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Abstract

A new framework for simulating the visual attention system in primates is in-

troduced. The proposed architecture is an abstraction of existing approaches influ-

enced by the work of Koch and Ullman, and Tompa. Each stage of the attentional

hierarchy is chosen with consideration for both psychophysics and mathematical

optimality. A set of attentional operators are derived that act on basic image

channels of intensity, hue and orientation to produce maps representing perceptual

importance of each image pixel. The development of such operators is realized

within the context of a genetic optimization. The model includes the notion of an

information domain where feature maps are transformed to a domain that more

closely corresponds to the human visual system. A careful analysis of various issues

including feature extraction, density estimation and data fusion is presented within

the context of the visual attention problem.
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Chapter 1

Introduction

1.1 What is Visual Attention?

The perceptual information available to a human at any given moment is vast. In

particular, humans receive a great quantity of information through the human visual

system and are able form a mental model of a scene in a seemingly instantaneous

manner. The basic essence of attention is perhaps best captured by James[1]:

"Every one knows what attention is. It is the taking possession by the mind,

in clear and vivid form, of one out of what seem several simultaneously possible

objects or trains of thought. Focalization, concentration, of consciousness are of its

essence. It implies withdrawal from some things in order to deal e ectively with

others".

Although this encapsulates the basic idea of what is meant by attention, a more

exact description taking into account neurobiological facets of attention is impera-

tive for the purposes of the work presented in this thesis. A substantial amount of

e ort has been devoted to learning about the human visual system, although we are
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still far from having a complete neurobiological understanding. Much however is

known regarding the physiology of the eye and di erent components of the human

imaging system.[2] The human visual system consists of three chief components

critical to attention:

i. Eye movements called saccades

ii. A foveal gradient of resolution

iii. Neural processing on the retina

Details of components ii. and iii. are left to section 1.2. An understanding of i.,

saccadic eye movement, is a necessary condition on understanding what is meant

by visual attention and the importance of visual attention. In a comprehensive

study[3] Yarbus showed that the perception of a scene involves a complex sequence

of saccades, where the eye jumps quickly to foveate a new part of the scene, and

fixations, where the eye remains still. The points that one fixates in a scene tend

to be those that are critical to forming an understanding of the scene[4]. One issue

that remains controversial is whether movement of the eyes is controlled by the

goal of an observer or by attracting stimuli. A variety of studies focusing on this

issue have taken place in the past 3-4 decades[5]. Perhaps the most influential of

these studies is that of Yarbus[3] who determined that the scanpath of an observer

when viewing an image is influenced by the question posed by the experimenter

prior to viewing. However, although the scanpath varied greatly depending on the

question asked, the set of fixation points was quite consistent across all subjects

suggesting that stimulus and not a supposed goal determines the points on which

one has a tendency to fixate. A couple of other studies also provide evidence for
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this same supposition. One such study determined that features in an image tend

to attract an observer’s gaze away from planned paths.[6] Subjects were asked to

scan across the image in the same manner that one might view a page of text.

In doing so, it was found that the viewers gaze would pause while passing over

lines perpendicular to the planned route. In this case, the goal of the observer was

dominated by the e ect of stimulus. Another example is that of a study measuring

eye movements of radiologists when viewing chest x-rays. It was determined that

in 70 to 90 percent of cases where a tumor was missed, the eyes of the radiologist

fixated the location of the the missed tumor.[7] In this case, because the eyes of

the observer were drawn to the tumor without having recognized its presence, it

follows that the movement of the eyes to the location of the tumor must have been

driven by stimulus in the locality of the tumor rather than cognitive information.

Most literature now subscribes to the idea that attention involves two functionally

independent components: An early pre-attentive stage in which eye movements are

purely stimulus driven and help in the creation of a mental model of a scene, and

an attentive stage, in which a series of fixations are followed to process the formed

model bearing in mind a supposed goal[8]. In this thesis we are interested in the

pre-attentive stage in which saccadic eye movements are driven entirely by stimulus

facilitating the processing of the vast quantity of information that enters the visual

sensory pipeline. Visual attention in the remainder of this thesis refers to the early

pre-attentive visual process by which a mental model of a scene is conceived. The

process is assumed entirely stimulus driven and the goal of this thesis is that of

producing a computational approach to emulate the process of visual attention in

humans.
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1.2 Neuronal and Physiological Mechanisms

1.2.1 Neuronal Mechanisms for Attentional Control

An understanding of the neurophysiology of attention appears to be quite impor-

tant in producing a model of visual attention that adheres to psychophysical con-

siderations. A number of regions of the brain participate in early visual attention.

Key regions of the brain include the visual cortex, inferotemporal cortex, poste-

rior parietal cortex, prefrontal cortex and superior colliculus.[9] The flow of visual

information between these regions of the brain is seen in Figure 1.1. Information

enters the visual pipeline via the visual cortex and then proceeds along two par-

allel pathways. The two pathways include a dorsal stream and a ventral stream.

The dorsal stream includes the posterior parietal cortex and its primary task is

that of focusing attention on regions or objects of interest in a scene. The ven-

tral stream including the inferotemporal cortex is responsible for identification and

recognition tasks. Although the ventral stream is not directly involved in attention,

these regions of the brain have been shown to receive attentional feedback and are

responsible for establishing a mental representation of objects and locations that

one attends to. The aforementioned neuronal structure provides strong evidence

in favor of a low-level attentional mechanism responsible for localization coupled

with a higher-level component facilitating object and scene representation as well

as identification. This framework strongly suggests that attention consists of a

task independent component that focuses later processing. The prefrontal cortex

is bidirectionally connected to both the inferotemporal cortex and posterior pari-

etal cortex and controls eye movement through the superior colliculus as well as

4



Figure 1.1: Flow between key brain regions involved in visual attention.

modulating the dorsal and ventral processing streams.

1.2.2 Saccades

Saccades are quick, jumpy eye movements that may result from voluntary movement

or reflex control. A voluntary saccade might happen if one is told to look in a

particular direction or at a particular target. In contrast, a reflex saccade may
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occur as a result of sudden movement, or vibrant color when one first encounters a

scene. In response to such stimuli, the human ocular motor system will position the

eyes in the locality of strong stimulus following a latency of approximately 225 msec.

The peak movement velocity and the duration of the saccade are dependent on the

distance that the eye moves, varying from 30 to 700 degrees/second with movements

ranging from 0.5 degrees to 40 degrees in amplitude. After a required delay, the

saccadic reaction to stimulus in the image involves an interval of acceleration of the

eyes to a peak velocity followed by deceleration onto the new target position. The

purpose of saccades is that of collecting information regarding salient portions of a

scene for further high-level processing. Saccades direct the processing of information

in a scene, collecting detailed high resolution information from conspicuous localities

while ignoring areas of little interest.[4]

1.2.3 The Retina and Fovea Centralis

The Retina

The retina consists of a light-sensitive tissue layer at the rear of the eye that covers

approximately 65 percent of its inner surface. The center of the retina contains a

small area called the fovea or fovea centralis. This area is the area in which the

eye’s vision is most acute. The fovea is approximately 1 degree in diameter and

visual acuity drops sharply outside the fovea. The retina contains photosensitive

cells called rods and cones that transform incoming light energy into signals that

travel to the brain through the optic nerve. Approximately 125 million rods and

cones are distributed nonuniformly over the surface of the retina. The role of rods
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might be compared to that of high-speed black and white film. The array of rods is

able to perform in light too dim for the cones to handle, unable to resolve color and

relays images that are not very well defined[10]. In contrast, the cones give detailed

colored views in brighter light, somewhat analagous to low-speed color film.

The Fovea Centralis

The field of view over which humans receive data is about 200 degrees, however, the

resolution over most of that field is rather coarse. To capture high resolution data

on an image, the light must land on the fovea centralis, reducing the region of sharp

vision to around 15 degrees. In lower light, as no rods are located on the fovea, the

fovea is e ectively blind. The most acute vision in the dark lies approximately 8

degrees from the center of the fovea. In the center of the retina, there is a small

region about 1.5 m in radius termed the macula. In the center of the macula is

the fovea centralis, a region of 0.15 mm radius.[10] The fovea centralis is very high

in cones and contains no rods. The cones on the fovea are thinner and far more

densely packed than elsewhere on the retina.

Eye Fixations

As the fovea captures information of the highest detail, the eye moves around

quickly to areas containing certain stimuli so that light from a region of interest

falls directly on the fovea. Regions to which the eyes are drawn through a reflex

eye movement are typically areas in which something with a distinct characteristic
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is located. For example, a bright red bird on a tree has a unique color in the scene

and for that reason is likely to draw attention from an observer. Perception of a

scene is fabricated by continuous analysis by the brain of the time-varing image

captured on the retina.

1.3 Control of Attentional Focus and Inhibition

of Return

From a computational viewpoint, often the goal of including an attentive stage

is that of reducing processing on the whole image to processing of a sequence of

salient circumscribed regions. In the context of computational visual attention,

this most often requires a mechanism for going from a computed salience map to

a series of points representing foveated regions of interest. Although the focus of

the work here is that of coming up with the salience map that precedes this stage,

it is nevertheless worth briefly mentioning a plausible architecture for this step.

One architecture that has gained support in recent years is that of a winner-take-

all network[11][12] which serves as a neurally based detector of a maximum. To

avoid focusing on a single maximum, neurons in the locality of the attended region

are inhibited to allow choice of a new gazepoint. This strategy allows sequential

selection of gazepoints and associated scanpaths. This approach has been applied

successfully to applications such as video transmission, image compression, and

mobile robot navigation[13]. It should be noted that in some cases, it is possible to

employ the salience map directly to facilitate a perceptually motivated task. For

instance, salience maps have been applied to perceptually motivated measures of
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image quality[14].
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Chapter 2

Previous Work

One of the first neurally credible frameworks for simulating human visual attention

was proposed by Koch and Ullman[11] in 1985. Their model focused on the idea of

a ’saliency map’ which they define as a two-dimensional topographic representation

of conspicuity for every pixel in the image. Their proposed model consisted of 4 key

steps: Low-level feature extraction, centre-surround di erences to produce feature

maps, combination of feature maps, and finally, attentional selection and inhibition

of return. Figure 2.1 shows the key steps of the Koch and Ullman model.

As can be seen, the approach revolves around early extraction of primitive fea-

tures followed by an operator that is given by the di erence between the measured

feature strength of each pixel and surrounding strengths to produce feature maps.

The feature maps are then combined to produce a saliency map that facilitates the

selection of localized image regions for further processing. Much examination of this

model has been performed in the last 15 years including close examination of various

components of the model by Koch, Ullman and additionally Niebur and Itti[15].

Some of the ideas that come out of the Koch and Ullman framework contribute
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Figure 2.1: The basic framework of the model of Koch and Ullman.
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to the work presented in this thesis and are discussed in more detail in chapter

3. The feature extraction stage involves the computation of orientation, colour

and intensity maps at 6 spatial scales with downscaled maps computed using the

Burt and Adelson gaussian pyramid scheme which consists of progressive low-pass

filtering and subsampling[16]. This step is followed by a center surround di er-

ence operator in which the center of the receptive field is given by a pixel at level

{2 3 4} of the Gaussian pyramid and the surround by the corresponding pixel

at level = + with {3 4} giving 6 feature maps at scales 2-5,2-6,3-6,3-7,4-7

and 4-8 for each type of feature. Across scale di erence between maps is performed

through interpolation to the finer scale and subtraction. This scheme is used in lieu

of a single center surround operator to lessen the dependence of the center surround

mask size on scale. Intensity maps are computed as the average of the red, green

and blue values for each pixel. Two colour feature maps were computed using the

centre surround operator at each of the six scales. The first of the colour feature

maps is given by the (red-green) value in the centre minus the (green-red) value

in the surround followed by an absolute value. To derive the second blue/yellow

feature maps with yellow given by the average of the red and green channels the

same set of operations are performed. The orientation maps are computed using

oriented gabor filters for four separate orientations(0,45,90,135)[17]. In total there

are 24 orientation maps corresponding to the four orientations at 6 spatial scales,

12 colour maps given by the two di erent colour channels at 6 spatial scales and

lastly 6 intensity maps. The feature maps derived from these 42 maps through the

center surround operator were then combined through a weighted average.

Another well-known study on the issue of visual attention is that of Privitera

12



and Stark[18]. Privitera and Stark evaluated numerous algorithmic approaches to

detecting regions of interest by comparing the output of such algorithms to eye

tracking data captured using standard eye tracking apparatus. Privitera and Stark

compared 10 di erent algorithmic methods for detecting regions of interest:

1. The Canny operator, which measures edges per unit area[19].

2. High curvature masks incorporating both varying orientations of acute angles

as well as an "X" shaped mask.

3. A 7 x 7 centre-surround mask including positive centre and negative surround

similar to that in the model of Koch and Ullman.

4. Gabor masks to measure grey-level orientation di erences based on the

model of Niebur and Koch.[20]. The orientation vector was defined as a weighted

sum of the various responses to arrive at an average orientation vector.

5. A discrete wavelet transform based on the Daubechies and Symlet bases

using a pyramidal scheme.

6. A measure of local symmetry.

7. Michaelson contrast[21] defined as:

= k( ) ( + )k where is the mean luminance in a local 7 x

7 neighborhood and the overall mean luminance.

8. An entropy measure of the type often used to measure texture variance given

by:

=
X

log (2.1)
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where is the number of times the ith grey level occurs in the image.

9. Coe cients of the Discrete Cosine Transform with high frequency compo-

nents indicating areas of interest.

10. The Laplacian of the Gaussian, which Marr suggested as having some

correlation to visual regions of interest.[22]

Privitera and Stark found that each of the 10 operators with the exception of

the discrete cosine transform showed a strong correlation to measured fixations for

some of the images but performed quite poorly for others. This result suggests that

no single measure can predict the location of every region of interest. This is a

quality that seems to have given the Itti and Koch model a step up on on some of

the approaches that are based on a single property.

