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1 Foreword

Code The whole code (image registration, experiments to test density estimators, enforcing
similarity...) is available on the following github repository: https://github.com/Lydorn/
netsimilarity .

Content of this document This document contains further details on the article Input Similarity
from the Neural Network Perspective, such as mathematical proofs, experimental details and further
discussions.

2 Proofs of the properties of the 1D similarity kernel

We give here the proofs at the properties of the 1-dimensional-output similarity kernel.

2.1 Proof of Theorem 1

Theorem 1. For any real-valued neural network fθ whose last layer is a linear layer (without any
parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any
inputs x and x′,

∇θfθ(x) = ∇θfθ(x′) =⇒ fθ(x) = fθ(x
′) .

Proof. If the last layer is linear, the output is of the form fθ(x) =
∑
i wiai(x)+b, wherewi and b are

parameters in R and ai(x) activities from previous layers. The gradient∇θfθ(x) contains in particular
as coefficients the derivatives dfθ(x)dwi

= ai(x). Thus∇θfθ(x) = ∇θfθ(x′) =⇒ ai(x) = ai(x
′) ∀i in

the last layer. The outputs can be then rebuilt: fθ(x) =
∑
i wiai(x)+b =

∑
i wiai(x

′)+b = fθ(x
′).

If the output is of the form fθ(x) = σ(c(x)) with c(x) =
∑
i wiai(x) + b, then the gradient equality

implies dfθ(x)
db = dfθ(x

′)
db , whose value is σ′(c(x)) = σ′(c(x′)). Then, as σ′(c(x)) ai(x) = dfθ(x)

dwi
=

dfθ(x
′)

dwi
= σ′(c(x′)) ai(x

′), we can deduce ai(x) = ai(x
′) for all i provided σ′(c(x)) 6= 0. In

that case, from these identical activities one can rebuild identical outputs. Otherwise, σ′(c(x)) =
σ′(c(x′)) = 0, which is not possible with strictly monotonous activation functions, such as tanh or
sigmoid. For ReLU, σ′(c(x)) = 0 =⇒ σ(c(x)) = 0 and thus fθ(x) = fθ(x

′) = 0. The same
reasoning holds for other activation functions with only one flat piece (such as the ReLU negative
part), i.e. for which the set σ(σ′−1({0})) is a singleton.
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2.2 Proof of Corollary 1

Corollary 1. Under the same assumptions, for any inputs x and x′,

kCθ (x.x′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) ,
hence kCθ (x.x′) = 1 =⇒ fθ(x) = fθ(x

′) .

Proof. kCθ (x.x′) = 1 means ∇θfθ(x)
‖∇θfθ(x)‖ ·

∇θfθ(x′)
‖∇θfθ(x′)‖ = 1, which implies ∃α ∈ R∗, ∇θfθ(x) =

α∇θfθ(x′). We need to show that α = 1. Under the assumptions of Theorem 1, following its proof:

• either the last layer is linear, the output is of the form fθ(x) =
∑
i wiai(x) + b, and then

∇bfθ(x) = α∇bfθ(x′) while dfθ(x)
db = 1 and dfθ(x

′)
db = 1, hence α = 1;

• either the output is of the form fθ(x) = σ(c(x)) with c(x) =
∑
i wiai(x) + b, and then

σ′(c(x)) = ∇bfθ(x) = α∇bfθ(x′) = ασ′(c(x′)), while, for any i, σ′(c(x)) ai(x) =
dfθ(x)
dwi

= αdfθ(x
′)

dwi
= ασ′(c(x′)) ai(x

′). Thus, supposing σ′(c(x)) 6= 0, we obtain ai(x) =

ai(x
′) ∀i, and thus we can rebuild from the activities c(x) = c(x′), from which σ′(c(x)) =

σ′(c(x′)) and thus α = 1. Otherwise, σ′(c(x)) = σ′(c(x′)) = 0 and the two full gradients
∇θfθ(x) and∇θfθ(x′) are 0 and thus equal.

The conditions for kCθ (x.x′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) to hold are actually much weaker: it
is sufficient that in the whole network architecture there exists one useful neuron (in the sense of the
next paragraph) of that type (so called linear but actually affine).

2.3 Proof of Theorem 2

Theorem 2. For any real-valued neural network fθ without parameter sharing, if ∇θfθ(x) =
∇θfθ(x′) for two inputs x,x′, then all useful activities computed when processing x are equal to the
ones obtained when processing x′.

We name useful activities all activities whose variation would have an impact on the output, i.e. all the
ones satisfying dfθ(x)

dai
6= 0. This condition is typically not satisfied when the activity is multiplied by 0,

i.e. wi = 0, or when it is negative and followed by a ReLU, or when all its contributions to the output
annihilate together (e.g., a sum of two neurons with opposite weights: fθ(x) = σ(ai(x))−σ(ai(x))).

Proof. Let ai(x) be a useful activity (for x). It is fed to at least one useful neuron, whose pre-
activation output is of the form c(x) =

∑
i wiai(x) + b. Then dfθ(x)

db = dfθ(x)
dc 6= 0 (the output of the

neuron is useful), and dfθ(x)
dwi

= dfθ(x)
db ai(x). From the gradient equality, ai(x) = dfθ(x)

dwi
/dfθ(x)db =

dfθ(x
′)

dwi
/dfθ(x

′)
db = ai(x

′).

3 Higher output dimension

We expand here all the mathematical aspects of the homonymous section of the article.

3.1 Derivation

Let us now study the case where fθ(x) is a vector in Rd with d > 1.

The optimal parameter change δθ to push fθ(x) in a direction v (with a force ε) is less straightforward
to obtain. First, one can define as many gradients as output coordinates: ∇θf iθ(x), for i ∈ J1, dK.

This family of gradients can be shown to be linearly independent, unless the architecture of the
network is specifically built not to. If for instance each output coordinate has its own bias parameter,
i.e. writes in the form f iθ(x) = bi + gθ(x) or σ(bi + gθ(x)) with a strictly monotonous activation
function σ, then the derivative w.r.t. bi will be 1 (or σ′) only in the i-th gradient and 0 in the other ones.
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Thus the j-th gradient contains in particular the subvector (df
j

dbi
)i = (δi=j)i, and the gradients are

consequently independent. In the case where all coordinates depend on all biases, but not identically,
as with a softmax, the argument stays true.

