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Abstract. In this paper, a proposal which quantifies visual saliency
based on an information theoretic definition is evaluated with respect to
visual psychophysics paradigms. Analysis reveals that the proposal ex-
plains a broad range of results from classic visual search tasks, including
many for which only specialized models have had success. As a whole, the
results provide strong behavioral support for a model of visual saliency
based on information, supplementing earlier work revealing the efficacy
of the approach in predicting primate fixation data.

Keywords: Attention, Visual Search, Saliency, Information Theory, Fix-
ation, Entropy.

1 Introduction

Visual search is an important task in everyday functioning, but a consensus on
the precise details of the system underlying visual search in primates has yet to
be reached. Consideration of specific stimulus sets in a lab setting has allowed
observation of some of the peculiarities of visual search in primates revealing
surprising efficiency for some visual search tasks and surprising inefficiency for
others. Despite the considerable interest and effort placed on the problem, and
the growing body of data on visual search, explanation for various effects exists
in many instances within only specialized models. One might view the ultimate
aim of modeling in visual search to be a single model with the minimum set of
requirements that captures all observed visual search behavior and additionally
is based on some basic well defined principle. It is our view that our proposal
Attention based on Information Maximization (AIM) satisfies the last of these
requirements, and the intention of the remainder of the discussion is to address
the extent to which the first of these requirements is satisfied. In the sections
that follow, it is established that the model exhibits considerable agreement with
a broad range of psychophysical observations lending credibility to the proposal
that attentional selection is driven by information.

In [1] we described a first principles definition for visual saliency built on
the premise that saliency may be equated to the amount of information carried
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by a neuron or neuronal ensemble. It was demonstrated that such an approach
reveals surprising efficacy in predicting human fixation patterns and additionally
carries certain properties that make the proposal plausible from a biological
perspective. An additional and perhaps more favorable test for a model that
claims to represent the process underlying the determination of visual saliency
in the primate brain, is the extent to which the model agrees with behavioral
observations, and in particular, those behaviors that on first inspection may seem
counterintuitive. It is with this in mind that we revisit the proposal that visual
saliency is driven fundamentally by information, with consideration to a variety
of classic psychophysics results. In this paper, we extend the results put forth in
[1] to consideration of various classic psychophysics paradigms and examine the
relation of qualitative behavioral trends to model behavior. It is shown that the
model at hand exhibits broad compatibility with a wide range of effects observed
in visual search psychophysics.

2 Saliency Based on Information Maximization

The following describes briefly the procedure for computing the information
associated with a given neuron response or ensemble of neurons. For a more
detailed description, including details pertaining to neural implementation, the
reader should refer to [1]. Prior efforts at characterizing the information con-
tent of a spatial location in the visual field appeal to measures of the entropy
of features locally. Some shortcomings of such a measure are highlighted in [1],
but in short, local activity does not always equate to informative content (con-
sider a blank space on an otherwise highly textured wallpaper). In the context
of AIM, the information content of a neuron is given by −log(p(x)) where x
is the firing rate of the neuron in question and p(x) the observation likelihood
associated with the firing rate x. The likelihood of the response a neuron elicits
is predicted by the response of neurons in its support region. In the work pre-
sented here, we have assumed a support region consisting of the entire image
for ease of computation, but it is likely that in a biological system the support
region will have some locality with the contribution of neighbouring units to
the estimate of p(x) proportional to their proximity to the unit exhibiting the
firing rate x. This discussion is made more concrete in considering a schematic
of the model as shown in figure 1. A likelihood estimate based on a local window
of image pixels appears to be an intractable problem requiring estimate of a
probability density function on a high-dimensional space (e.g. 75 dimensions for
a 5x5 RGB patch). The reason this estimate is possible is that the content of
the image is not random but rather is highly structured. The visual system ex-
ploits this property by transforming local retinal responses into a space in which
correlation between different types of cell responses is minimized [2,3]. We have
simulated such a transformation by learning a basis for spatiochromatic 11x11
RGB patches based on the JADE ICA algorithm [4]. This is depicted in the
top left of figure 1. This allows the projection of any local neighborhood into a
space in which feature dimensions may be assumed mutually independent. The
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likelihood of a given cell response can then be characterized by observing the
distribution of responses of cells of that type in the surround allowing a likeli-
hood estimate of the response of the cell in question which is readily converted
to a measure of information via an inverse logarithm. The likelihood estimate in
the implementation shown is performed as follows: For each image and a specific
feature type, a histogram based on 100 bins is produced based on the response
of all units of the type in question across the entire image. The likelihood of
any individual response may then be computed on the basis of a lookup on the
histogram. It is worth noting, that the property of considering only those units
of the same type in the surround emerges from the nature of the learned basis for
representing visual content. By construction, dependence across different feature
types is minimized allowing a tractable multidimensional density estimate based
on many 1-D histograms. In practice, there does exist residual correlation be-
tween similar features at a given location and a complete model might take this
into account. In this implementation, across feature interactions have been ig-
nored in the interest of computational parsimony. The information attributed to
any given location can then be computed as a sum of the information attributed
to all features for a given location. It is interesting to note the relation of this
notion of saliency to an alternative recent approach by Itti and Baldi [5]. In the
work of Itti and Baldi, saliency is defined as content that is surprising on the
basis of an information theoretic measure based on the KL-divergence between
prior and posterior models of visual content. The proposal based on information
maximization is also a measure of surprise corresponding to the likelihood of
observing a particular neuronal response based on the response of nearby neu-
rons that characterize the surround in space-time. One might argue that this
is a simpler more intuitive definition of surprise that may be evaluated on the
current state of the neurons involved and with no memory requirements. The
relation of this notion of surprise to neuroanatomy is also perhaps more explicit
in the case of information maximization as detailed in the discussion section of
the paper.

