we have:
t1(AB) + t1(AC) + t1(AD) = t3(AB) + t5(AB) + t3(AC) + t4(AC) + t4(AD) + t5(AD)

= 3π − (t3(AE) + t4(AE) + t5(AE))
= π

Thus the dihedral angles of t1 sum to π, the same goes for t2 by symmetry. And the move is
always valid as long as we started with an angle structure.

�

6.4.1.2 The 2-3 move

Lemma 6.4.3. Let T be a triangulation with angle structure, let t1 = ABCD and t2 = BCDE
be two distinct tetrahedra glued along a face. A 2-3 geometric Pachner move can be performed at
BCD if and only if ∀e ∈ {BC,CD,DB}, t1(e) + t2(e) < π.

proof.

The 2-3 move is combinatorially valid as the resulting tetrahedra and their gluings are well
defined. Let us have t3 = ABCE, t4 = ACDE and t5 = ADBE.
From Equations 6.1 we have that if ∃e ∈ {BC,CD,DB}, t1(e) + t2(e) ≥ π then one of the
resulting tetrahedra will have a dihedral angle larger than π, preventing the validity of the move.
Let us assume it is not the case.
The system composed of Equations 6.1, 6.2 and 6.3 is linear with 9 unknowns: the dihedral
angles of t3, t4 and t5. From Equations 6.1, the values of t3(AE), t4(AE), and t5(AE) are
fixed and we have:

t3(AE) + t4(AE) + t5(AE)
= t1(BC) + t2(BC) + t1(CD) + t2(CD) + t1(DB) + t2(DB) = 2π

Thus the constraint around the edge AE is satisfied.
Summing the equations of Equation 6.2 on the one hand, and the equations of Equation 6.3 on
the other hand both gives:

π = t3(AB) + t5(AB) + t3(AC) + t4(AC) + t4(AD) + t5(AD)

We also have that the sum of the dihedral angles of t3 is π (and by symmetry it is true for t4 and
t5):

t3(AB) + t3(AC) + t3(AE) = t1(BC) + t2(BC) + t1(AB) + t1(AC)− t5(AB)− t4(AC)
= t1(BC) + t1(AB) + t1(AC) + t2(BC)− t2(ED)
= π

Now, let us note that fixing any unknown fixes the values of the others, thus the system has
exactly one degree of freedom: if (t3(AB), t3(AC), t4(AC), t4(AD), t5(AD), t5(AB)) is a
solution to the system, then for any λ ∈ R, (t3(AB) + λ, t3(AC)− λ, t4(AC) + λ, t4(AD)−
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λ, t5(AD) + λ, t5(AB) − λ) is also a solution. This is discussed in Remark 6.4.1. We denote
by Λ+ the set of dihedral angle for which λ is added, and by Λ− its complement.
The last step of the proof is to show that there exists a choice of λ such that all the dihedral
angles are positive, given that the dihedral angles of the tetrahedra sum to π is enough to have
them in (0, π).
By Lemma 6.4.4, there is always a choice of dihedral angle such that fixing it to 0 ensures that
the elements of Λ+ are positive and those of Λ− are non negative (or Λ− and Λ+ respectively,
depending on whether the selected angle is in Λ+ or Λ−). If the elements of Λ+ are positive,
then picking a sufficiently small negative λ to modify the dihedral angles will maintain the
elements of Λ+ positive, and will turn positive those of Λ−, in the other case, in the same way
a small positive λ will ensure the positivity of all the angles.
Thus there exists an angle structure corresponding to and coherent with the result of the Pachner
move.

�

Lemma 6.4.4. Let T be a triangulation with angle structure, let t1 = ABCD and t2 = BCDE
be two distinct tetrahedra glued along a face such that ∀e ∈ {BC,CD,DB}, t1(e) + t2(e) < π.
Let us have t3 = ABCE, t4 = ACDE and t5 = ADBE. Then there is always a choice of
dihedral angle x in {t3(AB), t3(AC), t4(AC), t4(AD), t5(AB), t5(AD)} such that fixing x = 0
leads to the elements of Λ+ = (t3(AB), t4(AC), t5(AD)) being positive and those of Λ− =
(t3(AC), t4(AD), t5(AB)) being non negative (or Λ− and Λ+ respectively).

proof.

Let us assume the Lemma is false. From this we build a set of contradictory constraints on the
angles of t1 and t2.
— If t3(AC) is set to 0, then

t3(AB) = π − t3(AE) > 0,

t5(EB) = t2(EB) > 0

t4(ED) = t1(AC) > 0.

