Computer vision and computational neuroscience: a mathematical perspective

Olivier Faugeras

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Okawa Prize symposium lecture University of Tokyo March 5th, 2015

Introduction

Geometric Computer Vision

A bit of history Projective modeling Euclidean modeling

Variational Approaches

General statements The framework Finding blood vessels in MRA images Image warping Shape and image means Shape priors in segmentation

Information representation in the brain

Introduction The example of V1 Toward a new theory

Conclusion

 Introduction
 Geometry
 Variational Approaches
 Information/Noise/Brain
 Conclusion

The Unreasonable Effectiveness of Mathematics

• Eugene Wigner (1960): "The Unreasonable Effectiveness of Mathematics in the Natural Sciences".

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• David Marr (1980): Vision is information processing; computational theory of a process.

The invention of perspective

• What is the link between the paintings of a Gerard Houckgeest or a Vredeman de Vries and image processing, computer vision or virtual reality?

• Answer: the notion of perspective, a subfield of projective geometry that is the key to modeling systems of cameras.

The Erlangen program (1872)

- What is the link between Felix Klein and Hermann Weyl and image processing, computer vision or virtual reality?
- Answer: the idea of a quantity that is invariant to the action of some group of transformations.

• We will be interested here in the projective and Euclidean groups.

A camera is a projective engine

• The Renaissance approach:

・ロト ・聞ト ・ヨト ・ヨト

ъ

A camera is a projective engine

 $m = \mathcal{P}M,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• The modern approach:

where $\boldsymbol{\mathcal{P}}$ is a 3 imes 4 matrix.

Two projective cameras

• Important fact: epipolar geometry,

Two projective cameras

 represented by a 3 × 3 matrix F called the Fundamental matrix.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Two projective cameras

- represented by a 3×3 matrix ${\bf F}$ called the Fundamental matrix.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• It is estimated by point correspondences.

Two projective cameras

- represented by a 3 × 3 matrix F called the Fundamental matrix.
- It is estimated by point correspondences.
- The three-dimensional structure of the scene can then be recovered up to a projective transformation.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Introduction
 Geometry
 Variational Approaches
 Information/Noise/Brain
 Conclusion

Back to the \mathcal{P} matrix

• The matrix ${\cal P}$ can be decomposed into intrinsic and extrinsic parameters

$$\mathcal{P} = \mathsf{A}[\mathsf{R}\,\mathsf{t}]$$

(日) (圖) (E) (E) (E)

Back to the \mathcal{P} matrix (continued)

- How do we recover these parameters from a few images (calibration)?
- The traditional approach uses a special calibration pattern

 Introduction
 Geometry
 Variational Approaches
 Information/Noise/Brain
 Conclusion

Back to the \mathcal{P} matrix (continued)

• One can also use the umbilic or the absolute conic:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Faugeras-Luong-Maybank method (1995)

- Inspired from the work of Kruppa (1913)
- Given two views one uses the invariance of the umbilic w.r.t. the similitudes.
- Given the Fundamental matrix, one writes two equations, called the Kruppa equations, that connect the intrinsic parameters.

• In general three views are sufficient to calibrate.

Application to augmented reality (joint work with Rachid Deriche, Luc Robert, Quang-Tuan Luong, Imad Zoghlami) 1990-2000

• Goal: insert synthetic objects in a real image sequence

Application to augmented reality (continued)

• Through the analysis of the image sequence one computes the 3D motion of the camera.

Application to augmented reality (continued)

• Knowing this motion, one can model in 3D part of the scene and add a synthetic object

Application to augmented reality (continued)

• One can then insert this object in the initial sequence

Application to augmented reality (continued)

Other examples (Courtesy RealViz, now AutoDesk)

(日)、

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Some of the goals and challenges of Computer Vision

• Finding interpretations of scenes: 3D structure, motion, shapes...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Partial theories have been developed
- Many ad-hoc implementations have been proposed
- Proofs of correctness are scarce

Some of the goals and challenges of Computer Vision

• Integrating Computer Vision Modules within larger systems

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• requires formal validation.

