Federated Multi-Task Learning under a Mixture of Distributions

Othmane MARFOQ 1,2,3

Giovanni Neglia^{1, 2} Aurélien Bellet ¹ Laetitia Kameni³

Richard Vidal 3

³Accenture Labs ²Université Côte d'Azur

Introduction

- ullet A (countable) set ${\mathcal T}$ of classification (or regression) tasks which represent the set of possible
- Data at client $t \in \mathcal{T}$ is drawn from a local distribution \mathcal{D}_t over $\mathcal{X} \times \mathcal{Y}$.
- Client $t \in \mathcal{T}$ wants to learn a hypothesis h_t minimizing its true risk, i.e.,

$$\underset{h_{t} \in \mathcal{H}}{\operatorname{minimize}} \, \mathcal{L}_{\mathcal{D}_{t}}(h_{t}) \triangleq \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{t}} \left[l \left(h_{t} \left(\mathbf{x} \right), y \right) \right]. \tag{1}$$

• Client $t \in \mathcal{T}$ does not have access to the distribution \mathcal{D}_t . Instead, it has a access to n_t samples drawn i.i.d. from \mathcal{D}_t , denoted

$$S_t = \{ s_t^{(i)} \triangleq (\mathbf{x}_t^{(i)}, \ y_t^{(i)}) \}_{i=1}^{n_t}. \tag{2}$$

• Usually $n_t \ll n \triangleq \sum_{t \in \mathcal{T}} n_t$, thus collaboration among clients is needed in order to train better models

An impossibility result

Some assumption on the local data distributions \mathcal{D}_t , $t \in \mathcal{T}$ are needed for federated learning to be possible:

• Federated learning with T clients is equivalent to T semi-supervised learning (SSL) problems, where the SSL problem associated with client t relies on labeled samples in \mathcal{S}_t and unlabeled samples in

$$\mathcal{U}_t = \bigcup_{t' \in [T] \setminus \{t\}} \{\mathbf{x} : (\mathbf{x}, y) \in \mathcal{S}_{t'}\}.$$

 Even when the quantity of unlabeled data goes to infinity, the worst-sample complexity of SSL improves over supervised learning at most by a constant factor that only depends on the hypothesis class [1, 2, 3].

Main assumptions

Motivated by the above impossibility result, in this work we propose to consider that each local data distribution \mathcal{D}_t is a mixture of M underlying distributions $\mathcal{\tilde{D}}_m$, $1 \leq m \leq M$, as formalized below.

Assumption 1. There exist M underlying (independent) distributions $\tilde{\mathcal{D}}_m$, $1 \leq m \leq M$, such that for $t \in \mathcal{T}$, \mathcal{D}_t is mixture of the distributions $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$ with weights $\pi_t^* = [\pi_{t1}^*, \dots, \pi_{tM}^*] \in$ Δ^M , i.e.

$$z_t \sim \mathcal{M}(\pi_t^*), \quad ((\mathbf{x}_t, y_t) | z_t = m) \sim \tilde{\mathcal{D}}_m, \quad \forall t \in \mathcal{T},$$
 (3)

where $\mathcal{M}(\pi)$ is a multinomial (categorical) distribution with parameters π .

Assumption 2. For all $m \in [M]$, we have $\tilde{\mathcal{D}}_m(\mathbf{x}) = \mathcal{D}(\mathbf{x})$.

Assumption 3. $\tilde{\mathcal{H}} = \{h_{\theta}\}_{{\theta} \in \mathbb{R}^d}$ is a set of hypotheses parameterized by $\theta \in \mathbb{R}^d$, whose convex hull is in \mathcal{H} . For each distribution $\tilde{\mathcal{D}}_m$ with $m \in [M]$, there exists a hypothesis $h_{\theta_m^*}$, such that

$$l\left(h_{\theta_m^*}(\mathbf{x}), y\right) = -\log p_m(y|\mathbf{x}) + c,\tag{4}$$

where $c \in \mathbb{R}$, is a normalization constant. $l(\cdot, \cdot)$ is then the log loss associated to $p_m(y|\mathbf{x})$.