Furthermore

t4(AD) = π − (t4(AC) + t4(AE)) = t1(AD)− t2(EB)

and
t5(AB) = t2(ED)− t1(AC).

Note that the elements of Λ+ are positive and the elements of Λ− are non-negative if
t4(AD) and t5(AB) are non-negative. Let us assume it is not the case and, for instance,
that t1(AD)− t2(EB) < 0.

— If t4(AD) is set to 0, like previously the elements of Λ+ are positive, and

t3(AC) = t2(EB)− t1(AD) > 0

t5(AB) = t1(AB)− t2(EC).

If the lemma is false, then t1(AB)− t2(EC) < 0.
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— If t5(AB) is set to 0, like previously the elements of Λ+ are positive, and

t3(AC) = t1(AC)− t2(ED)

t4(AD) = t2(EC)− t1(AB) < 0.

If the lemma is false, then t1(AC)− t2(ED) < 0.
Taking the constraints together, we have

t1(AB) + t1(AC) + t1(AD) < t2(EB) + t2(EC) + t2(ED),

which is absurd as these two sums are equal to π. The assumption that t1(AD)− t2(EB) < 0
must be false, and by symmetry t2(ED)− t1(AC) < 0 will be false too.
This is absurd and the Lemma is true.

�

Remark 6.4.1 – In Lemma 6.4.3, several angle structures are possible after the 2-3 move as it can
be seen in the poof of Lemma 6.4.4. Conversely, several angle structures lead to the same result
for the 3-2 move. This is because angle structures are blind to shearing singularities. If such a
singularity exists, a 3-2 move can still be performed while maintaining the whole angle structure,
but it will decrease the hyperbolic volume of the structure. It is due to the fact that the singularity,
which maximized the volume, is fixed in the process.

6.4.1.3 Computing the angles

Lemma 6.4.5. Let T be a triangulation with angle structure, if a geometric Pachner move can be
performed, then the new angle structure can be computed in a constant number of arithmetical
operations.

proof.

3-2 move. From the proof of Lemma 6.4.2, the new angles can be obtained by solving a system
of equations with six linear equations.
2-3 move. First, we remind that by Equation 5.1, it is possible to convert angles to edge
parameters et vice versa. We still consider the notations of Figure 6.3, but we consider the
situation in the upper halfspace with B sent to 0, E sent to 1, and D sent to∞ (Figure 6.4). The
position of C depends on the edge parameter of BD in BCDE, and the position of A depends
on the edge parameter of BD in ABCD. Then the edge parameter of BD in ABDE is just
the product of the two edge parameter. This construction is valid by Lemma 6.4.3, as the sum
of the arguments of both shape parameters is smaller than π. We can use the same procedure to
find an edge parameter for ABCE and ACDE.
Note that this construction leaves no shearing singularities around AE.

�
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B E

C

A

Figure 6.4 – Representation of the proof of Lemma 6.4.5, seen from the point D. The 2-3 move
will delete the line BC in favor of AE.

6.4.2 Getting rid of flat tetrahedra

Let T be a triangulation with an angle structure admitting a flat tetrahedron t, and (e, e′)
the associated edges with dihedral angle π. By Lemma 6.4.1, it is not possible to get rid of a
tetrahedron with a geometric 2-3 move. Indeed, if an edge of t has a dihedral angle equal to π,
the second tetrahedron concerned by the 2-3 move must have a dihedral angle equal to 0, and
consequently a 2-3 move will produce a flat tetrahedron.

In order to get rid of t, our strategy is to turn either e or e′ into an edge of degree three, i.e.
to put it at the center of three tetrahedra on which a 3-2 move can be performed (central edge
of Figure 6.3, right). Note that edges of degree 2 prevent the existence of an angle structure as
they force the two tetrahedra sharing the edge to be flat. As a consequence, we assume these
configurations are removed, which can be done by SnapPy’s simplification for instance, see
Section 6.5. Consequently, all edges have degree at least 3, and our strategy focuses on reducing
the incidence degree of angle π edges.

To reduce the degree of an edge e, the strategy is to perform 2-3 moves on the tetrahedra con-
taining e, such that each move reduces the degree of the edge by one. Either for topological
(tetrahedron glued to itself) or geometrical reasons, these moves will not always be possible, and
the order in which they are done matters. This is described in Figure 6.5.

Remark 6.4.2 – Doing a 2-3 move does not always reduce the degree of the edge, e.g., when a
tetrahedron is represented several times around an edge. However, doing a move that does not
decrease the degree of the edge may delete the multiple occurrences of a tetrahedron around the
edge and allow to continue with the simplification.

