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Abstract

Animal health and welfare can be assessed by examin-
ing their behaviour, in particular their movements. In
a novel application area, we explore using visual track-
ing, optical 
ow computations and attentional tech-
niques for the purpose of monitoring a collection of
pigs in a pen. In this paper we only explore the mon-
itoring of a single pig. Techniques are presented that
are found to perform at rates of 10 to 15 Hz on a non-
dedicated Pentium 2 computer equipped with an in-
expensive framegrabber. The results are encouraging,
albeit preliminary. However, we envision that in the
near future some useful tools will result from this work
so that animal behaviourists can automatically col-
lect data for performing non-invasive animal behaviour
studies. We have yet to explore methods for recording
and delivering the computed information in a form that
ethologists can quickly ascertain an animal's health.

Introduction

Animal health and welfare can be assessed by exam-
ining their behaviour, in particular their movements.
A lack of motion generally indicates a lack of welfare.
Our focus for this study is focussed on pigs in a con-
�ned pig house, but the principals can be extended to
observations of other animals in con�ned farm settings.
Health can be ascertained by examining the number
of times visiting a feeder, distance travelled, the social
interaction of the pigs, etc. (Bigelow & Houpt 1987;
Gonyou, Chapple, & Frank 1992). The use of image and
visual analysis in the study of animals in a relatively
new approach. An example application is the measure-
ment of a pig's 2D body area from a top-down view,
which is found to correlate with body weight (Brandl &
Joergensen 1996). It is a great bene�t to those that per-
form animal analysis to be able to monitor the animal's
activities without disturbing them. The method pro-
posed for applied ethological studies is the placement of
a video camera and using computer vision techniques
to analyze the streaming video information.
We have been recently engaged in research using inex-

pensive, o�-the-shelf video cameras (i.e., typically ones
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sold in department stores for video conferencing appli-
cations) in the application of tracking humans for the
purpose of providing perceptual capabilities for a mo-
bile robot navigating, avoiding and interacting within
a crowded room of people. We were able to acquire
and process visual data in this con�guration for track-
ing various features at rates of 10 to 20 Hz on a non-
dedicated 333 MHz Pentium 2 machine. We were in-
troduced to a completely di�erent application area as
a result of some contacts at our university with a re-
searcher in Denmark who is examining and tracking the
locomotion of pigs in a pen in order to analyze their so-
cial behaviour. The Danish researcher provided us with
a 6 hour video tape of a collection of pigs in a pen. This
paper reports on the application of some tracking and
motion analysis tools from our current work to animal
tracking and the direction for future investigations. The
goal of the original people tracking experiments was to
provide an inexpensive, fast (with real-time rates of at
least 10 Hz) system that uses simple techniques yet is
reasonably reliable.

The video data of the pigs in a pen was captured in
a con�guration consisting of a camera pointing down-
wards from the ceiling to the centre of a pigpen. Change
of scale is not an issue because pig size in our con-
�guration is invariant. Gray-level tracking as opposed
to colour tracking was initiated because of the lack of
colours in a pig pen (including the pig).

Our main goal was (and continues to be) to inves-
tigate the feasibility of automatically tracking pigs us-
ing simple tracking and motion capture techniques with
an inexpensive o�-the-shelf camera and framegrabber
setup. Our objectives are that the resulting techniques
be noise tolerant, be able to perform at a reasonable
speed, be reasonably accurate and simple (Nishihara
1984). The �rst three criteria correspond to robustness,
real-time performance and su�cient accuracy with re-
spect to a particular task. The fourth criteria, simplic-
ity, helps in analyzing the algorithm.

We explored simple tracking methods and optical

ow techniques to examine if the behaviour of the pigs
can be captured via these automated methods. The
aspect of recording the information in a manner that
can be analyzed by an animal behaviourist has yet to



be addressed. The main contributions of this work is
not necessarily the techniques used but rather the ap-
plication of a combination of existing computer vision
techniques to the problem of non-invasive automated
monitoring of the behaviour of pigs and other animals
in order to ascertain and monitor their health. Cur-
rent techniques used to gather this data involve manu-
ally observing pre-recorded video data or actually be-
ing physically present and observing and making notes
on the pig's behaviours, a very tedious and labourious
procedure. We have explored automating this proce-
dure using blob tracking, optical 
ow and attentional
methods.

