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The question

I Find concise
mathematical
descriptions of large
networks of neurons

From A. Kumar et al., Neural Computation, 2008.
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The question

I Find concise
mathematical
descriptions of large
networks of neurons

From M. B. Ahrens et al., Nature Methods, 2013.

Technique: Light-sheet microscopy
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This talk

I Randomly connected networks of rate neurons

I Random and correlated synaptic weights

I Networks can be multipopulation and balanced

I Annealed and quenched results
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The mathematical model

I Intrinsic dynamics:

S :=

{
dVt = −αVtdt + σdWt , 0 ≤ t ≤ T
Law of V0 = µ0,

I There is a unique solution to S (Ornstein-Uhlenbeck process):

Vt = exp(−αt)V0 + σ

∫ t

0
exp(α(s − t))dWs

I Note P its law on the set T := C([0,T ];R) of trajectories
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The mathematical model

I N neurons, N = 2n + 1 arranged in a circle

I Coupled dynamics

S(JN) :=
dV i

t =
(
−αV i

t +
∑N

j=1 J
N
ij f (V j

t )
)
dt + σdW i

t

Law of

VN(0) = (V 1
0 , · · · ,VN

0 ) = µ⊗N0

i ∈ In := [−n, · · · , n].

I f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate: activity function

I W i : independent Brownians: intrinsic noise on the membrane
potentials
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The mathematical model

I There is a unique solution to S(JN)

I Note P(JN) its law on the set T N of N-tuples of trajectories.
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Modeling the synaptic weights

I JNij : stationary Gaussian field: random synaptic weights

E[JNij ] =
J

N

cov(JNij J
N
kl ) =

Λ(k − i , l − j)

N

I Λ(k , l) is a covariance function.

I Analogy with random media
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Consequences

I P(JN) is a random law on T N

I Consider the law P⊗N of N independent uncoupled neurons

I Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(JN), with the law of the uncoupled
system, P⊗N :

dP(JN)

dP⊗N
= exp

{∑
i∈In

1

σ

∫ T

0

∑
j∈In

JNij f (V j
t )

 dW i
t−

1

2σ2

∫ T

0

∑
j∈In

JNij f (V j
t )

2

dt

}
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I Consider the ”empirical” measure

µ̂N(VN) =
1

N

∑
i∈In

δS i (VN,p),

a probability measure on T Z.
I VN,p is the periodic extension of the finite sequence of

trajectories VN = (V−n, · · · ,V n).
I VN,p = (· · · ,VN ,VN , · · · )
I S is the shift operator acting on elements of T Z.
I Case N = 3

V3,p = (· · · ,V−1,V 0,V 1,V−1,V 0,V 1, · · · )
S1(V3,p) = (· · · ,V 1,V−1,V 0,V 1,V−1,V 0, · · · )
S2(V3,p) = (· · · ,V 0,V 1,V−1,V 0,V 1,V−1, · · · )

I It defines the mapping
µ̂N : T N → PS(T Z)

Olivier Faugeras Inria, University of Sydney
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An example:
Let g ∈ Cb(T Z):∫

T Z
g(v) d µ̂N(VN)(v) =

1

N

N∑
1

g(S iVN,p)

Let us specialize to g(v) = v1
t v

2
s∫

T Z
g(v) d µ̂N(VN)(v) =

1

N

(
V−nt V−n+1

s + V−n+2
t V−n+3

s + · · ·V n−1
t V n

s + V n
t V
−n
s

)
µ̂N captures all correlations between the neurons’ activities.
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I We are interested in the law of µ̂N under P(JN)

I Define

QN =

∫
Ω
P(JN(ω)) dω,

the average of P(JN) w.r.t. to the ”random medium”, i.e.
the synaptic weights.

I We study the law of µ̂N under QN : annealed results.

