| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

# Coping with correlations in the analysis of the thermodynamic limit of neuronal networks

#### Olivier Faugeras, James Maclaurin, Etienne Tanré

Inria, University of Sydney

ICMNS 2017 Boulder CO, USA May-June, 2017

Olivier Faugeras Modeling interacting neurons Inria, University of Sydney

| Introduction        | Model                   |                | Correlated                                                  | Summary and perspectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|-------------------------|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                         |                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The ques            | stion                   | Neuron         | Si                                                          | b Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                         | ) (spikes/s)   | 40<br>20<br>0                                               | 20<br>10 14 40 million for the former of the fo |
| ► Find cor          | ncise                   | C Mem. pot.    | 20<br>10<br>0<br>400 500 600 700 800 900<br>SR <sub>E</sub> | 20<br>10<br>400 500 600 700 800 900<br>d SR <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mathem<br>descripti | atical<br>ions of large | Neuron         | 400<br>200<br>0                                             | 400<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| networks o          | s of neurons            | (spikes/s)     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |                         | Aem. pot. (mV) | 20<br>10                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

From A. Kumar et al., Neural Computation, 2008.

Time (ms)

Time (ms) Inria, University of Sydney

Olivier Faugeras

| Introduction | Model | Correlated | Summary and perspectives |
|--------------|-------|------------|--------------------------|
|              |       |            |                          |
|              |       |            |                          |

# The question

 Find concise mathematical descriptions of large networks of neurons



From M. B. Ahrens et al., Nature Methods, 2013. Technique: Light-sheet microscopy

| Introduction | Model | Correlated | Summary and perspectives |
|--------------|-------|------------|--------------------------|
|              |       |            |                          |
|              |       |            |                          |

## This talk

- Randomly connected networks of rate neurons
- Random and correlated synaptic weights
- Networks can be multipopulation and balanced
- Annealed and quenched results

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

## The mathematical model

Intrinsic dynamics:

$$\mathcal{S} := \begin{cases} dV_t &= -\alpha V_t dt + \sigma dW_t, \ 0 \le t \le T \\ \text{Law of } V_0 &= \mu_0, \end{cases}$$

• There is a unique solution to S (Ornstein-Uhlenbeck process):

$$V_t = \exp(-lpha t)V_0 + \sigma \int_0^t \exp(lpha (s-t)) dW_s$$

▶ Note *P* its law on the set  $\mathcal{T} := \mathcal{C}([0, T]; \mathbb{R})$  of trajectories

Inria, University of Sydney

< □ > < 同 >

Olivier Faugeras

# The mathematical model

- N neurons, N = 2n + 1 arranged in a circle
- Coupled dynamics

$$\mathcal{S}(J^{N}) := \begin{cases} dV_{t}^{i} = \left(-\alpha V_{t}^{i} + \sum_{j=1}^{N} J_{ij}^{N} f(V_{t}^{j})\right) dt + \sigma dW_{t}^{i} \\ \text{Law of} \\ V_{N}(0) = \left(V_{0}^{1}, \cdots, V_{0}^{N}\right) = \mu_{0}^{\otimes N} \end{cases}$$

 $i \in I_n := [-n, \cdots, n].$ 

- f is bounded, Lipschitz continuous (usually a sigmoid), defining the firing rate: activity function
- ► W<sup>i</sup>: independent Brownians: intrinsic noise on the membrane potentials

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

The mathematical model

• There is a unique solution to  $\mathcal{S}(J^N)$ 

▶ Note  $P(J^N)$  its law on the set  $\mathcal{T}^N$  of *N*-tuples of trajectories.

< A

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

Modeling the synaptic weights

▶  $J_{ij}^N$ : stationary Gaussian field: random synaptic weights

$$\mathbb{E}[J_{ij}^{N}] = \frac{\overline{J}}{N}$$
$$cov(J_{ij}^{N}J_{kl}^{N}) = \frac{\Lambda(k-i,l-j)}{N}$$

- $\Lambda(k, l)$  is a covariance function.
- Analogy with random media

< 17 >

Modeling interacting neurons

Olivier Faugeras

|          | Model | Correlated | Summary and perspectives |
|----------|-------|------------|--------------------------|
|          |       |            |                          |
|          |       |            |                          |
| Conseque | ences |            |                          |

