End-to-End Learning of Polygons for Remote Sensing Image Classification

Nicolas Girard and Yuliya Tarabalka

Inria Sophia-Antipolis Méditerranée, Titane team, email: nicolas.girard@inria.fr

24th of July, 2018

N Girard et al. (nicolas.girard@inria.fr)

Deep Learning regression of polygons

24th of July, 2018 1 / 24

Outline

Introduction

- Context
- Current Deep Learning approach to pixel-wise classification
- Can a deep learning method learn to directly regress polygons?
- A first problem statement

Methodology

- Experimental setup and training
- 4 Results

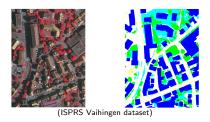
Context

Remote sensing applications:

- Urban planning
- Telecommunications
- Disaster management
- Search and rescue
- Surveying (animals, plants, etc)

(gisgeography.com)

Context



- One big challenge in remote sensing:
 - Assignment of a thematic class to every pixel in a satellite or aerial image
 - Referred to as pixel-wise classification
- Important application of classification:
 - Integrate the data into geographic information systems (GIS)
 - Requires to represent the detected objects as polygons

Current Deep Learning approach to pixel-wise classification

Introduction

Image & GT

Class. map¹

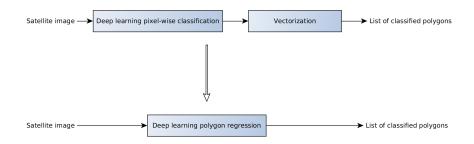
DP, thr. 3

DP, thr. 7

- Deep learning methods for pixel-wise classification
- Bitmap classification masks cannot be directly used to update geographic information systems (GIS)
- Vectorial maps are needed:
 - Object instances outlined by a polygon

 $^{^{1}}$ E. Maggiori et al., High-resolution aerial image labeling with convolutional neural networks (2017)

Can a deep learning method learn to directly regress polygons?



Analyzing this new paradigm

Several tasks:

- Object detection
- Object recognition
- Object polygon outline regression

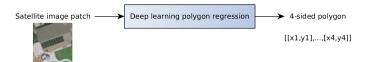
Difficulties:

- Thousands of objects per satellite image
- Variable amount of objects across images
- Variable amount of vertices across polygons
- Overlapping objects

A first problem statement

Reduced goal:

- Task: object polygon outline regression
- Input: image patch centered on a detected object of one class
 - Output of an object detector like Faster-RCNN²:
- Output: one polygon outlining the object
 - Number of vertices fixed to 4

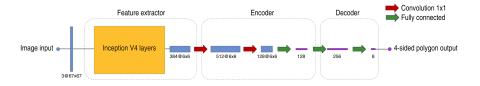


 $^{^2}$ S. Ren et al., Faster R-CNN: towards real-time object detection with region proposal networks (2015)

Methodology

N Girard et al. (nicolas.girard@inria.fr) Deep Learning regression of polygons

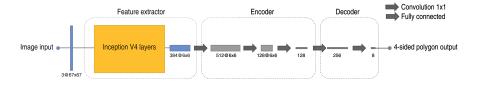
Polygon regression neural network



Three blocks:

- Feature extractor
- 2 Encoder
- Oecoder

1. Feature extractor



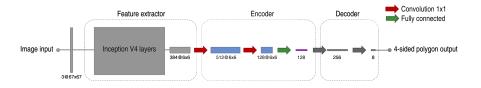
Pre-trained Inception V4³ layers used:

 3 C. Szegedy et al., Inception-v4, inception-resnet and the impact of residual connections on learning (2016)

N Girard et al. (nicolas.girard@inria.fr)

Deep Learning regression of polygons

2. Encoder



Encodes object outline in a vector of 128 dimensions:

- A point in a latent space
- Represents the object shape

3. Decoder



Decodes the 128-dimensions vector into polygon coordinates:

• 4 vertices in 2D = 8 scalars

Finding the right architecture for the encoder and decoder

Creation of an artificial dataset:

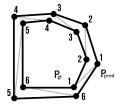
- Random 4-sided polygons as ground truth
- Rasterized polygons as image input

Infinite amount of simple example:

- Fast training, only a simple feature extractor is needed
- Test architectures to find the smallest encoder and decoder that work
- Pre-train decoder

Loss

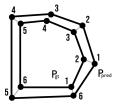
Network trained by supervised learning, naive loss:



$$L = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{P}_{gt}(\mathbf{i},.) - \mathbf{P}_{pred}(\mathbf{i},.)\|_2$$
(1)

Loss

Network trained by supervised learning, corrected loss:



$$L = \min_{\forall s \in [0,n-1]} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{P}_{\mathbf{gt}}(\mathbf{i},.) - \mathbf{P}_{\mathbf{pred}}(\mathbf{i} + \mathbf{s},.)\|_2$$
(2)

Experimental setup and training

N Girard et al. (nicolas.girard@inria.fr) Deep Learning regression of polygons 24th of July

Dataset

Solar panel dataset from Bradbury et al.⁴ from Duke University:

- 601 aerial images of 5000 \times 5000 px
- Ground truth polygons of photovoltaic arrays
- Polygons precisely annotated manually
- Over 19000 solar panels
- Over 6000 4-sided ground truth polygons
- 256 polygons for validation and another 256 for testing

⁴K. Bradbury et al., Distributed solar photovoltaic array location and extent dataset for remote sensing object identification (2016)

Training

- Feature extractor pre-trained on ImageNet⁵
- 2 Encoder initialized randomly
- Oecoder pre-trained on the artificial dataset

Learning rate schedule:

learning rate up to iteration	500	1000	90000
Feature extractor	0	0	$1e^{-5}$
Encoder	$1e^{-5}$	$1e^{-5}$	$1e^{-5}$
Decoder	0	$1e^{-5}$	$1e^{-5}$

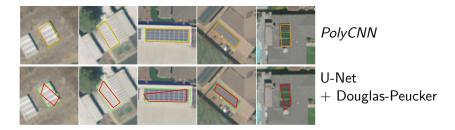
- Random weights produce big gradients at the start of training
- Avoid rapid distortion of pre-trained weights by freezing them in the beginning

⁵ J. Deng et al., ImageNet: A Large-Scale Hierarchical Image Database (2009)

Results

Visual results

Test on image patches never seen by the network:



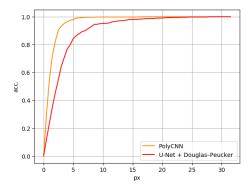
Green: ground truth, orange: PolyCNN output and red: U-Net + Douglas-Peucker output

Results

Quantitative results

	PolyCNN	U-Net + Douglas-Peucker
mloU	79.5%	62.4%

For any threshold τ we compute the fraction of vertices whose ground truth point distance is less than τ :



Concluding remarks

Conclusions

- Learning directly in vectorial space is possible in a end-to-end fashion
- We get better results than a 2-step process involving a U-Net followed by vectorization
- Our method can better predict the geometric shape of the object (orientation and close-to-right angles)

Future works

- Learn *n*-sided polygons (keep the same feature extractor and encoder but train a different decoder)
- Learn to outline other types of objects
- Try using a fully-convolutional architecture in the future

Thank you for your attention !

Any questions ?

24 / 24