
Aligning and Updating Cadaster Maps
with Aerial Images

by Multi-Task, Multi-Resolution Deep Learning

Nicolas Girard1, Guillaume Charpiat2, and Yuliya Tarabalka1

1 TITANE team, INRIA, Université Côte d’Azur, France
2 TAU team, INRIA, LRI, Université Paris-Sud, France

firstname.lastname@inria.fr

Abstract. A large part of the world is already covered by maps of build-
ings, through projects such as OpenStreetMap. However when a new im-
age of an already covered area is captured, it does not align perfectly with
the buildings of the already existing map, due to a change of capture an-
gle, atmospheric perturbations, human error when annotating buildings
or lack of precision of the map data. Some of those deformations can be
partially corrected, but not perfectly, which leads to misalignments. Ad-
ditionally, new buildings can appear in the image. Leveraging multi-task
learning, our deep learning model aligns the existing building polygons
to the new image through a displacement output, and also detects new
buildings that do not appear in the cadaster through a segmentation out-
put. It uses multiple neural networks at successive resolutions to output
a displacement field and a pixel-wise segmentation of the new buildings
from coarser to finer scales. We also apply our method to buildings height
estimation, by aligning cadaster data to the rooftops of stereo images.
The code is available at https://github.com/Lydorn/mapalignment.

Keywords: Alignment · Registration · Multi-task · Multi-resolution

1 Introduction

Having a precise map of buildings is crucial for numerous applications such
as urban planning, telecommunications and disaster management [9]. In the
field of remote sensing, satellite or aerial images are used to retrieve meaningful
geolocalized information. This may be the location of man-made objects, animals
or plants, or delimitation perimeters of semantic areas such as forests, urban
areas and buildings. The general goal is to automatically produce a map of the
world.

One of the challenges in remote sensing is to deal with errors in the data.
Each pixel in an image can be geolocalized by knowing the position and angle
of the satellite, as well as the digital elevation model which gives the elevation
of every point on earth. These data contain uncertainty errors, especially the

https://github.com/Lydorn/mapalignment


2 N. Girard et al.

Fig. 1: Crop of one of the test images. Green buildings: ground truth; red: mis-
aligned [input]; blue: aligned [our output].

digital elevation model which typically has a spatial resolution of 10 meters and
a vertical resolution of 1 meter [14]. Also, atmospheric effects introduce errors,
which might be reduced to an extent [15], but might still be there. Thus even if an
object is accurately detected in an image, its geolocalization error may be high.
Human-made maps may also suffer from geolocalization errors, due to human
error [16] or to simply a lack of precision in the source material (scanned cadaster
data from local authorities). Therefore, large misalignments frequently occur
between a remote sensing image and an existing map. We observed displacements
of up to 8 meters in OpenStreetMap [10], which translates to 27px in a 30cm/px
image, and such displacements are not constant across the image.

There is a considerable amount of ground truth data available in the form of
existing maps, that could potentially be used to learn the task of automatically
mapping the world from remote sensing images, but it is useless in its current
form because of such misalignments. We thus aim at correcting them.

Solving this alignment problem, also known as non-rigid image registration,
can be formulated as the search for a dense displacement field between two given
images: here, a cadaster map and a satellite photography. Each pixel of the first
image is thus associated with a 2D displacement vector describing where it is
mapped to in the second image. Non-rigid registration also arises notably in
medical imaging, where different scans need to be aligned (scans of different
patients, or of the same patient at different times, or of different modalities).
Classically, alignment problems are classified in two categories: mono-modal or
multi-modal, depending on whether the two images to be registered are taken
by the same type of sensor or not.