Methods

Tracking

Visual tracking involves following an object around a
scene. Most tracking methods rely on one of the fol-
lowing methods:

� edge detection (i.e., complex model and shape track-
ing (Baumberg & Hogg 1994)),

� region-based correlation techniques such as SSD
(sum-squared di�erence methods), and

� simple segmentation techniques which are commonly
referred to as blob tracking.

The edge tracking methods tend to be more robust
and accurate but require higher computational cost.
The blob tracking methods are more computationally
e�cient and work e�ectively in well structured envi-
ronments (e.g., white on black). The primary goal of
tracking is object localization which is not necessarily
the same as achieving a complete segmentation, but the
goal of minimizing false positives is essential.
We have experimented with tracking pigs using a blob

tracking method as implemented as part of the XVi-
sion software package (Hager & Toyama 1998). The
blob tracker thresholds each pixel value in the region
of interest, and then uses the centre of mass of those
points that are above the threshold to track the region.
The blob tracker is initialized with a membership func-
tion that tests pixels for membership in the blob region
by whether or not the pixel is between the lower and
upper thresholds. Furthermore, the blob tracking only
occurs if a minimum percentage of pixels in the region
satis�es the membership requirement. The best perfor-
mance will occur if you are tracking a black/white dot
on a white/black background. No matter where the
blob tracker is initialized, it will try to centre itself on
a region containing 100% of the points that satisfy the
membership criteria. For this reason, the best perfor-
mance occurs when the blob region to be tracked can
be contained entirely in the region of interest.
One of the problems with a simple blob tracker is

its brittleness in complex environments. One can ar-
gue that our environment is very structured, i.e., the
pigs are bright in intensity level when compared to the

oor of the pig pen. This is the rationalization behind
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Figure 1: Three Successive Frames from the video we
used for performing our analysis.



using the blob tracker for tracking pigs in a pen. We
anticipated having di�culties when the pigs are next to
each other. In addition, the twisting of the pigs bodies
should also give us di�culty. Others have extended the
blob tracker to the colour domain (Wren et al. 1997;
Rasmussen, Toyama, & Hager 1996) but the pig pen
scenario is chie
y a gray-level image. For robustness,
in the future, we expect to add additional visual cues
to supplement the visual tracker because of the inher-
ent brittleness of the simple blob tracker (Ramussen &
Hager 1998).

Optical Flow

Optical 
ow is what results from the recovery of the 2-D
motion �eld (i.e., the projection of the 3D velocity pro-
�le onto a 2-D plane; or the resulting apparent motion
in an image). Most optical 
ow techniques assume that
uniform illumination is present and that all surfaces are
Lambertian. Obviously this does not necessarily hold
in the real-world, but we assume that these conditions
do hold locally. Optical 
ow describes the direction and
speed of motion of features in the 2D image as a result
of relative motion between the viewer and the scene. If
the camera is �xed, the motion can be attributed to the
moving objects in the scene. Optical 
ow also encodes
useful information about scene structure: e.g., distant
objects have much slower apparent motion than close
objects.
The algorithm we used for computing optical 
ow in-

formation is a correlation-based technique that has been
shown to exhibit real-time performance (Camus 1997).
In this technique, the motion of a pixel at [x; y] in one
frame to a successive frame, is de�ned by the deter-
mined motion of the patch P� of � by � pixels centred
at [x; y], out of (2n + 1) � (2n + 1) possible displace-
ments, where n is an arbitrary parameter dependent on
the maximum expected motion in the image over two
successive image frames in a temporal sequence. The
motion of the patch is simulated for each potential dis-
placement of [x; y] (given by n) and a match strength
M is calculated for each displacement. Let � represent
a matching function. If I1 is the �rst image examined
and I2 is the next successive image in a temporal se-
quence, then the match strength for a point [x; y] for a
simulated displacement (u;w) is calculated by:

8u;w :M(x; y;u;w) =P
�(I1(i; j)� I2(i+ u; j + w)); (i; j) 2 P�

(1)

This can be e�ciently calculated by taking into account
certain redundancies in the calculation. Let m repre-
sent the simulation of all possible displacements of pix-
els [x; y] between I1 and I2, andM be the function that
results by applying � (which is a smoothing operator)
over m. The smoothing is only done over similar (u;w)
displacements. In addition, since most averaging win-
dows share common values amongst neighbours, this
is taken into account when computing m and subse-
quently M to reduce the computational time.

Additional e�ciency in the algorithm can be obtained
by controlling the spatial or temporal sampling (Camus
1997). Spatial sampling is constrained by the size of the
�gure of interest and temporal sampling is constrained
by the top speed of the �gure of interest. It is also
claimed (Camus 1997) that sampling at various reso-
lutions and interpolating the results can also result in
minimizing the e�ects of occlusion. This is not nec-
essarily relevant in our case and will only be applica-
ble if the pigs crawl all over each other. For assessing
the computational e�ciency of the optical 
ow algo-
rithm, the image was subsampled (see results). The
computational e�ciency of the approach is at the ex-
pense of an increase in storage capacity. In partic-
ular (where s is a single dimension of a square im-
age, (2n + 1)2 elements de�ne the square plausible
pixel displacement region, and (2�n + 1)2 de�ne the
square smoothing window), s2 elements are required
for storing each temporal image (minimally two im-
ages), and for each pair of temporally displaced im-
ages the following is required: (s � 2�n)

2(2n + 1)2 el-
ements are required for storing the simulated motion
array; (s�2�n)

2 elements are required for storing tem-
porary smoothing values; and 2(s� 2�n)

2 elements are
also required for storing the resulting optical 
ow vector
�eld. With regards to computation, the basic algorithm
requires (s� 2�n)[(2n+ 1)2(s+ 1) + 4s� 6�n � 3] ad-
ditions/subtractions. Typically both �n and n are rel-
atively small when compared to s resulting in an algo-
rithm complexity of 
(s2). We have not yet optimized
the search process for �nding the best motion describ-
ing a pixel motion. Our brute force search approach
requires (2n+ 1)2(s� 2�n)

2 comparisons. The motion
�eld is �nally presented after performing a quadratic in-
terpolation amongst nearest neighbouring pixels result-
ing in an additional 16(2�s�n)

2 additions/subtractions
and 18(s� 2�n)

2 multiplications/divisions.
Matching techniques as described here typically per-

form worse than other methods (e.g., intensity-based
di�erential, energy based, phase based (Barron, Fleet,
& Beauchemin 1995)), especially in the case of diverg-
ing motion sequences (i.e., used to calculate time-of-
collisions for robotic applications) which have a non-
uniform motion �eld everywhere and violate the trans-
lational model assumed by the matching technique.
Even though the algorithm (Camus 1997) that we have
used performs slightly worse than other methods, it is
signi�cantly faster than other techniques. Diverging
motion is not applicable and not of any concern for
our application of pig monitoring given the con�gura-
tion setup. Since the algorithm we used has compara-
ble results to other techniques (Camus 1997), but at
a signi�cantly less computational cost, we found it an
appropriate tool to use.