In 1991, Topper[5] introduced an interesting addition to the visual attention

literature. The premise of his work is as follows: Strength of a particular feature in

an area of the image does not in itself guarantee that ones attention will be drawn

to that image area. Consider figure 2.1, shown are two separate cases, one in which

attention tends to go to a region with many edges and the other where attention

tends to go to a more homogeneous area. It is clear that a detector based on edges

would fail miserably on this set of two images. What is evident, is the fact that

attention is drawn to an area of the image in which a certain quality is di erent

than the rest of the image.

Topper’s idea was to transform a set of measured feature maps to a more percep-

tually relevant domain through an operator that measures the uniqueness of each

feature strength relative to other strengths. Owing to the close ties between this
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Figure 2.2: Two separate images, one textured with a white square the other white
with a textured square. In each case attention goes to the smaller square as it
displays characteristics unique to the image.
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premise and ideas that come out of information theory, Topper suggested Shan-

non’s measure of self information as an appropriate transform. In the context of

this problem, Shannon’s measure of self information may be described as follows.

The premise of Shannon’s measure is the idea that the information conveyed by

an event is inversely proportional to the probability of the event occurring. Intu-

itively, this assertion seems valid and may be made more lucid in the context of an

example. If one is gazing at the ceiling of a room and the entire ceiling is homo-

geneous with the exception of a light fixture, one’s attention will tend to be drawn

to the light fixture. In a di erent light, if a small portion of the ceiling is chosen at

random, the probability that the piece is part of the homogenous ceiling is far higher

than it belonging to the light fixture. Based on this observation, Shannon’s model

predicts that a portion of the light fixture contains more useful information than

a blank region of the ceiling. It is this idea that makes Shannon’s self-information

measure a useful tool in predicting regions of an image that are informative or

of interest. Shannon suggested the log operator, ( ) = log(1 ( )) as the best

operator to produce the desired inverse proportionality while allowing for a few

important considerations. First, an event that will definitely occur ( ( ) = 1) con-

veys no information ( ( ) = 0), this consideration is preserved when using the log

operator. Second, if ( ) = 0, the information conveyed by such an event should be

undefined. This is a non-issue since an event of probability zero will never occur but

mathematically, the log operator handles this detail. A third important property

of the transformation is that of additivity. That is, if ( ) = ( ) ( ) then

it follows that ( ) = ( ( ) ( )) = log ( ) log ( ) = ( ) + ( ).

This is an important consideration in checking for redundant feature definitions. It
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would likely be instructive to provide an example of the application of Shannon’s

self-information measure within the context of our visual attention problem. Con-

sider the two images shown in figure 2.2: The top image is the original and the

second is the result of applying Shannon’s information measure to the top image.

In this case, P(x) is defined to be the probability density of pixels of intensity x and

each pixel is mapped to a new value using the definition ( ) = log(1 ( )) The

utility of Shannon’s measure is evident in this simple case with the smaller squares,

which seem to draw attention, receiving greater confidence values. In the second

image, the intensity value receiving the highest information measure in the original

is mapped to white in the output. Others are given a value between black and white

based on the ratio of their respective information measures to this maximum. This

convention has been assumed in all images of this nature unless otherwise stated.

The behaviour of this information operator is consistent with psychophysics, in that

humans tend to be drawn to areas of the scene that contrast with the rest of the

scene[1].

Topper performed a set of experiments along the same lines as those of Privitera

and Stark. He measured the correlation of feature maps to eye tracking density

maps following the application of Shannon’s self information measure to the feature

maps. As in the case of Privitera and Stark, the correlation for each operator was

substantial in some cases and worse in others. Perhaps the most important result

from his work was that the self-information operator allowed the detection of regions

of interest that would never be detected by a strict measure on the image.

Tompa[23] introduced an approach to computational visual attention based on
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Figure 2.3: Above: A test image to exemplify issues related to Shannon’s measure
of self information. Below: The resulting image with a mapping performed based
on intensity values.
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Figure 2.4: A schematic of the approach based on Shannon’s self information. Note
the transition from Fk to Ik is simply the application of Shannon’s self information
to the feature map k.

a subset of the measures employed by Topper for which the correlation to den-

sity maps was seen to be particularly strong. The information maps derived from

this feature subset were then integrated by means of a few elementary operators

(min,max,product,sum and sum of squares) to derive an overall perceptual impor-

tance map. Figure 2.4 provides a schematic for the approach used in Tompa’s

work. The model shown in figure 2.4, along with the model of Koch and Ullman

establishes a foundation for the model developed in this thesis.

Tompa’s model involves three key components: The first component is the

derivation of feature maps from the original image. The 6 operators used in Tompa’s

approach are Sobel edge magnitude, Sobel edge orientation, intensity, hue, variance,
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and moment of inertia. These measures were observed to have the strongest correla-

tion to eye tracking results in Topper’s work. The next stage consists of computing

information maps through the application of Shannon’s self information measure

to the feature maps. This was done in the same manner prescribed by Topper in

his thesis. The last stage consists of combining the information maps to arrive at

a final importance map. Tompa tried various simple approaches including taking

the average, sum of squares, minimum, and maximum of the 6 maps. The sum of

squares operator was found on average to provide the best results.

The approaches of Koch and Ullman, Privitera and Stark, Topper, and Tompa

have been outlined in some detail as they comprise necessary background for some

of the sections that follow. Numerous other approaches to the problem of com-

putational visual attention have been taken that have a less direct connection to

the work presented in this thesis. Nevertheless, in the interest of completeness a

mention of some of these other approaches would likely be of benefit.

Osberger and Maeder[24][25] present an approach that involves segmentation of

the image using a recursive split andmerge algorithm. During segmentation, regions

of fewer than 16 pixels are merged with the most similar neighbor. Segmented

regions are then assigned importance values according to five criteria. A basic

schematic of the approach employed by Osberger and Maeder is seen in figure 2.5.

The five measures that are performed on the segmented image are as follows:

1. A contrast measure given by the di erence between the mean intensity of

each region and the mean intensity of surrounding regions.
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Figure 2.5: The model of computational visual attention of Osberger and Maeder.

2. Size, the number of pixels making up the region.

3. A shape value computed as the ratio of pixels on the border to pixels making

up the entire region.

4. Location, given by the number of region pixels that fall within the central

quarter of the image with more central regions favoured.

5. Background, given by the number of region pixels on the edge of the image

with higher values being unfavourable.

All feature measures are normalized to lie between 0 and 1 such that 1 al-

ways indicates greatest confidence that a pixel is important while 0 is is the least

favourable level of confidence a pixel may receive. Factors are combined by sum-

ming the squares of the confidence values derived from the 5 feature measures to

give a single importance measure to each region. The success of their approach
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Figure 2.6: A schematic of the basic framework of Milanese at al.

has been found to depend highly on the performance of the segmentation and the

approach has virtually no psychophysical evidence for support and little theoretical

basis.

Milanese et al.[26][27][28] use two groups of features to derive feature maps as

the basis for their model. The two groups of features include contours and regions.

Contour measures include measures of contrast, curvature, length and orientation

of contours in the image. Region measures include perimeter, grey level, area and

elongation. Figure 2.5 illustrates the chief components of the approach of Milanese

et al.

Similar to the information domain methods and centre surround di erences,

they employ a mapping on the feature maps to arrive at conspicuity maps. The

transformation that carries out this operation is as follows:

=
1

k k

X ¯̄ ¯̄
(2.2)
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with the F’s being measured values in the feature maps and N the local neigh-

bourhood of the operator. Resulting conspicuity maps are combined using a some-

what ad hoc relaxation operation. The model of Milanese et al., like the model of

Osberger and Maeder lacks a psychophysical backing and contains some steps that

seem to be chosen rather arbitrarily.

Tsotsos et al.[29] proposed an attentional selection strategy that employs the

combination of a bottom-up feature extraction hierarchy with selective tuning of

the feature extraction mechanisms through feedback within a pyramidal processing

architecture. The target region of interest is chosen through feedforward activa-

tion at the top level of the processing hierarchy(Equivalent to an importance map)

through a top-down hierarchical winner-take-all process. Spatial competition for

saliency is then modified at each level of the WTA hierarchy as feed forward con-

nections that do not play a role in the choice of the winning locality are pruned.

The result of this feedback propagation through the pyramid of winner-take-all net-

works is that of an inhibitory beam around the chosen area of interest. Tsotsos et

al argue that their model has broader compatibility with the primate visual system

than any competing approach. This approach is in a slightly di erent light than

some of the others but does have some parallels to the approach of Koch et al.[30]

It is clear that a variety of di erent approaches have been taken to deal with sim-

ulating visual attention in primates. One might notice that all of these models seem

to have common elements. All of them involve some form of low level extraction

of features on the image. Most involve some transformation from these measured

feature maps to maps that more closely resemble a representation of perceptual
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relevance. Combining maps representing importance also seems to be a common

element in most of these models. One begins to get the sense that although numer-

ous approaches to the problem have been taken, there is a fundamental similarity

between many of the models regardless of whether they are derived through psy-

chophysical principles or for purely mathematical reasons. This observation is a

part of the motivation of the model that is developed in this thesis. Recognizing

that common elements exist should allow abstraction to a more general model that

encompasses ideas from a variety of the leading approaches that currently exist.
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Chapter 3

The Proposed Architecture: A

Unifying Framework?

3.1 Existing Approaches: Drawing Parallels

One of the more recent proposed approaches to computational visual attention

is that of Tompa.[23] To reiterate briefly the description in the previous chapter,

Tompa proposed a framework that revolves around the notion of an information do-

main, first introduced within the context of visual attention by Topper.[5] Tompa’s

framework involved taking 6 local feature measures on the RGB image such as edge

strength, variance and hue, followed by an operation quantifying the uniqueness of

the feature strength assigned to each pixel. This operation, based on Shannon’s

measure of self information brings each feature map into the information domain,

a domain that corresponds more closely to the perceptual domain. The result-

ing information maps were then combined by summing the squares of the resulting

strengths in the information maps across each map. The work for this thesis began

as a closer analysis of the model of Tompa. In particular there are three distinct
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components in the model of Tompa that require careful analysis. The first is the

issue of how the information maps are combined. The second issue is in estimating

the density of strengths in the feature map when performing the self-information

measure. Lastly, the operators chosen by Tompa were chosen from a larger set of

well-known operators on the basis that subject to a self-information measure, the

information maps based on these 6 features came closest to eye tracking density

maps across a set of images. Although the measures were chosen from a larger set

of operators, the set of operators from which Tompa’s choices were made represents

only an infinitesimal fraction of the operators that might be chosen from a non-

linear function space. For this reason, it is reasonable to assume that one might do

better in choosing operators through an appropriately designed optimization, from

a larger subspace of the non-linear function space than the dozen or so operators

that Tompa chose from. One of the ambitions of the work is to derive a set of

attentional operators on the image space from a space of operators that includes all

possibilities from the work of Tompa. Clearly, to choose a set of operators from the

entire space of non-linear functions yields a problem that is ill-defined. More real-

istic would be the selection of an operator set from a smaller subspace defined by a

suitably chosen framework. However, the edge orientation map and hue map in his

approach are derived from inverse trigonometric operators on the RGB color chan-

nels. The other four operations are all readily derived from the RGB channels using

an appropriate first or second order operator. Selecting a framework for a nonlinear

operator that acts on the RGB channels and arrives at all of the operators that

Tompa employed does not appear realizable in any simple form. For this reason,

the following is proposed: The image is initially broken down into three separate
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carefully chosen channels; operators that act on each of the channels separately are

then derived and applied to the respective channels. The three most basic measures

that seem to allow the derivation of all the operators from Tompa’s study through

an appropriate optimization within a relatively simplistic framework are: intensity,

hue and orientation. The 6 operators employed by Tompa may be derived from

these choices through simple 1st and 2nd order polynomial filters. Those familiar

with the visual attention literature may notice something curious about this set

of primitives: These three basic primitives chosen to allow an optimization that

includes all of the operators employed in Tompa’s study are the same three chosen

for psychophysical reasons by Nieber, Itti and Koch in perhaps the most famous

of computational visual attention systems. Interesting is the fact that Tompa who

chose operators based on correlation to eye tracking results happened to choose a

set of operators based on primitives that may be arrived at through a choice made

purely under psychophysical considerations. Further, it becomes evident when ex-

amining the model of Tompa from this vantage point that the two models essentially

di er only in the replacement of center-surround di erences and normalization in

the model of Itti, Niebur and Koch with suitable non-linear operators followed by

a self-information measure in Tompa’s model. One might go as far as saying that

the center surround di erence is essentially a measure of self-information of local

extent. The fact that very di erent means were employed to arrive at the two

final models and that these two models may be shown fundamentally equivalent

provides a strong case for the feature measure / self-information framework. One

might regard the goal of this thesis as a closer examination of the approach of

Tompa. One might also regard this approach as an variation on the framework of

27



Niebur, Itti and Koch. The two aforementioned approaches are essentially subsets

of a common, more general model. Each component of this more general model will

be chosen with due care and consideration of measured eye tracking density results.

One of the main goals of this thesis is to derive a set of nonlinear operators to act

on the three basic channels, modeled within the context of a local extent quadratic

Volterra filter, that lies between the image primitive stage and the self-information

stage. The operators will be selected in such a way that correlation to eye tracking

density maps is optimized at each stage of the process. Issues of scale will be dealt

with in the same manner as the Niebur, Itti and Koch study. The proposed frame-

work, an abstraction of the two aforementioned models, is described in more detail

in the section that follows along with a comparison of components in the Itti, Koch

et al. model with components in the model of Tompa.