Classical methods for mono-modal image alignment use image similarity mea-
sures or key-point descriptors such as SIFT [7] or HOG [3] to match parts of the



Cadaster alignment and updating 3

2 images with each other [11]. More recent methods use CNNs to predict the
optical flow between two images [4]. These methods rely intrinsically on appear-
ance similarities and thus cannot be extended to the multi-modal setting, which
is our case of interest. Note e.g. that trees can cover part of the objects of interest
in the RGB image while trees are not indicated on the cadastral map, so direct
point-to-point appearance matching would fail. However a recent method con-
sidered structural similarity [18] to define a new feature descriptor for key-point
matching.

These methods are not specific to certain types of images or objects, which
is why they are widely used. However machine learning and more recently deep
learning methods have achieved state-of-the-art performance on many computer
vision problems by learning the best features for the task at hand. Several deep
learning methods for image registration have been proposed, for instance Quick-
silver [17] learns an image similarity measure directly from image appearance, to
predict a dense deformation model for applications in medical imaging. However
it works best for rather small displacements and with 2 image-like modalities.
Also from the field of medical imaging, the fully-convolutional neural network U-
Net [12] has been widely-used for image segmentation. Its use of skip-connections
at intermediate levels of the network performs very well for predicting a spatially
precise output that corresponds pixel-to-pixel to the input image. A new deep
learning method for remote sensing imaging using a U-Net-like model has been
proposed by [19], in a multi-resolution approach to predict large displacements.
Indeed, solving for increasing resolutions iteratively has proved successful in a
number of applications [5,2].

Another success in machine learning has been the use of multi-task learning
[13]. The idea is to learn multiple tasks at the same time with a single neural
network instead of one network per task. This allows the network to train better
as it learns common features from all tasks while still being able to learn task-
specific features. It also has the advantage of producing a single neural network,
smaller and faster than the compilation of individual task-specific networks.

We propose a deep learning method that uses the multi-resolution approach
from [19] and aims to improve the results by training the network with a multi-
task objective. The primary objective is to directly compute a dense displacement
map (or flow) that aligns the building cadaster to the image (for example building
cadaster from OpenStreetMap). See Fig. 1 for a visual result of our alignment
method. The second objective is to output a segmentation of the buildings from
the image (otherwise known as pixel-wise classification) to help train the network
and detect new buildings as well which can be used to update a map with missing
buildings or recently-built buildings. The contributions of this work are:

(i) the design of a fully-convolutional neural network able to correct and update
existing cadastral maps. Multi-task learning is used to improve alignment
performance and to provide new building detection at no additional cost;

(ii) the use of intermediate losses inside the network to help gradients flow and
improve final performance on both objectives;

(iii) random dropping of input polygons, to force the detection of new objects.



4 N. Girard et al.

After presenting the methodology in Section 2, we present our experimental
setup in Section 3; we apply our method to the building alignment task and
evaluate the results in Section 4. We show another applicative potential of our
method on building height estimation, from a pair of images and misaligned
building cadaster data, in Section 5.

2 Methodology

2.1 Objective functions

Mathematical modeling. Given two images A1 and A2 of same size H ×W ,
but of different modalities, e.g. with A1 an RGB image (picture from a satellite)
and A2 a binary image (cadaster, indicating for each pixel whether it belongs to
a building or not), the alignment problem aims at finding a deformation, i.e. a
2D vector field f defined on the discrete image domain [1, H]× [1,W ], such that
the warped second image A2 ◦ (Id + f) is well registered with the first image
A1. To do this, in a machine learning setting, we will provide examples of image
pairs (A1, A2) as inputs, and ask the estimated deformation f̂ to be close to the
ground truth deformation fgt.

For the segmentation problem, only the RGB image A1 is given as input,
and the desired output is an image of same size, expressing building presence
probability for each pixel. The ground truth segmentation is thus the perfectly-
registered cadaster A2 ◦ (Id + fgt).

