
Federated Multi-Task Learning under a Mixture of

Distributions

Othmane Marfoq1,2, 3 Giovanni Neglia1, 2 Aurélien Bellet1
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Introduction

A (countable) set T of classification (or regression) tasks which

represent the set of possible clients.

Data St = {s(i)
t , (x

(i)
t , y

(i)
t )}nti=1 at client t is drawn from a local

distribution Dt over X × Y.

Client t wants to learn hypothesis ht

minimize
ht∈H

LDt (ht) , E(x,y)∼Dt
[l (ht (x) , y)] . (1)

Having personalized models for each client is a necessity in many FL

applications.
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Related Work

Model agnostic meta-learning (MAML) based federated multi-task

learning (MTL).

Clustered FL.

Model interpolation: APFL and MAPPER.

Federated MTL via task relationships: MOCHA, pFedMe, L2SGD and

FedU.

Limitation: restrictive assumptions or complex algorithms.
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An impossibility result

Some assumption on the local data distributions Dt , t ∈ T are needed for

federated learning to be possible:

Federated learning with T clients is equivalent to T semi-supervised

learning (SSL) problems.

With no assumptions on the data distribution, SSL is impossible.

(Ben-David et al. 2008; Darnstädt et al. 2013; Göpfert et al. 2019).
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Main assumption
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Generalizing Existing Frameworks

The generative model in the mixture assumption extends/covers some

popular multi-task/personalized FL formulations in the literature.

Example (Clustered Federated Learning): The mixture assumption

recovers this scenario considering M = C and π∗tc = 1 if task (client) t is

in cluster c and π∗tc = 0 otherwise.
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Main Contributions

Flexible assumption for personalized FL (mixtures of components).

EM-like learning algorithms with convergence guarantees (both in

client-server and fully-decentralized settings).

More general federated surrogate optimization framework.

Higher accuracy and fairness than SOTA algorithms, even for clients

not present at training time.
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Learning under a mixture model

Proposition (informal)

h∗t =
M∑

m=1

π̆tmhθ̆m (x) , ∀t ∈ T (2)
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Learning under a mixture model

Estimate the parameters Θ̆ and π̆t , 1 ≤ t ≤ T , minimizing:

f (Θ,Π) , − log p(S1:T |Θ,Π)

n
, −1

n

T∑
t=1

nt∑
i=1

log p(s
(i)
t |Θ, πt), (3)

Use Eq. (2) to get the client predictor for the T clients present at

training time.

Clients t ′ not participating at the training, learn πt′ in a single shot,

then use Eq. (2)
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Expectation-Maximization

A natural approach to solve problem (3) is via the

Expectation-Maximization (EM) algorithm

E-step: qk+1
t (z

(i)
t = m) ∝ πktm · exp

(
−l(hθkm(x

(i)
t ), y

(i)
t )
)
.

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z

(i)
t = m)

nt
,

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z

(i)
t = m) · l

(
hθ(x

(i)
t ), y

(i)
t

)
.
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Federated Expectation-Maximization
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Federated Expectation Maximization

Theorem

Under Assumptions 1–3 and some other mild assumptions, when clients
use SGD as local solver with learning rate η = a0√

K
, after a large enough

number of communication rounds K , FedEM’s iterates satisfy:

1

K

K∑
k=1

E
∥∥∥∇Θf

(
Θk ,Πk

)∥∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

∆Πf (Θk ,Πk) ≤ O
(

1

K 3/4

)
,

where the expectation is over the random batches samples, and

∆Πf (Θk ,Πk) , f
(

Θk ,Πk
)
− f

(
Θk ,Πk+1

)
≥ 0.
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Surrogate Federated Optimization

FedEM can be seen as a particular instance of a more general

framework that we call federated surrogate optimization.

This framework minimizes an objective function
∑T

t=1 ωt ft (u, vt)

Each client t ∈ [T ] can compute a partial first order surrogate of ft .
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Experiments

Dataset Local FedAvg FedProx FedAvg+ clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8

EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6

CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1

CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0

Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0

Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

Table: Test accuracy: average across clients / bottom decile.
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Experiments

Figure: Effect of client sampling rate (left) and FedEM number of mixture
components M (right) on the test accuracy for CIFAR10.