3.2 Overview of Proposed Architecture

As mentioned in the previous section, the proposed architecture is intended to serve

as an abstraction of the models of Koch and Ullman, and Tompa. In this section,

the proposed model will be described along with how the Koch and Ullman and

Tompa models fit into the proposed architecture. The proposed framework consists

of 4 key components:

1. An early feature extraction phase in which the initial RGB image is divided

into an intensity channel, a hue channel and 4 orientation channels using oriented

gabor filters as is the case in the Koch and Ullman model. A channel for each of
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these images will be produced at 4 spatial scales in the same manner employed in

the Itti and Koch approach.

2. A set of non-linear functions that act on the primitive channels (intensity,

hue, and orientation) to derive higher-level measures. For example, mapping to a

variance map or an edge map from the intensity channel in the case of Tompa’s

approach. In this case, the non-linear functions will be produced by a GA training

procedure and hence can not be named explicitly as in Tompa’s model as they are

not well known measures. The maps resulting from this operation shall be referred

to as attention maps as the non-linear operators are designed as a measure on the

image that represents attention. It is clear why a measure such as variance might

hint at areas that will draw attention but it is expected that some other operator

designed specifically for this purpose might do far better.

3. An information operator that takes each higher-level map to a domain that

more accurately represents human perception called an information map as outlined

in chapter 2. This stage is the centre surround di erence in the Koch and Ullman

model and the Shannon self-information measure in Tompa’s model.

4. Combination of the information maps derived in step 3 to arrive at an overall

perceptual importance map.

A schematic of this framework is depicted in figure 3.1.The steps involved in

the feature extraction stage are straightforward. The intensity channel is derived

as the average of the red, green and blue values corresponding to each pixel. The

hue channel is given by = if , = 2 if where =

arccos 0 5[( )+( )]

[( )2+( )( )]0 5
and and are the red, green and blue values
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Figure 3.1: The proposed architecture for the model outlined in this thesis.
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corresponding to each pixel.

The orientation channel is derived using overcomplete steerable pyramid filters[17]

as was the case in the model of Itti and Koch. Figure 3.2 outlines the oriented

pyramid generation. The image in the Laplacian pyramid at level n is given by:

L =G -G +1 where G and G +1 represent the n and (n+1) levels of the gaus-

sian pyramid[16]. Subtraction happens before the (n+1) level is subsampled. The

oriented pyramid is then constructed by modulating each level of the Laplacian

pyramid with the following four complex sinusoids:

1( ) = ( 2) ; 2( ) = ( 2 4)( + )

3( ) = ( 2) ; 4( ) = ( 2 4)( )
(3.1)

Following this step, each level of the Laplacian pyramid has e ectively been

convolved with a set of log-Gabor filters:

( ) =
1

2
( 2+ 2) 2 ( ); = 1 4 (3.2)

Power maps are given by the sum of squares of the real and imaginary parts

generated in this previous step.

The second step involves the application of a non-linear operator to each of

the basic channels. The manner in which these non-linear operators are derived is

detailed in the section that follows.

For the self-information stage, the investigation is limited to using Shannon’s

self information measure. Reasons for this choice along with details of Shannon’s

self information measure are outlined in section 3.5. The investigation of Shannon’s
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Figure 3.2: Generation of oriented pyramid for production of orientation maps.

self information measure involves, for the most part, choice of a suitable means of

estimating the density distribution of strengths in the attention maps.

The fusion stage involves combining the information maps to arrive at an overall

importance map. This stage is also looked at in some detail in section 3.5.

3.3 Design of Nonlinear Attentional Operators:

A Genetic Approach

One of the chief contributions of Tompa’s work was a demonstration of the fact that

a set of simple operators applied to di erent channels derived from the image can

capture the essence of what draws attention when subjected to a measure of self

information. The fact that the self-information measure applied to the variance

map or edge map produced a greater correlation to eye tracking density maps

in some cases than the information map of the intensity channel provides strong
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evidence that an intermediate layer between the primitive channels and information

operator is of benefit. Furthermore, one begins to wonder about the possibility of

producing an operator expressly for this purpose rather than relying on a handful

of well known operators. This thesis endeavors to produce such an operator at each

scale in the gaussian pyramid and for each channel. The idea is that there may

exist a measure, that when subjected to a self-information operator (quantifying the

uniqueness of the strength assigned to each pixel), corresponds closely to measured

eye tracking results. Even to produce such intermediate operators that are able to

outperform significantly the measures used in Tompa’s thesis would be a satisfactory

result. The procedure for producing attentional operators involves a few key steps.

First, an initial population of individuals is initialized. Each individual has a set

of variables associated with it that describe a nonlinear operator. The structure

of the operator is that of a quadratic Volterra filter. The structure of a quadratic

Volterra filter is as follows:

( ) = +
X

1( ) ( )+
X

2( ) ( ) ( )

(3.3)

with the local extent support region of the filter[31]. The coe cients deter-

mine the nature of the filter and are the parameters that are chosen through the

course of the GA optimization. It should be noted that under appropriate choices

for the parameters, it is possible to arrive at the variance operator, sobel edge

operator, and moment of inertia operator from the intensity channel. This consid-

eration is important as it renders the set of operators employed in Tompa’s work a
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subset of the space from which we select operators in this thesis.

The function that measures the e ectiveness of a particular operator is:

= ( ) (3.4)

where represents cost, the local extent quadratic Volterra filter, the origi-

nal image, Shannon’s self information measure, and the density map produced

from eye tracking experiments on the image . Training measures performance

across all images at each iteration to avoid simply jumping around the solution

space. The GA cost function for the images in the training set is therefore:

=
X
1

( ) (3.5)

This optimization is performed for one channel and at one resolution at a time.

Figure 3.3 exhibits the procedure for deriving the attentional operators within the

context of a GA optimization framework. The steps involved in the optimization

are as follows:

1. A population of individuals is generated. Each individual in the population

contains parameters for the linear and nonlinear portion of the Voltera filter. (i.e.

values for 1 and 2)

2. A cost is associated with each individual through equation 3.5. This serves as

a measure of how good each filter description is with lower values indicating better

attentional filters.
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3. A test is performed to see if a filter exists that meets the desired requirements

of the optimization. If so, the optimization ends, otherwise it continues.

4. A standard GA selection procedure takes place. A number of choices are

possible for this step. The selection procedure is to be determined through experi-

ments which are outlined in the results chapter. As an example, a common scheme

for selection is roulette wheel style, where each individual is given a slice of the

wheel proportional to their GAC value and the wheel is then spun to indicate who

is eliminated or who will reproduce. The best choice for this stage is typically found

through experiments rather than strict theory.

5. Parents are selected and a crossover operation is performed to combine their

filter coe cients in some way. The scheme that has been employed for this stage is

a weighted average of the coe cients from 2 parents with a di erent weight selected

for each coe cient. In one parent, if the weight associated with parameter k is ,

then the parameter associated with parameter k in the other parent is (1 ) This

is one of the simplest and most common means of performing a crossover between

two parents in a continuous GA optimization.

6. The last stage is mutation where some individuals have some coe cients

shifted slightly up or down by some random amount. This has been found to help

avoid being trapped in local optima..

Steps 2-6 are performed in a loop until individuals converge on an appropriate

filter description for the given channel and scale.

It may be worth noting that the choice of density estimator is not to be included

as a free parameter in the optimization. A suitable choice for this step will be
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Figure 3.3: The GA framework for the design of nonlinear attentional operators.

made prior to designing the attentional operators. The best choice based on the 6

operators employed in Tompa’s work will be made and used in deriving attention

specific operators.

3.3.1 The Polynomial Framework and Parameter Reduc-

tion

As described, the format of a filter at any given resolution or on any channel is given

by a quadratic Volterra filter. One issue that arises in this framework concerns the

extent of the local neighborhood of the filter. That is, one might use a 3 x 3, 5
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x 5, 7 x 7, ... filter, or perhaps a filter with a more circular shape. Since filters

are derived for multiple scales, this should lessen the importance of this choice. In

the interest of having an optimization problem that is well-defined, limiting the

extent of the filter to smaller sizes would almost certainly be a wise decision. That

said, a 3 x 3 window is likely too small to capture some features in spite of the

fact that a multiscale representation is used. For a quadratic Volterra filter based

on N variables, the number of parameters required is 1
2
( + 1)( + 2). A 5 x 5

filter would require selection of 351 parameters, 7 x 7 would require 1275, 9 x 9

would require 3403 and so on. It is evident that this number grows large rather

quickly. It is expected that anything much above 5 x 5 would likely prove too

di cult in terms of finding an optimal solution within the optimization procedure.

Assumptions based on symmetry and other such factors will allow reduction of the

number of parameters, though, the derived filters will still be limited to relatively

small sizes. All of the operators used on the orientation, hue, and intensity channels

in the work of Tompa, and Koch and Ullman, are symmetric kernels. Adding the

assumption that the polynomial filters we are looking for have the property of radial

symmetry has the e ect of greatly reducing the number of parameters required

in the optimization. Adding this additional constraint does not then violate the

condition that the function space include as a subset the operators used in Tompa’s

thesis and may greatly aid in convergence on an optimal solution. Results are

presented in chapter 4 for 5 x 5 symmetric operators. This is expected to give a

reasonably good general idea of the e cacy of the proposed approach. Additionally,

it is not unreasonable to assume that results for a round operator would not be

all that di erent from a square operator given that the extent of these operators
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is relatively small. For the symmetric cases, the 5 x 5 operators have 27 free

parameters including all linear and pairwise contributions. This is a small value

compared to most di cult optimization problems, however, the di culty in our

case comes from the time complexity of evaluating the fitness function.

3.4 Is a GA an appropriate search technique for

the problem ?

The problem at hand is not a typical problem of function estimation, but rather

a search of a very large continuous search space. Modern approaches to navigat-

ing such search spaces generally fall into two categories: Hill climbing approaches

and Stochastic approaches. Preliminary analysis indicates that we are dealing with

a noisy, multimodal and somewhat discontinuous search space. Hill climbing ap-

proaches are typically a fast way of finding local minima but are generally innapro-

priate when there are many local minima[32]. We have attempted a number of hill

climbing approaches involving random restarts to sample a number of local minima.

The quality of solution obtained from the gradient descent with random restarts is

marginally worse than what the GA’s produce. It seems that the GA’s are able to

sample a greater number of local minima over their run. In contrast if one is only

interested in finding a few “good” solutions, the hill climbing approaches are more

appropriate. In the context of this problem, both of these searches may find their

niche. The GA’s are quite appropriate for smaller scale images and find many good

solutions while generally outperforming their hill-climbing adversaries in terms of

the quality of solution produced. At a larger scale however, the computation re-
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quired in running a GA is too much. That is, it is quicker to find a few solutions

using a hill climbing algorithm than trying to find many at once using a GA. It is

quite feasible to find a few solutions that do better then Tompa’s operators using a

gradient descent with random restart even at the largest image scale. Submitting

to the fact that maybe the computation required to find one of the highest peaks is

too great, we settle for the highest peak that can be found in a very direct search

of a handful of local peaks. The e ect of the nonlinear operator on the images is

much greater on the lower scale images so it is likely of great benefit that a more

thorough search may be produced at this level. For the higher scale images, the

di erence in quality between the best solutions and a “good” solution is likely min-

imal. Generally solutions found from multiple runs of the GA are similar. There

is a strong correlation in the sign of coe cients between solutions for one. This

phenomenon is also seen in the gradient descent methods but to a lesser extent.

Overall the GA’s seem to be an appropriate search technique for this problem.

Perhaps the strongest case for using GA’s in the context of this thesis is the quality

of solutions that are produced. Section 4.2 includes some further discussion on this

issue and demonstrates some of the success of the genetic search for producing the

nonlinear operator coe cients.

3.5 Measures of Self-Information

In current literature[23][33] the mapping between the feature domain and the more

perceptually relevant information domain comes in two distinct varieties: The Cen-

ter Surround Di erence operator and Shannon’s Self Information Measure. Shan-
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non’s measure of self-information is a global operator derived from information the-

oretic considerations, and has seen some success in the domain of computational

visual attention. On the other hand, the Center Surround Di erence operator is a

local operator that emulates neurons that respond to di erences between a small

central region and broader surround region[33]. This section provides a brief outline

of the two operators as well as discussion of why one might be favoured over the

other.

3.5.1 Center Surround Di erence

In the work of Milanese et al.[26] and Niebur, Itti and Koch[30], feature maps were

computed from the basic channels using a center surround operator. In the model

of Milanese et al. a single scale operator was employed given by the magnitude of

the di erence between a center set of pixels and a larger surround area. Itti and

Koch implement center surround operations as a di erence between fine and coarse

scales. The center of the receptive field is given by a pixel at level {2 3 4}

of the Gaussian pyramid[16] and the surround by the corresponding pixel at level

= + with {3 4} giving 6 feature maps at scales 2-5,2-6,3-6,3-7,4-7 and

4-8 for each type of feature. Across scale di erence between maps is performed

through interpolation to the finer scale and subtraction. This scheme is used in

lieu of a single center surround operator to lessen the dependence of the center

surround mask size on scale. As outlined in the background chapter, the feature

maps include one channel for intensity, two for color and four for orientation which

yields a total of 42 feature maps following the center surround stage.
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3.5.2 Shannon’s Self Information Measure

In previous work[23], the information map I, based on Shannon’s measure of self

information[4] is given by ( ) = (1 ( )) where ( ) is found by creating a

histogram density estimate of the feature map over the entire image using a large

number of bins (often 256). This particular step of the information domain approach

to deriving an importance map provides much of the motivation for the discussion

in this section. It is expected that the quality of any given information map will

depend highly on the feature map density estimate. As such, a crude binning

approach with little analysis of the self information step could appreciably a ect

the resulting information maps and ultimately the derived importance map. The

mapping from the set of channels to the feature/information domain in this thesis

is facilitated through the use of Shannon’s self information measure. This approach

has been chosen over a center surround scheme for a number of reasons:

i. The success of using a layer of higher-level operators between the primitive

channels and information operator has been observed only in models involving the

Shannon measure. As such, to switch to a center-surround scheme would render

less evident the degree to which evolutionary design of the higher-level operators is

useful.

ii. The center surround operator having 42 feature maps does not lend itself well

to the optimization framework necessary for design of the aforementioned operators

as the model is not as well-defined as one requiring design of only a few sets of

intermediate operators.

iii. Good performance in the center-surround approach often seems to come
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from the feature maps derived at a coarse scale. In such cases the center surround

operator is closest to the Shannon operator being more global in extent.

iv. There is no reason to believe that the Shannon approach will miss features

at any scale. Further, although the importance rating assigned to larger region of

interest (ROI) may be less at any given point in that ROI than a smaller ROI, this

response is desirable since the experimental gaze density will be spread more over

a larger ROI than a smaller localized ROI.

v. Though visual acuity drops o outside of the fovea, humans do see the

majority of the field of view albeit at a coarse resolution far outside the fovea. For

this reason, one might argue that an information measure that is of global extent

corresponds more closely to the human visual system.