Remark 6.4.3 – When a 2-3 move is performed around e, the value of the dihedral angle of the
new tetrahedron around e is equal to the sum of the previous two dihedral angles around e. Since
the sum of the dihedral angles of a tetrahedron is equal to π, this means successfully reducing the
degree of e may unlock previously forbidden moves.
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Figure 6.5 – A sequence of moves getting rid of a flat tetrahedron. The bold vertical edge is
contained in 4 tetrahedra, three of which are represented behind the edge. The fourth tetrahedron
is implicit, situated at the front, and flat. First, create the red edge of the first drawing with a 2-3
move. Then delete the red edge of the second drawing with a 3-2 move.

e e eef ef

(A) (B) (C)

Figure 6.6 – Sequences of moves to reduce the degree of an edge when no 2-3 move is available,
seen from above (triangles represent sections of tetrahedra, edge section of triangles and dots
section of edges). In all drawings, the gray rectangle represents the flat tetrahedron, e (light blue
dot) is the edge of the flat tetrahedron of which we want to reduce the degree. Assuming no 2-3
move is available, we pick another edge ef (red dot), if a 3-2 move can be performed on ef , we
are in case (B) and the 3-2 move reduces the degree of e (case (C)). Otherwise, we are in case (A)
we need to create the red dashed tetrahedron by decreasing the degree of ef , this can be done by
calling recursively our procedure on ef .

Recursive moves. If no geometric Pachner move is possible on an edge e, we attempt to reduce the
degree of a nearby edge ef , i.e., an edge for which there exists a tetrahedron containing e and ef ;
see Figure 6.6 where ef is represented by the red dot, as it is seen from above. More precisely, let
f be a triangle containing e such that the associated 2-3 move is forbidden for geometric reasons,
then by Lemma 6.4.1 there is an edge ef of f for which the associated dihedral angle is at least π.

In consequence, reducing the degree of ef to three without modifying the tetrahedra containing
f and then performing a 3-2 move at ef will reduce the degree of e by one; see Figure 6.6.

Note that in case a geometric Pachner move is not possible on any pair of tetrahedra containing
ef either, we can call the procedure recursively in a neighborhood of ef , using the argument above
to pass from e to ef .

Remark 6.4.4 – The choice of ef in f is unique: it is not possible to have two dihedral angles larger
than π; selecting a move to reduce the degree of e boils down to selecting a triangle containing e.

Procedure summary. The procedure to get rid of a flat tetrahedron is a tree-like backtracking
search, each branch corresponding to a choice of 2-3 or 3-2 move to perform. The moves used
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are geometric to preserve the volume maximization advancement. A flat tetrahedron can only be
deleted with a 3-2 move: the first step is to reduce the degree of one of its edges to three. To reduce
the degree of an edge, the solution is to perform 2-3 moves on two tetrahedra containing this edge.
If a 2-3 move is not possible for geometric reasons, we are in the situation of Figure 6.6, and the
procedure to reduce the degree can be called recursively on a neighboring edge. Performing a 3-2
move on this latter edge resulting in a decrease of the degree of the initial one. The procedure ends
when the initial edge has degree three and the flat tetrahedron can be removed or when no move
can be applied.

6.4.3 Implementation details

The implementation faces several practical challenges.

Breaking infinite loops. As such, the algorithm may loop infinitely on some instance, as 2-3
and 3-2 moves may reverse themselves. To counteract this phenomenon and avoid redundant
modifications, a solution is to store at each modification the isomorphism signature of the trian-
gulation [17], characterizing uniquely the isomorphism type of the triangulation. This allows us
to recognize already processed triangulations and break branches of the backtracking algorithms.
Note however that this is costly compared to the Pachner moves, and it makes the procedure no
longer local.

Selecting the edge e. When attempting to remove a flat tetrahedron, one needs to choose between
the two π-angled edges e and e′ to reduce. In our implementation, we consider both edges, and
select the one that has the larger smallest angle in its link. This performs better than a random
choice in our experiments.

Pruning the backtrack search. Some triangulations may have edges of large degree (more than
10), which produces wide search trees. Additionally, the recursive calls to the degree reduction
procedure may induce trees of large depth. Experimentally, the better strategy consists of exploring
exhaustively the first levels of the tree. We set the width of exploration to 8 and explore the first 2
levels of the search tree.