Displacement field map cost function. The displacement field map loss
function is the mean squared error between the predicted displacement field
map (f̂) and ground truth displacement field map (fgt). However, the displace-
ment cannot be predicted equally well on every pixel in the image. For example,
building corners can be precisely matched, while building boundary pixels have
ambiguous displacement along one dimension (the boundary), which is classi-
cally known as the aperture problem, and whereas pixels x inside homogeneous
cadaster zones (i.e. far inside or outside buildings) suffer from ambiguity in both
spatial dimensions and thus cannot hope for a precise displacement vector f(x).
To take this into account, we distinguish 4 different classes of pixels on the input
cadaster image A2 (which can be seen as a misaligned polygon raster image):
background, polygon interior, edge, and vertex, in decreasing difficulty order. We
denote by c(x) ∈ {1, 2, 3, 4} the class of a pixel x ∈ [1, H]×[1,W ]. We apply a dif-
ferent loss coefficient wc on each pixel class c, making the loss a weighted average
of square errors. The loss coefficients are of increasing values from background
pixels to vertex pixels (w1 ≤ w2 ≤ w3 ≤ w4). As pixel classes are unbalanced,
the loss of a pixel x is normalized by the pixel count of its corresponding class,
denoted by nc(x). The displacement field cost is thus defined as:

Ldisp(f̂) =
∑

x∈[1,H]×[1,W ]

wc(x)

nc(x)

∥∥∥f̂(x)− fgt(x)
∥∥∥2
2

(1)



Cadaster alignment and updating 5

Segmentation cost function. As the task of aligning buildings requires to
be able to detect where buildings are, we consider an additional segmentation
task, to help the training. For each pixel x, and for each class c ∈ {background,
polygon interior, edge, vertex} independently, we predict the probability p̂c(x)
that a pixel x belongs to class c. The associated loss function is the sum of class-
specific cross-entropies KL

(
D(pc

gt) ‖D(p̂c)
)
, where pc

gt(x) is the binary ground
truth (whether pixel x is of class c), and where D(p) stands for the distribution
(p, 1 − p) over the two possibilities (of class c or not). We also apply different
coefficients w′c for each class, to put more emphasis on vertices than edges, and
than interior and background (w′1 ≤ w′2 ≤ w′3 ≤ w′4). The segmentation cost
function is thus:

Lseg(p̂) =
1

HW

∑
x∈[1,H]×[1,W ]

4∑
c=1

w′c KL
(
D(pc

gt) ‖D(p̂c)
)
. (2)

2.2 Neural network with double inputs and outputs

Fig. 2: Model architecture for one resolution. There are 4 different levels inside
the network: one after each pooling operation in addition to the first level.

To address both tasks (alignment and segmentation), the main building block
of the method is designed as a neural network with 2 image inputs and 2 image
outputs (see Fig. 2). It uses skip-connections at multiple levels in the network like
U-Net [12]. Model inputs and outputs examples are shown in Fig. 3. The input
image A1 has 3 channels, with real values in [−1, 1], standing for RGB. The input



6 N. Girard et al.

misaligned polygon raster A2 has also 3 channels, with Boolean values in {0, 1},
corresponding to polygon interior, edge and vertices. The output displacement
field map has 2 channels with real values in [−1, 1], standing for the x and y
components of the displacement vector. The output segmentation (or pixel-wise
classification) has 4 channels: one for the background class, and three as for the
input polygon raster.

(a) (b)

(c) (d)

Fig. 3: (a) input image, (b) input misaligned polygon raster, (c) output displace-
ment field map, (d) output segmentation.

The network is fully convolutional and uses only 3× 3 convolutional kernels
without padding, which reduces the image size slightly after every layer but
avoids border artifacts. A 220× 220 px input image thus leads to a 100× 100 px
output. The first layer of the A1 input image branch has 32 convolutional fil-
ters. Then the number of filters doubles after each pooling operation. For the
misaligned polygon raster input branch (A2), the first layer requires 16 filters
only, as polygon rasters are less complex than standard images. In total, the net-
work has about 9 million trainable parameters. To train this network block, the
ground truth displacement map has values in [-4 px, 4 px] which are normalized
to [-1, 1] to match the output value range.