The contribution of this work includes a more prudent analysis of the issue of

feature space density estimation with the aim of achieving information maps that

more closely resemble human eye tracking results.

The Issue of Density Estimation

As mentioned, the issue here is in estimating the distribution of strengths in the

feature map. Past studies have employed somewhat crude histogram approxima-

tions for this purpose. In this section, we will provide a mention of some of the

more conventional approaches to non-parametric density estimation as well as some

discussion of anticipated issues surrounding each of the estimators in the context

of this problem. Without knowledge of the true distribution of a particular feature
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Figure 3.4: Image used for derivation of variance histograms and resulting infor-
mation maps in example that follows.

measure, the issue of measuring the quality of a given density estimate becomes a

di cult issue. As a means of measuring the relative e cacy of the various density

estimators, we will compare information maps derived from the various approaches

to measured eye tracking data. This measure will at least impart some idea of the

degree to which information maps derived from each estimation approach correlate

to the expected response from the human visual system.

Basic Histogram Approaches The histogram approach is a widely used and

simple means of density estimation. The basic idea of the histogram is commonly

known and hence we will forego a formal definition of the approach. The two main

shortcomings of histograms are: 1. The stepwise constant nature of the histogram

(i.e. lack of continuity) and 2. The high dependence of the histogram on choice

of partition. In order to exemplify this last point in the context of our problem,

consider the three histograms shown in Figure 3.5.

Close examination of portions of the top two histograms in figure 3.5 reveals
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Figure 3.5: Left: Histogram derived from local variance measure using 256 bins
with bins centered on integer values (top), integers + 0.3 (middle) and using 26
bins rather than 256 (bottom) . Right: Resulting information maps computed using
Shannons self information measure as applied to estimate on left hand side in each
case. Shown are the midpoints of the histogram bars.
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di erences between the two histograms, though, the general character of the two

histograms is the same. The similarity between the information maps derived from

the two histograms suggests that the arbitrary selection of bin center is not really an

issue in the appearance of the overall information map given that a global measure

on the image is employed. However, when examining the third distribution and

information map portrayed in figure 3.5, it is quite obvious that the partition size

has a significant e ect on the overall appearance of the information map. The infor-

mation map derived in the third case, not surprisingly, has a less noisy appearance.

A couple of conclusions may be drawn from this demonstration: 1. The manner

in which a histogram approximation of the density distribution is chosen clearly

a ects the resulting information map. 2. Although the use of 256 bins immediately

a ords a one to one mapping from the feature space to an 8-bit grayscale informa-

tion image, this is clearly not a strong enough motivating factor to justify the use

of this bin width without further investigation. Further results on selection of the

histogram bin width are presented in chapter 4. In the remainder of section 3.5, we

will discuss a few more robust approaches to density estimation with the intent of

arriving at information maps that more closely resemble eye tracking results.

Kernel Density Estimators The most evident flaw of the histogram approach

is that it assumes the density function is constant over the entire region. Addi-

tionally, the choice of strict predefined regions as a means of estimating the density

distribution introduces a multitude of problems related to partition choice. A pop-

ular alternative class of estimators is the kernel density estimators. The kernel

density estimators operate in such a way that each sample point has a local influ-
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Kernel ( )
Gaussian 1

2
exp( 1

2
2)

Uniform 1
2
(| | 1)

Triangle (1 | |) (| | 1)
Epanechnikov 3

4
(1 2) (| | 1)

Triweight 35
32
(1 2)3 (| | 1)

Table 3.1: Various popular choices for Kernel Windows.

ence on the density estimate. If many samples are observed in a given area, the

density function will take on a higher likelihood in this area. Under this scheme,

we are able to avoid choosing arbitrary boundaries and the estimated density func-

tion is independent of origin. The basic kernel density estimator may be expressed

mathematically as follows[34]:

( ) =
1 X

=1

µ ¶
(3.6)

where K is a window function that determines how each observation influences

the density function and h an expansion factor. For a continuous choice of the

function K, we have the desirable quality that the resulting density estimate is

continuous. A large number of alternatives for the window function K have been

proposed. Some of the more popular window functions are: Uniform, Normal,

Triangle, Epanechnikov, and Triweight[35]. These window functions are expressed

in parametric form in Table 3.1.

Each of the aforementioned window functions has been well studied and applied

to numerous applications. The quality of a density estimate is now widely recog-

nized to be primarily dependent on the choice of the expansion factor h as opposed

to the kernel window function[36]. For this reason, we will limit the investigation to

46



a Gaussian kernel and focus more on the determination of an appropriate expansion

factor. E orts have been made to determine means of switching between kernels

without having to reconsider the problem of calibration. Scott[34] provides scaling

factors for achieving equivalent smoothing for di erent kernels. Equivalent band-

width scaling provides nearly identical estimates for both optimal and non-optimal

expansion parameters. Given this consideration, it should be quite easy to obtain

equivalent results to those presented in this thesis for a Gaussian kernel using any

other kernel function by modifying the expansion factor appropriately. In chapter

4, information maps derived from Gaussian kernel estimates are presented along

with some discussion of the choice of expansion factor h for the Gaussian case.

K-Nearest neighbors The histogram and kernel approaches both control the

resolution along the x-axis with the resolution along the density axis determined

by the data. In some cases, it is more advantageous to utilize a scheme under which

the window width is determined by the data and control the resolution along the

density axis[34]. In K-nearest neighbor estimation (kNN), the number of samples

falling in each window is fixed and the region size is chosen to include this many

samples. To compute the kNN estimate f(x) for a point , an interval [ + ]

is chosen centered at with chosen as the minimum value of a that includes the

desired number of observations. Therefore, for an estimate based onM observations,

we have:

( ) =
2

Often = is chosen reducing the kNN approach to one that has no free

parameters. It is uncertain whether this choice of is appropriate in the context
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of this problem. It is expected that the best choice of will vary as a function of

image size but it is likely worthwhile to investigate exactly the relationship between

the number of image pixels and the best choice for . We then propose that

automatic means of determining for a given image may be realized within the

somewhat more general context given by = where is the number of

image pixels and and free parameters. Notice that for = 1 and = 0 5 the

approach proposed here reduces to the commonly employed parameter free choice

of . Experimental determination of good choices of the parameters and is

explored in Chapter 4.

3.6 On the Fusion of Information Maps

The issue of combining information/feature maps has been explored within the

context of visual attention[37]. Itti and Koch investigate 4 di erent strategies to

combining the information maps: (1) Simple normalized summation, (2) linear

combination with learned weights, (3) global non-linear normalization followed by

summation and (4) local non-linear competition between salient locations. The ap-

proaches investigated had varying success with the linear combination of maps with

learned weights (2) providing the best overall performance. One problem witnessed

with scheme (2) was that it yielded specialized systems with poor generalization.

For this reason, they suggest scheme (4), an independent competition between fea-

ture maps as an alternative with decent performance. In any case all of (2), (3)

and (4) yielded at least a 4-fold improvement over a simple normalized summation.

Here, we extend the investigation of Itti and Koch to include a more general set

48



of aggregation operators, attempting to include within that framework the fusion

operators of Itti and Koch or at the very least include operators that exhibit similar

behavior.

The issue here is in combining a set of information maps to arrive at an overall

importance map. To address the issue of aggregating various belief measures, a

suitable body of aggregation techniques is required as a foundation. We wish to

avoid the use of ad hoc approaches and focus on proven belief aggregation operators

for which a substantial body of literature exists. For this reason, we have employed

a slightly modified form of Shannon’s self information measure, so that, for each

information map, the confidence values associated with each pixel satisfy the re-

quirements of a fuzzy membership function. Casting the data fusion problem in

this light a ords a wealth of well-studied fuzzy aggregation operators. Specifically,

the self information measure employed in this study is as follows:

( ) =
log( ( ( )))

log( )
(3.7)

Where g is an operator that gives a feature measure when applied to an image

pixel (e.g. edgeness), ( ) is the percentage of pixels in of intensity and a nor-

malization constant given by ( ( ( ))). Our membership function is then the

composition of a stimulus/conspicuity measure with a scaled version of Shannon’s

self information measure. It is clear then that the membership function assigns

each pixel an information measure ranging from 0 to unity. The fuzzy aggregation

operators that have been explored in this study are outlined in the section that

follows.
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3.6.1 Aggregating Belief

Formally, the data fusion problem at hand may be stated as follows: For each image

pixel, we are given a number of measures i1,i2,. . . ,i of the information content of

that pixel from various information maps. The problem may then be stated as

finding a function f such that f maps the n information measures for that pixel

to a single importance value in such a way that the importance values returned

by f are high in areas of the image that humans tend to fixate. Evidently, in

selecting models that are highly adaptable there is a greater chance of being able to

achieve a mapping that satisfies this consideration. However, ideally we would like

to find a function f that avoids using a large number of parameters in the interest

of usability. Some of the data fusion techniques that have come out of fuzzy set

theory have been well studied and have been shown to exhibit desirable qualities in

aggregating measures of belief. The aggregation operators we have applied to the

information maps fall in a number of classes: Ordered weighted averages, nonlinear

normalization (contrast adjustment), fuzzy integrals, and fuzzy hybrid connectives

including triangular norms (t-norms) and triangular co-norms (t-conorms). In this

section we introduce a number of mathematical aggregation operators including the

aforementioned classes. In particular, we will demonstrate that the fuzzy integrals

and fuzzy hybrid connectives encompass a very large class of more fundamental

aggregation operators under certain parameter choices.
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OWA

Minimum
= 1 = 1
= 0 6= 1

Maximum
= 1 =
= 0 6=

Median

+1

2

= 1

2
= 1

2 2
+1 =

1
2

= 0
Arithmetic Mean = 1

Table 3.2: Particular parameter choices for the OWA operator.

Ordered Weighted Averaging Operators

Introduced by Yager[38], the OrderedWeighted Averaging Operators (OWA) present

a means of aggregating various confidence measures and in a single operator incor-

porates both conjunctive and disjunctive behavior:

( 1 2 3 ) =
X
=1

( ) (3.8)

where is an ordering operator that orders the elements so that (1)

(2) ( ). The element can be considered a weighting element and

is such that
P
=1

= 1 with each 0. The OWA operators include many

well known operators as subsets and provide a versatile parameterized family of

operators. Table 3.2 demonstrates some of the better known operators that fall

under the framework of ordered weighted averages and the parameter values that

achieve such operations:

The OWA’s are desirable for a few reasons: First, the OWA operator exhibits
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a number of mathematical conveniences including commutativity, monotonicity,

idempotence and is stable for positive linear transformations. Secondly, the OWA

operator exhibits compensatory behavior, always returning a value that lies between

the max and min a ording a parameterized means of moving between the min and

max operators. Lastly, each of the approaches investigated by Itti and Koch, or

similar behaviour, can be arrived at using an OWA under appropriate parameter

choices.

Fuzzy Integrals

The use of Sugeno and Choquet discrete integrals in multicriteria decision making

has been well studied[39][40]. The fuzzy integral is based on the notion of a fuzzy

measure, which can be looked upon as a set of weights of importance associated

with a number of criteria. Mathematically, the fuzzy measure may be defined in

the context of this problem as follows:

Define to be a set of confidence values on the importance of a given pixel in

an image. The fuzzy measure is then defined as a mapping between all elements

in the power set of to the unit interval. That is, a fuzzy measure on a set

may be written : ( ) [0 1]. Additionally, we require that the following

conditions be satisfied:

1. Boundedness:

( ) = 0 and ( ) = 1

2. Monotonicity:
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( ) ( ) ( )

The fuzzy integral framework yields the ability to model interaction between

the various criteria. This is an obvious advantage over a probabilistic framework.

Having defined the fuzzy measure, we may introduce the definitions of fuzzy Sugeno

and Choquet integrals respectively:

The Sugeno integral[41] of belief measures 1 2 for criteria 1 2

with respect to the fuzzy measure is given by:

( 1 2 ) = max
=1

¡
min

¡
( )

¡
( )

¢¢¢
(3.9)

where is an ordering operator that orders the elements so that (1)

(2) ( ) and ( ) =
©

( ) ( )

ª
. In the context of our data fusion

problem, 1 2 represent di erent measures of the information content of a

given pixel as determined by the self information of di erent feature maps. The

criteria 1 2 in this case will be the self information of the feature maps.

The Choquet integral[42] of belief measures 1 2 for criteria 1 2

with respect to the fuzzy measure is given by:

( 1 2 ) =
X
=1

¡
( ) ( 1)

¢
· ( ( )) (3.10)

with the same notation as above and (0) = 0. The fuzzy integral operators are

powerful tools for a number of reasons. First and foremost, is the generalization

capability of the Choquet and Sugeno integrals. A close examination of fuzzy

integrals reveals a large number of well-known operators as subsets of the fuzzy

53



Sugeno Integral

Minimum
( ) = 1 =
( ) = 0

Maximum
( ) = 1 = {}
( ) = 0

Weighted Minimum
( ) = 1 max [ ( )]

({ }) =

Weighted Maximum
( ) = max [ ( )]

({ }) =

Table 3.3: Special cases of the Sugeno integral.

