Federated Multi-Task Learning under a Mixture of Distributions

Othmane Marfoq^{1,2, 3} Giovanni Neglia^{1, 2} Aurélien Bellet¹ Laetitia Kameni³ Richard Vidal³

¹Inria and ²Université Côte d'Azur and ³Accenture Labs

July 26, 2021

Accenture Labs

• A (countable) set \mathcal{T} of classification (or regression) tasks which represent the set of possible clients.

- A (countable) set \mathcal{T} of classification (or regression) tasks which represent the set of possible clients.
- Data $S_t = \{s_t^{(i)} \triangleq (\mathbf{x}_t^{(i)}, y_t^{(i)})\}_{i=1}^{n_t}$ at client t is drawn from a local distribution \mathcal{D}_t over $\mathcal{X} \times \mathcal{Y}$.

- A (countable) set T of classification (or regression) tasks which represent the set of possible clients.
- Data $S_t = \{s_t^{(i)} \triangleq (\mathbf{x}_t^{(i)}, y_t^{(i)})\}_{i=1}^{n_t}$ at client t is drawn from a local distribution \mathcal{D}_t over $\mathcal{X} \times \mathcal{Y}$.
- Client t wants to learn hypothesis h_t

$$\underset{h_{t} \in \mathcal{H}}{\text{minimize}} \mathcal{L}_{\mathcal{D}_{t}}(h_{t}) \triangleq \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{t}}\left[I\left(h_{t}\left(\mathbf{x}\right), y\right) \right].$$
(1)

- A (countable) set \mathcal{T} of classification (or regression) tasks which represent the set of possible clients.
- Data $S_t = \{s_t^{(i)} \triangleq (\mathbf{x}_t^{(i)}, y_t^{(i)})\}_{i=1}^{n_t}$ at client t is drawn from a local distribution \mathcal{D}_t over $\mathcal{X} \times \mathcal{Y}$.
- Client t wants to learn hypothesis h_t

$$\underset{h_{t} \in \mathcal{H}}{\text{minimize}} \mathcal{L}_{\mathcal{D}_{t}}(h_{t}) \triangleq \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{t}}\left[I\left(h_{t}\left(\mathbf{x}\right), y\right)\right].$$
(1)

Having personalized models for each client is a necessity in many FL applications.

Related Work

- Model agnostic meta-learning (MAML) based federated multi-task learning (MTL).
- Clustered FL.
- Model interpolation: APFL and MAPPER.
- Federated MTL via task relationships: MOCHA, pFedMe, L2SGD and FedU.

Related Work

- Model agnostic meta-learning (MAML) based federated multi-task learning (MTL).
- Clustered FL.
- Model interpolation: APFL and MAPPER.
- Federated MTL via task relationships: MOCHA, pFedMe, L2SGD and FedU.

Limitation: restrictive assumptions or complex algorithms.

An impossibility result

Some assumption on the local data distributions D_t , $t \in T$ are needed for federated learning to be possible:

An impossibility result

Some assumption on the local data distributions D_t , $t \in T$ are needed for federated learning to be possible:

- Federated learning with *T* clients is equivalent to *T semi-supervised learning* (SSL) problems.
- With no assumptions on the data distribution, SSL is impossible. (Ben-David et al. 2008; Darnstädt et al. 2013; Göpfert et al. 2019).

Main assumption

The generative model in the mixture assumption extends/covers some popular multi-task/personalized FL formulations in the literature.

The generative model in the mixture assumption extends/covers some popular multi-task/personalized FL formulations in the literature.

Example (Clustered Federated Learning): The mixture assumption recovers this scenario considering M = C and $\pi_{tc}^* = 1$ if task (client) t is in cluster c and $\pi_{tc}^* = 0$ otherwise.

• Flexible assumption for personalized FL (mixtures of components).

- Flexible assumption for personalized FL (mixtures of components).
- EM-like learning algorithms with convergence guarantees (both in client-server and fully-decentralized settings).

- Flexible assumption for personalized FL (mixtures of components).
- EM-like learning algorithms with convergence guarantees (both in client-server and fully-decentralized settings).
- More general *federated surrogate optimization* framework.

- Flexible assumption for personalized FL (mixtures of components).
- EM-like learning algorithms with convergence guarantees (both in client-server and fully-decentralized settings).
- More general *federated surrogate optimization* framework.
- Higher accuracy and fairness than SOTA algorithms, even for clients not present at training time.