I We then mention some results about the law of µ̂N under
P(JN): quenched results.
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The strategy

I Consider the law ΠN of µ̂N under QN : it is a probability
measure on PS(T Z):

ΠN(B) = QN(µ̂N ∈ B),

B measurable set of PS(T Z)
This is also noted QN ◦ (µ̂N)−1.
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The strategy

I Establish a Large Deviation Principle for the sequences of
probability measures (ΠN)N≥1, i.e.

I Design a rate function (non-negative lower semi-continuous)
H on PS(T Z)

I The intuitive meaning of H is the following

QN(µ̂N ' Q) ' e−NH(Q)

I The measures µ̂N concentrate on the measures Q such that
H(Q) = 0.

I If H reaches 0 at a single measure Q then ΠN converges in
law toward the Dirac mass δQ

Olivier Faugeras Inria, University of Sydney
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Exponential approximation

1. Note that the sequence ΠN
0 = P⊗N ◦ (µ̂N)−1 satisfies the LDP

with good rate function [Ell85]

I (3)(µ;PZ) = lim
N→∞

1

N
I (2)(µN ;P⊗N)

I (2)(µN ;P⊗N) is the relative entropy.

2. Show that there exists a sequence Ψm of continuous functions
PS(T Z)→ PS(T Z) and a measurable map
Ψ : PS(T Z)→ PS(T Z) such that for every α <∞

lim sup
m→∞

sup
µ:I (3)(µ)≤α

DT (Ψm(µ),Ψ(µ)) = 0

3. DT is a distance on the set of measures (Wasserstein).
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Exponential approximation

1. Show that the family ΠN
0 ◦Ψ−1

m is an exponentially good
approximation of the family ΠN ,

2. and conclude that ΠN satisfies the LDP with good rate
function

H(µ) = inf
{
I (3)(ν) : µ = Ψ(ν)

}

Olivier Faugeras Inria, University of Sydney

Modeling interacting neurons



Introduction Model Strategy Correlated Summary and perspectives

Convergence results

Theorem (O.F., J. Maclaurin, E. Tanré)

H achieves its minimum at a unique point µ∗ of PS(T Z).
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Annealed results

Corollary

The law of the empirical measure µ̂N under QN converges weakly
to δµ∗

This means that

∀F ∈ Cb(P(T Z))

lim
N→∞

E

∫
T Z

F

 1

N

∑
i∈In

δS ivN,p

P(JN(ω))(dvN)

 = F (µ∗)
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Annealed results

Specializing F to

F (µ) =

∫
T Z

g(v) dµ(v)

for g ∈ Cb(T Z):

lim
N→∞

E

∫
T Z

1

N

∑
i∈In

g(S ivN,p)

P(JN(ω))(dvN)

 =

∫
T Z

g(v) dµ∗(v)
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Annealed results

Specializing even further with g ∈ Cb(T M), M ≥ 1

lim
N→∞

E

∫
T Z

1

N

∑
i∈In

g(S ivN,p)

P(JN(ω))(dvN)

 =

∫
T M

g(v) dµM∗ (v),

where µM∗ is the Mth-order marginal of µ∗.
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Quenched results

I The existence of an LDP for the annealed law of the empirical
measure µ̂N implies that ”half” the same principle applies to
the quenched law.

I This implies that the quenched law of the empirical measure
converges exponentially fast to δµ∗ and therefore

for all g ∈ Cb(T M), M ≥ 1, for almost all ω:

lim
N→∞

∫
T N

1

N

∑
i∈In

g(S ivN,p)

P(JN(ω))(dvN) =

∫
T M

g(v) dµM∗ (v),

where µM∗ is the Mth-order marginal of µ∗.
Olivier Faugeras Inria, University of Sydney
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The thermodynamic limit equations

Theorem (O.F., J. Maclaurin, E. Tanré)

µ∗ is the law of the solution to an infinite dimensional linear
non-Markovian stochastic system. It is a Gaussian measure (in
PS(T Z)) if the initial condition is Gaussian.
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The thermodynamic limit equations

ajt = σ−2
∑
k∈Z

∫ t

0
Lk−jµ∗ (t, s)

(
cµ∗(s) + aks

)
ds + σ−2

∑
k∈Z

∫ t

0
Lk−jµ∗ (t, s)dBk

s

Z j
t = Z j

0 + B j
t +

∫ t

0

(
ajs + cµ∗(s)

)
ds

I µ∗ is the law of Z .