Choquet Integral

Minimum
( ) = 1 =
( ) = 0

Maximum
( ) = 0 = {}
( ) = 1

Arithmetic Mean ( ) = ( )
( )

Weighted Mean
( ) =

P
({ })

({ }) =

OWA ( ) =
( ) 1P
=0

Table 3.4: Special cases of the Choquet integral.

integrals under appropriate parameter choices. Tables 3.3 and 3.4 demonstrate

some of the better known aggregation operators that arise under various parameter

choices.

Tables 3.3 and 3.4 demonstrate to some extent, the versatility of fuzzy integrals.

In particular, it is worth noting that the Sugeno integral generalizes the weighted

minimum and weighted maximum operators while the Choquet integral general-

izes the weighted mean and OWA operators. Sugeno and Choquet integrals also

exhibit numerous mathematical conveniences including monotonicity, continuity,
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idempotence and in particular compensatory behaviour not unlike the behaviour

of humans in a decision-making context[43]. Lastly, the Choquet integral is sta-

ble under a positive linear transformation and the Sugeno integral under a similar

transformation with the minimum and maximum operators taking the place of the

sum and product operators respectively. This last characteristic suggests that the

Choquet integral is more appropriate for cardinal aggregation (where the distance

between belief measures is a significant consideration) and the Sugeno integral more

appropriate for ordinal aggregation (where one is concerned only with the order of

the various confidence measures). The large drawback in using a fuzzy integral as

an aggregation tool is the number of weights that need be assigned in the fuzzy mea-

sure. If one is using 8 information maps drawn from 8 di erent feature measures,

it is necessary to define 256 weights. This requirement renders the determination

of appropriate weight assignments a very cumbersome task. The method of Sugeno

has been employed to assign all of the weights with the exception of the weights

assigned to individual channels[41]. The assignment of weights is discussed in more

detail in chapter 4.

Fuzzy Hybrid Connectives

The idea of a triangular norm (t-norm) first arose as a means of generalizing the

triangular inequality of a metric. A slightly di erent modern definition of a t-norm

and its dual operator, the triangular co-norm (t-conorm), is largely a result of

work done by Schweizer and Sklar[44][45] and acts as a generalization of Boolean

logical operators in the multi-valued fuzzy domain. The t-norm operator generalizes

the Boolean operator of conjunction and similarly, the t-conorm generalizes the
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( ) ( )
+

( + 1 0) ( + 1)

Table 3.5: Some simple t-norms and associated t-conorms.

operation of disjunction. As such, the t-norm and t-conorm operators allow the

use of operations analogous to intersection and union to be applied in the fuzzy

domain. t-norm and t-conorm operators have been exhaustively studied and many

good overviews of the operators exist[46]. Explicitly, the two operators may be

defined as follows:

A t-norm is a function : [0 1] [0 1] [0 1] and satisfying the conditions

of commutativity, monotonicity, associativity and having one as a neutral element.

(i.e. N (x,1) = x). Similarly, a t-conorm is a function : [0 1] [0 1] [0 1] and

satisfying the conditions of commutativity, monotonicity, associativity and having

zero as a neutral element. (i.e. C (x,0) = x). It is relatively straightforward to show

that ( ) min( ) and that ( ) max( ). The vigilant reader may

have noticed that the definitions we have given are applicable only to the case of

combining two belief measures. As a consequence of the associativity requirement,

extension to combining measures of confidence is trivial. Table 3.5 reveals some

of the simpler and more common t-norms and their dual t-conorms.

Although triangular norms have some nice properties, there is quite a lack of

control on the output of any of the standard t-norms and t-conorms. As a result, a

number of parameterized t-norms and t-conorms have been proposed and are shown

in table 3.6. Note that for certain parameter choices, the t-norms and t-conorms
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Yager( 0)
(1 [(1 ) + (1 ) ]

1

0)

([ + ]
1

1)

Hamacher
( 0)

+(1 ) ( + )
+ (1 )
1 (1 )

Schweizer and
Sklar ( 0)

1 [(1 ) + (1 ) + (1 ) (1 ) ]
1

[ + ]
1

Weber-Sugeno( -1)

¡
+ 1+

1+
0
¢

( + + 1)

Table 3.6: t-norms and t-conorms of the parameterized variety.

simplify to some of the more basic forms seen in table 3.5.

Although the parameterized t-norms and t-conorms allow for more control of

the aggregation process, they still do not exhibit the compensatory behavior that is

seen in the case of fuzzy integrals. Many argue that such compensatory behavior is

imperative in the aggregation process. For this reason, a few compensatory models

have been suggested [47][48][49], each involving a function that trades-o in some

manner between a t-norm and a t-conorm. We have not applied any compensatory

operators in this study, but it should be relatively easy to infer what the results

might look like by examining the results of the various parameterized t-norms and

t-conorms.

3.7 Eye Tracking Density Maps

3.7.1 Outline of Eye Tracking Experiments

Eye tracking results were collected for a number of subjects for the purposes of

validation and training as part of the thesis. Subjects were required to view a
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series of images, given no previous instruction, and image coordinates fixated by

the subjects were recorded. The data set consists of results for 20 di erent subjects

each viewing 120 images. Subjects were shown each image for a period of 4 seconds

with the images presented in random order. Subjects were placed 0.75 m away from

a 21 inch monitor and asked to observe the images that appeared on the screen. Any

image coordinate location upon which the eyes of the subject rested for more than

200 ms was deemed a fixation point and recorded. Standard eye tracking equipment

coming in the form of a free standing (non head-mounted) eye tracker was employed

for the aforementioned purposes. The image set is intended to be representative

of typical scenes that a human might encounter in an urban environment. The

images were carefully chosen to allow for a wide variety of characteristics. The

images include indoor and outdoor scenes, cloudy and sunny scenes, scenes with and

without pedestrians, signs, vehicles, and in particular, a variety of images ranging

from those with very salient regions to those with nothing of particular interest.

Such a set should allow for the training of "general use" attentional operators.

It is expected that in developing an attentional mechanism for a particular task,

better performance might be attained through a more specific training set using

the methods outlined in this thesis.

3.7.2 On the Interpretation of Fixation Data

Data from eye tracking experiments comes in the form of coordinates of fixations.

However, attention is not focused upon strict mathematical points. Attention is

more realistically modeled as extended regions with visual acuity a maximum at
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the discrete fixation points[50]. For this reason, establishing a map representing

human fixation density is a non-trivial matter. In many studies, the problem is

handled by considering a circular region around each fixation with the circle size

chosen to match the estimated human fovea size. This approach might be looked

at as placing uniform fovea sized disks centred at each measured fixation point

then taking a sum of these disks to establish a fixation density map. The fovea

is approximately 1 degree in diameter and the resolution drops steeply outside of

the fovea[23]. The problem with this approach is that points outside of the fovea

receive no weight. The reality is that even 10 degrees from the center of the fovea the

resolution is still half of that at the center of the fovea[4]. An alternative approach

to the use of a fovea sized disk is that of using a more continuous surface that

approximately corresponds to visual acuity in the human visual system. In this

second approach, a Gaussian distribution is typically employed with parameters

chosen to produce a distribution that approximately conforms to the resolution

observed in the human visual system[50]. This second, more realistic representation

has been used in deriving the eye tracking density maps employed in this thesis.

For a given image, all of the fixation points from the 20 subjects were merged into

a single data set. To calculate the fixation density map, two-dimensional Gaussian

distributions as described are centered at each fixation point. The fixation density

map may then be computed as the sum of these Gaussian distributions over the

entire image. This approach provides for each image, a fixation density map based

on 20 subjects with the desirable quality of continuity. In this case, the parameters

of the Gaussian were such that one standard deviation lies 20 pixels from the centre

of a fixation point in each direction.
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3.7.3 Comparing Density and Information Maps

To compare the derived eye tracking density maps with information and perceptual

importance maps, a suitable metric is required to measure the di erence between

the two maps. First, it is clear that the two maps should be normalized so that their

respective components sum to 1. The most straightforward means of computing the

di erence between the maps is that of summing the absolute value of the di erence

between each pixel in the density map and corresponding information map. This

operation is analogous to computing the volume between two surfaces in the contin-

uous case. This scheme was found to produce suitable results in preliminary work

and is the method employed in all comparisons in both the density estimation and

nonlinear function design work. Other metrics that allow for more error in favor

of getting an appropriate response in salient areas were tried but in most cases the

tradeo was not worthwhile. The squared di erence metric in particular tends to

produce operators that are "unwilling" to make bold predictions (the punishment

for having an incorrect peak is too great) and hence result in information maps

that don’t have very clear predictions. For most applications, it is likely that false

positives are less harmful than missed areas that actually contain useful informa-

tion. Bearing these considerations in mind, the absolute di erence seems to be a

good metric for comparison.
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Chapter 4

Results

4.1 Density Estimation

Results are presented in this section reflecting the degree to which various parame-

ter choices for various density estimators produce information maps that resemble

experimental eye tracking density maps. Notable is the absence of the results for the

K-nearest neighbour estimators. The K-nearest neighbour estimators were found

Maps / Bins 256 192 128 64 32 16
i1 1.3494 1.3586 1.3744 1.4094 1.4587 1.5268
i2 1.3485 1.3492 1.3516 1.3557 1.3602 1.3636
i3 1.3471 1.3468 1.3451 1.3422 1.3393 1.3376
i4 1.3619 1.3618 1.3616 1.3613 1.3614 1.3632
i5 1.3641 1.3642 1.3641 1.3643 1.3648 1.3670
i6 1.3392 1.3396 1.3414 1.3455 1.3557 1.3704
Average 1.3517 1.3534 1.3564 1.3631 1.3734 1.3881

Table 4.1: Average histogram density estimator di erence values for image at scale
1 (340x256).
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Maps / Bins 256 192 128 64 32 16
i1 1.3353 1.3422 1.3540 1.3814 1.4227 1.4848
i2 1.3551 1.3562 1.3585 1.3622 1.3662 1.3690
i3 1.3524 1.3523 1.3507 1.3481 1.3458 1.3457
i4 1.3697 1.3697 1.3698 1.3704 1.3717 1.3749
i5 1.3717 1.3720 1.3723 1.3733 1.3752 1.3794
i6 1.3433 1.3436 1.3462 1.3509 1.3612 1.3797
Average 1.3546 1.3456 1.3586 1.3644 1.3738 1.3889

Table 4.2: Average histogram density estimator di erence values for image at scale
2 (170x128).

Maps / Bins 256 192 128 64 32 16
i1 1.3411 1.3456 1.3540 1.3741 1.4061 1.4571
i2 1.3616 1.3628 1.3642 1.3662 1.3684 1.3701
i3 1.3532 1.3530 1.3514 1.3485 1.3458 1.3448
i4 1.3748 1.3751 1.3757 1.3771 1.3797 1.3857
i5 1.3754 1.3759 1.3766 1.3787 1.3824 1.3891
i6 1.3468 1.3473 1.3493 1.3541 1.3655 1.3847
Average 1.3588 1.3600 1.3619 1.3665 1.3747 1.3886

Table 4.3: Average histogram density estimator di erence values for image at scale
3 (85x64).

Maps / Bins 256 192 128 64 32 16
i1 1.3469 1.3507 1.3569 1.3736 1.3964 1.4335
i2 1.3616 1.3622 1.3627 1.3637 1.3651 1.3663
i3 1.3528 1.3528 1.3512 1.3496 1.3485 1.3498
i4 1.3747 1.3753 1.3765 1.3791 1.3831 1.3893
i5 1.3717 1.3722 1.3732 1.3753 1.3791 1.3855
i6 1.3620 1.3631 1.3652 1.3704 1.3832 1.4054
Average 1.3616 1.3627 1.3643 1.3686 1.3759 1.3883

Table 4.4: Average histogram density estimator di erence values for image at scale
4 (42x32).
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Maps / Window Size 0.001 0.003 0.005 0.01 0.02 0.04
i1 1.3626 1.3775 1.3929 1.4311 1.4806 1.5353
i2 1.3596 1.3586 1.3584 1.3598 1.3628 1.3658
i3 1.3536 1.3479 1.3449 1.3405 1.3364 1.3345
i4 1.3641 1.3633 1.3626 1.3618 1.3623 1.3656
i5 1.3659 1.3657 1.3654 1.3652 1.3664 1.3705
i6 1.3743 1.3513 1.3485 1.3512 1.3614 1.3798
Average 1.3634 1.3607 1.3621 1.3683 1.3783 1.3919

Table 4.5: Average kernal density estimator di erence values for image at scale 1
(340x256).

Maps / Window Size 0.001 0.003 0.005 0.01 0.02 0.04
i1 1.3466 1.3572 1.3716 1.4065 1.4570 1.5126
i2 1.3648 1.3649 1.3647 1.3657 1.0000 1.3706
i3 1.3584 1.3531 1.3505 1.3467 1.3437 1.3431
i4 1.3714 1.3709 1.3708 1.3710 1.3726 1.3772
i5 1.3731 1.3733 1.3736 1.3744 1.3769 1.3828
i6 1.3918 1.3581 1.3546 1.3583 1.3705 1.3909
Average 1.3677 1.3629 1.3643 1.3704 1.3811 1.3962

Table 4.6: Average kernel density estimator di erence values for image at scale 2
(170x128).