Any parameter variation δθ ∈ Rp can then be uniquely decomposed as:

δθ =

d∑
i=1

αi∇f iθ(x) + γ

where αi ∈ R and where γ ∈ Rp is orthogonal to all coordinate gradients. This parameter variation
induces an output variation:

fθ+δθ(x)− fθ(x) = ∇θfθ(x) δθ +O(‖δθ‖2)

=

(∑
i

αi∇θf iθ(x) · ∇f jθ (x)

)
j

+ 0 +O(‖δθ‖2)

= Cα+O(‖α‖2)

where C is the correlation matrix of the gradients: Cij = ∇θf iθ(x) · ∇f jθ (x). It turns out that C is
invertible:

Cα = 0 =⇒ αCα = 0 =⇒ α∇θfθ(x)∇θfθ(x)α = 0

=⇒ ‖∇θfθ(x)α‖2 = 0 =⇒
∑
i

αi∇f iθ(x) = 0

=⇒ α = 0 as the∇θf iθ(x) are linearly independent. Thus, for a desired output move in the direction
v with amplitude ε, i.e. fθ+δθ(x)− fθ(x) = εv, one can compute the associated linear combination
α = εC−1v and thus the smallest associated parameter change δθ =

∑
i αi∇f iθ(x).

The output variation induced at any other point x′ by this parameter change is then:

fθ+δθ(x
′)− fθ(x′) =

(
∇θf iθ(x′) · δθ

)
i
+O(‖δθ‖2)

=

∑
j

αj∇θf iθ(x′) · ∇θf
j
θ (x)


i

+O(‖δθ‖2).

= εKθ(x
′,x)Cθ(x)−1 v + O(ε2) (1)

where the d× d kernel matrix Kθ(x,x
′) is defined by Kij

θ (x,x′) = ∇θf iθ(x) · ∇θf jθ (x′), and where
the matrixCθ(x) = Kθ(x,x) is the previously defined self-correlation matrixC. Its role is equivalent
of the normalization by ‖∇θfθ(x)‖2 in the 1D case, in plus of decorrelating the gradients.

The interpretation of (1) is that if one moves the output for point x by v, then the output for point x′
will be moved also, by Mv, with M = Kθ(x,x

′)Kθ(x,x)−1. Note that these matrices M or K are
only d× d where d is the output dimension. They are thus generally small and easy to manipulate or
inverse.

3.2 Normalized cross-correlation matrix

The normalized version of the kernel (1) is:

KC
θ (x,x′) = Cθ(x)−1/2 Kθ(x,x

′) Cθ(x
′)−1/2 (2)

which is symmetric in the sense that KC
θ (x′,x) = KC

θ (x,x′)T .

A matrix KC
θ (x,x′) with small coefficients means that x and x′ are relatively independent, from a

neural network point of view (moves at x won’t be transferred to x′). On the opposite, the highest
possible dependency is KC

θ (x,x) = Id.

To study properties of this similarity measure, note that KC
θ (x,x′) = (GNx )T GNx′ with GNx =

Gx(GTxGx)−1/2, where Gx = ∇θf(x) : it is the product of normalized, decorrelated versions of
the gradient. Indeed, at any point x, the normalized gradient matrix GNx satisfies: (GNx )T GNx =
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KC
θ (x,x) = Kθ(x,x)−1/2Kθ(x,x)Kθ(x,x)−1/2 = Id and consequently GNx can be seen as an

orthonormal family of vectors GN,ix .

The L2 (Frobenius) norm of the ortho-normalized gradient GNx is thus:∥∥GNx ∥∥2F = Tr((GNx )T GNx ) = Tr(Id) = d .

At point x′, GNx′ is also an orthonormal family, but possibly arranged differently or generating a
different subspace of Rp. IfGNx andGNx′ generate the same subspace, then their product (GNx )T GNx′ is
an orthogonal matrix Q (change of basis) and its L2 (Frobenius) norm is then

∥∥Q∥∥2
F

= Tr(QTQ) =

Tr(Id) = d. Otherwise, (GNx )T GNx′ can be seen as a projection from one subspace to another one,
each vector GN,jx′ is projected onto the ortho-normal family (GN,ix )i, and as a projection decreases

the Euclidean norm,
∑
i

(
GN,ix ·GN,jx′

)2
6
∥∥GN,jx′

∥∥2 = 1. Thus:∥∥KC
θ (x,x′)

∥∥
F

=

√∑
ij

(
GN,ix ·GN,jx′

)2
6
√
d .

Moreover, any coefficient of the kernel matrix satisfies:∣∣∣KC,ij
θ (x,x′)

∣∣∣ =
∣∣∣GN,ix ·GN,jx′

∣∣∣ 6 ∥∥GN,ix

∥∥
2

∥∥GN,jx′

∥∥
2

= 1

as each vector GN,ix is unit-norm. This implies in particular that the trace is bounded:
−d 6 Tr(KC

θ (x,x′)) 6 d.

To sum up, the similarity matrix KC
θ (x,x′) satisfies the following properties:

• its coefficients are bounded, in [−1, 1]
• its trace is at most d
• its (Frobenius) norm is at most

√
d

• self-similarity is identity: ∀x, KC
θ (x,x) = Id

• the kernel is symmetric, in the sense that KC
θ (x′,x) = KC

θ (x,x′)T .

3.3 Similarity in a single value

Note that when the trace is close to its maximal value d, the diagonal coefficients are close to 1, and
their contribution to the Frobenius norm squared is close to d. Therefore, all non-diagonal coefficients
are close to 0, and the matrix is close to Id. And reciprocally, a matrix close to Id has a trace close to
d. Thus, two related ways to quantify similarity in a single real value in [−1, 1] appear:

• the distance to the identity D =
∥∥KC

θ (x,x′)− Id
∥∥
F

, which can be turned into a similarity
as 1− 1√

d
D or 1− 1

2dD
2, since D ∈ [0, 2

√
d]

• the normalized trace: 1
d TrKC

θ (x,x′), which is also the alignment with the identity:
1
dK

C
θ (x,x′) ·F Id, where ·F denotes the Frobenius inner product (i.e. coefficient by coeffi-

cient).

The link between these two quantities can be made explicit by developing:∥∥KC
θ (x,x′)− Id

∥∥2
F

=
∥∥KC

θ (x,x′)
∥∥2
F
− 2Tr(KC

θ (x,x′)) + d

which rewrites as: (
1− D2

2d

)
=

Tr(KC
θ (x,x′))

d
+

1

2

(
1−

∥∥KC
θ (x,x′)

∥∥2
F

d

)
.

