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Introduction

The question

Find concise mathematical descriptions of large networks of neurons
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Introduction

This talk

» Fully connected networks of rate neurons
> Random synaptic weights

> Average and almost sure results
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The mathematical model

> Intrinsic dynamics:
th = —thdt—l—Uth, OS tS T
S =
Law of V() = Mo,
» There is a unique strong solution to S (Ornstein-Uhlenbeck
process):
» Note P its law on the set 7 := C([0, T]; R) of trajectories
> For this talk: o = 0.
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The mathematical model

» N neurons, N = 2n + 1; completely connected network

» Coupled dynamics
dvj = e, WE(VD)dt + cdW] Vi€ l,
SN, =
Law of Vy(0) = u§N
i€lp:=[—n,---,n|.
» f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate
» W': independent Brownians: intrinsic noise on the membrane

potentials
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The mathematical model

» There is a unique solution to SN(J,)

» Note P(J,) its law on the set 7" of N-tuples of trajectories.
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Modeling the synaptic weights

> JU: stationary Gaussian field: random synaptic weights

E[JI] = % for this talk J =0

_ Ra(k=1i,1=))

cov(JI JKI m

» Ry(k, 1) is a covariance function.

> Analogy with random media
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Consequences

» P(J,) is a random law on TN
» Consider the law P®N of N independent uncoupled neurons

» Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(J,), with the law of the uncoupled
system, P®N:

dP(J,) 1 /7 PR ;

dP&N :eXp{ZU/O ZJ:{’C(V#) dWi—
i€ly J€ln

2

1 7 PR
507 J, > JIF(V) dt}

JE€ln
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Uncorrelated case

» Consider the empirical measure:
fin,u(Vin) = Z5vu
IGI,,
Viy = (\/*"’... , V")
It defines the mapping

TN = P(T)
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Correlated case
» Consider the empirical measure

R 1
Anc(Vi) = 15D 0si(va,);

i€ly
a probability measure on T2,

> V) p is the periodic extension of the finite sequence of
trajectories Viy = (V=",--- ,V"). Wyp=(--, VN, VN, )
» S is the shift operator acting on elements of T2
» Case N =3
V3,p = ( . V—l) VO, Vl, V_l, \/07 Vl, .. )
SH(Vap) = (-, VR VL VO VE VT VO L)
52(V37p) — ( . \/07 Vl, V*l, VO7 Vl, Vfl, .. )
> It defines the mapping

fine(Vn) : TN — Ps(T?)
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1) Metric on TZ

d(u,v) =S 27W(ll = V|7 A1)
i€Z
where . . ' _
Ju' =V'll7 = sup Jup—v
te[0,T]
2) Metric on P(T%)
Induced by the Wasserstein-1 distance:

Drlr) = _inf [ diuv) de(u.v)
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» We are interested in the laws of fiy , and fin  under P(Jy)

» Define

QN:/QP(J,,(w)) dw,

the average of P(J,) w.r.t. to the "random medium”, i.e. the
synaptic weights.

» We study the law of iy , and fiy c under QV: average results.
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The strategy

» Consider the law MY of fin,, under QN: it is a probability
measure on P(T):

ny(8) = (@" o (fiwu) ) (B) = @"(n € B).

B measurable set of P(T)

» Consider the law MY of fin,c under QV: it is a probability
measure on Ps(T7%):

n{:V(B) = QN(:&‘N,C S 5)7

B measurable set of Ps(77%)
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The strategy

» Establish a Large Deviation Principle for the sequences of
probability measures (MN)y>1 and (MY)y>1, ie.

» Design a rate function (non-negative lower semi-continuous)
H, (resp. Hc) on P(T) (resp. P(T%))

» The intuitive meaning of H is the following
QN(,&N ~ Q) ~ efNH(Q)

» The measures [iy concentrate on the measures @ such that
H(Q) = 0.

» If H reaches 0 at a single measure Q then NN converges in
law toward the Dirac mass d¢
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Uncorrelated

Minimum of H,

By adapting the results of Ben Arous and Guionnet [BAG95] and
of Moynot and Samuelides [MS02] one obtains:

Theorem

Hu(1) = 19 (1; P) = Tu(1),
where 1) (y1; P) is the relative entropy of i w.r.t. P
1@ (1; P) = [log % du, and T, is defined by

N
dQ eNru(.aN,u)

dPeN

H, achieves its minimum at a unique point y, of P(T).

Inria and University of Utah
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Uncorrelated

Minimum of H,

and

Theorem
Wy Is the law of the solution to a linear non-Markovian stochastic
system.
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Uncorrelated

Average results

Two main results:

Theorem (1)

The law NN of the empirical measure fin,u under QN converges
weakly to 6,

This means that

VF € Co(P(T))

_ 1
N'inoo/ﬂ (/TN F (N25V‘> P(Jn(w))(dwv)> dy(w) = F(p)
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Uncorrelated

Average results

Theorem (2)
QN is py-chaotic.
iie. forallm>2and f;, i=1,...,min Cp(T)

m
lim / AVY) - F(v™) dQV (V- W) = H/ fi(v) dpu(v)
N—oo J7N i1 T

"In the thermodynamic limit (N — oo) and on average, the
neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Correlated

Strategy in the correlated case: exponential approximation

1. Note, e.g. [ElI85], that the sequence MY = P=N o (fip )t
satisfies the LDP with good rate function

(5 P%) = Jim L1, oY)

= |lim
N—oco
with N
du

2. If there existed a continuous function W : P(T%) — P(T%)
such that

V(an(Wh)) = fin(Vn)

then we would be done.
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Correlated