Remark: The generative model in Assumption 1 extends some popular mutli-task/personalized FL formulation in the literature, including **CLustered FL** [6], **Personalization via model interpolation** [5], and Federated MTL via task relationships [7]

Learning under a Mixture Model

Proposition Let $l(\cdot, \cdot)$ be the mean squared error loss, the logistic loss or the cross-entropy loss, and Θ and Π be a solution of the following optimization problem:

$$\underset{\Theta,\Pi}{\text{minimize}} \underset{t \sim D_{\mathcal{T}}(\mathbf{x}, y) \sim \mathcal{D}_{t}}{\mathbb{E}} \left[-\log \mathcal{D}_{t}(\mathbf{x}, y | \Theta, \pi_{t}) \right], \tag{5}$$

where $D_{\mathcal{T}}$ is any distribution with support \mathcal{T} . Under Assumptions 1, 2, and 3, the predictors

$$h_t^* = \sum_{m=1}^{M} \breve{\pi}_{tm} h_{\breve{\theta}_m}(\mathbf{x}), \quad \forall t \in \mathcal{T}$$
(6)

minimize $\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}_t}[l(h_t(\mathbf{x}),y)]$ and thus solve Problem (1).

This Proposition suggests the following approach to solve Problem (1).

• First, estimate Θ and $\breve{\pi}_t$, $1 \le t \le T$, by minimizing

$$f(\Theta, \Pi) \triangleq -\frac{\log p(\mathcal{S}_{1:T}|\Theta, \Pi)}{n} \triangleq -\frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \log p(s_t^{(i)}|\Theta, \pi_t). \tag{7}$$

• **Second**, use Eq. (6) to get the client predictor for the T clients present at training time.

Federated Expectation-Maximization

• A natural approach to solve problem (7) is via the Expectation-Maximization algorithm (EM), which alternates between two steps.

E-step:
$$q_t^{k+1}(z_t^{(i)} = m) \propto \pi_{tm}^k \cdot \exp\left(-l(h_{\theta_m^k}(\mathbf{x}_t^{(i)}), y_t^{(i)})\right), \quad t \in [T], \ m \in [M], \ i \in [n_t]$$
 (8)

$$\pi_{tm}^{k+1} = \frac{\sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m)}{n_t}, \qquad t \in [T], \quad m \in [M] \quad (9)$$

$$\theta_m^{k+1} \in \underset{t=1}{\arg\min} \sum_{t=1}^{n_t} \sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m) l(h_{\theta}(\mathbf{x}_t^{(i)}), y_t^{(i)}), \qquad m \in [M]$$
 (10)

- While the E-step (8) and the Π update (9) can be performed locally at each client, the Θ update (10) requires interaction with other clients.
- FedEM updates the local estimates of Θ through a solver which approximates the exact minimization in (10) using only the local dataset S_t .

Algorithm 1 FedEM

- : **Input:** data $\mathcal{S}_{1:T}$; number of mixture distributions M; number of communication rounds K
- 2: **for** iterations k = 1, ..., K **do**
- server broadcasts θ_m^{k-1} , $1 \le m \le M$ to the T clients
- for tasks t = 1, ..., T in parallel over T clients do
- for component $m = 1, \dots, M$ do
- update $q_t^k(z_t^{(i)}=m)$ as in (8), $\forall i \in \{1,\ldots,n_t\}$
- update π_{tm}^k as in (9)
- $\theta_{m,t}^k \leftarrow \text{LocalSolver}(m, \theta_m^{k-1}, q_t^k, \mathcal{S}_t)$
- end for
- client t sends $\theta_{m,t}^k$, $1 \le m \le M$, to the server
- for component m = 1, ..., M do
- $\theta_m^k \leftarrow \sum_{t=1}^T \frac{n_t}{n} \times \theta_{m,t}^k$
- end for
- 15: end for

Theorem When clients use SGD as local solver with learning rate $\eta = \frac{a_0}{\sqrt{K}}$, after a large enough number of communication rounds K, FedEM's iterates satisfy:

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \left\| \nabla_{\Theta} f\left(\Theta^{k}, \Pi^{k}\right) \right\|_{F}^{2} \leq \mathcal{O}\left(\frac{1}{\sqrt{K}}\right), \qquad \frac{1}{K} \sum_{k=1}^{K} \Delta_{\Pi} f(\Theta^{k}, \Pi^{k}) \leq \mathcal{O}\left(\frac{1}{K^{3/4}}\right), \qquad (11)$$