Maps / Window Size 0.001 0.003 0.005 0.01 0.02 0.04
i1 1.3548 1.3574 1.3694 1.3986 1.4411 1.5726
i2 1.3671 1.3676 1.3675 1.3679 1.3692 1.3735
i3 1.3579 1.3528 1.3504 1.3466 1.3432 1.3483
i4 1.3756 1.3761 1.3766 1.3782 1.3815 1.4058
i5 1.3766 1.3773 1.3782 1.3803 1.3847 1.4143
i6 1.4052 1.3608 1.3572 1.3611 1.3742 1.4360
Average 1.3729 1.3653 1.3666 1.3721 1.3823 1.4251

Table 4.7: Average kernel density estimator di erence values for image at scale 3
(85x64).
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Maps / Window Size 0.001 0.003 0.005 0.01 0.02 0.04
i1 1.3825 1.3634 1.3711 1.3931 1.4766 1.5522
i2 1.3648 1.3643 1.3640 1.3641 1.3669 1.3700
i3 1.3563 1.3519 1.3503 1.3481 1.3495 1.3628
i4 1.3790 1.3774 1.3784 1.3811 1.3936 1.4118
i5 1.3785 1.3743 1.3749 1.3771 1.3900 1.4123
i6 1.4341 1.3754 1.3715 1.3777 1.4172 1.4524
Average 1.3825 1.3678 1.3684 1.3735 1.3990 1.4269

Table 4.8: Average kernel density estimator di erence values for image at scale 4
(42x32).

to be quite unsuitable for this application. The reason for this is that any image

with a larger homogenous region often results in at least one bin that has a very

large number of pixels. For this reason, only very coarse estimates work in the

general case and hence this method is of little use. The histogram and kernel ap-

proaches each with various parameter choices are presented. In each case, a value

is given reflecting the average di erence between information maps produced using

that combination of feature, estimator, and parameter choice, and the experimen-

tal image set. In tables 4.1-4.8, i1, i2, i3, i4, i5, and i6, represent the information

maps corresponding to the Sobel strength, Sobel orientation, intensity, variance,

moment of inertia, and hue feature maps respectively. Each numeric score in the

table represents the average di erence between information maps produced using

the feature map listed in the left column and corresponding to the density estimator

with parameter listed in the top row, and the density maps produced through ex-

perimental eye tracking. The result is a quantitative measure of the degree to which

each estimate produces information maps that resemble the measured eye tracking

density maps. Results are presented for 4 di erent scales. In general, it appears
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that the quantity of data at each scale is su cient to allow for a quite fine estimate.

Overall the finer estimates using both a histogram approach and kernel approach

perfomed the best. Also, a histogram approach tends to perform marginally better

than a kernel approach. This is likely related in some way to the pre-binned nature

of the data. That is, the data set only takes on a set number of values in each of

the estimators which may account for the slightly better performance using discrete

bins. This is an advantageous result since computationally the histogram approach

is far superior. Bearing in mind performance and computational considerations,

a histogram density estimate using 256 bins has been employed in designing the

attentional operators.

4.2 Design of Attentional Operators

A number of di erent means of performing the selection and mutation stages of

the GA training were attempted to determine a good set of operators to provide

reasonably fast convergence while sampling a large number of local optima. The

selection stage consists of choosing two subsets of the overall population each con-

sisting of 15% of the total number of individuals. The best individual from each

of these subsets is selected and o spring produced by taking a random weighted

average of each of their coe cients. This new individual then replaces a randomly

chosen individual from the existing population. Mutation is performed such that

for each iteration, on average one coe cient of each individual is changed by some

small delta value. This scheme was found to provide reasonably quick convergence

without having too much trouble with getting stuck on local minima. It is worth
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mentioning that this stage required a great deal of experimentation using di erent

selection and mutation operators. The aforementioned choices were found to pro-

vide the quickest convergence and best overall solutions relative to other schemes.

The general behavior seems to be such that areas that are of higher variance,

which tend to be those containing objects and significant signal content draw more

attention in the information domain when the nonlinear function is applied. The

e ect on the image seems to be an overall reduction in contrast. It seems that the

pixels associated with a particular object may end up being distributed over more

grey levels as a result of the nonlinear operators. This may explain why salient

areas seem to draw more attention following the application of the nonlinear op-

erators. That is, the operators function such that the pixel values in salient areas

are distributed over a greater number of bins. In contrast, pixel values in flatter

areas are distributed over a lesser number of bins. Intuitively this behavior in an

operator seems to be exactly what we are looking for. Flat areas are una ected

or even made more homogeneous whereas areas with some variance are mixed up

making pixels in that area lie in more bins and hence receive a greater confidence

value in the information domain. That said, the values of the coe cients do seem

to have to be just right. The overall reduction in contrast is somewhat misleading

since contrast actually increases in salient areas. In some ways the trained nonlin-

ear filters are similar to the variance operator. In particular, the response of the

trained filters appears to be loosely correlated with variance. That said, there are

fundamental di erences between the two. The variance filter will produce a strong

response in areas of high activity while producing a weak response in areas of less

activity. The trained filters modify the gray values in the image in areas of high
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activity proportional to the amount of activity. The trained filters retain much of

the shape of the original distribution. It is possible for the variance filter to actually

reduce the number of grey levels that are associated with areas of very high activity,

weakening the response that these regions receive in the information domain. Also,

the grey levels associated with flatter regions may end up spread over more bins

as a result of the variance operator which may actually increase the response that

they receive in the information domain. The nonlinear trained filters avoid these ill

e ects by retaining to a greater extent the original image distribution, only modi-

fying the spread of intensity values significantly in areas of interest. This e ect is

illustrated in figure 4.1. The top image was produced to illustrate the key di erence

between the variance operator and the trained nonlinear filters. The background is

grey and the image contains a number of textured boxes. One of these boxes is the

negative of all of the others. The second row consists of the image subjected to the

highest scale trained intensity filter, and the variance map. It is clear at this stage

the drawback of using the variance operator alone. Throwing away the position

of feature pixels in the original distribution as is the case in the variance map can

result in discarding crucial information. In contrast, the nonlinear filter spreads

the distribution of pixels in each of the boxes but maintains the relative grey level

positions of the dark and bright boxes in the overall distribution. This allows areas

of activity in the original image to be amplified in the information domain while

preserving knowledge of the original measured feature strengths. The bottom row

of figure 4.1. shows the information map of both the nonlinear filtered image and

the variance image. The e ect of applying the trained nonlinear filters is seen in

figures 4.2 and 4.3. The small image labeled feature map is the original feature

67



map of the color image at the top. This is the intensity map in figure 4.2 and the

hue map in figure 4.3. The image labeled nlf out, to the right of the feature map,

shows the e ect of applying the trained nonlinear operator to that feature map.

The images directly below those labeled nlf out and feature map show the e ect of

applying the self information measure to each of the two. To the right of the nlf out

image is the experimental density map. The two distributions to the right show the

distribution of strengths in the feature map and the nonlinear filtered map. It is

clear that following the application of the nonlinear filter, the resulting information

map is less noisy, the areas of interest selected are much more clear, and do seem

to better correspond to what is seen in the experimental density maps.

Table 4.9. shows the average di erence between the information maps and

experimental density maps across all images in the test set and at each scale. It is

clear that numerically the trained operators do far better than those that Tompa

employed. Not evident is the degree to which this numeric di erence reflects an

analytic di erence in the algorithmic detection of regions of interest. Analytically,

the di erence between a score of 1.35 and 1.25 is very significant. Figures 4.2 and

4.3 show error measures for particular images and o er some idea of the correlation

between numeric and analytic performance.

Figure 4.4. shows the average absolute error between operators employed in

Tompa’s work versus the trained nonlinear operators developed in this work. Of

note, is the fact that the benefit of applying the trained nonlinear operator decreases

as one goes up in scale. This is no doubt a result of the operator becoming more
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Figure 4.1: Top Middle: A test image to demonstrate the key di erence between
the trained filter and a variance filter. 2nd row: Left: Original image subjected
to trained nonlinear filter. Right: Variance image. Bottom: Left: Information
map corresponding to nonlinear filtered feature map. Right: Information map
corresponding to variance map.
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Figure 4.2: A demonstration of the e ect of applying the trained nonlinear operator
for the intensity map at scale 3. The images shown are (Top to bottom, left to right)
The original color image, the intensity map, the intensity map following application
of the nonlinear filter, the experimental density map, the distribution of strengths in
the feature map, the self information of the feature map, the self information of the
nonlinear filtered feature map, the distribution of the nonlinear filtered information
map.
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Figure 4.3: A demonstration of the e ect of applying the trained nonlinear operator
for the hue map at scale 3. The images shown are (Top to bottom, left to right)
The original color image, the hue map, the intensity map following application of
the nonlinear filter, the experimental density map, the distribution of strengths in
the feature map, the self information of the feature map, the self information of the
nonlinear filtered feature map, the distribution of the nonlinear filtered information
map.
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Filter / Scale Scale 1 Scale 2 Scale 3 Scale 4 Average
Intensity + Nonlinear 1.3324 1.3344 1.3262 1.2483 1.3103
Hue + Nonlinear 1.3466 1.3443 1.3311 1.2532 1.3188
Orientation + Nonlinear 1.3105 1.2851 1.2457 1.1756 1.2542
Sobel Magnitude 1.3494 1.3353 1.3411 1.3469 1.3432
Sobel Orientation 1.3485 1.3551 1.3616 1.3616 1.3567
Intensity 1.3471 1.3524 1.3532 1.3528 1.3514
Variance 1.3619 1.3697 1.3748 1.3747 1.3703
Moment of Inertia 1.3641 1.3717 1.3754 1.3717 1.3707
Hue 1.3485 1.3490 1.3468 1.3620 1.3478
Average 1.3444 1.3434 1.3395 1.3163 1.3359

Table 4.9: Numeric score of the trained operators verus some of Tompa’s choices.
Numbers indicated the average absolute error between the two density distributions
across all images in the test set.

local and thus having a less dramatic e ect on the image. It is also reasonable

to assume that looking at a smaller and smaller region of the image, the ability to

predict its importance becomes more di cult as one has less information concerning

local scene dynamics.

Figures 4.5-4.9 show the predicted density map for a number of images (each

shown top left) as compared with the experimental density map (top middle).

The 3 images at the bottom, from left to right, show respectively, the average

of the intensity, hue, and orientation information maps using the trained nonlinear

operators. The top right is the average of the 3 images at the bottom and the

number above indicates the absolute di erence between the combined map and the

experimental density map. In each of these cases, it is seen that the error value

is even much lower than that of any of the individual information maps. In each

case there is a strong correlation between the perceptual importance map and the

experimental density map.
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Figure 4.4: Average di erence between information maps generated using Tompa’s
operators and trained nonlinaer operators versus scale.

Figures 4.10 and 4.11 show fovea sized areas of interest containing the strongest

response, given by the sum of pixels in the circles, in the combined perceptual

importance map. These fixations are indicated by yellow circles superimposed on

the image. In each case shown in figures 4.10 and 4.11, fixations are selected until

at least 50 percent of the confidence in the combined map has been inhibited. In

each case shown, the predicted set of fixations corresponds very closely to fixations

present in eye tracking experiments on the same images. In each image tested, most

of the key distractors in the image were selected by our model in each case.

It has been verified that there do exist operators in the function space we have

chosen that do better than some of the well know operators that Tompa employed.

Using purely low level image stimulus, the predicited areas of interest show a strong

correlation to those present in eye tracking experiments.
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Figure 4.5: From left to right: Top: Original image, experimental density map,
average of all information maps. Bottom: Average of intensity information maps,
average of hue information maps, average of orientation information maps. Each
channel and scale includes an intermediate trained nonlinear filter.
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Figure 4.6: From left to right: Top: Original image, experimental density map,
average of all information maps. Bottom: Average of intensity information maps,
average of hue information maps, average of orientation information maps. Each
channel and scale includes an intermediate trained nonlinear filter.
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Figure 4.7: From left to right: Top: Original image, experimental density map,
average of all information maps. Bottom: Average of intensity information maps,
average of hue information maps, average of orientation information maps. Each
channel and scale includes an intermediate trained nonlinear filter.
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Figure 4.8: From left to right: Top: Original image, experimental density map,
average of all information maps. Bottom: Average of intensity information maps,
average of hue information maps, average of orientation information maps. Each
channel and scale includes an intermediate trained nonlinear filter.
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Figure 4.9: From left to right: Top: Original image, experimental density map,
average of all information maps. Bottom: Average of intensity information maps,
average of hue information maps, average of orientation information maps. Each
channel and scale includes an intermediate trained nonlinear filter.
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Figure 4.10: Fixations selected by the proposed model for a number of test images.
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Figure 4.11: Fixations selected by the proposed model for a number of images.
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4.3 Fusion of Information Maps

As described in section 3.5, we have investigated a number of approaches to combin-

ing the predictions of the various information maps. The best means of combining

the information maps derived at di erent scales and for di erent channels is not

obvious. Further, it is expected that the fusion stage is rather important and could

very appreciably a ect the e ectiveness of the overall framework. The following

subsections describe briefly the various approaches taken to fusing the information

maps and their relative e ectiveness.

4.3.1 Contrast Adjustment

The predictions of the information maps in their raw form are generally not bad.

Areas that intuitively should receive confidence in the information domain do tend

to in a least one of the 3 channels. That said, often the experimental density

maps tend to have stronger peaks and more obvious areas of no confidence than

the information maps. It is then reasonable to assume that increasing the contrast

of the information maps (making large peaks larger and supressing smaller ones)

might bring the information maps closer to the experimental density maps. This

sort of operation is very similar to the within feature spatial competition seen in the

human visual system, in which a larger response in one area of the scene supresses

smaller responses in other localities. In this case an overall perceptual importance

map is produced by averaging across scale to produce a single information map for

each channel. The 3 resulting information maps are then raised to a certain power
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Figure 4.12: Average score of final combined information map following fusion by
contrast adjustment of individual channels and averaging. Shown is the average
di erence between each combined map and density map across the image set for
various parameter choices.

and renormalized. Figure 4.12. shows the average di erence between the density

and importance maps across the image set for a number of di erent exponents.