The last term lies in [0, 1] and measures the mismatch between the vector subspaces generated by the
two families of gradients

(
∇θf i(x)

)
i

and
(
∇θf i(x′)

)
i
. It is 1 when fθ(x) and fθ(x′) can be moved

independently, and 0 when they move jointly (though not necessarily in the same direction).

As our two similarity measures 1− D2

2d and 1
dTr(KC

θ (x,x′)) have same optimum (Id) and are closely
related, in the sequel we will focus on the second one and define:

kCθ (x,x′) =
1

d
TrKC

θ (x,x′) . (3)
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3.4 Metrics on output: rotation-invariance

Similarity in Rd, to compare v and v′ = Mv, might be richer than just checking whether the vectors
are equal or close in L2 norm.

For instance, one could quotient the output space by the group of rotations, in order to express a
known or desired equivariance of the network to rotations. If the output is the predicted motion of
some object described in the input, one could wish indeed that if the input object is rotated by an
angle φ, then the output should be rotated as well with the same angle.

In that case, given two inputs x and x′ and associated output variations v and v′, without knowing
the rotation angle if applicable, one could consider all possible rotated versions Rφv′ = RφMv,
where Rφ is the rotation matrix with angle φ, and pick the best angle φ that maximizes the alignment
v · RφMv, i.e. such that RφM is the closest to the d × d identity matrix. This can be computed
easily in closed form, for instance in the 2-dimensional case as follows.

The 2 × 2 matrix of interest (Eq. 2) can be written as the product of two p × 2 matrices of the
form G(GTG)−1/2, where G is the matrix containing the gradient of all coordinates. Rotating the
coordinates of G amounts to considering GRφ(RTφG

TGRφ)−1/2 = G(GTG)−1/2Rφ instead. Thus
the effect of rotation is just right-multiplying our 2×2 matrixM of interest (Eq. 2) byRφ. We are thus
interested into getting MRφ as close as possible to the 2× 2 identity. For our trace-based similarity
kernel (Eq. 3), this amounts to maximizing Tr(MRφ) = cos(φ)(M11 +M22) + sin(φ)(M12−M21)
w.r.t. φ, whose optimal value is:

kC,rotθ (x,x′) =
1

2

√
(M11 +M22)2 + (M12 −M21)2

=
1

2

√∥∥M∥∥2
F

+ 2 detM

where M = KC
θ (x,x′). This quantity is indeed rotation-invariant, as the Frobenius norm and the

determinant do not change upon rotations. Note that one could also consider instead the subspace
match 1

d

∥∥M∥∥2
F

. The main difference between the two is that the first one penalizes mirror symmetries
(through detM ) while the second one does not.

Note that other metrics are possible in the output space. For instance, the loss metric quantifies the
norm of a move v by its impact on the loss dL(y)

dy

∣∣∣
fθ(x)

(v). It has a particular meaning though,

and is relevant only if well designed and not noisy, as seen in the remote sensing image registration
example.

4 Estimating density

4.1 Toy problem

The toy problem used in the paper to test the various estimators for neighbor count estimation consists
of predicting a one dimensional function, namely a sinusoid (such as in Fig.1 (a)). We can easily
change the difficulty of the problem by using different values of frequency. The neural network would
perform this mapping: y = sin(2πfx), x ∈ [0, 1].

A problem arises however when estimating the number of neighbors because the input space has
2 boundaries at x = 0 and x = 1, leading to fewer neighbors when x approaches either of those
boundaries. To avoid this problem, we transform the input space to a 2D circle. Namely, the task
is now y = sin(2πfα(x)), x ∈ {(cos(2πα), sin(2πα)), α ∈ [0, 1]}, with the input space having no
boundaries.

The dataset is generated with n=2048 input points. The network used is fully-connected and has 5
hidden layers of 64 neurons trained with the Adam optimizer for 80 epochs with a base learning
rate of 1e−4. An experiment consist of training the network on a dataset generated with a specific
frequency f. Each experiment was repeated 5 times, in order to take the median of every result to
limit the variance due to the neural network stochastic training.
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We can see in Fig.1 (b) the proposed soft estimate kCθ for each input point (projected to 1D). As
expected we observe that the number of neighbors drops when the curvature is high: the objective
changes quickly and the network adjusts to better distinguish inputs in places of higher curvature.

4.2 Other possible uses

Density homogeneity as an optimization criterion The estimations above are meant to be done
post-training. This said, one could control density explicitly, by computing the number of neighbors
for all points, and asking it to be in a reasonable range, or in a reasonable proportion q of the dataset

size D, by adding e.g. to the loss
∑
i

(
NS(xi)
D − q

)2
. Online learning could also make use of such

tools, to sample first lowly-populated areas, where uncertainty is higher.

5 Enforcing similarity

The similarity criterion we defined could be used not only to estimate how similar two samples are
perceived, after training, but also to incite the network, during training, to evolve in order to consider
these samples as similar.

Asking two samples to be treated as similar If two inputs x and x′ are known to be similar (from
a human point of view), one can enforce their similarity from the network perspective, by adding to
the loss the term: −kCθ (x,x′) .

Asking a distribution of samples to be treated as similar By extension, to enforce the similarity
of a subset S of training samples, of size n = |S|, one might consider the average pairwise similarity
kCθ over all pairs, or the standard deviation of the gradients. Both turn out to be equivalent to
maximizing the norm of the gradient mean µ = 1

n

∑
i∈S

∇θfθ(xi)
‖∇θfθ(xi)‖ :

1

n(n− 1)

∑
i,j∈S,i6=j

kCθ (xi, xj) =
n

n− 1
‖µ‖2 − 1

n− 1
and var

i∈S

∇θfθ(xi)
‖∇θfθ(xi)‖

= 1− ‖µ‖2 .

In practice, common deep learning platforms are much faster when using mini-batches, but then return
only the gradient sum

∑
i∈B∇θfθ(xi) over a mini-batch B, not individual gradients, preventing the

normalization of each of them to compute kCθ or µ. So instead we compare means of un-normalized
gradients, over two mini-batches B1 and B2 comprising each nB samples from S, which yields the
criterion:

nB
‖µ1 − µ2‖2

‖µ1‖‖µ2‖
where µk =

1

n

∑
i∈Bk

∇θfθ(xi) .

The factor nB counterbalances the 1√
nB

variance reduction effect due to averaging over nB samples.