where the expectation is over the random batches samples, and

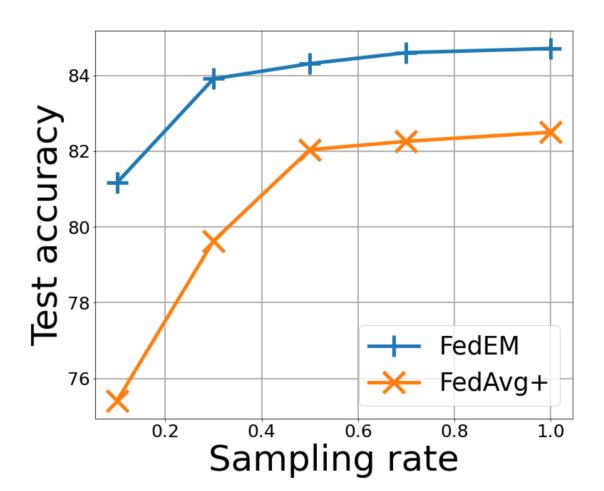
$$\Delta_{\Pi} f(\Theta^k, \Pi^k) \triangleq f\left(\Theta^k, \Pi^k\right) - f\left(\Theta^k, \Pi^{k+1}\right) \ge 0.$$
(12)

We also propose **D-FedEM**, a fully decentralized version of our federated EM algorithm with similar convergence guarantees.

Experiments

Dataset	Local	FedAvg	FedProx	${\tt FedAvg+}$	clustered FL	pFedMe	FedEM (Ours)
FEMNIST	71.0 / 57.5	78.6 / 63.9	78.9 / 64.0	75.3 / 53.0	73.5 / 55.1	74.9 / 57.6	79.9 / 64.8
EMNIST	71.9 / 64.3	82.6 / 75.0	83.0 / 75.4	83.1 / 75.8	82.7 / 75.0	83.3 / 76.4	83.5 / 76.6
CIFAR10	70.2 / 48.7	78.2 / 72.4	78.0 / 70.8	82.3 / 70.6	78.6 / 71.2	81.7 / 73.6	${f 84.3}/{f 78.1}$
CIFAR100	31.5 / 19.9	40.9 / 33.2	41.0 / 33.2	39.0 / 28.3	41.5 / 34.1	41.8 / 32.5	${f 44.1} / {f 35.0}$
Shakespeare	32.0 / 16.6	46.7 / 42.8	45.7 / 41.9	40.0 / 25.5	46.6 / 42.7	41.2 / 36.8	${f 46.7} / {f 43.0}$
Synthetic	65.7 / 58.4	68.2 / 58.9	68.2 / 59.0	68.9 / 60.2	69.1 / 59.0	69.2 / 61.2	74.7 / 66.7

Table 1:Test accuracy: average across clients / bottom decile.



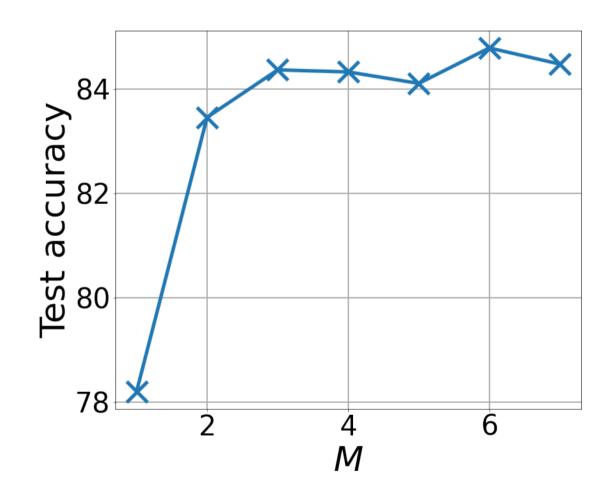


Figure 1:Effect of client sampling rate (left) and number of mixture components M (right) on test accuracy for CI-FAR10 [4].

References

- [1] Shai Ben-David, Tyler Lu, and D. Pál. ``Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning". In: COLT. 2008.
- [2] Malte Darnstädt, H. U. Simon, and Balázs Szörényi. ``Unlabeled Data Does Provably Help''. In: STACS. 2013.
- [3] Christina Göpfert et al. ``When can unlabeled data improve the learning rate?" In: Conference on Learning Theory. PMLR. 2019, pp. 1500-1518.
- [4] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.
- [5] Yishay Mansour et al. ``Three approaches for personalization with applications to federated learning". In: arXiv preprint arXiv:2002.10619 (2020).
- Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. ``Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints". In: IEEE Transactions on Neural Networks and Learning Systems (2020).
- [7] Virginia Smith et al. ``Federated Multi-Task Learning''. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 4427-4437. ISBN: 9781510860964.