The concept of Energy

- We observe a series of images I₁, I₂,..., I_N of dimension n (n = 2 ou n = 3)
- We look for a shape, i.e. a model *M* (in effect a differential manifold of codimension 1 in a space of dimension *n*) that is a function of some parameters **p**
- We define an energy *E* which measures the lack of adequation between the model and the observations, the images.

The concept of Energy (continued)

- We look for the model that minimizes the energy, hence which "explains" best the data.
- The principle is similar to the **Least Action Principle** in Physics: it is an extremality principle.

$$E(M, DM, \cdots) = \int L(I_1, \cdots, I_N, M, DM, \cdots, \mathbf{p}) \, d\sigma$$

L is the analog of the Lagrangian $M(\mathbf{p})$ is the model $d\sigma$ is the area element of the manifold *M*.

• The methods used to solve this optimization problem are the methods of the calculus of variations.

Minimizing the Energy

Minimizing the Energy (continued)

- We start with an initial model M_0 whose energy is E_0 and deform it until we obtain M_{min} with minimal energy.
- We define a family of models *M*(**p**, *t*) where *t* ≥ 0 is an artificial time and

$$M(\mathbf{p},0)=M_0(\mathbf{p}),$$

• And solve a Partial Differential Equation (PDE).

Finding blood vessels in MRA images (joint work with Liana Lorigo and Eric Grimson, MIT)

- Goal: detect and characterize the shape and size of blood vessels in MRA images.
- Methodology: generalization of the previous approach to curves in 3D space through the idea of *ε*-level sets.

◆□> ◆□> ◆豆> ◆豆> □目

Finding blood vessels in MRA images (continued)

- The model *M* is a set of 3D curves, the medial axes of the blood vessels represented by their *ε*-level sets.
- The energy measures the coherence of the *ε*-level sets with the presence of a high image gradient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example I: aorta data (courtesy Siemens)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example II: brain vessels data

イロト イ理ト イヨト イヨト

э

Non-rigid matching between images (joint work with Gerardo Hermosillo and Christophe Chefd'Hotel, INRIA)

Applications in medical/cognitive imaging:

• Matching similar structures between several image modalities.

Human

Monkey

Applications in computer vision:

- Matching similar structures
 - under varying lighting conditions.
 - with varying responses to similar lighting.

(日) (圖) (E) (E) (E)

Problem formulation

 $I_{1}: \Omega \subset \mathbb{R}^{n} \to \mathbb{R} \qquad \qquad I_{2}: \Omega \subset \mathbb{R}^{n} \to \mathbb{R}$ $\begin{pmatrix} x' \\ y' \end{pmatrix} = \Phi\left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$

Problem formulation (continued)

We consider the minimization problem in a suitable functional space $\ensuremath{\mathcal{F}}$

$$\mathbf{h}^* = \arg\min_{\mathbf{h}\in\mathcal{F}}\mathcal{I}(\mathbf{h}) = \arg\min_{\mathbf{h}\in\mathcal{F}}\left(\mathcal{J}(\mathbf{h}) + \mathcal{R}(\mathbf{h})\right)$$

where:

• $\mathcal{J}({\bf h})$ penalizes "statistical dissimilarity" between l_1^σ and $l_2^\sigma({\rm Id}+{\bf h})$

• $\mathcal{R}(\mathbf{h})$ penalizes fast variations of \mathbf{h} .
Problem formulation (continued)

$$\mathbf{h}^* = \arg\min_{\mathbf{h}\in\mathcal{F}}\mathcal{I}(\mathbf{h}) = \arg\min_{\mathbf{h}\in\mathcal{F}}\left(\mathcal{J}(\mathbf{h}) + \mathcal{R}(\mathbf{h})\right)$$

We compute the Gradient $\nabla_H \mathcal{I}(\mathbf{h})$ of $\mathcal{I}(\mathbf{h})$, and consider the initial value problem:

$$\begin{cases} \frac{d\mathbf{h}}{dt} = -\nabla_H \mathcal{I}(\mathbf{h}) = -\left(\nabla_H \mathcal{J}(\mathbf{h}) + \nabla_H \mathcal{R}(\mathbf{h})\right), \\ \mathbf{h}(0) = \mathbf{h}_0 \in H, \end{cases},$$

and prove that it is well-posed. One then solves a PDE.

