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The Unreasonable Effectiveness of Mathematics

• Eugene Wigner (1960): ”The Unreasonable Effectiveness of
Mathematics in the Natural Sciences”.

• David Marr (1980): Vision is information processing;
computational theory of a process.
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The invention of perspective

• What is the link between the paintings of a Gerard
Houckgeest or a Vredeman de Vries and image processing,
computer vision or virtual reality?

• Answer: the notion of perspective, a subfield of projective
geometry that is the key to modeling systems of cameras.
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The Erlangen program (1872)

• What is the link between Felix Klein and Hermann Weyl and
image processing, computer vision or virtual reality?

• Answer: the idea of a quantity that is invariant to the action
of some group of transformations.

• We will be interested here in the projective and Euclidean
groups.
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A camera is a projective engine

• The Renaissance approach:

• The modern approach:
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A camera is a projective engine

• The Renaissance approach:

• The modern approach:
m = PM,

where P is a 3× 4 matrix.
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Two projective cameras

• Important fact: epipolar geometry,
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Two projective cameras

• represented by a 3× 3 matrix F called the Fundamental
matrix.

• It is estimated by point correspondences.

• The three-dimensional structure of the scene can then be
recovered up to a projective transformation.
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Back to the P matrix

• The matrix P can be decomposed into intrinsic and extrinsic
parameters

P = A[R t]
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Back to the P matrix (continued)

• How do we recover these parameters from a few images
(calibration)?

• The traditional approach uses a special calibration pattern
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Back to the P matrix (continued)

• One can also use the umbilic or the absolute conic:
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Faugeras-Luong-Maybank method (1995)

• Inspired from the work of Kruppa (1913)

• Given two views one uses the invariance of the umbilic w.r.t.
the similitudes.

• Given the Fundamental matrix, one writes two equations,
called the Kruppa equations, that connect the intrinsic
parameters.

• In general three views are sufficient to calibrate.
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Application to augmented reality (joint work with Rachid
Deriche, Luc Robert, Quang-Tuan Luong, Imad Zoghlami)

1990-2000

• Goal: insert synthetic objects in a real image sequence
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Application to augmented reality (continued)

• Through the analysis of the image sequence one computes the
3D motion of the camera.
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Application to augmented reality (continued)

• Knowing this motion, one can model in 3D part of the scene
and add a synthetic object
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Application to augmented reality (continued)

• One can then insert this object in the initial sequence
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Application to augmented reality (continued)

• Other examples (Courtesy RealViz, now AutoDesk)
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Some of the goals and challenges of Computer Vision

• Finding interpretations of scenes: 3D structure, motion,
shapes. . .

• Partial theories have been developed

• Many ad-hoc implementations have been proposed

• Proofs of correctness are scarce
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Some of the goals and challenges of Computer Vision

• Integrating Computer Vision Modules within larger systems

• requires formal validation.
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The concept of Energy

• We observe a series of images I1, I2, . . . , IN of dimension n
(n = 2 ou n = 3)

• We look for a shape, i.e. a model M (in effect a differential
manifold of codimension 1 in a space of dimension n) that is a
function of some parameters p

• We define an energy E which measures the lack of adequation
between the model and the observations, the images.
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The concept of Energy (continued)

• We look for the model that minimizes the energy, hence which
”explains” best the data.

• The principle is similar to the Least Action Principle in
Physics: it is an extremality principle.

E (M,DM, · · · ) =

∫
L(I1, · · · , IN ,M,DM, · · · ,p) dσ

L is the analog of the Lagrangian
M(p) is the model
dσ is the area element of the manifold M.

• The methods used to solve this optimization problem are the
methods of the calculus of variations.
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Minimizing the Energy

• We look for the model Mmin which minimizes the energy E .
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Minimizing the Energy (continued)

• We start with an initial model M0 whose energy is E0 and
deform it until we obtain Mmin with minimal energy.

• We define a family of models M(p, t) where t ≥ 0 is an
artificial time and

M(p, 0) = M0(p),

• And solve a Partial Differential Equation (PDE).
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Finding blood vessels in MRA images (joint work with
Liana Lorigo and Eric Grimson, MIT)

• Goal: detect and characterize the shape and size of blood
vessels in MRA images.

• Methodology: generalization of the previous approach to
curves in 3D space through the idea of ε-level sets.
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Finding blood vessels in MRA images (continued)

• The model M is a set of 3D curves, the medial axes of the
blood vessels represented by their ε-level sets.

• The energy measures the coherence of the ε-level sets with
the presence of a high image gradient.
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Example I: aorta data (courtesy Siemens)
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Example II: brain vessels data
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Non-rigid matching between images (joint work with
Gerardo Hermosillo and Christophe Chefd’Hotel, INRIA)
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Applications in medical/cognitive imaging:
• Matching similar structures between several image modalities.