- $P(J^N)$  is a random law on  $\mathcal{T}^N$
- Consider the law  $P^{\otimes N}$  of N independent uncoupled neurons
- Girsanov theorem allows us to compare the law of the solution to the coupled system, P(J<sup>N</sup>), with the law of the uncoupled system, P<sup>⊗N</sup>:

$$\frac{dP(J^N)}{dP^{\otimes N}} = \exp\left\{\sum_{i\in I_n} \frac{1}{\sigma} \int_0^T \left(\sum_{j\in I_n} J_{ij}^N f(V_t^j)\right) dW_t^i - \frac{1}{2\sigma^2} \int_0^T \left(\sum_{j\in I_n} J_{ij}^N f(V_t^j)\right)^2 dt\right\}$$

Olivier Faugeras

| Introduction | Model | Strategy | Correlated | Summary and perspectives |
|--------------|-------|----------|------------|--------------------------|
|              |       |          |            |                          |
|              |       |          |            |                          |
|              |       |          |            |                          |

Consider the "empirical" measure

$$\hat{\mu}_{N}(V_{N}) = \frac{1}{N} \sum_{i \in I_{n}} \delta_{S^{i}(V_{N,p})},$$

a probability measure on  $\mathcal{T}^{\mathbb{Z}}$ .

► V<sub>N,p</sub> is the periodic extension of the finite sequence of trajectories V<sub>N</sub> = (V<sup>-n</sup>, · · · , V<sup>n</sup>).

$$\blacktriangleright V_{N,p} = (\cdots, V_N, V_N, \cdots)$$

• S is the shift operator acting on elements of  $\mathcal{T}^{\mathbb{Z}}$ .

$$V_{3,p} = (\cdots, V^{-1}, V^0, V^1, V^{-1}, V^0, V^1, \cdots)$$
  

$$S^1(V_{3,p}) = (\cdots, V^1, V^{-1}, V^0, V^1, V^{-1}, V^0, \cdots)$$
  

$$S^2(V_{3,p}) = (\cdots, V^0, V^1, V^{-1}, V^0, V^1, V^{-1}, \cdots)$$

It defines the mapping

$$\widetilde{\hat{\mu}}_N:\mathcal{T}^N o\mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}})_{a}$$
 , (2) , (2)

Inria. University of Sydney

**Olivier Faugeras** 

| Model | Strategy | Correlated | Summary and perspectives |
|-------|----------|------------|--------------------------|
|       |          |            |                          |
|       |          |            |                          |

An example: Let  $g \in C_b(\mathcal{T}^{\mathbb{Z}})$ :

$$\int_{\mathcal{T}^{\mathbb{Z}}} g(v) d\hat{\mu}_N(V_N)(v) = \frac{1}{N} \sum_{1}^{N} g(S^i V_{N,p})$$

Let us specialize to  $g(v) = v_t^1 v_s^2$ 

$$\int_{\mathcal{T}^{\mathbb{Z}}} g(v) d\hat{\mu}_{N}(V_{N})(v) = \frac{1}{N} \left( V_{t}^{-n} V_{s}^{-n+1} + V_{t}^{-n+2} V_{s}^{-n+3} + \cdots + V_{t}^{n-1} V_{s}^{n} + V_{t}^{n} V_{s}^{-n} \right)$$

 $\hat{\mu}_N$  captures all correlations between the neurons' activities.

Inria, University of Sydney

Image: A mathematical states and a mathem

Olivier Faugeras

| Model | Strategy | Correlated | Summary and perspectives |
|-------|----------|------------|--------------------------|
|       |          |            |                          |
|       |          |            |                          |

- We are interested in the law of  $\hat{\mu}_N$  under  $P(J^N)$
- Define

$$Q^N = \int_{\Omega} P(J^N(\omega)) \, d\omega,$$

the average of  $P(J^N)$  w.r.t. to the "random medium", i.e. the synaptic weights.

- We study the law of  $\hat{\mu}_N$  under  $Q^N$ : annealed results.
- ► We then mention some results about the law of µ̂<sub>N</sub> under P(J<sup>N</sup>): quenched results.

|           | Model | Strategy | Correlated | Summary and perspectives |
|-----------|-------|----------|------------|--------------------------|
|           |       |          |            |                          |
|           |       |          |            |                          |
| The strat | egy   |          |            |                          |

Consider the law Π<sup>N</sup> of µ̂<sub>N</sub> under Q<sup>N</sup>: it is a probability measure on P<sub>S</sub>(T<sup>ℤ</sup>):

$$\Pi^N(B)=Q^N(\hat{\mu}_N\in B),$$

*B* measurable set of  $\mathcal{P}_{S}(\mathcal{T}^{\mathbb{Z}})$ This is also noted  $Q^{N} \circ (\hat{\mu}_{N})^{-1}$ .

