Personalized Federated Learning through Local Memorization

Othmane Marfoq^{1, 2}

Giovanni Neglia¹

Laetitia Kameni²

Richard Vidal²

¹Inria, Université Côte d'Azur and ²Accenture Labs

Accenture Labs

Why a single model if local dataset come from a different distribution? Statistical heterogeneity

Why a single model if local dataset come from a different distribution? Statistical heterogeneity

Why a single model if local dataset come from a different distribution? Statistical heterogeneity

Why the same model architecture when clients have different capabilities? System heterogeneity

 Why a single model if local dataset come from a different distribution? Statistical heterogeneity

Why the same model architecture when clients have different capabilities? System heterogeneity

Our idea: Datastore for Personalization

Our idea: Datastore for Personalization

kNN-Per

kNN-Per

kNN-Per

kNN-Per

kNN-Per

- Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore

kNN-Per

- Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore

kNN-Per

- Clients train a global model using a federated learning algorithm (e.g. FedAvg)
- 2. Each client creates its local datastore
- 3. A linear interpolation is used at inference

 $(1 - \lambda)h_{\text{glob}}(\mathbf{x}(K), \chi) + \lambda h_{i,kNN}(\mathbf{x}(K), \chi)$

Enjoys global model's convergence properties

Enjoys global model's convergence properties

What about generalization properties?

Enjoys global model's convergence properties

What about generalization properties?

 $\mathbb{E}_{\mathcal{S} \sim \bigotimes_{m=1}^{M} \mathcal{D}_{m}^{n_{m}}} \left[\mathcal{L}_{\mathcal{D}_{m}} \left(h_{m,\lambda} \right) \right] \leq (1+\lambda) \cdot \mathcal{L}_{\mathcal{D}_{m}} \left(h_{m}^{*} \right)$

$$+ c_1 \left(1 - \lambda\right) \cdot \operatorname{disc}_{\mathcal{H}} \left(\bar{\mathcal{D}}, \mathcal{D}_m\right) + c_3 \left(1 - \lambda\right) \cdot \sqrt{\frac{d}{n}} \cdot \sqrt{c_4} + \log\left(\frac{n}{d}\right) \\ + c_2 \lambda \cdot \frac{\sqrt{p}}{\frac{p + \sqrt{n_m}}{p + \sqrt{n_m}}} \cdot \operatorname{disc}\left(\bar{\mathcal{D}}, \mathcal{D}_m\right) + c_5 \lambda \cdot \sqrt{\frac{d}{n}} \cdot \sqrt{c_4 + \log\left(\frac{n}{d}\right)} \cdot \frac{\sqrt{p}}{\frac{p + \sqrt{n_m}}{p + \sqrt{n_m}}}$$

Assumption. Let $h_m^* \in \arg \min_{h \in \mathcal{H}} \mathcal{L}_{D_m}(h)$. There exist constants $\gamma_1, \gamma_2 > 0$, such that for any dataset \mathcal{S} drawn from $\mathcal{X} \times \mathcal{Y}$ and any data points $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, we have

 $\left|\eta_{m}\left(\mathbf{x}\right)-\eta_{m}\left(\mathbf{x}'\right)\right| \leq d\left(\phi_{h_{\mathcal{S}}}\left(\mathbf{x}\right),\phi_{h_{\mathcal{S}}}\left(\mathbf{x}'\right)\right) \times \left(\gamma_{1}+\gamma_{2}(\mathcal{L}_{\mathcal{D}_{m}}\left(h_{\mathcal{S}}\right)-\mathcal{L}_{\mathcal{D}_{m}}\left(h_{m}^{*}\right))\right).$

Assumption. Let $h_m^* \in \arg\min_{h \in \mathcal{H}} \mathcal{L}_{D_m}(h)$. There exist constants $\gamma_1, \gamma_2 > 0$, such that for any dataset \mathcal{S} drawn from $\mathcal{X} \times \mathcal{Y}$ and any data points $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, we have

 $\begin{aligned} \left| \eta_m \left(\mathbf{x} \right) - \eta_m \left(\mathbf{x}' \right) \right| &\leq d \left(\phi_{h_{\mathcal{S}}} \left(\mathbf{x} \right), \phi_{h_{\mathcal{S}}} \left(\mathbf{x}' \right) \right) \times \left(\gamma_1 + \gamma_2 (\mathcal{L}_{\mathcal{D}_m} \left(h_{\mathcal{S}} \right) - \mathcal{L}_{\mathcal{D}_m} \left(h_m^* \right)) \right) . \\ & \mathbf{x} \& \mathbf{x}' \qquad \text{representations'} \qquad \text{global model's} \\ & \text{in same class?} \qquad \text{distance} \qquad \text{quality for client m} \end{aligned}$

Assumption. Let $h_m^* \in \operatorname{arg\,min}_{h \in \mathcal{H}} \mathcal{L}_{D_m}(h)$. There exist constants $\gamma_1, \gamma_2 > 0$, such that for any dataset S drawn from $\mathcal{X} \times \mathcal{Y}$ and any data points $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, we have

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0/57.5	83.4/68.9	84.3 / 69.4	83.7/69.4	84.3/71.3	85.3/72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8/59.6	75.2/62.3	73.3/61.5	80.0/66.5	77.7/65.2	78.9/68.1	83.0/71.4
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2/36.2	52.0 / 41.4	53.2/41.7	51.7 / 41.1	55.0/43.6
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0/42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4 / 45.4