Human

Monkey

http:Prog1/prog.flow_args
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Applications in computer vision:

• Matching similar structures
• under varying lighting conditions.
• with varying responses to similar lighting.
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Problem formulation
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Problem formulation (continued)

We consider the minimization problem in a suitable functional
space F

h∗ = arg min
h∈F
I(h) = arg min

h∈F
(J (h) +R(h))

where:

• J (h) penalizes “statistical dissimilarity” between I σ1 and
I σ2 (Id + h)

• R(h) penalizes fast variations of h.
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Problem formulation (continued)

h∗ = arg min
h∈F
I(h) = arg min

h∈F
(J (h) +R(h))

We compute the Gradient ∇HI(h) of I(h), and consider the initial
value problem:

dh

dt
= −∇HI(h) = −

(
∇HJ (h) +∇HR(h)

)
,

h(0) = h0 ∈ H,
,

and prove that it is well-posed.
One then solves a PDE.
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Image matching: experiments
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Image matching: experiments (continued)
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Image matching: experiments (continued)
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Image matching: experiments (continued)
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Application: computation of the empirical mean of N
images (joint work with Guillaume Charpiat)

• Given N images I1,. . . ,IN ,

• The mean image M is defined (implicitely) by the minimum of

IM(h1, · · · ,hN) =
N∑

i , j=1, i<j

Jij(hi , hj) +
N∑
i=1

Ri (hi )

• Jij(hi , hj) is the statistical “dissimilarity” between Ii (Id + hi )
and Ij(Id + hj).

• M is defined as

M =
1

N

N∑
i=1

Ii (Id + h∗i )
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Results: the mean
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Results: the warping applications
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The warping applications: a summary
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Application: computation of the empirical geometric
covariance of N images

• Consider Ii (h), the dissimilarity between Ii and M(Id + h)

• Compute the covariance matrix of ∇HIi (h)

• The principal modes are its eigenvectors hi

• To look at how the mean image changes geometrically with
respect to the ith mode, solve:

dh

dt
= −hi (t)

h(0) = hi (0)
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Encoding the geometry: the spatial modes of variation

X X X X X X X X X X
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Computing statistical 2D and 3D shape models

• We compute a statistical shape model over a training set of
shapes:

1. Corpus callosum.
2. Vertebrae.
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Computing statistical 2D and 3D shape models (continued)

• We compute the mean:

1. Mean corpus callosum.
2. Mean vertebra.

• and the modes:

1. Modes for corpus callosum
2. Modes for vertebrae.
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Using statistical shape priors in segmentation (joint work
with Michael Levinton and Eric Grimson, MIT)

• Active contours or snakes: to evolve the region boundaries

• Bayesian framework: use of statistical priors to constrain the
snake evolution
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Results for 2D image segmentation

• One slice of a femur.

• Two differents corpus callosa: 1 and 2.
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Results for 3D image segmentation

Example of the vertebra
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Scales in the CNS
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Mesoscopic and macroscopic models

Electroencephalography (EEG) and Magnetoencephalography
(MEG)
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The Human Brain Project

• 10 year project (1
billion Euros)

• Goals:

1. simulate a human
brain

2. equivalent for
neuroscience to
High Energy
Physics equipment
(e.g. CERN)

• The center is at the
EPFL
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Impact on High Performance Computing

• Exascale computation (1018

Flops/second).

• Neuromorphic acceleration

• Hierarchical memories
(Petabytes).

• Several Terabits/second I/O
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Theoretical neuroscience

• Goal: better understand the fundamental mechanisms that
govern cortical behaviours.

• Tools: mathematics and numerical simulations.

• An example in the field of neuroscience of ”The Unreasonable
Effectiveness of Mathematics in the Natural Sciences”(Eugene
Wigner, 1960)
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Motivations

• Represent the neuronal activity at different scales (sparsity)

• Predict the occurence of new, emerging, neural phenomena

• Understand the role of randomness
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Neuronal activity in V1

• The recording of neuronal
activity in V1

• shows that it is highly
decorrelated for synthetic

• and natural images,

• in contradiction with current
belief.
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A mathematical model of a cortical area (joint work with
J. Baladron, D. Fasoli, and J. Touboul)

• The individual neurons model: Hodgkin-Huxley

• The type of synapses: chemical or electrical

• The synaptic weights: excitatory and et inhibitory.

• Many sources of noise: stochastic model.
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Letting the number of neurons grow very large (to ∞!)

• The neurons in the model become independent: propagation
of chaos.

• All neurons are described by the same stochastic process.

• Provides a sparse and accurate description of the network:
• the millions of equations describing the network are

summarized by less than 10!,
• opening the door to very efficient numerical simulations.
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Numerical validation

• The propagation of chaos effect appears for populations of
neurons of relatively small sizes: in agreeement with biology.
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Connection with information theory

• The visual cortex behaves
optimally from the viewpoint
of information theory (signal
decorrelation), and

• neurons appear to be coding
probability laws.
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Taming the complexity

• Develop a theory
of statistical
neuroscience

• Ludwig Boltzmann : Inventor of
statistical mechanics.

• Accounts for and explains how the
properties of atoms (mass, electrical
charge, structure . . . ) determine the
macroscopic properties of
matter(viscosity, thermal conductivity,
diffusion . . . )
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Wigner’s and Marr’s statements

Wigner The effectiveness of mathematics in the sciences of
the artificial has been clearly verified.

Wigner Their effectiveness for the sciences of the living is still
a bit more unclear.

Marr That vision/cognition is a process independent of its
substrate is still debatable.



Introduction Geometry Variational Approaches Information/Noise/Brain Conclusion

Thank you to the Okawa foundation and to the
members of the Selection Committee of the Okawa

Prize.
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