Inria, University of Sydney

|           | Model | Strategy | Correlated | Summary and perspectives |
|-----------|-------|----------|------------|--------------------------|
|           |       |          |            |                          |
|           |       |          |            |                          |
| The strat | egy   |          |            |                          |

- ► Establish a Large Deviation Principle for the sequences of probability measures (Π<sup>N</sup>)<sub>N≥1</sub>, i.e.
- ▶ Design a rate function (non-negative lower semi-continuous) H on P<sub>S</sub>(T<sup>ℤ</sup>)
- The intuitive meaning of H is the following

$$Q^N(\hat{\mu}_N\simeq Q)\simeq e^{-NH(Q)}$$

- The measures  $\hat{\mu}_N$  concentrate on the measures Q such that H(Q) = 0.
- If H reaches 0 at a single measure Q then Π<sup>N</sup> converges in law toward the Dirac mass δ<sub>Q</sub>

< □ > < 同 >

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

## Exponential approximation

1. Note that the sequence  $\Pi_0^N = P^{\otimes N} \circ (\hat{\mu}_N)^{-1}$  satisfies the LDP with good rate function [Ell85]

$$I^{(3)}(\mu; P^{\mathbb{Z}}) = \lim_{N \to \infty} \frac{1}{N} I^{(2)}(\mu^N; P^{\otimes N})$$

 $I^{(2)}(\mu^N; P^{\otimes N})$  is the relative entropy.

2. Show that there exists a sequence  $\Psi_m$  of continuous functions  $\mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}}) \to \mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}})$  and a measurable map  $\Psi : \mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}}) \to \mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}})$  such that for every  $\alpha < \infty$ 

$$\limsup_{m\to\infty}\sup_{\mu:I^{(3)}(\mu)\leq\alpha}D_T(\Psi_m(\mu),\Psi(\mu))=0$$

3.  $D_T$  is a distance on the set of measures (Wasserstein).

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

## Exponential approximation

- 1. Show that the family  $\Pi_0^N \circ \Psi_m^{-1}$  is an exponentially good approximation of the family  $\Pi^N$ ,
- 2. and conclude that  $\Pi^N$  satisfies the LDP with good rate function

$$H(\mu) = \inf \left\{ I^{(3)}(\nu) : \mu = \Psi(\nu) \right\}$$



## Convergence results

# Theorem (O.F., J. Maclaurin, E. Tanré) H achieves its minimum at a unique point $\mu_*$ of $\mathcal{P}_{\mathcal{S}}(\mathcal{T}^{\mathbb{Z}})$ .

Olivier Faugeras Modeling interacting neurons Inria, University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

# Annealed results

#### Corollary

The law of the empirical measure  $\hat{\mu}_N$  under  $Q^N$  converges weakly to  $\delta_{\mu_*}$ 

This means that

$$\forall F \in C_b(\mathcal{P}(\mathcal{T}^{\mathbb{Z}}))$$
$$\lim_{N \to \infty} \mathbb{E}\left[\int_{\mathcal{T}^{\mathbb{Z}}} F\left(\frac{1}{N} \sum_{i \in I_n} \delta_{S^i v_{N, \rho}}\right) P(J^N(\omega))(dv_N)\right] = F(\mu_*)$$

Olivier Faugeras

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

# Annealed results

#### Specializing F to

$$F(\mu) = \int_{\mathcal{T}^{\mathbb{Z}}} g(v) \, d\mu(v)$$

for  $g \in C_b(\mathcal{T}^{\mathbb{Z}})$ :

$$\lim_{N\to\infty} \mathbb{E}\left[\int_{\mathcal{T}^{\mathbb{Z}}} \frac{1}{N} \left(\sum_{i\in I_n} g(S^i v_{N,p})\right) P(J^N(\omega))(dv_N)\right] = \int_{\mathcal{T}^{\mathbb{Z}}} g(v) d\mu_*(v)$$

Inria, University of Sydney

Image: Image:

Olivier Faugeras

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

## Annealed results

Specializing even further with  $g \in C_b(\mathcal{T}^M)$ ,  $M \ge 1$ 

$$\lim_{N\to\infty} \mathbb{E}\left[\int_{\mathcal{T}^Z} \frac{1}{N} \left(\sum_{i\in I_n} g(S^i v_{N,p})\right) P(J^N(\omega))(dv_N)\right] = \int_{\mathcal{T}^M} g(v) \, d\mu_*^M(v),$$

Inria, University of Sydney

where  $\mu_*^M$  is the *M*th-order marginal of  $\mu_*$ .