Image matching: experiments

(日)

Image matching: experiments (continued)

・ロト ・四ト ・ヨト ・ヨト

э

Image matching: experiments (continued)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Image matching: experiments (continued)

Application: computation of the empirical mean of *N* images (joint work with Guillaume Charpiat)

- Given N images I_1, \ldots, I_N ,
- The mean image M is defined (implicitely) by the minimum of

$$\mathcal{I}_M(\mathbf{h}_1, \cdots, \mathbf{h}_N) = \sum_{i,j=1, i < j}^N \mathcal{J}_{ij}(\mathbf{h}_i, \mathbf{h}_j) + \sum_{i=1}^N \mathcal{R}_i(\mathbf{h}_i)$$

- $\mathcal{J}_{ij}(\mathbf{h}_i, \mathbf{h}_j)$ is the statistical "dissimilarity" between $I_i(\mathrm{Id} + \mathbf{h}_i)$ and $I_j(\mathrm{Id} + \mathbf{h}_j)$.
- *M* is defined as

$$M = \frac{1}{N} \sum_{i=1}^{N} I_i (\mathrm{Id} + \mathbf{h}_i^*)$$

Results: the mean

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Results: the warping applications

The warping applications: a summary

Application: computation of the empirical geometric covariance of *N* images

- Consider $\mathcal{I}_i(\mathbf{h})$, the dissimilarity between I_i and $M(\mathrm{Id} + \mathbf{h})$
- Compute the covariance matrix of $\nabla_H \mathcal{I}_i(\mathbf{h})$
- The principal modes are its eigenvectors **h**_i
- To look at how the mean image changes geometrically with respect to the *i*th mode, solve:

$$\begin{cases} \frac{d\mathbf{h}}{dt} = -\mathbf{h}_i(t) \\ \mathbf{h}(0) = \mathbf{h}_i(0) \end{cases}$$

Encoding the geometry: the spatial modes of variation

Computing statistical 2D and 3D shape models

• We compute a statistical shape model over a training set of shapes:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Corpus callosum.
- 2. Vertebrae.

Computing statistical 2D and 3D shape models (continued)

- We compute the mean:
 - 1. Mean corpus callosum.
 - 2. Mean vertebra.
- and the modes:
 - 1. Modes for corpus callosum
 - 2. Modes for vertebrae.

Using statistical shape priors in segmentation (joint work with Michael Levinton and Eric Grimson, MIT)

- Active contours or snakes: to evolve the region boundaries
- Bayesian framework: use of statistical priors to constrain the snake evolution

Introduction Geometry Variational Approaches Information/Noise/Brain Conclusion Conclusi

Results for 2D image segmentation

- One slice of a femur.
- Two differents corpus callosa: 1 and 2.

Information/Noise/Brain Conclusion Variational Approaches

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Results for 3D image segmentation

Example of the vertebra

Conclusion

• • • • • • • • • • • • •

 $\exists \rightarrow$

Scales in the CNS

Mesoscopic and macroscopic models

Electroencephalography (EEG) and Magnetoencephalography (MEG)

イロト 不得 トイヨト イヨト

Information/Noise/Brain

Impact on High Performance Computing

- Exascale computation (10¹⁸ Flops/second).
- Neuromorphic acceleration
- Hierarchical memories (Petabytes).
- Several Terabits/second I/O