Sequencing of Pachner moves. Different sequencings of Pachner moves lead to different
triangulations. In practice, we favor 2-3 moves over recursive ones, which performs best. Ad-
ditionally, among the 2-3 moves performed to get rid of a flat tetrahedron containing edge e of
angle π, we prioritize moves that eliminate tetrahedra for which e has a small dihedral angle.
Among the recursive ones, we used the same method as the one choosing between e and e′, indeed
choosing a recursive move boils down to choosing an edge to minimize its degree.

6.5 Experiments

In this section, we study the experimental performance of our approach to find a triangulation
with a CHS, and compare its behavior with the software SnapPy [22]. SnapPy is the state-of-
the-art software to study the geometric properties of knots and 3-manifolds, and is widely used in
the low-dimensional topology community. Following this analysis, we propose and study a hybrid
method with practical interest.

SnapPy. SnapPy’s method is based on an implementation from Weeks, its uses a random re-
triangulation followed by a simplification. The first step is constituted of 4n random 2-3 moves,
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where n is the number of tetrahedra in the input triangulation. The simplification performs non-
deterministic modifications to decrease the number of tetrahedra in the triangulation. Notably it
removes some configurations that prevent angle structures from existing. The verification of the
existence of a CHS is based on a Newton’s method to solve the gluing equations [88].

Data set. We apply our algorithms to the census of prime hyperbolic knots with up to 19 crossings.
This census has been constituted by the efforts of many researchers in the field, and recently com-
pleted with the exhaustive enumeration of all knots with crossing number smaller than 20 † [16].

For each knot, given by a knot diagram, we compute a triangulation of the knot complement
using Regina [17], and simplify it with SnapPy. We then keep the triangulations admitting
an angle structure but not a CHS, and hence requiring re-triangulation. All the others, without
angle structure or admitting a CHS, were discarded. They constitute the Failure on first try data of
Table 6.1.

The knots are grouped by crossing numbers (from 14 to 19), and on whether they are alter-
nating or not. In Section 6.5.2, our experiments are run on the first 2500 knots of each of the 12
groups having an angle structure but no CHS, and in Section 6.5.3 we use the first 10.000 knots of
the same data sets.

6.5.1 Our program and current state of the code

Our implementation is done in Python, to be able to interface with Regina and SnapPy
(and not SnaPpea). The idea behind using Python was also to enable shorter development
times. The basic tools to handle triangulations where rewritten to have more control on the behav-
ior of the simulation and we rely on external libraries only for the isomorphism signatures, some
linear programming to find a point to begin the optimization, and to perform the optimization (we
use the SLSQP [49] optimization method from SciPy [86]).

However this choice of language leads to costly computation times, decision was taken to not
render public this version of the code and switch to C++, using another library to manipulate the
triangulations.

The version of the program presented in Section 6.5.3 ‡, which outperforms the state of the art
in terms of performance, is a simpler C version directly implemented in SnapPy’s kernel. We are
in discussion with the developers to integrate this code in the library SnapPy.

6.5.2 Success rate and combinatorial performance

In terms of Pachner moves. Figure 6.7 (left) represents the rate of knots on which our
algorithm succeeds to find a triangulation with a CHS, for all the 12 groups of knots. It represents
the success rate as a function of the number of Pachner moves, the higher success rate groups are
the alternating knots. With Figure 6.7 (right), which represents this success rate for optimization
phases, we see that few Pachner moves are done on average between the phases, hinting that the
convex optimization will likely be the time bottleneck.

While there is a significant difference between the efficiency on alternating and non-alternating
knots, all the curves have the same behavior: the first few Pachner moves are very effective. An
important point is that, compared to the number of moves done by SnapPy, at least four times the
number of tetrahedra and then roughly the same number for the simplification times the number

†. The census is available at https://regina-normal.github.io/data.html
‡. Available at https://github.com/orouille/SnapPy

https://regina-normal.github.io/data.html
https://github.com/orouille/SnapPy
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Figure 6.7 – On the sample of triangulations, success rate in finding a CHS for different crossing
numbers and alternabilities. The limit rate of success for alternating knots is 0.98, the limit rate
for non-alternating knots is 0.87. Left: success rate against the number of Pachner moves. Right:
success rate against the number of optimization phases.