2.3 Multi-resolution

From coarse to fine. The multi-resolution approach iteratively applies a neural
network at increasing resolutions (see Fig. 4 for a diagram of the multi-resolution
pipeline). By solving the alignment problem from coarse to fine resolutions, the
difficulty at each resolution step becomes drastically lower than for the whole
problem. At the first step, the network is applied to the inputs downscaled by
a factor of 8. Assuming the initial displacements to predict are in the range
[-32px, 32px], the new low-resolution ones are within [-4px, 4px] only, reducing
significantly the search space. Then each next resolution step multiplies the im-
age resolution by a factor 2, and supposes that the remaining, finer deformation
to be found is within [-4px, 4px] at that scale (the larger displacements having
been found at the coarser scales). Note that we could multiply the resolution
by a factor 4 at each step, but that, to allow for a scale overlap and increase
stability, we keep a factor 2.



Cadaster alignment and updating 7

Fig. 4: Multi-resolution pipeline.

Intermediate cost functions. When training, the network quickly learns to
output a null displacement map, as it is the average of the ground truth displace-
ment maps, and is the best possible constant output. To help the gradients flow
and avoid the network being stuck in a local minimum, we added intermediate
outputs in the displacement map and segmentation branches at levels l = 0, 1, 2
of each resolution-specific block (see Fig. 2). The size of these intermediate out-
puts increases from inside the network block towards the final block outputs.
The corresponding loss functions are applied to these intermediary outputs with
different coefficients αl, and denoted by Ldisp

l and Lseg
l . As the training advances,

the intermediary losses’ coefficients αl are pushed to zero so that only the final
output is optimized. This helps the optimization process well:

Ldisp
total =

2∑
l=0

αlL
disp
l (3) Lseg

total =

2∑
l=0

αlL
seg
l (4)

Final objective function. The final objective function is a linear combination
of the displacement and segmentation cost functions: L = λ1L

disp
total + λ2L

seg
total.

3 Experimental setup

3.1 Datasets used

We perform experiments on a dataset made of the two available following ones:



8 N. Girard et al.

1. Inria Aerial Image Labeling Dataset [8],
2. Aerial imagery object identification dataset for building and road detection,

and building height estimation [1].

The first dataset has 360 images of 5000× 5000 px for 9 cities from Europe
and the U.S. Each image has in average a few thousand buildings. The second
dataset has 24 images of about 5000×5000 px and 1 image of about 10000×10000
px for 9 cities from the U.S. The building footprints were pulled from OSM for
both datasets. We removed images whose OSM data is too misaligned, keeping
images where it is relatively good. We split the second dataset into 3 sets: 8
images for training, 3 for validation and 3 for testing. To develop our method to
generalize to new cities and capture conditions, each set does not contain images
from the same cities under the same capture conditions as any of the other 2 sets.
From the first dataset, 332 images were picked for training and 26 for validation.
These datasets may seem small compared to other deep learning datasets which
can contain millions of images, but because each image is very big, they provide
enough data. For example, our testing dataset contains 13614 buildings. More
information on the splitting of these datasets into train, validation and test sets
can be found in Section 3 of the supplementary materials.

3.2 Data preprocessing

Displacement map generation. The model needs varied ground truth dis-
placement maps in order to learn, while the dataset is made of perfectly aligned
image pairs only (f = 0). We generate these randomly in the same way as
described in [19], by generating normalized 2D Gaussian random fields added
together for each coordinate (see Fig. 3(c) for an example). The displacements
are then scaled so that the maximum absolute displacement is 32 px. The ground
truth polygons are then inversely displaced by the generated displacements to
compute the misaligned polygons which are then rasterized (A2 ◦ (Id + f)).