3 Attention and Visual Search

To consider whether the proposal put forth in [1] extends to basic results per-
taining to attention, and is not merely correlated with some quantity that drives
saccades, predictions of an information theoretic formulation are considered in
the context of classic psychophysics results. It is shown in addition to predicting
a wide range of attention related results, that the analysis sheds light on some
visual search effects offering a different perspective on their interpretation and
cause.

Despite the considerable effort that has been devoted to understanding visual
search behavior, a consensus on the exact nature of mechanisms underlying se-
lective attention has yet to be reached. The following section demonstrates that
an explanation based on information seeking, while parsimonious, is able to ac-
count for a substantial proportion of basic results drawn from the psychophysical
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Fig. 1. A schematic of the computation underlying the determination of local saliency.
Local content is projected into a basis optimized for mutual independence of coeffi-
cients. The likelihood of a response can then be computed within each feature domain
by observing the distribution of responses of the same type of cell based on its support
region.

literature on visual search including domains for which only specialized models
have had success.

The time taken to find a specified target from among an array of elements is
often assumed to reflect some measure of the saliency of this target relative to
the saliency of competing distractors. In this work, we assume the amount of
information determines relative saliency. Often attention models also prescribe
a particular mechanism by which saliency translates into a shift in the focus
of attention. The common element of such mechanisms, is that typically the
window of attention gradually shifts from more salient to less salient targets.
Search efficiency in this effort is thus equated with the saliency of the target
relative to the saliency of distractors in line with other similar work (e.g. [6]).

3.1 Serial Versus Parallel Search

Curious is the observation that when searching for a variety of targets among
distractors, some targets appear to “pop-out” while others require considerable
effort to be found. This is exemplified in figures 2 and 3. In figure 2 the elements
that are distinguished by a single feature (color or orientation) immediately
pop-out. On the other hand, the singleton stimulus defined by a conjunction of
features in figure 2 (top right) requires closer consideration of the stimulus ele-
ments to be spotted. In the case of figure 3 the smaller, red, and rotated 5’s are
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Fig. 2. Stimulus patterns for singletons defined by orientation, color and a conjunction
of both (top, left to right) and their associated saliency maps (bottom, left to right)

found immediately, while finding the red 2 requires further effort. These sort of
observations form the basis for Treisman’s Feature Integration Theory (FIT), an
influential contribution to our current understanding of visual search [7]. Treis-
man proposed that visual search consists of a two stage process. In the first stage,
various basic features are measured in parallel across the entire visual field such
as color, orientation and spatial frequency. If the first stage does not signal the
presence of a target, a second stage occurs which considers single, or clusters of
stimuli in turn. When target and distractor saliency are characterized in terms
of information, the apparent distinction between parallel and serial search tasks
is inherent in the difference between target and distractor saliency. The critical
consideration is that within a sparse representation, the constituent features are
assumed to be mutually independent. This implies that targets defined by a sin-
gle feature are highly salient relative to the distractors, while those defined by
a conjunction of features are indistinguishable from the distractor elements on
the basis of saliency alone. Figure 4 shows a probability density representation
of the response of a small number of hypothetical cell responses (idealized ex-
amples for the purpose of exposition) to the stimuli appearing in figure 2. For
the case shown in figure 2 (top left), a large number of units respond to the
stimuli oriented 15 degrees from vertical, and only a small number to the bar
15 degrees from horizontal. On the basis of this, the likelihood of the response
associated with the singleton is lower and thus it is more informative. Since an
approximately equal number of units respond to both green and red stimuli, this
stimulus dimension dictates that all of the stimuli are equally informative. The
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Fig. 3. An additional example of a conjunction search

situation for the stimulus shown in figure 2 (top middle) is analogous except
that color is the discriminating dimension and orientation dictates all stimuli
are equally salient. In the case of figure 2 (top right), there is a singleton ele-
ment, but the number of units responding to all four cell types is approximately
equal and as such, a serial search of the elements is required. The output of
the implementation of AIM applied to the examples shown in figures 2 and 3 is
shown below each of the stimulus examples in figure 2 and on the right in figure
3 revealing agreement between model output and the expected response to the
stimuli in question. A scale of relative saliency is displayed (bottom left) based
on maximum and minimum values for saliency equated across all conditions and
is used in the remainder of the figures depicting the relative saliency equated
across trials within each experiment.