Proposition (informal)

$$h_t^* = \sum_{m=1}^M \breve{\pi}_{tm} h_{\breve{\theta}_m}(\mathsf{x}), \quad \forall t \in \mathcal{T}$$
(2)

• Estimate the parameters $\breve{\Theta}$ and $\breve{\pi}_t, \ 1 \leq t \leq T$, minimizing:

$$f(\Theta, \Pi) \triangleq -\frac{\log p(\mathcal{S}_{1:T}|\Theta, \Pi)}{n} \triangleq -\frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \log p(s_t^{(i)}|\Theta, \pi_t), \quad (3)$$

• Estimate the parameters $\breve{\Theta}$ and $\breve{\pi}_t, \ 1 \leq t \leq T$, minimizing:

$$f(\Theta, \Pi) \triangleq -\frac{\log p(\mathcal{S}_{1:T}|\Theta, \Pi)}{n} \triangleq -\frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \log p(s_t^{(i)}|\Theta, \pi_t), \quad (3)$$

- Use Eq. (2) to get the client predictor for the *T* clients present at training time.
- Clients t' not participating at the training, learn π_{t'} in a single shot, then use Eq. (2)

Expectation-Maximization

A natural approach to solve problem (3) is via the *Expectation-Maximization* (EM) algorithm

Expectation-Maximization

A natural approach to solve problem (3) is via the *Expectation-Maximization* (EM) algorithm

E-step:
$$q_t^{k+1}(z_t^{(i)}=m)\propto \pi_{tm}^k\cdot \exp\left(-l(h_{\theta_m^k}(\mathbf{x}_t^{(i)}), y_t^{(i)})\right).$$

$$\begin{aligned} \mathsf{M}\text{-step:} \qquad & \pi_{tm}^{k+1} = \frac{\sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m)}{n_t}, \\ & \theta_m^{k+1} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{t=1}^T \sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m) \cdot I(h_\theta(\mathbf{x}_t^{(i)}), y_t^{(i)}). \end{aligned}$$

Federated Expectation-Maximization

Federated Expectation-Maximization

Federated Expectation-Maximization

Federated Expectation Maximization

Theorem

Under Assumptions 1–3 and some other mild assumptions, when clients use SGD as local solver with learning rate $\eta = \frac{a_0}{\sqrt{K}}$, after a large enough number of communication rounds K, FedEM's iterates satisfy:

$$egin{aligned} &rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}}\mathbb{E}\left\|
abla_{\Theta}f\left(\Theta^k,\Pi^k
ight)
ight\|_{\mathcal{F}}^2 &\leq \mathcal{O}igg(rac{1}{\sqrt{\mathcal{K}}}igg)\,, \ &rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}}\Delta_{\Pi}f(\Theta^k,\Pi^k) &\leq \mathcal{O}igg(rac{1}{\mathcal{K}^{3/4}}igg)\,, \end{aligned}$$

where the expectation is over the random batches samples, and

$$\Delta_{\Pi} f(\Theta^k, \Pi^k) \triangleq f\left(\Theta^k, \Pi^k\right) - f\left(\Theta^k, \Pi^{k+1}\right) \geq 0.$$

Surrogate Federated Optimization

• FedEM can be seen as a particular instance of a more general framework that we call *federated surrogate optimization*.

Surrogate Federated Optimization

- FedEM can be seen as a particular instance of a more general framework that we call *federated surrogate optimization*.
- This framework minimizes an objective function $\sum_{t=1}^{T} \omega_t f_t(\mathbf{u}, \mathbf{v}_t)$
- Each client $t \in [T]$ can compute a partial first order surrogate of f_t .

Experiments

Dataset	Local	FedAvg	FedProx	FedAvg+	clustered FL	pFedMe	FedEM (Ours)
FEMNIST	71.0 / 57.5	78.6 / 63.9	78.9 / 64.0	75.3 / 53.0	73.5 / 55.1	74.9 / 57.6	79.9 / 64.8
EMNIST	71.9/64.3	82.6 / 75.0	83.0 / 75.4	83.1 / 75.8	82.7 / 75.0	83.3 / 76.4	83.5 / 76.6
CIFAR10	70.2 / 48.7	78.2 / 72.4	78.0 / 70.8	82.3 / 70.6	78.6 / 71.2	81.7 / 73.6	84.3 / 78.1
CIFAR100	31.5 / 19.9	40.9 / 33.2	41.0 / 33.2	39.0 / 28.3	41.5 / 34.1	41.8 / 32.5	44.1 / 35.0
Shakespeare	32.0 / 16.6	46.7 / 42.8	45.7 / 41.9	40.0 / 25.5	46.6 / 42.7	41.2 / 36.8	46.7 / 43.0
Synthetic	65.7 / 58.4	68.2 / 58.9	68.2 / 59.0	68.9 / 60.2	69.1 / 59.0	69.2 / 61.2	74.7 / 66.7

Table: Test accuracy: average across clients / bottom decile.