Scaling and splitting into patches. All the images of the datasets do not
have the same ground sample distance (pixel width measured on the ground
in meters), which is a problem for a multi-resolution approach which learns a
specific model per resolution. As more than 90% of the images of our dataset
have a ground sample distance of 0.3 meters, we rescale the other images to
that ground sample distance so that they all match. Then every data sample
(image, misaligned polygon raster, and displacement map), which usually is of
size 5000 × 5000 px, is rescaled to 4 different resolutions defined by the scaling
factors. For example a scaling factor of 2 rescales the data sample to a size
of 2500 × 2500 px, resulting in a ground sample distance of 0.6 m. Successive
rescaling steps are performed as one, to limit interpolation errors of the scaling
operation. Finally, data samples are split into patches of size 220 ∗

√
2 = 312 px

with a stride of 100/2 = 50 px, to account for rotations in the data augmentation
step.



Cadaster alignment and updating 9

Classical data augmentations. To augment the dataset, classical augmenta-
tion techniques were used: perturb image brightness, contrast, saturation ran-
domly, rotate by a random real angle θ ∈ [0, 2π], random horizontal flip and crop
to the final input size of 220× 220 px.

Random dropping of input polygons. With displacements of only up to
4px, it could be easy for the network to keep a small error by outputting, as a
segmentation, just a copy of the input polygon raster A2. This behavior does
not allow the network to learn buildings from the input image A1, and it cannot
learn to detect new buildings either. To avoid this, we randomly drop (remove)
polygons from the polygon raster input before feeding it to the network. This
introduces a new hyper-parameter keep poly prob ∈ [0, 1] which is the probabil-
ity each input polygon is kept and actually fed to the network while training.
This operation is also data augmentation in that it generates multiple possible
inputs from one data sample.

3.3 Training

As shown in Fig. 4, 4 different models are used with scaling factors 8, 4, 2 and 1.
We trained 4 models independently for each scaling factor. We used the Adam
optimizer with batch size 32 on a GTX 1080 Ti. We used a learning rate of
1e−4 until iteration 25000 and then 0.5e−4 until the end (100000 iterations). We
also used weight L2 regularization with a factor of 1e−4. Tab. 1 summarizes the
loss coefficients for the intermediate losses (Eq. 3,4) as well as for the different
pixel classes (Eq. 1,2). We set keep poly prob = 0.1 to only keep 10% of input
polygons, in order to learn new buildings on 90% of the buildings.

Table 1: Intermediate loss coefficients αl and class loss coefficients wc, w
′
c.

Up to iter. 2500 5000 7500 100000

α0 0.50 0.75 0.9 1.0
α1 0.35 0.20 0.1 0
α2 0.15 0.05 0 0

wc w′
c

Background (c = 1) 0 0.05
Interior (c = 2) 0.1 0.1
Edge (c = 3) 1 1

Vertex (c = 4) 10 10

4 Cadastral map alignment

4.1 Results

To evaluate the method and its variations for the alignment task, we applied
the full pipeline on the 3 images of the city of San Francisco from the second
dataset. For each image, we generated 10 different displacement maps for a more
precise evaluation. For visual results of the alignment, see Fig. 5.

To measure the accuracy of the alignment, for any threshold τ we compute
the fraction of vertices whose ground truth point distance is less than τ . In other



10 N. Girard et al.

Fig. 5: Several crops of test images. Green buildings: ground truth; red: mis-
aligned [input]; blue: aligned [our output]. The right crop is an example of the
segmentation output.

words, we compute the Euclidean distance in pixels between ground truth ver-
tices and aligned vertices, and plot the cumulative distribution of those distances
in Fig. 6a (higher is better). The no alignment curves are for comparison and
show the accuracy obtained if the output displacement map is zero everywhere.