5.1 Group invariance

Dataset augmentation is a standard machine learning technique; when augmenting the dataset by a
group transformation of the input (e.g., translation, rotation...) or by small intensity noise, new samples
are artificially created, to augment the dataset size and hope for invariance to such transformations.
One can ask the network to consider orbits of samples [2] as similar with the technique above.

Furthermore, if the group infinitesimal elements are expressible as differential operators ek, one
could require directly, for all x, invariance in the tangent plane in the directions of these differential
operators:

‖∂x∇θf(x) · ek(x)‖2

which is the limit of 1
ε2 ‖∇θfθ(x)−∇θfθ (x + εek(x)) ‖2 when ε→ 0. For instance, in the case of

image translations, the operator is e : x 7→ ∇xx(x) where x denotes spatial coordinates in the image
x, as x(x+ τ) = x(x) + τ · ∇xx(x) +O(τ2). This is however not recommended, as representing
a translation with such a spatially-local operator does not take into account the spatially-irregular
nature of image intensities.
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Figure 1: Toy problem with the frequency f = 2.
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Figure 2: 3D plot of neighbors soft with varying frequency. Script and data to plot interactively
in attached files. Run the bash script "main_plot_exps.paper.sh" to reproduce this exact figure.
Alternatively use "main_plot_exps.py" with arguments of your choosing to plot different values (run
"python main_plot_exps.py -h" to see possible arguments).

7



Note that to the opposite of standard robustification techniques considering regularizers such as∑
x ‖∇θfθ(x)‖2, we ask not gradients to be always small, but to be smooth, and in certain directions

only.

Complexity A gradient descent step on our criterion for a given pair (x,x′) (in a mini-batch
approach, e.g.) requires the computation of the gradient∇θkCθ (x,x′) = ∇θ (∇θfθ(x) · ∇θfθ(x′)).
While a naive approach would require the computation of a second derivative, i.e. a matrix of size
p × p where p is the number of parameters, it is actually possible to compute ∇θkCθ (x,x′) =

∇θ
∑
i
dfθ(x)
dθi

dfθ(x
′)

dθi
in linear time O(p), taking advantage of the serial structure of the computational

graph. The framework enabling such computations is already available on common deep learning
platforms, under the name of double-backpropagation routine [3, 6, 10, 5], roughly doubling the
computational time of a gradient step. It was initially intended for the computation of∇x∇θfθ(x)
for some variations on GANs.

Dynamics of learning Our approach enforces similarity not just at the output level, but within the
whole internal computational process. Therefore, during training, information is provided directly to
each parameter instead of being back-propagated through possibly many layers. Thus the dynamics
of learning are expected to be different, especially for deep networks.

To test this hypothesis, we train a small network on MNIST with and without the similarity criteria
acting as an auxiliary loss (see Fig. 3). As a result, we observe an acceleration of the convergence
very early in the learning process. It is worth noting that this effect can be observed across a wide
range of different neural architectures. We performed additional experiments on toy datasets as
well as on CIFAR10 with no or only negligible improvements. All together this suggests that using
the similarity criteria during training may be beneficial to specific datasets as opposed to specific
architectures, and indeed, as the class intra-variability in CIFAR10 is known to be high, considering
all examples of a class of CIFAR10 as similar is less relevant.

Figure 3: Validation accuracy of a neural network trained on MNIST with and without the similarity
criterion (note that the x-axis is the number of minibatches presented to the network, not of epochs).

Experimentation details The results in Figure 3 show the average and standard deviation over 60
runs for each curve. The x-axis is the number of batches to the network is trained on (with a batch
size of 16). The y-axis is the accuracy metric on the whole validation set. The network architecture is
made of 2 convolutions layers (with a kernel size of 5), 2 linear layers and uses PReLU non-linearities.
We used Adam with a learning rate of 1e-3 and no weight decay.

We tested other architectures on MNIST: one with residual blocks, one deeper (8 convolutions) and
one with tanh non-linearities. Similar results were observed on all cases. Additional tests were
performed on CIFAR10 with a VGG architecture and only negligible benefits were observed.
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6 Noisy Map Alignment Analysis

The task here it to align maps in the form of a list of polygons with remote sensing images while
using only the available noisy annotations. We analyze the model developed in a previous work [4].
Specifically, the model is trained in a multiple-rounds training scheme to iteratively align the available
noisy annotations, which provides a better ground truth used to train a better model in the next round.
We aim to answer the question of why multiple rounds are needed in this noisy supervision setting,
and why not all the noise can be removed in a single training step.

More specifically, the model is made out of 4 neural networks. Each is trained on a different resolution
(in terms of ground pixel size) and are applied in a multi-resolution pyramidal manner. In all our
experiments we only analyzed the networks trained for a ground pixel size of 4 time smaller than the
reference ground pixel size which is 0.3m. We used the already-trained networks for each round, of
which there are 3.

The network was trained with small patches of (image, misaligned map) pairs from images of the
Inria dataset [8] and the Bradbury dataset [1]. Ideally we would want to compute the similarities
of every possible pairs of inputs, with a small patch size of 124 px. However, given that a typical
image of the training dataset is 1250× 1250 px (after rescaling) and there are a few hundred of them
(328 from the Inria dataset, only counting images where OSM annotations [9]), this would result in
32800 patches. The resulting amount of similarities to compute would be around half a billion. As
the network has a few million of parameters and the output is 2D, each computation of similarity
takes around 0.5s. To make any computation feasible, we first sample 10 patches per image from the
328 of the Inria dataset. Those patches are chosen at random, as long as there is at least one building
lying fully in the patch. As some images have rather sparse buildings, some images give less than 10
patches. We thus obtain 3045 patches representing the dataset. The amount of similarities to compute
would be close to 5 million. To study all patches globally, we can use the soft neighbors estimator kCθ
which has a linear complexity and allows us to compute the amount of neighbors for all 3045 patches
in under an hour on a GTX 1080Ti. However it is also interesting to go in deeper detail and compute
similarities for some input pairs. We thus furthermore reduce the amount of pairs by estimating all
similarities only for a very small number of patches, for example 10. This results in a 10 × 3045
similarity matrix.

6.1 Soft estimate on a sampling of the training dataset

In this section we present the results of computing the soft neighbors estimator kCθ on the 3045
sampled patches of inputs. We obtain results for the 3 networks of the 3 rounds of the noisy-
supervision multi-rounds training scheme. Fig.4 shows a histogram of the soft neighbors estimations.
It additionally representative input patches for each bin of the histogram. Those representative patches
are chosen so that their neighbor count is closest to the right edge of that bin. We especially observe
that inputs in round 2 have more neighbors than the other 2 rounds. This particularity of round 2 will
be seen throughout the remaining results. It is the round that aligns the most the annotations (see
the Fig.2 on accuracy cumulative distributions in the paper). Round 3 does not perform any more
alignment, that might be the reason why its results are different from those of round 2.