Attention

In order to initiate the tracking process, the objects of
interest (i.e., pigs in our case) need to be �rstly identi-
�ed and segmented from the background. The easiest



way to initiate this is to manually seed the tracking pro-
cess by the user selecting a window size and its spatial
location for the blob to be tracked.
Attention in essence is the localization of the object of

interest. Tracking re-localizes based on this initial seed.
Image segmentation is very costly and not necessarily
feasible for real-time autonomous operation. Interest
operators that have been used in the past include ones
that maximize a measure of textured-ness or cornerness,
such as a high standard deviation in the spatial inten-
sity pro�le (Moravec 1980), the location of zero cross-
ings in the Laplacian of the image intensity (Marr, Pog-
gio, & Ullman 1979), and corners (Kitchen & Rosenfeld
1996). Another measure of textureness that optimizes
its ability to be tracked (Shi & Tomasi 1994) was ex-
perimented with, but it also selected textureness in the

oor of the pig pen which was of no interest to us (see
experimental results).
An indirect yet interesting revelation while perform-

ing some of our experimentation with optical 
ow was
that optical 
ow data could possibly be used to localize
moving pigs and seed the tracking process. We are also
interested in pigs that are stationary because this may
indicate some illness especially if there are prolonged
periods of inactivity. Thus, we plan to investigate other
attentional methods that operate on static images (Re-
isfeld, Wolfson, & Yeshurun 1995).

Results

Dr. N. Brandl (from the Danish Institute of Agricul-
tural Sciences) provided us with a six hour video clip
of a collection of pigs in a pen (see Figure 1). The
video was captured with a camera mounted on the ceil-
ing, pointing downwards onto the pigs. We also assume
that additional lighting was brought into the pen. For
the sake of exploring the pigs' behaviour without in-
terfering with what they are used to in terms of their
arti�cial environment, it would be ideal not to intro-
duce any additional lighting. We did not realize until
later that the actual data was recorded at .3 Hz, indi-
cating to us that maybe animals such as pigs do not
need to be tracked with high frame rates. For the pur-
poses of our experiments we assumed that the data was
captured in real-time at 30 fps.
The data was analyzed on a non-dedicated, net-

worked Pentium 2 333 Mhz PC running Linux using
a bt8481 RAM-less framegrabber (this is the type of pci
framegrabber that usually comes packaged with the in-
expensive video cameras found in stores). Albeit, the
performance on this type of system can be improved if
a large portion of contiguous physical memory is allo-
cated for frame grabbing. This was not done for our
experiments but can be done in the future for perfor-
mance improvements.
We were able to track individual pigs using the blob

based method of the XVision package at a frame rate of
approximately 15 Hz. The tracking window was seeded

1http://me.in-berlin.de/ kraxel/bttv.html

Figure 2: Tracking an Individual Pig with Others

Nearby. Tracking an individual pig in the cluster illustrated
in the �gure is di�cult with a simple square or rectangle blob
window. The tracker tends to drift on and o� other pigs.
Additional information about the shape of the pig, identi�able
by its contour, could be used to contain the blob.

manually by the operator placing a window with the
pig centred. We experimented with di�erent tracking
windows (see Figure 3). A square tracking window in-
cludes lots of pixel information that is not necessarily
associated with the pig (see Figure 3a) which tends to
cause problems when other pigs are nearby (see Figure
2). Rectangle windows (see Figure 3c,d) that form a
rectangular convex hull on the pro�le of the pig can also
be used, but they are problematic if the pig changes ori-
entation to the horizontal from the vertical or is angled
in the scene (see Figure 4). As in the other case, if
contour information about the pigs pro�le is used to
contain the blob, better results should be anticipated.
Another problematic situation was the superimposed
date (see Figure 3b ) around the video. This informa-
tion tended to deviate the tracker away from the pig of
interest. The blob tracker proved to be highly e�ective,
given that it is a very simplistic technique, albeit for
the situations described above. De�ning the extent of
the blob region to the silhouette circumscribed by the
shape of the pig would de�nitely alleviate this prob-
lem. We are currently exploring fast e�ective ways of
integrating shape information. Since the data we did
use for performing our experiments was not recorded in
real-time, we do not have an accurate feel for the speed
in which pigs move at and thus we do not know what
rate of frame processing is required.