We compared our method to Zampieri et al. [19], which we trained on the
same dataset; its test accuracy is summarized in Fig. 6c. We also compare to
Quicksilver [17]; however it could not handle the 32px displacements we tested
on (it gave worse results than no alignment), so we trained Quicksilver with
images downscaled by a factor of 4 and displacements of 4 px maximum at the
downscaled resolution. We compare this version of Quicksilver with the model
of our method trained with the same downscaling factor for a fair comparison.
Fig. 6b shows the result of this comparison.

To test the segmentation of new buildings, we apply the model trained at
the highest resolution (with a scaling factor of 1) with just the image as input.
The polygon raster input is left blank as would be the case with an empty
map. In this extreme case, all buildings in the image are new (with respect to
the empty polygon raster input). See the right image of Fig. 5 for an example of
segmentation. We measure the IoU (Intersection over Union) between the ground
truth polygons and the output polygon raster (which combines the polygon
interior, edge and vertex channels of the model’s output). The polygon raster
has values between 0 and 1, we threshold it at various values to obtain a polygon
mask. The IoU (Intersection of Union) is then computed for the 3 test images
(see Fig. 6d for the mean IoUs).

We proceeded to ablation studies to measure the performance gains of the
3 main contributions of this work. For the alignment objective, we removed the
segmentation branch in a first experiment, removed all intermediary losses in a
second experiment and set the probability of dropping input polygons to 1 in



Cadaster alignment and updating 11

(a) Our method on 3 areas (b) Quicksilver comparison

(c) Ablation studies (d) Segmentation task

Fig. 6: Accuracy cumulative distributions and mean IoU values. Faded curves
each correspond to one of the 10 polygon maps to align per image. Solid curves
are the average.

a third experiment. See Fig. 6c for the mean accuracy cumulative distributions
of these experiments. For the segmentation objective, we set the probability of
dropping input polygons to 1 in a first experiment, removed all intermediary
losses in a second experiment and removed the displacement branch in a third
experiment. See Fig. 6d for the mean IoUs of these experiments.

We also tested the generalization across datasets by using a third dataset.
The networks trained on this new dataset plus the dataset by Bradbury et al. [1]
generalize well to the Inria dataset. This experiment can be found in the sup-
plementary materials.

4.2 Discussion

The ground truth from OSM we used is still not perfect, we can see some mis-
alignment of a few pixels in some places. But our method still can learn with
this ground truth.

We observe that the final alignment accuracy does not depend much on the
initial misalignment. As can be seen in Fig. 6a for each area, accuracy curves
corresponding to “not aligned” have a lot of variability (because of the randomly-



12 N. Girard et al.

generated displacements), whereas accuracy curves corresponding to “aligned”
have a very low variability.

We show in Fig. 6c that we improve upon the method of Zampieri et al. and
in Fig. 6b that our model performs better than Quicksilver in the one-resolution
setting with small displacements.

Impact of the segmentation branch. When removing the segmentation
branch altogether, we globally lose accuracy on the alignment task. Fig. 6c
shows a drop of 22% for a threshold value of 4px. The segmentation branch
was initially added to stabilize the beginning of the training, it turns out it also
improves the final performance of the network as well as providing a way to
detect new buildings that do not appear in the input misaligned building map.
We chose to classify polygon edges and vertices in addition to the very common
polygon interior classification, in order to control how much the network has to
focus on learning edges and vertices to optimize its cost function. It also gives
more information compared to a classical building classification map. Classify-
ing building edges allows for the separation of individual buildings that touch
each other as can be seen in the right image of Fig. 5. The final goal of using
the segmentation output is to vectorize the bitmap to obtain building polygons
that can be added to an existing map. Detecting vertices, edges and interior
of buildings should help this vectorization step which we hope to explore in a
future work.

Impact of the displacement branch. When removing the displacement
branch, we also lose accuracy on the segmentation task. Fig. 6d shows a rel-
ative gain of the full method in terms of area under the curve of 4.6% compared
to not using multi-task learning.