Experiments

Figure: Effect of client sampling rate (left) and FedEM number of mixture components M (right) on the test accuracy for CIFAR10.

Experiments

Dataset	FedAvg	FedAvg+	FedEM
FEMNIST	78.3 (80.9)	74.2 (84.2)	79.1 (81.5)
EMNIST	83.4 (82.7)	83.7 (92.9)	84.0 (83.3)
CIFAR10	77.3 (77.5)	80.4 (80.5)	85.9 (90.7)
CIFAR100	41.1 (42.1)	36.5 (55.3)	47.5 (46.6)
Shakespeare	46.7 (47.1)	40.2 (93.0)	46.7 (46.6)
Synthetic	68.6 (70.0)	69.1 (72.1)	73.0 (74.1)

Table: Average test accuracy across **clients unseen at training** (train accuracy in parenthesis).

Conclusion

Thank you for your attention

References I

- Ben-David, Shai, Tyler Lu, and D. Pál (2008). "Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning". In: *COLT*.
- Darnstädt, Malte, H. U. Simon, and Balázs Szörényi (2013). "Unlabeled Data Does Provably Help". In: *STACS*.
- Dinh, Canh T, Nguyen H Tran, and Tuan Dung Nguyen (2020). "Personalized Federated Learning with Moreau Envelopes". In: *arXiv* preprint arXiv:2006.08848.
- Göpfert, Christina et al. (2019). "When can unlabeled data improve the learning rate?" In: *Conference on Learning Theory*. PMLR, pp. 1500–1518.
- Mansour, Yishay et al. (2020). "Three approaches for personalization with applications to federated learning". In: *arXiv preprint arXiv:2002.10619*.

References II

- Sattler, Felix, Klaus-Robert Müller, and Wojciech Samek (2020). "Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints". In: *IEEE Transactions on Neural Networks and Learning Systems*.
- Smith, Virginia et al. (2017). "Federated Multi-Task Learning". In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17. Long Beach, California, USA: Curran Associates Inc., pp. 4427–4437. ISBN: 9781510860964.

Main assumptions

Assumption

There exist M underlying (independent) distributions $\tilde{\mathcal{D}}_m$, $1 \leq m \leq M$, such that for $t \in \mathcal{T}$, \mathcal{D}_t is mixture of the distributions $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$ with weights $\pi_t^* = [\pi_{t1}^*, \dots, \pi_{tm}^*] \in \Delta^M$, i.e.

$$z_t \sim \mathcal{M}(\pi_t^*), \quad ((\mathsf{x}_t, y_t) | z_t = m) \sim \tilde{\mathcal{D}}_m, \quad \forall t \in \mathcal{T},$$
 (4)

where $\mathcal{M}(\pi)$ is a multinomial (categorical) distribution with parameters π .

Main assumptions

Assumption

For all
$$m \in [M]$$
, we have $\tilde{\mathcal{D}}_m(\mathsf{x}) = \mathcal{D}(\mathsf{x})$.

Assumption

 $\tilde{\mathcal{H}} = \{h_{\theta}\}_{\theta \in \mathbb{R}^d}$ is a set of hypotheses parameterized by $\theta \in \mathbb{R}^d$, whose convex hull is in \mathcal{H} . For each distribution $\tilde{\mathcal{D}}_m$ with $m \in [M]$, there exists a hypothesis $h_{\theta_m^*}$, such that

$$I\left(h_{\theta_m^*}(\mathbf{x}), y\right) = -\log p_m(y|\mathbf{x}) + c, \tag{5}$$

where $c \in \mathbb{R}$, is a normalization constant. $l(\cdot, \cdot)$ is then the log loss associated to $p_m(y|x)$.

The generative model in the mixture assumption extends/covers some popular multi-task/personalized FL formulations in the literature.

The generative model in the mixture assumption extends/covers some popular multi-task/personalized FL formulations in the literature.

• Clustered Federated Learning Sattler et al. 2020: The mixture assumption recovers this scenario considering M = C and $\pi_{tc}^* = 1$ if task (client) t is in cluster c and $\pi_{tc}^* = 0$ otherwise.

The generative model in the mixture assumption extends/covers some popular multi-task/personalized FL formulations in the literature.