The large body of visual search psychophysics that has ensued following Treis-
man’s original proposal has revealed that behavior in search tasks is somewhat
more involved than the dichotomy in search performance put forth by FIT. More
specifically, it has been demonstrated that an entire continuum of search slopes
may be observed ranging from very shallow to very steep in the number of dis-
play elements [8]. In the example of the conjunction search we have shown, we
considered only a single unit for each of the two orientations present, and only
a single unit for each color present. The assumption in this case is reasonable
based on what is known about cell properties in V1 and is useful for the sake
of demonstration. However, there are many types of stimuli that may require a
representation in V1 by a large number of different cell types. Such types will
not yield examples that are so clear cut. That being said, one important con-
sideration that may be stated is that one would expect a continuum of saliency
measures for such stimuli. That is, the saliency of targets relative to distractors
depends on a complex distributed representation based on a large ensemble of
many different types of cells. Without specific knowledge of the neural encod-
ing on which attentive processes are operating, it may be difficult to form an
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Fig. 4. Hypothetical probability densities associated with the response of four types
of units. Shown is examples based on idealized units for the stimulus in question and
crafted to exemplify how the responses of the units in question give rise to the observed
effects.)

a priori determination of the difficulty of any given search task. That being said,
it may be possible to determine a coarse ordering for different types of search
on the basis of the coarse approximation of early visual coding we have learned.
It is interesting to note that within an information theoretic interpretation, the
observed behavior supports both the extreme view of FIT in the event that a
single cell type exists that is perfectly tuned to each of the variations in target
and distractor, and a continuum of difficulties between these extremes in more
involved cases in which target and distractors are coded by a complex population
of neurons.

3.2 Target-Distractor Similarity

Two factors that appear to be critical in determining the difficulty of search tasks
are the similarity between target and distractors [9,10], and the heterogeneity of
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Fig. 5. Four stimulus patterns displaying increasing target-distractor distance in fea-
ture space (Top: left to right) and their associated saliency (Bottom: left to right)

distractors [9] (e.g. distractors at a single orientation versus several orientations).
As the target becomes more similar to the distracting elements, the search task be-
comes more difficult as is the case for increased distractor heterogeneity. Existing
explanations for this behavior appeal to signal detection theory, treating the differ-
ence between the target and distractors as the signal, and the distractor-distractor
difference as noise. Generally these models are tailored specifically to addressing
the issue of stimulus similarity in visual search. The appropriate behavior is in-
herent in AIM without the need to appeal to a more specialized model. Consider
the stimulus shown in figure 5 (based on example shown in [11]). The basic result
in this case is that the task of locating the target becomes progressively easier as
the distance between target and distractor in feature space increases. So for ex-
ample, the case shown top left in figure 5 is the most difficult, with cases becoming
somewhat easier from left to right. A very important consideration in addressing
whether the model yields appropriate behavior, is that beyond a certain distance
in feature space, the effect of a further shift in feature space on search difficulty
is negligable as observed in [9]. That is, the difficulty associated with finding the
target in the top right stimulus example is equivalent to that of finding the target
in the stimulus pane second from right. It is interesting to note that these results
may be seen as consistent with the notion of an inhibitory surround in feature
space as observed in [12] and as predicted in [13].

It is interesting to consider how each of these considerations correspond to
the behaviour exhibited by AIM. The output of the model reveals that indeed
a shift of target away from distractors in feature space renders an increase in
search efficiency to a certain extent and at some point levels out as demonstrated
in figure 5 (bottom row). The effect can be summarized as follows: The unit
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Fig. 6. An example of the effect of increasing distractor heterogeneity (Top: left to
right) and saliency maps resulting from the output of AIM (Bottom: left to right)

whose optimal response corresponds most closely to the properties of the target
item also elicits a response to the background elements. The strength of this
response is inversely proportional to the distance in feature space between target
and distractors. As such, distractor items similar to the target translate to an
increased observation likelihood of features associated with the target leading to
a decreased information value associated with the target. Outside of a certain
distance in feature space, the distracting elements no longer elicit a response
from the cell tuned to the target features.

