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The question

Find concise mathematical descriptions of large networks of neurons
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This talk

I Fully connected networks of rate neurons

I Random synaptic weights

I Average and almost sure results
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The mathematical model

I Intrinsic dynamics:

S :=

{
dVt = −αVtdt + σdWt , 0 ≤ t ≤ T
Law of V0 = µ0,

I There is a unique strong solution to S (Ornstein-Uhlenbeck
process):

I Note P its law on the set T := C([0,T ];R) of trajectories

I For this talk: α = 0.

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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The mathematical model

I N neurons, N = 2n + 1; completely connected network

I Coupled dynamics

SN(Jn) :=


dV i

t =
∑

j∈In J
ij
n f (V j

t )dt + σdW i
t ∀i ∈ In

Law of VN(0) = µ⊗N0

i ∈ In := [−n, · · · , n].

I f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate

I W i : independent Brownians: intrinsic noise on the membrane
potentials
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The mathematical model

I There is a unique solution to SN(Jn)

I Note P(Jn) its law on the set T N of N-tuples of trajectories.
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Modeling the synaptic weights

I J ijn : stationary Gaussian field: random synaptic weights

E[J ijn ] =
J

N
for this talk J̄ = 0

cov(J ijn J
kl
n ) =

RJ (k − i , l − j)

N

I RJ (k, l) is a covariance function.

I Analogy with random media
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Consequences

I P(Jn) is a random law on T N

I Consider the law P⊗N of N independent uncoupled neurons

I Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(Jn), with the law of the uncoupled
system, P⊗N :

dP(Jn)

dP⊗N
= exp

{∑
i∈In

1

σ

∫ T

0

∑
j∈In

J ijn f (V j
t )

 dW i
t−

1

2σ2

∫ T

0

∑
j∈In

J ijn f (V j
t )

2

dt

}
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Uncorrelated case

I Consider the empirical measure:

µ̂N,u(VN) =
1

N

∑
i∈In

δV i ,

VN = (V−n, · · · ,V n)

I It defines the mapping

µ̂N,u : T N → P(T )

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Correlated case
I Consider the empirical measure

µ̂N,c(VN) =
1

N

∑
i∈In

δS i (VN,p),

a probability measure on T Z.
I VN,p is the periodic extension of the finite sequence of

trajectories VN = (V−n, · · · ,V n). VN,p = (· · · ,VN ,VN , · · · )
I S is the shift operator acting on elements of T Z.
I Case N = 3

V3,p = (· · · ,V−1,V 0,V 1,V−1,V 0,V 1, · · · )

S1(V3,p) = (· · · ,V 1,V−1,V 0,V 1,V−1,V 0, · · · )
S2(V3,p) = (· · · ,V 0,V 1,V−1,V 0,V 1,V−1, · · · )

I It defines the mapping

µ̂N,c(VN) : T N → PS(T Z)
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1) Metric on T Z

dZ
T (u, v) =

∑
i∈Z

2−|i |(‖ui − v i‖T ∧ 1)

where
‖ui − v i‖T = sup

t∈[0,T ]
|uit − v it |

2) Metric on P(T Z)
Induced by the Wasserstein-1 distance:

DT (µ, ν) = inf
ξ∈C(µ,ν)

∫
dZ
T (u, v) dξ(u, v)
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I We are interested in the laws of µ̂N,u and µ̂N,c under P(Jn)

I Define

QN =

∫
Ω
P(Jn(ω)) dω,

the average of P(Jn) w.r.t. to the ”random medium”, i.e. the
synaptic weights.

I We study the law of µ̂N,u and µ̂N,c under QN : average results.
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The strategy

I Consider the law ΠN
u of µ̂N,u under QN : it is a probability

measure on P(T ):

ΠN
u (B) =

(
QN ◦ (µ̂N,u)−1

)
(B) = QN(µ̂N,u ∈ B),

B measurable set of P(T )

I Consider the law ΠN
c of µ̂N,c under QN : it is a probability

measure on PS(T Z):

ΠN
c (B) = QN(µ̂N,c ∈ B),

B measurable set of PS(T Z)
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The strategy

I Establish a Large Deviation Principle for the sequences of
probability measures (ΠN

u )N≥1 and (ΠN
c )N≥1, i.e.

I Design a rate function (non-negative lower semi-continuous)
Hu (resp. Hc) on P(T ) (resp. P(T Z))

I The intuitive meaning of H is the following

QN(µ̂N ' Q) ' e−NH(Q)

I The measures µ̂N concentrate on the measures Q such that
H(Q) = 0.