**Olivier Faugeras** 

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

## Quenched results

- The existence of an LDP for the annealed law of the empirical measure µ̂<sub>N</sub> implies that "half' the same principle applies to the quenched law.
- This implies that the quenched law of the empirical measure converges exponentially fast to δ<sub>μ\*</sub> and therefore

for all  $g \in C_b(\mathcal{T}^M)$ ,  $M \ge 1$ , for almost all  $\omega$ :

$$\lim_{N\to\infty}\int_{\mathcal{T}^N}\frac{1}{N}\left(\sum_{i\in I_n}g(S^iv_{N,p})\right)P(J^N(\omega))(dv_N)=\int_{\mathcal{T}^M}g(v)\,d\mu_*^M(v),$$

where  $\mu_*^M$  is the *M*th-order marginal of  $\mu_*$ .

**Olivier Faugeras** 

Modeling interacting neurons

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

## The thermodynamic limit equations

#### Theorem (O.F., J. Maclaurin, E. Tanré)

 $\mu_*$  is the law of the solution to an infinite dimensional linear non-Markovian stochastic system. It is a Gaussian measure (in  $\mathcal{P}_{S}(\mathcal{T}^{\mathbb{Z}})$ ) if the initial condition is Gaussian.

Inria. University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

## The thermodynamic limit equations

$$\begin{aligned} a_{t}^{j} &= \sigma^{-2} \sum_{k \in \mathbb{Z}} \int_{0}^{t} \mathcal{L}_{\mu_{*}}^{k-j}(t,s) \big( c_{\mu_{*}}(s) + a_{s}^{k} \big) ds + \sigma^{-2} \sum_{k \in \mathbb{Z}} \int_{0}^{t} \mathcal{L}_{\mu_{*}}^{k-j}(t,s) dB_{s}^{k} \\ Z_{t}^{j} &= Z_{0}^{j} + B_{t}^{j} + \int_{0}^{t} \big( a_{s}^{j} + c_{\mu_{*}}(s) \big) ds \end{aligned}$$

Inria. University of Sydney

- ▶ µ<sub>\*</sub> is the law of Z.
- $L_{\mu_*}^k(t,s)$  is a correlation function defined from  $\mu_*$ .
- $c_{\mu_*}(t)$  is also defined by  $\mu_*$ .
- The  $B_t^k$ s are i.i.d. as the uncoupled neuron.

|  | Model | Correlated | Summary and perspectives |
|--|-------|------------|--------------------------|
|  |       |            |                          |

Numerical results (nearest neighbours correlations)

#### Examples of time variations of membrane potentials:



Olivier Faugeras

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

# Numerical results (nearest neighbours correlations)

Distribution of the membrane potentials at t = 10:



Modeling interacting neurons

**Olivier Faugeras** 

Inria, University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

# Numerical results (nearest neighbours correlations)

#### Correlation of the membrane potentials:



Inria, University of Sydney

|         | Model | Correlated | Summary and perspectives |
|---------|-------|------------|--------------------------|
|         |       |            |                          |
| C       |       |            |                          |
| Summary |       |            |                          |

- We have started the analysis of the thermodynamic limit of randomly connected networks of rate neurons with correlated synaptic weights: it generalises the work of Sompolinski and colleagues, e.g. [SCS88]
- The thermodynamic limit is described by a Gaussian process if the initial conditions are Gaussian.
- If the covariance function A of the synaptic weights is not a Dirac, the neurons activities remain correlated: there is no propagation of chaos unlike in previous work ([LS14, BFT15, FL16]).



Analyse the limit equations and the bifurcations of their solutions

Understand the fluctuations

Inria, University of Sydney

< □ > < 同 >

|              | Model | Correlated | Summary and perspectives |
|--------------|-------|------------|--------------------------|
|              |       |            |                          |
|              |       |            |                          |
| References I |       |            |                          |

- Mireille Bossy, Olivier Faugeras, and Denis Talay, Clarification and complement to "mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons", The Journal of Mathematical Neuroscience (JMN) 5 (2015), no. 19.
- R.S. Ellis, Entropy, large deviations and statistical mechanics, Springer, 1985.
- Nicolas Fournier and Eva Löcherbach, On a toy model of interacting neurons, Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 4, 1844–1876.

|           | Model | Correlated | Summary and perspectives |
|-----------|-------|------------|--------------------------|
|           |       |            |                          |
|           |       |            |                          |
| Reference | ≏s    |            |                          |

- Eric Luçon and Wilhelm Stannat, Mean field limit for disordered diffusions with singular interactions, Ann. Appl. Probab. 24 (2014), no. 5, 1946–1993.
- H. Sompolinsky, A. Crisanti, and HJ Sommers, *Chaos in Random Neural Networks*, Physical Review Letters **61** (1988), no. 3, 259–262.