It is clear that the sum of squares that Tompa employed does better than simple

averaging. It turns out though, that if one uses an exponent of 3.8 the resulting

importance map comes closest to the experimental density maps. This is a relatively

simple means of combining the information maps but does seem to provide a large

improvement in the overall score.
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4.3.2 Ordered Weighted Averages

As mentioned in section 3.5, the ordered weighted averages provide a slightly more

intelligent means of combining the information maps and include a handful of other

fusion strategies as subsets. As there are 12 information maps, trying a su cient

combination of weights for all 12 maps would prove prohibitive. For this reason

the number of information maps is reduced to 6 by averaging the 2 largest and

2 smallest information maps in each channel. In table 4.10 the average score is

shown for a wide variety of weights. (1) corresponds to the highest confidence

value and (6) the lowest of the 6 information maps. Interestingly, the best choice

of coe cients is that which comes closest to the maximum operator. The maximum

operator scores 1.2773 which is worse than the [0.9,0.1,0,0,0,0] parameter set.

4.3.3 Ordered Weighted Averages with Contrast Adjust-

ment

The ordered weighted average in itself does not seem to o er any advantage over

the basic contrast adjustment. That said, one can still do much better than a

basic average using the OWA. It naturally follows then that combining the two

approaches may be of benefit. It turns out that one can do slightly better than

the basic contrast adjustment following up with an OWA as opposed to a standard

average. This is shown in table 4.11. Interesting is the fact that the best choice

in this case comes from an equal weight given to the two highest confidence values
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(1) (2) (3) (4) (5) (6) Average Di erence
.2 .2 .2 .2 .1 .1 1.2833
.2 .2 .2 .2 .2 0 1.2814
.3 .3 .1 .1 .1 .1 1.2740
.3 .3 .2 .1 .1 0 1.2670
.3 .3 .2 .2 0 0 1.2645
.4 .2 .1 .1 .1 .1 1.2733
.4 .2 .2 .1 .1 0 1.2662
.4 .2 .2 .2 0 0 1.2636
.4 .3 .1 .1 .1 0 1.2621
.4 .3 .3 0 0 0 1.2539
.4 .4 .1 .1 0 0 1.2522
.4 .4 .2 0 0 0 1.2493
.5 .3 .1 .1 0 0 1.2508
.5 .3 .2 0 0 0 1.2478
.5 .4 .1 0 0 0 1.2430
.5 .5 0 0 0 0 1.2380
.6 .1 .1 .1 .1 0 1.2602
.6 .2 .1 .1 0 0 1.2496
.6 .2 .2 0 0 0 1.2465
.6 .4 0 0 0 0 1.2362
.7 .1 .1 .1 0 0 1.2484
.7 .3 0 0 0 0 1.2345
.8 .1 .1 0 0 0 1.2385
.8 .2 0 0 0 0 1.2329
.9 .1 0 0 0 0 1.2314

Table 4.10: Average score of final combined information map following ordered
weighted averaging. Shown is the average di erence between each combined map
and density map across the image set for various parameter choices.
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and one quarter that amount to the third and fourth largest. This contrasts with

the trend seen with the basic OWA.

4.3.4 Fuzzy Hybrid Connectives

Fuzzy hybrid connectives generalize the dicrete notions of conjunction and disjunc-

tion o ering a means of applying analogous operations in the continuous domain.

Shown are results using some of the norms described in section 3.5. Each one has a

single parameter and the average di erence for various choices of the parameter is

shown in each case. Figures 4.13-4.18 show the average di erence versus di erent

values of the single parameter for 3 di erent norms and co-norms. The fuzzy norms

in particular score very well when an appropriate value is chosen for the parameter

in each case. The curves for the co-norms tend to be flatter with minimums at

higher values than the norms. The norms all have obvious minimums scoring in

the 1.14-1.16 range. The minimum value of the Schweizer and Sklar norm occurs

at 1.1495 with a parameter value of 4.5. The minimum of the Yager norm has a

value of 1.1541 and lies at a parameter value of 8. The minimum of the Hamacher

norm has a value of 1.1481 and lies at a parameter value of 0.15. The fuzzy norms

score very well from a quantitative point of view.

4.3.5 Fuzzy Integrals

The fuzzy integrals are one of the most versatile approaches to combining informa-

tion. However, a result of the versatility of fuzzy integrals is the requirement that a

large number of parameters need be assigned. Further, the fuzzy integrals require
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(1) (2) (3) (4) (5) (6) Average Di erence
.2 .2 .2 .2 .1 .1 1.1906
.2 .2 .2 .2 .2 0 1.1823
.3 .3 .1 .1 .1 .1 1.1881
.3 .3 .2 .1 .1 0 1.1689
.3 .3 .2 .2 0 0 1.1644
.4 .2 .1 .1 .1 .1 1.1900
.4 .2 .2 .1 .1 0 1.1703
.4 .2 .2 .2 0 0 1.1655
.4 .3 .1 .1 .1 0 1.1684
.4 .3 .3 0 0 0 1.1603
.4 .4 .1 .1 0 0 1.1589
.4 .4 .2 0 0 0 1.1597
.5 .3 .1 .1 0 0 1.1598
.5 .3 .2 0 0 0 1.1606
.5 .4 .1 0 0 0 1.1629
.5 .5 0 0 0 0 1.1728
.6 .1 .1 .1 .1 0 1.1723
.6 .2 .1 .1 0 0 1.1616
.6 .2 .2 0 0 0 1.1624
.6 .4 0 0 0 0 1.1756
.7 .1 .1 .1 0 0 1.1645
.7 .3 0 0 0 0 1.1807
.8 .1 .1 0 0 0 1.1743
.8 .2 0 0 0 0 1.1893
.9 .1 0 0 0 0 1.2043

Table 4.11: Average score of final combined information map followining contrast
adjustment of individual channels (power of 3.8) followed by ordered weighted av-
eraging. Shown is the average di erence between each combined map and density
map across the image set for various parameter choices.
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Figure 4.13: Average score of final combined information map following fusion by
applying the Schweizer and Sklar norm across each channel. Shown is the average
di erence between each combined map and density map across the image set for
various parameter choices.
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Schweizer and Sklar Co-norm
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Figure 4.14: Average score of final combined information map following fusion by
applying the Schweizer and Sklar co-norm across each channel. Shown is the average
di erence between each combined map and density map across the image set for
various parameter choices.
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Yager Norm
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Figure 4.15: Average score of final combined information map following fusion by
applying the Yager norm across each channel. Shown is the average di erence
between each combined map and density map across the image set for various
parameter choices.
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Figure 4.16: Average score of final combined information map following fusion by
applying the Yager co-norm across each channel. Shown is the average di erence
between each combined map and density map across the image set for various
parameter choices.
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Hamacher Norm
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Figure 4.17: Average score of final combined information map following fusion by
applying the Hamacher norm across each channel. Shown is the average di erence
between each combined map and density map across the image set for various
parameter choices.
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Figure 4.18: Average score of final combined information map following fusion
by applying the Hamacher co-norm across each channel. Shown is the average
di erence between each combined map and density map across the image set for
various parameter choices.
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significantly more computation than some of the previously described approaches.

For this reason, maps were averaged across scale prior to combining the 3 feature

channels. Using a Sugeno fuzzy measure ( -fuzzy measure), we are then required

only to choose 3 weights. In each case that fuzzy integrals were employed, weights

were assigned to the 3 average maps with the rest of the fuzzy measure constructed

using a Sugeno fuzzy measure. For a variety of combinations of weights, both the

Sugeno and Choquet integrals produced average di erences in the 1.24-1.34 range.

This does not seem to o er any advantage over some of the simpler strategies. It

appears that the information that is discarded in averaging across scale, along with

the control that is lost in limiting the fuzzy measure to a Sugeno fuzzy measure lim-

its the usefulness of the fuzzy integrals. The time required to evaluate the fitness of

a particular set of weights is su ciently high that assigning all of weights required

to entirely define the fuzzy measure proves impossible. Also, bearing in mind that

a bottom-up attentional mechanism should be as fast as possible, a fuzzy integral

at the fusion stage may be a poor choice in this regard. All things considered, fuzzy

integrals seem to be ill-suited for this particular application.

4.3.6 Summary

We have explored a variety of approaches to combining the information maps. It

appears that the method chosen for combining the information maps can produce

a numerical di erence in fitness as significant as that gained from employing the

designed nonlinear filters. Particularly pleasing is the fact that through an appro-

priately chosen fusion operator, we are able to produce a combined information map

that is on average better than any of the individual information maps. The sum of
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squares operator does better than any of the other operators that Tompa tried. We

also see that one can do quite a bit better than the sum of squares using most of

the more intelligent approaches we have explored. Table 4.12 compares the average

di erence between the experimental density maps and combined perceptual impor-

tance map for the various fusion strategies. In each case that uses parameters, the

score pertaining to the best parameter choice is given. Numerically, the triangular

norms produce the best overall importance maps. It is likely worth comparing the

perceptual importance maps that arise from some of the better fusion strategies

from an analytic standpoint. Figure 4.19-4.22 show the combined maps for three

separate images using some of the more successful combination strategies. Of note

is the greater contrast seen when using the triangular norms verus most of the other

approaches. The Hamacher norm in particular seems less sensitive to changes in

illumination in comparison to the other 2 norms. Also, the OWA with contrast

adjustment, standard contrast adjustment, and Hamacher norms all appear very

similar. It is quite possible that the best operator is application dependent, how-

ever, one is most likely better o using one of the operators that does better than

the sum of squares. (There is a big gap in score between those above this operator

and those below.) The top middle in each case is the experimental density map

corresponding to the image on the top left. Generally the peaks in the combined

maps correlate closely with peaks in the experimental map for most images. The

best fusion operator for the overall system is likely contrast adjustment of the in-

dividual maps followed by summation. This conclusion is drawn from the fact that

computational e ciency is a very important consideration in dealing with visual

attention, and, the fact that the contrast adjusted result is quite close in appearence
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to some of the other approaches that fare slightly better from a quantitative point

of view. The overall resulting system would then consist of nonlinear filtering of

the basic channels by the operators listed in the appendix, transformation to the

information domain using a histogram estimate consisting of 256 bins, and finally,

adjustment of the contrast of the individual information maps followed by summa-

tion. The result of the overall system when applied to images from the test set

would be nearly identical to those seen in figures 4.10. and 4.11. The only di er-

ence would be a possible decrease in the number of areas circled as a result of the

contrast adjustment. To emphasize the capability of the overall system developed

here, figure 4.23 demonstrates the application of our model to a few di cult and

less usual cases drawn from a rather di erent context than our training set. Figure

4.23 is produced in the same manner as figures 4.10. and 4.11 with fovea sized re-

gions selected and inhibited until at least 40% of the sum of intensity values in the

combined information map is suppressed. The top two images consist of paintings

and the model is seen to handle these cases choosing some of the more obvious

areas of interest in each case. The bottom two images are natural images each

taken from a far di erent context than a typical urban environment. The bottom

left image has a great deal of clutter and many edges. The boats that are more

striking are selected by the model including some that are partially occluded and

many that are distinguished almost entirely by hue. In the bottom right is an image

that consists of almost entirely green and brown tones and has little distinguishing

information in the intensity channel. Nevertheless, a well hidden frog in the top

right of the image is detected as well as much of the foliage in the lower left of

the image. Overall the model appears able to handle a wide variety of cases drawn
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Fusion Method Best Average Di erence
Minimum 1.3027
Average 1.2809
Maximum 1.2773
Ordered Weighted Average 1.2314
Sum of Squares 1.2120
Contrast Adjustment 1.1619
OWA + Contrast Adjustment 1.1589
Yager Norm 1.1541
Schweizer and Sklar Norm 1.1494
Hamacher Norm 1.1481

Table 4.12: Average score of final combined information map following fusion using
the various approaches. In each case the best choice of parameters is used.

from di erent contexts and with very di erent image statistics selecting areas that

would intuitively receive attention from a human observer.
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Figure 4.19: A comparison of various fusion strategies. From top to bottom, left to
right are: Original Image, experimental density map, average, contrast adjustment,
OWA, OWA+contrast adjust, Schweizer and Sklar norm, Hamacher norm, Yager
norm.
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Figure 4.20: A comparison of various fusion strategies. From top to bottom, left to
right are: Original Image, experimental density map, average, contrast adjustment,
OWA, OWA+contrast adjust, Schweizer and Sklar norm, Hamacher norm, Yager
norm.
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Figure 4.21: A comparison of various fusion strategies. From top to bottom, left to
right are: Original Image, experimental density map, average, contrast adjustment,
OWA, OWA+contrast adjust, Schweizer and Sklar norm, Hamacher norm, Yager
norm.
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Figure 4.22: A comparison of various fusion strategies. From top to bottom, left to
right are: Original Image, experimental density map, average, contrast adjustment,
OWA, OWA+contrast adjust, Schweizer and Sklar norm, Hamacher norm, Yager
norm.
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Figure 4.23: The best overall model applied to some di cult and less usual images.
Predicted regions of highest interest are circled in yellow.
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Chapter 5

Summary, Limitations and Future

Work

5.1 Summary

In this thesis a new framework for simulating the visual attention system in primates

was presented. The overall framework consists of 4 key components:

1. A feature extraction stage where the image is broken down into primitive

channels of intensity, hue, and orientation. In particular, the orientation maps are

derived by convolving the image with Gabor filters oriented at 0,45,90 and 135

degrees respectively.