- Clustered Federated Learning Sattler et al. 2020: The mixture assumption recovers this scenario considering M = C and $\pi_{tc}^* = 1$ if task (client) t is in cluster c and $\pi_{tc}^* = 0$ otherwise.
- Personalization via model interpolation Mansour et al. 2020; Dinh et al. 2020: Each client model can be seen as a linear combination of M = T + 1 models h_m = h_{loc,m} for m ∈ [T] and h₀ = h_{glob} with specific weights π^{*}_{tt} = α_t, π^{*}_{t0} = 1 − α_t, and π^{*}_{tt'} = 0 for t' ∈ [T] \ {t}.

• Federated MTL via task relationships Smith et al. 2017 When predictors $h_{\theta_m^*}$ are linear and have bounded norm, our framework leads to the same ASO formulation used in Smith et al. 2017, i.e.,

$$\min_{W,\Omega} \sum_{t=1}^{T} \sum_{i=1}^{n_t} l(h_{w_t}(\mathbf{x}_t^{(i)}), y_t^{(i)}) + \lambda \operatorname{tr}(W\Omega W^{\mathsf{T}}),$$

Proposition

Let $I(\cdot, \cdot)$ be the mean squared error loss, the logistic loss or the cross-entropy loss, and $\check{\Theta}$ and $\check{\Pi}$ be a solution of the following optimization problem:

$$\underset{\Theta,\Pi}{\text{minimize}} \underset{t \sim D_{\mathcal{T}}}{\mathbb{E}} \underset{(x,y) \sim \mathcal{D}_{t}}{\mathbb{E}} \left[-\log \mathcal{D}_{t}(x,y|\Theta,\pi_{t}) \right],$$
(6)

where $D_{\mathcal{T}}$ is any distribution with support \mathcal{T} . Under Assumptions 1, 2, and 3, the predictors

$$h_t^* = \sum_{m=1}^M \breve{\pi}_{tm} h_{\breve{\theta}_m}(\mathbf{x}), \quad \forall t \in \mathcal{T}$$
(7)

minimize $\mathbb{E}_{(x,y)\sim D_t}[I(h_t(x), y)]$ and thus solve Problem (1).

Federated Expectation Maximization

Algorithm 1 FedEM

1: **Input:** data $S_{1:T}$; number of mixture distributions M; number of communication rounds K

2: for iterations
$$k = 1, \ldots, K$$
 do

- 3: server broadcast θ_m^{k-1} , $1 \le m \le M$ to the *T* clients
- 4: for tasks t = 1, ..., T in parallel over T clients do

5: **for** component
$$m = 1, \ldots, M$$
 do

6: update
$$q_t^k(z_t^{(i)} = m) \ \forall i \in \{1, \ldots, n_t\}$$

7: update
$$\pi_{tm}^k$$

8:
$$\theta_{m,t}^k \leftarrow \text{LocalSolver}(m, \theta_m^{k-1}, q_t^k, \mathcal{S}_t)$$

9: client t sends
$$\theta_{m,t}^k$$
, $1 \le m \le M$, to the server

10: **for** component
$$m = 1, \ldots, M$$
 do

11:
$$\theta_m^k \leftarrow \sum_{t=1}^I \frac{n_t}{n} \times \theta_{m,t}^k$$

Surrogate Federated Optimization

Definition (Partial first-order surrogate)

A function $g(\mathbf{u}, \mathbf{v}) : \mathbb{R}^{d_u} \times \mathcal{V} \to \mathbb{R}$ is a partial first-order surrogate of $f(\mathbf{u}, \mathbf{v})$ wrt \mathbf{u} near $(\mathbf{u}_0, \mathbf{v}_0) \in R^{d_u} \times \mathcal{V}$ when the following conditions are satisfied:

•
$$g(\mathbf{u},\mathbf{v}) \geq f(\mathbf{u},\mathbf{v})$$
 for all $\mathbf{u} \in \mathbb{R}^{d_u}$ and $\mathbf{v} \in \mathcal{V}$;

r(u, v) ≜ g(u, v) - f(u, v) is differentiable and L-smooth with respect to u. Moreover, we have r(u₀, v₀) = 0 and ∇_ur(u₀, v₀) = 0.

•
$$g(\mathbf{u}, \mathbf{v}_0) - g(\mathbf{u}, \mathbf{v}) = d_{\mathcal{V}}(\mathbf{v}_0, \mathbf{v})$$
 for all $\mathbf{u} \in \mathbb{R}^{d_u}$ and
 $\mathbf{v} \in \arg\min_{\mathbf{v}' \in \mathcal{V}} g(\mathbf{u}, \mathbf{v}')$, where $d_{\mathcal{V}}$ is non-negative and
 $d_{\mathcal{V}}(\mathbf{v}, \mathbf{v}') = 0 \iff \mathbf{v} = \mathbf{v}'.$