I Lkµ∗(t, s) is a correlation function defined from µ∗.

I cµ∗(t) is also defined by µ∗.

I The Bk
t s are i.i.d. as the uncoupled neuron.
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Numerical results (nearest neighbours correlations)

Examples of time variations of membrane potentials:
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Numerical results (nearest neighbours correlations)

Distribution of the membrane potentials at t = 10:
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Numerical results (nearest neighbours correlations)

Correlation of the membrane potentials:
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Summary

I We have started the analysis of the thermodynamic limit of
randomly connected networks of rate neurons with correlated
synaptic weights: it generalises the work of Sompolinski and
colleagues, e.g. [SCS88]

I The thermodynamic limit is described by a Gaussian process if
the initial conditions are Gaussian.

I If the covariance function Λ of the synaptic weights is not a
Dirac, the neurons activities remain correlated: there is no
propagation of chaos unlike in previous work
([LS14, BFT15, FL16]).
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Perspectives

I Analyse the limit equations and the bifurcations of their
solutions

I Understand the fluctuations
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Metric on T Z

dZ
T (u, v) =

∑
i∈Z

2−|i |(‖ui − v i‖T ∧ 1)

Olivier Faugeras Inria, University of Sydney
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Metric on P(T Z)

Induced by the Wasserstein-1 distance:

DT (µ, ν) = inf
ξ∈C(µ,ν)

∫
dZ
T (u, v) dξ(u, v)
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Large deviation principle: I

For all open sets O of P(T )

− inf
µ∈O

H(µ) ≤ lim inf
N→∞

1

N
log ΠN(O)

Olivier Faugeras Inria, University of Sydney
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Large deviation principle: II

The sequence ΠN is exponentially tight.
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Large deviation principle: III

For every compact set F of P(T )

lim sup
N→∞

1

N
log ΠN(F ) ≤ − inf

µ∈F
H(µ)

Olivier Faugeras Inria, University of Sydney
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Exponential approximation

for all δ > 0

lim
m→∞

lim
n→∞

1

N
logP⊗N

(
DT

(
Ψm

(
µ̂N(B)

)
, µ̂N(V )

)
> δ

)
= −∞

Olivier Faugeras Inria, University of Sydney
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Definition of Ψm

I Note that

dQN

dP⊗N

∣∣∣∣
Ft

= exp

(∑
j∈In

∫ t

0
θjsdB

j
s −

1

2

∑
j∈In

∫ t

0

(
θjs
)2
ds

)

where

θjt =
1

σ
cµ̂Nc (VN)(t) +

1

σ2
Eγ̃

µ̂Nc (VN )
t

∑
k∈In

G j
t

∫ t

0
G k
s dB

k
s
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Definition of Ψm

I Prove that the SDE

Z j
t = B j

t+

∫ t

0
cµ̂Nc (Z)(s)ds+σ−2

∑
k∈In

∫ t

0
Eγ̃

µ̂Nc (Z)
t

[
G j
s

∫ s

0
G k
u dZ

k
u

]
ds,

j ∈ In, is well-posed in T N and that the law of µ̂Nc (Z ) is ΠN
c .

I Construct the continuous function ϕm : T Z × PS(T Z)→ T Z

by time-discretizing this equation.

I Construct the continuous function Ψm : PS(T Z)→ PS(T Z)
by a fixed-point argument as

Ψm(µ) = ν such that ν = µ ◦ (ϕm(·, ν))−1
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