Impact of intermediary cost functions. We lose more alignment accuracy
when not using intermediary cost functions by setting α0 = 1, α1 = 0 and
α2 = 0. Fig. 6c shows a drop of 32% for a threshold value of 4px. It also affects
the segmentation task. Fig. 6d shows a relative gain of the full method in terms of
area under the curve of 8.3% compared to not using intermediary cost functions.
This technique proves that using intermediary losses could improve semantic
segmentation methods.

Impact of randomly dropping input polygons. If we set the probabil-
ity of dropping input polygons to 0 (equivalent to not using this technique),
the network almost does not output anything for the segmentation output, and
consequently the IoU gets very low (see Fig. 6d). The reason is that it learns
to output a building only when there is a building in the input. We checked
that this technique does not decrease the performance of the alignment task:
Figure 6c shows that the 2 curves corresponding to using this technique (full
method) and not using it (no dropping of input polygons) are equivalent.



Cadaster alignment and updating 13

5 2.5D reconstruction of buildings

5.1 Method

The alignment of building polygons can be used to solve the building height esti-
mation problem to reconstruct 2.5D buildings from a stereo pair of images. The
inputs to the method are 2 orthorectified satellite images captured from different
views and a cadaster map of buildings which does not need to be precise. The
first step consists in using our alignment method to align the building cadaster to
the first image and to the second image. We then measure for each building the
distance between the corresponding aligned buildings in both images. From this
distance it is possible to compute the height of the building with trigonometry
(assuming the ground is flat). For this we need to know the elevation (ei) and az-
imuth (ai) angles of the satellite when it captured each image i. We first used Eq.
19 from [6] which uses only elevation angles because they assume both images
are captured from the same side of nadir and also that the satellite ground path
goes through the captured area (meaning the azimuth angles are the same). We
generalize their formula by including azimuth angles, thus linking the building
height H to the distance D between the 2 aligned building polygons as:

H = D
tan(e1) tan(e2)√

tan2(e1) + tan2(e2)− 2 tan(e1) tan(e2) cos(a1 − a2)
(5)

5.2 Results and discussions

(a) Accuracy cumulative distributions (b) 2.5D buildings

Fig. 7: Height estimation by alignment of polygons of one view to the image of
the other view and vice versa.

We applied this method to a pair of Pléiades satellite images of the city of
Leibnitz. So that the accuracy can be quantified, ground truth buildings with
a height attribute were given to us by the company Luxcarta along with the
satellite images. Image 1 was captured with an elevation and azimuth angles
of 76.7°and 212.9°respectively. For Image 2 those angles are 69.6°and 3.6°. We
aligned the building polygons to the 2 images with our method; the accuracy of
the alignment is displayed in Fig. 7a. The models of our method were trained

https://luxcarta.com/


14 N. Girard et al.

on aerial images only and were applied as-is to these 2 satellite images. We use
the same elevation and azimuth angles for every building of an image, as our
data comprises the mean angles of the images only. In reality, the angles are
not constant across the image and Eq. 5 can be used with different angles per
building. See Fig. 7b for the 2.5D buildings obtained by this method. For each
building we measure the difference between the ground truth height and the
predicted height. We obtain a mean error of 2.2 meters. We identified 2 sources
of error:
1. Our model did not train on images far from nadir (lack of ground truth data

at those angles). This is why Image 2 has lower alignment accuracy than
Image 1: being farther from nadir, the network has more trouble with it.

2. Alignment errors get multiplied by a greater factor when the elevation angle
is near nadir (closer to 90°) than when it is farther from it (closer to 0°).

These 2 sources of errors should be solved by the same solution: training the
networks on images farther from nadir with good ground-truth.