6.2 Similarities on pairs of input patches

In this section are the results for the computation of similarities between pairs of input patches. In
a first experiment, for every round we chose the 10 patches shown in Fig.4, and computed their
similarities with all the other 3045 patches. In order to visualize this data, we computed the 10-nearest
neighbors in terms of similarity for each of those patches, see Fig.5, 6, 7. We computed the histogram
of similarities as well, see Fig.8.

In a second experiment, to better compare between rounds, we used another set of 10 patches, this
time the same set for each round. Specifically, we sampled 10 patches from the bloomington22 image
of the Inria dataset. As just before we computed the 10-nearest neighbors (Fig.9, 10, 11) and the
histogram of similarities(Fig.12) for a visualization of those measures.

Generally speaking, inputs in round 2 have more neighbors and the 10-nearest ones are closer than in
other rounds (see Fig.5, 6, 7 and Fig.9, 10, 11). For each parch, its closest neighbors generally (for
similarity > 0.8) look similar from a human point of view. For example patches with sparse houses
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(c) Round 3

Figure 4: Histogram of the soft estimate of neighbors on 3045 patches. Horizontal scale is different
for each.
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Source 1 0.933 0.838 0.804 0.749 0.748 0.741 0.704 0.699 0.687

Source 1 0.628 0.623 0.622 0.61 0.61 0.609 0.605 0.583 0.569

Source 1 0.867 0.795 0.79 0.776 0.745 0.743 0.721 0.713 0.704

Source 1 0.844 0.829 0.816 0.813 0.808 0.803 0.786 0.783 0.783

Source 1 0.752 0.737 0.729 0.722 0.718 0.71 0.709 0.707 0.707

Source 1 0.676 0.669 0.665 0.664 0.662 0.651 0.65 0.648 0.645

Source 1 0.834 0.83 0.82 0.818 0.817 0.816 0.815 0.813 0.8

Source 1 0.791 0.779 0.777 0.776 0.776 0.773 0.769 0.767 0.766

Source 1 0.905 0.882 0.881 0.88 0.879 0.876 0.875 0.871 0.867

Source 1 0.946 0.944 0.938 0.936 0.933 0.931 0.931 0.927 0.924

Figure 5: Round 1: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.4 for that round.

and trees have the same kind of neighbors. The same can be said for patches with parking lots and
big roads. Another group are patches that are almost empty of buildings, with a lot of low vegetation.
Other patch nearest neighbors are more difficult to interpret. In Fig.8 and Fig.12 we can see that for
round 2, the spread of the similarities of the selected patches is smaller and the peak of the histogram
are closer to the right, meaning all patches are closer than in other rounds. Additionally in Fig.8 we
can observe that the bottom patch has closer neighbors than the top patch, this is because the top
patch corresponds to the left patch in 4 and the bottom one corresponds to the right patch in 4.

We additionally computed a perceptual loss on the same 10 patches from the bloomington22 image
for comparison (see Fig.13, 14, 15). We used the activations from the second to last layer of the
displacement branch of our network to compute it. In general it does not estimate neighbors as well,
especially regarding the type of buildings and their arrangement in the image patch.
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Source 1 0.736 0.731 0.724 0.724 0.723 0.722 0.72 0.72 0.719

Source 1 0.836 0.831 0.828 0.82 0.813 0.811 0.811 0.81 0.806

Source 1 0.875 0.873 0.867 0.858 0.85 0.844 0.84 0.84 0.838

Source 1 0.911 0.91 0.9 0.897 0.897 0.897 0.892 0.887 0.886

Source 1 0.899 0.89 0.89 0.884 0.882 0.881 0.881 0.877 0.876

Source 1 0.903 0.901 0.9 0.899 0.899 0.898 0.897 0.896 0.896

Source 1 0.927 0.921 0.919 0.919 0.918 0.916 0.915 0.914 0.913

Source 1 0.946 0.939 0.939 0.939 0.934 0.933 0.931 0.929 0.928

Source 1 0.971 0.971 0.97 0.968 0.967 0.966 0.965 0.965 0.964

Source 1 0.989 0.989 0.988 0.988 0.988 0.987 0.987 0.986 0.986

Figure 6: Round 2: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.4 for that round.
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Source 1 0.862 0.851 0.832 0.79 0.789 0.783 0.778 0.774 0.773

Source 1 0.887 0.879 0.862 0.857 0.851 0.841 0.834 0.826 0.825

Source 1 0.876 0.86 0.856 0.855 0.841 0.833 0.829 0.808 0.806

Source 1 0.753 0.738 0.735 0.728 0.726 0.725 0.723 0.722 0.718

Source 1 0.691 0.666 0.66 0.656 0.642 0.64 0.632 0.63 0.629

Source 1 0.788 0.78 0.777 0.777 0.773 0.773 0.771 0.769 0.768

Source 1 0.788 0.78 0.775 0.774 0.771 0.766 0.765 0.764 0.762

Source 1 0.777 0.774 0.77 0.763 0.761 0.759 0.758 0.754 0.749

Source 1 0.852 0.849 0.836 0.835 0.825 0.825 0.825 0.824 0.823

Source 1 0.873 0.871 0.871 0.871 0.868 0.865 0.863 0.863 0.862

Figure 7: Round 3: k-nearest neighbors with k=10. The 10 patches selected correspond to the 10
patches of Fig.4 for that round.
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(b) Round 2
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(c) Round 3
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Figure 8: Histograms of similarities shown for the same 10 patches as Fig.4 and Fig.5, 6, 7.
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Source 1 0.725 0.712 0.708 0.708 0.704 0.697 0.696 0.696 0.696

Source 1 0.847 0.837 0.828 0.809 0.807 0.806 0.804 0.799 0.787

Source 1 0.687 0.673 0.669 0.653 0.635 0.631 0.627 0.622 0.622

Source 1 0.785 0.781 0.781 0.781 0.774 0.769 0.767 0.759 0.759

Source 1 0.755 0.747 0.744 0.739 0.738 0.734 0.73 0.73 0.73

Source 1 0.83 0.83 0.818 0.818 0.817 0.815 0.815 0.813 0.813

Source 1 0.616 0.589 0.587 0.578 0.573 0.569 0.563 0.559 0.557

Source 1 0.721 0.715 0.708 0.705 0.705 0.7 0.699 0.698 0.691

Source 1 0.585 0.567 0.546 0.546 0.516 0.511 0.511 0.493 0.493

Source 1 0.76 0.76 0.759 0.758 0.758 0.754 0.754 0.752 0.752

Figure 9: Round 1: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.
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Source 1 0.912 0.897 0.895 0.894 0.892 0.887 0.886 0.886 0.886