I If H reaches 0 at a single measure Q then ΠN converges in
law toward the Dirac mass δQ

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Minimum of Hu

By adapting the results of Ben Arous and Guionnet [BAG95] and
of Moynot and Samuelides [MS02] one obtains:

Theorem

Hu(µ) = I (2)(µ;P)− Γu(µ),

where I (2)(µ;P) is the relative entropy of µ w.r.t. P
I (2)(µ;P) =

∫
log dµ

dP dµ, and Γu is defined by

dQN

dP⊗N
= eNΓu(µ̂N,u)

Hu achieves its minimum at a unique point µu of P(T ).
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Minimum of Hu

and

Theorem
µu is the law of the solution to a linear non-Markovian stochastic
system.
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Average results

Two main results:

Theorem (1)

The law ΠN
u of the empirical measure µ̂N,u under QN converges

weakly to δµu

This means that

∀F ∈ Cb(P(T ))

lim
N→∞

∫
Ω

(∫
T N

F

(
1

N

N∑
1

δv i

)
P(Jn(ω))(dvN)

)
dγ(ω) = F (µu)
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Average results

Theorem (2)

QN is µu-chaotic.

i.e. for all m ≥ 2 and fi , i = 1, . . . ,m in Cb(T )

lim
N→∞

∫
T N

f1(v1) · · · fm(vm) dQN(v1, · · · , vN) =
m∏
i=1

∫
T
fi (v) dµu(v)

”In the thermodynamic limit (N →∞) and on average, the
neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Strategy in the correlated case: exponential approximation

1. Note, e.g. [Ell85], that the sequence ΠN
0 = P⊗N ◦ (µ̂N,c)−1

satisfies the LDP with good rate function

I (3)(µ;PZ) = lim
N→∞

1

N
I (2)(µN ;P⊗N)

with

I (2)(µN ;P⊗N) =

∫
log

dµN

dP⊗N
dµN

2. If there existed a continuous function Ψ : P(T Z)→ P(T Z)
such that

Ψ(µ̂N(WN)) = µ̂N(VN)

then we would be done.

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Strategy in the correlated case: exponential approximation

1. Show that there exists a sequence Ψm of continuous functions
PS(T Z)→ PS(T Z) and a measurable map
Ψ∞ : PS(T Z)→ PS(T Z) such that for every α <∞

lim sup
m→∞

sup
µ:I (3)(µ)≤α

DT (Ψm(µ),Ψ∞(µ)) = 0

2. Show that the family ΠN
0 ◦ (Ψm)−1 is an exponentially good

approximation of the family ΠN
c ,

3. and conclude from a general theorem (e.g. [DZ97]) that ΠN
c

satisfies the LDP with good rate function

Hc(µ) = inf
ν

{
I (3)(ν) : µ = Ψ∞(ν)

}
Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Definition of Ψm

I Note that

dQN

dP⊗N

∣∣∣∣
Ft

= exp

(∑
j∈In

∫ t

0
θjsdW

j
s −

1

2

∑
j∈In

∫ t

0

(
θjs
)2
ds

)

where

θjt =
1

σ2
Eγ̄

µ̂N,c (VN )

t

∑
k∈In

G j
t

∫ t

0
G k
s dW

k
s
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Definition of Ψm

G i
t =

∑
j∈In

J ijn f (V j
t ), i ∈ In

It can be verified that the covariance is entirely determined by the
empirical measure

E
[
G i
tG

k
s

]
=

∫
Ω
G i
t (ω)G k

s (ω) dγ(ω) =∑
l∈In

RJ ((k − i) mod In, l)Eµ̂N,c
[
f (v0

t )f (v ls)
]
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Definition of Ψm

I We note γµ̂N,c the probability under which the G s have the
above covariance.

We also introduce

Λt :=
exp

{
− 1

2σ2

∑
i∈In
∫ t

0

(
G i
s

)2
ds
}

Eγµ̂N,c (VN )
[
exp

{
− 1

2σ2

∑
i∈In
∫ t

0 (G i
s )2 ds

}] ,
and define the new probability law

γ̄
µ̂N,c (VN)
t := Λt · γµ̂N,c (VN).
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Definition of Ψm

I Consider the SDE

Z j
t = W j

t + σ−2
∑
k∈In

∫ t

0
Eγ̄

µ̂N,c (Z)

t

[
G j
s

∫ s

0
G k
u dZ

k
u

]
ds,

j ∈ In, it follows from the above that the law of µ̂N,c(ZN) is
ΠN
c .