# of optim phases # of moves
1 2 3 4 5 2 3 4 10 30

Efficiency alter 0.73 0.89 0.95 0.97 0.97 0.36 0.63 0.72 0.92 0.97
Efficiency non-alter 0.53 0.67 0.74 0.78 0.81 0.30 0.47 0.52 0.70 0.81

Figure 6.8 – Average of success rates for the alternating and non-alternating groups of knots of
Figure 6.7.

of re-triangulation, our method uses a much lower number of Pachner moves on average (see
Figure 6.7, left). This is of combinatorial interest, as doing a small number of moves can mitigate
the impact of the procedure on the properties of the triangulation, such as keeping a small treewidth
for instance.

After the first few steps, the growth of the success rate slows down drastically. An interpreta-
tion of this phenomenon is that the tetrahedra created by the 2-3 moves tend to to be more flat than
the original ones. This leads to an increase in the number of required re-triangulations and issues
with floating point arithmetic.

In terms of re-triangulation. In order to compare the behaviors of our method and of the state of
the art: we want to know if the two methods struggle on the same triangulations. Both methods
using sequences of re-triangulations, we use the length of these sequences as metrics.

We compare in Figure 6.9 the average number of randomized re-triangulations required by
SnapPy to find a triangulation with a CHS, and the (deterministic) number of re-triangulations
of our method. The majority of the CHS are found within few re-triangulations on average: both
methods manage to find 78% of them within two steps.

However, it appears that for the manifolds requiring a large number of re-triangulations with
either method, the other one will perform well on it: the performance of the methods are substan-
tially orthogonal for the difficult cases. This phenomenon highlights the fact that the methods are
complementary.
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Figure 6.9 – Number of re-triangulations required by our method over the number of re-
triangulations required by SnapPy on the 12 groups of knots, gathered in bins (the color indicates
the log of the number of points inside). Since our method is deterministic, the points have discrete
ordinates. The diagonal x = y appears in red.

Limitations. It is to be noted that our method suffers from several phenomena: there are mani-
folds on which our method fails, the reasons to this being convergence problems because of the
floating point arithmetic, the creation of flatter tetrahedra or the volume modification mentioned in
Remark 6.4.1. Furthermore some triangulations have several very high degree edges and looking
for the correct sequence of geometric Pachner moves can be costly. In terms of time performance,
the constraint convex optimization is an important bottleneck, as well as the computation and
book-keeping of a large number of isomorphism signatures.

However, in light of the previous results, we design a hybrid algorithm, mixing SnapPy’s
pipeline together with the heuristics based on localized geometric Pachner moves introduced in
this chapter, in order to outperform both methods in terms of experimental timings.

6.5.3 Hybrid algorithm and time performance

As is, SnapPy does not produce angle structures as defined in Section 6.2, as it constructs
negative tetrahedra, i.e., tetrahedra whose shape has a negative imaginary part. Our hybrid method
consists of calling SnapPy to randomize and simplify the triangulation, and, in case the triangu-
lation admits only few negative tetrahedra (less than four in our experiments), call the resolution
of flat tetrahedra with geometric Pachner moves on these negative tetrahedra, as introduced in
Section 6.4. Loop until a CHS is found.

Our implementation is done in C directly in SnapPy’s kernel and consists of a simplified
version of Section 6.4’s method. For each negative tetrahedron, we try to reduce the degree of one
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of its edges down to 3 in turn using only geometric 2-3 moves, we try all the edges, and we do not
use recursive moves or heuristics to perform the geometric moves.

The results of this method are summarized in Figure 6.10 (Figure 6.11 is given to help read
Figure 6.10), where the time to compute the CHS are compared for the new hybrid method and the
usual SnapPy pipeline, on the first 10.000 triangulations of the datasets of Section 6.5. The hy-
brid method using localized geometric Pachner moves shows, at worst, similar time performance
compared to SnapPy, and performs significantly better overall. On average, the hybrid method
is 20% faster, however, it is to be noted that, on most cases, few re-triangulations are required
in which case the hybrid method and SnapPy show naturally similar time performance. More
interestingly, on cases requiring many more re-triangulations in the SnapPy pipeline, the hybrid
methods performs much better than SnapPy, with running times up to 18 times faster.

As indicator of the global behavior of both algorithms, we indicate the linear regression of the
data points (black dashed line, slope = 0.4) in Figure 6.10, to illustrate that the dense region is not
concentrated on the x = y diagonal. Furthermore, this line suggests that if we are not in the dense
region where almost all CHS are found instantly, then the gain is not 20%, but 60%.