Metric on  $\mathcal{T}^{\mathbb{Z}}$ 

$$d^{\mathbb{Z}}_{T}(u, \mathbf{v}) = \sum_{i \in \mathbb{Z}} 2^{-|i|} (\|u^{i} - \mathbf{v}^{i}\|_{T} \wedge 1)$$

きょう 御 ふかく かく 雪 きょうき

Olivier Faugeras Modeling interacting neurons Inria, University of Sydney

Introduction Model Strategy Correlated Summary and perspectives Metric on  $\mathcal{P}(\mathcal{T}^{\mathbb{Z}})$ 

Induced by the Wasserstein-1 distance:

$$D_{\mathcal{T}}(\mu,\nu) = \inf_{\xi \in C(\mu,\nu)} \int d_{\mathcal{T}}^{\mathbb{Z}}(u,v) \, d\xi(u,v)$$

Inria, University of Sydney

< □ > < 同 >

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

Large deviation principle: I

For all open sets  $\mathcal{O}$  of  $\mathcal{P}(\mathcal{T})$ 

$$-\inf_{\mu\in\mathcal{O}}H(\mu)\leq\liminf_{N
ightarrow\infty}rac{1}{N}\log\Pi^N(\mathcal{O})$$

Inria, University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

Large deviation principle: II

#### The sequence $\Pi^N$ is exponentially tight.

▲□> ▲圖> ▲圖> ▲圖> ▲目 ● ● ●

Olivier Faugeras Modeling interacting neurons Inria, University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

Large deviation principle: III

For every compact set F of  $\mathcal{P}(\mathcal{T})$ 

$$\limsup_{N\to\infty}\frac{1}{N}\log\Pi^N(F)\leq -\inf_{\mu\in F}H(\mu)$$

Inria, University of Sydney

< A

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |

# Exponential approximation

for all 
$$\delta > 0$$

$$\lim_{m\to\infty} \overline{\lim_{n\to\infty}} \frac{1}{N} \log P^{\otimes N} \Big( D_T \big( \Psi_m \big( \hat{\mu}_N(B) \big), \hat{\mu}_N(V) \big) > \delta \Big) = -\infty$$

Inria, University of Sydney

| Model | Correlated | Summary and perspectives |
|-------|------------|--------------------------|
|       |            |                          |
|       |            |                          |

# Definition of $\Psi_m$

Note that

$$\frac{dQ^{N}}{dP^{\otimes N}}\Big|_{\mathcal{F}_{t}} = \exp\left(\sum_{j \in I_{n}} \int_{0}^{t} \theta_{s}^{j} dB_{s}^{j} - \frac{1}{2} \sum_{j \in I_{n}} \int_{0}^{t} (\theta_{s}^{j})^{2} ds\right)$$

where

$$\theta_t^j = \frac{1}{\sigma} \mathfrak{c}_{\hat{\mu}_c^N(V_N)}(t) + \frac{1}{\sigma^2} \mathbb{E}^{\tilde{\gamma}_t^{\hat{\mu}_c^N(V_N)}} \left[ \sum_{k \in I_n} G_t^j \int_0^t G_s^k dB_s^k \right]$$

Inria, University of Sydney

A B + 
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Olivier Faugeras

|      | Model | Correlated | Summary and perspectives |
|------|-------|------------|--------------------------|
|      |       |            |                          |
| D (1 | 6.44  |            |                          |

#### Definition of $\Psi_m$

Prove that the SDE

$$Z_t^j = B_t^j + \int_0^t c_{\hat{\mu}_c^N(Z)}(s) ds + \sigma^{-2} \sum_{k \in I_n} \int_0^t \mathbb{E}^{\tilde{\gamma}_t^{\hat{\mu}_c^N(Z)}} \left[ G_s^j \int_0^s G_u^k dZ_u^k \right] ds,$$

 $j \in I_n$ , is well-posed in  $\mathcal{T}^N$  and that the law of  $\hat{\mu}_c^N(Z)$  is  $\Pi_c^N$ .

- Construct the continuous function φ<sub>m</sub> : T<sup>ℤ</sup> × P<sub>S</sub>(T<sup>ℤ</sup>) → T<sup>ℤ</sup> by time-discretizing this equation.
- Construct the continuous function Ψ<sub>m</sub> : P<sub>S</sub>(T<sup>ℤ</sup>) → P<sub>S</sub>(T<sup>ℤ</sup>) by a fixed-point argument as

$$\Psi_{\it m}(\mu)=
u$$
 such that  $u=\mu\circ(arphi_{\it m}(\cdot,
u))^{-1}$