Strategy in the correlated case: exponential approximation

1. Show that there exists a sequence W of continuous functions
Ps(T%) — Ps(T?) and a measurable map
W : Ps(TZ) — Ps(T?) such that for every a < oo

limsup  sup  Dr(W™(u), W™ (p)) =0
m=00 ) (p)<a

2. Show that the family M} o (W™)~! is an exponentially good
approximation of the family M%,

3. and conclude from a general theorem (e.g. [DZ97]) that MY
satisfies the LDP with good rate function

He(pr) = inf { I9(w) : p = w>(0)}
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Correlated

Definition of W™

» Note that

dQN
dpoN

e (X [y [ yas)

JEI JGI

where

. 1 MN <(Vn)
¢, = E7 }:O/GMmf

g
kely
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Correlated

Definition of W™

Gl=> Jif(Vi),iel,
JE
It can be verified that the covariance is entirely determined by the
empirical measure

GG" /G )G (w) dy(w) =

S " Ry((k — i) mod I, I)EF.e [f(vto)f(vsl)}

el
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Correlated

Definition of W™

» We note y/N.c the probability under which the Gs have the
above covariance.

We also introduce
exp {35 Y, J5 (G1)” o5}
]E,yﬁN,c(VN) [exp {_ﬁ Zieln fot (GS,)2 ds}:| ’

and define the new probability law

/\t =

,_yfuv,c(VN) = A, - ,YﬂN,c(VN)_
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Correlated

Definition of W™

» Consider the SDE

ZJ _ WJ + 0_—2 Z /'t]E;/tﬁN,c(Z) |:Gj /S deZk:| e
t — t 0 S 0 u u ’
kel

J € In, it follows from the above that the law of fiy (Zn) is
v

» Construct W™ by time discretization (T /m) and space
truncation (gm).
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Correlated

Exponential approximation of MY by MY o (V™)1

We prove

Lemma (O.F., J. Maclaurin, E. Tanré)
For any § > 0,

lim [im —Iog QN <DT(\IIm(uNC(WN)),,&N,C(VN)) > 6) = —00.

m—>00 n—>c>o
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Correlated

Consequences

» MV satisfies an LDP with good rate function
He(p) = inf {1O(v) : p = () }

» MY converges in law toward 4., pic € Ps(TZ).
> fic is the limit law of QV, the averaged law of the finite size
system.
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Correlated

Summary
Theorem (O.F., J. Maclaurin, E. Tanré)

H. achieves its minimum at a unique point . of Ps(T%).
and
Theorem (O.F., J. Maclaurin, E. Tanré)

L is the law of the solution to an infinite dimensional linear
non-Markovian stochastic system, hence it is a Gaussian measure
(in Ps(T%)) if the initial condition is Gaussian.

. . . t .
Vi = vg+awg+a/ 0l ds

¢ = —32/ Ly(t,s)dVi, jeZ

iE€EZL
Law(V) = pc
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Correlated

Definition of L,

The covariance operator: p € Ps(T%)

=3 " Ry(k, E [ (v )}

JEZ
defines an operator K, : L}(Z x [0, T]) — LY(Z x [0, T])
felYZx[0,T]) — Kft_Z/ K !(t,s)f! ds
1eZ
Definition of Zu:

o’L, =1d — (Id+ o0 %K,) "
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Correlated

The average results

g € Cb(TM), M>1

. 1 (L
| ( L4 (Z g(s vN,p>> P(JN(w»(va)) d(w) =

where 1M is the Mth-order marginal of ..
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Correlated

The almost sure results

» The existence of an LDP for the annealed law of the empirical

measure i implies that "half’ the same principle applies to
the quenched law.

» This implies that the law of the empirical measure converges

exponentially fast to J,,. for almost all choices of the weights
and therefore

g € Co(TM), M > 1, for almost all w:

N
. i (o0 o -

/ g(v) duM(v),
TM

where M is the Mth-order marginal of ..
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Correlated

Numerical results: uncorrelated synaptic weights

» When
Ry(k,) = R 6k
» We are in the uncorrelated case studied by Sompolinsky et al.

[SCS88]: propagation of chaos
KO(t, s) K(t,s)
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Correlated

Numerical results: uncorrelated synaptic weights

Some trajectories
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Correlated

Numerical results: correlated synaptic weights
» When
Ry(k,1) = Q (k) x Q,(/), Q =[1/2, 2.0, 1/2]

» No propagation of chaos
KO(t,s)

Inria and University of Utah
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Correlated

Numerical results: correlated synaptic weights

K(t,s), scale values (0.1, 0.5, 1.0, 5.0)
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Correlated

Numerical results: correlated synaptic weights
Some trajectories

iversity of Utah
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Summary and perspectives

Summary

» We have started the analysis of the thermodynamic limit of
completely connected networks of rate neurons in the case of
correlated synaptic weights.

> In the uncorrelated case the network becomes asynchronous
(propagation of chaos).

> In the correlated case there is no propagation of chaos and the
neurons behaviours are completely different from those of the
uncorrelated case.

> In both cases (uncorrelated and correlated synaptic weights)
the thermodynamic limit is described by a Gaussian process if
the initial conditions are Gaussian.
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Summary and perspectives
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Summary and perspectives
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Summary and perspectives
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Summary and perspectives

Large deviation principle: |

For all open sets O of P(T)

1
_inf < limi N
;12(9 H(p) < Iwn inf N log N™(O)
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Summary and perspectives

Large deviation principle: |l

The sequence MV is exponentially tight.
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Summary and perspectives

Large deviation principle: |l

For every compact set F of P(T)

1
limsup — log MY(F) < — inf H
msup - log (F) < jnf (1)
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Summary and perspectives

Exponential approximation

forall 6 >0

lim Tim %Iog peN (DT(wm(g’c"(B)),g,’_}’(Z)) > 5> = —00

m—00 N— 00
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