6.6 Conclusion

The problematic of this work is the computation of complete hyperbolic structures on triangu-
lated 3-manifolds. This can be done on computers by solving Thurston’s gluing equations. The
state-of-the-art method, implemented by SnapPy, consists in trying to simplify the triangulation
before using Newton’s method to solve the equations. If this does not succeed, then the only strat-
egy is to find another triangulation of the manifold and to start over. This work well in most cases,
but can require a large number of re-triangulations in some cases. The key difficulty is to find a
triangulation where the equations admits a solution

We have introduced a new method based on results form Casson and Rivin stating that maxi-
mizing the hyperbolic volume yields CHS. When it is not possible to find a solution to the equa-
tions on a triangulation, we use the result of the volume maximization to propose another one.

Our algorithm is complementary to SnapPy, and in particular performs much better on almost
all cases we have studied where SnapPy struggled to find a solution to the CHS problem. While
our current implementation of the whole method is not competitive due to being implemented in
Python, we introduced a hybrid method that improves the state-of-the-art in most cases, specifi-
cally in difficult ones, without sacrificing SnapPy’s efficiency when it performs well.

Our method proposes an improvement in term of computation time over the state-of-the-art,
this is very important when running large scale experiments or when the manifolds studied are
large. But our method has another interest: since it tries to avoid performing a large number of
re-triangulations, we tend to preserve the triangulation whenever possible.

The method and its implementation can be improved: when used alone, it can simply fail,
being able to continue with the information we gained would be a great plus. Also, we plan on
transferring the full method in C++, to check its actual performances when Python is not used,
this will rise questions about the convex programming and arithmetic precision.

The method opens the door for new questions concerning its behavior. A group of questions
arises when looking at the volume maximization like a flow: What is the impact of the volume
maximization on the triangulation? Which tetrahedra shrink first? Are there combinatorial config-
urations blocking our method? These questions are close to the study of the combinatorial Ricci
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Figure 6.10 – Time comparison of the hybrid method and SnapPy in seconds for the 10.000 first
triangulations of each crossing number of the data set of the previous section, gathered in bins
(the color indicates the log of the number of points inside). Line x = y is plain and red, a linear
regression through the data set is dashed and black. For readability, four outlayers favoring the
hybrid method are omitted.



6.6 – Conclusion 83

Figure 6.11 – Distribution, in logarithmic scale, of the time required by SnapPy over the time
required by the hybrid method.

flow [89], which is dual to our approach, meets similar problems and has known some develop-
ment in the recent years. Closely linked to the flow, there are questions on the path we take on
path in the Pachner graph: these are quite popular in computational topology and geometry, with
the problem to know what is happening at blocking nodes for instance. More generally, our graph
is less connected than the topological one, how connected is it?

There are other questions concerning our results: given the fact that the dataset we used is
actually sorted by the volume, does the hyperbolic volume have an impact on the success rate of
the methods? How does the approach perform on very large knots that are not on the census? Are
the triangulations we output suitable for Weeks’ program that computes canonical triangulations
from complete hyperbolic structures [87]?

There are also questions about SnapPy’s method we can look at with ours: SnapPy re-
triangulation is a large number of 2-3 moves performed at random, why does it miss so much on
some specific examples? What makes triangulations difficult to handle for SnapPy and easy for
us, et vise versa?

In conclusion, while this work has a concrete and direct use in 3-manifolds study, it raises
many interesting questions in mathematics, combinatorics, data science, and algorithmics.
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APPENDIX A
Additional data about

the Turaev-Viro
sequences

This section provides additional experiments for Section 4.7.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5 (f) n = 6

Figure A.1 – Distribution of (Sr(M))r for all manifolds with minimal triangulation of size from
one (a) to six (f). Are shown the regressions of the maxima and the medians of the distributions
according to Model 1.



CHAPTER 1 — Additional data about the Turaev-Viro sequences 95

(a) 0.9427 . . . (b) 0.9814 . . .

(c) 1.0149 . . . (d) 1.2637 . . .

Figure A.2 – Graph of the sequences of Conjecture 4.9 for all closed hyperbolic 3-manifolds
admitting a nine tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of the
manifolds.
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(a) 1.2844 . . . (b) 1.3985 . . .

(c) 1.4140 . . . , Z6 (d) 1.4140 . . . , Z10

(e) 1.4236 . . .

Figure A.3 – Graph of the sequences of Conjecture 4.9 for different closed hyperbolic 3-manifolds
admitting a ten tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of
the manifolds, and occasionally followed by the first homology group, and by the length of the
shortest closed geodesic to clarify the ambiguities.
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(a) 1.4406 . . . (b) 1.5294 . . .