Source 1 0.932 0.93 0.926 0.925 0.92 0.92 0.919 0.919 0.919

Source 1 0.944 0.943 0.943 0.941 0.938 0.938 0.937 0.936 0.936

Source 1 0.921 0.919 0.917 0.915 0.914 0.913 0.912 0.911 0.908

Source 1 0.949 0.945 0.943 0.94 0.938 0.938 0.937 0.937 0.936

Source 1 0.914 0.909 0.907 0.906 0.904 0.904 0.902 0.9 0.9

Source 1 0.772 0.757 0.756 0.749 0.747 0.736 0.734 0.734 0.733

Source 1 0.855 0.855 0.855 0.855 0.855 0.855 0.854 0.854 0.853

Source 1 0.952 0.948 0.946 0.943 0.941 0.938 0.936 0.936 0.933

Source 1 0.97 0.968 0.968 0.967 0.967 0.964 0.964 0.963 0.963

Figure 10: Round 2: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.
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Source 1 0.746 0.733 0.733 0.732 0.71 0.705 0.703 0.702 0.702

Source 1 0.748 0.742 0.741 0.736 0.729 0.727 0.726 0.717 0.712

Source 1 0.914 0.881 0.864 0.841 0.839 0.815 0.788 0.783 0.775

Source 1 0.877 0.858 0.854 0.849 0.843 0.843 0.84 0.835 0.834

Source 1 0.819 0.818 0.81 0.804 0.802 0.783 0.779 0.769 0.768

Source 1 0.721 0.714 0.712 0.707 0.699 0.695 0.683 0.679 0.678

Source 1 0.921 0.891 0.887 0.877 0.855 0.851 0.839 0.839 0.818

Source 1 0.756 0.755 0.754 0.743 0.737 0.734 0.732 0.729 0.729

Source 1 0.932 0.931 0.921 0.865 0.864 0.862 0.82 0.792 0.791

Source 1 0.779 0.755 0.749 0.748 0.746 0.745 0.742 0.741 0.738

Figure 11: Round 3: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22
image. Same patch selection across rounds.
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(a) Round 1
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(b) Round 2
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(c) Round 3
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Figure 12: Histograms of similarities shown for the same 10 patches as in Fig.9, 10, 11. Same patch
selection across rounds. 18



Source 1 -0.399 -0.709 -0.734 -0.744 -0.756 -0.757 -0.804 -0.807 -0.817

Source 1 -0.863 -1 -1 -1.06 -1.08 -1.08 -1.1 -1.11 -1.17

Source 1 -0.249 -0.353 -0.374 -0.378 -0.387 -0.387 -0.396 -0.402 -0.428

Source 1 -0.493 -0.514 -0.774 -0.797 -0.8 -0.847 -0.867 -0.868 -0.87

Source 1 -0.0355 -0.0809 -0.0856 -0.101 -0.119 -0.144 -0.16 -0.182 -0.196

Source 1 0.272 0.267 0.266 0.262 0.254 0.254 0.253 0.25 0.249

Source 1 -1.23 -1.28 -1.3 -1.33 -1.41 -1.42 -1.43 -1.43 -1.44

Source 1 -0.0222 -0.0248 -0.0414 -0.0582 -0.0593 -0.0631 -0.0741 -0.0759 -0.0783

Source 1 -0.33 -0.332 -0.338 -0.338 -0.34 -0.343 -0.343 -0.345 -0.345

Source 1 -0.187 -0.206 -0.21 -0.21 -0.225 -0.228 -0.236 -0.237 -0.241

Figure 13: Round 1: perceptual loss used for k-nearest neighbors with k=10. The 10 patches are
from from the bloomington22 image. Same patch selection across rounds.
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Source 1 -1.03 -1.22 -1.41 -1.43 -1.47 -1.51 -1.53 -1.56 -1.57

Source 1 -0.833 -0.882 -1.01 -1.02 -1.03 -1.04 -1.09 -1.15 -1.16

Source 1 -1.18 -1.31 -1.36 -1.36 -1.36 -1.56 -1.57 -1.6 -1.68

Source 1 -0.661 -0.749 -0.922 -0.923 -0.924 -0.962 -1.02 -1.1 -1.15

Source 1 -0.369 -0.448 -0.458 -0.499 -0.54 -0.551 -0.597 -0.601 -0.674

Source 1 -0.624 -0.648 -0.662 -0.72 -0.748 -0.793 -0.795 -0.821 -0.83

Source 1 -2.78 -3.15 -3.28 -3.28 -3.45 -3.51 -3.87 -4 -4.17

Source 1 -0.244 -0.247 -0.375 -0.396 -0.418 -0.447 -0.46 -0.467 -0.467

Source 1 -0.484 -0.63 -0.767 -0.845 -0.973 -1.08 -1.28 -1.28 -1.28

Source 1 -0.214 -0.307 -0.309 -0.323 -0.345 -0.346 -0.364 -0.368 -0.375

Figure 14: Round 2: perceptual loss used for k-nearest neighbors with k=10. The 10 patches are
from from the bloomington22 image. Same patch selection across rounds.
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Source 1 -1.14 -1.2 -1.27 -1.29 -1.33 -1.38 -1.4 -1.44 -1.46

Source 1 -0.894 -0.926 -0.932 -0.958 -0.98 -0.983 -1.02 -1.05 -1.05

Source 1 -1.66 -1.71 -2.18 -2.25 -2.31 -2.37 -2.37 -2.45 -2.49

Source 1 -1.01 -1.09 -1.16 -1.25 -1.25 -1.26 -1.3 -1.34 -1.35

Source 1 -0.58 -0.675 -0.726 -0.803 -0.844 -0.864 -0.916 -0.929 -0.959

Source 1 0.158 0.122 0.101 0.0865 0.0713 0.0478 0.0174 0.0166 0.0144

Source 1 -1.54 -1.71 -1.77 -2.18 -2.26 -2.37 -2.48 -2.57 -2.63

Source 1 -0.527 -0.547 -0.585 -0.698 -0.701 -0.722 -0.722 -0.731 -0.747

Source 1 -1.68 -1.77 -1.78 -2.3 -2.31 -2.4 -2.8 -2.84 -3.1

Source 1 -0.218 -0.238 -0.251 -0.255 -0.273 -0.274 -0.275 -0.275 -0.277

Figure 15: Round 3: perceptual loss used for k-nearest neighbors with k=10. The 10 patches are
from from the bloomington22 image. Same patch selection across rounds.
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6.3 Proof details of the self-denoising effect quantification

6.3.1 Magnitude of kernel-smoothed i.i.d. noise

We show here that Ek[ε] ∝ varε(Ek[ε])1/2 = σε ‖kINθ ‖L2.