We decided to also explore the avenue of calculating
the optical 
ow of the pig video. It is not clear what in-
formation this can provide to the behaviorist and how it
would be encoded but optical 
ow does encode the 2D
projection of motion and may be a valuable resource.
The algorithm for optical 
ow described earlier was ex-
amined with respect to its performance based on vary-
ing the input parameters: simulated motion window,
averaging window, and the size of the image. The pixel
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Figure 3: Di�erent Tracking Windows (a) The tracker
performs well when an individual pig is isolated. (b) The date
superimposed on the image gave the tracker problems. (c)
When nearby other pigs, the tracker drifts and �nally (d) does
not contain most of the pig's shape.

Figure 4: Angled Body Position vs. Rectangular

Window. A rectangular window is not adequate for tracking
the pig if it positions itself at an angle, leading to problems
with the tracker not actually only tracking the pig, but also its
environment.

averaging parameter (see Figure 5a) did not really af-
fect the performance of the algorithm and this makes
sense given that increasing the averaging window ac-
tually decreases the area of the image processed (i.e.,
the border region is not processed). Varying the win-
dow size which controls the spatial exploration of all
potential motions between successive frames has a lin-
ear relationship with the amount of processing required
(see Figure 5b). In addition, the algorithm is linearly
proportional (i.e., 
(n)) to the number of image pix-
els (see Figure 5c) n, as indicated earlier. The lowest
resolution was chosen based on the size of the �gure
of interest (i.e., the pig). This ensured that when the
image was resampled, the motion of the pig was still
distinguishable. This was found by re-sampling the im-
age to 32 by 24 pixels. At this rate, it was found that
the algorithm took only 1 msec to compare two suc-
cessive images and produce the optical 
ow. Thus, the
processing of the images was not the slowest processing
component; the frame grabbing and image displaying
were.

As mentioned earlier, the selection of a seed to initi-
ate the tracker was done manually. We did perform
some experimentation with selecting interest regions
automatically. One example is using a texture measure
(Shi & Tomasi 1994), as illustrated by Figure 9. This
image illustrates that many other points were selected
in addition to features of various pigs. Practically, the
seeding module really needs to be a pig detector. This
is an area of current investigation.

Discussions

The results are preliminary but we have shown that
the techniques presented do show some promise in cap-
turing the behaviour of pigs automatically at real-time
rates using inexpensive hardware. We found that the
blob tracker would de�nitely be improved if pig shape
information was integrated. This would have to be inte-
grated without deteriorating performance speed. Given
that our test data set was not recorded in real-time (i.e.,
30 fps), we do not have an accurate feel for the maxi-
mum speed of a pig and do not know what our mini-
mum frame rate should be. The test results were only
given for tracking a single pig. Ideally the behavior-
ist would want to track many if not all the pigs in the
pen. Tracking many pigs will slow down performance.
Given that our tracker was able to perform at 10 to 15
Hz for tracking a single pig, and it was able to track
data recorded at .3 Hz, we envision that the extension
to many pigs may not necessarily be a problem. Op-
tical 
ow data was found to be a possible detector for
initiating the blob tracker but we are also interested in
tracking stationary pigs because inactivity may be an
indication of ill health. An attentional operator that
initiates the tracking (i.e., a pig detector) is under cur-
rent investigation.
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Figure 5: Optical Flow Performance. (a) Varying
the average window size used for smoothing the image had
negligible a�ect. Varying the (b) window used for simulating
all potential motions and the (c) image size corresponded to a
linear relationship.
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Figure 6: Optical Flow at Varying Resolutions The
original image was 320 by 240 pixels. (a) shows the optical

ow between the �rst two images of the sequence in Figure 1
shown above at 32 by 24 resolution, while (b) shows the optical

ow at 40 by 30 resolution. The only change in the image is
the shift of the one pig in the right hand side of the image.
Qualitatively, the results in (a) are comparable to (b).
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Figure 7: Optical Flow of Subsequent Sequence

initiated in Figure 6(b), which is temporally followed by the
above (a) and (b).
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Figure 8: Continued Optical Flow Sequence initiated
in Figure 6(b), followed by Figure 7. (a), and (b), which is
temporally followed by the above (a) and (b).



Figure 9: Interest Points: computed by the described
texture measure are illustrated by the superimposed blobs.
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