I Construct Ψm by time discretization (T/m) and space
truncation (qm).
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Exponential approximation of ΠN
c by ΠN

0 ◦ (Ψm)−1

We prove

Lemma (O.F., J. Maclaurin, E. Tanré)

For any δ > 0,

lim
m→∞

lim
n→∞

1

N
logQN

(
DT

(
Ψm
(
µ̂N,c(WN)

)
, µ̂N,c(VN)

)
> δ

)
= −∞.

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Consequences

I ΠN
c satisfies an LDP with good rate function

Hc(µ) = inf
ν

{
I (3)(ν) : µ = Ψ∞(ν)

}
I ΠN

c converges in law toward δµc , µc ∈ PS(T Z).

I µc is the limit law of QN , the averaged law of the finite size
system.
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Summary

Theorem (O.F., J. Maclaurin, E. Tanré)

Hc achieves its minimum at a unique point µc of PS(T Z).

and

Theorem (O.F., J. Maclaurin, E. Tanré)

µc is the law of the solution to an infinite dimensional linear
non-Markovian stochastic system, hence it is a Gaussian measure
(in PS(T Z)) if the initial condition is Gaussian.

V j
t = V j

0 + σW j
t + σ

∫ t

0
θjsds

θjt = σ−3
∑
i∈Z

∫ t

0
Lt,i−jµc (t, s)dV i

s , j ∈ Z

Law(V ) = µc
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Definition of Lµc

The covariance operator: µ ∈ PS(T Z)

K k
µ (t, s) =

∑
j∈Z

RJ (k , l)Eµ
[
f (v0

t )f (v ls)
]

defines an operator K̄µ : L1(Z× [0,T ])→ L1(Z× [0,T ])

f ∈ L1(Z× [0,T ])→ (K̄µf )kt =
∑
l∈Z

∫ T

0
K k−l
µ (t, s)f ls ds

Definition of L̄µ:

σ2L̄µ = Id− (Id + σ−2K̄µ)−1

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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The average results

g ∈ Cb(T M), M ≥ 1

lim
N→∞

∫
Ω

(∫
T N

1

N

(
N∑
1

g(S ivN,p)

)
P(JN(ω))(dvN)

)
dγ(ω) =∫

T M

g(v) dµMc (v),

where µMc is the Mth-order marginal of µc .
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The almost sure results

I The existence of an LDP for the annealed law of the empirical
measure µc implies that ”half” the same principle applies to
the quenched law.

I This implies that the law of the empirical measure converges
exponentially fast to δµc for almost all choices of the weights
and therefore

g ∈ Cb(T M), M ≥ 1, for almost all ω:

lim
N→∞

∫
T N

1

N

(
N∑
1

g(S ivN,p)

)
P(JN(ω))(dvN) =∫

T M

g(v) dµMc (v),

where µMc is the Mth-order marginal of µc .
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Numerical results: uncorrelated synaptic weights

I When
RJ(k, l) = R δkl

I We are in the uncorrelated case studied by Sompolinsky et al.
[SCS88]: propagation of chaos

K 0(t, s) K 1(t, s)

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Numerical results: uncorrelated synaptic weights

Some trajectories
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Numerical results: correlated synaptic weights

I When

RJ(k , l) = QJ(k)× QJ(l), Qj = [1/2, 2.0, 1/2]

I No propagation of chaos

K 0(t, s)

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah

Neuronal correlations



Introduction Model Strategy Uncorrelated Correlated Summary and perspectives

Numerical results: correlated synaptic weights

K 1(t, s), scale values (0.1, 0.5, 1.0, 5.0)
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Numerical results: correlated synaptic weights
Some trajectories
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Summary

I We have started the analysis of the thermodynamic limit of
completely connected networks of rate neurons in the case of
correlated synaptic weights.

I In the uncorrelated case the network becomes asynchronous
(propagation of chaos).

I In the correlated case there is no propagation of chaos and the
neurons behaviours are completely different from those of the
uncorrelated case.

I In both cases (uncorrelated and correlated synaptic weights)
the thermodynamic limit is described by a Gaussian process if
the initial conditions are Gaussian.

Olivier Faugeras, James Maclaurin, Etienne Tanré Inria and University of Utah
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Large deviation principle: I

For all open sets O of P(T )

− inf
µ∈O

H(µ) ≤ lim inf
N→∞

1

N
log ΠN(O)
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Large deviation principle: II

The sequence ΠN is exponentially tight.
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Large deviation principle: III

For every compact set F of P(T )

lim sup
N→∞

1

N
log ΠN(F ) ≤ − inf

µ∈F
H(µ)
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Exponential approximation

for all δ > 0

lim
m→∞

lim
n→∞

1

N
logP⊗N

(
DT

(
Ψm

(
µ̂Nc (B)

)
, µ̂Nc (Z )

)
> δ

)
= −∞
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