Let us denote by Eε[ ] and varε( ) the expectation and variance with respect to the random variable ε.
As a reminder, by assumptions in the noise definition, ε = (εi)i is a random, i.i.d. noise, centered
and of variance σε.

This is not to be confused with the symbol Ek[ ], which was defined as, for any vector field a:

E
k
[a] =

∑
j

aj k
IN
θ (xj ,xi) ,

i.e. as the mean value of a in the neighborhood of i, that is, the weighted average of the aj with
weights kINθ (xj ,xi), which are positive and sum up to 1.

Given a network and its associated kernel kINθ , we are interested in to knowing the typical values of
Ek[ε] for random ε. First, the expectation over the noise of Ek[ε] is:

E
ε

[
E
k
[ε]

]
= E

ε

∑
j

εj k
IN
θ (xj ,xi)

 =
∑
j

E
ε
[εj ] k

IN
θ (xj ,xi) = 0

as ε is a centered noise. Thus the random variable Ek[ε] is also centered, and therefore its typical
values are described by its standard deviation, which is the square root of its variance:

E
k
[ε] ∝ var

ε

(
E
k
[ε]

)1/2

.

The variance can be computed as follows:

var
ε

(
E
k
[ε]

)
= E

ε


∑

j

εj k
IN
θ (xj ,xi)

2


= E
ε

∑
j

ε2j
(
kINθ (xj ,xi)

)2 as ε is i.i.d.

= σ2
ε

∑
j

(
kINθ (xj ,xi)

)2
= σ2

ε

∥∥kINθ (·,xi)
∥∥2
L2

.

As the weights pj = kINθ (xj ,xi), for given i and varying j, are positive and sum up to 1, they form
a probability distribution. Hence the value of

∥∥kINθ (·,xi)
∥∥2
L2

= ‖p‖2L2 satisfies:

• ‖p‖L2 6 1, as
∑
j p

2
j 6

∑
j pj = 1, with equality only when pj = p2j ∀j, that is, all

pj = 0 except for one pj∗ = 1, which means kIθ(xj ,xi) = 0 ∀j 6= i, which means that all
data samples are fully independent from the network’s point of view.

• ‖p‖L2 > 1√
N

as 1 =
∑
j 1× pj 6 ‖1‖L2 ‖p‖L2 =

√
N ‖p‖L2 (Cauchy-Bunyakovsky-

Schwarz), with equality reached for the uniform distribution: pj = 1
N ∀j, where N is the

number of data samples. This implies that all kCθ (xj ,xi) are equal, for all i, j, hence they
are all equal to kCθ (xi,xi) = 1. This is the case studied in [7]: all input points are identical.

The denoising factor ‖kINθ (·,xi)‖L2, which depends on the data point xi considered, thus expresses
where the neighborhood of xi lies, between these two extremes (all xj very different from xi, or all
identical).
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Note: the results above remain valid when the output is higher-dimensional, under the supplementary
assumption that the covariance matrix of the noise is proportional to the Identity matrix (i.e., the
noises on the various coefficients of the label vector are independent from each other, and follow the
same law, with standard deviation σε). If not, the expression for covarε (Ek[ε]) is more complex,
as Σε and kINθ interact. Note that when the output is of dimension d, the kernel kINθ (xj ,xi)

is a d × d matrix, thus the denoising factor
∥∥kINθ (·,xi)

∥∥2
L2

has to be replaced with the matrix∑
j k

IN
θ (xj ,xi) k

IN
θ (xj ,xi)

T , which can be summarized by its trace, which is the L2 norm of the

Frobenius norms:
∥∥∥∥∥kINθ (·,xi)

∥∥
F

∥∥∥2
L2

.

6.3.2 The function: gradient 7→ output is Lipschitz

Theorem 1 implies that the application: ∇θfθ(x)
‖∇θfθ(x)‖ 7→ fθ(x) is well-defined. We show here that this

application is also Lipschitz, with a network-dependent constant, under mild hypotheses.

We consider the same assumptions as in Theorem 1 : fθ is a real-valued network, whose last layer
is a linear layer or a standard activation function thereof (such as sigmoid, tanh, ReLU...), without
parameter sharing (in that last layer). We will also require that the derivative of the activation function
is bounded, which is a safe assumption for all networks meant to be trained by gradient descent.
Another, technical property (bounded input space) will be assumed in order to imply bounded
gradients. A side note indicates how to rewrite the desired property if the input space is not bounded.

Let x and x′ be any two inputs. We want to bound |fθ(x)− fθ(x′)| by ‖u − u′‖2 times some
constant, where u = ∇θfθ(x)

‖∇θfθ(x)‖ and u′ = ∇θfθ(x′)
‖∇θfθ(x′)‖ .

Let us denote the non-normalized gradients by v = ∇θfθ(x) and v′ = ∇θfθ(x′). We have u = v
‖v‖

and u′ = v′

‖v′‖ .

We will proceed in two steps: bounding |fθ(x)− fθ(x′)| by ‖v − v′‖2, and then ‖v − v′‖2 by
‖u− u′‖2. The first step is easy and actually sufficient to bound with a non-normalized similarity
kernel kθ = v ·v′ the shift from the average prediction in the neighborhood. The second step provides
a more elegant bound, in that it makes use of the normalized similarity kernel kCθ = u · u′, but that
bound is a priori not as tight and requires more assumptions.

Case where the last layer is linear

The output of the network is of the form

fθ(x) =
∑
i

wiai(x) + b ,

where wi and b are parameters in R and ai(x) activities from previous layers. Thus:

|fθ(x)− fθ(x′)| =

∣∣∣∣∣∑
i

wi (ai(x)− ai(x′))

∣∣∣∣∣
6 ‖w‖2 ‖a(x)− a(x′)‖2

6 ‖w‖2
√∑

i

(vi − v′i)2

where the sum is taken over parameters i in the last layer only, using the fact that activities ai in the
last layer are equal to some of the coefficients of the gradient: vi := ∂fθ(x)

∂wi
= ai(x).