2. Nonlinear filtering with operators intended to respond (when coupled with

the Shannon information operator) to signal patterns that tend to draw attention

from human observers. These operators are found through stochastic search of a

large function space consisting of quadratic Volterra filters of local extent. Note

that this function space includes such well-know measures as local variance and
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moment of inertia(MOI) when applied to the intensity channel and under appro-

priate choice of coe cients. Correlation between variance, MOI and other similar

feature measures, and eye tracking density maps for the same images, has been

demonstrated. The premise of searching the function space is to locate unknown

operators in the space that exhibit even stronger correlation to eye tracking density

maps under the premise that such operators exist. The quality of a given solution

is measured by comparing the results of applying the solution to a large image

set, with measured eye tracking density maps for the same image set. Density

maps were produced for a large set of images across 20 subjects using standard eye

tracking equipment.

3. An information operator that takes each attention map to the information

domain. This transformation is based on Shannon’s measure of self-information,

and produces an information map that represents the information content of each

pixel in a given feature map. The result of this is that unique feature strengths (a

localized region with unusual hue for example) receive a large confidence value in the

information domain. The self-information operator is shown to be an appropriate

transformation betweenmeasured features on an image and the perceptual relevance

of such features. An issue that arises when dealing with this transformation is the

manner in which the density distribution of a feature map is produced. An analysis

of various approaches to density estimation within the context of this problem is

presented including histogram, kernel based and k-nearest neighbor estimates.

4. Fusion of the information maps. An analysis of approaches to the problem

of combining the intermediate information maps to produce a unique topographical
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salience map is presented. Various approaches to data fusion suitable for this

problem are explored including simple averages, learned weighted averages, ordered

weighted averages, contrast adjustment, within-feature spatial competition, fuzzy

integrals, and fuzzy triangular norms.

The overall framework is applied to a test set of natural images with performance

compared against other recent models from quantitative, analytic and psychophys-

ical perspectives.

5.2 Limitations

It is reasonable to assume that using strictly stimulus driven bottom-up attentional

selection, the degree to which one is able to predict attentional selection is limited.

The human visual system relies on a primitive bottom-up mechanism similar to

that developed in this thesis. Humans also have access to a more time intensive,

intelligent top-down attentional mechanism. It is very di cult to gauge the in-

dependent contribution of these two components in guiding attentional selection.

That said, in most cases we have been able to pinpoint areas of the scene that

may be of interest using only strictly context-free stimulus based measures. The

system is currently not well-suited for real-time applications as a result of the high

degree of computation required. However, it is not unreasonable to assume that

with hardware that will most likely be available in a few years this approach could

quite well be employed for real time applications on a relatively inexpensive desk-

top machine. The most significant limitations are the limitations inherent in using

a strictly stimulus driven attentional mechanism. In theory, there should be some
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bound on how well one can do using strictly context-free stimulus based measures.

This is an issue that will be the subject of future work.

5.3 Future Work

There are numerous areas surrounding the problem of computational visual atten-

tion that remain unexplored. A relatively small amount of e ort has been put into

the development of top-down attentional mechanisms in comparison to bottom-up

attentional selection. This is likely, to some degree, a product of the added di culty

in developing a top-down approach to the problem. Issues such as context, scene

structure, and others begin to creep into the picture making a problem that is by

nature very di cult. Motion information is key to the guidance of visual attention

but this factor is left out of most bottom-up attentional mechanisms mostly be-

cause they are developed and tested using sets of still images. Taking the problem

from operating on still images to processing video sequences once again increases

the number of factors involved and hence the di culty of the problem. Future work

will endeavor to consider the problem of visual attention using all of the informa-

tion that humans typically have at their disposal. That is, the consideration of

computational visual attention with access to real-time (stereo) data. This should

produce a setting that requires a great deal more investigation and rigour than the

work presented in this thesis but is arguably the next necessary step in developing

a computational approach to visual attention that might arise as a competitor to

the human visual attention system.
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Chapter 6

Appendix

6.1 Coe cients for Trained Nonlinear Filters

Shown are the coe cients derived at each scale and for each channel. The values

corresponding to the linear and pairwise coe cients of the quadratic volterra filter

in each case are presented in the following order:

[ 2 2 2 2 2 2]

these correspond to the 5x5 symmetric kernel that follows:

Scale 4

Intensity

Score: 1.2483
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Coe cients:

[0.0398 0.0889 0.1171 -0.0006 0.1736 -0.01 0.0336 0.0163 0.0085 0.0787 0.0232

0.0216 -0.04 0.0492 0.0263 -0.0183 0.0781 -0.0411 -0.0242 0.0235 0.0028 -0.0217

-0.0044 -0.0111 -0.0105 -0.0525 -0.0069]

Hue

Score: 1.2532

Coe cients:

[0.0817 0.1906 0.1341 0.0624 -0.0305 -0.1475 -0.0663 0.0203 -0.0295 0.0419 0.0718

0.0611 0.061 -0.0789 -0.0256 -0.042 0.0458 0.0544 0.0202 -0.0286 0.0085 0.0203 -

0.0752 0.0548 0.0384 -0.0464 0.0388]

Orientation 1

Score: 1.1748

Coe cients:

0.0275 0.0175 -0.0389 -0.0214 0.0044 0.0095 -0.0048 0.1198 -0.0288 -0.0495 0.0433

-0.033 0.1332 0.0975 0.0524 0.1052 -0.0363 0.1232 -0.0216 0.0663 -0.1212 0.0255

0.1126 0.0398 -0.0217 -0.0931 -0.1016

Orientation 2

Score: 1.1696

Coe cients:

[0.0767 -0.1129 -0.0685 0.0095 0.0369 -0.0134 0.0829 0.0013 0.0561 0.1228 0.1515

-0.0647 0.1451 0.0549 0.1161 0.1002 -0.0629 0.0807 0.0305 0.0744 -0.04 0.0088 0.0045

0.0151 -0.033 -0.0456 -0.0841]
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Orientation 3

Score: 1.1829

Coe cients:

[0.052 -0.0118 -0.0143 -0.0618 0.0258 -0.0106 0.0081 -0.0129 0.0385 0.0534 0.0119

0.0584 0.0693 0.0326 0.0759 0.1056 -0.0942 0.0407 -0.0468 0.0028 0.0337 0.1193

0.0698 -0.0357 -0.0356 -0.0178 -0.078]

Orientation 4

Score: 1.1749

Coe cients:

[-0.0314 -0.0443 -0.06 -0.0371 0.0158 0.0276 0.0756 -0.0349 0.0186 0.0499 0.0701

0.0132 0.0789 0.0278 0.0624 0.1264 0.0431 0.085 0.0819 0.0827 -0.0325 0.0626 0.0514

-0.1189 -0.0293 -0.044 -0.1301]

Scale 3

Intensity

Score: 1.3262

Coe cients:

[0.0321 0.0724 0.0609 0.0843 0.1191 -0.0081 -0.0015 0.0702 0.0192 0.0509 -0.0494

0 0.0019 -0.0455 0.0428 -0.024 -0.0537 0.0136 0.0329 0.0185 -0.044 -0.0146 0.0344

0.0214 -0.0112 -0.05 0.0356]

Hue

Score: 1.3311
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Coe cients:

[0.0192 0.1075 0.0228 0.052 0.1249 0.0287 -0.073 -0.0166 0.0066 -0.0494 0.0876

0.003 0.0396 -0.0087 0.0007 -0.0016 0.02 -0.003 -0.0346 -0.0302 -0.0327 0.0111 -

0.0453 0.0401 0.0287 -0.0525 0.0048]

Orientation 1

Score: 1.2256

Coe cients:

[0.0135 -0.0017 0.0091 0.0063 -0.0034 0.0012 0.0253 0.0152 0.0037 -0.0411 -0.0221

0.013 0.0825 0.0684 -0.0226 0.0488 0.0748 0.014 -0.0054 0.0352 -0.0159 0.0985 0.0188

0.0277 0.0084 -0.1245 -0.0065]

Orientation 2

Score: 1.2471

Coe cients:

[-0.0178 -0.0321 -0.0445 -0.0366 0.0169 0.0166 0.1186 0.1059 0.0701 0.0278 0.0241

0.0537 0.072 0.0567 0.0127 0.0164 0.0586 0.0116 0.0133 0.0391 0.0318 0.0662 0.0663

-0.0098 -0.0293 -0.0756 -0.0201]

Orientation 3

Score: 1.2600

Coe cients:

[0.0021 -0.0596 0.0153 -0.056 0.0305 -0.0364 0.0952 0.1237 -0.0063 -0.0053 0.0131

0.0118 0.0948 0.0394 -0.0036 0.1534 0.0206 0.0875 0.0154 -0.0432 0.0035 0.0925 0.073

0.0032 -0.0599 -0.0034 -0.0024]
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Orientation 4

Score: 1.2501

Coe cients:

[0.0063 -0.0538 -0.0381 0.0221 0.0199 -0.0091 0.0613 0.0339 0.0475 -0.0381 0.0617

0.0085 0.0409 0.0923 0.1249 0.0122 0.0251 0.0108 0.0814 0.0761 0.0311 0.01 0.0321

0.0388 -0.0256 -0.0993 -0.0427]

Scale 2

Intensity

Score: 1.3344

Coe cients:

[-0.0164 0.0189 0.0569 0.0678 0.0492 0.0219 0.0315 0.0009 -0.0474 0.0359 0.0253

0.0263 -0.0006 0.0183 0.0181 0.0115 0.0043 0.0457 -0.0111 -0.0207 -0.0352 -0.0072

-0.0377 0.0406 0.0031 -0.0085 -0.0367]

Hue

Score: 1.3443

Coe cients:

[0.0509 0.0306 0.0702 0.0462 0.1295 0.0664 0.0806 0.0514 0.0106 0.0244 -0.0215 -

0.0475 0.0066 -0.0032 0.0005 -0.0307 0.0337 0 -0.0153 -0.0063 0.0368 -0.0002 -0.0177

0.0065 -0.0095 -0.0092 0.0328]

Orientation 1

Score: 1.2776
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Coe cients:

[-0.0067 0.0003 0.0154 -0.0173 -0.0256 0.0459 0.0114 0.0623 -0.0195 0.0084 -

0.0297 0.0422 0.0021 0.0039 0.0498 0.0516 0.0475 0.0465 0.0113 0.0481 0.0229 0.0379

0.0547 0.0629 0.0441 0.0281 0.0108]

Orientation 2

Score: 1.2861

Coe cients:

[0.0046 —0.0095 0.0174 —0.0161 0.0091 —0.0045 0.0720 —0.0276 0.0604 0.0134

0.0334 0.0657 0.038 -0.0162 0.0192 0.0533 0.0401 0.0321 —0.0293 0.0681 0.0106 0.043

0.0737 0.055 0.0076 —0.0428 —0.0177]

Orientation 3

Score: 1.2861

Coe cients: [-0.0151 0.0168 0.027 —0.0064 0.0366 —0.0538 0.0182 0.0193 0.0099

—0.0387 0.0238 0.0313 —0.0111 0.0019 0.0415 0.0198 —0.0226 0.0278 0.0471 0.0244

0.0129 0.0242 0.0409 —0.0159 —0.0001 —0.0008 —0.02]

Orientation 4

Score: 1.2904

Coe cients: [0.0084 0.0281 -0.0202 0.0033 0.0008 -0.0277 -0.0166 0.0361 0.0665

0.0509 0.0655 0.0345 -0.0197 0.0339 0.0412 0.0998 0.0136 -0.0049 0.048 -0.0057

0.0638 0.0089 0.0553 0.0208 0.0978 0.0279 -0.007]

Scale 1
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Intensity

Score: 1.3324

Coe cients: [-0.0117 -0.0532 0.0186 0.0578 0.0928 0.0042 0.1265 0.0123 -0.0136

0.0481 0.0079 -0.0387 -0.0183 0.0028 0.044 -0.021 0.0142 -0.017 -0.0424 0.043 0.0095

-0.0622 0.0486 0.0092 -0.0439 0.019 0.0056]

Hue

Score: 1.3466

Coe cients: [0.034 0.0723 0.0582 0.0394 0.1132 0.0831 0.0174 0.027 -0.0415

0.0371 0.0325 -0.0298 -0.0187 0.0034 -0.0106 -0.025 0.018 -0.0196 -0.0541 -0.0168

0.043 -0.0132 -0.0236 0.0249 0.0096 0.0276 0.0025]

Orientation 1

Score: 1.3105

Coe cients: [-0.193 0.8325 1.791 1.367 2.2455 2.5295 -0.7225 0.1943 1.3248

0.0832 -0.8602 0.7071 1.8863 2.8834 -1.6052 0.8695 -2.9642 -2.8033 1.3577 0.1 0.5771

-0.8525 1.0099 1.6626 0.6728 0.0803 1.3965]

Orientation 2

Score: 1.3209

Coe cients: [-0.9387 0.0367 -1.2556 2.0425 2.3892 -0.1525 2.9342 -0.0589 -1.2296

-1.0431 -2.8179 0.3621 -2.6497 2.64 2.3459 1.1437 -2.3553 -0.9813 2.7938 0.8852 -

0.4036 0.2576 -1.6816 -2.4732 1.8352 -2.0085 -2.8102]

Orientation 3
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Score:1.3122

Coe cients: [0.1211 2.5317 0.3211 2.5724 2.7569 -2.6978 -0.3364 2.6591 -0.7876

-1.3779 1.6724 -2.6566 2.7379 2.1974 -0.9497 1.4864 -2.4958 2.2218 -2.0975 2.4915

0.6363 2.0668 -0.0801 -1.3602 1.122 -1.5755 -2.1983]

Orientation 4

Score: 1.3168

Coe cients: [2.1066 -2.2386 2.0497 2.5572 0.3644 -0.3133 -2.1495 -1.6744 -0.2886

0.3999 2.0113 1.0152 1.8040 -2.188 -0.1297 -0.3446 -2.9324 0.4012 -1.2644 1.6015

2.5728 2.2716 -1.2676 0.4787 0.8188 -0.9264 -2.8862]

119