Assumptions

- BBP System hosted by CADMOS is a BG/P (4 racks), detailed cellular Blue Brain Model (non-memory optimised)
- 2 BBP System hosted by CADMOS is a BG/P (4 racks), simplified network, numbers are extrapolation from Modna 2009
- ³ Planned HBP Development System tries to maintain memory/flop ratio of BG/P, numbers are extrapolated numbers based on system characteristics and memory optimisation
- ⁴ Jülich JuQueen, 28-rack BG/Q system, numbers are extrapolated numbers based on system characteristics; faster processors (as compared to BG/P) should allow better strong scaling
- 5 Planned HBP Exascale computer, will have large memory and strong scaling components
- ⁶ The HBP-NM systems are limited by the connections/s and for the above graph assumes firing rates of a few Hertz

Theoretical neuroscience

- Goal: better understand the fundamental mechanisms that govern cortical behaviours.
- Tools: mathematics and numerical simulations.
- An example in the field of neuroscience of "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" (Eugene Wigner, 1960)

Motivations

• Represent the neuronal activity at different scales (sparsity)

Motivations

- Represent the neuronal activity at different scales (sparsity)
- Predict the occurence of new, emerging, neural phenomena

Motivations

- Represent the neuronal activity at different scales (sparsity)
- Predict the occurence of new, emerging, neural phenomena

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Understand the role of randomness

Neuronal activity in V1

• The recording of neuronal activity in V1

в

Conclusion

Neuronal activity in V1

 shows that it is highly decorrelated for synthetic

Neuronal activity in V1

• and natural images,

Ξ - 𝔅 𝔄 𝔅

Neuronal activity in V1

イロト 不得 トイヨト イヨト

э.

• in contradiction with current belief.

A mathematical model of a cortical area (joint work with J. Baladron, D. Fasoli, and J. Touboul)

- The individual neurons model: Hodgkin-Huxley
- The type of synapses: chemical or electrical
- The synaptic weights: excitatory and et inhibitory.

• Many sources of noise: stochastic model.

Letting the number of neurons grow very large (to ∞ !)

- The neurons in the model become independent: propagation of chaos.
- All neurons are described by the same stochastic process.
- Provides a sparse and accurate description of the network:
 - the millions of equations describing the network are summarized by less than 10!,
 - opening the door to very efficient numerical simulations.

Numerical validation

 The propagation of chaos effect appears for populations of neurons of relatively small sizes: in agreeement with biology.

Numerical validation

 The propagation of chaos effect appears for populations of neurons of relatively small sizes: in agreeement with biology.

Numerical validation

 The propagation of chaos effect appears for populations of neurons of relatively small sizes: in agreeement with biology.

・ロト ・ 四ト ・ ヨト ・ ヨト

-

Connection with information theory

 The visual cortex behaves optimally from the viewpoint of information theory (signal decorrelation), and

(日)、

э

Introduction Geometry Variational Approaches Information/Noise/Brain Composition Compositi

Connection with information theory

- The visual cortex behaves optimally from the viewpoint of information theory (signal decorrelation), and
- neurons appear to be coding probability laws.

(日)、

э

Taming the complexity

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• Develop a theory of statistical neuroscience
Taming the complexity

 Ludwig Boltzmann : Inventor of statistical mechanics.

 Develop a theory of statistical neuroscience Introduction Geometry Variational Approaches Information/Noise/Brain

Conclusion

Taming the complexity

 Develop a theory of statistical neuroscience

- Ludwig Boltzmann : Inventor of statistical mechanics.
- Accounts for and explains how the properties of atoms (mass, electrical charge, structure ...) determine the macroscopic properties of matter(viscosity, thermal conductivity, diffusion ...)

Wigner's and Marr's statements

- Wigner The effectiveness of mathematics in the sciences of the artificial has been clearly verified.
- Wigner Their effectiveness for the sciences of the living is still a bit more unclear.
 - Marr That vision/cognition is a process independent of its substrate is still debatable.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction Geometry Variational Approaches Information/Noise/Brain Conclusion

Thank you to the Okawa foundation and to the members of the Selection Committee of the Okawa Prize.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()