3.3 Distractor Heterogeneity

Having addressed the effect of similarity between target and distractor, it is nat-
ural to also question the role of distractor-distractor similarity on visual search
behaviour. The central result in this domain, is that an increase in distrac-
tor heterogeneity leads to an increase in search difficulty. This is exemplified
by the stimulus patterns appearing in the top row of figure 7. In the top left
case, the singleton item yields a pop-out effect which is diminished by increasing
the spread of orientations present in distracting elements. The output of AIM
demonstrating the predicted saliency of stimulus items appears in the bottom
row, demonstrating the predicted output in agreement with the results presented
in [9]. In this case there are two effects of increasing distractor heterogeneity,
one of which is guaranteed for any ensemble of cells, and the other depending
on the specific tuning properties of the cells in question. Splitting the distractor
elements across two or more dimensions has the effect of lowering the observa-
tion likelihood of features associated with any given distractor thus rendering
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Fig. 7. Increased distractor heterogeneity in color space (top) and corresponding
saliency maps (bottom)

them more salient. As a result the ratio of target relative to distractor saliency is
diminished yielding a more difficult search. In the example shown, there is also
a secondary effect of broad tuning curves on the orientation selective cells. As
such, the distractors may increase the observation likelihood of the target item,
and also there exists distractor-distractor interaction. This latter effect would
presumably be eliminated given an encoding with more specific selectivity in
the orientation domain.

3.4 Search “Asymmetries”

Apparent asymmetries in visual search paradigms have gained interest as an
important consideration for models to address. Rosenholtz reveals that many
of these asymmetries arise from asymmetric experiment design and thus are
not truly search asymmetries [16]. For example, a pink circle among red circles
may be easier to spot than a red circle among pink. However, changing the
background saturation can reverse this effect as described in [14]. An example
stimulus based on these experiments is shown in figure 8. Rosenholtz proposes
a model of saliency based on the Mahalanobis distance between a target feature
vector and the mean of the distractor distribution within some feature space.
Rosenholtz’ model is able to account for the behavior arising from asymmetric
experiment design within a symmetric model. However, it is unclear how a model
of this kind may generalize to account for some of the search behaviors described
thus far such as the distinction between efficient and inefficient search tasks.
The behavior observed in these experiments is intrinsic to the more general
formulation of AIM as revealed by the output of the algorithm appearing in the
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Fig. 8. An example of a visual search paradigm in which switching the background
color reverses the difficulty ranking of the two conditions

bottom row of figure 8. The pink-target red-distractor search is more difficult
than the converse, however a change in background color reverses the relative
difficulty. This effect is due to the role that the background content plays in
the likelihood estimate on target and distractor features. That is, increasing the
likelihood associated with observations corresponding to the target or distractors
respectively.

There are a few search asymmetries which have not yet been placed in the
class of asymmetric experiment design, most notably the difference between the
detectability of a moving target among stationary distractors versus a stationary
target among coherently moving distractors. Consideration of this case in the
context of AIM makes evident that this should also be classed as an asymmetric
experimental design for the same reason as the color tasks. In the case of a mov-
ing target, motion selective neurons will respond strongly to the target, but not
to the distractors and background. For the coherently moving distractors, mo-
tion selective units will respond to the distractors, and will produce no response
for both the target and the background. As such, the target is easily discrimi-
nated in the moving target case, but not so in the moving distractor case. This of
course relies on certain assumptions about the underlying spatiotemporal basis.
This consideration generalizes to any apparent asymmetry where the presence
of a feature results in pop-out while its absence results in an inefficient search.
Additional examples include a Q among O’s or a + among -’s. An example of
this is depicted in figure 9 along with the output of AIM on these stimuli. It
is interesting to note that the distinction typically made in the psychophysics
literature between “true” asymmetries as in [15], and those resulting from poor
experimental design [16] is moot when examined in the context of the behavior of
AIM. In all cases, it is the role that activity in non-stimulus locations has on the



182 N.D.B. Bruce and J.K. Tsotsos

Fig. 9. An example of an asymmetry which results from the presence versus the absence
of a feature

perceived saliency. This is an important point in particular for those models that
posit properties derived from preattentive segmentation of target and distractor
elements.

4 Discussion

In this paper, we considered the extent to which a definition of saliency motivated
by information theory is in agreement with a large body of existing psychophysics
results. Analysis reveals that the proposal is capable of addressing a wide range
of behaviors including some which heretofor have only been observed in more
specialized models. As a whole the results provide a compelling case for an
information based definition in the determination of visual saliency and visual
search behavior adding to the existing body of fixation based support for the
proposal described in [1]. Future work will include a deeper analysis of some
of the observed behaviors and drawing explicit connections to neural circuitry.
Preliminary analysis reveals considerable similarity between the behavior of the
model, and cortical gain control mechanisms (e.g. [17]) which we expect to reveal
specific connections between primate neuroanatomy and the role of information
in determining visual saliency.
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