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0/57.5	83.4/68.9	84.3/69.4	83.7/69.4	84.3/71.3	85.3/72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8/59.6	75.2/62.3	73.3/61.5	80.0/66.5	77.7/65.2	78.9/68.1	83.0/71.4
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2/36.2	52.0/41.4	53.2/41.7	51.7 / 41.1	${f 55.0 / 43.6}$
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4 / 45.4

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST CIFAR-10	71.0/57.5 $57.6/41.1$	83.4/68.9 72.8/59.6	84.3/69.4 75.2/62.3	83.7/69.4 73.3/61.5	84.3/71.3 80.0/66.5	85.3/72.7 77.7/65.2	84.1/69.4 78.9/68.1	88.2/78.8 83.0/71.4
CIFAR-100 Shakespeare	$31.5 / 19.8 \\ 32.0 / 16.0$	$\frac{47.4}{48.1}, \frac{36.0}{43.1}$	$51.4 / 41.1 \\ 47.0 / 42.2$	$47.2 / 36.2 \\ 46.7 / 41.4$	$52.0 / 41.4 \\ 47.9 / 42.6$	$53.2 / 41.7 \\ 47.2 / 42.3$	$51.7 / 41.1 \\ 45.9 / 42.4$	55.0/43.6 51.4/45.4

The benefit of kNN-Per is larger when data distributions are more heterogenous CIFAR-10

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0/57.5	83.4/68.9	84.3/69.4	83.7/69.4	84.3/71.3	85.3/72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8/59.6	75.2/62.3	73.3/61.5	80.0/66.5	77.7/65.2	78.9/68.1	83.0/71.4
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2/36.2	52.0/41.4	53.2/41.7	51.7 / 41.1	${f 55.0 / 43.6}$
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4 / 45.4

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0 / 57.5	83.4 / 68.9	84.3 / 69.4	83.7 / 69.4	84.3 / 71.3	85.3 / 72.7	84.1 / 69.4	88.2 / 78.8
CIFAR-10	57.0/41.1	72.8 / 59.0	75.2 / 62.3	(3.3 / 01.5	80.0 / 66.5	11.1/05.2	78.9 / 68.1	83.0/71.4
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2 / 36.2	52.0 / 41.4	53.2/41.7	51.7 / 41.1	${f 55.0} / {f 43.6}$
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	51.4/45.4

kNN-Per relies mostly on kNN for datasets with more than 100 samples

CIFAR-10

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0/57.5	83.4/68.9	84.3/69.4	83.7/69.4	84.3/71.3	85.3/72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8/59.6	75.2/62.3	73.3/61.5	80.0/66.5	77.7/65.2	78.9/68.1	83.0/71.4
CIFAR-100	31.5/19.8	47.4/36.0	51.4 / 41.1	47.2/36.2	52.0 / 41.4	53.2/41.7	51.7 / 41.1	${f 55.0 / 43.6}$
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9/42.4	51.4 / 45.4

ProtoNN-like datastore compression

79.5

79.0

CIFAR-10

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0 / 57.5	83.4 / 68.9	84.3 / 69.4	83.7 / 69.4	84.3 / 71.3	85.3 / 72.7	84.1 / 69.4	$\begin{array}{r} 88.2 / 78.8 \\ 83.0 / 71.4 \\ 55.0 / 43.6 \\ 51.4 / 45.4 \end{array}$
CIFAR-10	57.6 / 41.1	72.8 / 59.6	75.2 / 62.3	73.3 / 61.5	80.0 / 66.5	77.7 / 65.2	78.9 / 68.1	
CIFAR-100	31.5 / 19.8	47.4 / 36.0	51.4 / 41.1	47.2 / 36.2	52.0 / 41.4	53.2 / 41.7	51.7 / 41.1	
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2 / 42.3	45.9 / 42.4	

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST	71.0/57.5	83.4/68.9	84.3/69.4	83.7/69.4	84.3/71.3	85.3/72.7	84.1/69.4	88.2 / 78.8
CIFAR-10	57.6 / 41.1	72.8/59.6	75.2/62.3	73.3/61.5	80.0/66.5	77.7/65.2	78.9/68.1	83.0 / 71.4
CIFAR-100	31.5/19.8	47.4 / 36.0	51.4 / 41.1	47.2 / 36.2	52.0 / 41.4	53.2/41.7	51.7 / 41.1	${f 55.0} / {f 43.6}$
Shakespeare	32.0 / 16.0	48.1 / 43.1	47.0 / 42.2	46.7 / 41.4	47.9 / 42.6	47.2/42.3	45.9/42.4	51.4/45.4

Table 2: Test accuracy: average across clients / bottom decile.

Dataset	Local	FedAvg	FedAvg+	ClusteredFL	Ditto	FedRep	APFL	kNN-Per (Ours)
FEMNIST CIFAR-10 CIFAR-100 Shakespeare	71.0 / 57.5 57.6 / 41.1 31.5 / 19.8 32.0 / 16.0	83.4 / 68.9 72.8 / 59.6 47.4 / 36.0 48.1 / 43.1	84.3 / 69.4 75.2 / 62.3 51.4 / 41.1 47.0 / 42.2	$83.7 / 69.4 \\73.3 / 61.5 \\47.2 / 36.2 \\46.7 / 41.4$	84.3 / 71.3 80.0 / 66.5 52.0 / 41.4 47.9 / 42.6	85.3 / 72.7 77.7 / 65.2 53.2 / 41.7 47.2 / 42.3	84.1 / 69.4 78.9 / 68.1 51.7 / 41.1 45.9 / 42.4	$\begin{array}{r} 88.2/78.8\\ 83.0/71.4\\ 55.0/43.6\\ 51.4/45.4\end{array}$

kNN-Per is robust to distribution shift

CIFAR-10

Questions?