6 Conclusions

The multi-task, multi-resolution method presented in this paper can be used
to effectively solve the common problem of aligning existing maps over a new
satellite image while also detecting new buildings in the form of a segmentation
map. The use of multi-task learning by adding the extra segmentation task not
only helps the network to train better, but also detects new buildings when cou-
pled with a data augmentation technique of randomly dropping input polygons
when training. Adding intermediate losses at different resolution levels inside the
network also helps the training by providing a better gradient flow. It improves
the performance on both alignment and segmentation tasks and could be used
in other deep learning methods that have an image-like output which can be
interpreted at different scales. Interestingly, multi-task learning also helps the
segmentation task, as adding the displacement loss when training increases IoU.

We also tried our method on the task of building height estimation, generat-
ing simple but clean 3D models of buildings. We hope that our method will be
a step towards automatically updating maps and also estimating 3D models of
buildings. In the future we plan to work on the segmentation branch by using
a better-suited loss for each output channel and a coherence loss between chan-
nels, to further improve map updating. We also plan to improve displacement
learning by adding a regularization loss enforcing piece-wise smooth outputs,
such as the BV (Bounded Variation) norm or the Mumford-Shah functional.

7 Acknowledgments

This work benefited from the support of the project EPITOME ANR-17-CE23-
0009 of the French National Research Agency (ANR). We also thank Luxcarta
for providing satellite images with corresponding ground truth data and Alain
Giros for fruitful discussions.

https://luxcarta.com/


Cadaster alignment and updating 15

References

1. Bradbury, K., Brigman, B., Collins, L., Johnson, T., Lin, S., Newell, R., Park, S.,
Suresh, S., Wiesner, H., Xi, Y.: Aerial imagery object identification dataset for
building and road detection, and building height estimation (Jul 2016)

2. Charpiat, G., Faugeras, O., Keriven, R.: Image statistics based on diffeomorphic
matching. In: ICCV (Oct 2005)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (June 2005)

4. Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. CoRR (2015)

5. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal
image matching. International Journal of Computer Vision (Dec 2002)

6. Licciardi, G.A., Villa, A., Mura, M.D., Bruzzone, L., Chanussot, J., Benediktsson,
J.A.: Retrieval of the height of buildings from worldview-2 multi-angular imagery
using attribute filters and geometric invariant moments. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing (Feb 2012)

7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision (Nov 2004)

8. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling meth-
ods generalize to any city? the inria aerial image labeling benchmark. In: IGARSS
(2017)

9. Manfr, L.A., Hirata, E., Silva, J.B., Shinohara, E.J., Giannotti, M.A., Larocca,
A.P.C., Quintanilha, J.A.: An analysis of geospatial technologies for risk and natu-
ral disaster management. ISPRS International Journal of Geo-Information (2012)

10. OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org
(2017)

11. Ptucha, R., Azary, S., Savakis, A.: Keypoint matching and image registration using
sparse representations. In: IEEE International Conference on Image Processing
(Sept 2013)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. CoRR (2015)

13. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
(2017)

14. Thompson, J.A., Bell, J.C., Butler, C.A.: Digital elevation model resolution: ef-
fects on terrain attribute calculation and quantitative soil-landscape modeling.
Geoderma (2001)

15. Wang, A.: Correction of atmospheric effects on earth imaging (extended inverse
method). Mathematical Modelling (1987)

16. Wright, J.K.: Map makers are human: Comments on the subjective in maps. Ge-
ographical Review (1942)

17. Yang, X., Kwitt, R., Niethammer, M.: Quicksilver: Fast predictive image registra-
tion - a deep learning approach. CoRR (2017)

18. Ye, Y., Shan, J., Bruzzone, L., Shen, L.: Robust registration of multimodal remote
sensing images based on structural similarity. IEEE Transactions on Geoscience
and Remote Sensing (May 2017)

19. Zampieri, A., Charpiat, G., Tarabalka, Y.: Coarse to fine non-rigid registration:
a chain of scale-specific neural networks for multimodal image alignment with
application to remote sensing. CoRR (2018)


	Aligning and Updating Cadaster Maps  with Aerial Images by Multi-Task, Multi-Resolution Deep Learning  