29 / 33



Experiments

Dataset FedAvg FedAvg+ FedEM

FEMNIST 78.3 (80.9) 74.2 (84.2) 79.1 (81.5)

EMNIST 83.4 (82.7) 83.7 (92.9) 84.0 (83.3)

CIFAR10 77.3 (77.5) 80.4 (80.5) 85.9 (90.7)

CIFAR100 41.1 (42.1) 36.5 (55.3) 47.5 (46.6)

Shakespeare 46.7 (47.1) 40.2 (93.0) 46.7 (46.6)

Synthetic 68.6 (70.0) 69.1 (72.1) 73.0 (74.1)

Table: Average test accuracy across clients unseen at training (train accuracy
in parenthesis).
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Conclusion

Thank you for your attention
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Main assumptions

Assumption

There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤ M,

such that for t ∈ T , Dt is mixture of the distributions {D̃m}Mm=1 with

weights π∗t = [π∗t1, . . . , π
∗
tm] ∈ ∆M , i.e.

zt ∼M(π∗t ), ((xt , yt) |zt = m) ∼ D̃m, ∀t ∈ T , (4)

whereM(π) is a multinomial (categorical) distribution with parameters π.
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Main assumptions

Assumption

For all m ∈ [M], we have D̃m(x) = D(x).

Assumption

H̃ = {hθ}θ∈Rd is a set of hypotheses parameterized by θ ∈ Rd , whose

convex hull is in H. For each distribution D̃m with m ∈ [M], there exists a

hypothesis hθ∗m , such that

l
(
hθ∗m(x) , y

)
= − log pm(y |x) + c , (5)

where c ∈ R, is a normalization constant. l(·, ·) is then the log loss

associated to pm(y |x).
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Generalizing Existing Frameworks

The generative model in the mixture assumption extends/covers some

popular multi-task/personalized FL formulations in the literature.

Clustered Federated Learning Sattler et al. 2020: The mixture

assumption recovers this scenario considering M = C and π∗tc = 1 if

task (client) t is in cluster c and π∗tc = 0 otherwise.

Personalization via model interpolation Mansour et al. 2020; Dinh

et al. 2020: Each client model can be seen as a linear combination of

M = T + 1 models hm = hloc,m for m ∈ [T ] and h0 = hglob with

specific weights π∗tt = αt , π
∗
t0 = 1− αt , and π∗tt′ = 0 for

t ′ ∈ [T ] \ {t}.
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Generalizing Existing Frameworks

Federated MTL via task relationships Smith et al. 2017 When

predictors hθ∗m are linear and have bounded norm, our framework leads

to the same ASO formulation used in Smith et al. 2017, i.e.,

min
W ,Ω

T∑
t=1

nt∑
i=1

l(hwt (x
(i)
t ), y

(i)
t ) + λ tr (WΩW ᵀ) ,
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Learning under a mixture model

Proposition

Let l(·, ·) be the mean squared error loss, the logistic loss or the

cross-entropy loss, and Θ̆ and Π̆ be a solution of the following

optimization problem:

minimize
Θ,Π

E
t∼DT

E
(x,y)∼Dt

[− logDt(x, y |Θ, πt)] , (6)

where DT is any distribution with support T . Under Assumptions 1, 2,

and 3, the predictors

h∗t =
M∑

m=1

π̆tmhθ̆m (x) , ∀t ∈ T (7)

minimize E(x,y)∼Dt
[l(ht(x), y)] and thus solve Problem (1).
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Federated Expectation Maximization

Algorithm 1 FedEM

1: Input: data S1:T ; number of mixture distributions M; number of com-
munication rounds K

2: for iterations k = 1, . . . ,K do
3: server broadcast θk−1

m , 1 ≤ m ≤ M to the T clients
4: for tasks t = 1, . . . ,T in parallel over T clients do
5: for component m = 1, . . . ,M do

6: update qkt (z
(i)
t = m) ∀i ∈ {1, . . . , nt}

7: update πktm
8: θkm,t ← LocalSolver(m, θk−1

m , qkt , St)
9: client t sends θkm,t , 1 ≤ m ≤ M, to the server

10: for component m = 1, . . . ,M do
11: θkm ←

∑T
t=1

nt
n × θ

k
m,t
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Surrogate Federated Optimization

Definition (Partial first-order surrogate)

A function g(u, v) : Rdu × V → R is a partial first-order surrogate of

f (u, v) wrt u near (u0, v0) ∈ Rdu × V when the following conditions are

satisfied:

g(u, v) ≥ f (u, v) for all u ∈ Rdu and v ∈ V;

r(u, v) , g(u, v)− f (u, v) is differentiable and L-smooth with respect

to u. Moreover, we have r(u0, v0) = 0 and ∇ur(u0, v0) = 0.

g(u, v0)− g(u, v) = dV (v0, v) for all u ∈ Rdu and

v ∈ arg minv′∈V g(u, v′), where dV is non-negative and

dV(v, v′) = 0 ⇐⇒ v = v′.
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