(c) 1.5435 . . . , Z35 (d) 1.5435 . . . , Z21

(e) 1.5831 . . . , Z40

Figure A.4 – Graph of the sequences of Conjecture 4.9 for different closed hyperbolic 3-manifolds
admitting a ten tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of
the manifolds, and occasionally followed by the first homology group, and by the length of the
shortest closed geodesic to clarify the ambiguities.
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(a) 1.5831 . . . , Z21 (b) 1.5831 . . . , Z3 + Z9

(c) 1.5886 . . . , Z30, 0.3046 (d) 1.5886 . . . , Z30, 0.5345

(e) 1.6104 . . .

Figure A.5 – Graph of the sequences of Conjecture 4.9 for different closed hyperbolic 3-manifolds
admitting a ten tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of
the manifolds, and occasionally followed by the first homology group, and by the length of the
shortest closed geodesic to clarify the ambiguities.
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(a) 1.6496 . . . , Z7 (b) 1.6496 . . . , Z15

(c) 1.7571 . . . (d) 1.8243 . . .

(e) 1.8319 . . .

Figure A.6 – Graph of the sequences of Conjecture 4.9 for different closed hyperbolic 3-manifolds
admitting a ten tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of
the manifolds, and occasionally followed by the first homology group, and by the length of the
shortest closed geodesic to clarify the ambiguities.



100 CHAPTER 1 — Additional data about the Turaev-Viro sequences

(a) 1.8854 . . . , Z40 (b) 1.8854 . . . , Z7 + Z7

(c) 1.8854 . . . , Z39 (d) 1.9108 . . .

(e) 1.9537 . . .

Figure A.7 – Graph of the sequences of Conjecture 4.9 for different closed hyperbolic 3-manifolds
admitting a ten tetrahedra triangulation. The regression with Model 2 is shown in red and the
hyperbolic volumes are shown in green. The captions correspond to the hyperbolic volumes of
the manifolds, and occasionally followed by the first homology group, and by the length of the
shortest closed geodesic to clarify the ambiguities.







Calculs à grande échelle d’invariants de 3-variétés

Owen ROUILLÉ

Résumé

La topologie est l’étude des objets à déformation près, sans couper ni coller : l’illustration
la plus répandue est sans doute la transformation d’une tasse en donut. Parmi tous les sujets
d’études en topologie, les variétés présentent un intérêt particulier : elles sont la généralisation
en toutes dimensions des surfaces et permettent de représenter naturellement de nombreux
objets.
Cette thèse se concentre sur la topologie en basses dimensions, et plus précisément à l’étude des
3-variétés. Celles-ci ont un statut privilégié pour les informaticiens : alors que les problèmes ont
tendance à être simples en dimension 2 et impossibles en dimension 4, à l’instar du problème de
l’homéomorphisme, les problèmes tendent à être difficiles mais possibles avec les 3-variétés.
De plus, les 3-variétés sont triangulables et donc manipulables par des ordinateurs.
Les 3-variétés peuvent également être utilisées pour étudier les nœuds. Les nœuds peuvent être
vus comme des courbes fermées et nouées, ils sont utilisés en modélisation et en physique
quantique. Par le théorème de Gordon-Luecke, le complément d’un nœud est une 3-variété qui
contient toutes les informations à propos de celui-ci. Avec les 3-variétés, l’étude des nœuds a
connu de nombreux avancements incluant notamment le théorème de classification de Thurston
qui les classes en trois familles : les nœuds toriques, satellites et hyperboliques.
Différencier des couples de variétés, ou de nœuds, est un problème difficile et central en topo-
logie. Pour les diagrammes de nœuds, une projection d’un nœud dans le plan, il est possible
d’essayer de le modifier pour le transformer en un autre, mais ces approches sont connues pour
être très difficiles. Une approche plus réaliste est d’utiliser des caractéristiques topologiques :
les invariants. Ce sont des objets mathématiques qui encodent une partie de l’information to-
pologique d’un autre objet, ils ne dépendent donc pas de la représentation de la variété ou du
diagramme du nœud, et ils sont l’objet d’intenses recherches en mathématiques.
Si calculer directement un invariant est, en général, plus simple que de résoudre le problème
de l’homéomorphisme, leur calcul n’est pas toujours simple, d’où des besoins en terme de
logiciels et d’implémentations. C’est d’autant plus vrai aujourd’hui qu’avec l’augmentation
des puissances de calcul, de grands recensements de variétés et de nœuds sont disponibles,
nécessitants analyse et extension. Les besoins de la communauté en matière de logiciels sont
bien illustrés par la popularité des bibliothèques comme SnapPy et Regina.
Cette thèse est dédiée à deux invariants : le volume hyperbolique et les invariants de Turaev-
Viro. Dans les deux cas des contributions sont proposées en terme d’algorithmes, de logiciels
et d’analyses.
Pour le volume hyperbolique, nous proposons une approche basée sur des théorèmes de Casson
et Rivin pour calculer des structures hyperboliques complètes (CHS). Étant donnée une trian-
gulation, nous utilisons de l’optimisation convexe sur son polytope des structures angulaires ;
ce qui mène soit à une CHS, soit à une configuration bloquante que nous simplifions avant de
continuer. En plus de ces résultats nous proposons une hybridation entre notre méthode et celle
de SnapPy qui est plus rapide que l’état de l’art.
Pour les invariants de Turaev-Viro, qui sont indexés par un entier r, nous proposons une mé-
thode pour déterminer, étant donnée une collection de triangulations, sur laquelle les algo-
rithmes de calculs seront le plus efficaces. Nous ajoutons également de l’arithmétique multi-
précision à Regina dans le but de pouvoir calculer l’invariant, même pour de grandes valeurs
de r, ce qui permet de vérifier expérimentalement une conjecture du volume basée sur les in-
variants de Turaev-Viro.