Note that the derivative with respect to the shift b is vb := ∂fθ(x)
∂b = 1, which ensures that the norm

of v is at least 1. This implies:

‖u− u′‖2 > |ub − u′b| =

∣∣∣∣ 1

‖v‖
− 1

‖v′‖

∣∣∣∣
which, combined with:

|vi − v′i| = ‖v′‖
∣∣∣∣ 1

‖v′‖
vi −

v′i
‖v′‖

∣∣∣∣ = ‖v′‖
∣∣∣∣ui − u′i +

(
1

‖v′‖
− 1

‖v‖

)
vi

∣∣∣∣
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yields:

|vi − v′i| 6 ‖v′‖
(
|ui − u′i | + ‖u− u′‖2 |vi|

)
6 ‖v′‖ ‖u− u′‖2 (1 + |vi|)

from which we finally obtain:

|fθ(x)− fθ(x′)| 6

‖w‖2 ‖v′‖√∑
i

(1 + |vi|)2

 ‖u− u′‖2

which is the bound we were searching for. For the term between brackets to be bounded by a network-
dependent constant, one can suppose for instance that the derivative of the activation functions is
bounded (which is usually the case for networks meant to be trained by gradient descent), and that
the input space is bounded as well; in such cases indeed all coefficients of the gradient vector v or v′
are bounded, as derivatives of a function composed of constant linear applications (except for the first
layer which is a linear application whose factors are bounded inputs, when seen as an application
defined on parameters) and of bounded-derivatives activation functions.

Note for unbounded input spaces: If the input space is not bounded, the gradients are not bounded
absolutely, as for instance the gradient with respect to a weight in the first layer is the input itself
(times a chain product). In that case the application x 7→ v still satisfy a bound of the form
‖v‖ 6 (1 + ‖x‖)A, with A a network-dependent constant (product of determiners of layer weight
matrices and of the bound on activation function derivatives to the power: network depth), and thus
the application u 7→ fθ(x) still satisfies a bound of the form, for any x, x′:

|fθ(x)− fθ(x′)| 6 B (1 + ‖x‖) (1 + ‖x′‖) ‖u− u′‖2 .

The last statement in the paper then becomes∣∣ E
k
[ŷi − ŷ]

∣∣ 6
√

2B (1 + ‖xi‖) max
j

(1 + ‖xj‖) E
k

[√
1− kCθ (xi, ·)

]
which in practice rewrites as the original formulation:∣∣ E

k
[ŷi − ŷ]

∣∣ 6
√

2C E
k

[√
1− kCθ (xi, ·)

]
by taking C = Bmaxj (1 + ‖xj‖)2, considering the actual diameter of the given dataset.

Case where the last layer is an activation function of a linear layer

The output of the network is of the form

fθ(x) = σ

(∑
i

wiai(x) + b

)
,

and, as the derivative of σ is assumed to be bounded, and as the weights wi are fixed, fθ(x) is a
Lipschitz function of the last layer activities ai(x). Therefore:

|fθ(x)− fθ(x′)| 6 K ‖a(x)− a(x′)‖2 .
We will denote by α and α′ the derivatives with respect to the shift b, which are this time:

α := vb :=
∂fθ(x)

∂b
= σ′

∣∣∣∣∑
i wiai(x)+b

and α′ := v′b :=
∂fθ(x

′)

∂b
= σ′

∣∣∣∣∑
i wiai(x

′)+b

.

We proceed as previously:

‖u− u′‖2 > |ub − u′b| =

∣∣∣∣ α‖v‖ − α′

‖v′‖

∣∣∣∣
which, combined with:

|ai − a′i| =

∣∣∣∣viα − v′i
α′

∣∣∣∣ =
‖v′‖
α′

∣∣∣∣ α′

α‖v′‖
vi −

v′i
‖v′‖

∣∣∣∣ =
‖v′‖
α′

∣∣∣∣ui − u′i +
vi
α

(
α′

‖v′‖
− α

‖v‖

) ∣∣∣∣
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yields:

|ai − a′i| 6
‖v′‖
α′

(
|ui − u′i | + ‖u− u′‖2 |ai|

)
6
‖v′‖
α′

(1 + |ai|) ‖u− u′‖2

from which we finally obtain:

|fθ(x)− fθ(x′)| 6

K ‖v′‖
α′

√∑
i

(1 + |ai|)2

 ‖u− u′‖2 .

Note that α′ is actually a factor of each coefficient of v′, as the derivative of fθ(x′) with respect
to any parameter is a chain rule starting with ∂fθ(x

′)
∂b = σ′

∣∣∣∑
i wiai(x

′)+b
= α′. To bound the term

between brackets, the same assumptions as previously are sufficient. One can assume that α and α′
are not 0, as, if they are, the problem is of little interest (u or u′ being then not defined).

6.3.3 Additional proof detail

The kernel kCθ (x,x′), by definition, is the L2 inner product between two unit vectors:

kCθ (x,x′) =
∇θfθ(x)

‖∇θfθ(x)‖
· ∇θfθ(x

′)

‖∇θfθ(x′)‖
.

As, for any two unit vectors a and b:

‖a− b‖2 = a2 + b2 − 2 a · b = 2 (1− a · b) ,

we get: ∥∥∥∥ ∇θfθ(x)

‖∇θfθ(x)‖
− ∇θfθ(x′)
‖∇θfθ(x′)‖

∥∥∥∥ =
√

2
√

1− kCθ (x,x′) .

7 Other related remarks

Data augmentation can be seen as label denoising, as it multiplies the number of neighbors.
Indeed, in the infinite sampling limit, where the dataset becomes a probability distribution over all
possible images, adding a transformed copy x′ = Tφ x of a given point x (e.g. rotating it with an
angle αφ and adding small noise εφ) means adding (x′, l(x)) to the dataset, where l(x) is the desired
label for x. But if (x′, l(x′)) was already in the dataset, this amounts to enriching the possible labels
for x′. Supposing Tφ is an invertible transformation parameterized by φ, full data augmentation (i.e.
for all possible φ, applied on all points x) enriches x′ with all labels l(T−1φ (x′)). In case of i.i.d. label
noise, data augmentation will thus reduce this noise by a factor

√
number of copies.
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