Mots-clés : Nœud, 3-variétés, invariants, structures hyperboliques, topologie algorithmique,
implémentation.

Abstract

Topology is the study of shapes modulo deformations, without cutting or gluing: the famous
example of this is the mug that can be morphed into a doughnut. Among all the objects studied
by topologists, manifolds are of particular interest: they are generalizations of surfaces to
higher dimensions that are studied by many mathematicians, and they allow to represent many
shapes in a rather natural way.
This thesis is focused on low dimensional topology, and more precisely on the study of 3-
manifolds. 3-manifolds have a peculiar status for computer scientists: while problems tend to
be polynomial on 2-manifolds and undecidable on 4-manifolds, see for instance the homeo-
morphism problem, problems tend to be doable but difficult on 3-manifolds. Furthermore, all
3-manifolds admit a triangulation and thus can be manipulated by computers.
3-manifolds are also an effective way to study knots. Knots can be seen as knotted closed
curves in the space, they are used as modeling tools and are linked to quantum physics. The
Gordon-Luecke theorem states that the complement of a knot in S3 is a 3-manifold that con-
tains all the information about the knot. Using 3-manifolds, the study of knots leaped forward
with Thurston’s classification theorem: a knot is either torus, if its complement contains a
non-trivial annulus whose boundary lies on the knot, satellite, if its complement contains an
essential torus, and hyperbolic otherwise.
Distinguishing pairs of manifolds, and pairs of knots in particular, is a complex and central
problem in topology. For knot diagrams, a projection of the knot in a plane, one could try
to modify one into another, but these kind of approaches are infamously expensive. A more
realistic approach is to use topological characteristics: the invariants. These invariants are
mathematical objects that encode some of the topological information of the manifold, thus
they do not depend on the representation of an object, such as the triangulation for a manifold
or the diagram for a knot, and they are subject to intensive study.
While computing invariants is, in general, simpler than solving directly the homeomorphism
problem, their computations are often non trivial, which calls for efficient algorithms and im-
plementations. This is particularly true today as, with the increasing computation power, very
large censuses of knots and manifolds are available, requiring extensions and analysis. The
needs of the community in terms of software is demonstrated by the popularity and ubiquity of
libraries like SnapPy and Regina.
This thesis is dedicated to two invariants: the hyperbolic volume and the invariants of Turaev-
Viro. In both cases we propose contributions in term of algorithm, software, and analysis.
For the hyperbolic volume, we propose an approach based on theorems of Casson and Rivin
to compute complete hyperbolic structures (CHS). Given a triangulation, we use convex op-
timization on its polytope of angle structures; this either leads to a CHS, or to a blocking
configuration we resolve in order to proceed further. In addition to this algorithm and the anal-
ysis of its results, we propose an hybridization with SnapPy’s method that outperforms the
state-of-the art.
For the Turaev-Viro invariants, which are indexed by an integer r, we propose a preprocessing
method based on polytope theory to select the triangulation on which existing algorithms will
perform the best. We then introduce multiprecision arithmetics to Regina in order to perform
large r computations of the invariant and verify a volume conjecture based on the Turaev-Viro
invariants.

Keywords: knots, 3-manifolds, invariants, hyperbolic structures, Computational topology,
implementation.
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